

 SX-Aurora TSUBASA

Program Execution Quick Guide

- i -

Proprietary Notice

The information disclosed in this document is the property of NEC Corporation (NEC)

and/or its licensors. NEC and/or its licensors, as appropriate, reserve all patent,

copyright, and other proprietary rights to this document, including all design,

manufacturing, reproduction, use and sales rights thereto, except to the extent said

rights are expressly granted to others.

The information in this document is subject to change at any time, without notice.

 Linux is the registered trademark of Linus Torvalds in the United States

and other countries.

 InfiniBand is a trademark of InfiniBand Trade Association.

 In addition, mentioned company name and product name are a registered

trademark or a trademark of each company.

© 2018 NEC Corporation

- ii -

Preface

The SX-Aurora TSUBASA Program Execution Quick Guide is the document for those

using SX-Aurora TSUBASA for the first time. It explains the basic usage of the SX-

Aurora TSUBASA software products; the compilers, MPI, NQSV, PROGINF, and

FTRACE.

This guide assumes the following installation, setup, and knowledge.

 VEOS and the necessary software have been installed and set up.

 Users are able to log in to the system or use the job scheduler NQSV (NEC

Network Queuing System V) or PBS.

 Users have knowledge of Fortran compiler (nfort), C compiler (ncc), C++

compiler (nc++), and NEC MPI.

This guide assumes the version of VEOS is 3.0.2 or later.

The version of VEOS can be confirmed by the following way.

$ rpm -q veos

veos-3.0.2-1.el8.x86_64

VH/VE hybrid MPI execution is available in NEC MPI version 2.3.0 and later. The

NEC MPI for VE30 is available at version 3.3.0 and later. The version of NEC MPI

corresponds to the following directory "/opt/nec/<ve>/mpi/<version>". <ve> is

ve3 for VE30, otherwise ve.

$ ls -d /opt/nec/ve/mpi/2.3.0

/opt/nec/ve/mpi/2.3.0

- iii -

Definitions and Abbreviations

abbreviation definition

Vector Engine, VE

Vector Engine, VE is a center of SX-Aurora TSUBASA and

are the part where a vector operation is performed. It's PCI

Express card and it's loaded into x86 server and it's used.

Vector Host, VH

It is a server that is a host computer holding Vector Engine

IB An abbreviation of InfiniBand.

HCA An abbreviation of Host Channel Adapter.

The hardware to communicate with other nodes using

InfiniBand.

MPI An abbreviation of Message Passing Interface. The standard

specifications to do a parallel computing over nodes. It's

possible to use MPI for communication among processes on

a single node. The use with OpenMP is also possible.

PBS Job scheduler by Altair Engineering, Inc. PBS Professional is

the commercial version and OpenPBS is its open source

version.

chunk A group of resources users request under PBS. The

resources in a chunk are always allocated from a VH.

chunk set A set of one or more identical chunks.

Contents

- iv -

Contents

Proprietary Notice .. i

Preface .. ii

Definitions and Abbreviations .. iii

Contents ... iv

Chapter1 Outline of SX-Aurora TSUBASA ... 1

1.1 Confirmation of VE Composition .. 2

Chapter2 Compilation ... 3

2.1 Compilation of FORTRAN/C/C++ ... 3

2.2 Compilation of MPI Programs .. 3

Chapter3 Program Execution .. 5

3.1 Interactive Program Execution ... 5

3.1.1 Execution of FORTRAN/C/C++ Programs 5

3.1.2 Execution of MPI Programs .. 6

3.2 Batch Program Execution with NQSV .. 7

3.2.1 Job Execution Type .. 7

3.2.2 Execution of FORTRAN/C/C++ Programs 7

3.2.3 Execution of MPI Programs .. 8

3.3 Program Execution under PBS ... 9

3.3.1 Overview .. 10

3.3.2 Execution of Fortran, C, or C++ Programs 10

3.3.3 Execution of MPI Programs .. 11

Chapter4 I/O Acceleration ... 13

4.1 ScaTeFS Direct I/O .. 13

4.2 Accelerated I/O ... 14

Chapter5 Performance Profiling .. 16

5.1 PROGINF Function ... 16

5.2 FTRACE Function ... 18

5.3 Profiler ... 22

Chapter6 General Questions and Answers .. 24

Appendix A History ... 28

A.1 History Table .. 28

A.2 Change Notes ... 28

Chapter1 Outline of SX-Aurora TSUBASA

- 1 -

Chapter1 Outline of SX-Aurora TSUBASA

SX-Aurora TSUBASA consists of the vector engine which does application data processing

(VE) and the x86/Linux node (VH) which does OS processing mainly.

A program of SX-Aurora TSUBASA starts from VH which offers the OS function, and is carried

out on each VE. Therefore when executing SX-Aurora TSUBASA program, it's necessary to

designate and carry out the VE number and the number of VE.

Figure 1 Configuration example of SX-Aurora TSUBASA

Chapter1 Outline of SX-Aurora TSUBASA

- 2 -

1.1 Confirmation of VE Composition

It's possible to acquire the composition situation of VE and HCA (IB) by the vecmd command.

$ /opt/nec/ve/bin/vecmd topo tree

Vector Engine MMM-Command v1.1.2

Command:

topo -N 0,1 tree

--

SYS-1028GQ-TRT

(QPI Link)

+-80:00.0-+-80:02.0---82:00.0 [VE0] [SOCKET1]

 +-80:03.0---83:00.0 [VE1] [SOCKET1]

 +-80:01.0---81:00.0 [IB0] [SOCKET1] mlx5_0

--

 Result: Success

A number part of indicated VE0 and VE1 is the VE number.

