
 

 

  

NEC Network Queuing System V (NQSV) User's Guide 

[Management] 



ii 

Proprietary Notice 

 

The information disclosed in this document is the property of NEC Corporation (NEC) and/or its 

licensors. NEC and/or its licensors, as appropriate, reserve all patent, copyright and other proprietary 

rights to this document, including all design, manufacturing, reproduction, use and sales rights 

thereto, except to the extent said rights are expressly granted to others.  

 

The information in this document is subject to change at any time, without notice.  

  



iii 

Preface 

 

This guide explains how to manage NEC Network Queuing System V (NQSV) job management system. 

 

The manual of NEC Network Queuing System V (NQSV) is composed by following user's guides. 

 

Name Contents 

NEC Network Queuing System V (NQSV) 

User's Guide [Introduction] 

This guide explains the overview of NQSV 

and configuration of basic system. 

NEC Network Queuing System V (NQSV) 

User's Guide [Management] 

This guide explains the various 

management functions of the system. 

NEC Network Queuing System V (NQSV) 

User's Guide [Operation] 

This guide explains the various functions 

that used by general user. 

NEC Network Queuing System V (NQSV) 

User's Guide [Reference] 

The command reference guide. 

NEC Network Queuing System V (NQSV) 

User's Guide [API] 

This guide explains the C programming 

interface (API) to control NQSV. 

NEC Network Queuing System V (NQSV) 

User's Guide [JobManipulator] 

This guide explains about the scheduler 

component : JobManipulator. 

NEC Network Queuing System V (NQSV) 

User's Guide [Accounting & Budget 

Control] 

This guide explains the functions of 

accounting. 

 

 

 

 

 

 

 

February  2018 1st edition 

March 2023 17th edition 

June 2023 18th edition 

March 2024 19th edition 

July 2024 20th edition 

January 2025 21st edition 



iv 

Remarks 

 

(1) This manual conforms to Release 1.00 and subsequent releases of the NQSV. 

 

(2) All the functions described in this manual are program products. The typical functions of them 

conform to the following product names and product series numbers: 

 

Product Name product series numbers 

NEC Network Queuing System V (NQSV) 

/ResourceManager 

UWAF00 

UWHAF00 (Support Pack) 

NEC Network Queuing System V (NQSV) 

/JobServer 

UWAG00 

UWHAG00 (Support Pack) 

NEC Network Queuing System V (NQSV) 

/JobManipulator 

UWAH00 

UWHAH00 (Support Pack) 

 

(3) UNIX is a registered trademark of The Open Group. 

 

(4) Intel is a trademark of Intel Corporation in the U.S. and/or other countries. 

 

(5) OpenStack is a trademark of OpenStack Foundation in the U.S. and/or other countries. 

 

(6) Red Hat OpenStack Platform is a trademark of Red Hat, Inc. in the U.S. and/or other countries. 

 

(7) Linux is a trademark of Linus Torvalds in the U.S. and/or other countries. 

 

(8) Docker is a trademark of Docker, Inc. in the U.S. and/or other countries. 

 

(9) InfiniBand is a trademark or service mark of InfiniBand Trade Association. 

 

(10) Zabbix is a trademark of Zabbix LLC that is based in Republic of Latvia. 

 

(11) All other product, brand, or trade names used in this publication are the trademarks or 

registered trademarks of their respective trademark owners. 

 

  



v 

About This Manual 

 

Notation Conventions 

 

The following notation rules are used in this manual:  

 

Omission Symbol ... This symbol indicates that the item mentioned previously can be 

repeated. The user may input similar items in any desired number. 

Vertical Bar | This symbol divides an option and mandatory selection item. 

Brackets { } A pair of brackets indicates a series of parameters or keywords from 

which one has to be selected. 

Braces [ ] A pair of braces indicate a series of parameters or keywords that can 

be omitted. 

 

Glossary 

 

Term Definition 

Vector Engine 

(VE) 

The NEC original PCIe card for vector processing based on SX 

architecture. It is connected to x86-64 machine. VE consists 

of more than one core and shared memory. 

Vector Host 

(VH) 

The x86-64 architecture machine that VE connected. 

Vector Island 

(VI) 

The general component unit of a single VH and one or more 

VEs connected to the VH. 

Batch Server 

(BSV) 

Resident system process running on a Batch server host to 

manage entire NQSV system. 

Job Server 

(JSV) 

Resident system process running on each execution host to 

manage the execution of jobs. 

JobManipulator 

(JM) 

JobManipulator is the scheduler function of NQSV. 

JM manages the computing resources and determines the 

execution time of jobs. 

Accounting Server Accounting server collects and manages account information 

and manages budgets. 

Request A unit of user jobs in the NQSV system. It consists of one or 

more jobs. Requests are managed by the Batch Server. 

Job A job is an execution unit of user job. It is managed by Job 

Server. 



vi 

Logical Host A logical host is a set of logical (virtually) divided resources of 

an execution host. 

Queue It is a mechanism that pools and manages requests submitted 

to BSV. 

BMC Board Management Controller for short. It performs server 

management based on the Intelligent Platform Management 

Interface (IPMI). 

HCA Host Channel Adapter for short. The PCIe card installed in 

VH to connect to the IB network. 

IB InfiniBand for short. 

MPI Abbreviation for Message Passing Interface. MPI is a 

standard for parallel computing between nodes. 

NIC Network Interface Card for short. The hardware to 

communicate with other node. 

 

 



vii 

Contents 

Proprietary Notice ................................................................................................................................... ii 

Preface ..................................................................................................................................................... iii 

Remarks .................................................................................................................................................. iv 

About This Manual ................................................................................................................................. v 

Contents ................................................................................................................................................. vii 

Contents of Figures .............................................................................................................................. xiv 

1. Unit Management ............................................................................................................................ 2 

2. Batch Server Management.............................................................................................................. 4 

2.1. TCP/IP port number of a Batch Server ................................................................................... 4 

2.2. Files and Directories for Batch Server Setting ...................................................................... 4 

2.3. Batch Server Setting ................................................................................................................ 7 

2.3.1. Log File .............................................................................................................................................. 7 

2.3.2. Information Interval ......................................................................................................................... 7 

2.3.3. Submit Limit ..................................................................................................................................... 7 

2.3.4. Routing Limit .................................................................................................................................... 8 

2.3.5. Routing Retry Interval ...................................................................................................................... 8 

2.3.6. Routing Retry Span ........................................................................................................................... 9 

2.3.7. Heartbeat Interval ............................................................................................................................ 9 

2.3.8. Budget Management Function ......................................................................................................... 9 

2.3.9. Request Accounting File.................................................................................................................... 9 

2.3.10. Sub-request of Parametric Request Limit ...................................................................................... 10 

2.3.11. Getting of License ............................................................................................................................ 10 

2.3.12. License Update ................................................................................................................................ 12 

2.3.13. Referencing the number of available licenses ................................................................................ 12 

2.3.14. Delayed Writing to DB .................................................................................................................... 12 

2.3.15. Accept SIGTERM on job execution ................................................................................................. 13 

2.3.16. Setting the Maximum Sequence Number of Request ID ............................................................... 14 

2.3.17. Setting the Sequence Number of the Next Submitted Request .................................................... 14 

2.3.18. User Notification Script Settings. .................................................................................................. 15 

2.3.19. Memory management with memory cgroup .................................................................................. 15 

2.3.20. Tuning the Stage-Out Processing Buffer of the Request Result File ............................................ 18 

2.3.21. Change the behavior of  submit request number limitation exceeding during request routing 19 

2.4. Batch Server Status Check .................................................................................................... 20 

2.5. Machine ID Management ...................................................................................................... 22 

2.5.1. Machine ID ...................................................................................................................................... 22 

2.5.2. Machine ID Setting ......................................................................................................................... 22 



viii 

2.5.3. Alias Hostname Setting .................................................................................................................. 22 

2.6. Initializing Batch Server Database ....................................................................................... 23 

2.7. Batch Server Activation ......................................................................................................... 23 

2.8. Batch Server Stop ................................................................................................................... 24 

2.9. User Management .................................................................................................................. 24 

2.9.1. Local User Names and Remote User Names ................................................................................. 24 

2.9.2. User Mapping .................................................................................................................................. 24 

2.9.3. Local Account ................................................................................................................................... 29 

2.10. Communicate with other Batch server ............................................................................. 30 

2.10.1. Server Setting .................................................................................................................................. 30 

2.10.2. Routing Request Setting ................................................................................................................. 31 

3. Execution Host Management ........................................................................................................ 32 

3.1. Files and Directories for Execution Host Setting................................................................. 32 

3.2. Execution Host Registration .................................................................................................. 33 

3.3. Node Group ............................................................................................................................. 34 

3.3.1. Create Node Group .......................................................................................................................... 34 

3.3.2. Setting of Comment of Node Group ................................................................................................ 35 

3.3.3. Addition of Execution Host to Node Group .................................................................................... 35 

3.3.4. Deletion of Execution Host from Node Group ................................................................................ 36 

3.3.5. Deletion of Node Group ................................................................................................................... 36 

3.4. Execution Node Group Information ...................................................................................... 36 

3.5. Job Server Startup ................................................................................................................. 38 

3.5.1. Startup by qmgr (1M)...................................................................................................................... 38 

3.5.2. Startup from a Command Line ....................................................................................................... 39 

3.5.3. Startup by systemctl ....................................................................................................................... 39 

3.6. Binding Job Server and Queue .............................................................................................. 40 

3.7. Job Server Status Check ........................................................................................................ 41 

3.8. Job Server Stop ....................................................................................................................... 43 

3.9. Holding All the Requests on a Job Server ............................................................................ 44 

3.10. Execution Host Information ............................................................................................... 44 

3.11. VE node Information .......................................................................................................... 47 

4. Queue Management ....................................................................................................................... 49 

4.1. Batch Queue ............................................................................................................................ 49 

4.1.1. Create Batch Queue ........................................................................................................................ 49 

4.1.2. Batch Queue Configuration ............................................................................................................ 49 

4.2. Interactive Queue ................................................................................................................... 60 

4.2.1. Create Interactive Queue ................................................................................................................ 60 

4.2.2. Interactive Queue Configuration .................................................................................................... 60 



ix 

4.3. Routing Queue ........................................................................................................................ 70 

4.3.1. Create Routing Queue ..................................................................................................................... 70 

4.3.2. Routing Queue Configuration ......................................................................................................... 70 

4.4. Network Queue ....................................................................................................................... 73 

4.4.1. Create Network Queue ................................................................................................................... 73 

4.4.2. Network Queue Configuration........................................................................................................ 73 

4.5. Queue Information ................................................................................................................. 75 

4.5.1. Batch queue ..................................................................................................................................... 75 

4.5.2. Interactive Queue ............................................................................................................................ 77 

4.5.3. Routing Queue ................................................................................................................................. 80 

4.5.4. Network Queue ................................................................................................................................ 81 

4.5.5. Customizing Information ................................................................................................................ 81 

4.6. Queue State ............................................................................................................................. 84 

4.6.1. Enable/Disable State ....................................................................................................................... 84 

4.6.2. Active/Inactive State ....................................................................................................................... 85 

4.7. Bind to Job Server and Scheduler ......................................................................................... 86 

4.8. Queue Access Limit Set .......................................................................................................... 87 

4.8.1. Access Limitation to User and Group ............................................................................................ 87 

4.8.2. Access Limit by Supplementary Group .......................................................................................... 89 

4.8.3. Access Limit to Submitting Route .................................................................................................. 90 

4.9. Queue Abort ............................................................................................................................ 90 

4.10. Queue Purge ........................................................................................................................ 91 

4.11. Queue Delete ....................................................................................................................... 92 

5. Request Management .................................................................................................................... 93 

5.1. Batch request .......................................................................................................................... 93 

5.1.1. Request Attribute Change .............................................................................................................. 93 

5.1.2. User EXIT ........................................................................................................................................ 93 

5.1.3. File Staging ..................................................................................................................................... 97 

5.1.4. Job Migration ................................................................................................................................ 102 

5.1.5. Cleaning up of submit failed connected request .......................................................................... 104 

5.1.6. Limit the number of re-runs ......................................................................................................... 105 

5.1.7. Automatic rerun and billing exclusion function for HW failures ................................................ 106 

5.2. Interactive request ............................................................................................................... 107 

5.2.1. Request attribute modification ..................................................................................................... 107 

5.2.2. User EXIT ...................................................................................................................................... 107 

5.2.3. Waiting Option .............................................................................................................................. 107 

5.2.4. Compulsion Execution Shell ......................................................................................................... 107 

5.2.5. Idle Timer ...................................................................................................................................... 107 



x 

5.2.6. Notes .............................................................................................................................................. 107 

6. Client's Management ................................................................................................................... 108 

6.1. Setting of api_client.conf ...................................................................................................... 108 

6.2. User Agent ............................................................................................................................. 109 

6.3. Configuration for interactive request and attach to request............................................. 110 

7. Remote Execution by Interactive Function ................................................................................ 111 

7.1. Register .................................................................................................................................. 111 

7.2. Reference to the Information ............................................................................................... 112 

7.3. Execution ............................................................................................................................... 113 

7.4. Deletion ................................................................................................................................. 114 

7.5. Common Remote Execution Program ................................................................................. 115 

8. Preservation of NQSV Environment .......................................................................................... 116 

8.1. Environment of Batch Server and Queue ........................................................................... 116 

8.2. Environment of Batch Server .............................................................................................. 116 

8.3. Environment of Queue ......................................................................................................... 117 

8.4. Binding .................................................................................................................................. 117 

9. MPI Request Execution Environment Settings ......................................................................... 118 

9.1. OpenMPI Environment Settings ......................................................................................... 118 

9.2. IntelMPI Environment Settings .......................................................................................... 119 

9.3. MVAPICH2 Environment Settings ..................................................................................... 119 

9.4. PlatformMPI Environment Settings ................................................................................... 119 

9.5. NEC MPI Environment Settings ......................................................................................... 121 

10. Group of Request ...................................................................................................................... 121 

10.1. Designated Group Execution Function for Request ....................................................... 122 

10.2. Enable/Disable Function and Reference of Settings ...................................................... 122 

10.3. Usage Precautions ............................................................................................................ 123 

11. Limit per Group and User ....................................................................................................... 124 

11.1. Submit Number Limit per Batch Server ......................................................................... 124 

11.2. Limitation per Queue ....................................................................................................... 125 

11.2.1. Submit Limit ................................................................................................................................. 125 

11.2.2. Limitation of the Job Number ...................................................................................................... 126 

11.2.3. Elapse Time Limit ......................................................................................................................... 127 

11.3. Reference of Limit Information per Group and User ..................................................... 128 

12. VE and GPU Support ............................................................................................................... 131 

12.1. Configuration for VE environment .................................................................................. 131 

12.2. Submitting a request with the total number of VEs specified and Setting of the default 

number of incorporated VE nodes .................................................................................................. 132 

12.3. Limit of the range of the total number of VEs that can be entered .............................. 133 



xi 

Extended submit limit for the number of VE nodes ................................................................................... 134 

12.4. HCA Assignment ............................................................................................................... 135 

12.5. HCA failure check ............................................................................................................. 135 

12.6. Concurrent GPU Number Limit ...................................................................................... 136 

12.7. Automatic switching of VE NUMA mode ........................................................................ 137 

12.8. Configuration for Multi-instance GPU (MIG)................................................................. 138 

12.8.1. About Multi-instance GPU (MIG) ................................................................................................ 138 

12.8.2. How to use MIG ............................................................................................................................. 138 

13. Hook Script Function ............................................................................................................... 139 

13.1. Save a hook script ............................................................................................................. 139 

13.2. Enabling and disabling a hook script .............................................................................. 140 

13.3. Executing hook script ....................................................................................................... 140 

14. User Pre-Post Script Function ................................................................................................ 142 

14.1. Setting a timeout time of a UserPP script ...................................................................... 142 

15. Provisioning environment in conjunction with OpenStack .................................................. 143 

15.1. Configuring a provisioning environment by using a virtual machine .......................... 143 

15.1.1. OpenStack environment setting ................................................................................................... 144 

15.1.2. Configuring a job server on an execution host ............................................................................. 144 

15.1.3. Virtual machine startup script ..................................................................................................... 145 

15.1.4. Virtual machine stop script........................................................................................................... 148 

15.1.5. Sample virtual machine startup and stop scripts ........................................................................ 149 

15.1.6. Incorporating a virtual machine to NQSV ................................................................................... 151 

15.2. Configuring a provisioning environment by using a bare metal server ....................... 152 

15.2.1. OpenStack environment setting ................................................................................................... 152 

15.2.2. Bare metal server startup script .................................................................................................. 153 

15.2.3. Bare metal server stop script ........................................................................................................ 154 

15.2.4. Sample bare metal server startup and stop scripts ..................................................................... 156 

15.2.5. Incorporating a bare metal server to NQSV ................................................................................ 157 

15.3. Creating an OpenStack template .................................................................................... 160 

15.3.1. Defining a template ....................................................................................................................... 160 

15.3.2. Using a template ........................................................................................................................... 162 

15.3.3. Displaying a template ................................................................................................................... 164 

15.3.4. Submitting a request with a template specified and locating a job ............................................ 164 

16. Provisioning environment in conjunction with Docker ......................................................... 166 

16.1. Configuring a provisioning environment by using Docker ............................................ 166 

16.1.1. Docker environment setting ......................................................................................................... 167 

16.1.2. Configuring a job server on an execution host ............................................................................. 169 

16.1.3. Container Startup Script .............................................................................................................. 170 



xii 

16.1.4. Container delete script .................................................................................................................. 173 

16.1.5. Sample container startup and delete scripts ............................................................................... 175 

16.1.6. Notes on an execution host on which to start a container and queue ......................................... 176 

16.2. Configuring a container template .................................................................................... 176 

16.2.1. Defining a template ....................................................................................................................... 176 

16.2.2. Using a template ........................................................................................................................... 178 

16.2.3. Displaying a template ................................................................................................................... 179 

16.2.4. Submitting a request with a template specified and locating a job ............................................ 180 

17. Custom Resource Function ...................................................................................................... 181 

17.1. Custom resource information ........................................................................................... 181 

17.1.1. Custom resource information ....................................................................................................... 181 

17.1.2. Defining and deleting the custom resource information ............................................................. 184 

17.1.3. Displaying the custom resource information ............................................................................... 187 

17.2. Custom resource usage limit information of a queue ..................................................... 188 

17.2.1. Custom resource usage limit information of a queue .................................................................. 188 

17.2.2. Setting the custom resource usage limit information of a queue ................................................ 188 

17.2.3. Displaying the custom resource usage limit information of a queue .......................................... 189 

17.3. Requests when using the custom resource function ....................................................... 190 

17.4. Resource monitoring script .............................................................................................. 191 

18. Socket Scheduling .................................................................................................................... 195 

18.1. Socket Scheduling function .............................................................................................. 195 

18.1.1. Enabling socket scheduling function ............................................................................................ 195 

18.1.2. Core bind policy ............................................................................................................................. 196 

18.1.3. Memory allocation policy .............................................................................................................. 196 

18.1.4. Specify per job CPU number limit by using number of socket .................................................... 197 

18.1.5. Check function of the ratio of per job CPU number and memory size ........................................ 198 

18.1.6. Referring socket scheduling information ..................................................................................... 199 

18.2. CPUSET function .............................................................................................................. 201 

18.2.1. Configure CPUSET function ......................................................................................................... 202 

18.2.2. Referring CPUSET information ................................................................................................... 204 

18.3. GPU-CPU Affinity function .............................................................................................. 206 

18.3.1. Enable the GPU-CPU Affinity function ....................................................................................... 206 

18.3.2. Number of CPUs per GPU ............................................................................................................ 207 

18.3.3. Topology settings ........................................................................................................................... 209 

18.3.4. Using cgroups ................................................................................................................................ 214 

19. Failure Detection and Power Supply Control ........................................................................ 217 

19.1. Failure Detection .............................................................................................................. 217 

19.1.1. Failure Detection Settings ............................................................................................................ 217 



xiii 

19.2. Power Supply Control ....................................................................................................... 220 

19.3. Node Management Agent Settings .................................................................................. 221 

19.4. Failure Detection Function Settings ............................................................................... 223 

19.5. Node Health Check Function ........................................................................................... 226 

19.5.1. Overview of Node Health Check Settings .................................................................................... 226 

19.5.2. Health Check Scripts .................................................................................................................... 226 

19.5.3. Setting the action of the failure detection node ........................................................................... 229 

19.5.4. Configure the script for user notification ..................................................................................... 230 

19.5.5. Adjusting Health Check Time with Elapse Margin ..................................................................... 232 

19.5.6. Rerun the fault detection request ................................................................................................. 232 

19.5.7. Accounting and budget of failure detection requests ................................................................... 232 

20. Failover ..................................................................................................................................... 233 

20.1. Redundancy Function without using EXPRESSCLUSTER .......................................... 233 

20.1.1. Install Boot-up Daemon ................................................................................................................ 234 

20.1.2. Redundancy Function Settings ..................................................................................................... 234 

20.1.3. Failure Detection by Simplified Failure Detection Script for Redundancy Function ................ 238 

20.1.4. Failed Host Recovery .................................................................................................................... 241 

20.2. Redundancy Function using EXPRESSCLUSTER ........................................................ 248 

20.2.1. Notes .............................................................................................................................................. 248 

20.2.2. Configurations ............................................................................................................................... 249 

20.2.3. How to start and stop NQSV services .......................................................................................... 255 

21. Using OSS for Batch Job Collaboration ................................................................................. 257 

21.1. Environment Settings ....................................................................................................... 257 

Appendix.A Use Case ........................................................................................................................ 258 

Appendix.B Update history ............................................................................................................... 264 

Index .................................................................................................................................................... 265 

 

  



xiv 

Contents of Figures

Figure 7-1 : Remote execution by interactive request ................................................................... 111 

Figure 15-1 : Conceptual diagram of NQSV and OpenStack (Virtual machine) ........................ 144 

Figure 15-2 : Conceptual diagram of NQSV and OpenStack (Baremetal) .................................. 152 

Figure 16-1 : Conceptual diagram of NQSV and Docker .............................................................. 166 

Figure 18-1 : Conceptual diagram of CPUSET function .............................................................. 201 

Figure 18-2 : Conceptual diagram of making CPUSET for jobs .................................................. 202 

Figure 18-3 : Distance between GPU and CPU............................................................................. 206 

Figure 18-4 : Calculating the number of CPUs in a job by the number of CPUs per GPU ....... 207 

Figure 18-5 : GPU Topology Example ............................................................................................ 210 

Figure 20-1 : The whole image of Redundancy function .............................................................. 234 

 

 



 

2 

 

1. Unit Management 

The packages of NQSV is formed with multiple units. In this section, describes about the 

management of the units. For detail of unit, refer the Linux manual of systemd and systemctl. 

 

NQSV package includes following units. 

Package Name 
Unit 

Target Unit Name Service Unit Name and Description 

NQSV/ResourceManager nqs-bsv.target nqs-bsv.service   Batch Sever 

nqs-asv.service   Accounting Server 

nqs-acm.service  Accounting Monitor 

nqs-comd.service  Communication Server 

nqs-nag.service  Node Management Agent 

nqs-btu.service  

Boot-up Daemon for Redundancy function 

NQSV/JobServer nqs-jsv.target nqs-jsv.service   Job Server 

nqs-lchd.service  Launcher demon 

NQSV/Client nqs-uag.target nqs-uag.service  User Agent 

NQSV/JobManipulator nqs-jmd.target nqs-jmd.service  JobManipulator 

 

The unit which has .service extension, it called service unit, manages daemon. The unit which 

has .target extension, it called target unit, controls multiple units. 

 

Each service unit is connected with target units that belongs same package, but it is disabled 

when installed. So it needs to enable to use service. To enable the service unit, execute 

following command with root user. 

# systemctl enable <UnitName> 

 

For example, execute following command to enable the nqs-bsv.service and nqs-acm.service. 

# systemctl enable nqs-bsv.service nqs-acm.service 

 

All enabled units can start together by starting target unit. To start the unit, execute following 

command with root user. 

# systemctl start <UnitName> 

 

For example, execute following command after above example, can start the nqs-bsv.service 

and nqs-acm.service together. 



 

3 

 

# systemctl start nqs-bsv.target 

 

The service unit also start alone. For example, following command starts nqs-bsv.service. 

# systemctl start nqs-bsv.service 

 

To stop the unit, execute following command with root user. 

# systemctl stop <Unit> 

 

On above example, following command stops nqs-bsv.service and nqs-acm.service together 

these service is enabled with nqs-bsv.target. 

# systemctl stop nqs-bsv.target 

 

The service unit also stop alone. For example, following command stops nqs-bsv.service. 

# systemctl start nqs-bsv.service 

 

The target unit that included in each packages are enabled with multi-user.target. Therefore 

all units that enabled are automatically start when OS booted. To prevent automatically start 

with OS boot, disable the target unit with multi-user.target. For example to disable the nqs-

bsv.target, execute the following command. 

# systemctl disable nqs-bsv.target 

  



 

4 

 

2. Batch Server Management 

The batch server is the core component of NQSV batch system. It manages requests, queues 

and communication among each component. (Please refer to [Introduction]Batch server.) 

 

2.1. TCP/IP port number of a Batch Server 

In NQSV batch system, the batch server acts as a central hub of communication for the batch 

schedulers, job servers and user commands using a TCP/IP network. Thus, the batch server 

host (where the batch server resides) and all the other components (client hosts and execution 

hosts) should be connected over TCP/IP.  

The batch server binds to a single TCP port to accept requests from clients. The default port 

number is 602. A port number specified in /etc/services with the name "nqsv" will be given 

priority. 

And a port number can be specified with nqs_bsvd command's -p option at the batch server 

start-up. 

 

2.2. Files and Directories for Batch Server Setting 

The following is the main files and directories needed for batch server operations: 

/etc/opt/nec/nqsv/nqs_user.map  ... User map file 

/etc/opt/nec/nqsv/nqs_passwd.def  ... Local account file (for user) 

/etc/opt/nec/nqsv/nqs_group.def  ... Local account file (for group) 

/etc/opt/nec/nqsv/nmap/   ... Machine ID database 

/etc/opt/nec/nqsv/nqs_bsv.env  ... Configuration file for boot up batch server 

/opt/nec/nqsv/sbin/nqs_bsvd  ... Batch server 

/opt/nec/nqsv/sbin/nqs_logd  ... Logging server 

/opt/nec/nqsv/sbin/nqs_roud  ... Routing server 

/opt/nec/nqsv/sbin/nqs_stgd  ... Staging server 

/opt/nec/nqsv/sbin/nqs_comd  ... Communication server 

/opt/nec/nqsv/sbin/uex_prog/  ... User EXIT script storage location 

/opt/nec/nqsv/sbin/stg_prog/  ... Staging script storage location 

/opt/nec/nqsv/bin/nmapmgr  ... Machine ID database management command 

/var/opt/nec/nqsv/   ... NQSV database 

/var/opt/nec/nqsv/bsv/   ... Batch server database 

/var/opt/nec/nqsv/bsv/private/root/control/ ... Control file storage location 

/var/opt/nec/nqsv/bsv/private/root/data/ ... Shell script storage location 

/var/opt/nec/nqsv/bsv/private/root/database/queues 

     ... Batch queue define file 



 

5 

 

/var/opt/nec/nqsv/bsv/private/root/database/netqueues 

... Network queue define file 

/var/opt/nec/nqsv/bsv/private/root/database/params 

... Batch server attribute define file 

/var/opt/nec/nqsv/bsv/private/root/database_qa/ 

... Queue access database 

/var/opt/nec/nqsv/bsv/private/root/input/ ... Stage-in file storage location 

/var/opt/nec/nqsv/bsv/private/root/output/ ... Stage-out file storage location 

/var/opt/nec/nqsv/bsv/private/root/failed/ ... Storage location for failed control files 

/var/opt/nec/nqsv/bsv/private/root/outfai/ ... Storage location for non-routed result files 

 

⚫ User Map file 

This file defines mapping of remote user names and local user names. This file also 

defines access privilege to NQSV. (For detail, please refer to 2.9.1. Local User 

Names and Remote User Names and 2.9.2. User Mapping.) 

⚫ Local Account File 

This file enables users who do not have a regular account on the batch server host 

to access the NQSV batch system. (For the details, refer to 2.9.3. Local Account.) 

⚫ Machine ID Database 

This database stores machine IDs added to batch system. (For detail, please refer 

to 2.5. Machine ID Management 

⚫ Batch Server 

This is the main process of the batch server. 

⚫ Logging Server 

The logging server processes log output requests received from the batch server and 

other NQSV servers. Logs are output to /var/opt/nec/nqsv/batch_server_log by 

default. Fatal errors are output to syslog message. (Facility: LOG_DAEMON, Level: 

LOG_ERR) Logs will be output to the console if it is not possible to output to syslog. 

⚫ Routing Server 

This server routes batch requests in the routing queue and is activated by the batch 

server at the timing of starting routing process. 

⚫ Staging Server 

This server routes request result files. This server routes result files as it is 

connected to the user agent in the client host. The server is activated by the batch 

server at the timing of starting staging process. 

⚫ Communication server 

This server communicates with the other batch system. This server resides on the 

batch sever host. (For detail, please refer to 2.10. Communicate with other Batch 



 

6 

 

server.) 

⚫ Machine ID database Management Command 

This command is an administrator command that registers, displays and deletes 

machine IDs.  

(For detail, refer to 2.5. Machine ID Management.) 

⚫ Control File Storage Location 

This directory stores control files for requests. The control file contains all 

information related to requests. 

⚫ Shell Script Storage Location 

This directory stores the shell script specified when a request is submitted. Batch 

jobs are executed in accordance with information in this script. 

⚫ Queue Define File 

This file stores definitions of the queues (batch, interactive and routing queues). 

⚫ Network Queue Define File 

This file stores definitions of the network queues. 

⚫ Batch Server Attribute Define File 

This file stores various attributes of the batch server. 

⚫ Queue Access Database 

This database stores access permission information (enable/disable) to the queue 

for each user and group. 

⚫ Stage-in File Storage Location 

This directory temporarily stores the stage-in files. 

⚫ Stage-out File Storage Location 

This directory temporarily stores the stage-out files. 

⚫ Storage Location for Failed Control Files 

This directory stores control files of batch requests that can no longer be processed 

due to a fatal error. As the batch server does not access files under this directory, 

please delete unnecessary files periodically. (Unnecessary files can be deleted 

during operation of batch server without any problems.) 

⚫ Storage Location for Non-Routed Result Files 

This directory stores result files that could not be staged due to an error or other 

reason. If necessary, transfer these files manually. As the batch server does not 

access files under this directory, please delete unnecessary files periodically. 

(Unnecessary files can be deleted during operation of batch server without any 

problems.) 

 



 

7 

 

2.3. Batch Server Setting 

2.3.1. Log File 

The batch server outputs the running logs into a log file. Set this attribute with the set 

batch_server log_file sub-command of the qmgr(1M) command. 

The following settings are available for the batch server log file. 

⚫ A log file name 

⚫ A maximum limit size of log files 

⚫ The output level of log files. (More detailed information is output with large level. 

Please refer to set batch_server log_file sub-command of the qmgr(1M) command.) 

⚫ The number of backup files 

 

The default values are as below. 

A log file name   : /var/opt/nec/nqsv/batch_server_log 

A maximum limit size of log files : UNLIMITED (Unlimited) 

The output level of log files  : 1 

The number of backup files  : 3 

 

2.3.2. Information Interval 

The batch server gets the information from the execution hosts and the batch jobs. Specify 

interval settings using sub-commands of qmgr(1M). 

The sub-commands and the default values are as follows. 

Attribute qmgr (1M) sub-command Default 

The interval to get load information 

of execution hosts and HW resource 

loading information 

set batch_server load_interval 30 

seconds 

The interval to get resource 

quantity of jobs 

set batch_server get_resource_interval 30 

seconds 

 

2.3.3. Submit Limit  

It is possible to set a limit to the number of requests which can be submitted to the batch 

system. The number of requests that can be submitted means the total number of requests 

existent in the batch system at the same time. 

The limits can be specified per system, per group, and per user. Specify the limit to the number 

of requests using sub-commands of qmgr(1M). 

The sub-commands and the default values are as follows. 

Attribute qmgr (1M) sub-command Default 

The number of requests which can be set batch_server submit_limit 1000 



 

8 

 

submitted to the system 

The number of requests which one 

group can submit to the system 

set batch_server 

group_submit_limit 

0 

(unlimited) 

The number of requests which one 

user can submit to the system 
set batch_server user_submit_limit 

0 

(unlimited) 

It is also possible to set submit number limit per individually designated group/user name, 

please refer to 12. Limit per Group and User. 

About submit number limit of queue, please refer to 4.1.2. Batch Queue Configuration, 4.2.2. 

Interactive Queue Configuration and 4.3.2. Routing Queue Configuration. 

 

2.3.4. Routing Limit  

It is possible to set a limit to the number of requests in routing queues and network queues 

that can be executed simultaneously in the entire system. Specify the run limit using sub-

commands of qmgr(1M). 

The sub-commands and the default values are as follows. 

Attribute qmgr (1M) sub-command Default Max 

Routing queue run limit set batch_server routing_queue run_limit 100 100 

Network queue run limit set batch_server network_queue run_limit 1000 1000 

 

[Notes] 

Execution of routing will be stopped if the number reaches the limit value set for the 

entire system even though there is room for the number of simultaneous executions of 

individual queues. (For the setting of the run limit number of requests each routing 

queue and network queue, please refer to 4.3.2. Routing Queue Configuration and 4.4.2. 

Network Queue Configuration.) 

 

2.3.5. Routing Retry Interval 

Routing Retry Interval is a waiting interval from failure of routing or staging to next retry. 

The retry interval can be set for routing queues and network queues. Specify the retry interval 

using sub-commands of qmgr(1M). 

The sub-commands and the default values are as follows. 

Attribute qmgr (1M) sub-command Default 

Routing queue retry interval set batch_server routing_queue retry_interval 
300 

seconds 

Network queue retry interval 
set batch_server network_queue 

retry_interval 

300 

seconds 

 



 

9 

 

 

2.3.6. Routing Retry Span 

Routing Retry Span is a span to repeat routing from the time of first routing process or staging 

process. The retry interval can be set for routing queues and network queues. Specify the retry 

span using sub-commands of qmgr(1M). 

The sub-commands and the default values are as follows. 

Attribute qmgr (1M) sub-command Default 

Routing queue retry span set batch_server routing_queue retry_span 
259200 seconds 

(3 days) 

Network queue retry span set batch_server network_queue retry_span 
259200 seconds 

(3 days) 

In a routing queue, in case retry process of transferring requests exceeded the value of 

retry_span, the corresponding request will be deleted and notifying e-mail will be sent to the 

owner of the request. 

In a network queue, in case a request in STAGING state exceeded the value of retry_span, 

retry process will not be performed any longer and the request will return to QUEUED state 

because it is regarded as failure in STAGING. The request returned to QUEUED state will be 

restarted STAGING by the scheduler. 

In case a request in EXITING state exceeded the value of retry_span, retry process will not be 

performed any longer and transferring process of result files will be cancelled because it is 

regarded as failure in EXITING. The result files cancelled to transfer will be stored in 

(/var/opt/nec/nqsv/bsv/private/root/outfai/).  

 

2.3.7. Heartbeat Interval 

It is possible to set an interval to send heartbeat between the batch server and job servers. 

Specify the heartbeat_interval using the set batch_server heartbeat_interval sub-command of 

qmgr(1M). The default value is 60 seconds. 

 

2.3.8. Budget Management Function 

NQSV can check the budget overruns cooperating. When a request is owned by a user or group 

who has exceeded their budget, NQSV refuses to accept their submitted requests and to 

execute their queued requests. 

For detail, please refer to [Accounting & Budget Control]. 

 

2.3.9. Request Accounting File 

It is possible to output accounting information to request account file. 

Specify the output setting of the job accounting using sub-commands of qmgr(1M).  

The sub-commands and the default values are as follows. 



 

10 

 

 

Attribute qmgr (1M) sub-command Default 

Start output of the request accounting 

information 

set batch_server req_account on 

OFF 
Stop output of the request accounting 

information 

set batch_server req_account off 

The output file of the request  

accounting information 

set batch_server req_account_file /var/opt/nec/nqsv/bs

v/account/reqacct 

The output directory of job accounting  

information 

set batch_server jacct_dir /var/opt/nec/nqsv/ac

m/jacct 

For detail, please refer to [Accounting & Budget Control]. 

 

2.3.10. Sub-request of Parametric Request Limit 

A batch server restricts the number of the sub-request generated at the same time to each 

parametric request. 

Specify the heartbeat_interval using the set batch_server subrequest_entry_limit sub-

command of qmgr(1M). The default value is 100. 

 

2.3.11. Getting of License 

The license of the NQSV is managed in a separately built license server. Associating with the 

license server, the batch server checks the number of available licenses based on the license 

information managed by the license server and determines whether to enable connection of 

the following licensed products. 

 NQSV/JobServer (JSV license) 

 NQSV/JobManipulator (JM license) 

 

(1) Configuring the license server 

/opt/nec/aur_license/aur_license.conf 

Specify the information as follows: 

License_server_host = [host name] 

Specify the host name of the license server. 

License_server_port =[port number] 

      Specify the listening port number on the license server. 

 

(2) Getting of License 

When starting, the BSV connects to the license server and acquires the licenses to use on itself. 

The BSV does not start when there is no available JSV license. The BSV starts as long as a 

JSV license is available, even if there is no available JM license. 



 

11 

 

 

⚫ When multiple batch servers use the same license server. 

When multiple batch servers use the same license server, the number of licenses available for batch server 

needs to be defined by license type. Make sure that the total number of licenses by license type defined for 

batch server does not exceed the number of licenses managed on the license server. 

Define the number of licenses in the configuration file nqsd.conf stored on the BSV host 

(/etc/opt/nec/nqsv/nqsd.conf). The format is as follows: 

 

<license define name> <number of license> 

 

The character strings that can be specified as the license definition name are as follows: 

license define name Contests 

jsv_license_use Number of JSV license 

jmn_license_use Number of JM license 

 

To use ten JSV licenses and ten JM licenses, for example, define as follows: 

jsv_license_use 10 

jmn_license_use 10 

The BSV does not start if the number of licenses defined in the above configuration file cannot be acquired 

from the license server. 

 

[Note] 

・ If the lines that define the number of licenses are missing or the definition is incorrect, the 

maximum number of licenses managed on the license server will be acquired. 

・ Be sure to configure the above setting when multiple batch servers use the same license server. 

The operation is undefined if this setting is not configured.  

 

(3) Waiting for license server preparation 

License server must be running when batch server start. Batch server does not start if the 

license server not running or connection for license server failed. On this case, it needs to start 

batch server again after the license server preparation is ready. 

Batch server can wait by retrying at 1 minute interval to connect to license server. Max number 

of retrying can be specified for nqsd.conf file. The format is following. 

 

retry_license n 

 



 

12 

 

n is the maximum number of retry. It can be specified integer number 0 to 2147483647 and 0 

means not wait for license server. If it specified non integer value or this configure not exist, 5 

is applied. 

After the batch server connects to license server and the batch server gets licenses from it, 

batch server start operating. Batch server exits if the license server cannot be used after retry 

n times. 

 

2.3.12. License Update 

To change the number of licenses to be used during BSV operation in such cases below, run the 

update license subcommand of qmgr to apply the updated value to the BSV. 

· When the setting of the number of licenses is changed on the license server 

· When the definition of the number of licenses is changed in configuration file nqsd.conf 

 

Run the update license subcommand of qmgr with administrator rights. 

$ qmgr -Pm 

Mgr: update license 

Update License 

 

2.3.13. Referencing the number of available licenses 

You can check the maximum number of licenses held by the BSV and the number of licenses currently being 

occupied by running qstat -Bf. 

$ qstat -Bf 

Batch Server: bhost.example.com 

    NQSV Version = R1.00 (linux) 

    Batch Server State = Active 

... skip ... 

  Use License : 

    License (NQSV/JobServer)      = 36 (Max: 2048) 

    License (NQSV/JobManipulator) = 36 (Max: 2048) 

 

You can check the detailed information about the licenses held by the BSV by running qstat -B -L -Pm. 

$ qstat -B -L -Pm 

Sysname    Product             Ver   Expiration    Num 

---------- ------------------- ----- ----------- ----- 

VESYS      NQSV/JobServer      V1.0  31-Aug-2019  2048 

VESYS      NWSV/JobManipulator V1.0  01-Sep-2019  2048 

 

2.3.14. Delayed Writing to DB 



 

13 

 

When writing the request information managed by the batch server to a file in the DB, the 

request processing performance can be improved by delayed writing. This function is 

configured by nqsd.conf file (/etc/opt/nec/nqsv/nqsd.conf). To enable this function, set following 

line to nqsd.conf and restart the batch server or execute "load nqsd_conf" sub-command of 

qmgr. 

 

no_sync_mode on 

 

If this option is not configured, the DB is updated with sync. If this option is configured, the 

DB is not sync when it updated. Therefore if the batch server aborted by failure, the possibility 

of request data brake increased. And it maybe cause the data writing delay to the DB area of 

batch server (/var/opt/nec/nqsv/bsv) according to the type of file system or mount option of it. 

Please mind this point and be careful to use this function. 

