
 

 

 

 

 

 

System V Application Binary Interface 

VE Architecture Processor Supplement 





Contents 

Contents 

Chapter1 Introduction ................................................................................. 1 

Chapter2 Software Installation ..................................................................... 2 

Chapter3 Low Level System Information ........................................................ 3 

3.1 Machine Interface ............................................................................ 3 

3.1.1 Processor Architecture ................................................................ 3 

3.1.2 Data Representation ................................................................... 3 

3.2 Function Calling Sequence ................................................................ 5 

3.2.1 Registers and the Stack Frame..................................................... 5 

3.2.2 The Stack Frame ....................................................................... 7 

3.2.3 Parameter Passing ..................................................................... 8 

3.3 Coding Examples ........................................................................... 12 

3.3.1 Architectural Constraints ........................................................... 13 

3.3.2 Conventions ............................................................................ 14 

3.3.3 Function Prologue and Epilogue ................................................. 15 

3.3.4 Position-Independent Function Prologue ...................................... 16 

3.3.5 Data Objects ........................................................................... 18 

3.3.6 Function Calls .......................................................................... 20 

3.3.7 Branching ............................................................................... 22 

3.3.8 Variable Argument List ............................................................. 23 

3.3.9 Initialized static variables (global variables and static local variables)

 23 

3.3.10 Uninitialized static variables (global variables and static local 

variables) 24 

3.4 DWARF Definition .......................................................................... 24 

3.4.1 DWARF Release Number ........................................................... 24 

3.4.2 DWARF Register Number Mapping .............................................. 24 

Chapter4 Object Files ................................................................................ 26 

4.1 ELF Header ................................................................................... 26 

4.1.1 Machine Information ................................................................ 26 

4.1.2 Number of Program Headers ..................................................... 26 

4.2 Sections ....................................................................................... 26 



Contents 

- ii - 

4.2.1 Special Sections ....................................................................... 26 

4.3 Symbol Table ................................................................................ 27 

4.3.1 Symbol Values ......................................................................... 27 

4.4 Relocation .................................................................................... 27 

4.4.1 Relocation Types ...................................................................... 27 

Chapter5 Program Loading and Dynamic Linking .......................................... 33 

5.1 Dynamic Linking ............................................................................ 33 

5.1.1 Dynamic Section ...................................................................... 33 

5.1.2 Global Offset Table ................................................................... 33 

5.1.3 Function Addresses .................................................................. 34 

5.1.4 Procedure Linkage Table ........................................................... 35 

5.1.5 Program Interpreter ................................................................. 37 

5.1.6 Initialization and Termination Functions ....................................... 37 

Chapter6 Conventions ............................................................................... 38 

6.1 C++ ............................................................................................ 38 

6.2 Fortran ........................................................................................ 38 

6.3 Thread-Local Storage ..................................................................... 38 

Appendix A Code Segment ...................................................................... 39 

A.1 .text ............................................................................................ 39 

Appendix B Data Segment ...................................................................... 40 

B.1 .data ........................................................................................... 40 

B.2 .bss ............................................................................................. 40 

Appendix C History ................................................................................ 41 

C.1 History table ................................................................................. 41 

C.2 Change notes................................................................................ 41 

 



Chapter1  Introduction 

- 1 - 

Chapter1 Introduction 

This document describe Application Binary Interface (ABI) for VE architecture. 

 

 

Remarks 

 All product, brand, or trade names in this publication are the trademarks or registered 

trademarks of their respective owners. 
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Chapter2 Software Installation 

This document does not specify how software must be installed on a VE architecture 

machine. 
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Chapter3 Low Level System Information 

3.1 Machine Interface 

3.1.1 Processor Architecture 

3.1.2 Data Representation 

Within this specification, the term byte refers to an 8-bit object, the term twobyte 

refers to a 16-bit object, the term fourbyte refers to a 32-bit object, the term eightbyte 

refers to a 64-bit object, and the term sixteenbyte refers to a 128-bit object. 

3.1.2.1 Fundamental Types 

Table 3-1 shows the correspondence between ISO C’s scalar types and the processor’s. 

A null pointer (for all types) has the value zero. 

The type size_t is defined as unsigned long. 

Booleans, when stored in a memory object, are stored as single byte objects the value 

of which is always 0 (false) or 1 (true). When stored in registers, all 8 bytes of the 

register are significant; any nonzero value is considered true. 

Integral types which are shorter than 8 bytes, when stored in a memory object, are 

stored as their appropriate size. When stored in registers, all 8 bytes of the register 

are significant; when signed types, the sign should be extended upper area and when 

unsigned types, zero should be filled into upper area. 

Table 3-1 Scalar Types 

Type C Sizeof Alignment 

(bytes) 

VE Architecture 

Integral _Bool 1 1 Boolean 

char 

signed char 

1 1 Signed byte 

unsigned char 1 1 Unsigned byte 

short 

signed short 

2 2 Signed twobyte 

unsigned short 2 2 Unsigned twobyte 

int 

signed int 

enum 

4 4 Signed fourbyte 
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Type C Sizeof Alignment 

(bytes) 

VE Architecture 

unsigned int 4 4 Unsigned 

fourbyte 

long 

signed long 

long long 

signed long long 

8 8 Signed eightbyte 

unsigned long 

unsigned long long 

8 8 Unsigned 

eightbyte 

Pointer any-type * 

any-type (*)() 

8 8 Unsigned 

eightbyte 

Floating-

point 

float 4 4 Single (IEEE-754) 

double 8 8 Double (IEEE-

754) 

long double 16 16 128-bit extended 

(IEEE-754) 

 

Aggregates and Unions 

Structures and unions assume the alignment of their most strictly aligned component. 

Each member is assigned to the lowest available offset with the appropriate alignment. 

Structure and union objects can require padding to meet size and alignment 

constraints. The contents of any padding are undefined. 

3.1.2.2 Bit-Fields 

C struct and union definitions may include bit-fields that define integral values of a 

specified size. 

Bit-field Type Width w Range 

signed char 

char 

unsigned char 

1 to 8 -2w-1 to 2w-1 – 1 

-2w-1 to 2w-1 – 1 

0 to 2w - 1 

signed short 

short 

unsigned short 

1 to 16 -2w-1 to 2w-1 – 1 

-2w-1 to 2w-1 – 1 

0 to 2w - 1 

signed int 

int 

unsigned int 

1 to 32 -2w-1 to 2w-1 – 1 

-2w-1 to 2w-1 – 1 

0 to 2w - 1 

singed long 1 to 64 -2w-1 to 2w-1 – 1 
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Bit-field Type Width w Range 

long 

unsigned long 

-2w-1 to 2w-1 – 1 

0 to 2w - 1 

 

Bit-fields obey the same size and alignment rules as other structure and union 

members. 

Also: 

 Bit-fields are allocated from LSB to MSB (right to left) 

 Bit-fields must be contained in a storage unit appropriate for its declared type 

 Bit-fields may share a storage unit with other struct/union members 

Unnamed bit-fields’ types do not affect the alignment of a structure or union. 