Chapter2 Compilation

- 3 -

Chapter2 Compilation

2.1 Compilation of FORTRAN/C/C++

(For Fortran)

$ /opt/nec/ve/bin/nfort a.f90

(For C)

$ /opt/nec/ve/bin/ncc a.c

(For C++)

$ /opt/nec/ve/bin/nc++ a.cpp

The option -fopenmp below enables the OpenMP features.

(For Fortran)

$ /opt/nec/ve/bin/nfort -fopenmp a.f90

(For C)

$ /opt/nec/ve/bin/ncc -fopenmp a.c

(For C++)

$ /opt/nec/ve/bin/nc++ -fopenmp a.cpp

2.2 Compilation of MPI Programs

Firstly, execute the following command each time you log in, in order to setup the MPI

compilation environment. This setting is available until you log out.

(For bash)

$ source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.sh

(For csh)

% source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.csh

where <version> is the directory name corresponding to the version of NEC MPI you use,

and <ve> is ve3 for VE30, otherwise ve.

Use the MPI compilation commands corresponding to each programing language to compile

and link MPI programs as follows:

(For Fortran)

$ mpinfort a.f90

(For C)

$ mpincc a.c

Chapter2 Compilation

- 4 -

(For C++)

$ mpinc++ a.cpp

If you compile MPI programs executed on VH, specify the option -vh. Then the MPI program

is compiled with gfortran, gcc, or g++.

(For Fortran)

$ mpinfort -vh a.f90

(For C)

$ mpincc -vh a.c

(For C++)

$ mpinc++ -vh a.cpp

Chapter3 Program Execution

- 5 -

Chapter3 Program Execution

3.1 Interactive Program Execution

3.1.1 Execution of FORTRAN/C/C++ Programs

 In the case of 1 VE models

Execute a program directly.

$./a.out

 The way of specifying a particular VE number to run a program in the models with

two or more VEs

The VE number can be specified with the command ve_exec -N or environment

variable VE_NODE_NUMBER. The following examples specify VE#1.

 The way of using the command ve_exec -N

$ /opt/nec/ve/bin/ve_exec -N 1 a.out

 The way of using the environment variable

(For bash)

$ export VE_NODE_NUMBER=1

$./a.out

(For csh)

% setenv VE_NODE_NUMBER 1

% ./a.out

Note

1

When a program is executed without specifying a VE number like $./a.out,

VE#0 is selected.

Note

2

When the command ve_exec -N and environment variable VE_NODE_NUMBER

are used together, the command ve_exec -N takes precedence.

Note

3

The number of OpenMP threads can be specified with the environment variable

OMP_NUM_THREADS or VE_OMP_NUM_THREADS. When both are specified,

the environment variable VE_OMP_NUM_THREADS takes precedence for

programs executed on VEs.

Chapter3 Program Execution

- 6 -

3.1.2 Execution of MPI Programs

Firstly, execute the following command each time you log in, in order to setup the MPI

execution environment. This setting is available until you log out.

(For bash)

$ source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.sh

(For csh)

% source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.csh

 Execution on one VE

Specify an MPI executable file in the mpirun command or the mpiexec command,

specifying the number of MPI processes to launch with the -np option and the VE

number to use with the -ve option.

When the -np option is not specified, one process is launched.

When the -ve option is not specified, VE#0 is used.

The following command example executes an MPI program on VE#3 using 4

processes.

$ mpirun -ve 3 -np 4 ./a.out

 Execution on multiple VEs on a VH

Specify the range of VE numbers with the -ve option and the total number of processes

to launch with the -np option

The following command example executes an MPI program on from VE#0 through

VE#7, using 16 processes in total (2 processes per VE).

$ mpirun -ve 0-7 -np 16 ./a.out

 Execution on multiple VEs on multiple VHs

Specify the name of a VH with the -host option.

The following command example executes an MPI program on VE#0 and VE#1 on

each of two VHs (host1 and host2), using 16 processes per VH (8 processes per VE,

totally 32 processes).

$ mpirun -host host1 -ve 0-1 -np 16 -host host2 -ve 0-1 -np 16 ./a.out

Chapter3 Program Execution

- 7 -

 Hybrid execution on VHs and VEs

Following with -vh option, specify options for MPI processes executed on VH, for

example, the number of MPI processes, an MPI executable file. Separate Specifications

of MPI executable files on VH and VE with “:”.

The following command example executes MPI program vh.out on host1 using 4

processes, and at the same time MPI program ve.out on VE#0 and VE#1 on each of

two VHs (host1 and host2), using 16 processes per VH (8 processes per VE, totally 32

processes).

$mpirun -vh -host host1 -np 4 vh.out : -host host1 -ve 0-1 -np 16 -host host2 -ve 0-1 -np 16 ./ve.out

3.2 Batch Program Execution with NQSV

This section explains the way to execute a program of SX-Aurora TSUBASA using NQSV. The

following examples only describe the basic procedure to execute a program. Please refer to

"NEC Network Queuing System V (NQSV) User's Guide [Operation]" about details of NQSV.

3.2.1 Job Execution Type

NQSV supports both batch-type and interactive-type as job execution type.

 Batch-type

It is executed by submitting a script, using qsub command.

 Interactive-type

It is possible to execute job interactively, using qlogin command.

3.2.2 Execution of FORTRAN/C/C++ Programs

A script example of the FORTRAN/C/C++ when carrying out a batch execution. 1VE is used

for SX-Aurora TSUBASA program.