 

2.3.15. Accept SIGTERM on job execution 

By default, the shell which executes the job ignores SIGTERM. This behavior is set by job 

server to get the correct exit status of the job by preventing the termination of execution shell 

which is caused by receiving SIGTERM for resource limit exceeding. But this configuration 

makes shell script cannot trap SIGTERM. 

 

If user specify the accept sigterm option on qsub command, SIGTERM can be trapped in the 

job script. Following configuration always makes SIGTERM can be trapped on all jobs. For 

details for qsub(1) command –accept-sigterm option, please refer to [Operation]. 

 

This function is configured in nqsd.conf file (/etc/opt/nec/nqsv/nqsd.conf) as following format. 

And this configuration is enabled by rebooting batch server or executing "load nqsd_conf" sub-

command of qmgr command. 

 

accept_sigterm yes 

 

The default behavior is SIGTERM can be trapped only when accept sigterm option is specified 

in qsub command. It makes default behavior when this configuration is not specified or 

specified with wrong format. 

 

 [Notes] 

- If accept sigterm function is enabled by qsub command option or this batch server 

configuration, the exit status which recorded in the job account may be different from default 

behavior (this option is disabled) when the job exited by exceeding the resource limit.  



 

14 

 

- The accept sigterm option value that is specified on qsub command is directly displayed on 

the request information of qstat command. This value is not link to the configuration of batch 

server. Therefore the behavior for accepting SIGTERM of the job is not always regard to the 

value on qstat command. 

 

2.3.16. Setting the Maximum Sequence Number of Request ID 

The maximum sequence number of the request ID can be changed. The setting range is 999999 

to 99999999, and it is possible to submit from 1 million requests to a maximum of 100 million 

requests. 

This function is enabled by setting the nqsd.conf (/etc/opt/nec/nqsv/nqsd.conf) in the following 

format. And this configuration is enabled by rebooting batch server or executing "load 

nqsd_conf" sub-command of qmgr command. 

 

rid_seqno_max  <value> 

 

Specify <value> as an integer in the range of 999999 to 99999999. If not specified, the 

maximum sequence number of the request ID will be the default value 999999. The maximum 

sequence number of the request ID is changed to the lower limit (999999) if you specify a value 

less than the lower limit, and the maximum sequence number of the request ID is changed to 

the upper limit (99999999) if you specify a value that exceeds the upper limit.  

 

2.3.17. Setting the Sequence Number of the Next Submitted Request 

The sequence number assigned to the next submitted request can be set. The setting range is 

from 0 to the maximum value of the sequence number. For the maximum value of the sequence 

number, refer to "2.3.16 Setting the Maximum Sequence Number of Request ID". 

This function is enabled by setting the seqno.conf (/var/opt/nec/nqsv/seqno.conf) in the 

following format. And this configuration is enabled by rebooting batch server or executing "load 

nqsd_conf" sub-command of qmgr command. 

 

<value> 

Specify <value> as an integer in the range of 0 to the maximum sequence number of the 

request ID. If a value outside the range is specified, the specified value is ignored. Also, the 

specified value is assigned. If a request assigned with the specified value already exists, the 

specified value is ignored and an available value greater than that value is assigned. 

The seqno.conf is not installed by the NQSV/ResourceManager package. If you want to change 

the settings, create seqno.conf and place it under /var/opt /nec /nqsv.  

In order to avoid accidentally applying the past settings when BSV is rebooted due to a failure, 

etc., the seqno.conf is renamed to “ seqno.conf.accept” after being applied. 



 

15 

 

 

2.3.18. User Notification Script Settings. 

The node health check function can notify the request owner via e-mail or other means when 

an abnormality is detected. The notification is done by a shell script. The script contents and 

script directory can be customized freely by the user. 

This script should be set in the nqsd.conf file (/etc/opt/nec/nqsv/nqsd.conf) in the following 

format. After that, restart the batch server or execute the "load nqsd_conf" subcommand of 

qmgr to activate it. 

 

notify_script_path <script_path> 

 

<script_path> should be the path to the user notification script. If the above is not specified, 

the default notification script below will be used. 

 

/opt/nec/nqsv/sbin/notify_prog/nqsv_notify.sh 

 

For information on how to create scripts and the default script behavior, please refer to Section 

19.3 Node Health Check Function. 

 

2.3.19. Memory management with memory cgroup 

Memory management using cgroups from the Linux kernel is available. You can get memory 

usage and limit resources for each job accurately. Enable and disable this feature for the batch 

server. It is not possible to change the memory management method of this function for each 

queue or execution host. 

 

To use this function, please write the settings in the following format in the nqsd.conf file 

(/etc/opt/nec/nqsv/nqsd.conf). It is then enabled by restarting the batch server or by re-loading 

the configuration file by running the "load nqsd_conf" subcommand in qmgr.  

 

Settings are made using three types of configuration parameters. 

 

1. enable_memory_cgroup 

If this feature is enabled, memory cgroup will be used to manage memory resources. Process 

ID management for each job is also changed to use cgroup. Please write the settings in the 

following format in the nqsd.conf file. Without this specification, this feature is disabled (the 

default). 

 

 



 

16 

 

enable_memory_cgroup on 

 

2. memory_cgroup_excluding_cache 

If memory cgroup is used for memory management, the file cache is also included in the 

memory usage. To exclude the file cache from memory usage, describe the settings in the 

following format. If this is not specified, this function is disabled (the default). 

 

memory_cgroup_excluding_cache on 

 

3. enable_cgroup_process_list 

Process ID management for jobs uses cgroups. Please write the settings in the following format 

in the nqsd.conf file. Without this specification, this feature is disabled (the default).  However, 

if this is not specified and enable_memory_cgroup is “on”, this feature is enabled. 

 

enable_cgroup_process_list on 

 

These configuration parameter combinations are: 

*1: enable_memory_cgroup 

*2: memory_cgroup_excluding_cache 

*3: enable_cgroup_process_list 

Config parameters Function performed 

*1: memory *2: cache *3: process *1: memory *2: cache *3: process 

on on - yes yes - 

on off - yes no - 

on not set - yes no - 

on - on yes - yes 

on - off yes - no 

on - not set yes - yes 

off don't care on no no yes 

off don't care off no no no 

off don't care not set no no no 

not set don't care on no no yes 

not set don't care off no no no 

not set don't care not set no no no 

 

 

[Notes] 



 

17 

 

⚫ The file cache that is excluded by specifying “memory_cgroup_excluding_cache on” is cache 

minus Shmem. 

 

⚫ Memory usages of the following functions include file cache when 

"memory_cgroup_excluding_cache off" is specified.. 

-  Memory usages in the basic and detail information of the request and job by qstat. 

-  Memory usages in the request and job account. 

-  Charge for actually used memory usages. 

 

Target memory resource limits 

The following maximum value of the limit for memory resources are covered: 

 option meaning 

-l --memsz_job Memory size per job(logical host) 

--memsz-lhost Memory size per job(logical host) 

Virtual memory size limit (--vmemsz-lhost) and warning value of limit are controlled as 

before. 

 

Behavior when memory resource limit is exceeded 

NQSV manages the flag of memory.oom_control as oom_kill_disable 1. If the memory resource 

limit is exceeded, the process is not KILLed by OOM Killer and is in a stopped state. NQSV 

checks the process stopped by OOM and kills the job by SIGKILL sending.  

 

Browsing memory usage with qstat -Jf 

If memory management by cgroup is enabled, qstat -Jf displays memory usage details. 

  Resources Information: 

    Memory    = 580.878906MB 

    Memory Cgroup Resources = { 

      Memory Usage      = 580.906250MB 

      Max Memory Usage  = 606.296875MB 

      Cache             = 529.683594MB 

      Rss               = 51.222656MB 

      Shmem             = 529.656250MB 

      Unevictable       = 0.000000B 

Rss

Anon

Cache
Shmem

Unevictable

File

Memory Usage

Swap

File cache



 

18 

 

      Swap              = 25.343750MB 

    } 

 

 

2.3.20. Tuning the Stage-Out Processing Buffer of the Request Result File 

This function tunes the buffer size used when transferring request result files from the batch 

server to the user agent using the internal staging method. 

Specify the appropriate file buffer size for your file system type and mount options. In addition, 

specify the sync mode (whether or not to sync), which is a write guarantee. 

Set this function to the nqsd.conf file (/etc/opt/nec/nqsv/nqsd.conf) in the following format. After 

that, restart the batch server or reload the configuration file using the qmgr “load nqsd_conf” 

subcommand. 

 

Item Meaning 

file_transfer_buffer_size Specify the file buffer size, in bytes, appropriate for your file 

system type and mount options. 

The valid range is 1024~10485760 (1Kbyte~10Mbytes). 

file_transfer_sync_mode Specifies whether write operations are synchronized when 

the file is closed. 

It is “on” to synchronize, “off” if not to synchronize. 

 

Setting example: When file buffer size is 8Kbytes and Sync mode works enable 

file_transfer_buffer_size 8192 

file_transfer_sync_mode on 

 

To specify the buffer size file_transfer_buffer_size enter the buffer size in byte units. The valid 

range is 1024~10485760 (1Kbyte~10Mbytes). 

To specify the sync mode, enter file_transfer_sync_mode followed by “on” or“off”. 

If this setting is not performed, the stage-out processing buffer of the request result file will be 

operated at 1048576 (1Mbyte). Sync mode is “on” (with sync before closing file). 

If the value is not specified or out of the setting range, the operation will be the same as if the 

above setting is not performed. 

Processing delay may occur depending on your environment (number of concurrent requests, 

file system type and mount options). Therefore, when making this setting, please be careful to 

determine the value. 

  



 

19 

 

2.3.21. Change the behavior of  submit request number limitation exceeding during 

request routing 

Request forwarding from the routing queue to the batch queue is affected by the submit limit 

of requests set for the queue. The behavior of when the submit limit of requests exceeded is 

changed. 

 

The sub-commands and the default values for execution queue are as follows. 

Attribute qmgr(1M) sub-command Default 

The number of requests that can 

be submitted to a queue 
set execution_queue submit_limit 

0 

(unlimited) 

The number of requests that one 

group can submit to a queue 
set execution_queue group_submit_limit 

0 

(unlimited) 

The number of requests that one 

user can submit to a queue 
set execution_queue user_submit_limit 

0 

(unlimited) 

 

These maximum numbers of submit request are managed according to their respective limit 

values. For example, if a user submits a request to the routing queue and the destination of 

batch queue exceeds the user's limit number of submit request, the destination of batch queue 

temporarily becomes unavailable for request forwarding, preventing other users' request 

forwarding also. 

 

To change this behavior, we allow requests from other groups or users to be forwarded to the 

routing queue of a certain group or user even when the submit request limit of the destination 

queue has been exceeded. Please set to nqsd.conf file (/etc/opt/nec/nqsv/nqsd.conf) with the 

following format.  

change_routing_retry_behavior on 

If this is not specified, this function is disabled (the default). After that, it can be enabled by 

restarting the batch server or reloading the configuration file by using the "load nqsd_conf" 

subcommand of qmgr(1M). 

The behavior about the submit limit of queue (submit_limit) or other limitation of a queue  

are not changed. 

 

 

 

 

 



 

20 

 

2.4. Batch Server Status Check 

To see the batch server status, execute the qstat(1) command with -B option. 

$ qstat -B 

BatchServer      MachineID UMAX GMAX RRL NRL   TOT ARR WAI QUE RUN EXT HLD SUS Status 

--------------- ---------- ------------------ -------------------------------- ------ 

bsv.example.com        100    0    0 100 1000    0   0   0   0   0   0   0   0 Active 

 

Execute the qstat(1) command with -B, -f option to get the detail information of the batch 

server. 

$ qstat -B -f 

Batch Server: bsv.example.com 

    NQSV Version = R1.00 (linux)    Batch Server State = Active 

    Batch Server Machine ID = 100 

    Logfile Path = /var/opt/nec/nqsv/batch_server_log 

    Logfile Level = 2 

    Logfile Save Count = 3 

    Logfile MAX Size = 512.0MB 

    Output Account = OFF 

    Accounting Server Host Name = localhost 

    Accounting Server Port Number = 4595 

    Jacct directory = /var/opt/nec/nqsv/acm/jacct 

    Budget function              = OFF 

    Request Accounting = OFF 

    Request Accounting File Path = /var/opt/nec/nqsv/bsv/account/reqacct 

    Reservation Accounting       = OFF 

    Reservation Accounting File  = /var/opt/nec/nqsv/acm/rsvacct/rsvacct 

    Specify Group for Request = ON 

    Allow Absolute Exepath = OFF 

    Auto Delete Failed Request = ON 

    Total Request = 0 

    Arriving Request = 0 

    Waiting Request = 0 

    Queued Request = 0 

    Pre-running Request = 0 

    Running Request = 0 

    Post-running Request = 0 

    Exiting Request = 0 

    Held Request = 0 

    Holding Request = 0 

    Restarting Request = 0 

    Suspending Request = 0 

    Suspended Request = 0 

    Resuming Request = 0 

    Migrating Request = 0 

    Transiting Request = 0 

    Staging Request = 0 

    Checkpointing Request = 0 

    Heart Beat Interval = 60S 

http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/cmd_man/qstat.html
http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/cmd_man/qstat.html


 

21 

 

    Load Interval = 30S 

    Get Resource Interval = 30S 

    Max Subrequest Entry Limit = 100 

    Max Run Limit of Routing Queue = 100 

    Retry Interval of Routing Queue = 300S 

    Retry Span of Routing Queue = 259200S 

    Max Run Limit of Network Queue = 1000 

    Retry Interval of Network Queue = 300S 

    Retry Span of Network Queue = 259200S 

    Submit Number Limitation Value = 1000 

    Submit User Number Limitation Value = UNLIMITED 

    Submit Group Number Limitation Value = UNLIMITED 

  Use License : 

    License (NQSV/JobServer) = 2 (Max: 16384) 

    License (NQSV/JobManipulator) = 1 (Max: 16384) 

 

It is possible to display information by selecting and customizing each item output by qstat(1) 

command. 

Please specify items to be displayed with -F option of qstat(1) command. 

$ qstat -B -F bsvhost,mid,bstt 

BatchServer      MachineID Status 

--------------- ---------- ------ 

bsv.example.com        147 Active 

 

The items that can be specified are as follows. 

Item Description Item Name 

bsvhost Batch server host name BatchServer 

mid Machine ID MachineID 

umax Request submit limit per user UMAX 

gmax Request submit limit pre group GMAX 

rrlm Routing queue run limit RRL 

nrlm Network queue run limit NRL 

tot 
Number of batch requests managed by the 

batch server 
TOT 

arr Number of batch requests for each state ARR 

wai WAI 

gqd GQD 

que QUE 

run RUN 

ext EXT 

hld HLD 

sus SUS 



 

22 

 

fwd FWD 

bstt Batch server status Status 

(For details for how to use qstat(1) command -F option, please refer to [Operation] Customizing 

Information.) 

 

It is also possible to sort information by any item using -o option or -O option of qstat(1) 

command. The items for sorting are same as the items shown above and more than one items 

can be specified with delimited by comma ",". (For details for how to use this option, please 

refer to [Operation] Sorting Information.) Sometimes there are cases that information such as 

execution host name is cut off in the basic information display of qstat(1) command (without -

f option) because the viewable number of character is fixed. By using -l option, it is possible to 

show all information without being cut. (For details for how to use this option, please refer to  

[Operation] Sorting Information.) 

 

 

2.5. Machine ID Management 

2.5.1. Machine ID 

A machine ID is an integer value of 32 bits and is used to identify batch server. On NQSV, a 

machine ID is allocated to one batch server host. It is not necessary to set machine IDs for the 

client hosts and execution hosts. 

 

2.5.2. Machine ID Setting 

Machine IDs are allocated by nmapmgr(1M). Use subcommand add mid of nmapmgr by root 

privilege when allocating Machine ID 100 to a host whose official name is host0.example.com. 

# nmapmgr 

NMAPMGR>: add mid 10 host0.example.com 

One machine ID is allocated to each host. Machine IDs do not have to be allocated to individual 

network interfaces of each host. 

 

2.5.3. Alias Hostname Setting 

When the host has another host name besides an official name, because the host has  several 

network interfaces, it is possible to set it as an alias by add name subcommand of 

nmapmgr(1M) command. 

# nmapmgr 

NMAPMGR>: add name host1.example.com 10 

By setting an alias name, the host name is always converted to the same machine ID 

regardless of which host name is used to access. Thus it is possible to uniquely identify the 

batch system. 



 

23 

 

2.6. Initializing Batch Server Database 

A dedicated database (/var/opt/nec/nqsv/bsv/) must be constructed in order to execute the batch 

server. Initialize the database after package installation or when the database is destroyed.  

Initialize the database by activating the batch server (/opt/nec/nqsv/sbin/nqs_bsvd) by -i option 

by root privilege.  

# /opt/nec/nqsv/sbin/nqs_bsvd -i 

BatchServer database was initialized. 

If a database already exists, a message for confirmation will be displayed, prompting an input. 

# /opt/nec/nqsv/sbin/nqs_bsvd -i 

BatchServer database is already exists.May I delete it (yes/no/save)? 

If "yes" is input:  

The existing database will be deleted and a new database will be created.  

If "no" is input:  

Database initializing will be stopped.  

If "save" is input:  

The existing database will be saved as "/var/opt/nec/nqsv/bsv.old" and a new database 

will be created.  

2.7. Batch Server Activation 

Execute the following by root privilege when manually activating the batch server:  

# systemctl start nqs-bsv.service 

 

To start batch server automatically when batch server host booted, enable nqs-bsv service. 

# systemctl enable nqs-bsv.service 

 

To start all service units which enabled together, execute following command. 

# systemctl start nqs-bsv.target 

 

[Notes] 

Owner unknown request in the batch server is deleted by batch server when it rebooted.  

If start nqs_bsvd with -u option, owner unknown request is not deleted and batch server 

aborts. This option can save owner unknown request when the batch server rebooted 

while authentication service temporary disabled. But if the request's owner account has 

lapsed while batch server is not start, the batch server can't start.  

On this situation, batch server can start by deleting unknown owner request without -u 

option. 



 

24 

 

2.8. Batch Server Stop 

The batch server is stopped when the batch server host is shut down. Execute the following by 

root privilege or execute shutdown sub-command of qmgr(1M) when manually stopping the 

batch server:  

# systemctl stop nqs-bsv.service 

 

Following command can stop all service unit together which enabled. 

# systemctl stop nqs-bsv.target 

 

If the batch server is stopped, the each job server connected will detect the down of the batch 

server and will shift to the mode that will periodically attempt reconnection and the control of 

the batch jobs will be continued as is. It is possible to continue execution of batch jobs with this 

feature even if the batch server is down during execution of batch jobs. 

If a batch job is completed during shutdown of the batch server, the job server records the 

stores end status in its own database (For details of job server database, please refer to 3.1. 

Files and Directories for Execution Host Setting) until the job server is reconnected to the 

batch server. 

When the batch server is restarted, each job server reconnects to the batch server and reports 

the status of the batch jobs under its control to the batch server. The batch server reconstructs 

job management data based on this information and returns to the normal operation status. 

 

2.9. User Management 

2.9.1. Local User Names and Remote User Names 

Local user names are user names in the batch server host. They are used in the NQSV to check 

access privileges and to identify the request owners.  

Remote user names are user names that execute user commands in the client host and 

executes the batch jobs in the execution host.  

If local user names and remote user names are different, the relationship between these user 

names must be defined. The NQSV implements the user mapping function to define the 

relationship between local and remote user names and implements the local account function 

to define user and group account information. Thus it enables to define relationship between 

different user names flexibly. 

 

2.9.2. User Mapping 

The user mapping function is a function to relate local and remote user names according to the 

definition in the user map file (/etc/opt/nec/nqsv/nqs_user.map) on the batch server host. When 



 

25 

 

/etc/opt/nec/nqsv/nqs_user.map file is renewed, it is contents will be reflected immediately to a 

batch server. 

User mapping is performed from remote user names to local user names (called RL mapping) 

and from local user names to remote user names (called LR mapping). Mapping is processed 

at the following timings: 

 RL Mapping 

When the scheduler connects to the batch server: 

Mapping is performed from the remote user name that activated the 

scheduler to a local user name.  

When the user/manager command connects to the batch server: 

Mapping is performed from remote user name that activated the command 

to a local user name. 

 LR Mapping 

When a job server creates a job, initiated by the batch server: 

Mapping is performed from the local user name (request owner) to a remote 

user name (job owner on the execution host) 

When a job migrates from one job server to another, initiated by the batch server: 

Mapping is performed from the local user name (request owner) to a remote 

user name (job owner on the execution host)  

When a batch request result file is staged from the batch server to the client host: 

Mapping is performed from local user name (request owner) to a remote user 

name (job owner on the execution host) 

 

Format of User Map File 

A sample of the user map file is shown below. 

# 

# NQSV User Mapping File. 

# 

 

DefaultPrivilege PRIV_SPU 

 

#------------------------------------------------------------------------- 

# Privilege LocalUser RemoteUser (s) 

#------------------------------------------------------------------------- 

 

PRIV_SCH root root:127.0.0.1/32 

PRIV_NON root root:0.0.0.0/0 

PRIV_MGR nqsmgr user00:192.168.77.0/24 user01:172.16.128.0/25 

PRIV_OPE nqsope user00:192.168.10.0/24 

 

The description of the user map file is as follows. The line numbers correspond to the above 



 

26 

 

sample file. 

 Characters from "#" to line end and blank lines are ignored. 

 DefaultPrivilege of the 5th line specifies the default privilege in case no local/remote 

user mapping exists. 

 Local user names (2nd column) and remote user names (3rd column) are mapped in 

the other lines. (From lines 11 to 14) 

 The priority for lines is top down (in other words, the preceding line has the priority) 

when multiple entries for the same local or remote users exist in the user map file. 

 If several remote users are specified in 3rd column and later, the left most remote user 

matched will have the priority.  

 

A detailed explanation of each column of the line to associate a local user name with a remote 

user name is as follows. 

⚫ 1st column 

The highest limit of the access privilege to remote users matching this line. One of 

the following keywords can be specified.  

Keyword Type Description 

PRIV_SCH 
Scheduler 

privilege 

The highest privilege for accessing all 

functions of the batch server. Mainly used by 

the scheduler. 

PRIV_MGR Manager Privilege 

The privilege for managers in order to create 

and delete queues, delete batch requests of 

other users, shutdown the batch server and 

other functions. It is the highest privilege 

next to PRIV_SCH. 

PRIV_OPE Operator Privilege 

The privilege for operators in order to stop 

and restart queues, hold/release batch 

requests of other users, change attribute 

values and other functions. 

PRIV_GMGR 
Group Manager 

Privilege 

The privilege for group mangers. 

The group manager can delete, hold/release, 

change attribute values and operate other 

functions about the requests when the groups 

of the requests are under the group 

manager's management. 

PRIV_SPU 
Special User 

Privilege 

The privilege for special users, which can 

refer to the attribute value of the batch 

request and the job of other users in addition 



 

27 

 

to the general user privilege. 

PRIV_USR 
General User 

privilege 

The privilege for general users, is the lowest 

privilege. It is limited to operations for batch 

requests owned by the user, for searching for 

attribute values of allowed queues and 

servers and other functions. 

PRIV_NON No Privilege 

No privilege to access the NQSV batch 

system. This is specified for remote users to 

deny access. 

 

⚫ 2nd column 

A local user name is specified. 

⁃ In RL mapping, users matching remote user specification in the 3rd column and 

after are mapped in this local user name. 

⁃ In LR mapping, remote user names matching this local user names will be 

retrieved from remote users specified in the 3rd column and after. 

 

⚫ 3rd column and after 

A remote user list is specified. Multiple remote users are specified with delimited by 

spaces.  

⁃ In RL mapping, remote user names will be retrieved from this list. 

⁃ In LR mapping, a local user name specified in the 2nd column will be mapped to 

a remote user name matching in this list. 

The syntax of the remote user list is shown below: 

<User name>:< IP address>/<Bit mask> [<User name>:< IP address>/< Bit 

mask> ...] 

 

The IP address of the target remote host and IP address specified by <IP address> are 

checked from the left for the number of bits specified by <Bit mask>. If both addresses 

match, <User name> will be used as a remote user name. 

 

⚫ next line: (only for PRIV_GMGR) 

In the next line of each PRIV_GMGR (Group Manager Privilege) settings, which 

groups are under the group manager's management can be specified after leading ":". 

The multiple groups can be specified, delimited by spaces. If no next line (first 

character is ":"), the group manager manages no group.  

The syntax of the Group Manager Privilege is shown below by 2 lines : 

PRIV_GMGR <local user name> <remote user list> 



 

28 

 

:<group name> [<group name> ...] 

 

If a matching entry cannot be found in the user map file, the remote and local user names will 

be treated as identical and access privilege will be set to the default privilege. The default 

privilege can be specified by DefaultPrivilege. When DefaultPrivilege is not set, the default 

privilege is PRIV_USR. 

 

An example of User Map file 

Actual user mapping is described using the sample shown before as an example.  

 

The first two lines define the remote user name "root."  

PRIV_SCH root root:127.0.0.1/32 

PRIV_NON root root:0.0.0.0/0 

 

• For RL mapping 

By specification in line 1, access by "root" in the batch server host is mapped to the 

local user name "root" and access privilege of PRIV_SCH will be enabled. 

(127.0.0.1/32 matches only loopback IP Address 127.0.0.1)  

By specification in line 2, access by "root" from all remote hosts (all IP addresses are 

matched if bit mask is 0) is prohibited. Note that accessing from a local host is not 

prohibited by specification in line 1 that has higher priority. 

 

• For LR mapping 

By specification in line 1, job execution on the local host is done as root. In result 

file staging to a local host, the owner of created files is set as root. Job execution and 

result file staging on the hosts other than local host are prohibited by specification 

in line 2. 

 

The following two lines define remote user names "user00" and "user01".  

PRIV_MGR nqsmgr user00:192.168.77.0/24 user01:172.16.128.0/25 

PRIV_OPE nqsope user00:192.168.10.0/24 

 

• For RL mapping 

By specification in line 1, user "user00" in a remote host whose IP address matches 

192.168.77.0/24 and user "user01" in a remote host whose IP address matches 

172.16.128.0/25 are mapped to the local user name "nqsmgr" with access privilege 

of PRIV_MGR. However, the user will be mapped to the local user name "nqsope" 

and only access privilege PRIV_OPE will be authorized if user "user00" accesses 

from 192.168.10.0/24 in a remote host by specification in line 2.  



 

29 

 

 

Accessing by user "user00" from a remote host that does not exist in the remote user 

list will be mapped to the local user name "user00" and access privilege of 

PRIV_USR. It is same in case of user "user01". 

 

• For LR mapping 

When a batch request owned by "nqsmgr" is executed, the remote user (job owner) 

will be "user00" when a batch job is created on an execution host that matches 

192.168.77.0/24 and the remote user (job owner) will be "user01" on the execution 

host matching 172.16.128.0/25. In other execution hosts, the remote user (job 

owner) will be "nqsmgr".  

 

2.9.3. Local Account 

Use the local account function to define the original user/group account information. 

The local account function enables user who does not have a regular account on the batch 

server host to access to the NQSV batch system by preparing NQSV dedicated account 

database. 

The local user name on a batch server host must be registered in the system account database 

provided by operating system (/etc/passwd file or NIS), but there may be the case the system 

administrator cannot prepare an account for general user due to security reasons. In such 

cases, please use the local account function. 

The local account is defined by /etc/opt/nec/nqsv/nqs_passwd.def file and 

/etc/opt/nec/nqsv/nqs_group.def file on the batch server host. The format of these files is quite 

similar to the /etc/passwd file or /etc/group file. You can use the /etc/passwd, /etc/group or the 

NIS map file for nqs_passwd.def or nqs_group.def file without needing any modifications. 

/etc/opt/nec/nqsv/nqs_passwd.def and /etc/opt/nec/nqsv/nqs_group.def are referred to only 

when an entry of a target user was not found in an account database of system standards.  

 

• nqs_passwd.def 

nqs_passwd.def is a file to define user information. Each line is interpreted as a record 

for each user and contains at least 4 columns separated by ":". If a line has more than 

4 columns, every line from the 5th column onwards is ignored.  

Column Description 

1. User name 

2. (Unused) 

3. User ID 

4. Group ID 

 



 

30 

 

 

• nqs_group.def 

nqs_group.def is a file defining group information. Each line is interpreted as a record 

for each group and contains at least 3 columns separated by ":". If a line has more 

than 3 columns, every line from the 4th column onwards is ignored. 

Column Description 

1. Group name 

2. (Unused) 

3. Group ID 

 

If nqs_passwd.def or nqs_group.def are modified the batch server reloads these files 

automatically. 

 

2.10. Communicate with other Batch server 

It is possible to forward a request between batch servers through a communication server in 

NQSV. 

 

2.10.1. Server Setting 

To forward a request between batch servers, machine ID need to be registered, and activate a 

communication server. In addition, at starting user agent, specify batch server. 

1. Machine ID registration 

Register the Machine ID for the batch server to communicate as well as the machine ID. 

For the self-batch server on batch server host. About a registration method of the 

machine ID, please refer to 2.5. Machine ID Management. ) 

It is necessary to assign the unique machine ID. 

 

2. Activate Communication Server 

The communication sever can be activated on boot automatically. Execute the following 

by root privilege when manually activating the communication server: 

# systemctl enable nqs-comd.service 

# systemctl restart nqs-bsv.target 

 

3. Activate User Agent 

On the client host which is used to submit the request, set all batch server host name to 

BSV_HOSTS variable which exist in the setting file of user agent service 

(/etc/opt/nec/nqsv/nqs_uag.env). 

 



 

31 

 

 

2.10.2. Routing Request Setting 

Setup a routing queue to forward a request, and set a queue name on the forwarding batch 

server by the form of "Queue Name@Batch Server Host Name". 

About a setting method of generation of a routing queue, please refer to 4.3.1.Create Routing 

Queue and 4.3.2.Routing Queue Configuration.) 

 

  



 

32 

 

3. Execution Host Management 

3.1. Files and Directories for Execution Host Setting 

The following files and directories are needed for execution host operations: 

/etc/opt/nec/nqsv/nqs_jsv.env  ... Configuration file for boot up job server 

/usr/opt/nec/nqsv/sbin/nqs_shpd  ... Job server 

/usr/opt/nec/nqsv/sbin/nqs_lchd  ... Launcher demon 

/var/opt/nec/nqsv/jsv/   ... Job server database 

/var/opt/nec/nqsv/jsv/<jsvno>/  ... Job server individual database 

(< jsvno> is a Job server number) 

/var/opt/nec/nqsv/jsv/<jsvno>/nqs_shpd.pid ... Job server PID file 

/var/opt/nec/nqsv/jsv/<jsvno>/<x.y.z>/ ... Job database (<x.y.z> is a  job ID) 

/var/opt/nec/nqsv/jsv/jobfile/<x.y.z>/ ... Job file storage location 

/var/opt/nec/nqsv/jsv/jobfile/<x.y.z>/stdout ... Standard output file 

/var/opt/nec/nqsv/jsv/jobfile/<x.y.z>/stderr ... Standard error output file 

/var/opt/nec/nqsv/jsv/jobfile/<x.y.z>/stgfile/ ... Staging file storage location 

 

⚫ Job server 

This is the main process of the job server. 

⚫ Launcher demon 

This is the daemon to perform the remote control of the job server. The job server can be 

started and stopped by qmgr(1M) command on the execution hosts on which the 

launcher daemon resides. (For details, please refer to 3.5.1. Startup by qmgr (1M).) 

⚫ Job Server Database 

This is a database for Job server. < jsvno> is a job server number with four digits (left 0 

padding).  

⚫ Job Server PID File 

This file stores process IDs of the job servers in ASCII format. 

⚫ Job Database 

This directory stores information of the jobs under control of the job server. This 

directory is created when a parent request is changed to STAGING state and is deleted 

when the request is in EXITING state. 

⚫ Job File Storage Location 

This directory stores the job files (that are the files accessed by the job). This place is 

created when a parent request is changed to STAGING state and is deleted when the 

request is in EXITING state.  

⚫ Standard Output File 

Standard output of processes in the batch job is redirected to this file. 



 

33 

 

⚫ Standard Error Output File 

Standard error output of processes in the batch job is redirected to this file. 

⚫ Staging File Storage Location 

This directory stores the stage-in and stage-out files for the batch job. 

 

3.2. Execution Host Registration  

The execution host used for execution of a request in a NQSV system is to be registered in 

batch server. 

It is necessary to start one job server to each execution host to manage and execute jobs. It is 

necessary to assign the job server number to each job server for batch server to distinguish job 

server uniquely. The job server number needs to become unique in each job server and an 

integer number from 0 to 10239. 

The job server can be started on the execution host by the attach execution_host sub-command 

of qmgr(1M) by root privilege, specifying host name of the execution host and the job server 

number.  

$ qmgr -Pm 

Mgr: attach execution_host host = ehost001 job_server_id = 101 

Attach Execution_Host (ehost001 : JSVID = 101). 

Mgr: 

 

It is necessary to register all execution hosts. It is possible to lump together by making the 

host name of the execution host registered and a list file of the job server number, and then 

designate the file to register whole execution hosts. 

A form of a list file of execution host divides the host name and the job server number by a 

space character as follows. 

ehost100 100 

ehost101 101 

ehost102 102 

: 

Designate a pathname of this list file and carry out the "attach execution_host" sub-command 

of the qmgr (1M) command as follows. 

$ qmgr -Pm 

Mgr: attach execution_host file = /tmp/hlist_file 

Attach Execution_Host (ehost100 : JSVID = 100). 

Attach Execution_Host (ehost101 : JSVID = 101). 

Attach Execution_Host (ehost102 : JSVID = 102). 

: 

Attach Execution_Host (file = /tmp/hlist_file). 

 

When a job server is started with the job server number directly on the execution host, 



 

34 

 

execution host is registered automatically on the connected batch server. It is explained by the 

next chapter. It is not possible to register plural job servers on one execution host. In addition, 

it is not possible to assign the same job server number on different execution hosts.  

  

3.3. Node Group 

It is possible to handle more than one execution host as one group, and then start job server 

or bind job server with queue by the group unit. A group of this execution host is called a node 

group. 

 

3.3.1. Create Node Group 

Create a node group using the create node_group sub-command of qmgr(1M) command by root 

privilege. The example When a node group's name is the "ng1", the example is below. 

$ qmgr -Pm 

Mgr: create node_group = ng1 

Node group nag created. 

 

When a node group is generated, it does not have any execution nodes. 

There are three types of group. One is a common node group type, which has more than one 

execution nodes. Another is a network topology group type, which is used to schedule with 

network topology. The other is a cloud type, which is bursting jobs to computing resources in 

the cloud. 

Type Description 

common 
A usual node group to handle more than one execution hosts as a 

group 

nw_topo 

A node group to schedule with network topology that define the 

group to handle more than one execution hosts exists on the same 

network switch. 

cloud A node group to bursting jobs to computing resources in the cloud. 

 

When creating a node group without type designation like an example of above-mentioned, a 

node group of common-type is generated. When just mentioning "node group", it means a 

common node group type. At grouping for the operation more than one execution host, please 

use a node group of common-type. 

At creating of a node group with designation of nw_topo type, a node group of network topology 

type is generated. 

$ qmgr -Pm 

Mgr: create node_group = nwtplg type = nw_topo comment = "NW topology" 

Node group nwtplg created. 



 

35 

 

 

About a nw_topo group type, please refer to [JobManipulator]. 

When creating the cloud type of node group, specify "cloud" as the node group type. 

 

$ qmgr -Pm 

Mgr: create node_group = clng type = cloud comment = "Cloud bursting" 

Node_group clng created. 

 

About a details of cloud-bursting feature, please refer to [JobManipulator]. 

 

3.3.2. Setting of Comment of Node Group 

It is possible to add a comment as the attribute of the node group. When creating a node_group, 

it is possible to set a comment. In addition, it is possible to set or change a comment by the "set 

node_group comment" sub-command of qmgr. 

$ qmgr -Pm 

Mgr: set node_group comment = "My nodegroup" ng1 

Set comment to Node_group (ng1). 

 

3.3.3. Addition of Execution Host to Node Group 

The "edit node_group add" sub-command of the qmgr (1M) command is used to add execution 

hosts to a node group. At this time, the job server number of the added execution host is 

designated. When adding the job server 100 to the node group "ng1", the sample is below.  

$ qmgr -Pm 

Mgr: edit node_group add job_server_id = 100 ng1 

Add Job_Server to Node_group (ng1). 

It is possible to designate more than one job server number, when adding more than one 

execution hosts to a node group. 

$ qmgr -Pm 

Mgr: edit node_group add job_server_id = (101,103,107)  ng1 

Add Job_Server to Node_group (ng1). 

When the job server number is a serial number, it is possible to add execution hosts to a node 

group by range specification of the job server number as follows. 

$ qmgr -Pm 

Mgr: edit node_group add job_server_id = 110-120 ng1 

Add Job_Server to Node_group (ng1). 

 

When there is a node group that has more than one registered execution hosts, it is possible to 

add the same execution hosts to a different node group by designating the node group name. 

$ qmgr -Pm 

Mgr: edit node_group add node_group = ng1 ng2 

Add node_group to Node_group (ng2). 

The whole execution host that belongs to node group ng1 is added to node group ng2 by an 



 

36 

 

example above-mentioned. If the execution host that belongs to ng1 is changed after that, the 

execution host added to ng2 is not influenced at all. 

 

3.3.4. Deletion of Execution Host from Node Group 

The "edit node_group delete" sub-command of the qmgr (1M) command is used to delete 

execution hosts from a node group. At this time, the job server number of the deleted execution 

host is designated. When deleting the job server 100 from the node group "ng1", the sample is 

below. 

$ qmgr -Pm 

Mgr: edit node_group delete job_server_id = 100 ng1 

Delete Job_Server from Node_group (ng1). 

 

It is possible to designate more than one job server number, when deleting more than one 

execution hosts from a node group. When the job server number is a serial number, it is possible 

to delete execution hosts from a node group by range specification of the job server number. 

When there is a node group that has more than one registered execution hosts, it is possible to 

delete the same execution hosts to a different node group by designating the node group name. 

$ qmgr -Pm 

Mgr: edit node_group delete job_server_id = (101,103,107)  ng1 

Delete Job_Server from Node_group (ng1). 

$ qmgr -Pm 

Mgr: edit node_group delete job_server_id = 110-120 ng1 

Delete Job_Server from Node_group (ng1). 

$ qmgr -Pm 

Mgr: edit node_group delete node_group = ng1 ng2 

Delete Job_Server from Node_group (ng1). 

 

3.3.5. Deletion of Node Group 

The "delete node_group" sub-command of the qmgr (1M) command by root privilege is used to 

delete a node group. At this time, the node group needs to be unbound from any queue. 

$ qmgr -Pm 

Mgr: delete node_group = ng1 

Node_group ng1 deleted. 

About binding of a node group and a queue, please refer to 3.6. Binding Job Server and Queue. 

 

3.4. Execution Node Group Information 

It is possible to refer the state of the node group using qstat (1) command with -G option. 

$ qstat -G 

NodeGroup       Type      BatchServer     Comment          JSVs BindQueue 

--------------- --------- --------------- ---------------- ---- -------------------- 

ng1             common    bsv1.example.co (none)              1 bq1 



 

37 

 

nwtg            nw_topo   bsv1.example.co NW topology         0 (none) 

cl_ng1          cloud     bsv1.example.co cloud               1 cloud_bq 

 

In addition, it is possible to get the detail information of each node group using -G, -f option.  

$ qstat -G -f 

Node Group: ng1 

    Type = common 

    Comment = (none) 

    Bind Queue list = { 

      bq1 

    } 

    Job Server number list = { 

        100. 

    } 

 

Node Group: nwtplg_grp 

    Type = nw_topo 

    Comment = (none) 

    Bind Queue list = { 

      (none) 

    } 

    Job Server number list = { 

      (none) 

    } 

 

Node Group: cl_ng1 

    Type = cloud 

    Comment = (none) 

    Bind Queue list = { 

      cloud_bq 

    } 

    Job Server number list = { 

      1000 

    } 

    Lock State = UNLOCK 

    Priority = 10 

    Instances = Live: 0 / Max: 1 

    Network Name = (none) 

    Template = { 



 

38 

 

      (none) 

    } 

 

 

3.5. Job Server Startup 

3.5.1. Startup by qmgr (1M) 

It is possible to start a job server using the qmgr (1M) command from a client host, if a launcher 

demon of NQSV runs on the execution host. 

Launcher demon can be started by following command with root user. 

 

# systemctl start nqs-lchd.service 

 

Launcher daemon is automatically started when execution host booted. To prevent auto start 

of launcher daemon, execute following command with root user. 

 

# systemctl disable nqs-lchd.service 

 

The "start job_server" sub-command of the qmgr (1M) command is used to start a job server. 

At this time, the hostname of the execution host and the job server number are designated. 

$ qmgr -Pm 

Mgr: start job_server execution_host=ehost100 job_server_id=100 

Start Job_Server (ID = 100) on Execution_host (ehost100). 

 

When registering execution host beforehand, it is possible to designate only the host name of 

the execution host or the job server number. 

$ qmgr -Pm 

Mgr: start job_server execution_host=ehost100 

Start Job_Server on Execution_host (ehost100). 