Figure 3-1-1 Example of Bit-filed 

struct { 

   unsigned int a : 1; 

   unsigned int b : 3; 

} status2; 

Figure 3-1-2 Allocated image of Bit-filed 

(MSB bit63)                                  bit4 bit3        bit1                                  (LSB bit0)                                             

 b      a 

3.2 Function Calling Sequence 

This section describes the standard function calling sequence, including stack frame 

layout, register usage, parameter passing and so on. 

The standard calling sequence requirements apply only to global functions. Local 

functions that are not reachable from other compilation units may use different 

conventions. Nevertheless, it is recommended that all functions use the standard 

calling sequence when possible. 

3.2.1 Registers and the Stack Frame 

The VE architecture provides 64 scalar 64-bit registers (%s0 - %s63). In addition, the 

architecture provides 64 vector registers (%v0 - %v63), each 64-bit wide 256 elements, 

and 16 vector mask registers (%vm0 - %vm15), each 256-bit wide. All of these registers 

are global to all functions active for a given thread. 
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This subsection discusses usage of each register. Registers %s18 through %s33 “belong” 

to the calling function and the called function is required to preserve their values. In 

other words, a called function must preserve these registers’ values for its caller. 

Remaining registers “belong” to the called function. If a calling function wants to 

preserve such a register value across a function call, it must save the value in its local 

stack frame. In addition to scalar registers, all vector registers and vector mask 

registers “belong” to the called function. If a calling function wants to preserve such a 

register value across a function call, it must save the value in its local stack frame. 

 

Register Alias Usage Preserved 

across 

function calls 

%s0-%s7  Used to pass 1st to 8th 

arguments to functions; 

return registers 

No 

%s8 %sl Stack limit  Yes 

%s9 %fp Frame pointer Yes 

%s10 %lr Link register, used for 

pointing return address 

of calling function 

No 

%s11 %sp stack pointer  Yes 

%s12  Outer register, used for 

pointing start address of 

called function  

No 

%s13  Used to pass 

identification of function 

to dynamic linker 

No 

%s14 %tp Thread pointer Yes 

%s15 %got Global Offset Table 

register 

Yes 

%s16 %plt Procedure Linkage Table 

register 

Yes 

%s17  Linkage-area register, 

used for pointing 

Yes 
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Register Alias Usage Preserved 

across 

function calls 

linkage-area 

%s18-%s33  Callee-saved registers Yes 

%s34-%s63  Temporary registers No 

%v0-%v63  Vector registers No 

%vm0  Vector mask register Inalterable 

%vm1-%vm15  Vector mask registers No 

3.2.2 The Stack Frame 

In addition to registers, each function has a frame on a run-time stack. This stack 

grows downwards from high addresses. The top address of stack needs to be a 

multiple of 16 and the stack must be aligned on 16 byte boundary. 

The stack pointer, %sp, always points to the end of the latest allocated stack frame. 

Position Contents Frame 

 Locals and Temporaries caller 

 

 

 

176(%fp) 

Parameter Area for callee 

 

19*8+16(%fp) 

 

 

 

 

 

16(%fp) 

Register Save Area (RSA) for callee 

 

8(%fp) return address 

0(%fp) Frame pointer of callee 

 Local and Temporaries (for callee) callee 

 Parameter Area  

 Register Save Area (RSA) 

 return address 

0(%sp) Frame pointer 



Chapter3  Low Level System Information 

- 8 - 

The detail of Register Save Area (RSA) is following: 

Position Contents  

%fp+168 Largest number of callee-saved register (%s33) Higher address 

 ...  

%fp+48 Smallest number of callee-saved register (%s18)  

%fp+40 Linkage Area Register (%s17)  

%fp+32 Procedure Linkage Table Register (%plt)  

%fp+24 Global Offset Table Register (%got)  

%fp+16 Thread Pointer Register (%tp) Lower Address 

 

3.2.3 Parameter Passing 

After the argument values have been computed, they are placed both in registers and 

pushed on the stack. The way how values are passed is described in the following 

sections. 

Definitions We first define a number of classes to classify arguments. The classes 

are corresponding to VE register classes and defined as: 

REGISTER This class consists of basic types that fit into one of the general 

purpose registers. 

REFERENCE This class consists of types that will be passed and returned by 

memory. 

BOTH This class consists of types that will be passed in both registers 

and memory. 

 

Classification The size of each argument gets rounded up to 8 bytes in the same 

manner described in 3.1.2.1. The basic types are assigned their natural classes: 

 Arguments of types (signed and unsigned) _Bool, char, short, int, long, long long, 

_Imaginary and pointers are in the REGISTER class. 

 Arguments of types float and double are in the REGISTER class. 

 Arguments of types long double are split into two halves. The both are in the 

REGISTER class. 

 Arguments of types T _Complex where T is one of types float or double are split 

into real and imaginary parts. The both are in the REGISTER class. 
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 Arguments of types long double _Complex are split into real and imaginary parts 

and then each part are split into two halves. The four parts are in the REGISTER 

class. 

 The classification of aggregate (structures and arrays) and union types are in the 

REFERENCE class.  

 The classification of arguments of variadic (variable number of arguments) and 

prototype-less functions are in the BOTH class.  

Passing Once arguments are classified, the registers get assigned (in left-to-right) 

for passing as follows: 

(1) If the class is REFERENCE, the caller provides temporary space on its stack to 

hold its value and assign the next available register of the sequence %s0-%s7 to 

hold its address. 

(2) If the class is REGISTER, the next available register of the sequence %s0-%s7 is 

used.  

(3) If the class is BOTH, the next available register of the sequence %s0-%s7 is used 

and its value is stored in the parameter area on the stack. 

If there are no registers available for arguments, the remaining arguments are passed 

by the parameter area on the stack. 

The argument data is stored into responsible parameter area as the same data format 

as in register. It means: 

 When signed integral value, sign-extended 8-byte value is stored 

 When unsigned integral value, stored zero-extended 8-byte value is stored 

 When single floating-point value, trailing 4-byte is zero-padded. 

 

Following examples shows how arguments are passed in more details. These examples 

shows the argument passing in case of “BOTH” if not otherwise specified. In case of 

“REGISTER”, the arguments from 1st to 8th are accessible by only registers. 

 

Example 1. Basic case 

void func(int a, short b, char c, unsigned int d, unsigned short e, 

unsigned char f, float g, void *h, long i, double j); 
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Register Argument Value Access by 

Caller 

Access by Callee 

none j %sp+176+8*9 %fp+176+8*9 

none i %sp+176+8*8 %fp+176+8*8 

s7 h %sp+176+8*7 %fp+176+8*7 

s6 g zero %sp+176+8*6 %fp+176+8*6 

s5 zero f %sp+176+8*5 %fp+176+8*5 

s4 zero e %sp+176+8*4 %fp+176+8*4 

s3 zero d %sp+176+8*3 %fp+176+8*3 

s2 sign c %sp+176+8*2 %fp+176+8*2 

s1 sign b %sp+176+8*1 %fp+176+8*1 

s0 sign a %sp+176+8*0 %fp+176+8*0 

 MSB LSB   

 

In case of some types, special handling is necessary. 

 

When the argument type is float _Complex or double _Complex, two consecutive 

registers are used. The younger number register holds real part and elder number 

register holds the imaginary part. 