(script.sh)

:

#PBS --cpunum-lhost=1 # Number of CPUs

#PBS --venum-lhost=1 # Number of VE

./a.out

Chapter3 Program Execution

- 8 -

qsub command is used to submit a job as follows.

$ /opt/nec/nqsv/bin/qsub script.sh

qlogin command is used to start a job as follows.

$ /opt/nec/nqsv/bin/qlogin --venum-lhost=1 …

$./a.out

Note The allocation of VEs automatically performed by NQSV. Therefore, the user

don't designate environment variable VE_NODE_NUMBER and ve_exec -N.

3.2.3 Execution of MPI Programs

 Execution on specific VEs out of VEs assigned by NQSV

The following example shows how to execute an MPI program with 32 processes

using logical VE#0 through VE#3 on logical host #0, and eight processes per VE.

(script2.sh)

:

#PBS --cpunum-lhost=1 # Number of CPUs

#PBS --venum-lhost=4 # Number of VEs

source /opt/nec/<ve>/mpi/<version>//bin/necmpivars.sh

mpirun -host 0 -ve 0-3 -np 32 ./a.out

It's put in by the qsub command as follows.

$ /opt/nec/nqsv/bin/qsub script2.sh

 Execution on all VEs assigned by NQSV

The following example shows how to execute an MPI program with 32 processes,

on four logical hosts, eight VEs each logical hosts, and one process each VE.

(script3.sh)

:

#PBS -T necmpi

#PBS -b 4 # Number of logical hosts

#PBS --cpunum-lhost=1 # Number of CPUs

#PBS --venum-lhost=8 # Number of VEs per logical host

#PBS --use-hca=2 # Number of available HCAs

source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.sh

mpirun -np 32 ./a.out

Chapter3 Program Execution

- 9 -

It's put in by the qsub command as follows.

$ /opt/nec/nqsv/bin/qsub script3.sh

 Hybrid execution on all VHs and VEs assigned by NQSV

The following example shows how to execute MPI program vh.out with 12

processes , on 4 logical hosts, and at the same time MPI program ve.out with 32

processes, on 4 logical hosts, 8 VEs each logical hosts, and 1 process each VE.

(script4.sh)

:

#PBS -T necmpi

#PBS -b 4 # Number of logical hosts

#PBS --cpunum-lhost=4 # Number of CPUs per logical host

#PBS --venum-lhost=8 # Number of VEs per logical host

#PBS --use-hca=2 # Number of available HCAs

source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.sh

mpirun -vh -np 12 vh.out : -np 32 ./ve.out

It's put in by the qsub command as follows.

$ /opt/nec/nqsv/bin/qsub script4.sh

The specifications described above are available in the interactive job, too.

Note The allocation of VEs and VHs to MPI processes is automatically performed

by NQSV and users do not need to explicitly specify them.

3.3 Program Execution under PBS

This section explains how to run programs for the SX-Aurora TSUBASA under PBS. The

description assumes that PBS installed on the system has been configured for the SX-Aurora

TSUBASA. Refer to the chapter “Support for NEC SX-Aurora TSUBASA” in “Altair PBS

Professional Administrator’s Guide” for the configuration. This section illustrates the most

basic usage. Refer to the chapter “Submitting Jobs to NEC SX-Aurora TSUBASA” in “Altair

PBS Professional User’s Guide” for advanced usage.

Chapter3 Program Execution

- 10 -

3.3.1 Overview

Under PBS, you can submit a batch job by executing the command qsub specifying a jobscript

file. To submit an interactive job, you can use the command qsub -I specifying a jobscript

file. The status of jobs can be viewed with the command qstat. Deletion of jobs is

accomplished with the command qdel specifying the job IDs. These commands are in the

directory /opt/pbs/bin by default, and set the command search path appropriately.

In jobscript files, specify resources you use in the PBS directive starting with the prefix “#PBS

“ as the following example shows, in which the resources nves and mpiprocs specify the

number of VEs and that of MPI processes, respectively, resulting in execution of eight MPI

processes on four VEs. The PBS directive starting with “-l select” is called a selection directive.

#PBS -l select=nves=4:mpiprocs=8

A list of the resource requests in the form “resource=value” concatenated with the character

“:” like “nves=4:mpiprocs=8” is called a chunk. The resources requested in a chunk are

always allocated from a VH. Therefore, for example, the value of the resource nves shall be

less than or equal to four on the VHs that have four VEs.

You can request multiple identical chunks by specifying “number:” immediately before the

chunk as the following selection directive shows, which requests four sets of the chunks, each

of which specifies one VE and two MPI processes. A set of identical chunks is called a chunk

set.

#PBS -l select=4:nves=1:mpiprocs=2

3.3.2 Execution of Fortran, C, or C++ Programs

The following jobscript runs an SX-Aurora TSUBASA program written in Fortran, C, or C++

using one VE.

#!/bin/bash

#PBS -l select=nves=1

./a.out

Chapter3 Program Execution

- 11 -

NOTE) Do not specify the environment variable VE_NODE_NUMBER or execute the command

ve_exec with the option -N because the assignment of particular VEs is performed by PBS.

In the case of OpenMP programs, specify the number of threads using the resource

ompthreads. The following jobscript runs an OpenMP program with eight threads using one

VE.

#!/bin/bash

#PBS -l select=nves=1:ompthreads=8

./a.out

NOTE) Do not specify the environment variable OMP_NUM_THREADS because the value is

automatically set by PBS and any user-defined values are overwritten.