Mgr: start job_server job_server_id=101 

Start Job_Server (ID = 101). 

 

When execution host is registered with a batch server, it is not possible to designate the 

number besides the registered job server number for the registered execution host. In addition, 

it is not possible to designate the registered job server number for other execution host. 

 

The "start job_server" sub-command with "all" parameter is used to start a job server on all 

execution hosts registered to the batch server. 

$ qmgr -Pm 



 

39 

 

Mgr: start job_server all 

Start Job_Server all Execution_Host. 

 

To start a job server on the execution host unregistered to a batch server, the execution host 

name and unregistered job server number need to be specified to the "start job_server" sub-

command. In this case, the execution host is registered to the batch server by the specified job 

server number automatically. 

 

3.5.2. Startup from a Command Line 

To start a job server from a command line on execution host, execute 

/opt/nec/nqsv/sbin/nqs_shpd by root privilege. At this time, the batch server host to be 

connected and the job server number need to be specified. 

 

# /opt/nec/nqsv/sbin/nqs_shpd -h bsv0.example.com -n 0 

 

The following command options can be specified for nqs_shpd. 

Option Omission Description 

-n jsvno Not 

possible 

Allocate <jsvno> to job server number. 

-h bsv_host Not 

possible 

Specify a batch server host name by <bsv_host>.  

-p bsv_port Possible Specify a TCP port number by <bsv_port> to connect to the batch 

server. Default value is 602. 

-s jsv_name Possible Use <jsv_name> as a job server name. Default value is 

JobServerXXXX. ("XXXX" is a job server No.) 

 

3.5.3. Startup by systemctl 

To start job server with systemctl command, set batch server host name to  

BSV_HOST_NAME and job server number to JSV_NUMBER in  

/etc/opt/nec/nqsv/nqs_jsv.env file.  

BSV_HOST_NAME="bsv1.example.com" 

JSV_NUMBER="10" 

 

After above setting, start job server with following command.  

# systemctl start nqs-jsv.service 

 

To start job server automatically when execution host is booted, execute following command 

with root user.  



 

40 

 

# systemctl enable nqs-jsv.service  

 

To start the job server with same job server number and same batch server host after rebooting 

the execution host, edit /etc/opt/nec/nqsv/nqs_jsv.env file as following. 

JSV_NUMBER=AUTO 

If use this setting, no need to set BSV_HOST_NAME. 

 

If you need to specify the additional option (the options except for -h and -n) to job server, set 

command line option to JSV_PARAM in /etc/opt/nec/nqsv/nqs_jsv.env file. 

Following is the example to specify -s option to job server. 

JSV_PARAM="-s MY_JSV01" 

 

[Notes] 

If you are using the power-saving function, set either the job server startup by a 

launcher daemon or the job server startup by systemd. If both are set, the job server 

startup may fail when the execution host is started by the power-saving function.  

 

3.6. Binding Job Server and Queue 

To execute job on an execution host, it is necessary to bind the job server with the queue in 

which requests are submitted. It is called "binding" to bind a job server with a queue, and it is 

called "unbinding" to unbind a job server from a queue. 

Binding is performed by qmgr (1M) by root privilege. The following sub-command is used to 

bind a job server with a queue. 

Queue Type Sub-command 

Batch queue bind execution_queue job_server 

bind execution_queue node_group 

Interactive queue bind interactive_queue job_server 

bind interactive_queue node_group 

 

When binding a job server with a queue, there are a way to designate the job server number 

directly and a way to designate a node group. The "bind xxxx_queue job_server" sub-command 

is used to designate the job server number. 

$ qmgr -Pm 

Mgr: bind execution_queue job_server bq1 job_server_id = 101 

Bound Job_Server_ID (101) to Queue (bq1). 

Mgr: 

 



 

41 

 

The "bind xxxx_queue node_group" sub-command is used to designate a node group. 

$ qmgr -Pm 

Mgr: bind execution_queue node_group bq1 node_group = ng1 

Bound Node_group (ng1) to Queue (bq1). 

Mgr: 

It is possible to bind a job server with more than one queue. 

When designating a node group, all job servers that belong to a designated node group are 

bound with a queue. 

When designating a node group, a binding relation between a queue and node group is 

generated. Therefore, when adding execution host to a node group bound a queue, the 

execution host is bound with the queue automatically. In addition, when removing execution 

host from a node group bound a queue, the execution host is unbound from the queue 

automatically. 

 

Unbinding is performed by qmgr (1M) by root privilege. The following sub-command is used to 

unbind a job server with a queue. 

Queue Type Sub-command 

Batch queue unbind execution_queue job_server 

unbind execution_queue node_group 

Interactive queue unbind interactive_queue job_server 

unbind interactive_queue node_group 

 

Even if a job server bound with a queue is down, a binding relation with a queue is preserved. 

To unbind automatically from the queue when a job server is downed, please set automatic 

binding off by the "set execution_queue auto_bind_jobserver off" sub-command of qmgr (1M). 

When designating a node group to unbind, a job server of all execution hosts that belong to a 

designated node group are unbound from a queue. 

It is possible to unbind each job server that designated a node group and bound with a queue 

using "unbind execution_queue job_server" sub-command. A binding relation with a queue as 

a node group is preserved in this case. 

 

3.7. Job Server Status Check 

The job server status can be checked using the qstat(1) command with -S option.  

$ qstat -S 

JSVNO JobServerName   BatchServer     ExecutionHost   LINK BIND Queue    Jobs Load    Cpu 

----- --------------- --------------- --------------- ---- ---- -------- ---- ----- ----- 

    0 JobServer0100   bsv0.example.co ehost100        UP   Y    execque1    0   0.6   0.0 

    1 JobServer0101   bsv0.example.co ehost101        UP   Y    execque1    0   0.6   0.0 

    2 JobServer0102   bsv0.example.co ehost102        UP   Y    execque1    0   0.6   0.0 



 

42 

 

Only the link-up job server is show by qstat -S option. To show all job servers status including 

link-down job server, set -St option. 

$ qstat -St 

JSVNO JobServerName   BatchServer     ExecutionHost   LINK BIND Queue    Jobs  Load   Cpu 

----- --------------- --------------- --------------- ---- ---- -------- ---- ----- ----- 

    0 JobServer0100   bsv0.example.co ehost100        UP      1 execque1    0   0.6   0.0 

    1 JobServer0101   bsv0.example.co ehost101        UP      1 execque1    0   0.6   0.0 

    2 JobServer0102   bsv0.example.co ehost102        UP      1 execque1    0   0.6   0.0 

    3 -               bsv0.example.co ehost103        DOWN    0  -          -     -     - 

The number of the bound queue is shown to the BIND column. 

 

Execute the qstat(1) command with -S, -f option to get the detail information of the job server.   

$ qstat -S -f 

Job Server Name: JobServer0100 

    Job Server Number  = 0 

    Job Server Version = R1.00 (linux) 

    Batch Server   = bsv0.example.com 

    Execution Host = ehost100 

    LINK Batch Server = UP 

    BIND Queue = BIND 

    Queue = { 

        execque1             

    } 

    Assign JobManipulator license = YES 

    Network Topology Group = { 

        (none) 

    } 

  Resource Information: 

    Memory         = Assign:    1035264 Using:     925696 Maximum:    1035264 

    Swap           = Assign:    1014784 Using:       3072 Maximum:    1014784 

    Number of Cpus = Assign:          8 Using:          1 Maximum:          8 

  Average Information: 

    LOAD (Latest  1 minute ): 0.010000 

    LOAD (Latest  5 minutes): 0.040000 

    LOAD (Latest 15 minutes): 0.050000 

    CPU  (Latest  1 minute ): 0.016000 

    CPU  (Latest  5 minutes): 0.016000 

    CPU  (Latest  5 minutes): 0.016000 

    CPU  (Latest 15 minutes): 0.864000 

  Migration_file Transfer Parameter Information: 

    Interface Hostname = ehost100.example.com 

    Socketbuffer Size  = (OS default) 

    I/O buffer Size    = 512.0KB 

 

It is possible to choose items to be displayed with -F option of qstat(1) command. 

$ qstat -S -F jsvno,ehost,quenm 

JSVNO ExecutionHost   Queue 

----- --------------- -------- 

0     ehost100        execque1 

1     ehost101        execque1 

http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/cmd_man/qstat.html


 

43 

 

2     ehost102        execque1 

 

The items that can be specified by qstat -S with -F option are as follows. 

Item Description Item Name 

jsvno Job server number JSVNO 

jsvnm Job server name JobServerName 

bsvhost Batch server host name BatchServer 

ehost Job server execution host ExecutionHost 

link Link state LINK 

bind Binding state BIND 

quenm Queue name Queue 

jobs Number of batch jobs Jobs 

ldavg1 Load average of the past for 1 minute Load 

cpuavg1 CPU average of the past for 1 minute CPU 

(About details of qstat -F option, please refer to [Operation]Customizing Information.) 

 

It is also possible to sort the above item as a key by -O, -o option in qstat -S. (About details of 

a qstat -O, -o option, please refer to [Operation]Sorting Information.) 

 

3.8. Job Server Stop 

The job server operation is terminated by the systemd when the execution host is shut down. 

Send Signal SIGTERM signal to the job server to terminate during operation of the execution 

host.  

The job server can be terminated by following command if start the job server is started by  

systemd (systemctl command). 

# systemctl stop nqs-jsv.service 

 

The job server can be terminated by using stop job_server sub-command of qmgr(1M). For 

example, please execute the following command to terminate whose job server ID (i.e. job 

server number) is 100. 

$ qmgr -Pm 

Mgr: stop job_server job_server_id = 100 

 

[Notes]  

When the job server with a running batch job is terminated, this batch job is terminated 

and no longer be controlled by the NQSV. 

Terminate the job server while there are no running batch jobs such as after holding 



 

44 

 

requests. 

 

3.9. Holding All the Requests on a Job Server 

To hold the all requests running on the job server, execute the hold job_server sub-command 

of the qmgr(1M).  

The all parent requests of the jobs running on the job server are hold executing this sub-

command. Use this function when you want to clear the running job, like stopping the job 

server. 

 

3.10. Execution Host Information 

Check the execution host information, using qstat(1) command with -E option. 

$ qstat -E 

ExecutionHost   BatchServer     OS         Release    Hardware     VE  Load   Cpu 

--------------- --------------- ---------- ---------- ---------- ---- ----- ----- 

ehost100        bsv0.example.co Linux      3.10.0-514 x86_64        8   0.0   0.0 

ehost101        bsv0.example.co Linux      3.10.0-514 x86_64        8   0.0   0.0 

ehost102        bsv0.example.co Linux      3.10.0-514 x86_64        0   0.0   0.0 

Only the link-up job server is show by qstat -S option. To show all job servers status including 

link-down job server, please set -t option.  

With -t option, qstat also shows state of the execution hosts (STT). 

$ qstat -E -t 

ExecutionHost   JSVNO JSV      S OS         Release    Hardware     VE  Load   Cpu STT 

--------------- ----- -------- - ---------- ---------- ---------- ---- ----- ----- --- 

ehost100          100 LINKUP   - Linux      3.10.0-514 x86_64        8   0.0   0.0 ACT 

ehost101          101 LINKUP   - Linux      3.10.0-514 x86_64        8   0.0   0.0 ACT 

ehost102          102 LINKUP   - Linux      3.10.0-514 x86_64        0   0.0   0.0 ACT 

ehost103          103 LINKDOWN - --         --         --           -     -     -  INA 

 

It is possible to display information by selecting and customizing each item output by qstat(1) 

command. 

Specify items to be displayed with -F option of qstat(1) command.  

$ qstat -E -F ehost,hwnm,ldavg1 

ExecutionHost   Hardware    Load 

--------------- ---------- ----- 

ehost100        x86_64       0.0 

ehost101        x86_64       0.0 

ehost102        x86_64       0.0 

 

Items which can be specified by qstat -E with -F option are as follows. 

Item Description Item Name 



 

45 

 

ehost Execution host ExecutionHost 

bsvhost Batch server host name BatchServer 

osnm Name of operating system OS 

rel OS release number Release 

hwnm Hardware name Hardware 

ldavg1 Load average of the most recent one minute Load 

cpuavg1 CPU average of the most recent one minute CPU 

ucpu Used CPU number Used_CPU 

fcpu Free CPU number Free_CPU 

umem1 Used memory size  Used_MEM1 

fmem1 Free memory size Free_MEM1 

uswap1 Used swap size Used_SWAP1 

fswap1 Free swap size  Free_SWAP1 

quenm Queue name Queue 

stt State of the execution host STT 

(About details of qstat -F option, please refer to [Operation]Customizing Information.) 

 

It is also possible to sort information by any item using -o option or -O option of qstat(1) 

command. (About details of a qstat -O, -o option, please refer to [Operation]Sorting 

Information.) 

 

To display the detail information of execution host, Use -f option with qstat -E. 

$ qstat -E -f 

Execution Host: ehost100 

    Batch Server = bsv0.example.com 

    Operating System = Linux (Rocky Linux release 8.8 (Green Obsidian)) 

    Version =  

    Release = 4.18.0-477.15.1.el8_8.x86_64 

    Hardware = x86_64 

  Vector Engine Information: 

    (none) 

  Resource Information: 

    Memory         = Assign:    1035264 Using:     925696 Maximum:    1035264 

    Swap           = Assign:    1014784 Using:       3072 Maximum:    1014784 

    Number of Cpus = Assign:          8 Using:          1 Maximum:          8 

  Average Information: 

    LOAD (Latest  1 minute ): 0.020000 

    LOAD (Latest  5 minutes): 0.050000 

    LOAD (Latest 15 minutes): 0.050000 

    CPU  (Latest  1 minute ): 0.016000 

    CPU  (Latest  5 minutes): 0.928000 

    CPU  (Latest 15 minutes): 0.928000 

  Cpuset Information: 

    Resource Sharing Groups = { 



 

46 

 

      (none) 

    } 

  Socket Resource Usage: 

    NUMA Nodes = { 

      (none) 

    } 

  Device Topology: 

    (none) 

 

Execution Host: ehost101 

    Batch Server = bsv0.example.com 

 

qstat -Ef displays only the execution hosts on which the job servers are UP.  

 

To display all execution hosts registered to the batch server, please use -t option with qstat -

Ef. In this case, for the execution hosts on which the job servers are down, the displayed 

information is limited.  

And for the execution hosts on which the job servers are up, the following information is added. 

⚫ Current state of the execution host (Current State) 

Active : The execution host is running. 

Inactive : The execution host is down. 

⚫ State transition time ( State Transition Time) 

⚫ The reason of state transition ( State Transition Reason) 

⚫ Job server number (Job Server Number ) 

⚫ The link status of job server (LINK Batch Server ) 

UP The job server is linked to the batch server. 

DOWN The job server is not linked to the batch server. 

⚫ The information of the node management agent(Node Agent). 

 

$ qstat -Etf 

Execution Host: ehost100 

    Batch Server = bsv0.example.com 

    Current State           = Active 

    State Transition Time   = Mon Jul  1 16:00:26 2024 

    State Transition Reason = JSV LINKUP 

    Job Server Number  = 0 

    LINK Batch Server = UP 

    Operating System = Linux (Rocky Linux release 8.8 (Green Obsidian)) 

    Version =  

    Release = 4.18.0-477.15.1.el8_8.x86_64 

    Hardware = x86_64 

    Node Agent = (none) 

    Substitute Status = Normal 

  Vector Engine Information: 

    (none) 



 

47 

 

  Resource Information: 

    Memory         = Assign:    1035264 Using:     925696 Maximum:    1035264 

    Swap           = Assign:    1014784 Using:       3072 Maximum:    1014784 

    Number of Cpus = Assign:          8 Using:          1 Maximum:          8 

  Average Information: 

    LOAD (Latest  1 minute ): 0.020000 

    LOAD (Latest  5 minutes): 0.050000 

    LOAD (Latest 15 minutes): 0.050000 

    CPU  (Latest  1 minute ): 0.016000 

    CPU  (Latest  5 minutes): 0.928000 

    CPU  (Latest 15 minutes): 0.928000 

  Cpuset Information: 

    Resource Sharing Groups = { 

      (none) 

    } 

  Socket Resource Usage: 

    NUMA Nodes = { 

      (none) 

    } 

  Device Topology: 

    (none) 

 

Execution Host: ehost101 

    Batch Server = bsv0.example.com 

       : 

       : 

 

Execution Host: ehost103 

    Batch Server = bsv0.example.com 

    Current State           = Inactive 

    State Transition Time   = Mon Mar 3 15:00:00 2017 

    State Transition Reason = JSV LINKDOWN 

    Job Server Number  = 103 

    LINK Batch Server = DOWN 

 

 

 

3.11. VE node Information 

This function is available only for the environment whose execution host is SX-Aurora 

TSUBASA system. 

Using qstat --venode shows the information about the VE nodes. 

By specifying the VI host name as the parameter for this option, only the information of VEs 

incorporated on the specified VI (VH) can be displayed. 

If no parameter is specified, information about the VEs on all VIs (VHs) the JSV is linking up 

are displayed. 

 

$ qstat --venode  



 

48 

 

VectorIsland VE_No  Cores Memory Status        OS_Status 

------------ ----- ------ ------ ------------- ---------- 

ehost100         0     10   48GB ONLINE        ONLINE 

ehost100         1     10   48GB UNINITIALIZED OFFLINE 

ehost100         2     10   48GB OFFLINE       OFFLINE 

ehost100         3     10   48GB MAINTENANCE   OFFLINE 

ehost101         0     10   48GB UNAVAILABLE   OFFLINE 

ehost101         1     10   48GB ONLINE        OFFLINE 

ehost101         2     10   48GB ONLINE        ONLINE 

ehost101         3     10   48GB ONLINE        ONLINE 

 

  



 

49 

 

4. Queue Management 

4.1. Batch Queue 

4.1.1. Create Batch Queue 

Batch queue is the queue to control batch requests execution. 

Create a new batch queue using the "create execution_queue" sub-command of qmgr(1M) 

command. 

$ qmgr -Pm 

Mgr: create execution_queue = exec1 priority = 20 

Batch queue "exec1" will be created with above procedure. The queue priority should be 

specified to "priority" above. 

 

4.1.2. Batch Queue Configuration 

(1) Resource Limit 

It is possible to limit resource consumption of request in a batch queue. Batch requests 

submitted will be rejected by the batch queue if resource consumption specified to the batch 

request exceeds resource limit set to the batch queue. 

Using resource limit, it is possible to classify queues into such as queues that permit large 

consumption of resources and into queues that allow only limited consumption. 

 

Set resource limit attributes using set execution_queue sub-command of qmgr(1M) command. 

Resource limits and corresponding set sub-commands of the qmgr command are shown as 

follows, including whether they are valid on each execution host. The operator privilege 

is necessary to set the limit. 

Resource qmgr(1M) sub-command 

For Each Process 

CPU time limit set execution_queue per_prc cpu_time_limit 

Open file number limit(*1) set execution_queue per_prc open_file_number_limit 

Memory size limit set execution_queue per_prc memory_size_limit 

Data size limit set execution_queue per_prc data_size_limit 

Stack size limit set execution_queue per_prc stack_size_limit 

Core file size limit set execution_queue per_prc core_size_limit 

File size limit set execution_queue per_prc file_size_limit 

Virtual memory size limit set execution_queue per_prc virtual_memory_size_limit 

VE CPU time limit set execution_queue per_prc vecpu_time_limit 

VE memory size limit set execution_queue per_prc vememory_size_limit 

  For Each Job 

CPU time limit set execution_queue per_job cpu_time_limit 

CPU resident number limit set execution_queue per_job cpu_number_limit 

Memory size limit set execution_queue per_job memory_size_limit 

Virtual memory size limit set execution_queue per_job virtual_memory_size_limit 

Number of GPU Limit set execution_queue per_job gpu_number_limit 

  For Each Request 



 

50 

 

Elapse time limit set execution_queue per_req elapse_time_limit 

(*1) When "unlimited" is specified, "1024" is applied to the upper limit of an execution host 

according to the specification restriction of Linux OS. 

 

It is also possible to set elapse time limit per individually designated group/user name, please 

refer to 11. Limit per Group and User. 

 

An example of changing a file size limit for each process is shown below. This operation sets 

the file size limitation of each process of the exec1 queue to 100.5 KB. 

$ qmgr -Po 

Mgr(bsv1.example.com): set execution_queue per_prc file_size_limit = (100.5kb)  exec1 

Set Permanent File Size (Per-Process) limit: bq1 

Resource limits set on queues can be confirmed by qstat(1) command -Q, -f option (Resources 

Limits). (Please refer to 4.5.1. Batch queue) 

 

Memory size resource limits can also be controlled using cgroups. (See 2.3.19 Memory 

Management with memory cgroup) 

 

Resource Limitation per VE Node 

For a request to be inputted to a batch queue, the resource usage limit can be set to each VE 

node to be assigned to a job. 

For the VE node resource limitation can be set the upper limit and the lower limit, making it 

possible to limit the usage according to a range. If the resource usage specified when inputting 

a request is out of the value range of the resource limitation that is set to a queue, the request 

input to the queue is rejected. 

Set resource limit attributes using set execution_queue venode sub-command of qmgr(1M) 

command. Resource limits and corresponding set sub-commands of the qmgr command are 

shown as follows, including whether they are valid on each execution host. The operator 

privilege is necessary to set the limit. 

 

Resource qmgr(1M) sub-command 

VE CPU time limit set execution_queue venode vecpu_time_range = 

(<min>,<Max>[,<warn>]) <queue-name> 

VE memory size limit set execution_queue venode vememory_size_range = 

(<min>,<max>[,<warn>]) <queue-name> 

For <min>, specify the minimum value. For <max>, specify the maximum value. Both must be 

an integer. For <min>, specify a value smaller than <max>. If the same value is specified for 

both <min> and <max>, only that value can be specified when inputting a request. 

 



 

51 

 

Resource limits set on queues can be confirmed by qstat(1) command -Q, -f option (VE Node 

Resource Ranges). 

 

Resource Limitation per Logical Host 

By using a specification method different from the above, for a request to be inputted to a batch 

queue, the resource usage limit can be set to each logical host to be assigned to a job. 

For the logical host resource limitation, not only the upper limit but also the lower limit can 

be set in contrast to the conventional resource limitation per job, making it possible to limit 

the usage according to a range. If the resource usage specified when inputting a request is out 

of the value range of the resource limitation that is set to a queue, the request input to the 

queue is rejected. 

The operations related to the resource limitation set to a logical host are the same as the 

conventional operations related to the resource limitation set to a job. 

 

Set resource limit attributes using set execution_queue lhost sub-command of qmgr(1M) 

command. Resource limits and corresponding set sub-commands of the qmgr command are 

shown as follows, including whether they are valid on each execution host. The operator 

privilege is necessary to set the limit. 

 

Resource qmgr(1M) sub-command 

Number of VE node Limit set execution_queue lhost ve_number_range = 

(<min>,<max>) <queue-name> 

CPU number limit set execution_queue lhost cpu_number_range = 

(<min>,<max>) <queue-name> 

Number of GPU Limit set execution_queue lhost gpu_number_range = 

(<min>,<max>) <queue-name> 

CPU time limit set execution_queue lhost cpu_time_range = 

(<min>,<max>[,<warn>]) <queue-name> 

Memory size limit set execution_queue lhost memory_size_range = 

(<min>,<max>[,<warn>]) <queue-name> 

Virtual memory size limit set execution_queue lhost virtual_memory_size_range = 

(<min>,<max>[,<warn>]) <queue-name> 

VE CPU time limit set execution_queue lhost vecpu_time_range = 

(<min>,<Max>[,<warn>]) <queue-name> 

VE memory size limit set execution_queue lhost vememory_size_range = 

(<min>,<max>[,<warn>]) <queue-name> 

Stdout size limit set execution_queue lhost stdout_size_range = 

(<min>,<max> [,<warn>]) <queue-name> 

Stderr size limit set execution_queue lhost stderr_size_range = 

(<min>,<max> [,<warn>]) <queue-name> 

 

For <min>, specify the minimum value. For <max>, specify the maximum value. Both must be 

an integer. For <min>, specify a value smaller than <max>. If the same value is specified for 



 

52 

 

both <min> and <max>, only that value can be specified when inputting a request. 

 

Resource limits set on queues can be confirmed by qstat(1) command -Q, -f option (Logical Host 

Resource Ranges). 

 

These resource limitations of a logical host (excluding the limitation on the number of VE 

nodes, the limitation on the time of VE CPU and the limitation on the size of VE memory) can 

also be set by using the following methods (by specifying per_job) to set the resource limitations 

of a job. 

set execution_queue per_job cpu_number_limit = <max> <queue-name> 

set execution_queue per_job gpu_number_limit = <max> <queue-name> 

set execution_queue per_job cpu_time_limit = (<max>,[<warn>]) <queue-name> 

set execution_queue per_job memory_size_limit = (<max>,[<warn>]) <queue-name> 

set execution_queue per_job virtual_memory_size_limit = (<max>,[<warn>]) <queue-name> 

 

When the resource limitations are set by using the above methods, it is assumed that 1 for 

cpu_number_limit, and the others are 0 (zero) is specified for <min> of all resource limitations 

of a logical host. For <max> and <warn>, the specified values are used. 

 

For both specification methods using lhost and per_job, the value you specify later becomes 

effective. 

 

HCA port number limit 

It is possible to limit the HCA port number for job of request in a batch queue. Batch 

requests submitting will be rejected by the batch queue if HCA port number specified to the 

batch request exceeds this limit set to the batch queue. 

HCA port number limit for batch queue is specified by "set execution_queue 

hca_number_range" sub-command of qmgr(1M). The operator privilege is necessary to set 

the limit.  

Resource qmgr(1M) sub-command 

HCA port number limit set execution_queue hca_number_range = (<min>,<max>) 

mode=<hca-mode> <queue-name> 

 

For <min>, specify the minimum value. For <max>, specify the maximum value. Both must 

be an integer. For <min>, specify a value smaller than <max>. If the same value is specified 

for both <min> and <max>, only that value can be specified when submitting a request. 

 

 



 

53 

 

(2) Resource Default 

Resource default is an attribute used as a resource limit value for a request where a resource 

limit value is not explicitly specified when submitted to a queue. This attribute will not be 

referred when a resource limit value is set on requests.  

Set the resource default attribute using set sub-command of qmgr(1M) command. The operator 

privilege is necessary to set the limit. 

 

Resource qmgr(1M) sub-command 

For Each Process 

CPU time limit set execution_queue standard per_prc cpu_time_limit 

Open file number limit set execution_queue standard per_prc open_file_number_limit 

Memory size limit set execution_queue standard per_prc memory_size_limit 

Data size limit set execution_queue standard per_prc data_size_limit 

Stack size limit set execution_queue standard per_prc stack_size_limit 

Core file size limit set execution_queue standard per_prc core_size_limit 

File size limit set execution_queue standard per_prc file_size_limit 

Virtual memory size 

limit 

set execution_queue standard per_prc virtual_memory_size_limit 

VE CPU time limit set execution_queue standard per_prc vecpu_time_limit 

VE memory size set execution_queue standard per_prc vememory_size_limit 

  For Each Job 

CPU time limit set execution_queue standard per_job cpu_time_limit 

CPU number limit set execution_queue standard per_job cpu_number_limit 

Memory size limit set execution_queue standard per_job memory_size_limit 

Virtual memory size 

limit 

set execution_queue standard per_job virtual_memory_size_limit 

Number of GPU Limit set execution_queue standard per_job gpu_number_limit 

  For Each Request 

Elapse time limit set execution_queue standard per_req elapse_time_limit 

 

An example of setting a resource default at a permanent file size for each process is shown 

below. The file-size resource default for each process of the queue "exec1" is 100.5Kbytes. The 

operator privilege is necessary to set the default. 

$ qmgr -Po 

Mgr: set execution_queue standard per_prc file_size_limit = (100.5kb)  exec1 

Set standard Permanent File Size (Per-Process): glbque1 

 

Resource Default per Logical Host 

By using a specification method different from the above, the resource default of a logical host 

to be assigned to a job can be set as an attribute value of a queue. The operations related to 

the resource default set to a logical host when inputting a request are the same as those related 

to the resource default set to a job. 

 

Resource limits and corresponding set sub-commands of the qmgr command are shown as 



 

54 

 

follows. The operator privilege is necessary to set the limit. 

 

Resource qmgr(1M) sub-command 

Number of VE node Limit set execution_queue standard lhost ve_number_limit = 

<num> <queue-name> 

CPU number limit set execution_queue standard lhost cpu_number_limit = 

<num> <queue-name> 

Number of GPU Limit set execution_queue standard lhost gpu_number_limit = 

<num> <queue-name> 

CPU time limit set execution_queue standard lhost cpu_time_limit = 

(<time>) <queue-name> 

Memory size limit set execution_queue standard lhost memory_size_limit = 

(<size>) <queue-name> 

Virtual memory size limit set execution_queue standard lhost 

virtual_memory_size_limit = (<size>) <queue-name> 

VE CPU time limit set execution_queue standard lhost vecpu_time_limit = 

(<time>) <queue-name> 

VE memory size limit set execution_queue standard lhost vememory_size_limit = 

(<size>) <queue-name> 

Stdout size limit set execution_queue standard lhost stdout _size_limit = 

(<size>) <queue-name> 

Stderr size limit set execution_queue standard lhost stderr _size_limit = 

(<size>) <queue-name> 

 

The resource default must be between the lower limit (min) and upper limit (max) of the resource limitation. 

For the items for which a unit must be added (cpu_time, memory_size, virtual_memory_size, vecpu_time, 

vememory_size, stdout_size, stderr_size), the specified value must be enclosed in (). 

 

These resource defaults of a logical host (excluding the limitation on the number of VE nodes, the limitation 

on the time of VE CPU and the size of VE memory) can also be set by using the following conventional 

methods (by specifying per_job) to set the resource limitations of a job. 

 

set execution_queue standard per_job cpu_number_limit = <num> <queue-name> 

set execution_queue standard per_job gpu_number_limit = <num> <queue-name> 

set execution_queue standard per_job cpu_time_limit = (<time>) <queue-name> 

set execution_queue standard per_job memory_size_limit = (<size>) <queue-name> 

set execution_queue standard per_job virtual_memory_size_limit = (<size>) <queue-name> 

 

Resource Default per VE Node 

The resource default of a VE node to be assigned to a job can be set as an attribute value of a 

queue. The operations related to the resource default set to a VE node when inputting a request 

are the same as those related to the resource default set to a job. 

 



 

55 

 

Resource limits and corresponding set sub-commands of the qmgr command are shown as 

follows. The operator privilege is necessary to set the limit. 

 

Resource qmgr(1M) sub-command 

VE CPU time limit set execution_queue standard venode vecpu_time_limit = 

(<time>) <queue-name> 

VE memory size limit set execution_queue standard venode vememory_size_limit 

= (<size>) <queue-name> 

The resource default must be between the lower limit (min) and upper limit (max) of the resource limitation. 

For the items for which a unit must be added (cpu_time, memory_size, virtual_memory_size), the specified 

value must be enclosed in (). 

 

HCA port number default 

HCA port number default is an attribute used as a HCA port number limit value for a 

request where a HCA port number limit value is not explicitly specified when submitted to a 

queue. This attribute will not be referred when a HCA port number limit value is set on 

requests. 

Set the HCA port number default attribute using "set execution_queue standard 

hca_number" sub-command of qmgr(1M) command. The operator privilege is necessary to set 

the limit. 

 

Resource qmgr(1M) sub-command 

HCA port number default set execution_queue standard hca_number = <num> 

mode=<hca-mode> <queue-name> 

The default value must be bigger than <min> value and smaller than <max> value. 

 

(3) Queue Priority 

Queue priority is a priority among queues and is used when selecting which request should be 

executed first. 

The queue priority of the batch queue is specified at the time of creating batch queue. It is also 

possible to change it by the "set execution_queue priority" sub-command of qmgr. 

 

$ qmgr -Po 

Mgr: set execution_queue priority = 10 exec1 

Set Priority: exec1 

The queue priority of the batch queue "exec1" is changed to 10. The operator privilege is 

necessary to change queue priority. 

 



 

56 

 

(4) Kernel Parameter 

The kernel parameters that are set to the batch queues are inherited by the batch jobs, and 

they will be the parameters for scheduling the jobs by kernel. 

Set the kernel parameters using set sub-command of qmgr(1M) command. The operator 

privilege is necessary. The following table shows the kernel parameters, including 

corresponding set sub-command of the qmgr command, and their default values. 

 

Kernel parameter qmgr(1M) sub-command Default 

Nice Value set execution_queue kernel_param nice 0 

RSG number(*1) set execution_queue kernel_param rsg_number 0 

(*1) It is enabled when the socket scheduling and CPUSET feature are enabled. 

 

The following sample is available for setting a nice value. The nice value of the batch queue 

"exec1" is changed to "5". 

$ qmgr -Po 

Mgr: set execution_queue kernel_param nice = 5 exec1 

Set Nice Value (Kernel-Parameter): exec1 

 

(5) Submit Limit  

It is possible to set a limit to the number of requests that can be submitted to a batch queue. 

The number of requests that can be submitted means the total number of requests existent in 

a queue at the same time. With this submit limit per batch queue, more detailed submit limit 

of requests can be configured than submit limit per batch system. 

(For the details of submit limit per batch system, please refer to 2.3.3. Submit Limit.) 

The submit limit per batch queue can also be specified per whole queue, group and user. Set 

the limit to the number of requests using sub-commands of qmgr(1M). The operator privilege 

or higher is necessary to set this limit. 

The sub-commands and the default values are as follows. 

Attribute qmgr (1M) sub-command Default 

The number of requests that can 

be submitted to a queue 
set execution_queue submit_limit 0 (unlimited) 

The number of requests that one 

group can submit to a queue 
set execution_queue group_submit_limit 0 (unlimited) 

The number of requests that one 

user can submit to a queue 
set execution_queue user_submit_limit 0 (unlimited) 

It is also possible to set submit number limit per individually designated group/user name, 

please refer to 11. Limit per Group and User. 

 



 

57 

 

Submit limits set on queues can be confirmed by qstat(1) command -Q, -f option as 

follows.(Please refer to 4.5.1. Batch queue.) 

⚫ The number of requests that can be submitted to a queue: Submit Number Limit 

⚫ The number of requests that one user can submit to a queue: Submit User Number Limit 

⚫ The number of requests that one group can submit to a queue: Submit Group Number 

Limit 

(For each item, limit values set are shown or if no limits are set "UNLIMITED" is shown.) 

If both submit limit per batch system and submit limit per queue are set, requests cannot be 

submitted at the point of exceeding either limit.  

 

(6) Hold Privilege 

Hold privilege is the privilege that can hold the requests. (For the details of holding batch 

requests, please refer to [Operation]Batch Request Hold.) 

By setting a hold privilege to the batch queue, only a hold request issued by user with higher 

privilege than the privilege that is set for the queue can be accepted. 

Set the hold privilege per batch queue using the "set execution_queue hold_privilege" sub-

command of the qmgr(1M) command. 

An example of setting the hold privilege as higher than operator privilege is shown below: 

$ qmgr -Po 

Mgr: set execution_queue hold_privilege = operator exec1 

Set Hold Privilege.queue: exec1 

To delete the hold privilege, execute the "delete execution_queue hold_privilege" sub-command 

of the qmgr(1M) command. 

 

(7) Suspend Privilege 

Suspend privilege is the privilege that can suspend requests. (For the details of suspending 

requests, please refer to [Operation]Batch Request Suspend.) By setting a suspend privilege 

to the batch queue, only a suspend request issued by user with higher privilege than the 

privilege that is set for the queue can be accepted. Set the suspend privilege per batch queue 

using the "set execution_queue suspend_privilege" sub-command of the qmgr(1M) command.  

An example of setting the suspend privilege as higher than operator privilege is shown below: 

$ qmgr -Po 

Mgr: set execution_queue suspend_privilege = operator exec1 

Set Suspend Privilege.queue: exec1 

To delete the suspend privilege, execute the "delete execution_queue suspend_privilege" sub-

command of the qmgr(1M) command. 

 

(8) User EXIT Script 

User Exit script file is a shell script file executed when the request transits through a specific 



 

58 

 

state. It is executed when using the User Exit Function. (Please refer to 5.1.2. User EXIT.) 

Set the user exit file per batch queue using the "set execution_queue userexit" sub-command 

of the qmgr(1M) command. 

An example of setting the script file script1 that is to be executed at pre-running state for 

requests of the batch queue "exec1" is shown below. 

$ qmgr -Po 

Mgr: set execution_queue userexit location = pre-running script = (script1) queue = 

exec1 

Set Userexit Script: exec1 

Execute the "delete execution_queue userexit" sub-command of the qmgr (1M) command to 

delete the user exit script setting. 

An example of deleting the specified script of the batch queue "exec1" to run at pre-running is 

shown below. 

$ qmgr -Po 

Mgr: delete execution_queue userexit location = pre-running queue = exec1 

Delete Userexit Script: exec1 

(9) Setting Time-out of the User EXIT Execution 

When set time-out time of the User EXIT execution, the User EXIT occurred any trouble like 

a stall, it is possible to send a KILL signal to the User EXIT and abort the execution. Time-out 

time is set by the sub-command of qmgr (1M). 

An example of setting time-out time of the User EXIT execution to 900 seconds to batch queue 

"exec1" is shown below. 

$ qmgr -Po 

Mgr: set execution_queue userexit_timeout = 900 exec1 

Set UserExit Timeout: exec1 

A default value of time-out time of the User EXIT execution is 0 (off). In case of 0, time-out is 

not occurred. 

 

(10) Limitation of the Job Number  

It is possible to limit the number of jobs created from request. Set limitation of the number of 

jobs per batch queue using the "set execution_queue jobs_range" sub-command of the 

qmgr(1M) command. 

An example of setting a range of 100 to 500 for the number of jobs in the batch queue "exec1" 

is shown below. 

$ qmgr -Po 

Mgr: set execution_queue jobs_range = (100,500) exec1 

Set Jobs Range: exec1 

It is also possible to set limitation of the job number per individually designated group/user 

name, please refer to 11. Limit per Group and User. 

 



 

59 

 

(11) Limitation of Request Priority Range 

Batch queues can be set the range of request priority permitted to submit requests for each 

user privilege. Set limitation of the request priority range per batch queue using the "set 

execution_queue request_priority_range" sub-command of the qmgr(1M) command. 

An example of setting a range of -100 to 0 for request priorities for the User privilege of the 

execution queue "exec1" is shown below. 

$ qmgr -Po 

Mgr: set execution_queue request_priority_range user = (-100,0) exec1 

Set Request Priority Range (User): exec1 

 

(12) Limitation of the Subrequest Number  

It is possible to limit the number of subrequests created from parametric request. Set 

limitation of the number of subrequests per batch queue using the "set execution_queue 

subrequest_limit" sub-command of the qmgr(1M) command. An example of setting 100 for the 

number of subrequests in the batch queue "exec1" is shown below. 

$ qmgr -Po 

Mgr: set execution_queue subrequest_limit = 100 exec1 

Set queue subrequest limit: exec1 

The default number of the subrequests is 1000. 

 

(13) Allowance for exclusive execution request 

It is able to configure the allowance for exclusive execution request (which is submitted by 

qsub --exclusive) to the queue. The exclusive execution request always executed as 1 logical 

host(job) per 1 host and it ignore the resource limit (CPU, MEMORY, Virtual MEMORY, GPU, 

VE) for logical host of the queue. Therefore this configuration can limit the submission of that 

request. 

Allowance for exclusive execution request for batch queue can be set by following qmgr sub-

command with operator privilege. 

set execution_queue exclusive_submit {on | off} <queue> 

off rejects the submission of the request with --exclusive option. on allows the submission of 

the request with --exclusive option. The default is off. 

 

(14) Disabling the stage-out 

It is able to configure the setting for disabling stage-out to the queue. If this option is set to off, 

the stage-out of the request which submitted to the queue is not executed, and it increase the 

throughput of request processing. 

This option can be set by following qmgr sub-command with operator privilege. 

set execution_queue file_stageout = { on | off }  <queue> 

"off" do not execute stage-out for the request even if the stage-out file is specified to the request. 



 

60 

 

The default is on. 

 

Notes 

If this option is set to "off", the behavior of NQSV changes as following to prioritize the batch 

server processing speed. 

⁃ The standard out / error file is not stage-out to the host which the request submitted. 

Please use qsub –e option or –o option to specify the output path. This path is treated as 

the path on the execution host. 

⁃ Check the directory for the standard out / error file output is exist on the execution host. 

If the directory is not exist, the execution of the job fails. 

⁃ The meta character %[0n]j and %f cannot be used for the file name on the qsub –e option 

and –o option. 

⁃ The request log is not output 

⁃ To executing multi-node NECMPI request, use qsub –f option to output by each rank. 

 

4.2. Interactive Queue 

4.2.1. Create Interactive Queue 

Interactive queue is the queue to control execution of interactive request. 

Create a new interactive queue using the "create interactive_queue" sub-command of 

qmgr(1M) command. 

$ qmgr -Pm 

Mgr: create interactive_queue = inter1 priority = 20 

Batch queue "inter1" will be created with above procedure. The queue priority should be 

specified to "priority" above. 

 

4.2.2. Interactive Queue Configuration 

(1) Resource Limit  

It is possible to limit resource consumption of request in an interactive queue. Resource limits 

and corresponding set sub-commands of the qmgr command are shown as follows, including 

whether they are valid on each execution host. 