 

When the argument type is long double or long double _Imaginary, two consecutive 

registers which starts with ever number register are used. If the next available register 

number is odd, then this odd number register is skipped. The even number register 

holds upper part and odd number register holds lower part. When they are passed by 

the parameter area on the stack, upper part is stored in higher address and lower part 

is stored in lower address.  

 

When the argument type is long double _Complex, four consecutive registers which 

starts with even number register are used. If the next available register number is odd, 

then this odd number register is skipped. The first even number register holds upper 

part of real part, the first odd number register holds lower part of real part, the second 

even number register holds upper part of imaginary part and the second odd number 

register holds lower part of imaginary part. When they are passed by the parameter 

area on the stack, upper part is stored in higher address and lower part is stored in 

lower address respectively. 
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Example 2. Special cases 1 

void func(struct tag a, long double b, double _Complex c, float 

_Complex d); 

 

Register Argument Value Access by 

Caller 

Access by Callee 

s7 Imag. part of d zero %sp+176+8*7 %fp+176+8*7 

s6 Real part of d zero %sp+176+8*6 %fp+176+8*6 

s5 Imag. part of c %sp+176+8*5 %fp+176+8*5 

s4 Real part of c %sp+176+8*4 %fp+176+8*4 

s3 Lower part of b %sp+176+8*2 %fp+176+8*2 

s2 Upper part of b %sp+176+8*3 %fp+176+8*3 

s1 N/A %sp+176+8*1 %fp+176+8*1 

s0 Address of the copy of a %sp+176+8*0 %fp+176+8*0 

 MSB LSB   

 

Example 3. Special cases 2 

void func(long double _Complex a); 

 

Register Argument Value Access by 

Caller 

Access by Callee 

s3 Lower part of Imag. a %sp+176+8*2 %fp+176+8*2 

s2 Upper part of Imag. a %sp+176+8*3 %fp+176+8*3 

s1 Lower part of Real a %sp+176+8*0 %fp+176+8*0 

s0 Upper part of Real a %sp+176+8*1 %fp+176+8*1 

 MSB LSB   

 

Returning of Values The returning of values is done according to the following 

algorithm: 

(1) Classify the return type with the classification algorithm except BOTH. 

(2) If the type has class REFERENCE, then the caller provides space for the return 

value on its stack and passes the address of this storage in %s0 as if it were the 

first argument to the function. In effect, this address becomes a “hidden” first 

argument. On return %s0 will contain the address where return values are stored. 
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(3) If the class is REGISTER, the next available register of the sequence %s0-%s7 is 

used. 

Once return values are classified, the registers get assigned for passing are as as 

follows: 

 

(1) When the return type is long double or long double _Imaginary, upper part is 

hold by %s0 and lower part is hold by %s1. 

(2) When the return type is float _Complex or double _Complex, real part is hold 

by %s0 and imaginary part is hold by %s1. 

(3) When the return type is long double _Complex, upper part of real part is hold 

by %s0, lower part of real part is hold by %s1, upper part of imaginary part is hold 

by %s2 and lower part of imaginary part is hold by %s3 

(4) When the return type is struct or union 

 A return value is stored to the caller provided space which address is passed by 

“hidden” first argument. 

 The address of this storage is hold by %s0.  

(5) Other than the above is hold by %s0. 

Example 4. Return aggregate or union type 

struct foo func(long a, double b); 

 

Register Argument Value Access by 

Caller 

Access by Callee 

s2 b %sp+176+8*2 %fp+176+8*2 

s1 a %sp+176+8*1 %fp+176+8*1 

s0 Address of return value area %sp+176+8*0 %fp+176+8*0 

 MSB LSB   

 

 

3.3 Coding Examples 

This section discusses example code sequences for fundamental operations such as 

calling functions, accessing static objects, and transferring control from one part of a 
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program to another. The information here illustrates how operations may be done, not 

how they must be done. 

Examples use the ANSI C language. Other programming languages may use the same 

conventions displayed below, but failure to do so does not prevent a program from 

conforming to the ABI. Two main object code models are available. 

‒ Absolute code. Instructions can hold absolute addresses under this model. To 

execute properly, the program must be loaded at a specific virtual address, 

making the program's absolute addresses coincide with the process's virtual 

addresses. 

‒ Position-independent code. Instructions under this model hold relative 

addresses, not absolute addresses. Consequently, the code is not tied to a 

specific load address, allowing it to execute properly at various positions in 

virtual memory. 

Following sections describe the differences between these models. Code sequences for 

the models (when different) appear together, allowing easier comparison. 

Note 

‒ Examples below show code fragments with various simplifications. They are 

intended to explain addressing modes, not to show optimal code sequences 

nor to reproduce compiler output. 

‒ When other sections of this document show assembly language code 

sequences, they typically show only the absolute versions. Information in this 

section explains how position-independent code would alter the examples. 

3.3.1 Architectural Constraints 

When the system creates a process image, the executable file portion of the process 

has fixed addresses, and the system chooses shared object library virtual addresses 

to avoid conflicts with other segments in the process. To maximize text sharing, shared 

objects conventionally use position-independent code, in which instructions contain no 

absolute addresses. Shared object text segments can be loaded at various virtual 

addresses without having to change the segment images. Thus multiple processes can 

share a single shared object text segment, even though the segment resides at a 

different virtual address in each process. 

Position-independent code relies on two techniques. 



Chapter3  Low Level System Information 

- 14 - 

‒ Control transfer instructions hold addresses relative to the instruction counter 

(IC). An IC-relative branch computes its destination address in terms of the 

current IC, not relative to any absolute address. 

‒ When the program requires an absolute address, it computes the desired value. 

Instead of embedding absolute addresses in the instructions, the compiler 

generates code to calculate an absolute address during execution. 

Because the VE architecture provides IC-relative call and branch instructions, 

compilers can satisfy the first condition easily. 

A global offset table provides information for address calculation. Position independent 

object files (executable and shared object files) have this table in their data segment. 

When the system creates the memory image for an object file, the table entries are 

relocated to reflect the absolute virtual addresses as assigned for an individual process. 

Because data segments are private for each process, the table entries can change-

unlike text segments, which multiple processes share. 

3.3.2 Conventions 

In this document some special assembler symbols are used in the coding examples 

and discussion. They are: 

 name@HI: specifies upper 32-bit of the address of the symbol name. 

 name@LO: specifies lower 32-bit of the address of the symbol name. 

 name@GOT32: specifies the offset to the GOT entry for the symbol name from the 

base of GOT. 

 name@GOT_HI: specifies upper 32-bit of the offset to the GOT entry for the symbol 

name from the base of GOT. 

 name@GOT_LO: specifies lower 32-bit of the offset to the GOT entry for the symbol 

name from the base of GOT. 

 name@GOTOFF32: specifies the offset to the symbol name from the base of GOT. 

 name@GOTOFF_HI: specifies upper 32-bit of the offset to the symbol name from 

the base of GOT. 

 name@GOTOFF_LO: specifies lower 32-bit of the offset to the symbol name from 

the base of GOT. 
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 name@PLT32: specifies the offset to the PLT entry for the symbol name from the 

current code location. 

 name@PLT_HI: specifies upper 32-bit of the offset to the PLT entry for the symbol 

name from the current location. 

 name@PLT_LO: specifies lower 32-bit of the offset to the PLT entry for the symbol 

name from the current location. 

 name@PC_HI: specifies upper 32-bit of the offset to the symbol name from the 

current location. 

 name@PC_LO: specifies lower 32-bit of the offset to the symbol name from the 

current location. 

 name@CALL_HI: specifies upper 32-bit of the address of the symbol name. 

 name@CALL_LO: specifies lower 32-bit of the address of the symbol name. 