3.3.3 Execution of MPI Programs

 Execution on VEs

The following jobscript runs 32 MPI processes using four VEs, each of which executes eight

MPI processes. In the selection directive, the chunk “nves=1:mpiprocs=8” specifies the

number of MPI processes executed on a VE and the leading “4:” indicates the number of VEs

to use.

Also, specify the total number of MPI processes using the option -np in the mpirun command

line.

#!/bin/bash

#PBS -l select=4:nves=1:mpiprocs=8

source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.sh

mpirun -np 32 ./a.out

 Execution of Hybrid Parallel (MPI and OpenMP) Programs

 The following jobscript runs 16 MPI processes with four threads each using eight VEs,

each of which executes two MPI processes.

Chapter3 Program Execution

- 12 -

#!/bin/bash

#PBS -l select=8:nves=1:mpiprocs=2:ompthreads=4

source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.sh

mpirun -np 16 ./a.out

 Execution of VH-VE Hybrid MPI Programs

When you execute MPI processes on VHs, specify where the MPI processes should run using

the environment variable NEC_PROCESS_DIST. The following jobscript runs two MPI

processes on a VH and four MPI processes on each of eight VEs, resulting in 34 MPI process

execution in total.

#!/bin/bash

#PBS -l select=ncpus=2:mpiprocs=2+8:nves=1:mpiprocs=4

#PBS -v NEC_PROCESS_DIST=s2+4

source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.sh

mpirun -vh -np 2 vh.out : -np 32 ./ve.out

In the selection directive, specify the number of CPU cores that run MPI processes on a VH

using the resource ncpus like ”ncpus=2:mpiprocs=2” above. You can specify different chunk

sets such as “ncpus=2:mpiprocs=2” and “8:nves=1:mpiprocs=4” by concatenating them

with the character “+” in the selection directive as the example shows. The environment

variable NEC_PROCESS_DIST specifies the placement of MPI processes in every chunk in the

selection directive. In the example above, the first chunk set specifies the number of MPI

processes on a VH following the character “s”, and the second the number of MPI processes

on each VE.

Because the ranks of MPI processes are determined by the order of the chunks specified in

the selection directive and environment variable NEC_PROCESS_DIST, the order of MPI

processes on VHs and VEs in the PBS directives has to match that in the mpirun command

line.

Chapter4 I/O Acceleration

- 13 -

Chapter4 I/O Acceleration

When you set the environment variable described in this chapter and execute your program,

your program's I/O will be accelerated.

4.1 ScaTeFS Direct I/O

When the read/write I/O size is larger than the defined value (1MB by default), a VE process

performs the direct I/O to ScaTeFS using the library. Set the value of the environment variable

VE_LD_PRELOAD to "libscatefsib" before executing VE programs.

Requirement: ScaTeFS is installed and the ScaTeFS I/O client is set up in VHs.

(For bash)

$ export VE_LD_PRELOAD=libscatefsib.so.1

$./a.out

 (For csh)

% setenv VE_LD_PRELOAD libscatefsib.so.1

% ./a.out

When you execute programs with NQSV, please set the --use-hca option.

#!/bin/bash

#PBS -b 1

#PBS --venum-lhost=1

#PBS --use-hca=2 # Number of available HCAs

VE_LD_PRELOAD=libscatefsib.so.1 ./a.out

When you run programs under PBS, set the value of the environment variable

VE_LD_PRELOAD in the jobscript as follows:

#!/bin/bash

#PBS -l select=nves=1

VE_LD_PRELOAD=libscatefsib.so.1 ./a.out

Chapter4 I/O Acceleration

- 14 -

4.2 Accelerated I/O

The Accelerated I/O library improves I/O performance by efficient data transfer between VH

and VE. The feature is enabled when the environment variable VE_ACC_IO1 is 12, and it is

disabled when the VE_ACC_IO is 0. Please set VE_ACC_IO before a user execute VE programs.

Please note that the feature is unavailable for a static linked VE program.

Requirement: The system administrator reserves HugePages for the Accelerated I/O through

the kernel parameter “vm.nr_hugepages”.

Please refer to “SX-Aurora TSUBASA Installation Guide” about the number of HugePages for

Accelerated I/O and configuration steps. The ve-set-hugepages service which is available

after VEOS v2.9.1 configures the HugePages automatically.

 (For bash)

$ export VE_ACC_IO=1

$./a.out

 (For csh)

% setenv VE_ACC_IO 1

% ./a.out

When you execute programs with NQSV, please set the environment variable in the script for

a batch execution.

#!/bin/bash

#PBS -b 1

#PBS --venum-lhost=1

export VE_ACC_IO=1

./a.out

1 The VE_ACC_IO is available if the VEOS version is v2.3.0 or later. If the VEOS version is

earlier than 2.3.0, the VE_ACC_IO is not available. In this case, set the environment variable

VE_LD_PRELOAD to libveaccio.so.1. To confirm VEOS version, please use the following

command.

$ rpm -q veos

veos-2.3.0-1.el7.x86_64

2 The feature is enabled by default after VEOS v3.0.2.

Chapter4 I/O Acceleration

- 15 -

When you run programs under PBS, set the value of the environment variable VE_ACC_IO in

the jobscript as follows:

#!/bin/bash

#PBS -l select=nves=1

export VE_ACC_IO=1

./a.out

Chapter5 Performance Profiling

- 16 -

Chapter5 Performance Profiling

When confirming the execution performance of the program, the PROGINF function and the

FTRACE function are used.

5.1 PROGINF Function

PROGINF provides program execution analysis information throughout the execution of

program. After that YES or DETAIL is designated in environment variable VE_PROGINF and

a program is executed. Performance information on the whole program is output at the time

of an execution end of a program.