Resource qmgr(1M) sub-command 

For Each Process 

CPU time limit set interactive_queue per_prc cpu_time_limit 

Open file number limit (*1) set interactive_queue per_prc open_file_number_limit 

Memory size limit set interactive_queue per_prc memory_size_limit 

Data size limit set interactive_queue per_prc data_size_limit 

Stack size limit set interactive_queue per_prc stack_size_limit 

Core file size limit set interactive_queue per_prc core_size_limit 

File size limit set interactive_queue per_prc file_size_limit 



 

61 

 

Virtual memory size limit set interactive_queue per_prc virtual_memory_size_limit 

VE CPU time limit set interactive_queue per_prc vecpu_time_limit 

VE memory size limit set interactive_queue per_prc vememory_size_limit 

  For Each Job 

CPU time limit set interactive_queue per_job cpu_time_limit 

CPU number limit set interactive_queue per_job cpu_number_limit 

Memory size limit set interactive_queue per_job memory_size_limit 

Virtual memory size limit set interactive_queue per_job virtual_memory_size_limit 

Number of GPU Limit set interactive_queue per_job gpu_number_limit 

  For Each Request 

Elapse time limit set interactive_queue per_req elapse_time_limit 

(*1) 1024 is applied when it set to unlimited. 

It is also possible to set elapse time limit per individually designated group/user name, please 

refer to 11. Limit per Group and User. 

 

Memory size resource limits can also be controlled using cgroups. (See 2.3.19 Memory 

Management with memory cgroup) 

 

Resource Limitation per VE Node 

For a request to be inputted to an interactive queue, the resource usage limit can be set to each 

VE node to be assigned to a job. For the VE node resource limitation can be set the upper limit 

and the lower limit, making it possible to limit the usage according to a range. If the resource 

usage specified when inputting a request is out of the value range of the resource limitation 

that is set to a queue, the request input to the queue is rejected. The operations related to the 

resource limitation set to a VE node are the same as the conventional operations related to the 

resource limitation set to a job. 

 

Set resource limit attributes using set interactive_queue venode sub-command of qmgr(1M) 

command. Resource limits and corresponding set sub-commands of the qmgr command are 

shown as follows, including whether they are valid on each VE node. The operator privilege is 

necessary to set the limit. 

Resource qmgr(1M) sub-command 

VE CPU time limit set interactive_queue venode vecpu_time_range = 

(<min>,<max>[,<warn>] <queue-name> 

VE memory size limit set interactive_queue venode vememory_size_range = 

(<min>,<max>[,<warn>] <queue-name> 

For <min>, specify the minimum value. For <max>, specify the maximum value. Both must be 

an integer. For <min>, specify a value smaller than <max>. If the same value is specified for 

both <min> and <max>, only that value can be specified when inputting a request. 

 

Resource limits set on queues can be confirmed by qstat(1) command -Q, -f option (VE Node 

Resource Ranges). 



 

62 

 

 

Resource Limitation per Logical Host 

By using a specification method different from the above, for a request to be inputted to an 

interactive queue, the resource usage limit can be set to each logical host to be assigned to a 

job. 

For the logical host resource limitation, not only the upper limit but also the lower limit can 

be set in contrast to the conventional resource limitation per job, making it possible to limit 

the usage according to a range. If the resource usage specified when inputting a request is out 

of the value range of the resource limitation that is set to a queue, the request input to the 

queue is rejected. 

The operations related to the resource limitation set to a logical host are the same as the 

conventional operations related to the resource limitation set to a job. 

 

Set resource limit attributes using set interactive_queue lhost sub-command of qmgr(1M) 

command. Resource limits and corresponding set sub-commands of the qmgr command are 

shown as follows, including whether they are valid on each execution host. The operator 

privilege is necessary to set the limit. 

 

Resource qmgr(1M) sub-command 

Number of VE node Limit set interactive_queue lhost ve_number_range = 

(<min>,<max>) <queue-name> 

CPU number limit set interactive_queue lhost cpu_number_range = 

(<min>,<max>) <queue-name> 

Number of GPU Limit set interactive_queue lhost gpu_number_range = 

(<min>,<max>) <queue-name> 

CPU time limit set interactive_queue lhost cpu_time_range = 

(<min>,<max>[,<warn>]) <queue-name> 

Memory size limit set interactive_queue lhost memory_size_range = 

(<min>,<max>[,<warn>]) <queue-name> 

Virtual memory size limit set interactive_queue lhost virtual_memory_size_range = 

(<min>,<max>[,<warn>]) <queue-name> 

VE CPU time limit set interactive_queue lhost vecpu_time_range = 

(<min>,<max>[,<warn>] <queue-name> 

VE memory size limit set interactive_queue lhost vememory_size_range = 

(<min>,<max>[,<warn>] <queue-name> 

 

For <min>, specify the minimum value. For <max>, specify the maximum value. Both must be 

an integer. For <min>, specify a value smaller than <max>. If the same value is specified for 

both <min> and <max>, only that value can be specified when inputting a request. 

 

Resource limits set on queues can be confirmed by qstat(1) command -Q, -f option (Logical Host 

Resource Ranges). 



 

63 

 

 

These resource limitations of a logical host (excluding the limitation on the number of VE 

nodes, the limitation on the time of VE CPU and the limitation on the size of VE memory) can 

also be set by using the following methods (by specifying per_job) to set the resource limitations 

of a job. 

set interactive_queue per_job cpu_number_limit = <max> <queue-name> 

set interactive_queue per_job gpu_number_limit = <max> <queue-name> 

set interactive_queue per_job cpu_time_limit = (<max>,[<warn>]) <queue-name> 

set interactive_queue per_job memory_size_limit = (<max>,[<warn>]) <queue-name> 

set interactive_queue per_job virtual_memory_size_limit = (<max>,[<warn>]) <queue-name> 

When the resource limitations are set by using the above methods, it is assumed that 0 (zero) 

is specified for <min> of all resource limitations of a logical host. For <max> and <warn>, the 

specified values are used. 

 

For both specification methods using lhost and per_job, the value you specify later becomes 

effective. 

 

HCA port number limit 

It is possible to limit the HCA port number for job of request in an interactive queue. 

Interactive requests submitting will be rejected by the interactive queue if HCA port number 

specified to the interactive request exceeds this limit set to the interactive queue. 

HCA port number limit for interactive queue is specified by "set interactive_queue 

hca_number_range" sub-command of qmgr(1M). The operator privilege is necessary to set 

the limit.  

Resource qmgr(1M) sub-command 

HCA port number limit set interactive_queue hca_number_range = (<min>,<max>) 

mode=<hca-mode> <queue-name> 

 

For <min>, specify the minimum value. For <max>, specify the maximum value. Both must be 

an integer. For <min>, specify a value smaller than <max>. If the same value is specified for 

both <min> and <max>, only that value can be specified when submitting a request. 

 

(2) Resource Default 

Resource default is an attribute used as a resource limit value for a request where a resource 

limit value is not explicitly specified when submitted to a queue. 

Set the resource default attribute using set sub-command of qmgr(1M) command. 

Resource qmgr(1M) sub-command 



 

64 

 

For Each Process 

CPU time limit set interactive_queue standard per_prc cpu_time_limit 

Open file number limit set interactive_queue standard per_prc 

open_file_number_limit 

Memory size limit set interactive_queue standard per_prc memory_size_limit 

Data size limit set interactive_queue standard per_prc data_size_limit 

Stack size limit set interactive_queue standard per_prc stack_size_limit 

Core file size limit set interactive_queue standard per_prc core_size_limit 

File size limit set interactive_queue standard per_prc file_size_limit 

Virtual memory size limit set interactive_queue standard per_prc 

virtual_memory_size_limit 

VE CPU time limit set interactive_queue standard per_prc vecpu_time_limit 

VE memory size limit set interactive_queue standard per_prc vememory_size_prc 

For Each Job 

CPU time limit set interactive_queue standard per_job cpu_time_limit 

CPU number limit set interactive_queue standard per_job cpu_number_limit 

Memory size limit set interactive_queue standard per_job memory_size_limit 

File capacity limit set interactive_queue standard per_job file_capacity_limit 

Virtual memory size limit  set interactive_queue standard per_job 

virtual_memory_size_limit 

Number of GPU Limit set interactive_queue standard per_job gpu_number_limit 

For Each Request 

Elapse time limit set interactive_queue standard per_req elapse_time_limit 

 

Resource Default per Logical Host 

By using a specification method different from the above, the resource default of a logical host 

to be assigned to a job can be set as an attribute value of a queue. The operations related to 

the resource default set to a logical host when inputting a request are the same as those related 

to the resource default set to a job. 

 

Resource limits and corresponding set sub-commands of the qmgr command are shown as 

follows. The operator privilege is necessary to set the limit. 

 

Resource qmgr(1M) sub-command 

Number of VE node Limit set interactive_queue standard lhost ve_number_limit = 

<num> <queue-name> 

CPU number limit set interactive_queue standard lhost cpu_number_limit = 

<num> <queue-name> 

Number of GPU Limit set interactive_queue standard lhost gpu_number_limit = 

<num> <queue-name> 

CPU time limit set interactive_queue standard lhost cpu_time_limit = 

(<time>) <queue-name> 

Memory size limit set interactive_queue standard lhost memory_size_limit = 

(<size>) <queue-name> 

Virtual memory size limit set interactive_queue standard lhost 

virtual_memory_size_limit = (<size>) <queue-name> 

VE CPU time limit set interactive_queue standard lhost vecpu_time_limit = 

(<time>) <queue-name> 



 

65 

 

VE memory size limit set interactive_queue standard lhost vememory_size_limit = 

(<size>) <queue-name> 

The resource default must be between the lower limit (min) and upper limit (max) of the resource limitation. 

For the items for which a unit must be added (cpu_time, memory_size, virtual_memory_size), the specified 

value must be enclosed in (). 

 

These resource defaults of a logical host (excluding the limitation on the number of VE nodes, the limitation 

on the time of VE CPU and the limitation on the size of VE memory) can also be set by using the following 

conventional methods (by specifying per_job) to set the resource limitations of a job. 

set interactive_queue standard per_job cpu_number_limit = <num> <queue-name> 

set interactive_queue standard per_job gpu_number_limit = <num> <queue-name> 

set interactive_queue standard per_job cpu_time_limit = (<time>) <queue-name> 

set interactive_queue standard per_job memory_size_limit = (<size>) <queue-name> 

set interactive_queue standard per_job virtual_memory_size_limit = (<size>) <queue-name> 

 

Resource Default per VE Node 

The resource default of a VE node to be assigned to a job can be set as an attribute value of a 

queue. The operations related to the resource default set to a VE node when inputting a request 

are the same as those related to the resource default set to a job. 

 

Resource limits and corresponding set sub-commands of the qmgr command are shown as 

follows. The operator privilege is necessary to set the limit. 

 

Resource qmgr(1M) sub-command 

VE CPU time limit set interactive_queue standard venode vecpu_time_limit = 

(<time>) <queue-name> 

VE memory size limit set interactive_queue standard venode vememory_size_limit 

= (<size>) <queue-name> 

The resource default must be between the lower limit (min) and upper limit (max) of the resource limitation. 

For the items for which a unit must be added (cpu_time, memory_size, virtual_memory_size), the specified 

value must be enclosed in (). 

 

HCA port number default 

HCA port number default is an attribute used as a HCA port number limit value for a 

request where a HCA port number limit value is not explicitly specified when submitted to a 

queue. This attribute will not be referred when a HCA port number limit value is set on 

requests. 

Set the HCA port number default attribute using "set interactive_queue standard 

hca_number" sub-command of qmgr(1M) command. The operator privilege is necessary to set 



 

66 

 

the limit. 

 

Resource qmgr(1M) sub-command 

HCA port number default set interactive_queue standard hca_number = <num> 

mode=<hca-mode> <queue-name> 

The default value must be bigger than <min> value and smaller than <max> value. 

 

(3) Queue Priority 

Queue Priority is a priority among queues, and it is possible to put the order of priority of 

scheduling with other queues. 

The queue priority of the interactive queue is specified at the time of creating interactive queue. 

It is also possible to change it by the "set interactive_queue priority" sub-command of qmgr. 

 

 

$ qmgr -Po 

Mgr: set interactive_queue priority = 10 inter1 

Set Priority: inter1 

The queue priority of the interactive queue "inter1" is changed to 10. The operator privilege is 

necessary to change queue priority. 

 

(4) Kernel Parameter 

Set the kernel parameters using set sub-command of qmgr(1M) command. The operator 

privilege is necessary. 

The following table shows the kernel parameters, including corresponding set sub-command 

of the qmgr command, and their default values.  

Kernel parameter qmgr(1M) sub-command Default 

Nice Value set interactive_queue kernel_param nice 0 

RSG number(*1) set interactive_queue kernel_param rsg_number 0 

(*1) It is enabled when the socket scheduling and CPUSET feature are enabled. 

 

The following sample is available for setting a nice value. The nice value of the interactive 

queue "inter1" is changed to "5". 

$ qmgr -Po 

Mgr: set interactive_queue kernel_param nice = 5 inter1 

Set Nice Value (Kernel-Parameter): inter1 

 

(5) Submit Limit 

It is possible to set a limit to the number of requests that can be submitted to an interactive 

queue. The number of requests that can be submitted means the total number of requests 



 

67 

 

existent in a queue at the same time. With this submit limit per interactive queue, more 

detailed submit limit of requests can be configured than submit limit per batch system. 

(For the details of submit limit per batch system, please refer to 2.3.3. Submit Limit.) 

The submit limit per interactive queue can also be specified per whole queue, group and user. 

Set the limit to the number of requests using sub-commands of qmgr(1M). The operator 

privilege or higher is necessary to set this limit. 

The sub-commands and the default values are as follows. 

Attribute qmgr(1M) sub-command Default 

The number of requests that can 

be submitted to a queue 
set interactive_queue submit_limit 

0 

(unlimited) 

The number of requests that one 

group can submit to a queue 
set interactive_queue group_submit_limit 

0 

(unlimited) 

The number of requests that one 

user can submit to a queue 
set interactive_queue user_submit_limit 

0 

(unlimited) 

It is also possible to set submit number limit per individually designated group/user name, 

please refer to 11. Limit per Group and User. 

 

Submit limits set on queues can be confirmed by qstat(1) command -Q, -f option as 

follows.(Please refer to 4.5.2. Interactive Queue.) 

 The number of requests that can be submitted to a queue: Submit Number Limit 

 The number of requests that one user can submit to a queue: Submit User Number Limit 

 The number of requests that one group can submit to a queue: Submit Group Number 

Limit 

(For each item, limit values set are shown or if no limits are set "UNLIMITED" is shown.) 

 

If both submit limit per batch system and submit limit per queue are set, requests cannot be 

submitted at the point of exceeding either limit.  

 

(6) Suspend Privilege 

By setting a suspend privilege to the interactive queue, only a suspend request issued by user 

with higher privilege than the privilege that is set for the queue can be accepted. Set the 

suspend privilege per interactive queue using the "set interactive_queue suspend_privilege" 

sub-command of the qmgr(1M) command.  

An example of setting the suspend privilege as higher than operator privilege is shown below. 

$ qmgr -Po 

Mgr: set interactive_queue suspend_privilege = operator inter1 

Set Suspend Privilege.queue: inter1 

 



 

68 

 

To delete the suspend privilege, execute the "delete interactive_queue suspend_privilege" sub-

command of the qmgr(1M) command. 

 

(7) User EXIT Script 

Set the user exit file per interactive queue using the "set interactive_queue userexit" sub-

command of the qmgr(1M) command. 

An example of setting the script file script1 that is to be executed at pre-running state for 

requests of the interactive queue "inter1" is shown below. 

$ qmgr -Po 

Mgr: set interactive_queue userexit location = pre-running script = (script1) queue 

= inter1 

Set Userexit Script: inter1 

 

Execute the "delete interactive_queue userexit" sub-command of the qmgr(1M) command to 

delete the user exit script setting. 

An example of deleting the specified script of the interactive queue "inter1" to run at pre-

running is shown below. 

$ qmgr -Po 

Mgr: delete interactive_queue userexit location = pre-running queue = inter1 

Delete Userexit Script: inter1 

 

(8) Setting Time-out of the User EXIT Execution 

When set time-out time of the User EXIT execution, and the User EXIT occurred any trouble 

like a stall, it is possible to send a KILL signal to the User EXIT and abort the execution. Time-

out time is set by the sub-command of qmgr (1M). 

An example of setting time-out time of the User EXIT execution to 900 seconds to interactive 

queue "inter1" is shown below. 

$ qmgr -Po 

Mgr: set interactive_queue userexit_timeout = 900 inter1 

Set UserExit Timeout: inter1 

 

A default value of time-out time of the User EXIT execution is 0 (off). In case of 0, time-out is 

not occurred. 

 

(9) Limitation of the Job Number 

It is possible to limit the number of jobs created from request. Set limitation of the number of 

jobs per interactive queue using the "set interactive_queue jobs_range" sub-command of the 

qmgr(1M) command. 

An example of setting a range of 10 to 50 for the number of jobs in the interactive queue "inter1" 

is shown below. 



 

69 

 

$ qmgr -Po 

Mgr: set interactive_queue jobs_range = (10,50)  inter1 

Set Jobs Range: inter1 

It is also possible to set limitation of the job number per individually designated group/user 

name, please refer to 11. Limit per Group and User. 

 

(10) Waiting Option 

If there are enough execution hosts to be assigned immediately, it is possible to select whether 

wait for enough execution hosts or cancel the request. 

Set wait mode using the "set interactive_queue real_time_scheduling" sub-command of the 

qmgr(1M) command. 

An example of setting wait mode in the interactive queue "inter1" is shown below. 

 

 

$ qmgr -Po 

Mgr: set interactive_queue real_time_scheduling = wait inter1 

Set Real Time Scheduling.queue: inter1 

 

Wait mode can be set as follows. 

 

wait mode Description 

wait Wait for execution host available. 

submit_cancel Cancel the submitted request. 

manual Depend on run-time option of the submit command 

(qlogin -W) 

 

(11) Compulsion Execution Shell 

A login shell is usually used as a login shell for interactive queue session. However, when a 

compulsion execution shell is set as interactive queue, the shell is used as a login shell for 

interactive queue session. 

Set compulsion execution shell using the "set interactive_queue restrict_shell" sub-command 

of the qmgr(1M) command 

An example of setting /bin/shell for restrict shell in the interactive queue "inter1" is shown 

below. 

$ qmgr -Po 

Mgr: set interactive_queue restrict_shell = /bin/bash inter1 

Set Restrict Shell. queue: inter1 

To delete the setting, use the "delete interactive_queue restrict_shell" sub-command of 

qmgr(1M). 

 



 

70 

 

(12) Idle Timer 

A login shell for interactive queue session terminates after waiting for a certain time set as 

idle timer if input does not arrive. It is possible to set an idle timer every interactive queue. 

An example of setting 300 for idle timer in the interactive queue "inter1" is shown below. 

$ qmgr -Po 

Mgr: set interactive_queue idle_timer = 300 inter1 

Set idle_timer. inter1 

When the idle timer is set as 0, which is default setting, the idle timer function is not available. 

 

[Notes] 

In case MPI job (qlogin -T MPI-job), idle timer is not available. 

 

(13) Allowance for exclusive execution request 

It is able to configure the allowance for exclusive execution request (which is submitted by 

qlogin --exclusive) to the queue. The exclusive execution request always executed as 1 logical 

host(job) per 1 host and it ignore the resource limit (CPU, MEMORY, Virtual MEMORY, GPU, 

VE) for logical host of the queue. Therefore this configuration can limit the submission of that 

request. 

Allowance for exclusive execution request for interactive queue can be set by following qmgr 

sub-command with operator privilege. 

set interactive_queue exclusive_submit {on | off} <queue> 

off rejects the submission of the request with --exclusive option. on allows the submission of 

the request with --exclusive option. The default is off. 

 

4.3. Routing Queue 

4.3.1. Create Routing Queue 

Routing Queue is the queue that controls the routing of the batch requests. Requests submitted 

to the routing queue are forwarded to the forwarding queue automatically. 

Creates a new routing queue using the "create routing_queue" sub-command of the qmgr(1M) 

command. 

$ qmgr -Pm 

Mgr: create routing_queue = route1 priority = 20 

Routing Queue "route1" will be created with above procedure. The priority specified here is the 

queue priority. 

 

4.3.2. Routing Queue Configuration 

(1) Queue Priority 

The Queue Priority is the priority among queues, and requests of queue with larger values will 

http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/cmd_man/qmgr.html#create_routeque


 

71 

 

be transferred first. 

This attribute must always be defined when a queue is created. It can be changed later by the 

"set routing_queue priority" sub-command of qmgr(1M) command. 

$ qmgr -Po 

Mgr: set routing_queue priority = 10 route1 

The queue priority of Routing Queue "route1" is changed to 10 with above procedure. 

 

(2) Submit Limit  

It is possible to set a limit to the number of batch requests that can be submitted to a routing 

queue. The number of batch requests that can be submitted means the total number of batch 

requests existent in a routing queue at the same time. With this submit limit per routing queue, 

more detailed submit limit of requests can be configured than submit limit per batch system.  

(For the details of submit limit per batch system, please refer to 2.3.3. Submit Limit.) 

The submit limit per routing queue can also be specified per whole queue, group and user. 

Specify the limit to the number of requests using sub-commands of qmgr(1M). The operator 

privilege or higher is necessary to set this limit. 

The sub-commands and the default values are as follows. 

 

Attribute qmgr (1M) sub-command Default 

The number of requests which can be 

submitted to a routing queue 
set routing_queue submit_limit 

0 

(unlimited) 

The number of requests which one 

group can submit to a routing queue 

set routing_queue 

group_submit_limit 

0 

(unlimited) 

The number of requests which one 

user can submit to a routing queue 
set routing_queue user_submit_limit 

0 

(unlimited) 

It is also possible to set submit number limit per individually designated group/user name, 

please refer to 11. Limit per Group and User. 

 

Submit limits set on queues can be confirmed by qstat(1) command -Q, -f option as 

follows.(Please refer to 4.5.3. Routing Queue.) 

 The number of requests that can be submitted to a queue: Submit Number Limit 

 The number of requests that one user can submit to a queue: Submit User Number Limit 

 The number of requests that one group can submit to a queue: Submit Group Number 

Limit 

(For each item, limit values set are shown or if no limits are set "UNLIMITED" is shown.) 

If both submit limit per batch system and submit limit per queue are set, requests cannot be 

submitted at the point of exceeding either limit.  

 



 

72 

 

(3) Routing Queue Run Limit  

The Routing Queue Run Limit is the maximum number of batch requests that can be routed 

in a routing queue, simultaneously.  

This attribute can be defined at creating a new queue. Note that it can be changed later by the 

"set routing_queue run_limit" sub-command of qmgr(1M) command. 

$ qmgr -Po 

Mgr: set routing_queue run_limit = 10 route1 

The run limit of Routing Queue "route1" is changed to "10" with above procedure.  

Definable max value is 100. 

 

(4) Destination of Routing Queue 

As a destination of routing queues, only batch queue can be specified. Interactive queue is not 

effective as destination of routing queue. 

Multiple queues can be defined as destinations of the routing queue. When multiple queues 

are set, requests are tried to be forwarded to the queues in turn until the forwarding succeed. 

This attribute can be defined when a routing queue is created, but can also be changed or 

added later. 

 

Definition and Change of Forwarding 

Define or change routing queues by the "set routing_queue destination" sub-command of 

qmgr(1M) command. 

$ qmgr -Po 

Mgr: set routing_queue destination = (batch1@host1) route1 

The queue "batch1" on the batch server host "host1" will be defined as the routing queue 

"route1" with above procedure. If the routing queue is set already, the setting is overwritten. 

If the routing queue is on the same batch server, it is possible to omit a part of "@host1". 

 

Adding Forwarding 

Add routing queues by the "add routing_queue destination" sub-command of qmgr(1M) 

command. 

$ qmgr -Po 

Mgr: add routing_queue destination = (batch2@host1) route1 

The queue "batch2" on the batch server host "host1" will be added to the routing queue "route1" 

with above procedure. "batch1" and "batch2" will be the routing queue of "route1" if batch1 is 

already defined as the routing queue of "route1". 

 

 

Delete Forwarding 

Delete routing queues by the "delete routing_queue destination" sub-command of qmgr(1M) 



 

73 

 

command.  

$ qmgr -Po 

Mgr: delete routing_queue destination = (batch2@host1) route1 

The queue "batch2" on the batch server host "host1" will be deleted from destination of routing 

queue "route1" with above procedure. 

 

(5) Waiting Interval  

If node of the routing queues can accept requests, routing will be retried again at the regular 

time intervals. It is possible to set per batch server. (Please refer to 2.3.5. Routing Retry 

Interval.) 

 

4.4. Network Queue 

4.4.1. Create Network Queue 

Network Queue is the queue used for file-staging between the client hosts and the batch server 

host, or the execution host, used by NQSV system. ( About file staging., please refer to 5.1.3. 

File Staging ). When transmit parameters need to be changed or external file-staging is used, 

a network queue must be created. The default network queue (DefaultNetQue) is used when 

the corresponding network queue does not exist. 

Create a new network queue using the "create network_queue" sub-command of qmgr(1M) 

command. 

$ qmgr -Pm 

Mgr: create network_queue = net1 staging_machine = host1 priority = 20 

Network Queue "net1" for the client host "host1" will be created with above procedure. The 

priority specified here is the queue priority.  

 

4.4.2. Network Queue Configuration 

(1) Queue Priority 

The Queue Priority is the priority among queues, it puts priorities for file-staging. 

This attribute must be defined when a queue is created. Note that it can be changed later by 

the "set network_queue priority" sub-command of qmgr(1M) command. 

$ qmgr -Po 

Mgr: set network_queue priority = 10 net1 

The queue priority of network queue "net1" is changed to "10" with above procedure.  

 

(2) Network Queue Run Limit 

The Network Queue Run Limit is the maximum number of network requests that can be 

routed in a network queue simultaneously. 

The network queue run limit can be defined when a queue is created. Note that it can also be 



 

74 

 

changed later by the "set network_queue run_limit" sub-command of qmgr(1M) command. 

$ qmgr -Po 

Mgr: set network_queue run_limit = 10 net1 

The run limit of network queue "net1" is changed to 10 with above procedure.  

Definable max value is 1000. 

 

(3) Run Limit for Each Request  

It is possible to set the network queue run limit for each request. 

Change the value using the "set network_queue batch_request_run_limit" sub-command of 

qmgr(1M) command. 

$ qmgr -Po 

Mgr: set network_queue batch_request_run_limit = 10 net1 

The run limit for each request of network queue "net1" is changed to 10 with above procedure.  

 

(4) Forwarding Host 

The forwarding host is is actually client hosts that are the destination of staging of the network 

queue. This attribute can be defined when a network queue is created, but can also be changed 

later. 

Change the forwarding host of network queues by the "set network_queue staging_machine" 

sub-command of qmgr(1M) command. 

$ qmgr -Po 

Mgr: set network_queue staging_machine = host1 net1 

The forwarding host of network queue "net1" is changed to host1. 

 

(5) Switching the Staging Method 

There are two type methods for file-staging. One is internal staging method, the other is 

external staging method. 

Switch the staging method by the "set network_queue staging_method" sub-command of 

qmgr(1M) command. 

$ qmgr -Po 

Mgr: set network_queue staging_method = external net1 

The staging method of network queue "net1" is changed to the external staging method with 

above procedure. 

A default value is internal file-staging method. ( about staging method, please refer to 5.1.3. 

File Staging.) 

 

(6) Change of Transfer Buffer Size 

Change the transfer buffer size for internal staging method by the "set network_queue 

staging_extended_buffer_size" sub-command of qmgr(1M) command. The default value is 4 K 



 

75 

 

bytes. 

$ qmgr -Po 

Mgr: set network_queue staging_extended_buffer_size = 128 net1 

The transfer buffer size of network queue "net1" is changed to 128 Kbytes with above procedure. 

 

(7) Waiting Interval 

If file transfer cannot be done, it will be retried again at the regular time intervals. It is possible 

to set per batch server. (Please refer to 2.3.5.Routing Retry Interval.) 

 

4.5. Queue Information 

4.5.1. Batch queue 

The queue status can be checked using the qstat(1) command with -Q option. To check the 

status of the batch queues, execute with -e option. 

$ qstat -Q -e 

[EXECUTION QUEUE] Batch Server Host: host1 

======================================== 

QueueName       SCH JSVs ENA STS  PRI TOT ARR WAI QUE PRR RUN POR EXT HLD HOL RST SUS MIG STG CHK 

--------------- --- ---- ------- ---- ------------------------------------------------------------ 

batch1            0   64 ENA ACT   10   1   0   0   0   0   1   0   0   0   0   0   0   0   0   0 

batch2            0   32 ENA ACT   20   3   0   0   2   0   1   0   0   0   0   0   0   0   0   0 

--------------- --- ---- ------- ---- ------------------------------------------------------------ 

<TOTAL>                                 4   0   0   2   0   2   0   0   0   0   0   0   0   0   0 

--------------- --- ---- ------- ---- ------------------------------------------------------------ 

Column "SCH" displays the schedule number, column "JSVs" displays the number of job server 

linkup and bound, column "ENA" and "STS" displays status of queue, column "TOT" displays 

the number of submitted requests, and subsequent columns display numbers of requests for 

each state. 

Adding -t option to qstat -Q -e, column "JSVs" displays the number of job server bound 

including both of linkup and linkdown. 

 

The status of an individual queue can be also checked if the queue name is specified with 

qstat(1) command as an argument.  

$ qstat -Q batch1 

[EXECUTION QUEUE] Batch Server Host: host1 

======================================== 

QueueName       SCH JSVs ENA STS  PRI TOT ARR WAI QUE PRR RUN POR EXT HLD HOL RST SUS MIG STG CHK 

--------------- --- ---- ------- ---- ------------------------------------------------------------ 

batch1            0   64 ENA ACT   10   1   0   0   0   0   1   0   0   0   0   0   0   0   0   0 

--------------- --- ---- ------- ---- ------------------------------------------------------------ 

<TOTAL>                                 1   0   0   0   0   1   0   0   0   0   0   0   0   0   0 

--------------- --- ---- ------- ---- ------------------------------------------------------------ 

 

More detailed information of a queue can be shown using the qstat(1) command with -Q, -f 

option. 



 

76 

 

$ qstat -Q -f batch1 

Execution Queue: batch1@host1 

    Run State    = Active 

    Submit State = Enable 

    Scheduler ID   = 1 

    Scheduler Name = Scheduler0001 

    Job Server Number = { 

       412*  414* 

    } 

    Node Group Name = { 

      (UNBIND) 

    } 

    Use Supplementary Groups ID for Access Privileges Check = OFF 

    Noaccess User list  = { 

      (none) 

    } 

    Noaccess Group list  = { 

      (none) 

    } 

    Refuse submission = { 

      (none) 

    } 

    NUMA Control = OFF 

    Hold Privilege    = (none) 

    Suspend Privilege = (none) 

    Queue Priority = 10 

    Submit Number Limit       = UNLIMITED 

    Submit User Number Limit  = UNLIMITED 

    Submit Group Number Limit = UNLIMITED 

    Subrequest Number Limit = 1000 

    Checkpoint Interval = 0 

    Auto Bind JobServer = ON 

    Restart File Directory = /var/opt/nec/nqsv/jsv/rstfdir 

    qattach command = Enable 

    IntelMPI Process Manager = hydra 

    Hook Function = OFF 

    Exclusive Submit = ON 

    UserExit Timeout = OFF 

    UserPP Timeout = 300 

    File Stageout = ON 

    Delete Failed Urgent Request = OFF 

    Partial Process Swapping = ON 

    GPU-CPU Affinity = OFF 

    GPU-CPU Affinity CPU per GPU = 1 

    NEC MPI Process Manager = mpd  

    Range of Jobs Limit per Batch Request (min,max) = 1,10240 

    Range of Request Priority = { 

      manager     (min,max) = -1024,1023 

      operator    (min,max) = -1024,1023 

      specialuser (min,max) = -1024,1023 

      user        (min,max) = -1024,1023 

    } 

    Defined VE Number     = 1 

    Submit VE Node Range (min,max) = 0,UNLIMITED 

    Total Request         = 0 

    Arriving Request      = 0 

    Waiting Request       = 0 

    Queued Request        = 0 

    Pre-running Request   = 0 



 

77 

 

    Running Request       = 0 

    Post-running Request  = 0 

    Exiting Request       = 0 

    Held Request          = 0 

    Holding Request       = 0 

    Restarting Request    = 0 

    Suspending Request    = 0 

    Suspended Request     = 0 

    Resuming Request      = 0 

    Migrating Request     = 0 

    Staging Request       = 0 

    Checkpointing Request = 0 

  UserExit Script: 

    (none) 

  Logical Host Resource Ranges: 

    VE Node Number        = Min:         0 Max: UNLIMITED Warn:       --- Std:         0 

    CPU Number            = Min:         1 Max: UNLIMITED Warn:       --- Std:         1 

    GPU Number            = Min:         0 Max: UNLIMITED Warn:       --- Std:         0 

    CPU Time              = Min:        0S Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    Memory Size           = Min:        0B Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    Virtual Memory Size   = Min:        0B Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    VE CPU Time           = Min:        0S Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    VE Memory Size        = Min:        0B Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    Stdout Size           = Min:        0B Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    Stderr Size           = Min:        0B Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

  Logical Host HCA Resource Ranges: 

    For I/O               = Min:      0 Max: UNLIMITED Std:         0 

    For MPI               = Min:      0 Max: UNLIMITED Std:         0 

    For ALL               = Min:      0 Max: UNLIMITED Std:         0 

  VE Node Resource Ranges: 

    VE CPU Time           = Min:        0S Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    VE Memory Size        = Min:        0B Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

  Resources Limits: 

    (Per-Req) Elapse Time Limit       = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Job) CPU Time                = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Job) CPU Number              = Max: UNLIMITED Warn:       --- Std:         1 

    (Per-Job) Memory Size             = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Job) Virtual Memory Size     = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Job) GPU Number              = Max: UNLIMITED Warn:       --- Std:         0 

    (Per-Prc) CPU Time                = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Prc) Open File Number        = Max: UNLIMITED Warn:       --- Std: UNLIMITED 

    (Per-Prc) Virtual Memory Size     = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Prc) Data Segment Size       = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Prc) Stack Segment Size      = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Prc) Core File Size          = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Prc) Permanent File Size     = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Prc) VE CPU Time             = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Prc) VE Memory Size          = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

  Kernel Parameter: 

    Resource Sharing Group     = 0 

    Nice Value                 = 0 

The number in "Job Server Number = { }" means job server number. The number with an 

asterisk (*) on the right side means that the job server is linkup. 

 

4.5.2. Interactive Queue 

The queue status can be checked using the qstat(1) command with -Q option. To check the 



 

78 

 

status of the interactive queues, execute with -i option. 

$ qstat -Q -i 

[INTERACTIVE QUEUE] Batch Server Host: host1 

=========================================== 

QueueName       SCH JSVs ENA STS  PRI  TOT ARR WAI QUE PRR RUN POR EXT HLD SUS 

--------------- --- ---- ------- ---- ---------------------------------------- 

inter1            1    4 ENA ACT   10    1   0   0   0   0   1   0   0   0   0 

--------------- --- ---- ------- ---- ---------------------------------------- 

<TOTAL>                                  1   0   0   0   0   1   0   0   0   0 

--------------- --- ---- ------- ---- ---------------------------------------- 

 

More detailed information of a queue can be shown using the qstat(1) command with -Q, -f 

option. And the status of an individual queue can be also checked if the queue name is specified 

with qstat(1) command as an argument. 

$ qstat -Q -f inter1 

Interactive Queue: inter1@host1 

Run State    = Active 

Submit State = Enable 

Scheduler ID   = 1 

Scheduler Name = Scheduler0001 

Job Server Number = { 

414* 

} 

Node Group Name = { 

(UNBIND) 

} 

Use Supplementary Groups ID for Access Privileges Check = OFF 

Noaccess User list  = { 

(none) 

} 

Noaccess Group list = { 

(none) 

} 

Refuse submission = { 

(none) 

}  

NUMA Control = OFF 

Suspend Privilege = (none) 

Queue Priority = 10 

Submit Number Limit       = UNLIMITED 

Submit User Number Limit  = UNLIMITED 

Submit Group Number Limit = UNLIMITED 

Auto Bind JobServer = ON 

qattach command = Enable 

IntelMPI Process Manager = hydra 

Hook Function = OFF 

UserExit Timeout = OFF 

UserPP Timeout = 300 

Exclusive Submit = ON 

Range of Jobs Limit per Interactive Request (min,max) = 1,10240 

Real Time Scheduling = wait 



 

79 

 

Idle Timer = 0 

Restrict Shell = (none) 

Defined VE Number     = 1 

Submit VE Node Range (min,max) = 0,UNLIMITED 

Total Request        = 0 

Arriving Request     = 0 

Waiting Request      = 0 

Queued Request       = 0 

Pre-running Request  = 0 

Running Request      = 0 

Post-running Request = 0 

Exiting Request      = 0 

Held Request         = 0 

Suspending Request   = 0 

Suspended Request    = 0 

Resuming Request     = 0 

UserExit Script: 

  (none) 

Logical Host Resource Ranges: 

VE Node Number        = Min:         0 Max: UNLIMITED Warn:       --- Std:         0 

CPU Number            = Min:         1 Max: UNLIMITED Warn:       --- Std:         1 

GPU Number            = Min:         0 Max: UNLIMITED Warn:       --- Std:         0 

CPU Time              = Min:        0S Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

Memory Size           = Min:        0B Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

Virtual Memory Size   = Min:        0B Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED            

  VE CPU Time           = Min:        0S Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

  VE Memory Size        = Min:        0B Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

Logical Host HCA Resource Ranges: 

For I/O               = Min:      0 Max: UNLIMITED Std:         0 

For MPI               = Min:      0 Max: UNLIMITED Std:         0 

For ALL               = Min:      0 Max: UNLIMITED Std:         0 

VE Node Resource Ranges: 

  VE CPU Time           = Min:        0S Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

  VE Memory Size        = Min:        0B Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

Resources Limits: 

(Per-Req) Elapse Time Limit       = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

(Per-Job) CPU Time                = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

(Per-Job) CPU Number              = Max: UNLIMITED Warn:       --- Std:         1 

(Per-Job) Memory Size             = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

(Per-Job) Virtual Memory Size     = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

(Per-Job) GPU Number              = Max: UNLIMITED Warn:       --- Std:         0 

(Per-Prc) CPU Time                = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

(Per-Prc) Open File Number        = Max: UNLIMITED Warn:       --- Std: UNLIMITED 

(Per-Prc) Virtual Memory Size     = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

(Per-Prc) Data Segment Size       = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

(Per-Prc) Stack Segment Size      = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

(Per-Prc) Core File Size          = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

(Per-Prc) Permanent File Size     = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

  (Per-Prc) VE CPU Time             = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

  (Per-Prc) VE Memory Size          = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

Kernel Parameter: 

Resource Sharing Group     = 0 

Nice Value                 = 0 



 

80 

 

 

4.5.3. Routing Queue  

The status of routing queues can be also checked using -Q option of the qstat(1) command.  

To check the information of only routing queues, execute with -r option. 

$ qstat -Q -r 

[ROUTING QUEUE] Batch Server Host: host1 

======================================= 

QueueName       ENA STS PRI RLM  TOT ARR WAI QUE HLD TRS 

--------------- --------------- ------------------------ 

pipe1           ENA INA  20   1    2   2   0   0   0   0 

pipe2           DIS INA  30   1    0   0   0   0   0   0 

netpipe1        ENA ACT  20   1    2   1   1   0   0   0 

--------------- --------------- ------------------------ 

<TOTAL>                     100    4   3   1   0   0   0 

--------------- --------------- ------------------------ 

 

 

More detailed information of a queue can be shown using the qstat(1) command with -Q, -f 

option. And the status of an individual queue can be also checked if the queue name is specified 

with qstat(1) command as an argument. 

$ qstat -Q -f pipe1 

Routing Queue: pipe1@host1 

Run State    = Inactive 

Submit State = Enable 

Queue Priority = 20 

Total Run Limit = 1 

Submit Number Limit = UNLIMITED 

Submit User Number Limit  = UNLIMITED 

Submit Group Number Limit = UNLIMITED 

Total Request      = 2 

Arriving Request   = 2 

Waiting Request    = 0 

Queued Request     = 0 

Held Request       = 0 

Transiting Request = 0 

Destinations = { 

batch1@host1 

batch2@host1 

} 

Use Supplementary Groups for Access Privileges Check = OFF 

Noaccess User list = { 

(none) 

} 

Noaccess Group list = { 

(none) 

} 

Refuse submission = { 

(none) 

} 



 

81 

 

 

4.5.4. Network Queue 

The status of network queues can be also checked using -Q option of the qstat(1) command. To 

check the information of only network queues, execute qstat with -N option. 