 _GLOBAL_OFFSET_TABLE_: specifies the address of the base of GOT. 

 _PROCEDURE_LINKAGE_TABLE_: specifies the address of the base of PLT. 

3.3.3 Function Prologue and Epilogue 

This example shows the codes when all callee-saved registers are used in this function. 

If only some of them are used, you should store/restore only ones you use. These 

storing/restoring codes may be at any place on the condition that the value of callee-

saved register should be stored in RSA and it should be restore to callee-saved register 

before returning function. 

Figure 3-1 Function Prologue and Epilogue 

C Assembly 

int func(int a,int b,int c) 

{ 

… 

} 

    .text 

    .globl  func 

    .type   func,@function 

func: 

    st %fp,0x0(,%sp) 

    st %lr,0x8(,%sp) 

    st  %got,0x18(,%sp) 

    st  %plt,0x20(,%sp) 

    or %fp,0,%sp 

    … 

    # when callee-saved register will be used, 

    # its value must be stored in RSA (if necessary) 
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C Assembly 

    … 

    lea %s13, (needed stack size for func)&0xffffffff 

    and %s13,%s13,(32)0 

    lea.sl %sp, (needed stack size for 

func)>>32(%fp,%s13) 

    brge.l.t  %sp,%sl,.L1.EoP 

    ld  %s61,0x18(,%tp) # load param area  

    or %s62,0,%s0 # spill the value of %s0 

    lea %s63,0x13b # syscall # of grow 

    shm.l  %s63,0x0(%s61)# stored at addr:0 

    shm.l  %sl,0x8(%s61)# old limit at addr:8 

    shm.l  %sp,0x10(%s61)# new limit at addr:16 

    monc 

    or %s0,0,%s62 # restore the value of %s0 

.L1.EoP: 

    <operations of func> 

    # the values of arguments are accessible via: 

    # a : %s0, b : %s1, c : %s2 

    … 

    or %s0,0, <return value> 

    … 

    # only if callee-saved registers are stored at 

    # prologue, its value must be restored in register 

    … 

    or %sp,0,%fp 

    ld  %got,0x18(,%sp) 

    ld  %plt,0x20(,%sp) 

    ld %lr,0x8(,%sp) 

    ld %fp,0x0(,%sp) 

    b.l  (,%lr) 

3.3.4 Position-Independent Function Prologue 

This section describes the function prologue for position-independent code. A 

function's prologue sets register %got to the global offset table's address. When the 

global function is being called, a function's prologue sets register %plt to the procedure 

linkage table's address. Because %got and %plt are private for each function and 

preserved across function calls, a function calculates its value once at the entry. 

C Assembly 

int func(int a,int b,int c) 

{ 

… 

    .text 

    .globl  func 

    .type   func,@function 
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C Assembly 

} func: 

    st %fp,0x0(,%sp) 

    st %lr,0x8(,%sp) 

    st  %got,0x18(,%sp) 

    st  %plt,0x20(,%sp) 

    lea %got,_GLOBAL_OFFSET_TABLE_@PC_LO(-24) 

    and  %got,%got,(32)0 

    sic  %plt 

    

lea.sl %got,_GLOBA_OFFSET_TABLE_@PC_HI(%got,%plt

) 

    or %fp,0,%sp 

    … 

    # when callee-saved register will be used, 

    # its value must be stored in RSA (if necessary) 

    … 

    lea %s13,(needed stack size for func)&0xffffffff 

    and %s13,%s13,(32)0 

    lea.sl %sp, (needed stack size for 

func)>>32(%fp,%s13) 

    brge.l.t  %sp,%sl,.L1.EoP 

    ld  %s61,0x18(,%tp) # load param area 

or %s62,0,%s0 # spill the value of %s0 

    lea %s63,0x13b # syscall # of grow 

    shm.l  %s63,0x0(%s61) # stored at addr:0 

    shm.l  %sl,0x8(%s61) # old limit at addr:8 

    shm.l  %sp,0x10(%s61) # new limit at addr:16 

    monc 

    or %s0,0,%s62 # restore the value of %s0 

.L1.EoP: 

    <operations of func> 

    # the values of arguments are accessible via: 

    # a : %s0, b : %s1, c : %s2 

    … 

    or %s0,0, <return value> 

    … 

    # only if callee-saved registers are stored at 

    # prologue, its value must be restored in register 

    … 

    or %sp,0,%fp 

    ld  %got,0x18(,%sp) 

    ld  %plt,0x20(,%sp) 

    ld %lr,0x8(,%sp) 

    ld %fp,0x0(,%sp) 
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C Assembly 

    b.l  (,%lr) 

 

3.3.5 Data Objects 

This section describes only objects with static storage. Stack-resident objects are 

excluded since programs always compute their virtual address relative to the stack or 

frame pointers. 

Because VE instructions cannot hold 64-bit addresses directly, a program normally 

computes an address into a register and accesses memory through the register. 

Figure 3-2 Access to the data in absolute code 

C Assembly 

extern int src; 

extern int dst; 

extern int *ptr; 

 

ptr = &dst; 

 

 

 

 

 

 

 

*ptr = src; 

 

 

 

 

lea %s63,dst@LO 

and %s63,%s63,(32)0 

lea.sl %s63,dst@HI(,%s63) 

lea %s62,ptr@LO 

and %s62,%s62,(32)0 

lea.sl %s62,ptr@HI(,%s62) 

st %s63, (,%s62) 

 

lea %s60,src@LO 

and %s60,%s60,(32)0 

lea.sl %s60,src@HI(,%s60) 

ldl.sx %s60,(,%s60) 

lea %s59,ptr@LO 

and %s59,%s59,(32)0 

lea.sl %s59,ptr@HI(,%s59) 

ld %s59,(,%s59) 

stl %s60,(,%s59) 

 

Position-independent code cannot contain absolute address. To access a global symbol 

the address of the symbol has to be loaded from the Global Offset Table. 
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Figure 3-3 Access to the data in position-independent code 

C Assembly 

extern int src; 

extern int dst; 

extern int *ptr; 

 

ptr = &dst; 

 

 

 

 

 

 

 

 

 

*ptr = src; 

 

 

 

 

lea %s63,dst@GOT_LO 

and %s63,%s63,(32)0 

lea.sl %s63,dst@GOT_HI(%s63,%got) 

ld %s63,(,%s63) 

lea %s62,ptr@GOT_LO 

and %s62,%s62,(32)0 

lea.sl %s62,ptr@GOT_HI(%s62,%got) 

ld %s62,(,%s62) 

st %s63, (,%s62) 

 

lea %s60,src@GOT_LO 

and %s60,%s60,(32)0 

lea.sl %s60,src@GOT_HI(%s60,%got) 

ld %s60,(,%s60) 

ldl.sx %s60,(,%s60) 

lea %s59,ptr@GOT_LO 

and %s59,%s59,(32)0 

lea.sl %s59,ptr@GOT_HI(%s59,%got) 

ld %s59,(,%s59) 

ld %s59,(,%s59) 

stl %s60,(,%s59) 

 

Position-independent references to static data may be optimized. Because %got holds 

a known address, the global offset table, a program may use it as a base register. 