$ /opt/nec/ve/bin/ncc source.c

$ export VE_PROGINF=YES

$./a.out

 ******** Program Information ********

 Real Time (sec) : 100.795725

 User Time (sec) : 100.686826

 Vector Time (sec) : 41.125491

 Inst. Count : 82751792519

 V. Inst. Count : 11633744762

 V. Element Count : 881280485102

 V. Load Element Count : 268261733727

 FLOP count : 625104742151

 MOPS : 11778.920848

 MOPS (Real) : 11765.127159

 MFLOPS : 6209.015275

 MFLOPS (Real) : 6201.744217

 A. V. Length : 75.752090

 V. Op. Ratio (%) : 94.002859

 L1 Cache Miss (sec) : 6.364831

 VLD LLC Hit Element Ratio (%) : 90.032527

 Memory Size Used (MB) : 918.000000

 Non Swappable Memory Size Used (MB) : 84.000000

 Start Time (date) : Tue Nov 17 12:43:08 2020 JST

 End Time (date) : Tue Nov 17 12:44:49 2020 JST

(Output may vary depending on the environment variables and VE models)

Chapter5 Performance Profiling

- 17 -

In the case of MPI programs, YES or DETAIL is designated in environment variable

NMPI_PROGINF and a program is executed. As a result, performance information on the

whole MPI program execution is output.

$ source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.sh

$ mpincc source.c

$ export NMPI_PROGINF=YES

$ mpirun -np 4 -ve 0-1 ./a.out

MPI Program Information:

========================

Note: It is measured from MPI_Init till MPI_Finalize.

 [U,R] specifies the Universe and the Process Rank in the Universe.

 Times are given in seconds.

Global Data of 4 Vector processes : Min [U,R] Max [U,R] Average

=================================

Real Time (sec) : 258.752 [0,1] 258.769 [0,0] 258.760

User Time (sec) : 258.632 [0,0] 258.672 [0,3] 258.661

Vector Time (sec) : 163.308 [0,3] 165.063 [0,2] 164.282

Inst. Count : 255247993643 [0,0] 255529897274 [0,3] 255372547702

V. Inst. Count : 19183106540 [0,0] 19190366299 [0,3] 19186786385

V. Element Count : 731572775534 [0,2] 731612551928 [0,3] 731597913441

V. Load Element Count : 213554974007 [0,0] 213586395765 [0,3] 213566855461

FLOP Count : 580774521087 [0,3] 580807048542 [0,0] 580790784573

MOPS : 4464.705 [0,2] 4465.784 [0,3] 4465.280

MOPS (Real) : 4462.927 [0,0] 4464.222 [0,3] 4463.583

MFLOPS : 2245.220 [0,3] 2245.688 [0,0] 2245.373

MFLOPS (Real) : 2244.435 [0,3] 2244.588 [0,1] 2244.519

A. V. Length : 38.124 [0,3] 38.138 [0,0] 38.130

V. Op. Ratio (%) : 79.541 [0,3] 79.559 [0,0] 79.551

L1 Cache Miss (sec) : 36.603 [0,2] 38.208 [0,3] 37.331

VLD LLC Hit Element Ratio (%) : 87.174 [0,1] 87.176 [0,2] 87.175

Memory Size Used (MB) : 677.000 [0,1] 933.000 [0,0] 741.000

Non Swappable Memory Size Used (MB) : 115.000 [0,0] 179.000 [0,2] 131.000

Overall Data of 4 Vector processes

==================================

Real Time (sec) : 258.769

Chapter5 Performance Profiling

- 18 -

User Time (sec) : 1034.645

Vector Time (sec) : 657.127

GOPS : 14.966

GOPS (Real) : 14.960

GFLOPS : 8.981

GFLOPS (Real) : 8.978

Memory Size Used (GB) : 2.895

Non Swappable Memory Size Used (GB) : 0.512

VE Card Data of 2 VEs

=====================

Memory Size Used (MB) Min : 1354.000 [node=0,ve=1]

Memory Size Used (MB) Max : 1610.000 [node=0,ve=0]

Memory Size Used (MB) Avg : 1482.000

Non Swappable Memory Size Used (MB) Min : 230.000 [node=0,ve=1]

Non Swappable Memory Size Used (MB) Max : 294.000 [node=0,ve=0]

Non Swappable Memory Size Used (MB) Avg : 262.000

(Output may vary depending on the environment variables and VE models)

5.2 FTRACE Function

FTRACE measures performance information of every function and output it. When using the

FTRACE function, a program is compiled with the -ftrace option and executed. An analysis

information file (ftrace.out) is output after the execution of a program. To confirm the

performance information, an analysis information file (ftrace.out) is designated and the ftrace

command is carried out.

$ /opt/nec/ve/bin/nfort -ftrace source.f90

$./a.out

$ /opt/nec/ve/bin/ftrace -f ftrace.out

 FTRACE ANALYSIS LIST

Execution Date : Tue May 8 15:22:15 2018 JST

Total CPU Time : 0:03'21"561 (201.561 sec.)