$ qstat -Q -N 

[NETWORK QUEUE] Batch Server Host: host1 

======================================= 

QueueName       StagingMachine       ENA STS PRI RLM  TOT WAI QUE RUN 

--------------- -------------------- --------------- ---------------- 

DefaultNetQue    (any)                ENA ACT   0  1    0   0   0   0 

net1            client1               ENA ACT  10  1    0   0   0   0 

--------------- -------------------- --------------- ---------------- 

<TOTAL>                                         1000    0   0   0   0 

--------------- -------------------- --------------- ---------------- 

 

More detailed information of a queue can be shown using the qstat(1) command with -Q, -f 

option. And the status of an individual queue can be also checked if the queue name is specified 

with qstat(1) command as an argument. 

$ qstat -Q -f net1 

Network Queue: net1@host1 

Run State    = Active 

Submit State = Enable 

Queue Priority = 10 

Total Run Limit = 1 

Run Limit per Batch Request = 1 

Staging Machine = client1 

Staging Method  = Internal 

Staging Extended Buffer = 512KB 

Total Request   = 0 

Waiting Request = 0 

Queued Request  = 0 

Running Request = 0 

 

 

4.5.5. Customizing Information 

It is possible to specify items to be displayed with -F option of qstat(1) command. At this time, 

-e for batch queue or -i for interactive queue or -r for routing queue or -N for network queue is 

needed. It is not possible to specify items with -f option for detail information. 

$ qstat -Q -e -F quenm,stt1,stt2,qtot 

[EXECUTION QUEUE] Batch Server Host: host1 

========================================= 

QueueName       ENA STS  TOT 

--------------- --- --- ---- 

batch1          ENA ACT    1 

batch2          ENA ACT    3 

--------------- --- --- ---- 

<TOTAL>                    4 



 

82 

 

--------------- --- --- ---- 

 

Items that can be specified for queue information are as follows. 

Item content 
Summary display 

format 

Batch queue (-Q [-e]) 

quenm Queue name QueueName 

schid Scheduler ID bound to the queue SCH 

jsvs Number of job servers bound to the queue JSVs 

stt1 Request acceptable or not ENA 

stt2 Request executable or not  STS 

pri Queue priority PRI 

qtot Number of batch requests submitted in a queue TOT 

arr 

Number of batch requests for each state 

ARR 

wai WAI 

que QUE 

prr PRR 

run RUN 

por POR 

ext EXT 

hld HLD 

hol HOL 

rst RST 

sus SUS 

mig MIG 

stg STG 

chk CHK 

ehost* Execution host bound to the queue ExecutionHost 

attbl* Attach request Possible/Not Possible ATTBL 

Interactive queue (-Q -i) 

quenm Queue name QueueName 

schid Scheduler ID bound to the queue SCH 

jsvs Number of job servers bound to the queue JSVs 

stt1 Request acceptable or not ENA 

stt2 Request executable or not  STS 

pri Queue priority PRI 

qtot Number of interactive requests submitted in a queue TOT 



 

83 

 

arr 

Number of interactive requests for each state 

ARR 

wai WAI 

que QUE 

prr PRR 

run RUN 

por POR 

ext EXT 

hld HLD 

sus SUS 

ehost* Execution host bound to the queue ExecutionHost 

attbl* Attach request Possible/Not Possible ATTBL 

Routing queue (-Q -r) 

quenm Queue name QueueName 

stt1 Request acceptable or not ENA 

stt2 Request executable or not  STS 

pri Queue priority PRI 

rqrlm Run limit for each queue RLM 

qtot Number of batch requests submitted in a queue TOT 

arr 

Number of batch requests for each state 

ARR 

wai WAI 

que QUE 

hld HLD 

trs TRS 

Network queue (-Q -N) 

quenm Queue name QueueName 

stghost Staging host name StagingMachine 

stt1 Request acceptable or not ENA 

stt2 Request executable or not  STS 

pri. Queue priority PRI 

rqrlm Run limit for each queue RLM 

qtot Number of batch requests submitted in a queue TOT 

wai 

Number of batch requests for each state 

WAI 

que QUE 

run RUN 

* This item can be specified in case of displaying information using qstat(1) command -F option. 

(About details of qstat(1) command's -F option, please refer to [Operation]Customizing 

Information.) 



 

84 

 

 

It is also possible to sort information by any item using -o option or -O option of qstat(1) 

command.(About qstat(1) -O, and -o options, please refer to [Operation]Sorting Information.) 

 

4.6. Queue State 

Queue has two types of state. One is whether the queue can accept a request submitted or not, 

the other is whether the queue can execute a request or not. These states are defined as follows. 

State value description 

Request acceptable or not 

ENABLE The queue can accept a request submitted 

DISABLE The queue cannot accept a request submitted  

Request executable or not ACTIVE The queue can execute a request 

INACTIVE The queue cannot execute a request 

 

4.6.1. Enable/Disable State  

Default values of each state are the DISABLE state and the INACTIVE state. The status of a 

queue can be set to accept requests by executing "enable" sub-command of qmgr(1M) command. 

 

queue qmgr(1M) sub-command  

Execution queue enable execution_queue 

Interactive queue enable interactive_queue 

Routing queue enable routing_queue 

Network queue enable network_queue 

 

An execution queue "batch1" is set to accept requests as follows. The operator privilege is 

necessary.  

$ qmgr -Po 

Mgr: enable execution_queue = batch1 

Enable Queue: batch1 

 

The status of a queue can be set to refuse batch requests by "disable" sub-command of 

qmgr(1M) command. 

queue qmgr(1M) sub-command  

Execution queue disable execution_queue 

Interactive queue disable interactive_queue 

Routing queue disable routing_queue 

Network queue disable network_queue 



 

85 

 

 

An execution queue "batch1" is set to refuse submission of requests as follows. The operator 

privilege is necessary.  

$ qmgr -Po 

Mgr: disable execution_queue = batch1 

Disable Queue: batch1 

 

4.6.2. Active/Inactive State 

The status of a queue can be set to execute requests by "start" sub-command of qmgr(1M) 

command. 

queue qmgr(1M) sub-command  

Execution queue start execution_queue 

Interactive queue start interactive_queue 

Routing queue start routing_queue 

Network queue start network_queue 

 

An execution queue "batch1" is set to allow execution of requests as follows. The operator 

privilege is necessary.  

$ qmgr -Po 

Mgr: start execution_queue = batch1 

Start Queue: batch1 

It is possible to change all queue, which are execution queue or interactive queue or routing 

queue or network queue, to allow execution ("ACTIVE") state by "start all queue" sub-

command of qmgr(1M). 

 

The status of a queue can be set to disable executing requests by stop sub-command of 

qmgr(1M) command. 

queue qmgr(1M) sub-command 

Execution queue stop execution_queue 

Interactive queue stop interactive_queue 

Routing queue stop routing_queue 

Network queue stop network_queue 

 

An execution queue "batch1" is set to disable execution of requests as follows. The operator 

privilege is necessary.  

$ qmgr -Po 

Mgr: stop execution_queue = batch1 

Stop Queue: batch1 

 



 

86 

 

It is possible to change all queue, which are execution queue or interactive queue or routing 

queue or network queue, to disable execution ("INACTIVE") state by "stop all queue" sub-

command of qmgr(1M). 

 

4.7. Bind to Job Server and Scheduler 

Note that execution queues and interactive queue must be bound to the job server, which 

actually execute requests, and to the scheduler, which schedules execution of requests, in order 

to execute requests. The sub-commands of qmgr are as follows. 

 

queue  binding job server binding scheduler 

Execution queue bind execution_queue job_server bind execution_queue scheduler 

Interactive queue bind interactive_queue job_server bind interactive_queue scheduler 

 

An execution queue "batch1" and job server "100" are bound as follows. 

$ qmgr -Pm 

Mgr: bind execution_queue job_server batch1 job_server_id = 100 

Bound Job_Server_ID (100)  to Queue (batch1). 

 

An interactive queue "inter1" and scheduler "1" are bound as follows. 

 

$ qmgr -Pm 

Mgr: bind interactive_queue scheduler inter1 scheduler_id = 1 

Bound Scheduler_ID (1) to Queue (inter1). 

 

It is possible to unbind the job server and the scheduler. The sub-commands of qmgr are as 

follows. 

queue  Unbinding job server Unbinding scheduler 

Execution queue unbind execution_queue job_server unbind execution_queue scheduler 

Interactive queue unbind interactive_queue job_server unbind interactive_queue scheduler 

 

The job server "100" is unbound from an execution queue "batch1" as follows. 

$ qmgr - Pm 

Mgr: unbind execution_queue job_server batch1 job_server_id = 100 

Unbound Job_Server_ID (100) to Queue (batch1). 

 

The scheduler is unbound from interactive queue "inter1" as follows. 

$ qmgr -Pm 

Mgr: unbind interactive_queue scheduler inter1 

Unbound Scheduler_ID (1) to Queue (inter1). 



 

87 

 

 

4.8. Queue Access Limit Set 

Set the access limit for a batch queue, interactive queue and routing queue to limit submitting 

requests by specific user, group, and route.  

4.8.1. Access Limitation to User and Group 

It is possible to limit submitting requests by specific user and group. Make a list of 

users/groups who can access a queue, or make a list of users/groups who cannot access a queue. 

 

Access permit setting 

Set ACCESS mode to a queue, and then make a list of users/groups that can access a queue 

using sub-command of qmgr(1M) command. The sub-commands of qmgr(1M) are as follows. 

 

queue qmgr(1M) sub-command 

Batch queue set execution_queue access 

Interactive queue set interactive_queue access 

Routing queue set routing_queue access 

 

Set ACCESS mode to a batch queue "batch1" as follows. The manager privilege is necessary. 

$ qmgr -Pm 

Mgr: set execution_queue access batch1 

Set Access_List Access. 

 

When the access mode of a queue is changed to ACCESS mode, the root is registered to a user 

access list as defaults, and no group is registered to a group access list. Only the root user can 

access the queue. 

 

Then, set the users that can access the queue to the access list. The following sub-commands 

of qmgr(1M) are used for this setting. 

 

Setting sub-command  

A list of the user names is set to the access list. set execution_queue users 

set interactive_queue users 

set routing_queue users 

A user is added to the access list. add execution_queue users 

add interactive_queue users 

add routing_queue users 

A user is deleted from the access list. delete execution_queue users 



 

88 

 

delete interactive_queue users 

delete routing_queue users 

 

The user "user1" is added to the access list of batch queue "batch1" as follows. 

$ qmgr -Pm 

Mgr: add execution_queue users = user1 batch1 

Set user list.queue: batch1 

 

Set the groups that can access the queue to the access list. The following sub-commands of 

qmgr(1M) are used for this setting. 

Setting operation sub-command 

A list of the group names is set to the access list. set execution_queue groups 

set interactive_queue groups 

set routing_queue groups 

A group is added to the access list. add execution_queue groups 

add interactive_queue groups 

add routing_queue groups 

A group is deleted from an access list. delete execution_queue groups 

delete interactive_queue groups 

delete routing_queue groups 

 

The group "group1" is added to the access list of batch queue "batch1" as follows. 

$ qmgr -Pm 

Mgr: add execution_queue groups = group1 batch1 

Set group list.queue: batch1. 

 

Access permit setting information is displayed by qstat -Qf as follows.  

$ qstat - Qf 

: 

Access User list  = { 

root    user1 

} 

Access Group list = { 

group1 

} 

: 

 

Access denied setting 

Set NOACCESS mode to a queue, and then make a list of users/groups that cannot access a 

queue.  

It is possible to set either ACCESS mode or NOACCES mode to a queue. NOACCESS mode is 



 

89 

 

default. When a queue is created, its access mode is NOACCESS and access list for 

users/groups are empty. Therefore, every user/group can access the queue. 

The sub-commands of qmgr(1M) are as follows. 

 

queue qmgr(1M) sub-command 

Batch queue set execution_queue noaccess 

Interactive queue set interactive_queue noaccess 

Routing queue set routing_queue noaccess 

 

Set NOACCESS mode to a batch queue "batch1" as follows.  

$ qmgr -Pm 

Mgr: set execution_queue noaccess batch1 

Set Access_List Noaccess. 

When the access mode of a queue is changed to NOACCESS mode, no user/group is registered 

to an access list. Every user can access the queue. 

 

Then, set the users and groups that cannot access the queue to the access list. This is the same 

as access permit setting. 

Access denied setting information is displayed by qstat -Qf as follows. 

$ qstat -Qf 

: 

Noaccess User list = { 

user1    user2 

} 

Noaccess Group list = { 

group1 

} 

: 

 

4.8.2. Access Limit by Supplementary Group 

In the above-mentioned setting of the access limitation for group, access permitting and  

denying are checked by whether the group name that is set in an access group list agrees with 

the primary group name of the user. 

In addition to the primary group name, the supplementary group name can be added to the 

target of access enable or disable check for the access limitation of the queue. 

For this setting, the sub-commands of qmgr(1M) are as follows. 

queue qmgr(1M) sub-command 

Batch queue set execution_queue supplementary_groups_check 

Interactive queue set interactive_queue supplementary_groups_check 

Routing queue set routing_queue supplementary_groups_check 



 

90 

 

 

The access limitation by supplementary group for the batch queue "batch1" is set valid as 

follows. 

$ qmgr -Pm 

Mgr: set execution_queue supplementary_groups_check on batch1 

Set Supplementary Groups Check ON. queue: batch1 

 

4.8.3. Access Limit to Submitting Route 

There are the following four routes to submit requests to batch queues, interactive queues and 

routing queues. 

 Request submitting by qsub, qlogin and qrsh 

 Request submitting by qmove (except interactive queue) 

 Request submitting from local routing queue.(transmission from a routing queue of a same 

batch server. except interactive queue) 

 Request submitting from remote routing queue.(transmission from a routing queue of a 

different batch server. except interactive queue) 

 

It is possible to set refusal of submitting or not to each queue. For this setting, the sub-

commands of qmgr(1M) are as follows. 

queue 

qmgr(1M) sub-command 

set refusal of submitting delete refusal of submitting 

Batch queue set execution_queue 

refuse_submission 

delete execution_queue 

refuse_submission 

Interactive queue set interactive_queue 

refuse_submission 

delete interactive_queue 

refuse_submission 

Routing queue set routing_queue 

refuse_submission 

delete routing_queue 

refuse_submission 

 

To permit only from local routing queue for batch queue "batch1", the operation is executed as 

follows. 

$ qmgr -Po 

Mgr: set execution_queue refuse_submission = (qsub,qmove,remote_routing)  batch1 

Set Refuse submission: batch1 

 

4.9. Queue Abort 

Terminating all requests being executed in a batch queue or an interactive queue forcibly is 

called "Queue abort". The requests with the following states can be aborted. 

 RUNNING 



 

91 

 

 SUSPENDING 

 SUSPENDED 

 RESUMING 

 

A queue is aborted by the following sub-command of the qmgr (1M) command. 

queue qmgr(1M) sub-command 

Batch queue abort execution_queue 

Interactive queue abort interactive_queue 

 

$ qmgr -Pm 

Mgr: abort execution_queue = batch1 

Delete 1.host1 

All requests being executed in execution queue "batch1" are abort with above procedure. 

In order to abort all users' requests, the manager privilege is necessary. If qmgr(1M) executed 

with operator privilege or below, only requests that the operator submitted are aborted. 

 

4.10. Queue Purge 

Deleting all requests in the queuing state in a batch queue or an interactive queue or a routing 

queue is called "Queue purge". The requests in the following states can be purged.  

 QUEUED 

 WAITING 

 HELD 

 STAGING 

 

A queue is purged by the following sub-command of the qmgr (1M) command. 

queue qmgr(1M) sub-command 

Batch queue purge execution_queue 

Interactive queue purge interactive_queue 

Routing queue purge routing_queue 

 

$ qmgr -Pm 

Mgr: purge execution_queue = batch1 

Delete 2.host1 

All requests queued in the batch queue "batch1" are deleted with above procedure  

In order to purge all users' requests, the manager privilege is necessary. If qmgr(1M) executed 

with operator privilege or below, only requests that the operator submitted are purged. 

 



 

92 

 

4.11. Queue Delete 

Delete a queue using the delete sub-command of the qmgr(1M) command. In order to delete a 

queue, it is necessary that the queue has no request and in the state requests cannot be 

accepted (DISABLE state). 

A queue is deleted by the following sub-command of the qmgr (1M) command. 

queue qmgr(1M) sub-command 

Batch queue delete execution_queue 

Interactive queue delete interactive_queue 

Routing queue delete routing_queue 

Network queue delete network_queue 

 

$ qmgr -Pm 

Mgr: delete execution_queue queue = batch1 

Queue batch1 deleted. 

A batch queue "batch1" is deleted with above procedure. 

  



 

93 

 

5. Request Management 

5.1. Batch request 

5.1.1. Request Attribute Change 

It is possible to change attributes set to a request by the qalter(1) command. Please refer to 

the qalter (1) command about changeable attribute. 

Even during execution of a request, it is possible to change the kernel parameter attributes. 

But other attributes need to be changed before beginning execution of a request. 

For example, the nice value of the kernel parameter attribute of request 72.host1 is changed 

to 20 as follows. 

$ qalter -P o -K nice=20 72.host1 

Attribute of Request is altered. 

 

5.1.2. User EXIT 

User EXIT is the function which executes the user-defined shell script (User EXIT script) on 

the execution host where each job is executed when the request transits in the specific state. 

The points of timing, or location, when the request transits are as follows, and it is possible to 

set at most 4 scripts for each timing.  

 PRE-RUNNING (Just before starting of execution) 

 POST-RUNNING (Just after terminating of execution) 

 

(1) User EXIT setting 

The user EXIT is set to a batch queue or interactive queue by the sub-command of following 

qmgr (1M). 

queue  qmgr(1M) sub-command 

Batch queue set execution_queue userexit 

Interactive queue set interactive_queue userexit 

Set the timing of the script starting to "location=", set the script file to "script=", set the queue 

to "queue=". 

The keywords that can be set to the timing "location=" are as follows. 

Timing key word 

PRE-RUNNING pre-running 

POST-RUNNING post-running 

When at most 4 scripts being set to "script=", they are divided by a comma (,) or a colon (:). 

When a comma (,) being used, the scripts are executed serially in order from the left. When a 

colon (,) being used, the scripts are executed at the same time. 

It is necessary to put the script to /opt/nec/nqsv/sbin/uex_prog/ directory on the batch server 

host. 



 

94 

 

The following is an example of setting the user EXIT script script1 and script2 serially before 

request's starting to a batch queue "batch1". 

$ qmgr -Po 

Mgr: set execution_queue userexit location = pre-running script = (script1,script2)  

queue = batch1 

Set Userexit Script:batch1 

 

A setting information of the user EXIT is displayed as follows by -Q -f option of the qstat(1) 

command. 

Execution Queue: batch1@host1 

     : 

   UserExit Script: 

     Pre-running = { 

       1st = script1 

       2nd = script2 

     } 

     : 

 

(2) Execution of the user EXIT 

If user EXIT is set in the queue, before executing the user EXIT script, the user EXIT script 

file put under the /opt/nec/nqsv/sbin/uex_prog/ directory is copied to each job server that 

executes a job of the request and executed. For example, if "location=" is specified as pre-

running, the user EXIT script will be copied to the job server and executed when the request 

is PRE-RUNNING state. 

When more than one user EXIT scripts are set divided by a comma to be executed serially, the 

execution order of scripts is synchronized among jobs. In other words, after execution of the 

script set as first has ended in all jobs, execution of the script set as second begins. 

 

When the user EXIT scripts are executed, a value "EXECUTION" is set to environment 

variable "UEX_PROCTYPE". When the exit code of the user EXIT script is 0, its execution is 

judged as success and the state of the request moves to the next state.  

When the exit code of the user EXIT script is non-zero, the transition of the request state fails. 

Then, if it is not POST-RUNNING state, the user EXIT scripts are executed in reverse order 

from the failed scripts with environment variable "UEX_PROCTYPE" being set "ROLLBACK". 

Therefore, if a rollback processing is needed for state transition failure, it is necessary that 

user EXIT scripts have both forwarding processing and rollback processing according to the 

value of the environment variable "UEX_PROCTYPE". 

The following environment variable is set at the time of the user EXIT script execution. 

Environment 

variable name 

Description Variable value 



 

95 

 

UEX_LOCATION 
Location from which user EXIT 

script is started 

" PRERUNNING", 

" POSTRUNNING" 

UEX_PROCTYPE Type of processing 
" EXECUTION" : Normal Processing 

" ROLLBACK" : Rollback Processing 

UEX_ORDERNO 
Execution sequence number of 

User EXIT script 

Integer of 0-3 

UEX_JOBID Job ID executing the user EXIT 
<job number>:<sequence number>.<host 

name> 

UEX_NJOBS Number of jobs in request Integer of one or more 

UEX_USER Job owner's username User name 

UEX_HOME Job owner's Home directory Full path name 

UEX_STGDIR 
The top directory of Staging File 

Storage Location 

Full path name 

UEX_JOBDB 
The top directory of Job 

Database  

Full path name 

UEX_RSTPREV The previous state of request 

" QUEUED" 

" RUNNING" 

" SUSPENDING" 

" SUSPENDED" 

" RESUMING" 

UEX_RSTRSON 
The reason of the status 

transition 

" RUN"                (Run request) 

" RERUN"             (Rerun request) 

" DELETE"            (Delete request) 

" EXIT"                (Exited) 

" SYSTEM_FAILURE"  (System Failure) 

UEX_SID Session ID of job Integer of 1 or larger 

UEX_START_TIME Start time of job 
Time-based format: YYYY/MM/DD 

hh:mm:ss 

UEX_END_TIME End time of job 
Time-based format: YYYY/MM/DD 

hh:mm:ss 

The environment variable set in a job 

 

[Script example] 

#!/bin/sh 

 

LINK_FILE=$UEX_HOME/jobfiles 

 

case $UEX_LOCATION in 

PRERUNNING|RESTARTING) 



 

96 

 

case $UEX_PROCTYPE in 

EXECUTION) 

rm $LINK_FILE > /dev/null 2>&1 

ln -s $UEX_STGDIR $LINK_FILE || exit 1 

;; 

ROLLBACK) 

rm $LINK_FILE > /dev/null 2>&1 

;; 

esac 

;; 

POSTRUNNING|HOLDING) 

case $UEX_PROCTYPE in 

EXECUTION) 

rm $LINK_FILE > /dev/null 2>&1 

;; 

ROLLBACK) 

ln -s $UEX_STGDIR $LINK_FILE > /dev/null 2>&1 

;; 

esac 

;; 

esac 

 

exit 0 

 

(3) User EXIT I/O 

The messages written in the standard/error output of user EXIT script is output to the log file 

on the batch server via the job server. 

Note as follows regarding the output to log files. 

 It is necessary to set the log level 2 or more to output to a log file. Change the log level 

using the set batch_server log_file sub-command of the qmgr(1M) command. 

 The maximum length of one line is 1023 bytes. When length of the message exceeds, it is 

divided into two or more lines. 

The standard inputs of user EXIT script are redirected to /dev/null. File descriptors (larger 

than 3) will be closed. 

 

(4) Time-out of the User EXIT Execution 

NQSV can monitor the time-out of the UserEXIT execution to prepare the trouble like a stall 

of User EXIT script. 

Time-out time of the User EXIT execution is set to a queue. When time-out time set to a queue 

has passed after the User EXIT begins execution, script execution is interrupted. 

 

Use the following sub-commands of qmgr (1M) to set the time-out of User EXIT execution. 

Sub-command of qmgr(1M)  Default 



 

97 

 

set execution_queue userexit_timeout 

set interactive_queue userexit_timeout 

0 (OFF) 

Not time-out 

 

5.1.3. File Staging 

File Staging Function transfers the files related to the job execution between the client host 

and the execution hosts.  

The following two features for each direction are available for the file staging function. 

• Stage-in 

It is a type that the file is transferred from the client-host to the execution-host. It is 

used to put necessary files for job executing on the execution host beforehand. 

The file for stage-in is set by -I option of the qsub (1) command at the time of 

submitting request. 

• Stage-out 

It is a type that the file is transferred from the execution host to the client host. It is 

used mainly for transferring output files from the batch job to user.  

The file for stage-out is standard out, standard error, and set by -O option of the qsub 

(1) command at the time of submitting request. 

 

Network queue 

For file staging of a request, a file transfer to the client host is executed as a network request 

in the NQSV system, and a network queue exists as a queue for it. 

It is possible to make a network queue every client host that does a file transfer. In addition, 

staging type explained below, socket buffer and the number of concurrent executions of a file 

transfer can be set at this time. 

There is DefaultNetQueue made as a default for network queue, and if a network queue for 

staging is not made specifically, this DefaultNetQueue is used. 

 

Staging method 

The method of file staging has two types, Internal Staging Method and External Staging 

Method. A staging method is set to a network queue. The default value of a staging method of 

a network queue is the Internal Staging Method. 

Execute the "set network_queue staging_method" sub-command of the qmgr(1M) to switch the 

Internal Staging Method and the External Staging Method.  

$ qmgr -Po 

Mgr: set network_queue staging_method = external net1 

Set Staging Method. Network_queue: net1 

 

Allow the absolute staging file path 



 

98 

 

Only the external staging, it is possible to set a staging file pass on the execution host by 

absolute path. 

To enable this function, execute the qmgr (1M) sub-command "set batch_server 

allow_absolute_exepath" with manager privilege. 

$ qmgr -Pm 

Mgr: set batch_server allow_absolute_exepath on 

 

[Notes] 

This function enables for the external staging only. Absolute path can't be specified for the 

internal staging. 

 

(1) Internal Staging Method (Default File Staging Method) 

Internal Staging Method is the standard file staging method of NQSV. As all file transferring 

processed are performed by NQSV system in this method, it is not necessary special setting 

for starting operation. The transfer rate is low as the files are transferred via the batch server 

host. Therefore, this method is suitable for a small-scale file staging. 

The file transfer by internal staging method is divided into the following two sequences.  

 

1. Transfer between client host and batch server host 

The file is transferred between the User Agent on the client host and Staging Server 

on the batch server host. On the batch server host, the staging file is temporarily 

stored in the batch server database. 

2. Transfer between execution host and batch server host 

The file is transferred by using the TCP connection between the Batch Server and the 

Job Server. The buffer size used by this transferring can be changed by the "set 

network_queue staging_extended_buffer_size" sub-command of qmgr(1M). In general, 

the performance of transferring is improved by enlarging buffer size.  

 

(2) External Staging Method 

The External Staging Method is the method of staging that invokes the user-defined staging 

function (staging script) from NQSV. 

⚫ Setting 

Create a network queue and set a staging as outside transmission (external) to the 

client host that transfers a file transfer. In addition, install the script file under 

/opt/nec/nqsv/sbin/stg_prog/ on the batch server host. The script name has to be same 

as the name of target network queue. 

 

⚫ Staging Script 

http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/chap2-1.html#Staging%20Server
http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/cmd_man/qmgr.html#set_netque_ext_buffsize
http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/cmd_man/qmgr.html#set_netque_ext_buffsize
http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/cmd_man/qmgr.html


 

99 

 

Staging script are executed as a root privilege for each file on the batch server. 

At this time, the following environment variable is established to a staging script. 

Environment 

variable name 

Description Variable value 

STG_DIRECTION Direction of 

staging(IN/OUT)  

" STAGE_IN" (stage in) 

" STAGE_OUT" (stage out) 

STG_ORDERFILE Staging order file Full path name 

STG_STGNO Staging number Integer of 0 or more (4 digit 0 

padding from the left) 

STG_REQID Request ID <sequence number>.<host 

name> 

STG_USER User name of request owner 

on batch server host 

Character string 

STG_GROUP Group name of request 

owner on batch server host. 

Or specified group name by 

submission command in 

case Designated Group 

Execution Function ON. 

(For detail, please refer to 

 10. Group of Request.) 

Character string 

STG_UID User ID of request owner on 

batch server host 

Integer of 0 or more 

STG_GID Group ID of request owner 

on batch server host. 

Or specified group ID by 

submission command in 

case Designated Group 

Execution Function ON. 

(For detail, please refer to 

 10. Group of Request.) 

Integer of 0 or more 

 

⚫ Stage Order file 

Stage order file is written the information about staging file, which is set to the 

environment variable STG_ORDERFILE. Staging script refers this file and transfers 

a file. 

Each line defines one transmission, and the format is as follows. 

stgno jobno cli_user cli_host cli_path exe_user exe_host exe_path 

stgno  Staging number 

jobno  Job number 

cli_user User name on the client host 

cli_host Client host name 

cli_path Full path name on the client host 

exe_user User name on the execution host 

exe_host Execution host name 

exe_path Full path name on the execution host 



 

100 

 

 

Please configure a staging script so that it can perform actual file transferring 

according to the content in the line corresponding to the staging number in Staging 

Order File. 

 

[Example of Stage Order File] 

0000 0000 cuser0 chost0 /home/user0/dir0/ euser0 ehost0/var/opt/nec/nqsv/jsv/jobfile/0.1508.105/stgfile/dir0/ 

0000 0001 cuser0 chost1 /home/user1/file1 euser0 ehost1/var/opt/nec/nqsv/jsv/jobfile/0.1508.105/stgfile/file1 

 

In case the space character or the backslash is included in cli_path or exe_path, it will 

be converted into the character string of the table below in the stage order file.  

Please note that in creating a staging script. 

Original character Converted character 

Space (' ') "\s" 

Horizontal tab ('\t') "\t" 

LF ('\n') "\n" 

CR ('\r') "\r" 

backslash ('\\') "\\" 

 

[Example of the Staging Script] 

#!/bin/sh 

# 

# User-defined Staging Script.(scp version) 

# 

 

while read stgno jobno cli_user cli_host cli_path exe_user exe_host exe_path 

do 

[ ${stgno} != ${STG_STGNO} ] && continue 

 

src="" 

dst="" 

case ${STG_DIRECTION} in 

STAGE_IN) 

src=${cli_user} @${cli_host}:${cli_path} 

dst=${exe_user} @${exe_host}:${exe_path} 

;; 

STAGE_OUT) 

src=${exe_user} @${exe_host}:${exe_path} 

dst=${cli_user} @${cli_host}:${cli_path} 

;; 

esac 

su ${STG_USER} -c "scp -rp ${src} ${dst}" 2>& 3 || exit 1 

     

done < ${STG_ORDERFILE} 

 

exit 0 



 

101 

 

 

 

⚫ Output of Staging Script 

The staging script opens the standard output, the standard error output, and the 3rd 

file descriptor when starting. (Other file descriptors are closed.) The output 

destination of each file descriptor is as follows.  

⁃ The standard output, the standard error output 

They are redirected to the log file on the batch server if the log level is set two 

or more. When the length of message exceeds 1023 bytes (the maximum 

length of one line) it is divided into two or more lines. 

⁃ 3rd file descriptor 

The last line of message output to the 3rd file descriptor is forwarded to the 

batch server as an error message of transferring failure. This message can be 

displayed by qstat command with -T, -f option. The part that exceeded 127 

bytes is deleted. 

 

Example of outputting the batch server log is as follows. 

06/29 12:01:00 NQSV (STAGE): nqs_stgd (netque0): host00: No address associated 

with hostname 

 

⚫ Exit Code 

The Staging Server judges the result of transferring by the exit code of the Staging 

Script and performs as follows. 

End code Meaning Perform 

0 Success [STAGE_IN] 

The request transits to QUEUED state as the 

Stage-in success. 

[STAGE_OUT] 

The request transits to EXITED state as the 

Stage-out success. 

1 Error but it can be 

retried 

[STAGE_IN] 

The request stays in the STAGING state, and 

the Stage-in is retried after the regular 

intervals of time.(*1) 

[STAGE_OUT] 

The request stays in the EXITING state, and 

retries the Stage-out again after the regular 

intervals of time.(*1) 

2 or more Fatal error [STAGE_IN] 

The request returns to the QUEUED state as 

Stage-in failure and retries from the state of 

STAGING again after the regular intervals of 

time. 

http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/cmd_man/qstat.html
http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/cmd_man/qstat.html#-Tf


 

102 

 

[STAGE_OUT] 

The request transits to the EXITED state as 

Stage-out failure. In this case, the Stage-out 

files are not forwarded. 

(*1) The transmission waiting time set to a network queue (please refer to 2.3.5. 

Routing Retry Interval.) 

[Notes] 

When an error that can be retried occurs in case of the external staging, the network queue 

that has the error stalls until retry. Therefore other network requests in the network 

queue also wait for it. 

 

 

5.1.4. Job Migration 

The Job Migration is a function to move batch jobs controlled by a job server to under control 

of the other job server. It also moves optional files user designated as well.   

 

(1) Execution procedure 

Execute job migration in the NQSV as follows. 

1. Hold the target job 

Check Job Status. 

$ qstat -J 123.bsv0.example.com 

JNO RequestID        EJID   Memory      CPU JSVNO  ExecutionHost   UserName Exit 

---- --------------- ----- -------- -------- ----- --------------- -------- ---- 

   0 123.bsv0.exampl   136   10.15G   184.24     6 ehost1          user        - 

   1 123.bsv0.exampl    12    0.00B     0.00     7 ehost2          user        - 

Hold the whole request. 

$ qhold 123.bsv0.example.com 

Hold request 123.bsv0.example.com is accepted. 

Check if the parent request is in HELD state. 

$ qstat 123.bsv0.example.com  

RequestID       ReqName  UserName Queue     Pri STT S   Memory      CPU   Elapse R H M Jobs 

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ---- 

123.bsv.example test1    user     execque1    0 HLD -    0.00B     0.00       68 Y Y Y    2 

 

2. Execute the "migrate job" sub-command of qmgr(1M) command so that job database 

and migration file can be 

Migrate the batch job with the job ID 0:123.bsv0.example.com to the job server with 

job server number 8. 

$ qmgr -Po 

Mgr: migrate job = 0:123.bsv0.example.com job_server_id=8 

Migrated Job 

Check if the job ID 0:123.bsv0.example.com is existent on the job server of job server 

http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/cmd_man/qmgr.html#migrate
http://tom.hpc.necst.nec.co.jp/NQS/nqsII/manual/r270e/cmd_man/qmgr.html


 

103 

 

number 8. 

$ qstat -J 123.bsv0.example.com 

JNO  RequestID        EJID   Memory      CPU JSVNO ExecutionHost   UserName Exit 

---- --------------- ----- -------- -------- ----- --------------- -------- ---- 

   0 123.bsv0.exampl     -    0.00B     0.00     8 ehost3          user        - 

   1 123.bsv0.exampl     -    0.00B     0.00     7 ehost2          user        - 

 

3. Release the target request 

$ qrls 123.bsv0.example.com 

Request 123.bsv0.example.com was release. 

Execution is started again. 

$ qstat 123.bsv0.example.com 

RequestID       ReqName  UserName Queue     Pri STT S   Memory      CPU   Elapse R H M Jobs 

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ---- 

123.bsv.example test1    user     execque1    0 RUN -   20.31G  1311.20      161 Y Y Y    2 

 

(2) Target File for Migration 

The job migration process is performed by transferring necessary files for controlling batch job 

execution to the target job server. The target file for this file transfer is as follows.  

File type Path Note 

Job database /var/opt/nec/nqsv/jsv/<jsvno>/<jobid>/ Job management information 

Job file /var/opt/nec/nqsv/jsv/jobfile/<jobid>/ Restart file, staging file, etc. 

Migration file Optional path Checkpoint files, user specified files 

 

A job database and a job file are forwarded by NQSV to the time of a job Migration 

automatically. It is possible to forward the file a program is using as migration file or a 

necessary file for transmission by using -G option of qsub(1). 

The file types that can be transferred are normal file, directory, and FIFO (named pipe). Other 

types are ignored. However, a symbolic link file is transferred as a normal file. 

The target file that does not exist in the source is ignored. Moreover, if the file of the same 

name already exists on the destination, the target file will not be transferred. The transferred 

files along with the job migration will be automatically deleted by NQSV at the timing that 

the target job is completed or deleted. 

 

(3) Transmission parameter 

To optimize a file transfer, it is possible to set parameters for each job server. The parameters 

are as follows. 

 Host name of the network interface 

 Socket buffer size 

 I/O buffer size 

Execute the "set job_server migration_file_transfer_parameter" sub-command of qmgr (1M). 



 

104 

 

Example of outputting the batch server log is as follows. 

$ qmgr -Po 

Mgr: set job_server migration_file_transfer_parameter interface_hostname = host1 

socketbuffer_size = (0) iobuffer_size = (1048576) job_server_id = 1 

Set Migration_file_transfer_parameter: Job_Server_ID (1) 

 

(4) Sharing Job Server Database 

For migration, a file, such as job database or job files, is usually transferred between the job 

server hosts. But when the job server's database (/var/opt/nec/nqsv/jsv) is set for sharing area, 

is it possible to share the file on the sharing file system. 

However, please also note that the file I/O on the sharing file system is slower in general than 

on the local file system.  

 

[Notes] 

Use NFS, ScaTeFS for the shared file system. Operations cannot be guaranteed if other 

shared file system is used. 

 

Execute the following procedures to share the job server database: 

1)  Stop operations for all job servers executing on the execution host. 

2)  Set up the file system on the NFS server so that each execution server can access 

there through NFS mounting. As the job server will access the database using root 

privilege, please enable root accessing. 

3)  Please mount above file system to each execution host with NFS-mount.  

Specify /var/opt/nec/nqsv/jsv as the mount point and allow reading and writing in 

mounting the NFS file system. 

4)  Reboot the job servers. 

 

5.1.5. Cleaning up of submit failed connected request 

This function removes the remaining connected request automatically, if it failed to submit 

connection request. 

Case disable this function, if the connection request failed to submit, a part of the connected 

request that already submitted is kept in HELD state. 

 

The use of cleaning up of submit failed connected request function can be changed by the 

following qmgr sub-command. 

set batch_server auto_delete_failed_request { on | off } 

on Enable cleaning up of submit failed connected request function  (default) 

If the connection request failed to submit, the remaining connected request 



 

105 

 

is removed automatically. 

off Disable cleaning up of submit failed connected request function 

If the connection request failed to submit, the remaining connected request 

is not removed. It is maintained in the HELD state. 

This operation needs manager privilege. 

 

It is possible to refer to the above settings set by using qstat -Bf  (batch server information). 

$qstat -Bf 

Batch Server: bsv.example.com 

     : 

   Allow Absolute Exepath = OFF 

   Auto Delete Failed Request = ON 

     : 

 

5.1.6. Limit the number of re-runs 

Sometimes a node running a batch request encounters a failure and is unable to continue 

running the request job. In such cases, NQSV may rerun the request and reexecute it. However, 

if the job is the cause of a node failure, unlimited reruns of the request may result in all nodes 

going into a failure state. This situation can be avoided by setting a limit on the number of re-

runs for batch requests. The batch request rerun limit is done on a per-queue basis using a 

subcommand of the qmgr(1M) command. 

 

Queue type Subcommands of qmgr(1M) 

batch queue set execution_queue rerun_default = 

{yes | no} [limit = <limit>] <queue-name> 

 

$ qmgr -Pm 

Mgr: set execution_queue rerun_default = yes limit = 1 batch1 

Set rerun_default(limit:1). queue: batch1 

 

If yes is specified, the batch request can be rerun. Set <limit> to the number of times it can be 

rerun. If not specified, or if 0 is specified, the number of re-runs is unlimited. The range of 

possible values is 0 to 2147483647; if no is specified, the batch request cannot be rerun. 

 

If the number of re-runs for a batch request reaches the limit, the request will be put into the 

re-run disabled state (same as qsub -r n). If the situation becomes one in which re-runs occur 

again, the request will be deleted. 

 

The re-run count limit applies to all cases that are re-run by NQSV. 



 

106 

 

 

⚫ When a job is stalled and rerun by LINKDOWN of a job server 

⚫ When a job is re-run by the node health check function 

⚫ When a job is re-run by qrerun(1) command 

⚫ When a job is re-run by the forced re-run function of JobManipulator 

⚫ When a lower urgency request is rerun by assigning an urgent request 

⚫ When a request that has jobs is moved to the another queue by qmove(1) command with -

f option 

 

5.1.7. Automatic rerun and billing exclusion function for HW failures 

If a node executing batch requests encounters a failure and the job server LINKDOWN, the 

request will be in a stalled state. If the stalled request exceeds the elapsed time (elaps) and 

ends, we delete the request and bill for the successfully completed job.  

 

However, if there are abnormalities in the execution results due to the failure of the 

encountered job, even if there are jobs that have ended normally, the results may be unreliable. 

By enabling the automatic rerun and billing exclusion function for HW failures, we can rerun 

requests that exceed the elapsed time in a stalled state and exclude them from being billed. 

 

This function can be enabled by configuring the nqsd.conf (/etc/opt/nec/nqsv/nqsd.conf) file and 

asvd.conf (/etc/opt/nec/nqsv/asvd.conf) file with the following format, restarting the batch 

server or executing the qmgr(1M) load nqsd_conf subcommand, and restarting the accounting 

server. 

 

nqsd.conf 

enable_jsv_failure_handling on 

The default value is off. 

 

asvd.conf 

NO_CHANGE_ON_HW_FAILURE=on 

The default value is off. 

 

If you have billing enabled and want to exclude requests encountered due to HW failures 

caused by LINKDOWN from being billed, please enable the settings on both the batch server 

(BSV) and accounting server (ASV). 

 



 

107 

 

5.2. Interactive request 

5.2.1. Request attribute modification 

It is possible to change the attribute set to interactive request by the qalter (1) command like 

a batch request. Please refer to the qalter (1) command about the changeable attributes. 

 

5.2.2. User EXIT 

It is possible to set the user EXIT like a batch request to interactive request. About a setting 

method, please refer to 5.1.2.User EXIT. 