Figure 3-4 Access to the static data in position-independent code 

C Assembly 

static int src; 

 

static int dst; 

 

static int *ptr; 

 

 

ptr = &dst; 

 

 

.local src 

.comm src,4,4 

.local dsr 

.comm dst,4,4 

.local ptr 

.comm ptr,8,8 

 

lea %s63,dst@GOTOFF_LO 

and %s63,%s63,(32)0 

lea.sl %s63,dst@GOTPFF_HI(%s63,%got) 



Chapter3  Low Level System Information 

- 20 - 

C Assembly 

 

 

 

 

 

*ptr = src; 

lea %s62,ptr@GOTOFF_LO 

and %s62,%s62,(32)0 

lea.sl %s62,ptr@GOTOFF_HI(%s62,%got) 

st %s63, (,%s62) 

 

lea %s60,src@GOTOFF_LO 

and %s60,%s60,(32)0 

lea.sl %s60,src@GOTOFF_HI(%s60,%got) 

ldl.sx %s60,(,%s60) 

lea %s59,ptr@GOTOFF_LO 

and %s59,%s59,(32)0 

lea.sl %s59,ptr@GOTOFF_HI(%s59,%got) 

ld %s59,(,%s59) 

stl %s60,(,%s59) 

3.3.6 Function Calls 

Programs use the bsic instruction to make direct function calls. A bsic instruction’s 

destination is an absolute address. Even when the code for a function resides in a 

shared object, the caller uses the same assembly language instruction sequence, 

although in that case control passes from the original call, through an indirection 

sequence, to the desired destination. See "5.1.4 Procedure Linkage Table" for more 

information on the indirection sequence. 

Figure 3-5 Absolute Direct Function Call 

C Assembly 

extern void function(); 

 

function(); 

 

 

lea %s12,function@CALL_LO 

and %s12,%s12,(32)0 

lea.sl %s12,function@CALL_HI(,%s12) 

bsic %lr,(,%s12) 

 

Dynamic linking may redirect a function call outside the current object file’s scope; 

So position-independent calls should use the procedure linkage table explicitly. 

Figure 3-6 Position-Independent Direct Function Call 

C Assembly 

extern void function();  
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C Assembly 

 

function(); 

 

lea %s12,function@PLT_LO(-24) 

and %s12,%s12,(32)0 

sic %s63 

lea.sl %s12,function@PLT_HI(%s12,%s63) 

bsic %lr,(,%s12) 

 

Indirect function calls use the indirect bsic instruction. 

Figure 3-7 Absolute Indirect Function Call 

C Assembly 

extern void (*ptr)(); 

extern void name(); 

 

ptr = name; 

 

 

 

 

 

 

 

(*ptr)(); 

 

 

 

lea %s63,name@LO 

and %s63,%s63,(32)0 

lea.sl %s63,name@HI(,%s63) 

lea %s62,ptr@LO 

and %s62,%s62,(32)0 

lea.sl %s62,ptr@HI(,%s62) 

st %s63,(,%s62) 

 

lea %s61,ptr@LO 

and %s61,%s61,(32)0 

lea.sl %s61,ptr@HI(,%s61) 

ld %s61,(,%s61) 

or %s12,%s61,(0)1 

bsic %lr,(,%s12) 

 

For position-independent code, the global offset table supplies absolute addresses for 

all required symbols, whether the symbols name objects or functions. 

Figure 3-8 Position-Independent Indirect Function Call 

C Assembly 

extern void (*ptr)(); 

extern void name(); 

 

ptr = name; 

 

 

 

 

 

lea %s63,name@GOT_LO 

and %s63,%s63,(32)0 

lea.sl %s63,name@GOT_HI(%s63,%got) 



Chapter3  Low Level System Information 

- 22 - 

C Assembly 

 

 

 

 

 

 

 

(*ptr)(); 

ld      %s63,(,%s63) 

lea %s62,ptr@GOT_LO 

and %s62,%s62,(32)0 

lea.sl %s62,ptr@GOT_HI(%s62,%got) 

ld %s62,(,%s62) 

st %s63,(,%s62) 

 

lea %s61,ptr@GOT_LO 

and %s61,%s61,(32)0 

lea.sl %s61,ptr@GOT_HI(%s61,%got) 

ld %s61,(,%s61) 

ld %s61,(,%s61) 

or %s12,%s61,(0)1 

bsic %lr,(,%s12) 

 

The static function calls of position-independent call gets the absolute address from 

relative address of the symbol and the sic instruction. 

Figure 3-9 Position-Independent Static Function Call 

C Assembly 

static void function(); 

 

 

function(); 

.type   function,@function 

function: 

 

lea %s12,function@PC_LO(-24) 

and %s12,%s12,(32)0 

sic %s63 

lea.sl %s12,function@PC_HI(%s12,%s63) 

bsic %lr,(,%s12) 

 

3.3.7 Branching 

Programs use branch instructions to control their execution flow. 

If the target addresses are within 2GB, no special care has to be taken when 

implementing branch instructions. 

Figure 3-10 Branching Code within 2GB 

C Assembly 

label:  

… 

label: 

… 
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C Assembly 

goto label;  br.l label 

 

If the target addresses are over 2GB, a branch target address is calculated. For 

absolute objects: 

Figure 3-11 Absolute Branching Code over 2GB 

C Assembly 

label:  

… 

goto label; 

label: 

… 

 lea %s63,label@LO 

 and %s63,%s63,(32)0 

 lea.sl %s63,label@HI(,%s63) 

 b.l (,%s63) 

 

For position-independent objects: 

Figure 3-12 Position-Independent Branching Code over 2GB 

C Assembly 

label:  

… 

goto label; 

label: 

… 

 lea %s63,label@PC_LO(-24) 

 and %s63,%s63,(32)0 

 sic %s62 

 lea.sl %s63,label@PC_HI(%s63,%s62) 

 b.l (,%s63) 

3.3.8 Variable Argument List 

The full parameter list is known by the caller. So its save area must be ensured on the 

caller stack. 

Example is not create yet.  

3.3.9 Initialized static variables (global variables and static local 

variables) 

Initialized static variables are allocated to the .data section 

C Assembly 

int mos = 8; .data 
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C Assembly 

  .balign 16 

 .global mos 

.type mos,@object 

.size mos,4 

mos: 

 .int 8 

 

3.3.10 Uninitialized static variables (global variables and static local 

variables) 

Uninitialized static variables are allocated to the .bss section using .comm. 