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC

Chapter5 Performance Profiling

- 19 -

PROC.NAME

 TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

 25100 96.105(47.7) 3.829 1455.0 728.7 39.20 8.0 46.967 17.785 0.314 93.16 funcA

 25100 82.091(40.7) 3.271 1703.3 853.1 36.95 7.6 46.462 18.024 0.314 98.29 funcB

 13124848 7.032(3.5) 0.001 772.7 229.6 0.00 0.0 0.000 4.184 0.000 0.00 funcC

 253 6.007(3.0) 23.745 35379.0 19138.0 97.21 99.8 5.568 0.181 1.128 89.40 funcD

 25100 3.684(1.8) 0.147 45327.6 21673.3 98.35 114.3 3.455 0.218 1.076 94.75 funcE

 25100 3.611(1.8) 0.144 51034.2 25382.3 98.37 111.0 3.451 0.143 1.076 88.64 funcF

 2 2.447(1.2) 1223.578 1262.9 79.3 0.00 0.0 0.000 1.044 0.000 0.00 funcG

 2 0.317(0.2) 158.395 32624.9 11884.9 96.79 99.1 0.272 0.034 0.000 7.07 funcH

 1 0.217(0.1) 216.946 1318.8 69.1 0.00 0.0 0.000 0.089 0.000 0.00 funcI

 2 0.025(0.0) 12.516 1254.8 0.0 0.00 0.0 0.000 0.011 0.000 0.00 funcJ

 1 0.019(0.0) 19.367 54199.2 33675.0 97.87 100.3 0.019 0.000 0.010 94.02 funcK

 4 0.004(0.0) 0.948 57592.4 24101.4 97.88 121.4 0.004 0.000 0.000 4.72 funcL

 1 0.001(0.0) 0.861 517.9 3.2 0.00 0.0 0.000 0.000 0.000 0.00 funcM

--

 13225514 201.561(100.0) 0.015 4286.1 2147.5 76.91 34.7 106.197 41.712 3.917 89.99 total

(Output may vary depending on VE models)

In case of a MPI program, FTRACE Function is available for MPI program executed on VE.

When using the FTRACE function, a program is compiled with the -ftrace option and executed.

After the execution of a program, performance information is output by a different analysis

information file (*1) every MPI process. When designating 1 analysis file as the ftrace

command, performance information on the MPI process is output. When designating all

analysis information files, measurement information on the whole MPI program execution is

output.

 (*1) The file name will be "ftrace.out.group ID.rank number". The group ID and the rank

number are respectively the value of environment variable MPIUNIVERSE and MPIRANK in NEC

MPI.

$ source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.sh

$ mpinfort -ftrace source.f90

$ mpirun -np 4 ./a.out

$ ls ftrace.out.*

ftrace.out.0.0 ftrace.out.0.1 ftrace.out.0.2 ftrace.out.0.3

$ /opt/nec/ve/bin/ftrace -f ftrace.out.* (A result of measurement of the whole MPI program execution is

output.)

Chapter5 Performance Profiling

- 20 -

 FTRACE ANALYSIS LIST

Execution Date : Sat Feb 17 12:44:49 2018 JST

Total CPU Time : 0:03'24"569 (204.569 sec.)

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME

 TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

 1012 49.093(24.0) 48.511 23317.2 14001.4 96.97 83.2 42.132 5.511 0.000 80.32 funcA

 160640 37.475(18.3) 0.233 17874.6 9985.9 95.22 52.2 34.223 1.973 2.166 96.84 funcB

 160640 30.515(14.9) 0.190 22141.8 12263.7 95.50 52.8 29.272 0.191 2.544 93.23 funcC

 160640 23.434(11.5) 0.146 44919.9 22923.2 97.75 98.5 21.869 0.741 4.590 97.82 funcD

 160640 22.462(11.0) 0.140 42924.5 21989.6 97.73 99.4 20.951 1.212 4.590 96.91 funcE

 53562928 15.371(7.5) 0.000 1819.0 742.2 0.00 0.0 0.000 1.253 0.000 0.00 funcG

 8 14.266(7.0) 1783.201 1077.3 55.7 0.00 0.0 0.000 4.480 0.000 0.00 funcH

 642560 5.641(2.8) 0.009 487.7 0.2 46.45 35.1 1.833 1.609 0.007 91.68 funcF

 2032 2.477(1.2) 1.219 667.1 0.0 89.97 28.5 2.218 0.041 0.015 70.42 funcI

 8 1.971(1.0) 246.398 21586.7 7823.4 96.21 79.6 1.650 0.271 0.000 2.58 funcJ

--

 54851346 204.569(100.0) 0.004 22508.5 12210.7 95.64 76.5 154.524 17.740 13.916 90.29 total

 ELAPSED COMM.TIME COMM.TIME IDLE TIME IDLE TIME AVER.LEN COUNT TOTAL LEN PROC.NAME

 TIME[sec] [sec] / ELAPSED [sec] / ELAPSED [byte] [byte]

 12.444 0.000 0.000 0.0 0 0.0 funcA

 9.420 0.000 0.000 0.0 0 0.0 funcB

 7.946 0.000 0.000 0.0 0 0.0 funcG

 7.688 0.000 0.000 0.0 0 0.0 funcC

 7.372 0.000 0.000 0.0 0 0.0 funcH

 5.897 0.000 0.000 0.0 0 0.0 funcD

 5.653 0.000 0.000 0.0 0 0.0 funcE

 1.699 1.475 0.756 3.1K 642560 1.9G funcF

 1.073 1.054 0.987 1.0M 4064 4.0G funcI

 0.704 0.045 0.045 80.0 4 320.0 funcK

--

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME

 TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

 1012 49.093(24.0) 48.511 23317.2 14001.4 96.97 83.2 42.132 5.511 0.000 80.32 funcA