 

5.2.3. Waiting Option 

At the time of investment of interactive request by qlogin(1), if there are enough execution 

hosts to be assigned immediately, it is possible to select whether wait for enough execution 

hosts or cancel the request. 

About a way of setting, please refer to 4.2.2(10) Waiting Option. 

 

5.2.4. Compulsion Execution Shell 

A login shell is usually used as a login shell for interactive queue session. However, when a 

compulsion execution shell is set as interactive queue, the shell is used as a login shell for 

interactive queue session. 

About a setting, please refer to 4.2.2(11) Compulsion Execution Shell. 

 

5.2.5. Idle Timer 

A login shell for interactive queue session terminates after waiting for a certain time set as 

idle timer if input does not arrive. It is possible to set an idle timer every interactive queue. 

About a setting, please refer to 4.2.2(12) Idle Timer. 

 

5.2.6. Notes 

⚫ It is not possible to do file staging and a job migration on interactive request. 

⚫ Interactive request could not be submitted to routing queue. 

⚫ Firewall on the client host must be configured to use interactive request. Because it 

connects from execution host to client host that qlogin/qrsh command is executed. Please 

refer to Part 1.6.3 Configuration for interactive request. 

 

 

  



 

108 

 

6. Client's Management 

A NQSV client is a general term for user commands, which are submission/reference/operation 

commands and administrator's commands. 

 

6.1. Setting of api_client.conf 

All NQSV client commands connect the batch server. It is possible to designate the batch server 

to an option of command, but when being not designated to command option, the batch is 

acquired from /etc/opt/nec/nqsv/api_client.conf file. 

The syntax of api_client.conf is composed of a keyword and its value in a pair. 

⚫ The portion after # until the line end is regarded as a comment. 

⚫ The following keywords can be specified. The keywords are case-insensitive. 

Keyword Description 

batch_server_host Specifies the host name of a batch server host. 

batch_server_port Specifies a TCP port number for connection to the batch server. 

 

[Sample of api_client.conf] 

# 

# NQSV Client Configuration file. 

# 

 

batch_server_host bsv0.example.com 

batch_server_port 602 

 

In case it fails to connect the batch server specified in the line of " batch_server_host", it is 

possible to register an another batch server host in the file as an alternative batch server to 

automatically connect to. The alternative batch server is specified under the line of " 

batch_server_host" by using the keyword, "alt_server_host". 

# 

# NQSV Client Configuration file. 

# 

 

batch_server_host   bsv0.example.com 

alt_server_host     bsv1.example.com 

batch_server_port   602 

According to this setting, the client commands tries to connect the batch server specified in the 

line of "batch_server_host" first. In case they fail to connect, they connect the host specified in 

the line of "alt_server_host". And, if it fails, too, the commands return error for connection 

failure of batch server. When the client commands connect the host specified in the 

"alt_server_host" after they fail to connect the batch server specified in the line of 



 

109 

 

"batch_server_host", they display name of the batch server host to the standard error output. 

$ qsub job_script 

Connected to bsv1.example.com. 

Request 204.bsv1.example.com submitted to queue: batch. 

But, in case that the batch sever to connect is explicitly specified by qmgr command or the 

client commands, alternative server host is not automatically connected even if an alternative 

server is specified in the line of "alt_server_host". 

 

[Notes] 

It is necessary to thoroughly check whether the request specified as a target of operation 

is really the target request when processing a request, because an another batch server is 

automatically connected according to the "alt_server_host" setting in case it fails to 

connect the default batch server. 

 

6.2. User Agent 

It is necessary to start the user agent to return the result file or do staging of an input/output 

file with the client host.  

 

The systemctl is usually used to start or end the user agent. 

The user agent has to be specified the batch server that permits a connection as an argument 

at the time of a start, and set the host name of the batch server to the BSV_HOSTS variable 

in /etc/opt/nec/nqsv/nqs_uag.env file. (For more than one, punctuate by space.) 

 

BSV_HOSTS="bsv1.example.com bsv2.example.com bsv3.example.com" 

 

To start user agent automatically when client host is booted, execute following command 

# systemctl enable nqs-uag.service 

 

Activation 

If nqs-uag service is enabled, starts as follows by a root privilege using the systemctl. 

# systemctl start nqs-cui.target 

 

If nqs-uag service is not enabled, execute following command to start nqs-uag.service. 

# systemctl start nqs-uag.service 

 

For manual activation, specify the host name of the batch server that permits a connection as 

an argument as follows. 



 

110 

 

# /opt/nec/nqsv/sbin/nqs_uagd bsv0.example.com bsv1.example.com 

 

When the user agent is activated, it binds TCP Port 603 by default and waits connection 

requests from the batch server (from the staging server). A port number specified in 

/etc/services with the name "nqsv-uag" or "nqsII-uag" will be given priority. If both of "nqsv-

uag" and "nqsII-uag" specified, "nqsv-uag" will be given priority. 

 

Termination 

If nqs-uag service is enabled, terminates as follows by a root privilege using the systemctl 

command. 

 

# systemctl stop nqs-cui.target 

 

If nqs-uag service is not enabled, execute following command to stop nqs-uag.service. 

# systemctl stop nqs-uag.service 

 

Send SIGTERM to the appropriate process when terminating the user agent manually. 

 

6.3. Configuration for interactive request and attach to request 

On the interactive request, execution host that executes the job makes TCP connection to the 

client host that execute qlogin/qrsh command. This connection uses ephemeral port of client 

host. Set the firewall on the client host to accept the connection for ephemeral port from 

execution host. 

It also need same configuration as interactive request to attach to the request. 

 

 

  



 

111 

 

7. Remote Execution by Interactive Function 

The remote execution by interactive function is that the user does a program execution request 

on the client host, and the interactive request executed on a remote host is put in NQSV 

automatically and a program is executed on the execution host. 

 

 

Figure 7-1 : Remote execution by interactive request 

 

The qrsh command puts interactive request in NQSV. It is necessary to register a command 

line of the program and options for qrsh in advance. In addition, it is necessary to make remote 

execution program to submit an interactive request by using qrsh. The qcmdconf (1) command 

is used for this. 

 

7.1. Register 

To register the program to be executed remote host, -a option of qcmdconf(1) is used. 

qcmdconf -a --name=entry-name --cmd=remote_cmd-line 

--queue = queue-name [--opt=qrsh_options] [-f file-name] [-S] 

--name=entry-name 

Specify the name of the registration name of the command line to be executed on 

a remote host. When not specified the following-f option, this name will be the 

file name of the remote execution program. 

--cmd = remote_cmd - line 

Specify the command line to be executed on a remote host. The number of 

characters of the command line is at most 1023 characters. 

If there are SPACE for more than one in the command line, surround with single 

quote (') or double quote ("). When there are control characters, put escape 

character (\). 

--queue = queue-name 

Specify the interactive queue name. 



 

112 

 

 

--opt=qrsh_options 

Specify options, such as restriction of resources. 

If there are SPACE more than one, surround with single quote (') or double quote 

("). 

-f file-name 

Specify the file name of the remote execution program. 

-S 

It is registered by the administrator privilege. It is only the root user that can 

specify this option. The remote execution program available is registered for all 

users. 

Without -S options, the remote execution program is for the user's individuals 

who executed the qcmdconf command. (A registration data file is made in the 

user's home directory.) 

 

Registered data are stored in the following location. 

 

⚫ For the general user: 

$ HOME/.nqsv/qcmd_list Registration data for the user's individuals 

⚫ For administrator right designation (-S option specified by the root privilege): 

/etc/opt/nec/nqsv/qcmd_list  Registration data of system 

 

Below is an example. 

$ qcmdconf -a --name vecprog --cmd='mpirun -host 0 -nnp 4 -ve 0 ./pi' --queue iq1 --

opt='-T necmpi --cpunum-lhost=4 --venum-lhost=1' 

$ ls -l vecprog 

-rwxr-xr-x 1 user1 grp1 37  Feb  14 14:54 2017 vecprog. 

The remote execution program "vecprog" was made in a current directory. 

When this "vecprog" is started, an interactive request is put in the interactive queue iq1 

with "-T necmpi --cpunum-lhost=4" for the qrsh command. 

The following command line will be executed on the execution host in this case. 

mpirun -host 0 -nnp 4 -ve 0 ./pi 

* Host specified to mpirun 

The job number, not the host name, is specified as an argument of -host option 

to the interactive request like a batch request. 

 

7.2. Reference to the Information 

It is possible to refer to registration information on the remote execution program by -l option 



 

113 

 

of qcmdconf (1). 

qcmdconf -l [-S] 

A list of registration information on the remote execution program that can be used is 

shown to standard output from the information on system and user's individuals. 

-S 

Show the information registered by the administrator privilege. When executed 

by the administrator privilege, list of the remote execution type program 

registration information is shown only from registration information on system. 

 

[Use example for general users] 

$ qcmdconf -l 

----------------------------- 

Common configuration 

----------------------------- 

Name         remote-cmd                   queue    qrsh-option 

----------------------------------------------------------------------------- 

AP1          "AP1 -x"                     iqs      "--cpunum-lhost=2" 

----------------------------- 

User configuration 

----------------------------------------------------------------------------- 

name         remote-cmd                   queue    qrsh-option 

----------------------------------------------------------------------------- 

vecprog     "mpirun -host 0 -nnp 4 /opt/nec/ve/bin/ve_exec ./pi" iq1 "-T necmpi --

cpunum-lhost=4 --venum-lhost=1" 

 

[Use example for the administrator privilege] 

# qcmdconf -l -S 

----------------------------- 

Common configuration 

----------------------------- 

name        remote-cmd                    queue    qrsh-option 

----------------------------------------------------------------------------- 

AP1         "AP1 -x"                      iqs      "--cpunum-lhost=4" 

 

7.3. Execution 

When the remote execution program is submitted on the client host, according to the 

registration information (*), an interactive request will be automatically submitted by qrsh(1) 

and be executed on the execution host immediately. 

* Refer to registration data $HOME/.nqsv/qcmd_list for the individual user's remote 

execution program. 

At this time, the standard input/output error output of an executed program on the execution 



 

114 

 

host is connected with a client host. 

 

[Example of the remote execution program] 

$ ./vecprog 

pi is approximately 3.1415926535897922, Error is 0.0000000000000009 

By the above example, the following command line is executed on the execution host, and the 

standard output on the execution host is output in standard output of the client host. 

mpirun -host 0 -nnp 4 /opt/nec/ve/bin/ve_exec ./pi 

 

Further, it is possible to redirect the standard output/error output on the execution host by 

using a redirection or a pipe. 

$ ./vecprog > outfile 

A "outfile" is made on the client host (the user's execution terminal). 

 

It is possible to give arguments to the remote execution program. When arguments are 

specified as the time of starting remote execution program, they are passed to the execution 

command line on the execution host just as it is. 

For example, when an argument is specified by a command line on a client host: 

$ ./vecprog -opt1 

The following command line is executed on the execution host. 

mpirun -host 0 -nnp 4 /opt/nec/ve/bin/ve_exec ./pi -opt1 

 

As the remote execution program is automatically submitted by interactive request function, 

the information is shown as that by qstat(1). 

$ qstat 

RequestID       ReqName  UserName Queue     Pri STT S   Memory      CPU   Elapse R H M 

Jobs 

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ---

- 

17608.bsv1      QRSH     user1    iq1         0 RUN -    0.00B     0.00        2 N N N    

1 

 

7.4. Deletion 

To delete the program to be executed remote host, -d option of qcmdconf(1) is used. 

 qcmdconf -d entry-name [-S]. 

A registration name for the remote execution program is specified. 

Only registration information will be deleted. To delete the remote execution program file, 

use rm command. 



 

115 

 

entry - name 

Specify registration name of the remote execution program to be deleted. 

-S 

Delete the information registered by the administrator privilege. 

Without -S options, the remote execution program for the user's individuals will 

be deleted. 

 

7.5. Common Remote Execution Program 

When doing registration and making of the remote execution program by qcmdconf -a by the 

administrator privilege (With -S option), the registration information are stored at 

/etc/nsqII/qcmd_list and the remote execution program will be available for all users. 

The location of the registration data is fixed and it is /etc/opt/nec/nqsv/qcmd_list, but the 

location of remote execution program made by the information is not fixed. 

When doing the practical use by using the remote execution program in common shared by 

several users as tool, the execution program needs to be stored the location which can be 

referred to the users, and set the path to each user environment. 

When the root user registers without -S option, the remote execution program can be used by 

root user only. Other users cannot execute the remote execution program. 

  



 

116 

 

8. Preservation of NQSV Environment 

8.1. Environment of Batch Server and Queue 

To preserve the information about a batch server, execution hosts (job servers), node groups 

and queues, use the "list all" sub-command of qmgr(1M). 

# qmgr 

Mgr: list all file=savefile.bsvque 

The information is changed to the format of the sub-command of qmgr and preserved in a file 

(savefile.bsvque). When template information or custom resource information are defined, it 

is preserved too. 

It is possible to restore the NQSV environment easily by qmgr command. 

# qmgr -Pm < savefile.bsvque 

Set Logfile Path. 

Set Log Level. 

Set Save Logfile Number. 

Set Logfile Size. 

Set Heartbeat Interval. 

Set Load Interval. 

: 

 

Information about the bind relation of execution queue is not outputted, because there is a 

possibility that the change of formation about job servers and scheduler. To output the 

information, use the "list bind" sub-command. 

To preserve only template information or only custom resource information, use "list template" 

or "list custom_resource" sub-command. 

 

8.2. Environment of Batch Server 

To preserve the information about a batch server, use the "list batch_server" sub-command of 

qmgr(1M). 

# qmgr 

Mgr: list batch_server file=savefile.bsv 

The information is changed to the format of the sub-command of qmgr and preserved in a file. 

It is possible to restore the NQSV environment easily by qmgr command. 

# qmgr -Pm < savefile.bsv 

Set Logfile Path. 

Set Log Level. 

Set Save Logfile Number. 

Set Logfile Size. 

Set Heartbeat Interval. 

Set Load Interval. 

: 



 

117 

 

To preserve information about execution hosts (job servers) and node groups, user the "list 

node" sub-command of qmgr(1M). 

 

8.3. Environment of Queue 

To preserve the information about queues, use the "list queue" sub-command of qmgr(1M). 

# qmgr 

Mgr: list queue file=savefile.queue 

 

The information is changed to the format of the sub-command of qmgr and preserved in a file. 

It is possible to restore the NQSV environment easily by qmgr command. 

# qmgr -Pm < savefile.queue 

Queue exec1 created. 

Enable Queue: exec1 

Start Queue: exec1 

Set Checkpoint: exec1 

Set Access_List Noaccess. 

Set Reserve ID: exec1 

Set Restart option: exec1 

Set Elapse Time (Per-Request) limit: exec1 

Set standard Elapse Time (Per-Request): exec1 

Set CPU Time (Per-Job) limit: exec1 

Set standard CPU Time (Per-Job): exec1 

: 

 

8.4. Binding 

To preserve the information about binding between queue and job server, use the "list bind" 

sub-command of qmgr(1M). 

# qmgr 

Mgr: list bind file=savefile.bind 

 

The information is changed to the format of the sub-command of qmgr and preserved in a file. 

It is possible to restore the NQSV environment easily by qmgr command. 

# qmgr -Pm < savefile.bind 

Bound Job_Server_ID (0) to Queue (exec1). 

Bound Job_Server_ID (1) to Queue (exec1). 

Bound Job_Server_ID (2) to Queue (exec1). 

: 

 

 



 

118 

 

9. MPI Request Execution Environment Settings 

In this section, the following MPI execution environment settings are explained. 

• OpenMPI  (OpenMPI Version 4.1.x, Version 5.0.x) 

• IntelMPI  (Intel(R) MPI Library for Linux OS Version 4.1 Update 3, 

           Version 5.1 Update 3, 2017 Update 1, 2018 Update 3, 2019 Update 7, 

2021 Update 5) 

• Intel OneAPI (Intel(R) OneAPI Toolkits Release 2021.4) 

• MVAPICH2  (MVAPICH2 Version 2.0, Version 2.3.4, Version 2.3.6, Version 2.3.7) 

• Platform MPI (Platform MPI Version 09.01.04.03) 

9.1. OpenMPI Environment Settings 

(1) Execution Host Settings 

To execute an OpenMPI job, set installation path of OpenMPI in the script file 

(/opt/nec/nqsv/sbin/startopenmpi.sh) for starting OpenMPI job on each execution host. 

startopenmpi.sh 

: 

# Installation path of your OpenMPI 

OMPIHOME=/opt/openmpi-5.0.5 

: 

 

The startopenmpi.sh script sets PATH and LD_LIBRARY_PATH and passes them to the slave 

job. If you want to execute a job that depends on the path setting order in your environment, 

set PATH and LD_LIBRARY_PATH appropriately according to the environment. 

 

(2) Job and MPI Process Allocation 

NQSV starts OpenMPI process in each job cooperating with the remote process generation 

function of OpenMPI. 

1. NQSV creates as many jobs as specified by the command to submit a request and 

provides MPI with the name of host allocated for jobs and the number of CPUs. 

2. MPI allocates MPI process based on the information provided by NQSV. 

MPI is based upon the premise that a job is usually allocated per a node. 

 

[Notes] 

OpenMPI program execution fails if more than on jobs are allocated on an execution host. 

A job needs to be allocated on each execution host. 

 



 

119 

 

9.2. IntelMPI Environment Settings 

NQSV starts IntelMPI process in each job cooperating with the remote process generation 

function of IntelMPI. 

1. NQSV creates as many jobs as specified by the command to submit a request and 

provides MPI with the name of host allocated for jobs and the number of CPUs. 

2. MPI allocates MPI process based on the information provided by NQSV. 

MPI is based upon the premise that a job is usually allocated per a node. 

 

[Notes] 

If multiple jobs are allocated on an execution host, IntelMPI processes are 

disproportionately allocated in only one of those jobs and the job cannot be executed 

normally. 

A job needs to be allocated on each execution host. 

 

9.3. MVAPICH2 Environment Settings 

NQSV starts MVAPICH process in each job cooperating with the remote process generation 

function of MVAPICH2. 

1. NQSV creates as many jobs as specified by the command to submit a request and 

provides MPI with the name of host allocated for jobs and the number of CPUs. 

2. MPI allocates MPI process based on the information provided by NQSV. 

MPI is based upon the premise that a job is usually allocated per a node. 

 

[Notes] 

MVAPICH program execution fails if more than one job is allocated on an execution host. 

Only one job needs to be allocated on each execution host. 

 

9.4. PlatformMPI Environment Settings 

NQSV starts PlatformlMPI process in each job cooperating with the remote process generation 

function of PlatformMPI. 

 

1. NQSV creates as many jobs as specified by the command to submit a request and 

provides MPI with the name of host allocated for jobs and the number of CPUs. 

2. MPI allocates MPI process based on the information provided by NQSV. MPI is based 

upon the premise that a job is usually allocated per a node. 

 



 

120 

 

[Notes] 

If multiple jobs are allocated on an execution host, PlatformMPI processes are 

disproportionately allocated in only one of those jobs and the job cannot be executed 

normally. 

A job needs to be allocated on each execution host. 

  



 

121 

 

9.5. NEC MPI Environment Settings 

NQSV starts NEC MPI process in each job cooperating with the remote process 

generation function of NEC MPI. 

It is possible to configure the queue to be submitted whether to use Hydra or MPD as the 

process manager for executing NEC MPI jobs. To configure the process manager for NEC 

MPI jobs for a queue, run qmgr(1M) with operator privileges and use the following 

subcommand. 

 

set execution_queue necmpi_process_manager = { hydra | mpd } queue 

 

You set the process manager to be used by NEC MPI requests submitted to the queue 

specified by queue to hydra or mpd. The default process manager when the queue is created 

is mpd. 

 

This setting is only available for batch queues. Interactive queues always use hydra 

as the process manager. 

 

The process manager of NEC MPI set in the queue can be checked by qstat -Qf as 

follows. 

 

$ qstat -Qf bq 

Execution Queue: bq@bsvhost 

    Run State    = Active 

    Submit State = Enable 

    Scheduler ID   = 1 

: 

    GPU-CPU Affinity = OFF 

    GPU-CPU Affinity CPU per GPU = 1 

    NEC MPI Process Manager = mpd 

    Range of Jobs Limit per Batch Request (min,max) = 1,10240 

    Range of Request Priority = { 

: 

 

 

10. Group of Request 

User and group information are retained in the request information. This group usually 



 

122 

 

becomes primary group of user who submits a request, and a job is executed by the primary 

group on execution host. 

If designated group execution function for request is used, the designated group becomes 

the group of request by contrast, and a job is executed by the designated group. In this section, 

the designated group execution function is explained. 

 

10.1. Designated Group Execution Function for Request 

This is the function to execute a job and perform accounting by the designated group (or 

supplementary group) when submitting a request. 

 

It is possible to designate group (supplementary group) by --group=<group_name> option of 

the request-submitting command (such as qsub, qlogin and qrsh) as the group of the request. 

In case --group option is not specified, the group of the request-submitting command becomes 

the group of request. In addition, it is possible to designate supplementary group by switching 

execution group to supplementary group by newgrp and by executing the request- submitting 

command. 

 

When group of a request is designated by using this function, the followings are to be done for 

the request.   

• Queue access limitation, submit number limit and queue resource restriction are to be 

checked by the designated group for the request. 

• A job is to be executed by the designated group as execution GID. 

⁃ If the designated group does not exist on the execution host, the job shall fail. 

• The designated group for the request is to be registered as group information of 

request account and job account. 

• A file is to be created by the designated group in case of internal staging during the 

file staging for the request. 

• In case of external staging, the value of the environment variables, STG_GROUP 

(group name) and STG_GID (group GID), set to staging script are the group 

designated by the user. 

 

10.2. Enable/Disable Function and Reference of Settings 

Group designated execution function for request is enabled by using the following the sub-

command of qmgr. 

Format 

set batch_server specify_group_request { on | off } 



 

123 

 

on Enable group designated execution function for request 

Supplemental group can be specified on submitting request and a job is 

executed by the group. 

off Disable group designated execution function for request 

This operation needs operator privilege. 

 

It is possible to refer to the above settings set by using qstat -Bf  (batch server information). 

$qstat -Bf 

Batch Server: bsv.example.com 

     : 

   Specify Group for Request = ON 

   Allow Absolute Exepath = OFF 

     : 

 

10.3. Usage Precautions 

Note as follows regarding usage of this function. 

• Among NQSV systems such as client host, BSV host and job server host, setting of 

user (UID) and group (GID) need to be in common. If they are not in common, submit 

error, execution error, or job execution by unintended UID/GID may occur. 

• Do not use user mapping. 

In case that user mapping is used (user is mapped to a different user in any of client 

host, BSV host or job server host), the designated group on submitting request is to be 

invalid and request is to be operated by the primary group of the mapped user. 

• The following settings need to be in common among BSV hosts and in case of 

transferring request to other BSV via routing queue. 

➢ Enable/Disable of this function 

➢ Settings of user (UID) and group (GID) 

➢ Settings of user mapping 

• Regardless of access enable or disable check state for the access limitation of the 

queue, access limitation is to to checked against the group designated on submitting 

request. 

• Group cannot be designated for workflow (wstart). However, it is possible to designate 

group for individual request in workflow. 

 

 

  



 

124 

 

11. Limit per Group and User 

Regarding limit for batch server and queues, some upper limit can be set by individually 

specifying group or user name.  

Targets of limit are submit number limit for batch server, batch queues, interactive queues 

and routing queues and limitation of job  number to create and elapse time limit for batch 

queue and interactive queue. 

 

11.1. Submit Number Limit per Batch Server 

For batch server, upper limit of submit number of request can be set by individually specifying 

group or user name.  

In case of specifying group name for submit number limit, submit number limit per a group is 

invalid and in case of specifying user name, submit number of limit per a user is invalid. 

 

(1) Limit Settings 

The sub-commands of qmgr (1M), "set batch_server" to set submit limit specifying group name 

or user name individually are as follows. The operator privilege or higher is necessary to set 

the limit. 

Attribute qmgr(1M) Sub-Command 

The number of 

requests that 

specified group can 

submit to a queue 

set batch_server group_submit_limit=<limit> groups=<group_name> 

The number of 

requests that 

specified user can 

submit to a queue 

set batch_server user_submit_limit=<limit> users=<user_name> 

 

(2) Limit Cancellation 

The sub-commands of qmgr (1M), "delete batch_server" to cancel submit limit specifying group 

name or user name individually are as follows. The operator privilege or higher is necessary 

to set the limit. 

Attribute qmgr(1M) Sub-Command 

The number of 

requests that 

specified group can 

submit to a queue 

delete batch_server group_submit_limit groups=<group_name> 

The number of 

requests that 

specified user can 

submit to a queue 

delete batch_server user_submit_limit users=<user_name>  

 



 

125 

 

11.2. Limitation per Queue 

11.2.1. Submit Limit 

It is possible to set a limit per queue to the number of requests that can be submitted to a 

batch queue, interactive queue and routing queue by individually specifying group name or 

user name. 

In case of specifying group name for submit number limit, submit number limit per a group is 

invalid and in case of specifying user name, submit number of limit per a user is invalid. 

However, it is not possible to exceed a submit number limitation value per queue. 

 

(1) Limit Settings 

The sub-commands of qmgr (1M), "set execution_queue", "set interactive_queue" and "set 

routing_queue" to set submit limit specifying group name or user name individually are as 

follows. The operator privilege or higher is necessary to set the limit. 

Attribute QueueType qmgr(1M) Sub-Command 

The number of 

requests that 

specified group can 

submit to a queue 

batch queue 
set execution_queue group_submit_limit=<limit> 

groups=<group_name> <queue> 

interactive 

queue 

set interactive_queue group_submit_limit=<limit> 

groups=<group_name> <queue> 

routing queue 
set routing_queue group_submit_limit=<limit> 

groups=<group_name> <queue> 

The number of 

requests that 

specified user can 

submit to a queue 

batch queue 
set execution_queue user_submit_limit=<limit> 

users=<user_name> <queue> 

interactive 

queue 

set interactive_queue user_submit_limit=<limit> 

users=<user_name> <queue> 

routing queue 
set routing_queue user_submit_limit=<limit> 

users=<user_name> <queue> 

 

(2) Limit Cancellation 

The sub-commands of qmgr (1M), "delete execution_queue", "delete interactive_queue" and 

"delete routing_queue" to cancel submit limit specifying group name or user name individually 

are as follows.  

The operator privilege or higher is necessary to cancel the limit. 

Attribute QueueType qmgr(1M) Sub-Command 

The number of 

requests that 

specified group can 

submit to a queue 

batch queue 
delete execution_queue group_submit_limit 

groups=<group_name> <queue> 

interactive 

queue 

delete interactive_queue group_submit_limit 

groups=<group_name> <queue> 

routing queue 
delete routing_queue group_submit_limit 

groups=<group_name> <queue> 

The number of 

requests that 
batch queue 

delete execution_queue user_submit_limit 

users=<user_name> <queue> 



 

126 

 

specified user can 

submit to a queue 
interactive 

queue 

delete interactive_queue user_submit_limit 

users=<user_name> <queue> 

routing queue 
delete routing_queue user_submit_limit 

users=<user_name> <queue> 

 

11.2.2. Limitation of the Job Number 

It is possible to limit the number of jobs created from request submitted to batch queue or 

interactive queue specifying group name or user name. If job number set on submitting request 

is outside the range of job number set for group or user, submission to the queue shall be 

rejected. 

However, even if this limit is set, it is not possible to exceed the number of jobs set to the queue. 

 

(1) Limit Settings 

The sub-commands of qmgr (1M), "set execution_queue" and "set interactive_queue" to set job 

number limit of a queue specifying group name or user name individually are as follows.  

The operator privilege or higher is necessary to set the limit. 

Attribute QueueType qmgr(1M) Sub-Command 

The range of 

number of jobs for 

requests that 

specified group can 

submit to a queue 

batch queue 
set execution_queue jobs_range = <limit> 

groups=<group_name> <queue> 

interactive 

queue 

set interactive_queue jobs_range = <limit> 

groups=<group_name> <queue> 

The range of 

number of jobs for 

requests that 

specified user can 

submit to a queue 

batch queue 
set execution_queue jobs_range = <limit> 

users=<user_name> <queue> 

interactive 

queue 

set interactive_queue jobs_range = <limit> 

users=<user_name> <queue> 

 

(2) Limit Cancellation 

The sub-commands of qmgr (1M), "delete execution_queue", "delete interactive_queue" to 

cancel job number limit of a queue specifying group name or user name individually are as 

follows.  

The operator privilege or higher is necessary to set the limit. 

Attribute QueueType qmgr(1M) Sub-Command 

The range of 

number of jobs for 

requests that 

specified group can 

submit to a queue 

batch queue 
delete execution_queue jobs_range 

groups=<group_name> <queue> 

interactive 

queue 

delete interactive_queue jobs_range 

groups=<group_name> <queue> 

The range of 

number of jobs for 

requests that 

specified user can 

submit to a queue 

batch queue 
delete execution_queue jobs_range 

users=<user_name> <queue> 

interactive 

queue 

delete interactive_queue jobs_range 

users=<user_name> <queue> 



 

127 

 

 

11.2.3. Elapse Time Limit 

It is possible to limit elapse time for request submitted to batch queue or interactive queue 

specifying group name or user name. If elapse time set on submitting request is outside the 

range of elapse time set for group or user, submission to the queue shall be rejected. 

However, even if this limit is set, it is not possible to exceed elapse time limit set to the queue. 

In case that elapse time limit is not specified on submitting a request, minimal value of elapse 

time limit from the followings is set. 

• Default value of elapse time limit for queue 

• Maximum value of elapse time limit set for group 

• Maximum value of elapse time limit set for user 

 

(1) Limit Settings 

The sub-commands of qmgr (1M), "set execution_queue" and "set interactive_queue" to set 

elapse time limit of a queue specifying group name or user name individually are as follows.  

The operator privilege or higher is necessary to set the limit. 

Attribute QueueType qmgr(1M) Sub-Command 

The elapse time 

limit for requests 

that specified 

group can submit 

to a queue 

batch queue 
set execution_queue per_req elapse_time_limit = 

<limit> groups=<group_name> <queue> 

interactive 

queue 

set interactive_queue per_req elapse_time_limit = 

<limit> groups=<group_name> <queue> 

The elapse time 

limit for requests 

that specified user 

can submit to a 

queue 

batch queue 
set execution_queue per_req elapse_time_limit = 

<limit> users=<user_name> <queue> 

interactive 

queue 

set interactive_queue per_req elapse_time_limit = 

<limit> users=<user_name> <queue> 

 

(2) Limit Cancellation 

The sub-commands of qmgr (1M), "delete execution_queue" and "delete interactive_queue" to 

cancel elapse time limit of a queue specifying group name or user name individually are as 

follows.  

The operator privilege or higher is necessary to set the limit. 

Attribute QueueType qmgr(1M) Sub-Command 

The elapse time 

limit for requests 

that specified 

group can submit 

to a queue 

batch queue 
delete execution_queue per_req elapse_time_limit 

groups=<group_name> <queue> 

interactive 

queue 

delete interactive_queue per_req elapse_time_limit 

groups=<group_name> <queue> 

The elapse time 

limit for requests 

that specified user 

can submit to a 

queue 

batch queue 
delete execution_queue per_req elapse_time_limit 

users=<user_name> <queue> 

interactive 

queue 

delete interactive_queue per_req elapse_time_limit 

users=<user_name> <queue> 



 

128 

 

 

11.3. Reference of Limit Information per Group and User 

Check the information of each limit set specifying group and user individually by using qstat(1) 

command with --limit option.  

Each settings of batch server can be checked with -Bf option and each settings of queues can 

be checked with -Qf option. But regarding limit set specifying group or user individually, only 

whether or not the limit is set can be checked with those options. 

 

(1) qstat --limit 

qstat --limit displays information about limitation set specifying group and user individually 

for batch server and queues such as batch queue, interactive queue and routing queue. 

Displayed content differs according to access privilege on executing qstat(1) command as 

follows. 

• Manager privilege and operator privilege 

Limit values for all of groups and users are displayed. 

⁃ Submit number limit for batch server  

⁃ Queue information 

 Access Restriction (user list and group list) 

 Submit number limit 

 Limitation of the job number 

 Elapse time limit 

• Group Manager Privilege 

Limit values for the group managed by the group administrator are displayed. 

⁃ Submit number limit for batch server 

⁃ Queue information (only queues for which the administrator has access privilege) 

 Access Restriction (group list) 

 Submit number limit 

 Limitation of the job number 

 Elapse time limit 

• Special User Privilege and General User Privilege 

Limit values for user and group who executes qstat(1) command are displayed. 

Queue information only for ones that access privilege is granted. Besides, list of access 

restrictions are not displayed. 

 

Display example: qstat(1) --limit is executed with administrator privilege 

$qstat -Pm --limit  

Batch Server: bsvhost 

  Submit Number Limitation Value       = 1000 



 

129 

 

  Submit User  Number Limitation Value = UNLIMITED 

        user1       : Limit = 200 

        user2       : Limit = 100 

  Submit Group Number Limitation Value = 300 

        grpA        : Limit = 100 

        grpB        : Limit = 400 

 

Execution Queue: exec1 

  Access User list = { 

      user2 

  } 

  Access Group list = { 

      grpA     grpB     grpZ      

  } 

  Submit Number Limit       = 100 

  Submit User  Number Limit = 10 

        user1       : Limit = 30 

        user2       : Limit = 5 

  Submit Group Number Limit = 50 

        grpA        : Limit = 40 

        grpZ        : Limit = UNLIMITED 

  Range of Jobs Limit per Batch Request (min,max) = 1,2048 

      User  Limit: 

            user1       : Limit = 1,512 

            user2       : Limit = 1,256 

      Group Limit: 

            grpA        : Limit = 512,1024 

            grpZ        : Limit = 512,2048 

  Resources Limits: 

    (Per-Req) Elapse Time Limit = Max: UNLIMITED Warn: UNLIMITED 

      User  Limit: 

            user1       : limit = Max:     3000S Warn:     2940S 

            user2       : limit = Max:     1500S Warn:     1450S 

      Group Limit: 

            grpA        : limit = Max:      600S Warn:      540S 

            grpZ        : limit = Max:     5000S Warn:     4900S 

  

Execution Queue: bq1     

: 

 

(2) qstat -Bf 

In case that Submit number limit is set specifying group name or user name for batch server, 

the message, "The other Limitation Values are setting." is displayed. 

 

Display example: qstat -Bf 

$ qstat -Bf 

Batch Server: bsvhost 

: 

    Submit Number Limitation Value       = 1000 



 

130 

 

    Submit User  Number Limitation Value = UNLIMITED 

    Submit Group Number Limitation Value = UNLIMITED 

    The other Limitation Values are setting. 

  Use License : 

: 

 

(3) qstat -Qf 

In case that either Submit number limit, Limitation of the job number, or elapse time limit is 

set specifying group name or user name for batch server, the message, "The other Limitation 

Values are setting." is displayed at the end of each queue information. 

 

Display example: qstat -Qf 

$ qstat -Qf exec1 

Execution Queue: exec1@ bsvhost 

: 

  Kernel Parameter: 

    Resource Sharing Group     = 0 

: 

    Aging Range                = 160 

    Slave Priority             = 0 

  The other Limitation Values are setting. 

 

Execution Queue: exec2@ bsvhost 

: 

 

 

  



 

131 

 

12. VE and GPU Support 

NQSV manages VE and GPU that is installed on the execution host and controls the job 

execution optimally on that hardware. 

12.1. Configuration for VE environment 

This configuration is required for the environment whose execution host is SX-Aurora 

TSUBASA system. 

To execute the job which uses VE, CPU cores for VEOS must be reserved on VH. Therefore 

limit the CPU cores which is used for executing job by using CPUSET function to reserve the 

same number of CPU cores as the number of VEs on VH. 

 

Configuration procedure in detail is explained below. For example the VH has 40 CPU cores 

and 8VE. Please refer to 18.2 CPUSET function together for details of the CPUSET function. 

 

1. Create cpuset.conf file. 

Create cpuset.conf under /etc/opt/nec/nqsv of execution host. 

 

2. Define the CPUSET of total resources on the host. 

Define the following configuration to cpuset.conf. 

cpuset  0-39   0-1   0 

This configuration indicates 40 cores (core number 0 to 39) and 2 memory nodes (sockets) 

are equipped on the host. 

 

3. Define the CPUSET of CPU cores for executing job. 

Define the following configuration to cpuset.conf. 

forjob  8-39   0-1   1 

This configuration indicates 32 cores (core number 8 to 39) and 2 memory nodes 

(sockets) are reserved for job execution. It configuration is mapped to virtual RSG 

number 1. Remaining 8 cores (core number 0 to 7) are reserved for VEOS. 

Select the CPU cores in the socket that VE is connected as much for CPU cores for job 

execution 

 

4. Start JSV. 

Start JSV process after above configuration. 

 

5. Enable socket scheduling function of the queue. 

Enable socket scheduling function of the queue to use CPUSET. 



 

132 

 

Use following qmgr subcommand. (To configure to exec1 queue) 

set execution_queue numa_control = on exec1 

 

* There are few notes on the use of the socket scheduling feature. See Chapter 18 Socket 

Scheduling (18.1 Socket Scheduling function and 18.1.3 Memory allocation policy). 

 

6. Assign the CPUSET number to the queue. 

Assign the CPUSET (virtual RSG) number 1 to the queue that VE job submit. 

Use following qmgr subcommand. (To configure to exec1 queue) 

set execution_queue kernel_param rsg_number = 1 exec1 

 

Job is executed by using 32 cores (core number 8 to 39) which defined on the forjob CPUSET 

and 8 cores can be reserved for VEOS by above configuration. Please configure the CPU core 

number appropriately according to the actual number of VE to be equipped on the execution 

host by making reference to this example. 

In addition, if the Hyper-Threading feature is enabled, please calculate the number of logical 

cores. In the above example, 8 logical cores should be reserved for VEOS. 

 

12.2. Submitting a request with the total number of VEs specified and Setting of the 

default number of incorporated VE nodes 

This function is available only for the environment whose execution host is SX-Aurora 

TSUBASA system. 

With the NQSV, the user can enter a request with the total number of VEs for the request 

specified. With this method, the number of jobs is automatically determined. Therefore, the 

user can easily enter requests for the number of VEs, without caring for the number of jobs. 

 

When entering a request with the total number of VEs specified, specify the default number of 

incorporated VE nodes for the queue. 

The default number of incorporated VE nodes means the default number of VE nodes 

incorporated in each execution host bound to the queue.  

When the user enters a request with the total number of VEs specified, the batch server 

calculates the number of jobs based on the default number of incorporated VE nodes then 

applies it to the request. 

 

Specify the default number of incorporated VE nodes by using the qmgr subcommands below, 

per execution queue. This setting requires administrator rights. 

set execution_queue defined_ve_number = <venum> <queue_name> 



 

133 

 

set interactive_queue defined_ve_number = <venum> <queue_name> 

For <venum>, specify an integer of 1 or larger. The default is 1. 

 

You can check the specified default number of incorporated VE nodes as follows, by using the 

qstat -Qf command. 

$ qstat -Qf bq 

Execution Queue:bq@bsv1 

    Run State    = Active 

    Submit State = Enable 

    ... 

Defined VE Number     = 1 

Submit VE Node Range (min,max)  = 0,UNLIMITED 

Total Request         = 0 

Arriving Request      = 0 

    ... 

 

Total number of VEs is specified by "qsub --venode" at submission of a request. 

When the total number of VEs is specified, the number of jobs is calculated as below. Cut off after the decimal 

point. 

 

<No. of jobs> = (<venum> + (<default no. of incorporated VE nodes> - 1)) / <default no. of incorporated 

VE nodes> 

 

For example, if the default number of incorporated VE nodes for a queue is 8, the number of jobs are 

calculated as below, according to the value specified for the --venode option. 

1. In case of qsub --venode=16, the number of job is 2 

2. In case of qsub --venode=9, the number of job is 2 

3. In case of qsub --venode=8, the number of jobs is 1 

4. In case of qsub --venode=4, the number of jobs is 1 

 

The VE resources rounded up to a multiple of the default number of incorporated VE nodes are allocated per 

job. As a result, if the total number of VEs cannot be divided by the default number of incorporated VE nodes 

as shown in the above 2. and 4., the VE resources on the execution host are left. 

 

12.3. Limit of the range of the total number of VEs that can be entered 

This function is available only for the environment whose execution host is SX-Aurora 

TSUBASA system. 



 

134 

 

The user can specify the range of the total number of VE nodes (upper and lower limit values) 

that can be entered by specifying the total number of VE nodes (with qsub --venode) per queue. 

If the total number of VEs specified with qsub is out of this range, entering a request results 

in an error. 

This limitation is only effective for the requests entered with the total number of VE nodes 

(with qsub --venode) specified. By default, it does not limit requests submitted with the number 

of VE nodes per logical host (qsub --venum-lhost). To limit them together, see Extended submit 

limit for the number of VE nodes. 

 

 This limitation is ignored for the requests entered with the limit value for the number of VEs 

and the number of jobs per logical host specified. 

 

Specify the range of the total number of VE nodes by using the qmgr subcommands below. This 

setting requires administrator rights. 