C Assembly 

int mos;  .comm   mos, 4, 4 

 

3.4 DWARF Definition 

This section defines the Debug With Arbitrary Record Format (DWARF) debugging 

format for the VE processor. The VE ABI does not define a debug format. However, all 

systems that do implement DWARF on VE shall use the following definitions. 

DWARF is a specification developed for symbolic, source-level debugging. The 

debugging information format does not favor the design of any compiler or debugger. 

For more information on DWARF, see DWARF Debugging Information Format, Version 

4, June 2010, DWARF Debugging Information Format Committee. It is available at: 

http://www.dwarfstd.org/. 

3.4.1 DWARF Release Number 

The DWARF definition requires some machine-specific definitions. The register number 

mapping needs to be specified for the VE registers. 

3.4.2 DWARF Register Number Mapping 

Table 3-2 outlines the register number mapping for the VE processor. 

http://www.dwarfstd.org/
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Table 3-2 DWARF Register Number Mapping 

Register Name Number Abbreviation 

Scalar Register 0-7 0-7 %s0-%s7 

Stack Limit Register 8 %sl (or %s8) 

Frame Pointer Register 9 %fp (or %s9) 

Link Register 10 %lr (or %s10) 

Stack Pointer Register 11 %sp (or %s11) 

Outer Register 12 %s12 

Scalar Register 13 13 %s13 

Thread Pointer Register 14 %tp (or %s14) 

Global Offset Table Register 15 %got (or %s15) 

Procedure Linkage Table Register 16 %plt (or %s16) 

Linkage-area Register 17 %s17 

Scalar Register 18-63 18-63 %s18-%s63 

Vector Register 0-63 64-127 %v0-%v63 

Vector Mask Register 0-15 128-143 %vm0-%vm15 
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Chapter4 Object Files 

4.1 ELF Header 

4.1.1 Machine Information 

For file identification in e_ident, the VE architecture requires the following values. 

Table 4-1 Machine Information 

Position Value 

e_ident[EI_CLASS] ELFCLASS64 

e_ident[EI_DATA] ELFDATA2LSB 

Processor identification resides in the ELF header’s e_machine member and must have 

the EM_VE1. 

The ELF header’s e_flags member holds bit flags associated with the file. The VE 

architecture defines no flags; so this member contains zero. 

4.1.2 Number of Program Headers 

The e_phnum member contains the number of entries in the program header table. 

The product of e_phentsize and e_phnum gives the table’s size in bytes. If a file has 

no program header table, e_phnum holds the value zero. 

If the number of program headers is greater than or equal to PN_XNUM (0xffff), this 

member has the value PN_XNUM (0xffff). The actual number of program header table 

entries is contained in the sh_info field of the section header at index 0. Otherwise, 

the sh_info member of the initial entry contains the value zero. 

4.2 Sections 

4.2.1 Special Sections 

Various sections hold program and control information. Sections in the list below are 

used by the system and have the indicated types and attributes. 

                                         

 

1 The value of this identifier is 251. 
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Table 4-2 Special sections 

Name Type Attribute 

.dynamic SHT_DYNAMIC SHF_ALLOC+SHF_WRITE 

.got SHT_PROGBITS SHF_ALLOC+SHF_WRITE 

.plt SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR 

 

Special sections are described below: 

.dynamic This section holds dynamic linking information. 

.got  This section holds the global offset table. 

   See “5.1.2 Global Offset Table” for more information. 

.plt This section holds the procedure linkage table. 

See “5.1.4 Procedure Linkage Table” for more information. 

4.3 Symbol Table 

4.3.1 Symbol Values 

If an executable file contains a reference to a function defined in one of its associated 

shared objects, the symbol table section for that file will contain an entry for that 

symbol. The st_shndx member of that symbol table entry contains SHN_UNDEF. This 

informs the dynamic linker that the symbol definition for that function is not contained 

in the executable file itself. If that symbol has been allocated a procedure linkage table 

entry in the executable file, and the st_value member for that symbol table entry is 

non-zero, the value will contain the virtual address of the first instruction of that 

procedure linkage table entry. Otherwise, the st_value member contains zero. This 

procedure linkage table entry address is used by the dynamic linker in resolving 

references to the address of the function. See “5.1.3 Function Addresses” for details. 

4.4 Relocation 

4.4.1 Relocation Types 

Figure 4-1 shows the allowed relocatable fields. 

Figure 4-1 Relocatable Fields 

31      word32       0 
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63                   word64                    0 

word32 This specifies a 32-bit field occupying 4 bytes, the alignment of which is 4 

bytes. 

word64 This specifies a 64-bit field occupying 8 bytes, the alignment of which is 8 

bytes. 

 

The following notations are used for specifying relocations in Table 4-3. 

A Represents the addend used to compute the value of the relocatable field. 

B Represents the base address at which a shared object has been loaded into 

memory during execution. Generally, a shared object is built with a 0 base 

virtual address, but the execution address will be different. 

G Represents the offset into the global offset table at which the relocation 

entry’s symbol will reside during execution. 

GOT Represents the address of the global offset table. 

L Represents the place (section offset or address) of the Procedure Linkage 

Table entry for a symbol. 

P Represents the place (section offset or address) of the storage unit being 

relocated (computed using r_offset). 

S Represents the value of the symbol whose index resides in the relocation 

entry. 

The VE ABI architectures uses only Elf64_Rela relocation entries with explicit 

addends. The r_addend member serves as the relocation addend. 

Table 4-3 Relocation Types 

Name Value Fields Calculation 

R_VE_NONE 0 none none 

R_VE_REFLONG 1 word32 S + A 

R_VE_REFQUAD 2 word64 S + A 

R_VE_SREL32 3 word32 S + A – P 

R_VE_HI32 4 word32 (S + A) >> 32 

R_VE_LO32 5 word32 (S + A) & 0xFFFFFFFF 

R_VE_PC_HI32 6 word32 (S + A – P) >> 32 

R_VE_PC_LO32 7 word32 (S + A – P) & 0xFFFFFFFF 

R_VE_GOT32 8 word32 G + A 

R_VE_GOT_HI32 9 word32 (G + A) >> 32 

R_VE_GOT_LO32 10 word32 (G + A) & 0xFFFFFFFF 

R_VE_GOTOFF32 11 word32 S + A – GOT 
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Name Value Fields Calculation 

R_VE_GOTOFF_HI32 12 word32 (S + A – GOT) >> 32 

R_VE_GOTOFF_LO32 13 word32 (S + A – GOT) & 

0xFFFFFFFF 

R_VE_PLT32 14 word32 L + A – P 

R_VE_PLT_HI32 15 word32 (L + A – P) >> 32 

R_VE_PLT_LO32 16 word32 (L + A – P) & 0xFFFFFFFF 

R_VE_RELATIVE 17 word64 B + A 

R_VE_GLOB_DAT 18 word64 S 

R_VE_JUMP_SLOT 19 word64 S 

R_VE_COPY 20 - - 

R_VE_CALL_HI32 35 word32 (S + A) >> 32 

R_VE_CALL_LO32 36 word32 (S + A) & 0xFFFFFFFF 

 

Relocation types with special semantics are described below. 