 253 12.089 47.784 23666.9 14215.9 97.00 83.2 10.431 1.352 0.000 79.40 0.0

 253 12.442 49.177 23009.2 13811.8 96.93 83.2 10.617 1.406 0.000 81.26 0.1

Chapter5 Performance Profiling

- 21 -

 253 12.118 47.899 23607.4 14180.5 97.00 83.2 10.463 1.349 0.000 79.36 0.2

 253 12.444 49.185 23002.8 13808.2 96.93 83.2 10.622 1.404 0.000 81.26 0.3

:

--

 54851346 204.569(100.0) 0.004 22508.5 12210.7 95.64 76.5 154.524 17.740 13.916 90.29 total

 ELAPSED COMM.TIME COMM.TIME IDLE TIME IDLE TIME AVER.LEN COUNT TOTAL LEN PROC.NAME

 TIME[sec] [sec] / ELAPSED [sec] / ELAPSED [byte] [byte]

 12.444 0.000 0.000 0.0 0 0.0 funcA

 12.090 0.000 0.000 0.000 0.000 0.0 0 0.0 0.0

 12.442 0.000 0.000 0.000 0.000 0.0 0 0.0 0.1

 12.119 0.000 0.000 0.000 0.000 0.0 0 0.0 0.2

 12.444 0.000 0.000 0.000 0.000 0.0 0 0.0 0.3

:

(Output may vary depending on VE models)

Chapter5 Performance Profiling

- 22 -

5.3 Profiler

When a source file is compiled and linked with the -pg option, the performance measurement

file (gmon.out) is output after the program is executed. The file gmon.out can be displayed

and analyzed by the ngprof command.

$ /opt/nec/ve/bin/nfort -pg a.f90

$./a.out

$ /opt/nec/ve/bin/ngprof ./a.out

(The performance information is output)

If the profiler is used for an MPI program, the environment variable VE_GMON_OUT_PREFIX

and GMON_OUT_PREFIX to specify an individual file name for each MPI procsss can be used

to avoid the gmon.out to be overwritten by MPI processes. To change the filename of

gmon.out output by programs executed on VE, the environment variable

VE_GMON_OUT_PREFIX is specified. To change the filename of gmon.out output by programs

executed on VH, the environment variable GMON_OUT_PREFIX is specified.

The following shell script, gprof-mpi.sh, helps save the performance measurement file into

gmon.out.<MPI-universe>:<MPI-rank>.<pid> for each MPI process.

 (gprof-mpi.sh)

#!/bin/bash

change the performance measurement file name to gmon.out.<MPI-universe>:<MPI-rank>.<pid>

export VE_GMON_OUT_PREFIX=gmon.out.${MPIUNIVERSE}:${MPIRANK}

export GMON_OUT_PREFIX=gmon.out.${MPIUNIVERSE}:${MPIRANK}

exec $*

(setup MPI environment)

$ source /opt/nec/<ve>/mpi/<version>/bin/necmpivars.sh

(compile MPI program)

$ mpincc -pg a.c -o ve.out

$ mpincc -vh -pg a.c -o vh.out

(run a.out through gprof-mpi.sh)

$ mpirun -np 1 ./gprof-mpi.sh ./ve.out : -vh -np 1 ./gprof-mpi.sh ./vh.out

$ ls gmon.out.*

gmon.out.0:0.19390 gmon.out.0:1.19391

(show analyzed information for MPI rank 0 executed on VE)

$ /opt/nec/ve/bin/ngprof ve.out gmon.out.0:0.19390

(show analyzed information for MPI rank 1 executed on VH)

Chapter5 Performance Profiling

- 23 -

$ /usr/bin/gprof vh.out gmon.out.0:1.19391

Chapter6 General Questions and Answers

- 24 -

Chapter6 General Questions and Answers

 Are commands which are well known in Linux available?

Answer : Yes. For example, the following commands for SX-Aurora TSUBASA are

available.

ve-ps, ve-pmap, ve-time, ve-gdb, ve-automake, ve-top, ve-free, ve-vmstat, etc.

These commands are present in /opt/nec/ve/bin.

 Is there a way to examine whether an executable file is for SX-Aurora TSUBASA?

Answer : It is possible to check it by the nreadelf command.

$ /opt/nec/ve/bin/nreadelf -h a.out

ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC (Executable file)

 Machine: NEC VE architecture

 Version: 0x1

 Entry point address: 0x600000004580

 Start of program headers: 64 (bytes into file)

 Start of section headers: 4760248 (bytes into file)

 Flags: 0x0

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 7

 Size of section headers: 64 (bytes)

 Number of section headers: 27

 Section header string table index: 24

 Is there a way to check the state of the process which is being carried out on VE?

Answer : It is possible to refer to the state of the process which is being carried out in

VE by the ve-ps command for SX-Aurora TSUBASA.

Chapter6 General Questions and Answers

- 25 -

$ export -n VE_NODE_NUMBER; /opt/nec/ve/bin/ve-ps -ef

VE Node: 6

UID PID PPID C STIME TTY TIME CMD

User1 30970 1 75 17:44 ? 00:00:02 ./IMB-MPI1

VE Node: 7

UID PID PPID C STIME TTY TIME CMD

User1 30977 1 59 17:44 ? 00:00:02 ./IMB-MPI1

VE Node: 5

UID PID PPID C STIME TTY TIME CMD

User1 30958 1 99 17:44 ? 00:00:02 ./IMB-MPI1

VE Node: 4

UID PID PPID C STIME TTY TIME CMD

User1 30957 1 99 17:44 ? 00:00:02 ./IMB-MPI1

VE Node: 2

UID PID PPID C STIME TTY TIME CMD

User1 30919 1 0 17:44 ? 00:00:02 ./IMB-MPI1

VE Node: 3

UID PID PPID C STIME TTY TIME CMD

User1 30920 1 99 17:44 ? 00:00:02 ./IMB-MPI1

VE Node: 1

UID PID PPID C STIME TTY TIME CMD

User1 30918 1 0 17:44 ? 00:00:02 ./IMB-MPI1

VE Node: 0

UID PID PPID C STIME TTY TIME CMD

User1 30917 1 0 17:44 ? 00:00:02 ./IMB-MPI1

When in case of use NQSV, use the qstat command.