 

set execution_queue submit_venode_range = (<min>,<max>) <queue-name> 

set interactive_queue submit_venode_range = (<min>,<max>) <queue-name> 

 

For <min>, specify an integer of 0 or larger and <max> or smaller. If you specify the same 

value for <min> and <max>, you can only specify that value for qsub --venode. If you specify 0 

for <min> and <max>, you can only enter requests that do not use VE nodes. 

<min> is set to 0 and <max> is set to UNLIMITED immediately after a queue is created. 

 

You can check the specified range limiting value as follows, by using the qstat -Qf command. 

 

$ qstat -Qf bq 

Execution Queue:bq@bsv1 

    Run State    = Active 

    Submit State = Enable 

    ... 

Defined VE Number     = 1 

Submit VE Node Range (min,max)  = 0,UNLIMITED 

Total Request         = 0 

Arriving Request      = 0 

    ... 

 

 

Extended submit limit for the number of VE nodes 



 

135 

 

To apply the queue VE total number range limit to the value obtained by multiplying the 

number of VE nodes per logical host (qsub --venum-lhost) by the number of jobs to be run (qsub 

-b), configure the following. 

 

Configure the nqsd.conf file (/etc/opt/nec/nqsv/nqsd.conf) in the following format. It is then 

enabled by restarting the batch server or by re-loading the configuration file by running the 

"load nqsd_conf" subcommand in qmgr. 

 

queues_for_extended_venode_range [queue ...] 

 

Multiple queues can be specified separated by spaces. Enable this function for the queue 

specified in queue. If queue is not specified, this function is enabled for all queues present in 

BSV. 

If the queues_for_extended_venode_range line is missing, there is no limit for requests 

submitted by specifying the number of VE nodes for each logical host (qsub --venum-lhost). 

 

12.4. HCA Assignment 

This function is available only for the environment whose execution host is SX-Aurora 

TSUBASA system. 

When execution host has VE and HCA, NQSV can assign appropriate HCA's port to a job. 

For details of HCA assignment, please refer to [JobManipulator]. 

 

12.5. HCA failure check 

BSV can remove the JSV from operation when detect the failure of HCA if VE and HCA are 

installed on the execution host. The timing of detecting the failure is PRE-RUNNING and 

POST-RUNNING state of every request. 

This function judges the system status healthy when all HCA on the execution host are 

active. If even one HCA is inactive, the system is treated as unhealthy. This function uses 

ibstat command which is installed on the execution host to detect the HCA failure. Therefore 

this function not available on the host that ibstat command is not installed. 

 

It is able to configure the action for every JSV when HCA failure detected. 

off Do nothing when HCA failure detected.  

unbind Unbind the JSV from queue when HCA failure detected. If there is running jobs 

on the execution host, which execution continue. 

down Stop JSV when HCA failure detected. If there is running jobs on the execution 



 

136 

 

host, it becomes stall status. 

 

To set the action of JSV when HCA failure detected, use following sub-command of qmgr. 

set job_server hca_failure_check = {off | down | unbind} job_server_id = jsvid 

 

It configuration can be displayed by qstat -Sf command. 

$ qstat -Sf 

Job Server Name: JobServer0001 

    ... 

    HCA Failure Check = UNBIND 

    ... 

 

 

[Notes] 

The function in this section is not recommended for use because it is maintained for 

backward compatibility. You can use the function in 19.5Node Health Check Function for 

checking HCA failure. 

 

12.6. Concurrent GPU Number Limit 

It is possible to set concurrent GPU number limit for jobs per queue regarding requests 

submitted to batch queue and interactive queue. 

Batch requests submitted will be rejected by the batch queue if resource consumption specified 

to the batch request exceeds resource limit set to the batch queue. 

 

In order to set GPU number limit to queues, the sub-command of qmgr is to be used as follows. 

set execution_queue per_job gpu_number_limit = limit  queue 

set interactive_queue per_job gpu_number_limit = limit  queue 

The operator privilege or higher is necessary to set the limit. 

Value between 0 and 256 or UNLIMITED can be set to GPU number limit. 

 

In addition, in order to set resource default of concurrent GPUs for queues, the following sub-

command of qmgr is to be used. 

set execution_queue standard per_job gpu_number_limit = limit  queue 

set interactive_queue standard per_job gpu_number_limit = limit  queue 

Resource default of concurrent GPUs is 0. 

Note that it is different from other resource default, UNLIMITED. 



 

137 

 

 

Resource limits and default set for queue can be checked with qstat(1) -Q -f. 

 

12.7. Automatic switching of VE NUMA mode 

This function is available only when execution hosts are SX-Aurora TSUBASA. 

 

In case of execution jobs with VE, the performance of the application may be improved if the 

partitioning mode for the VE is changed. This mode can be changed to the normal mode or the 

partitioning mode by the command of VEOS. Please refer "SX-Aurora TSUBASA VEOS  

NUMA Mode Guide for Partitioning Mode" for detail of the partitioning mode / NUMA mode. 

 

To use this function, you need to set a shell script (/opt/nec/nqsv/sbin/venuma_chg.sh) to switch 

partitioning modes on the execution host.  

This script is named /opt/nec/nqsv/sbin/venuma_chg.sh.sample when installing NQSV. Change 

this to /opt/nec/nqsv/sbin/venuma_chg.sh. 

In the script, there is a variable called DEFAULT (ON or OFF) that sets the default value for 

the partitioning mode of the production environment. Set DEFAULT ON or OFF according to 

your operating environment. The default value is OFF. 

 

In case of NQSV, it is to specify ON or OFF of VE NUMA mode by qsub --venuma at submitting 

requests. NQSV will automatically switch VE NUMA to the partitioning mode by the command 

of VEOS if necessary. Changing the partitioning mode for the assigned VE to the jobs is 

switched appropriate. Jobs execute in the default setting if VE NUMA mode isn't specified at 

submitting requests.  

 

Use the --venuma option of qsub(1) to submit a request. 

 

qsub --venuma={on|off} 

 

This setting can be confirmed in "VE NUMA Mode" of the command qstat -f. The command 

qalter cannot change this setting after submitting requests. Interactive requests are not have 

this setting. 

 

If failure of the changing the mode or not completion of the changing the mode in 90 seconds, 

the request fails to execution and becomes "QUEUED" state. If you want to change the wait 

time to switch the partitioning mode except 90 seconds, the environment variable 

NQSV_VENUMA_TIMEOUT is set at starting the job server. 



 

138 

 

 

[Remarks]  

• It takes time to switch the partitioning mode. You may measure the time it takes to 

execute in your actual environment, and you should set that time as the elapse margin 

time of the queue to be submit requests by smgr(1M). Please refer NQSV User's Guide 

[JobManipulator]. 

• NQSV changes the partitioning mode only at starting the request. Setting of the 

partitioning mode may be different for the default value after terminating the request. 

• This function and Suspending VE jobs to run urgent requests cannot be used at the same 

time. For detail on urgent requests, please refer NQSV User’s Guide [JobManipulator]. 

 

 

12.8. Configuration for Multi-instance GPU (MIG) 

12.8.1. About Multi-instance GPU (MIG) 

Multi-instance GPU (hereinafter referred to as MIG) is a feature on some NVIDIA GPUs (A30, 

A100, H100, etc.) that allows physical resource partitioning within the GPU. 

When using MIG, qsub option "--gpunum-lhost" and various GPU-related functions cannot be 

used because access to GPU resources is different from conventional GPUs. Therefore, qsub 

option "--mig" is used to allocate resources. 

 

12.8.2. How to use MIG 

For example, in the case of NVIDIA's H100, up to 8 GPUs can be installed on one host. It is 

then possible to enable or disable the MIG function for each GPU. 

 

This function is automatically enabled only when all of the following conditions are met. 

⁃ A MIG-compatible GPU card is installed on the execution host. 

⁃ The nvidia-smi command is installed. 

⁃ GPU instance (GI) of MIG is already configured. 

 

You can check whether the MIG functionality is enabled for each execution host by looking for 

"Multi Instances GPU" in the output of the qstat -Ef command (execution host information). 

 

[Notes] 

If MIG is enabled, the custom resources are created by appending "M" to the begining of the 

GI profile names of the execution hosts. Do not modify these custom resources because NQSV 

system uses them. 

  



 

139 

 

13. Hook Script Function 

The hook script function executes a script defined by an administrator (called a hook script) 

on a batch server host when a request transits to a certain state. A hook script can be defined 

in any state to which a request may transit. 

 

13.1. Save a hook script 

To locate a hook script, create a directory with a queue name in the following directory of a 

batch server host in advance. Then locate the script with a name indicating the request state 

in the created directory. 

/opt/nec/nqsv/sbin/hook_prog  

 

The following table shows the hook script naming rule. 

Request state in which a hook script 

is started 

Hook script name 

QUEUED request_queued.sh 

WAITING request_waiting.sh 

HELD request_held.sh 

HOLDING request_holding.sh 

SUSPENDING request_suspending.sh 

SUSPENDED request_suspended.sh 

ARRIVING request_arriving.sh 

TRANSITING request_transiting.sh 

STAGING request_staging.sh 

PRE-RUNNING request_prerunning.sh 

RUNNING request_running.sh 

POST-RUNNING request_postrunning.sh 

EXITING request_exiting.sh 

MIGRATING request_migrating.sh 

MOVED request_moved.sh 

EXITED request_exited.sh 

RESUMING request_resuming.sh 

The following shows a path name example of a hook script to be executed when a request 

submitted in the batch1 queue transits to the RUNNING state. 

/opt/nec/nqsv/sbin/hook_prog/batch1/request_running.sh 

 



 

140 

 

13.2. Enabling and disabling a hook script 

A hook script is executed only when the hook script function is enabled for a queue (batch 

queue, interactive queue, routing queue). This script is not executed only by saving it in the 

above mentioned directory. 

Use a subcommand of qmgr(1M) to enable the hook script function. The operator privilege is 

required to configure this setting. 

Queue qmgr(1M) sub-command  

Batch queue set execution_queue hook_function  

Interactive queue set interactive_queue hook_function  

Routing queue set routing_queue hook_function  

 

The following shows a setting example to enable the hook script function for batch queue 

batch1. 

$ qmgr -Po 

Mgr: set execution_queue hook_function on batch1 

 

To check whether the hook script function is enabled, execute the qstat(1) command with -Q -

f specified. Then the following is displayed. 

$ qstat -Qf 

Execution Queue: batch1@bsv1 

    Run State    = Inactive 

      : 

    IntelMPI Process Manager = hydra 

Hook function = ON 

: 

 

13.3. Executing hook script 

When the hook script function is enabled for a queue and a hook script is located in a 

predetermined directory, a batch server executes the hook script according to the state 

transition of a request submitted in the queue. 

Unlike the user EXIT function, the hook script function does not wait for completion of a hook 

script while the request state is transitioning. In addition, there is no difference in the request 

state transition behavior according to the script execution result (exit status). 

 

When a hook script is executed, the following environment variables are set. 

Environment 

variable 

Explanation Value 

HOOK_REASON Cause of the request state RUN 



 

141 

 

transition DELETE 

PRERUN_FAIL etc 

HOOK_RSTPREV Previous request state QUEUED 

PRERUNNING 

RUNNING etc. 

HOOK_RID Request ID For a normal request: 

<sequence-number>.<host-name> 

For a parametric request: 

<sequence-number>[].<host-name> 

HOOK_USER Request owner name User name. 

HOOK_GROUP Name of the group to which the 

request owner belongs 

Group name. 

HOOK_HOME Home directory of the request 

owner 

Absolute path name of the home directory 

HOOK_QUEUE Name of the queue to which a 

request was submitted 

Queue name. 

HOOK_NJOBS Number of jobs in the request Number of jobs in the request. 

Other settings conform to the environment variables set to the request. 

 

  



 

142 

 

14. User Pre-Post Script Function 

The User Pre-Post script function executes a script specified when submitting a request (called 

a UserPP script) before job execution (PRE-RUNNING) or after job execution (POST-

RUNNING). 

A request owner can create and specify a UserPP script. For example, using this function, you 

can check the health of a node before starting a job execution and also clear temporary files in 

an execution host after the job execution. A UserPP script is not subject to resource limitation 

and accounting. 

A timeout occurrence can be monitored to prevent a UserPP script from being stalled and 

resources from being occupied due to execution of an invalid script. To monitor a timeout 

occurrence, set a timeout time of a UserPP script to a queue. If the timeout time set to the 

queue has elapsed after the UserPP script execution started, the script execution stops. 

 

14.1. Setting a timeout time of a UserPP script 

By setting a timeout time of a UserPP script, a KILL signal is sent to the UserPP script if an 

execution error such as a stall occurs and execution of the UserPP script is forcibly ended. 

Use a subcommand of qmgr(1M) to set a timeout time. The following shows an example to set 

a timeout time of a UserPP script to 900 seconds for batch queue exec1. Execute qmgr(1M) 

with the operator privilege. 

 

$ qmgr -Po 

Mgr: set execution_queue userpp_timeout = 900 exec1 

Set UserPP Timeout: exec1 

 

The qmgr(1M) subcommands that are used to configure each setting and their default value is 

as follows. 

Value qmgr(1M) sub-command Default 

Timeout time of a UserPP 

script (in seconds) 

set execution_queue userpp_timeout 

set interactive_queue userpp_timeout 

300 

If 0 (zero) is specified, timeout monitoring will not be performed. 

 

 

  



 

143 

 

15. Provisioning environment in conjunction with OpenStack  

This function is NOT available for the environment whose execution host is SX-Aurora 

TSUBASA system. 

NQSV can dynamically configure a job execution environment in an execution host in 

conjunction with OpenStack. To carry out a job, this function can dynamically switch an 

environment (OS version, installed libraries, ISV, etc.) to the environment necessary for the 

job in the relevant host. 

Provisioning by using a virtual machine (VM) and provisioning by using a bare metal server 

are supported as a provisioning environment in conjunction with OpenStack. The function is 

also provided to define and manage an OS image and resource information of this provisioning 

environment as a template. 

 

15.1. Configuring a provisioning environment by using a virtual machine 

NQSV can dynamically configure a job execution environment in an execution host in 

conjunction with the OpenStack virtual machine instance creation function. 

This section describes the conjunction between NQSV and the OpenStack virtual machine 

instance creation function using OpenStack of the following version as an example. 

• OpenStack Liberty (October 2015), Community edition 

 

 



 

144 

 

Figure 15-1 : Conceptual diagram of NQSV and OpenStack (Virtual machine) 

 

In the above example, an NQSV execution host is used as a Compute node of OpenStack. 

When a job starts, NQSV executes a virtual machine startup script from a BSV to instruct a 

Control node of OpenStack to start a virtual machine. The virtual machine is started by the 

nova command and the job is executed in the started virtual machine with a JSV in the virtual 

machine and a JSV on the execution host working together. When the job ends, the BSV 

executes a virtual machine stop script to instruct the Control node to stop the virtual machine. 

 

15.1.1. OpenStack environment setting 

To make OpenStack work together with NQSV, configure an OpenStack environment as 

follows in advance. 

 

(1) Using the nova command from a BSV host 

Configure an environment so that the root user can use the nova commands for a Control 

node of OpenStack. 

 

(2) Setting an execution host as a Compute node of OpenStack 

Set an NQSV execution host as a Compute node of OpenStack. 

 

(3) Setting up a virtual machine boot image 

Set up a virtual machine boot image to satisfy the following conditions: 

・ A JSV package is installed in a virtual machine boot image. The boot image is set up 

to start a job server automatically by an init script in the nqs_shpd -S format when 

an OS starts. It is not necessary to specify other nqs_shpd options (such as -h and -n). 

・ A virtual machine OS and an execution host OS can communicate with each other. 

・ A virtual machine OS and an execution host OS share a JSVDB  

(/var/opt/nec/nqsv/jsv). 

・ Virtual machines started on execution hosts can communicate with each other by 

using a host name. 

・ An account of a job submit user can be used on a virtual machine OS. 

 

15.1.2. Configuring a job server on an execution host 

A job server (JSV) that has started on a virtual machine will connect to a JSV on an execution 

host. The JSV on the virtual machine uses a host name acquired by the JSV on the execution 

host as its own name at connection. 



 

145 

 

 

But, when being different in the host name to which I can refer on the actual host and on the 

virtual machine, please designate the host name seen from the virtual machine side 

specifically in -H option at the time of a JSV start on the execution host. 

JSV start option on the execution host: 

nqs_shpd -H <vm_host> -h <bsv_host> -n <jsvno> 

 

This enables to connect the JSV on the virtual machine to the JSV on the execution host by 

using the host name <vm_host> that the virtual machine can reference. 

 

15.1.3. Virtual machine startup script 

A virtual machine is started by a shell script created by a system administrator. Locate a shell 

script in the following path. 

Startup script : /opt/nec/nqsv/sbin/provision_prog/openstack_start.sh 

 

Create a startup script to execute the following processes according to the NQSV and 

OpenStack execution environments. 

 

(1) Processes to be executed in a virtual machine startup script 

The following three processes must be executed in a virtual machine startup script. 

1)  Starting a virtual machine 

Process to execute the nova commands according to the environment variables 

specified in the script to start a virtual machine. 

2)  Waiting for all virtual machines to start 

Process to wait until all virtual machines are fully started. 

3)  Creating a virtual machine information file (VMIP) 

Process to describe the following items by delimiting with a space in the file specified 

by the environment variable NQS_OPENSTACK_IPINFOPATH. Items of one job must 

be described in one line. (This is called a VMIP file.) 

- Started job numbers 

- IP addresses assigned to virtual machines 

- IDs of started virtual machines 

[sample form] 

0 192.168.1.101 8a850692-0362-425d-b9af-f1cb20a450c0 

1 192.168.1.102 9d52de61-a439-46cc-89ee-dd4a66eaafb6 

 

When the above three processes are complete, the script terminates with exit 0. 



 

146 

 

If starting a virtual machine failed, for example, due to a failure of the nova command during 

the processes 1) to 3) above, the relevant job number is described in the file specified by the 

environment variable NQS_OPENSTACK_FAILINFOPATH. A job number of one job is 

described in one line. (This is called a VMFAIL file.) Then the script terminates with an exit 

code other than exit 0. 

 

(2) Environment variables to execute a virtual machine startup script 

Specify the following environment variables to execute a virtual machine startup script. 

Environment variable Value 

NQS_OPENSTACK_TEMPLATE_NAME Template name 

NQS_OPENSTACK_IMAGE_NAME OS image name 

NQS_OPENSTACK_CPU Number of CPUs 

NQS_OPENSTACK_GPU Number of GPUs 

NQS_OPENSTACK_MEMORY Memory size  

(Example of "Size" and "Unit": 100 MB) 

NQS_OPENSTACK_FLAVOR Flavor name 

NQS_OPENSTACK_CUSTOM Custom definition 

NQS_OPENSTACK_QUE Name of the queue to which a request was 

submitted 

NQS_OPENSTACK_RID Request ID 

Format: <seqno>.<mid> 

For <mid>, specify a number. 

NQS_OPENSTACK_IPINFOPATH Path in which to save a VMIP file 

NQS_OPENSTACK_FAILINFOPATH Path in which to save a VMFAIL file 

NQS_OPENSTACK_PROCTYPE "EXECUTION" (For forward processing) 

"ROLLBACK" (For rollback) 

NQS_OPENSTACK_HOSTS Host name and job number of a virtual machine 

to be started 

Format: 

<jobno>:<hostname>[ <jobno>:<hostname> ...] 

                   * Use a space as a delimiter 

 

(3) Rollback processing 

If executing a virtual machine startup script failed (that is, the script ended with an exit code 

other than exit 0), the script will be executed again to perform a rollback processing. The 

environment variable NQS_OPENSTACK_PROCTYPE is used to determine whether to 

execute a forward processing or rollback processing. 

In a rollback processing, it is required to stop virtual machines with IDs described in the VMIP 

file and wait for all of them to stop completely. NQSV executes the subsequent processes after 



 

147 

 

the rollback processing assuming that all the virtual machines have stopped. For the host that 

cannot be stopped in the rollback processing, the relevant job number must be described in a 

VMFAIL file. 

 

(4) Timeout 

Timeout monitoring is performed while a virtual machine startup script is executed. The value 

of the estimated startup time (Boot Timeout) set in a template is used as a timeout time. 

In a forward processing of a virtual machine startup script, if the script does not terminate 

even if the time set to Boot Timeout has passed, it is assumed that executing the startup script 

failed. Then the virtual machine startup script is interrupted (by sending a KILL signal) and 

a rollback processing is performed. 

In a rollback processing, timeout monitoring is also performed. If the processing does not 

terminate even if the time set to Boot Timeout has passed, executing the virtual machine 

startup script (rollback processing) is interrupted. However, if a rollback processing is 

interrupted due to a timeout, a virtual machine may remain on an execution host without 

stopping. 

 

(5) Notes on creating a virtual machine startup script 

When creating a virtual machine startup script to start multiple virtual machines, select either 

of the following two operation types to be performed at detection of startup failure. The 

subsequent scheduling operation differs depending on which operation type is selected. Since 

there are advantages and disadvantages to both operation types, select either according to 

your operations. 

1)  Waiting until the startup processes of all virtual machines are complete and detecting 

all the virtual machines that could not start. 

This operation can detect all the virtual machines that could not start among the 

virtual machines to start. The advantage of this operation is that a schedule can be 

created to avoid the relevant host and assign a request to another host in the 

subsequent scheduling operation. 

On the other hand, since it is required to wait until all target virtual machines are 

fully started, it takes time to assign the request again after the detection of the first 

startup failure. 

 

2)  Interrupting a process assuming that all startup processes failed if any virtual 

machine startup failure is detected. 

The advantage of this operation is that an action such as reassignment of a request 

can be performed immediately because a virtual machine startup failure can be 

detected as soon as its occurrence. 



 

148 

 

On the other hand, if another virtual machine cannot start after the detection of the 

first startup failure, that startup failure cannot be detected. Therefore, when the 

request is assigned to the relevant host next time, a startup failure may occur again. 

 

15.1.4. Virtual machine stop script 

A virtual machine is stopped by a shell script created by a system administrator. Locate a shell 

script in the following path. 

Stop Script :  /opt/nec/nqsv/sbin/provision_prog/openstack_stop.sh  

 

Create a stop script to execute the following processes according to the NQSV and OpenStack 

execution environments. 

 

(1) Processes to be executed in a virtual machine stop script 

The following two processes must be executed in a virtual machine stop script. 

1)  Stopping a virtual machine 

Process to execute the nova commands according to the environment variables 

specified in the script to stop a virtual machine. 

2)  Waiting for all virtual machines to stop 

Process to wait until all virtual machines are fully stopped (or until it is found that 

virtual machines cannot be stopped). 

* Even if a stop script fails, a rollback processing is not performed. Therefore, be sure 

to confirm that virtual machines have stopped completely. NQSV executes the 

subsequent processes assuming that all the virtual machines have completely 

stopped when the execution of the virtual machine stop script is complete. 

 

When the above two processes are complete, the script terminates with exit 0. 

If stopping a virtual machine failed due to an error occurrence while waiting for the virtual 

machines to stop, the relevant job number is described in the VMFAIL file specified by the 

environment variable NQS_OPENSTACK_FAILINFOPATH. A job number of one job is 

described in one line. Then the script terminates with an exit code other than exit 0. 

 

(2) Environment variables to execute a virtual machine stop script 

Specify the following environment variables to execute a virtual machine stop script. 

Environment variable Value 

NQS_OPENSTACK_TEMPLATE_NAME Template name 

NQS_OPENSTACK_IMAGE_NAME OS image name 

NQS_OPENSTACK_CPU Number of CPUs 

NQS_OPENSTACK_GPU Number of GPUs 



 

149 

 

NQS_OPENSTACK_MEMORY Memory size 

(Example of "Size" and "Unit": 100 MB) 

NQS_OPENSTACK_FLAVOR Flavor name 

NQS_OPENSTACK_CUSTOM Custom definition 

NQS_OPENSTACK_QUE Name of the queue to which a request was 

submitted 

NQS_OPENSTACK_RID Request ID 

Format: <seqno>.<mid> 

For <mid>, specify a number. 

NQS_OPENSTACK_IPINFOPATH Path in which to save a VMIP file 

NQS_OPENSTACK_FAILINFOPATH Path in which to save a VMFAIL file 

NQS_OPENSTACK_IPADDRS List of job numbers and IP addresses assigned 

to virtual machines. The format is as follows: 

Format: 

 <jobno>:<ip addr> [<jobno>:<ip addr> ] 

* Use a space as a delimiter 

The format of <ip addr> is 

XXX.YYY.ZZZ.NNN. 

(Example: 

172.16.1.1) 

NQS_OPENSTACK_PROCTYPE "EXECUTION" 

NQS_OPENSTACK_HOSTS Host name and job number of a virtual machine 

to be stopped 

Format: 

<jobno>:<hostname>[ <jobno>:<hostname> ...] 

                    * Use a space as a 

delimiter 

 

(3) Timeout 

Timeout monitoring is performed while a virtual machine stop script is executed. The value of 

the estimated stop time (Stop Timeout) set in a template is used as a timeout time. 

If the virtual machine stop script does not terminate even if the time set to Stop Timeout has 

passed, it is assumed that executing the script failed. Then the virtual machine stop script is 

interrupted (by sending a KILL signal). 

If the virtual machine stop script is interrupted due to a timeout, a virtual machine may 

remain without stopping. 

 

15.1.5. Sample virtual machine startup and stop scripts 

The sample virtual machine startup and stop scripts are installed in a BSV host. By referring 

these sample scripts, create a virtual machine startup and stop scripts including the above 

described processes and locate them in an appropriate path. 



 

150 

 

 

 

[Notes] 

These sample scripts offer an implementation image of the minimum function. They do 

not guarantee operations on all OpenStack environments. When configuring an 

environment, implement appropriate processes according to your actual environment. 

 

The summary of each script is described below. 

 

(1) Sample virtual machine startup script 

Installation path:  /opt/nec/nqsv/sbin/provision_prog/openstack_start.sh.sample 

Process overview: 

When EXECUTION is set to the environment variable NQS_OPENSTACK_PROCTYPE: 

⁃ The nova boot command starts a virtual machine on the host specified for the 

environment variable NQS_OPENSTACK_HOSTS. A free floating-ip acquired by 

nova floating-ip-list in advance is assigned to the started virtual machine. The --

availability-zone option of the nova boot command expressly specifies the host on 

which to start a virtual machine. 

⁃ The nova show command periodically monitors the instance ID acquired from the 

startup message output when executing nova boot and waits until the status will 

not be BUILD. 

When ROLLBACK is set to the environment variable NQS_OPENSTACK_PROCTYPE: 

⁃ The nova delete command stops a virtual machine with the instance ID acquired 

from the VMIP file specified for the environment variable 

NQS_OPENSTACK_IPINFOPATH. 

⁃ The process waits until the nova show command will not be able to reference 

information of the relevant instance ID. 

 

(2) Sample virtual machine stop script 

Installation path:  /opt/nec/nqsv/sbin/provision_prog/openstack_stop.sh.sample 

Process overview:  

⁃ The nova list command acquires an instance ID according to the IP address 

acquired from the file specified for the environment variable 

NQS_OPENSTACK_IPADDRS. The nova delete command stops a virtual 

machine with the acquired instance ID. 

⁃ The process waits until the nova show command will not be able to reference 

information of the relevant instance. 

 



 

151 

 

15.1.6. Incorporating a virtual machine to NQSV 

A virtual machine can be incorporated in a job operation by binding a job server of an execution 

host, on which to start a virtual machine that is set as an OpenStack Compute node to a queue. 

By unbinding the relevant job server from the queue, the virtual machine can be removed from 

a job operation. 

 

[Notes] 

When binding an execution host on which to start a virtual machine to a queue, it is not 

possible to coexist that execution host with a bare metal server and usual execution host 

in the queue. 

The queue to which to bind an execution host on which to start a virtual machine must be 

dedicated to a virtual machine. 

 

  



 

152 

 

15.2. Configuring a provisioning environment by using a bare metal server 

NQSV can dynamically configure a job execution environment using a bare metal server as an 

execution host in conjunction with the OpenStack bare metal provisioning function. 

This section describes the conjunction between NQSV and the OpenStack bare metal 

provisioning function using OpenStack of the following version as an example. 

• Red Hat OpenStack Platform (RHOSP)  8 

 

 

Figure 15-2 : Conceptual diagram of NQSV and OpenStack (Baremetal) 

 

An OpenStack Compute node (bare metal server) is registered as an NQSV execution host. 

When a job starts, NQSV executes a bare metal server startup script from a BSV to instruct a 

Control node of OpenStack to start a bare metal server. The bare metal server is started by 

the nova command and the job is executed by using the started bare metal server as an NQSV 

execution host. When a job ends, the BSV executes a bare metal server stop script to instruct 

the Control node to stop the bare metal server. OpenStack stops the bare metal server. 

 

15.2.1. OpenStack environment setting 

To make OpenStack work together with NQSV, configure an OpenStack environment as 

follows in advance. 



 

153 

 

 

(1) Using the nova command from a BSV host 

Configure an environment so that the root user can use the nova and OpenStack commands 

for a Control node of OpenStack. 

 

(2) Setting up a bare metal server boot image 

Set up a bare metal server boot image to satisfy the following conditions:  

・ A JSV package is installed in a bare metal server boot image. The boot image is set 

up to start a job server automatically by an init script in the nqs_shpd -B <BSV_host> 

format when an OS starts. It is not necessary to specify other nqs_shpd options (such 

as -h and -n). 

・ Bare metal servers can communicate with each other by using a host name. 

・ Bare metal servers can communicate with the BSV host by using a host name. 

・ An account of a job submit user can be used on a bare metal server OS. 

 

15.2.2. Bare metal server startup script 

A bare metal server is started by a shell script created by a system administrator. Locate a 

shell script in the following path. 

Startup script : /opt/nec/nqsv/sbin/provision_prog/bm_start.sh 

 

Create a startup script to execute the following processes according to the NQSV and 

OpenStack execution environments. 

 

(1) Processes to be executed in a bare metal server startup script 

The following two processes must be executed in a bare metal server startup script.  

1)  Starting a bare metal server 

Process to execute the nova commands according to the environment variables 

specified in the script to start a bare metal server. 

2)  Waiting for bare metal servers to start 

Process to wait until bare metal servers are fully started. 

 

When the above two processes are complete, the script terminates with exit 0. 

If starting a bare metal server failed, for example, due to a failure of the nova command during 

the processes 1) to 2) above, the script terminates with an exit code other than exit 0. 

 

(2) Environment variables to execute a bare metal server startup script 

Specify the following environment variables to execute a bare metal server startup script. 

 



 

154 

 

Environment variable Value 

NQS_BM_TEMPLATE_NAME Template name 

NQS_BM_IMAGE_NAME OS image name 

NQS_BM_CPU Number of CPUs 

NQS_BM_GPU Number of GPUs 

NQS_BM_MEMORY Memory size 

 (Example of "Size" and "Unit": 100 MB) 

NQS_BM_FLAVOR Flavor name 

NQS_BM_CUSTOM Custom definition 

NQS_BM_PROCTYPE "EXECUTION" (For forward processing) 

"ROLLBACK" (For rollback) 

NQS_ BM _HOSTS Host name a bare metal server to be started 

Format: 

<hostname>[ <hostname> ...] 

* Use a space as a delimiter 

 

(3) Rollback processing 

If executing a bare metal server startup script failed (that is, the script ended with an exit code 

other than "exit 0"), the script will be executed again to perform a rollback processing. The 

environment variable NQS_OPENSTACK_PROCTYPE is used to determine whether to 

execute a forward processing or rollback processing. 

In a rollback processing, it is required to stop the host specified for the environment variable 

NQS_BM_HOSTS and wait for all the bare metal servers to stop completely. NQSV executes 

the subsequent processes after the rollback processing assuming that all the bare metal 

servers have stopped. 

 

(4) Timeout 

Timeout monitoring is performed while a bare metal server startup script is executed. The 

value of the estimated startup time (Boot Timeout) set in a template is used as a timeout time. 

In a forward processing of a bare metal server startup script, if the script does not terminate 

even if the time set to Boot Timeout has passed, it is assumed that executing the startup script 

failed. Then the bare metal server startup script is interrupted (by sending a KILL signal) and 

a rollback processing is performed. 

In a rollback processing, timeout monitoring is also performed. If the processing does not 

terminate even if the time set to Boot Timeout has passed, executing the bare metal server 

startup script is interrupted. However, if a rollback processing is interrupted due to a timeout, 

a bare metal server may remain without stopping. 

 

15.2.3. Bare metal server stop script 



 

155 

 

A bare metal server is stopped by a shell script created by a system administrator. Locate a 

shell script in the following path. 

Stop Script : /opt/nec/nqsv/sbin/provision_prog/bm_stop.sh for stops 

 

Create a stop script to execute the following processes according to the NQSV and OpenStack 

execution environments. 

 

(1) Processes to be executed in a bare metal server stop script 

The following two processes must be executed in a bare metal server stop script. 

1)  Stopping a bare metal server 

Process to execute the nova commands according to the environment variables 

specified in the script to stop a bare metal server. 

2)  Waiting for bare metal servers to stop 

Process to wait until all bare metal servers are fully stopped (or until it is found that 

bare metal servers cannot be stopped). 

* Even if a stop script fails, a rollback processing is not performed. Therefore, be sure 

to confirm that bare metal servers have stopped completely. NQSV executes the 

subsequent processes assuming that all the bare metal servers have completely 

stopped when the execution of the bare metal server stop script is complete. 

 

When the above two processes are complete, the script terminates with exit 0. 

If any bare metal server cannot be stopped because of failure occurrence while waiting for bare 

metal servers to stop, the script terminates with an exit code other than exit 0. 

 

(2) Environment variables to execute a bare metal server stop script 

Specify the following environment variables to execute a bare metal server stop script. 

Environment variable Value 

NQS_BM_TEMPLATE_NAME Template name 

NQS_BM_IMAGE_NAME OS image name 

NQS_BM_CPU Number of CPUs 

NQS_BM_GPU Number of GPUs 

NQS_BM_MEMORY Memory size 

(Example of "Size" and "Unit": 100 MB) 

NQS_BM_FLAVOR Flavor name 

NQS_BM_CUSTOM Custom definition 

NQS_BM_PROCTYPE "EXECUTION" 

NQS_ BM _HOSTS Host name a bare metal server to be stopped 

Format: 



 

156 

 

<hostname>[ <hostname> ...] 

* Use a space as a delimiter 

 

(3) Timeout 

Timeout monitoring is performed while a bare metal server stop script is executed. The value 

of the estimated stop time (Stop Timeout) set in a template is used as a timeout time. 

If the bare metal server stop script does not terminate even if the time set to Stop Timeout has 

passed, it is assumed that executing the script failed. Then the bare metal server stop script 

is interrupted (by sending a KILL signal). 

If the bare metal server stop script is interrupted due to a timeout, a bare metal server may 

remain without stopping. 

 

15.2.4. Sample bare metal server startup and stop scripts 

The sample bare metal server startup and stop scripts are installed in a BSV host. By referring 

these sample scripts, create a bare metal server startup and stop scripts including the above 

described processes and locate them in an appropriate path. 

 

[Notes] 

These sample scripts offer an implementation image of the minimum function. They do 

not guarantee operations on all OpenStack environments. When configuring an 

environment, implement appropriate processes according to your actual environment. 

 

The summary of each script is described below. 

 

(1) Sample bare metal server startup script 

Installation path:  /opt/nec/nqsv/sbin/provision_prog/bm_start.sh.sample 

Process overview: 

When EXECUTION is set to the environment variable NQS_BM_PROCTYPE: 

⁃ The nova boot command starts a bare metal server specified for the environment 

variable NQS_BM_HOSTS. 

⁃ The nova show command periodically monitors the instance ID acquired from the 

startup message output when executing nova boot and waits until the status will 

not be BUILD. 

 

When ROLLBACK is set to the environment variable NQS_BM_PROCTYPE: 

⁃ The nova list command acquires an instance ID according to the host name 

specified for the environment variable NQS_BM_HOSTS. The nova delete 

command stops a bare metal server with the acquired instance ID. 



 

157 

 

⁃ The process waits until the nova show command will not be able to reference 

information of the relevant instance. 

 

(2) Sample bare metal server stop script 

Installation path :  /opt/nec/nqsv/sbin/provision_prog/bm_stop.sh.sample 

Process overview: 

⁃ The nova list command acquires an instance ID according to the host name 

specified for the environment variable NQS_BM_HOSTS. The nova delete 

command stops a bare metal server with the acquired instance ID. 

⁃ The process waits until the nova show command will not be able to reference 

information of the relevant instance. 

 

15.2.5. Incorporating a bare metal server to NQSV 

To use a bare metal server environment, it is necessary to register a bare metal server as an 

execution host to NQSV in advance. 

The registered bare metal server can be incorporated in a job operation by binding it to a queue 

in the same way as incorporating a usual execution host. 

 

(1) Registering a bare metal server 

Use the attach baremetal_host subcommand of qmgr(1M) to register a bare metal server. When 

registering a bare metal server, the number of CPUs, memory size, and number of GPUs must 

be registered in addition to the host name and job server number. 

 

Specification of the attach baremetal_host command (The administrator privilege is required 

to use this command.) 

attach baremetal_host host = <host_name> job_server_id=<jsv_id> cpu = <cpunum> 

memory=<memsz> gpu=<gpunum> 

 

As with the attach execution_host subcommand, it is possible to register multiple bare metal 

servers at once. To do so, create a list file of their host names, job server numbers, number of 

CPUs, memory sizes, and number of GPUs in advance and specify the created file for the 

subcommand. 

In a list file, one line must include information of one bare metal server, such as a host name, 

job server number, number of CPUs, memory size, and number of GPUs that are separated by 

a space. Describe lines as many as the number of bare metal servers. 

Host1 0 4 10GB 0 

Host2 1 4 20GB 1 

 



 

158 

 

Use the following subcommand to register bare metal servers at once by specifying the above 

list file. 

attach baremetal_host file=<file_path> 

 

[Notes] 

Before starting the operation, start the JSV manually on a bare metal host and set it to 

LINKUP state to register the license information to be used by the bare metal host to the 

BSV.  

When starting the JSV, specify the JSVID registered by using the attach baremetal_host 

subcommand of qmgr. 

 

(2) Removing a bare metal server 

Use the detach baremetal_host subcommand of qmgr(1M) to delete a registered bare metal 

server. A bare metal server can be removed when no job uses the job server of the target bare 

metal server and the state of the job server is LINKDOWN. 

Specification of the detach baremetal_host command (The administrator privilege is required 

to use this command.) 

detach baremetal_host host = <host_name>  

detach baremetal_host host = (<host_name>, <host_name>, ...) 

detach baremetal_host job_server_id = <jsv_id> 

detach baremetal_host job_server_id = (<jsv_id1>,<jsv_id2>, ...) 

detach baremetal_host job_server_id = < jsv_id1>-< jsv_id2> 

detach baremetal_host all 

 

(3) Referencing the registered bare metal server information 

Use qstat -E or qstat -Et to reference the information of the registered bare metal server in the 

same way as referencing a usual execution host. [B] at the beginning of an ExecutionHost item 

indicates that the line shows bare metal server information. 

[Indication example] 

$ qstat -Et 

ExecutionHost   JSVNO JSV      S OS         Release    Hardware    Load   Cpu STT 

--------------- ----- -------- - ---------- ---------- ---------- ----- ----- --- 

[B]bhost         1000 LINKUP   - Linux      2.6.32-431 x86_64       0.2   0.2 ACT 

host1              11 LINKDOWN - --         --         --             -     - INA 

 

For the detailed information displayed by using qstat -Ef or qstat -Etf, [Baremetal] at the end 

of an ExecutionHost item indicates that bare metal server information is displayed. The 

resource amount of the bare metal server defined by the attach baremetal_host subcommand 

at registration can be referenced (Defined Baremetal Resources). The template that was used 



 

159 

 

to start the bare metal server can also be referenced (OpenStack Template). 

[Indication example]  

$ qstat -Ef 

Execution Host: bhost [Baremetal] 

        : 

    Substitute Status = Normal 

   OpenStack Template = Cent7_M 

  Defined Baremetal Resources: 

Memory         = 8GB 

Number of Cpus = 2 

Number of GPUs = 1 

Resource Information: 

    Memory         = Assign:     254976 Using:          - Maximum:     254976 

    Swap           = Assign:     525312 Using:          0 Maximum:     525312 

    Number of Cpus = Assign:          8 Using:          1 Maximum:          8 

  GPU Information: 

Device[0]: GeForce 9800 GT 

TotalGlobalMem = 511 MB 

        : 

 

The job server information of the bare metal server can also be referenced by using qstat -S, -

St, -Sf, or -Stf. 

[Indication example] 

$ qstat -S 

JSVNO JobServerName   BatchServer     ExecutionHost   LINK BIND Queue    Jobs  Load   

Cpu 

----- --------------- --------------- --------------- ---- ---- -------- ---- ----- ---

-- 

 1000 JobServer1000   bsvhost         [B]bhost        UP      3 bq,bq2,*    0   0.0   

0.0 

 

$ qstat -Sf 

Job Server Name: JobServer1000 

   Job Server Number  = 1000 

     : 

    Execution Host = bhost [Baremetal] 

: 

Assign JobManipulator license = YES 

OpenStack Template = Cent7_M 

  Defined Baremetal Resources: 

Memory         = 8GB 

    Number of Cpus = 2 

    Number of GPUs = 1 

  Resource Information: 

    Memory         = Assign:     254976 Using:          - Maximum:     254976 

: 

 

(4) Binding and unbinding a bare metal server 

A job server of the bare metal server registered by the attach baremetal_host subcommand can 



 

160 

 

be incorporated in a job operation by binding the job server to a queue. For more information 

about scheduling, see [JobManipulator]. 