R_VE_HI32 / R_VE_CALL_HI32 

This relocation type uses to compute the high order 32 bits of the symbol's address. 

R_VE_LO32 / R_VE_CALL_LO32 

This relocation type uses to compute the low order 32 bits of the symbol's address. 

R_VE_PC_HI32 

This relocation type uses to compute the high order 32 bits of the distance from the 

current code location to the location of the symbol. 

R_VE_PC_LO32 

This relocation type uses to compute the low order 32 bits of the distance from the 

current code location to the location of the symbol. 

R_VE_GOT322 

This relocation type uses to compute the distance from the base of the global offset 

                                         

 

2 These have not been supported yet. 
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table to the symbol's global offset table entry. It additionally instructs the link editor 

to build a global offset table. 

This relocation type can use when the distance from the base of the global offset table 

to the symbol's global offset table entry is in the range from -2147483648 bytes to 

2147483647 bytes. 

R_VE_GOT_HI32 

This relocation type uses to compute the high order 32 bits of the distance from the 

base of the global offset table to the symbol's global offset table entry. It additionally 

instructs the link editor to build a global offset table. 

R_VE_GOT_LO32 

This relocation type uses to compute the low order 32 bits of the distance from the 

base of the global offset table to the symbol's global offset table entry. It additionally 

instructs the link editor to build a global offset table. 

R_VE_GOTOFF323 

This relocation type uses to compute the distance from the base of the global offset 

table to the location of the symbol. It additionally instructs the link editor to build a 

global offset table. 

This relocation type can use when the size of the data segment is less than 

4294967296 bytes. 

R_VE_GOTOFF_HI32 

This relocation type uses to compute the high order 32 bits of the distance from the 

base of the global offset table to the location of the symbol. It additionally instructs 

the link editor to build a global offset table. 

R_VE_GOTOFF_LO32 

This relocation type uses to compute the low order 32 bits of the distance from the 

base of the global offset table to the location of the symbol. It additionally instructs 

the link editor to build a global offset table. 

                                         

 

3 These have not been supported yet. 



Chapter4  Object Files 

- 31 - 

R_VE_PLT324 

This relocation type uses to compute the distance from the current code location to 

the symbol's procedure linkage table entry. It additionally instructs the link editor to 

build a procedure linkage table. 

This relocation type can use when the size of the text segment is less than 4294967296 

bytes. 

R_VE_PLT_HI32 

This relocation type uses to compute the high order 32 bits of the distance from the 

current code location to the symbol's procedure linkage table entry. It additionally 

instructs the link editor to build a procedure linkage table. 

R_VE_PLT_LO32 

This relocation type uses to compute the low order 32 bits of the distance from the 

current code location to the symbol's procedure linkage table entry. It additionally 

instructs the link editor to build a procedure linkage table. 

R_VE_RELATIVE 

The link editor creates this relocation type for dynamic linking. Its offset member gives 

a location within a shared object that contains a value representing a relative address. 

The dynamic linker computes the corresponding virtual address by adding the virtual 

address at which the shared object was loaded to the relative address. Relocation 

entries for this type must specify 0 for the symbol table index. 

R_VE_GLOB_DAT 

The link editor creates this relocation type for dynamic linking. This relocation type is 

used to set a global offset table entry to the address of the specified symbol. The 

special relocation type allows one to determine the correspondence between symbols 

and global offset table entries. 

R_VE_JUMP_SLOT 

The link editor creates this relocation type for dynamic linking. Its offset member refers 

                                         

 

4 These have not been supported yet. 
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to a global offset table entry to which a procedure linkage table entry is referring. The 

dynamic linker modifies a global offset table entry to transfer control to the designated 

symbol's address. 

R_VE_COPY 

The link editor creates this relocation type for dynamic linking. Its offset member refers 

to a location in a writable segment. The symbol table index specifies a symbol that 

should exist both in the current object file and in a shared object. During execution, 

the dynamic linker copies data associated with the shared object's symbol to the 

location specified by the offset. The other objects referring to this symbol in the 

process refer to this copy. 
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Chapter5 Program Loading and Dynamic Linking 

5.1 Dynamic Linking 

5.1.1 Dynamic Section 

Dynamic section entries give information to the dynamic linker. 

DT_PLTGOT 

This entry's d_ptr member gives the address of the first byte in the procedure linkage 

table. 

5.1.2 Global Offset Table 

Position-independent code cannot, in general, contain absolute virtual addresses. 

Global offset tables hold absolute addresses in private data, thus making the addresses 

available without compromising the position-independence and sharability of a 

program's text. A program references its global offset table using position-independent 

addressing and extracts absolute values, thus redirecting position-independent 

references to absolute locations. 

Initially, the global offset table holds information as required by its relocation entries 

(See "4.4 Relocation"). After the system creates memory segments for a loadable 

object file, the dynamic linker processes the relocation entries, some of which will be 

type R_VE_GLOB_DAT referring to the global offset table. The dynamic linker 

determines the associated symbol values, calculates their absolute addresses, and sets 

the appropriate memory table entries to the proper values. Although the absolute 

addresses are unknown when the link editor builds an object file, the dynamic linker 

knows the addresses of all memory segments and can thus calculate the absolute 

addresses of the symbols contained therein. 

If a program requires direct access to the absolute address of a symbol, that symbol 

will have a global offset table entry. Because the executable file and shared objects 

have separate global offset tables, a symbol's address may appear in several tables. 

The dynamic linker processes all the global offset table relocations before giving control 

to any code in the process image, thus ensuring the absolute addresses are available 

during execution. 

The first entry (number zero) in the global offset table is reserved to hold the address 
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of the dynamic structure, referenced with the symbol _DYNAMIC. This allows a program, 

such as the dynamic linker, to find its own dynamic structure without having yet 

processed its relocation entries. This is especially important for the dynamic linker, 

because it must initialize itself without relying on other programs to relocate its 

memory image. 

The second entry (number one) in the global offset table is reserved for storing the 

address to pass control to the dynamic linker (See "5.1.4 Procedure Linkage Table"). 

The global offset table exists in .got section. The symbol _GLOBAL_OFFSET_TABLE_ can 

use to access the global offset table. The symbol _GLOBAL_OFFSET_TABLE_ indicates 

the first entry (number zero) in the global offset table.  The type of symbol is an array 

of Elf64_Addr. 

Figure 5-1 Global Offset Table 

extern Elf64_Addr _GLOBAL_OFFSET_TABLE_[]; 

The symbol _GLOBAL_OFFSET_TABLE_ may reside in the middle of the .got section, 

allowing both negative and non-negative offsets into the array of addresses. 

5.1.3 Function Addresses 

References to the address of a function from an executable file and the shared objects 

associated with it might not resolve to the same value. References from within shared 

objects will normally be resolved by the dynamic linker to the virtual address of the 

function itself. References from within the executable file to a function defined in a 

shared object will normally be resolved by the link editor to the address of the 

procedure linkage table entry for that function within the executable file. 

To allow comparisons of function addresses to work as expected, if an executable file 

references a function defined in a shared object, the link editor will place the address 

of the procedure linkage table entry for that function in its associated symbol table 

entry (See "4.3.1 Symbol Values"). The dynamic linker treats such symbol table entries 

specially. If the dynamic linker is searching for a symbol, and encounters a symbol 

table entry for that symbol in the executable file, it normally follows the rules below. 