$/opt/nec/nqsv/bin/qstat

RequestID ReqName UserName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ----

48682.bsv00 run1.sh user1 batchq 0 RUN - 4.71M 0.00 126 Y Y Y 1

 Is there a way to check whether an object was created for musl-libc or glibc?

Answer : You can use /opt/nec/ve/bin/ve-libc-check script as below.

$ /opt/nec/ve/bin/ve-libc-check ./a.out

 This is compiled with musl-libc: /home/userxxx/a.out

If a specified object was compiled with musl-libc, the message in the above box is

shown. If a specified object was compiled with glibc, the script doesn't show any

Chapter6 General Questions and Answers

- 26 -

message.

Note

1

musl-libc is obsoleted at the end of March, 2019.

If you are now using musl-libc environment, please migrate to glibc

environment by the following procedure.

- Install new SX-Aurora TSUBASA software of glibc environment.

- Recompile your programs in the glibc environment.

Please see the Installation guide for detail.

Note

2

The script "ve-libc-check" can't determine used library for a specified object

whose source file is "*.s". Additionally, "ve-libc-check" can't determine used

library for VE program, which was compiled by glibc and dynamically links or

loads a library compiled by musl-libc.

 What kind of environment variables can I use?

Answer : For example, you can use the following variables.

VE_NODE_NUMBER

It specifies VE node number on which a program will be executed.

VE_LD_LIBRARY_PATH

This environment variable provides a library path for finding dynamic libraries.

VE_LD_PRELOAD

This environment variable sets the pre-loading shared libraries' path for dynamic

linker.

 How to set library search paths?

Answer :

Add a setting file whose name is "*.conf" to /etc/opt/nec/ve/ld.so.conf.d, then

execute ldconfig for SX-Aurora TSUBASA.

(Example)

$ cat /etc/opt/nec/ve/ld.so.conf.d/local_lib.conf

/usr/local/local_lib/lib

$ sudo /opt/nec/ve/glibc/sbin/ldconfig

Chapter6 General Questions and Answers

- 27 -

 Can I use gdb for debugging of VE program?

Answer : Yes. ve-gdb for SX-Aurora TSUBASA is available.

Appendix A History

- 28 -

Appendix A History

A.1 History Table

Aug. 2018 Rev. 1

Dec. 2018 Rev. 2

May. 2019 Rev. 3

Sep. 2019 Rev. 4

Jan. 2020 Rev. 5

Dec. 2020 Rev. 6

May. 2021 Rev. 7

Jun. 2023 Rev. 8

A.2 Change Notes

Rev. 5
 4.2 Accelerated I/O

- The way to enable accelerated I/O is changed

Rev. 6
 3.2.3 Execution of MPI Programs

- The example of use with NQSV is changed

 4.1 ScaTeFS Direct I/O

- The example of use with NQSV is changed

 4.2 Accelerated I/O

- The requirement is changed

 5.1 PROGINF Function

- The output example is changed

Rev. 7
 3.3 Program Execution under PBS

- How to run jobs under PBS is illustrated.

 4.1 ScaTeFS Direct I/O

- How to use the ScaTeFS direct I/O under PBS is explained.

 4.2 Accelerated I/O

- How to use the accelerated I/O under PBS is explained.

Appendix A History

- 29 -

Rev. 8
 Chapters

- The descriptions for VE30 are added.

 4.2 Accelerated I/O

- The description for VEOS v3.0.2 environment is added.

 6 General Questions and Answers

- Updated VE command names by adding prefix "ve-" before

the commands.

 © 2018 NEC Corporation

 No part of this document may be reproduced, in any form or by

any means, without permission from NEC Corporation.

SX-Aurora TSUBASA System Software

SX-Aurora TSUBASA

Program Execution Quick Guide
8th Edition Jun. 2023

NEC Corporation

	Proprietary Notice
	Preface
	Definitions and Abbreviations
	Contents
	Chapter1 Outline of SX-Aurora TSUBASA
	1.1 Confirmation of VE Composition

	Chapter2 Compilation
	2.1 Compilation of FORTRAN/C/C++
	2.2 Compilation of MPI Programs

	Chapter3 Program Execution
	3.1 Interactive Program Execution
	3.1.1 Execution of FORTRAN/C/C++ Programs
	3.1.2 Execution of MPI Programs

	3.2 Batch Program Execution with NQSV
	3.2.1 Job Execution Type
	3.2.2 Execution of FORTRAN/C/C++ Programs
	3.2.3 Execution of MPI Programs

	3.3 Program Execution under PBS
	3.3.1 Overview
	3.3.2 Execution of Fortran, C, or C++ Programs
	3.3.3 Execution of MPI Programs

	Chapter4 I/O Acceleration
	4.1 ScaTeFS Direct I/O
	4.2 Accelerated I/O

	Chapter5 Performance Profiling
	5.1 PROGINF Function
	5.2 FTRACE Function
	5.3 Profiler

	Chapter6 General Questions and Answers
	Appendix A History
	A.1 History Table
	A.2 Change Notes