(1) If the st_shndx member of the symbol table entry is not SHN_UNDEF, the dynamic 

linker has found a definition for the symbol and uses its st_value member as the 

symbol's address. 
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(2) If the st_shndx member is SHN_UNDEF and the symbol is of type STT_FUNC and 

the st_value member is not zero, the dynamic linker recognizes this entry as 

special and uses the st_value member as the symbol's address. 

(3) Otherwise, the dynamic linker considers the symbol to be undefined within the 

executable file and continues processing. 

Some relocations are associated with procedure linkage table entries. These entries 

are used for direct function calls rather than for references to function addresses. 

These relocations are not treated in the special way described above because the 

dynamic linker must not redirect procedure linkage table entries to point to themselves. 

5.1.4 Procedure Linkage Table 

Much as the global offset table redirects position-independent address calculations to 

absolute locations, the procedure linkage table redirects position-independent function 

calls to absolute locations. The link editor cannot resolve execution transfers (such as 

function calls) from one executable or shared object to another. Consequently, the link 

editor arranges to have the program transfer control to entries in the procedure linkage 

table. Procedure linkage tables reside in shared text, but they use addresses in the 

private global offset table. The dynamic linker determines the destinations' absolute 

addresses and modifies the global offset table's memory image accordingly. The 

dynamic linker thus can redirect the entries without compromising the position-

independence and shareability of the program's text. Executable files and shared 

object files have separate procedure linkage tables (See Figure 5-2, Figure 5-3). 

Figure 5-2 Absolute Procedure Linkage Table Sample Entries 

_PROCEDURE_LINKAGE_TABLE_: 

 lea %s62, _GLOBAL_OFFSET_TABLE_@LO 

 and %s62, %got, (32)0 

 lea.sl %s62, _GLOBAL_OFFSET_TABLE_@HI(,%s62) 

 ld %s63, 8(,%s62) 

 b.l.t (,%s63) 

.PLT1: 

 lea %s13, func1@LO 

 and %s13, %s13, (32)0 

 lea.sl %s13, func1@HI(,%s13) 

 ld %s13, (,%s13) 

 b.l.t (,%s13) 

 lea %s13, [index of relocation entry of symbol] 

 br.l.t _PROCEDURE_LINKAGE_TABLE_ 
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Figure 5-3 Position-Independent Procedure Linkage Table Sample Entries 

_PROCEDURE_LINKAGE_TABLE_: 

        or     %62,0,%got 

 ld %s63, 8(,%got) 

 b.l.t (,%s63) 

.PLT1: 

 lea %s13, func1@GOT_LO 

 and %s13, %s13, (32)0 

 lea.sl %s13, func1@GOT_HI(%s13,%got) 

 ld %s13, (,%s13) 

 b.l.t (,%s13) 

 lea %s13, [index of relocation entry of symbol] 

 br.l.t  _PROCEDURE_LINKAGE_TABLE_ 

Following the steps below, the dynamic linker and the program cooperate to resolve 

symbolic references through the procedure linkage table and the global offset table. 

Again, the steps described below are for explanation only. The precise execution-time 

behavior of the dynamic linker is not specified. 

(1) When memory image of program is created first, the dynamic linker modifies 

memory image as follows. 

‒ Set address to pass control of the dynamic linker to the second entry (number 

one) in the global offset table. 

‒ As for symbols of the relocation type of R_VE_JUMP_SLOT, set value at offset 

location plus base address of shared object to the offset location of relocation 

entry. 

(2) Each shared object file in the process image has its own procedure linkage table, 

and control transfers to a procedure linkage table entry only from within the same 

object file. 

(3) For illustration, assume the program calls func1, which transfers control to the 

label .PLT1. 

Note that when object file is shared object, it’s necessary to set the address of the 

first entry of the global offset table to the register %s15 and to set the address of 

the first entry of procedure linkage table to the register %S16 before calling the 

procedure linkage table entry. 

(4) It jumps to the address in the global offset table entry for func1. Initially the 

global offset table holds the address of the following lea instruction, not the real 
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address of func1. 

(5) It sets index of relocation entry to the register %s16. The index of relocation entry 

is non-negative index. The designated relocation entry will have type 

R_VE_JUMP_SLOT, and its offset will specify address of the global offset table entry. 

The relocation entry contains a symbol table index that will reference the 

appropriate symbol, func1 in the example. 

(6) The program jumps to _PROCEDURE_LINKAGE_TABLE_, the first entry in the 

procedure linkage table. In this entry, the program jumps to the address in the 

second global offset table entry, which transfers control to the dynamic linker. 

(7) When the dynamic linker receives control, looks at the designated relocation entry 

by the register %s16, finds the symbol’s value, stores the “real” address for func1 

in its global offset table entry, and transfers control to the desired destination. 

(8) Subsequent executions of the procedure linkage table entry will transfer directly 

to func1, without calling the dynamic linker a second time. That is, the b.l.t 

instruction at .PLT1 will transfer to func1, instead of “falling through” to the lea 

instruction. 

5.1.5 Program Interpreter 

There is one valid program interpreter for programs conforming to the VE ABI: 

/opt/nec/ve/lib/ld.so.15 

5.1.6 Initialization and Termination Functions 

The implementation is responsible for executing the initialization functions specified by 

DT_INIT, DT_INIT_ARRAY, and DT_PREINIT_ARRAY entries in the executable file and 

shared object files for a process, and the termination (or finalization) functions 

specified by DT_FINI and DT_FINI_ARRAY, as specified by the System V ABI. The user 

program plays no further part in executing the initialization and termination functions 

specified by these dynamic tags. 

                                         

 

5 This is provisional. This is currently under consideration by the OS group. 
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Chapter6 Conventions 

6.1 C++ 

To be determined. 

6.2 Fortran 

To be determined. 

6.3 Thread-Local Storage 

The VE ABI related with Thread-Local Storage is described the separated document. 

See ELF Handling For Thread-Local Storage VE Architecture Processor Supplement. 
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Appendix A Code Segment 

A.1 .text 

Position Contents 

 code area 

VE require the .text to be 16-byte aligned. And each function has a frame on the run-

time stack. 

(1) Code area are placed after 16 byte, it contains machine instructions. 
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Appendix B Data Segment 

B.1 .data 

Position Contents 

 .data 

VE require the .data to be 16-byte aligned and zero out. 

B.2 .bss 

Position Contents 

 .bss 

VE require the .bss to be 16-byte aligned and zero cleared. 



Appendix C History 

- 41 - 

Appendix C History 

C.1 History table 

 

 

 

 

 

 

C.2 Change notes 

The following changes are done in this edition. 

 CALL_HI/CALL_LO which is kind of relocation is added. 

Feb. 2018 Rev. 1.0 Create a new entry. 

Mar. 2018 Rev. 1.1 Remarks is added. 

Oct. 2018 Rev. 2.0 The design of document is changed. 

Dec. 2018 Rev. 2.1 CALL_HI/CALL_LO which is kind of 

relocation is added. 
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