By unbinding the relevant job server from the queue, it can be removed from a job operation. 

The way to bind/unbind a bare metal server to/from a queue is the same as that for a usual 

execution host. 

 

 [Notes] 

When binding a bare metal server to a queue, it is not possible to coexist that execution 

host in an environment on which to start a virtual machine and usual execution host in 

the queue. 

The queue to which to bind a bare metal server must be dedicated to a bare metal server. 

 

(5) Resetting a bare metal server 

If the started bare metal server entered LINKDOWN state due to failure or other causes, it is 

necessary to recover the bare metal server and then restore it to an operation (scheduling) by 

clearing the template information associated with the bare metal server on NQSV. (Otherwise, 

the bare metal server cannot be scheduled correctly.) 

Use the reset baremetal_host subcommand of qmgr(1M) to clear the template information 

associated with the bare metal server. The administrator privilege is required to use this 

subcommand. 

reset baremetal_host host = <host_name> 

 

This subcommand can be used when the state of the JSV of the target bare metal server is 

LINKDOWN and the bare metal server has been started by any template (that is, a template 

name can be referenced as execution host information). 

In addition, to use this subcommand, there must be no job stalled on the target host. If there 

is any stalled job, rerun or delete the relevant request. 

 

15.3. Creating an OpenStack template 

Information of an OS image and resources of a provisioning environment in conjunction with 

OpenStack is defined as an OpenStack template (hereafter referred to as a template). 

A user can execute a job in the environment set in an OpenStack template by specifying the 

template for the --template option of a submit command (qsub(1), qlogin(1), or qrsh(1)). 

The template contents are common to a virtual machine environment and bare metal 

environment. 

 

15.3.1. Defining a template 



 

161 

 

A template is defined by a system administrator. Multiple templates can be defined. In a 

template, the following elements can be defined as information of a provisioning environment 

in conjunction with OpenStack. 

Element name Definition 

Template name Template name. 

A name can consist of up to 47 characters. 

A space, double quotation mark ("), and @ symbol cannot be used in a 

template name. 

Specify this template name when submitting a request. 

OS image name 

(image) 

Name of an OS disk image to be started by OpenStack. 

This must be an image name that an execution host can use. 

This can consist of up to 47 characters. 

Flavor name 

(flavor) 

Name of the OpenStack flavor. 

This can consist of up to 47 characters. 

Number of CPUs  

(cpu) 

Number of CPUs to be assigned. 

This must be an integer of 1 or larger. 

This is also used as the limitation on the number of CPUs per job of the 

request for which the relevant template is specified. 

Memory size 

(memsz) 

Memory size to be assigned. 

This must be an integer of 1 or larger followed by a unit (B, KB, MB, GB, 

TB, PB, EB). 

This is also used as the limitation on the memory size per job of a request 

for which the relevant template is specified. 

Number of GPUs 

(gpu) 

Number of GPUs to be assigned. 

This must be an integer of 0 or larger. Specify 0 if no GPU is assigned. 

The default is 0. 

This is also used as the limitation on the number of GPUs per job of a 

request for which the relevant template is specified. 

Estimated 

startup time 

(boot_timeout) 

Timeout time of virtual machine and bare metal server startup scripts 

This must be an integer of 1 to 2147483647. The unit is seconds. The 

default is 900 seconds. 

This is also used by JobManipulator to assign a job to a bare metal 

server. 

Estimated stop 

time 

(stop_timeout) 

Timeout time of virtual machine and bare metal server stop scripts 

This must be an integer of 1 to 2147483647. The unit is seconds. The 

default is 900 seconds. 

Custom If there is information uniquely defined as a startup environment, 



 

162 

 

definition 

(custom) 

describe it. 

Up to 400 characters can be described. 

Comment 

(comment) 

Comments for a template can be described. 

Up to 255 characters can be described. 

 

[Notes] 

When a request is transferred to another batch server by using a routing queue, use the 

same template configuration (the same template name and setting values) on all batch 

servers. 

 

15.3.2. Using a template 

(1) Creating a Create 

Start qmgr(1M) with the administrator privilege and use the create openstack_template 

subcommand below to create a new template. 

create openstack_template=<template_name> image=<OS_image> flavor=<flavor_name>  

cpu=<cpunum> memsz=<memory_size> [gpu=<gpunum>] [boot_timeout=<timeout>] 

[stop_timeout=<timeout>] [custom="<custom_define>"] [comment="<comment>"] 

* For cpu, memsz, and gpu to specify the amount of each resource in a template, specify the 

same value set to flavor specifying the OpenStack flavor. 

 

A template creation example is show below. The tables show OpenStack setting images and 

flavor settings. 

Setting on OpenStack: 

Image name Contents 

rhel70 RHEL7 has installed. 

rhel71 RHEL7.1 has installed. 

 

Flavor name Contents 

small Small-scale environment. CPU=1, Memory=1GB 

medium Medium-scale environment. CPU=2, Memory=2GB 

large Large-scale environment. CPU=4, Memory=4GB 

 

Templates defined by NQSV: 

The following operation example defines four templates whose OpenStack 

configurations are small-scale (small) and medium-scale (medium) environments of 

RHEL7 (rhel70) and medium-scale (medium) and large-scale (large) environments of 

RHEL7.1 (rhel71). 

$ /opt/nec/nqsv/bin/qmgr -Pm 



 

163 

 

Mgr: create openstack_template=os_70_small image=rhel70 cpu=1 memsz=1gb flavor=small 

OpenStack Template os_70_small created. 

Mgr: create openstack_template=os_70_medium image=rhel70 cpu=2 memsz=2gb flavor=medium 

OpenStack Template os_70_medium created. 

Mgr: create openstack_template=os_71_medium image=rhel71 cpu=2 memsz=2gb flavor=medium 

OpenStack Template os_71_medium created. 

Mgr: create openstack_template=os_71_large image=rhel71 cpu=4 memsz=4gb flavor=large 

OpenStack Template os_71_large created. 

 

(2) Deleting a Delete 

Start qmgr(1M) with the administrator privilege and use the delete openstack_template 

subcommand below to delete the created template. However, if any request uses the target 

template, the template cannot be deleted. 

delete openstack_template =<template_name> 

 

(3) Editing a template 

Start qmgr(1M) with the administrator privilege and use the set openstack_template 

subcommand below to edit the created template. However, if any request uses the target 

template, the template cannot be edited. 

set openstack_template image=<OS_image>  <template_name> 

set openstack_template cpu=<cpunum>  <template_name> 

set openstack_template memsz=<memory_size>  <template_name> 

set openstack_template gpu=<gpunum>  <template_name> 

set openstack_template custom="<custom_define>"  <template_name> 

set openstack_template comment="<comment>"  <template_name> 

set openstack_template flavor=<flavor_name>  <template_name> 

set openstack_template boot_timeout=<timeout>  <template_name> 

set openstack_template stop_timeout=<timeout>  <template_name> 

 

(4) Locking and unlocking a template 

A template can be locked to temporarily prevent use when executing the above delete 

openstack_template and set openstack_template subcommands. If the locked template is 

specified for submitting a request, the submit operation will fail. There is no effect on the 

requests that have already been submitted. 

For example, to edit a template, lock the target template to prohibit the template from being 

used when submitting a new request. If the request using the target template has already been 

submitted, wait until the request ends. When there is no request using the target template, 

edit it. After editing, unlock the template to make it usable. 

 

Start qmgr(1M) with the administrator privilege and use the following subcommand to lock a 



 

164 

 

template. 

lock openstack_template =<template_name> 

 

Start qmgr(1M) with the administrator privilege and use the following subcommand to unlock 

a template.  

unlock openstack_template =<template_name> 

 

15.3.3. Displaying a template 

Use qstat --template to reference the information of templates defined in a system. 

[Indication example] 

$qstat --template 

[OpenStack Template] 

=======================================================================================

== 

Template   L Image       Flavor CPU  Memory GPU  Custom               Comment              

---------- - ---------- ------ ---- ------ ---- -------------------- ------------------

-- 

os_70_smal - rhel70     small     1   1.0G    0 (none)               RHEL7 Small.  

os_70_medi - rhel70     medium    2   2.0G    0 (none)               (none) 

   : 

 

Use qstat --template -f to reference the more detailed information of templates. 

[Indication example] 

$qstat --template -f 

OpenStack Template: os_70_small 

  Lock State   = UNLOCK 

  OS Image     = rhel70 

  Flavor       = small 

  CPU Number   = 1 

  Memory Size  = 1GB 

  GPU Number   = 0 

  Boot Timeout = 900 

  Stop Timeout = 900 

  Custom       = (none) 

  Comment      = RHEL7 Small. 

  Requests     = 0 

 

OpenStack Template: os_70_medium 

  Lock State   = UNLOCK 

    : 

 

15.3.4. Submitting a request with a template specified and locating a job 

Use the --template option of qsub(1), qlogin(1), or qrsh(1) to submit a request with a template 

specified. 

 [Example] 



 

165 

 

$qsub --template= os_70_small -q bq -l elapstim_req=1000 

 

When a request is submitted with the --template option specified, the number of CPUs, 

memory size, and number of GPUs that are defined in the specified template are used as the 

limits on resources (number of CPUs, memory size, number of GPUs) per job of the submitted 

request. These limit values are used to check the resources (number of CPUs, memory size, 

and number of GPUs per job) of a queue when the queue is submitted. The queue standard 

values are not applied. 

 

When the request with a template specified uses virtual machines, one job is executed on one 

virtual machine. 

When the request with a template specified uses bare metal servers, multiple jobs of the same 

request can be executed on one bare metal server; however, this configuration is not 

recommended. 

 

 

  



 

166 

 

16. Provisioning environment in conjunction with Docker  

NQSV can execute a job on an isolated system (container) within an execution host in 

conjunction with Docker that can achieve container-based virtualization. 

The function to define and manage a container image and resource information of this 

provisioning environment as a template is also provided. 

 

16.1. Configuring a provisioning environment by using Docker 

NQSV can dynamically configure a job execution environment in an execution host in 

conjunction with the Docker container creation function. 

This section describes the conjunction between NQSV and the Docker container creation 

function using Docker of the following version as an example. 

• Docker CE Version 24.0.5 

• Rocky Linux 8.8 

 

Figure 16-1 : Conceptual diagram of NQSV and Docker 

 

 

The Docker management server is a machine on which Docker Registry a distributed KVS 

(Key-Value Store) can be used. Docker Registry is used to manage the container image 

repository. A distributed KVS (Key-Value Store) is used by Docker to build an overlay network. 



 

167 

 

An NQSV execution host is configured as a node on which to create a Docker container. 

When a job starts, a batch server executes Docker Client by using a container startup script 

and instructs Docker Engine on the execution host to start a container by using a template 

(image and resources to start a container) including container job server information. Docker 

Engine acquires the instructed image from the Docker management server and incorporates 

the acquired image to an overlay network in conjunction with the Docker management server. 

Next, Docker Engine starts the container according to the resource information specified in 

the template and executes a job in the container. 

When the job ends, the batch server executes a container delete script to instruct Docker 

Engine to delete the container. 

 

16.1.1. Docker environment setting 

To make Docker work together with NQSV, configure a Docker environment as follows in 

advance. 

 

(1) Configuring a Docker environment on a batch server host 

Configure an environment so that Docker Client can be used from a batch server host for 

Docker Engine. 

 

(2) Configuring a Docker environment on an execution host 

Configure an environment so that Docker Engine can be used on an execution host. 

 

(3) Configuring a Docker management server 

・ Prepare a new Docker management server. 

(The configuration in which to use a batch server host as a Docker management server 

is also available.) 

・ Configure a Docker management server so that a distributed KVS required to use an 

overlay network as a network between containers can be used. 

・ Create an overlay network for jobs in advance. 

(It is also possible to create it dynamically in a container startup script.) 

・ Configure a Docker management server so that Docker Registry, repository of an 

images required to start a container, can be used. 

・ Create a container image and register it to Docker Registry in advance. 

 

(4) Setting up a container boot image 

Set up a container boot image to satisfy the following conditions: 

・ NQSV/JobServer package are installed in a container boot image. The boot image is 



 

168 

 

set up to start automatically in the nqs_shpd -S format when a container starts. It is 

not necessary to specify other nqs_shpd options (such as -h and -n). 

・ JSVDB (/var/opt/nec/nqsv/jsv）of an execution host is shared within a container. 

・ Docker can use an overlay network. 

・ Containers can communicate with each other (ssh, etc.) by using container host names. 

・ An account of a job execution user can be used in a container. 

・ A process in a container can communicate with an NQSV client host and execution 

host. 

 

 

(*) Please edit the package version to the latest version when creating a Dockerfile based on 

this example. 

 

The following shows a sample Dockerfile that creates an image to install SX-Aurora 

TSUBASA system software from yum repository on the internet, and set up to start a 

container automatically in the startup script(jsvstart.sh) which executes the nqs_shpd –d 

format and creates a job execution user. 

In this sample, package files (TSUBASA-soft-release-ve1-3.0-1.noarch.rpm and 

MLNX_OFED_LINUX-23.04-1.1.3.0-rhel8.8-x86_64.tar) and config files (yum.conf, Rocky-

BaseOS.repo, TSUBASA-repo.repo, TSUBASA-restricted.repo) in the same directory as 

Dockerfile are placed.  

[Dockerfile example] 

FROM            docker.io/rockylinux:8.8 

MAINTAINER      NEC 

ADD             yum.conf /etc 

ADD             Rocky-BaseOS.repo /etc/yum.repos.d 

ADD             TSUBASA-soft-release-ve1-3.0-1.noarch.rpm /tmp 

ADD             TSUBASA-repo.repo /tmp 

ADD             TSUBASA-restricted.repo /tmp 

ARG             RELEASE_RPM=/tmp/TSUBASA-soft-release-ve1-3.0-1.noarch.rpm 

RUN             yum -y install $RELEASE_RPM && \ 

                cp /tmp/*.repo /etc/yum.repos.d && \ 

                rm /tmp/*.repo && \ 

                yum clean all && \ 

                yum -y group install ve-container && \ 

                yum -y group install nec-sdk-runtime 

 

RUN             yum -y group install nec-mpi-runtime nqsv-execution 



 

169 

 

 

RUN             yum -y install perl pciutils gtk2 atk cairo gcc-gfortran tcsh lsof libnl3 libmnl 

ethtool tcl tk 

ADD             MLNX_OFED_LINUX-23.04-1.1.3.0-rhel8.8-x86_64.tar /tmp 

RUN             cd /tmp/MLNX_OFED_LINUX-23.04-1.1.3.0-rhel8.8-x86_64 && \ 

                ./mlnxofedinstall --user-space-only --without-fw-update -q --all 

RUN             rm -rf /tmp/MLNX* 

 

RUN             yum -y group install ve-container-infiniband 

 

# Enable the next line if you use ScaTeFS 

#RUN             yum -y group install scatefs-client-tsubasa-container 

 

COPY            jsvstart.sh /tmp/jsvstart.sh 

CMD             ["/tmp/jsvstart.sh"] 

 

The following shows a sample script which creates a job execution user and group, executes 

NQSV/JobServer. Please place it in the same directory as Dockefile. 

 

[jsvsgtart.sh example] 

#!/bin/bash 

/usr/sbin/groupadd -g ${NQS_CONTAINER_GID} ${NQS_CONTAINER_GNAME} 

/usr/sbin/useradd -g ${NQS_CONTAINER_GID} -d ${NQS_CONTAINER_HOME} -u 

${NQS_CONTAINER_UID} ${NQS_CONTAINER_UNAME} 

/opt/nec/nqsv/sbin/nqs_shpd -d 

 

 

16.1.2. Configuring a job server on an execution host 

A job server that started in a container connects to a job server on an execution host. The job 

server in the container uses a host name acquired by the job server on the execution host as 

its own name at connection. 

However, if host names that the job servers on the execution host and in the container can 

reference are different, expressly specify the host name that the job server in the container can 

reference by using the -H option when starting the job server on the execution host. 

Option to start a job server on an execution host: 

nqs_shpd -H <jhost> -h <bsv_host> -n <jsvno> 

This enables to connect a job server in a container to a job server on an execution host by using 



 

170 

 

the host name <jhost> that can be referenced within the container. 

 

16.1.3. Container Startup Script 

A container is started by a shell script created by a system administrator. Locate a shell script 

in the following path. 

Startup script: /opt/nec/nqsv/sbin/provision_prog/container_start.sh 

 

Create a startup script to execute the following processes according to the NQSV and Docker 

execution environments. 

 

(1) Processes to be executed in a container startup script 

The following three processes must be executed in a container startup script. 

1)  Starting a container 

Process to execute the docker run command according to the environment variables 

specified in the script to start a container. 

2)  Waiting for containers to start 

Process to wait until all containers are fully started. 

3)  Creating a container information file 

Process to describe the following items by delimiting with a space in the file specified 

by the environment variable NQS_CONTAINER_INFOPATH. Items of one job must 

be described in one line. (This is called a container ID file.) 

 Started job ID 

 Container host names (They must not be duplicated among jobs.) 

 Container ID 

[Example] 

0 NQS-0-496-10 56fc8a257a34b92eaeae379bfdf34444693966e99f5f4e451eb11637a8b2a31e 

1 NQS-1-496-10 47dd3f398c44a13cfddf451cb3345233724677a56f7f5b362ce32784b9f6b72a 

 

When the above three processes are complete, the script terminates with exit 0. 

If starting a container failed, for example, due to a failure of the docker run command during 

the processes 1) to 3) above, the relevant job number is described in the file specified by the 

environment variable NQS_CONTAINER_FAILINFOPATH. A job number of one job is 

described in one line. (This is called a FAIL file.)  

Then the script terminates with an exit code other than exit 0. 

 

(2) Environment variables to execute a container startup script 

Specify the following environment variables to execute a container startup script. 



 

171 

 

Environment variable Value 

NQS_CONTAINER_TEMPLATE_NAME Template name 

NQS_CONTAINER_IMAGE_NAME Image name 

NQS_CONTAINER_CPU Number of CPUs 

NQS_CONTAINER_GPU Number of GPUs 

NQS_CONTAINER_MEMORY Memory size 

(Example of "Size" and "Unit": 100 MB) 

NQS_CONTAINER_CUSTOM Custom definition 

NQS_CONTAINER_QUE Name of the queue to which a request was 

submitted 

NQS_CONTAINER_RID Request ID 

Format: <seqno>.<mid> 

For <mid>, specify a 

number. 

NQS_CONTAINER_INFOPATH Path in which to save a container ID file 

NQS_CONTAINER_FAILINFOPATH Path in which to save a FAIL file 

NQS_CONTAINER_PROCTYPE "EXECUTION" (For forward processing) 

"ROLLBACK" (For rollback) 

NQS_CONTAINER_HOSTS Host name and job number of an execution 

host on which to start a container 

Format: 

<jobno>:<hostname>[ <jobno>:<hostname> 

...] 

                   * Use a space as a 

delimiter 

NQS_CONTAINER_CPUSET_FUNC Specify whether to enable or disable the 

NQSV CPUSET function. 

"Disable" (disable) 

"Enable" (enable) 

NQS_CONTAINER_CPUSET_CPUS CPU core number assigned to a job 

(Only when the CPUSET function is 

enabled) 

Format: 

<jobno>:<cpus>[ <jobno>:<cpus> ...] 

           * Use a space as a delimiter 

NQS_CONTAINER_CPUSET_MEMS Memory number assigned to a job 

(Only when the CPUSET function is 

enabled)  

Format: 

<jobno>:< mems>[ <jobno>:< mems> ...] 



 

172 

 

             * Use a space as a 

delimiter 

NQS_CONTAINER_ASSIGNED_GPUS GPU number assigned to a job 

(Only when the GPU is required)  

Format: 

<jobno>:< gpus>[ <jobno>:< gpus> ...] 

             * Use a space as a delimiter 

NQS_CONTAINER_VE Number of VEs 

NQS_CONTAINER_ASSIGNED_VE_DEV

S 

VE number assigned to a job 

(Only when the VE is required)  

Format: 

<jobno>:< ves>[ <jobno>:< ves> ...] 

             * Use a space as a delimiter 

NQS_CONTAINER_ASSIGNED_HCA_DE

VS 

The path of HCA on execution host. 

Format: 

<jobno>:< path>[ <jobno>:< path> ...] 

             * Use a space as a delimiter 

NQS_CONTAINER_UNAME The job execution user name 

NQS_CONTAINER_UID The job execution user id 

NQS_CONTAINER_GNAME The job execution group name 

NQS_CONTAINER_GID The job execution group id 

NQS_CONTAINER_WORKDIR The job submission directory 

NQS_CONTAINER_HOME The home directory of job execution user 

 

(3) Rollback processing 

If executing a container startup script failed (that is, the script ended with an exit code other 

than exit 0), the script will be executed again to perform a rollback processing. The 

environment variable NQS_CONTAINER_PROCTYPE is used to determine whether to 

execute a forward processing or rollback processing. 

In a rollback processing, it is required to delete containers with container IDs described in 

the container ID file and wait for all of them to delete completely. NQSV executes the 

subsequent processes after the rollback processing assuming that all containers have been 

deleted. For the container that cannot be deleted in the rollback processing, the relevant job 

number must be described in a FAIL file. 

 

(4) Timeout 

Timeout monitoring is performed while a container startup script is executed. The value of 

the estimated startup time (Boot Timeout) set in a template is used as a timeout time. 

In a forward processing of a container startup script, if the processing does not terminate 

even if the time set to Boot Timeout has passed, it is assumed that executing the startup 



 

173 

 

script failed. Then the container startup script is interrupted (by sending a KILL signal) and 

a rollback processing is performed. 

In a rollback processing, timeout monitoring is also performed. If the processing does not 

terminate even if the time set to Boot Timeout has passed, executing the container startup 

script (rollback processing) is interrupted. However, if a rollback processing is interrupted 

due to a timeout, a container may remain on an execution host without deleting. 

 

(5) Notes on creating a container startup script 

When creating a container startup script to start multiple containers, select either of the 

following two operation types to be performed at detection of startup failure. The subsequent 

scheduling operation differs depending on which operation type is selected. Since there are 

advantages and disadvantages to both operation types, select either according to your 

operations. 

 

1)  Waiting until the startup process of all containers are complete and detecting all the 

containers that could not start. 

This operation can detect all the containers that could not start among the containers 

to start. The advantage of this operation is that a schedule can be created to avoid the 

relevant host and assign a request to another host in the subsequent scheduling 

operation. 

On the other hand, since it is required to wait until all target containers are fully 

started, it takes time to assign the request again after the detection of the first startup 

failure. 

 

2)  Interrupting a process assuming that all startup processes failed if any container 

startup failure is detected. 

The advantage of this operation is that an action such as reassignment of a request 

can be performed immediately because a container startup failure can be detected as 

soon as its occurrence. 

On the other hand, if another container cannot start after the detection of the first 

startup failure, that startup failure cannot be detected. Therefore, when the request 

is assigned to the relevant host next time, a startup failure may occur again. 

 

16.1.4. Container delete script 

A container is deleted by a shell script created by a system administrator. Locate a shell script 

in the following path. 

Delete Script: /opt/nec/nqsv/sbin/provision_prog/container_delete.sh 

 



 

174 

 

Create a delete script to execute the following processes according to the NQSV and Docker 

execution environments. 

 

(1) Processes to be executed in a container delete script 

The following two processes must be executed in a container delete script. 

1)  Deleting a container 

Process to execute the docker rm command according to the environment variables 

specified in the script to delete a container. 

2)  Waiting for all containers to be deleted 

Process to wait until all containers are completely deleted (or until it is found that 

containers cannot be deleted). 

* Even if a delete script fails, a rollback processing is not performed. Therefore, be 

sure to confirm that containers have been deleted completely. NQSV executes the 

subsequent processes assuming that all the containers have been deleted 

completely when the execution of the container delete script is complete. 

 

When the above two processes are complete, the script terminates with exit 0. 

If deleting a container failed, the relevant job number is described in the FAIL file specified 

by the environment variable NQS_CONTAINER_FAILINFOPATH. A job number of one job 

is described in one line. Then the script terminates with an exit code other than exit 0. 

 

(2) Environment variables to execute a container delete script 

Specify the following environment variables to execute a container delete script. 

Environment variable Value 

NQS_CONTAINER_TEMPLATE_NAME Template name 

NQS_CONTAINER_IMAGE_NAME Image name 

NQS_CONTAINER_CPU Number of CPUs 

NQS_CONTAINER_GPU Number of GPUs 

NQS_CONTAINER_MEMORY Memory size 

(Example of "Size" and "Unit": 100 MB) 

NQS_CONTAINER_CUSTOM Custom definition 

NQS_CONTAINER_QUE Name of the queue to which a request was 

submitted 

NQS_CONTAINER_RID Request ID 

Format: <seqno>.<mid> 

For <mid>, specify a number. 

NQS_CONTAINER_INFOPATH Path in which to save a container ID file 

NQS_CONTAINER_FAILINFOPATH Path in which to save a FAIL file 



 

175 

 

NQS_CONTAINER_IDS List of job numbers and container host names 

Format: 

<jobno>:<container_hostname>[ <jobno>:<contai

ner_hostname> ...] 

 * Use a space as a delimiter 

NQS_CONTAINER_PROCTYPE "EXECUTION" 

NQS_CONTAINER_HOSTS Host name and job number of an execution host on 

which a container to delete exists 

Format: 

<jobno>:<hostname>[ <jobno>:<hostname> ...] 

                    * Use a space as a delimiter 

 

(3) Timeout 

Timeout monitoring is performed while a container delete script is executed. The value of 

the estimated stop time (Stop Timeout) set in a template is used as a timeout time. 

If the container delete script does not terminate even if the time set to Stop Timeout has 

passed, it is assumed that executing the script failed. Then the container delete script is 

interrupted (by sending a KILL signal). 

If the container delete script is interrupted due to a timeout, a container may remain on an 

execution host without deleting. 

 

[Notes] 

If the container that was used to execute a job remains on an execution host because 

executing the container delete script failed, log in to the execution host and delete the 

relevant container directly. 

 

16.1.5. Sample container startup and delete scripts 

The sample container startup and delete scripts are installed in the batch server host. By 

referring these sample scripts, create a container startup and delete scripts including the 

above described processes and locate them in an appropriate path. 

 

[Notes] 

These sample scripts offer an implementation image of the minimum function. They do 

not guarantee operations on all Docker environments. When configuring an environment, 

implement appropriate processes according to your actual environment. 

 

The summary of each script is described below. 

 



 

176 

 

(1) Sample container startup script 

Installation path: /opt/nec/nqsv/sbin/provision_prog/container_start.sh.sample 

Process overview: 

When EXECUTION is set to the environment variable NQS_CONTAINER_PROCTYPE: 

⁃ The docker network command generates an overlay network dynamically. 

⁃ The docker run command starts a container on the execution host specified by the 

execution variable NQS_CONTAINER_HOSTS. Whether starting the container 

is successful is determined by the docker run command execution result. 

When ROLLBACK is set to the environment variable NQS_CONTAINER_PROCTYPE: 

⁃ The docker rm command deletes the container with the container ID acquired 

from the container ID file specified by the environment variable 

NQS_CONTAINER_INFOPATH. 

⁃ Then, the docker network command deletes the dynamically generated overlay 

network. 

 

(2) Sample container delete script 

Installation path: /opt/nec/nqsv/sbin/provision_prog/container_delete.sh.sample 

Process overview: 

⁃ The docker rm command deletes the container according to the container ID 

acquired from the container ID file specified by the environment variable 

NQS_CONTAINER_INFOPATH. 

⁃ Then, the docker network command deletes the dynamically generated overlay 

network. 

 

16.1.6. Notes on an execution host on which to start a container and queue 

The queue to which to submit a request that starts a container and executes a job in the started 

container must be used only for starting a container. 

Only the execution hosts on which Docker Engine can start a container must be bound to that 

queue. It is not possible to coexist with an execution host on which to start a virtual machine, 

bare metal server, and usual execution host. 

16.2. Configuring a container template  

Information of an OS image and resources of a provisioning environment in conjunction with 

Docker is defined as a container template (hereafter referred to as a template). 

A user can execute a job in the environment set in a container template by specifying the 

template for the --template option of a submit command (qsub(1), qlogin(1), or qrsh(1)). 

 

16.2.1. Defining a template 



 

177 

 

A template is defined by a system administrator. Multiple template can be defined. In a 

template, the following elements can be defined as information of a provisioning environment 

in conjunction with Docker. 

 

Element name Definition 

Template name Template name. 

A name can consist of up to 47 characters. 

A space, double quotation mark ("), and @ symbol cannot be used in a 

template name. 

A user specifies this template name when submitting a request. 

Image name 

(image) 

Image name of a container to start. 

This must be an image name that an execution host can use. 

This can consist of up to 47 characters. 

Number of CPUs 

(cpu) 

Number of CPUs to be assigned. 

This must be an integer of 1 or larger. 

This is also used as the limitation on the number of CPUs per job of the 

request for which the relevant template is specified. 

Memory size 

(memsz) 

Memory size to be assigned. 

This must be an integer of 1 or larger followed by a unit (B, KB, MB, GB, 

TB, PB, EB). 

This is also used as the limitation on the memory size per job of the 

request for which the relevant template is specified. 

Number of GPUs 

(gpu) 

Number of GPUs to be assigned. 

This must be an integer of 0 or larger. Specify 0 if no GPU is assigned. 

The default is 0. 

This is also used as the limitation on the number of GPUs per job of the 

request for which the relevant template is specified. 

Number of VEs 

(ve) 

Number of VEs to be assigned. 

This must be an integer of 0 or larger. Specify 0 if no VE is assigned. The 

default is 0. 

This is also used as the limitation on the number of VEs per job of the 

request for which the relevant template is specified. 

Number of HCAs 

(hca) 

Number of HCAs which a job can use. 

Format: (<for_io>, <for_mpi>, <for_all>) 

Each value must be an integer of 0 or larger. Specify 0 if no HCA is used. 

The default is 0. 

Estimated Timeout time of a container startup script. 



 

178 

 

startup time 

(boot_timeout) 

This must be an integer of 1 to 2147483647. The unit is seconds. The 

default is 900 seconds. 

Estimated stop 

time 

(stop_timeout) 

Timeout time of container stop script. 

This must be an integer of 1 to 2147483647. The unit is seconds. The 

default is 900 seconds. 

Custom 

definition 

(custom) 

If there is information uniquely defined as a startup environment, 

describe it. 

Up to 400 characters can be described. 

Comment 

(comment) 

Comments for a template can be described. 

Up to 255 characters can be described. 

 

[Notes] 

When a request is transferred to another batch server via a routing queue, use the same 

template configuration (the same template name and setting values) on all batch 

servers. 

 

16.2.2. Using a template 

(1) Creating a template 

Start qmgr(1M) with the administrator privilege and use the create container_template 

subcommand below to create a new template. 

create container_template=<template_name> image=<image> cpu=<cpunum> 

memsz=<memory_size> [gpu=<gpunum>] [boot_timeout=<timeout>] 

[stop_timeout=<timeout>] [custom="<custom_define>"] [comment="<comment>"] 

 

An example to create a template named App_A with the following settings configured is shown 

below. 

 Container image to start : App_A_Img 

 Number of CPUs to be assigned : 2 

 Memory to be assigned  : 1GB 

 Comment   : For App_A 

$ /opt/nec/nqsv/bin/qmgr -Pm 

Mgr: create container_template=App_A image=App_A_Img cpu=2 memsz=1gb comment="For App_A" 

Container Template App_A created. 

 

(2) Deleting a template 

Start qmgr(1M) with the administrator privilege and use the delete container_template 

subcommand below to delete the created template. However, if any request uses the target 

template, the template cannot be deleted. 



 

179 

 

delete container_template =<template_name> 

(3) Editing a template 

Start qmgr(1M) with the administrator privilege and use the set container_template 

subcommand below to edit the created template. However, if any request uses the target 

template, the template cannot be edited. 

set container_template image=<image>  <template_name> 

set container_template cpu=<cpunum>  <template_name> 

set container_template memsz=<memory_size>  <template_name> 

set container_template gpu=<gpunum>  <template_name> 

set container_template custom="<custom_define>"  <template_name> 

set container_template comment="<comment>"  <template_name> 

set container_template boot_timeout=<timeout>  <template_name> 

set container_template stop_timeout=<timeout>  <template_name> 

 

(4) Locking and unlocking a template 

A template can be locked to temporarily prevent use when the above delete container_template 

and set container_template subcommands are executed. If the locked template is specified for 

submitting a request, the submit operation will fail. There is no effect on the requests that 

have already been submitted. 

For example, to edit a template, lock the target template to prohibit the template from being 

used when submitting a new request. If the request using the target template has already been 

submitted, wait until the request ends. When there is no request using the target template, 

edit it. After editing, unlock the template to make it usable. 

 

Start qmgr(1M) with the administrator privilege and use the lock container_template 

subcommand below to lock a template. 

lock container_template =<template_name> 

 

Start qmgr(1M) with the administrator privilege and use the unlock container_template 

subcommand below to unlock a template. 

unlock container_template =<template_name> 

 

16.2.3. Displaying a template 

Use qstat --template to reference the information of the template defined in a system. 

[Display example] 

$qstat --template 

[Container Template] 

================================================================================== 



 

180 

 

Template   L Image      CPU  Memory GPU  Custom               Comment 

---------- - ---------- ---- ------ ---- -------------------- -------------------- 

App_A      - App_A_Img     2   1.0G    0 (none)               For App_A 

 

Use qstat --template -f to reference the more detailed information of templates. 

[Display example] 

$qstat --template -f 

Container Template: App_A 

  Lock State   = UNLOCK 

  Image        = App_A_Img 

  CPU Number   = 2 

  Memory Size  = 1GB 

  GPU Number   = 0 

  Boot Timeout = 900 

  Stop Timeout = 900 

  Custom       = (none) 

  Comment      = For App_A 

  Requests     = 5 

 

16.2.4. Submitting a request with a template specified and locating a job 

Use the --template option of qsub(1), qlogin(1), or qrsh(1) to submit a request with a template 

specified. 

[Example] 

$qsub --template=App_A -q bq -l elapstim_req=1000 

 

When a request is submitted with the --template option specified, the number of CPUs, 

memory size, and number of GPUs that are defined in the specified template are used as the 

limits on resources (number of CPUs, memory size, number of GPUs) per job of the submitted 

request. These limit values are used to check the resources (number of CPUs, memory size, 

and number of GPUs per job) of a queue when the queue is submitted. The queue standard 

values are not applied. 

 

The request with a container template specified executes one job per container. 

 

 

  



 

181 

 

17. Custom Resource Function 

The custom resource function is a function to control the custom resource amount that is used 

concurrently according to the defined custom resource information. 

 

A system administrator defines a virtual resource. This virtual resource definition is called 

custom resource information. The custom resource information includes a custom resource 

name, resource consumption unit, control scope and upper limit of the custom resource amount 

that is used concurrently. 

It is also able to define the following behavior of the custom resource. Collect the actual value 

of the custom resource or not. If it is set to collect, the kind of the collected value (moment or 

integrate) and the behavior of job termination (terminate or not) when the actual value exceed 

the limit value. 

 

A user specifies a custom resource name and its usable amount for the --custom option of a job 

submit command (qsub(1), qlogin(1), qrsh(1)). A scheduler references the specified amount, 

sums the custom resource amount that is used concurrently, and controls scheduling so that 

the total resource usage does not exceed the defined custom resource upper limit. For more 

information about a scheduler, see [JobManipulator]. For more information about accounting 

and budge control of custom resources, see [Accounting & Budget Control]. 

 

Each queue has the default value and limit of the usage to set to a request. This is called 

custom resource usage limit information. When a batch server accepts a submitted request, 

the server determines whether to allow a job to submit according to this custom resource usage 

limit information. If necessary, the batch server applies the default value. 

 

[Notes] 

The custom resource function is available only for a batch request (local request) and 

interactive request. Therefore, the custom resource usage limit information can be set to 

these two queues. 

 

If the custom resource is configured to collect the actual value, NQSV periodically collects the 

actual resource usage while the request is executing, and it could terminate the job if the actual 

value exceeds the limit according to the configuration. 

17.1. Custom resource information 

17.1.1. Custom resource information 

Custom resource information is a virtual resource. Up to 20 custom resource information pieces 



 

182 

 

can be defined. 

This custom resource information includes a resource consumption unit and the control scope 

and upper limit of the custom resource amount that is used concurrently. 

The following table describes the details. 

Element explanation 

Custom resource name Custom resource name 

A name can consist of up to 15 characters. 

A space, double quotation mark ("), and @ symbol cannot be 

used in a template name. 

Consumption unit Unit to consume the custom resources specified when a 

request is submitted 

Select either of the following: 

・ job     : job unit 

・ request : request unit 

Usage 

control 

information 

Usage 

control 

target type 

Type of the target whose custom resource usage is 

controlled. 

・ bsv 

Controls the custom resource usage of a BSV.  

Set the maximum resource amount that can be used 

concurrently by the whole BSV and schedule jobs so that 

the resource usage does not exceed the specified 

resource amount. 

・ host 

Controls the custom resource usage of an execution host.  

Set the maximum resource amount that can be used 

concurrently by one execution host and schedule jobs so 

that the resource usage does not exceed the specified 

resource amount.  

host can be specified when the custom resource 

consumption unit is job. This type cannot be specified 

when the custom resource consumption unit is request. 

Usage 

control 

target type 

Target whose usage is controlled. 

Indicates the control scope of the maximum resource amount 

that can be used concurrently. 

・ The usage control type is bsv:  

The control scope is the entire BSV. 

・ The usage control type is host:  

The control scope is an execution host (default) or is 



 

183 

 

specified individually by using an execution host name. 

Maximum 

number of 

resources 

Maximum custom resource amount that can be used 

concurrently in the scope specified by the type and target 

described above. 

This must be an integer of 0 to 2147483647. 

Check mode Collect the actual value of the custom resource or not. If it is 

set to collect, the kind of the collected value. 

off 

Do not collect the actual value of the custom 

resource 

moment 

Collect the actual value and it is moment value.  

integrate 

Collect the actual value and it is integrated value. 

Job termination The behavior of job termination. If it set to "on", the job is 

terminated when the actual value exceeds the limit value. 

It could not be used when the Check mode is off. 

Unit The unit of the custom resource. It could be specify 5 

character. If the unit is not specified, the custom resource is 

treated as absolute number. NQSV not concern the 

conformity of the unit. (For example, the error not occurs 

when the actual value is moment and the unit indicates the 

integrate value.) 

 

For the consumption unit, be sure to select job or request. 

The usage control information consists of the usage control target type, usage control target, 

and maximum resource amount that can be used concurrently. Multiple information pieces can 

be defined in one custom resource definition. 

In case of check mode is moment or integrate, BSV handling collected value as following image. 



 

184 

 

 

17.1.2. Defining and deleting the custom resource information 

Use the qmgr(1M) subcommands to define and delete the custom resource information. The 

administrator privilege is required to execute the subcommands. 

The subcommands can be executed only when there is no request on a batch server. If a request 

exists, the subcommands to manipulate the custom resource information cannot be executed. 

 

The details of how to manipulate the custom resource information using the qmgr 

subcommands are described below. 

 

(1) Creating custom resource information 

Use the "create custom_resource" subcommand to create custom resource information. 

The following shows an example to create custom resource information whose name is Power 

and consumption unit is a job. In addition, the usage control target type is BSD and the 

maximum resource amount that can be used concurrently is 2000. 

$ qmgr -Pm 

Mgr: create custom_resource=Power consumer=job type=bsv available=2000 

Custom_resoure Power created. 

 

When creating a custom resource, be sure to select job or request for the consumption unit. 

 

A custom resource can be created with omitting type and available that specify usage 

control information. 

$ qmgr -Pm 

Mgr: create custom_resource=License consumer=job 

Custom_resoure License created. 

 

The kind of actual value collection: check_mode, job termination when exceed the limit: 

terminate_job, unit of the custom resource: unit could be specified at the same time when 



 

185 

 

creating the custom resource. If there are not specified, the default value (check_mode=off, 

terminate_job=off, unit="") is applied. 

$ qmgr -Pm 

Mgr: create custom_resource=Power consumer=job type=bsv available=2000 

check_mode=moment terminate_job=on unit=volt 

Custom_resoure Power created. 

 

Use the "edit custom_resource add" subcommand to add the usage control information. (For 

details, see "(6) Adding custom resource usage control information" below.) 

 

[Notes] 

For the custom resource that was created by omitting type and available specifications of 

usage control information, usage control using a scheduler is not performed. 

 

(2) Changing the custom resource consumption unit 

Use the "set custom_resource consumer" subcommand to change the custom resource 

consumption unit that was specified when creating custom resource information. 

[Example] 

$ qmgr -Pm 

Mgr: set custom_resource consumer=request License 

Set Consumer to Custom_resoure (License). 

 

However, the unit cannot be changed from job to request if usage control information whose 

type is host has already been registered. In this case, delete the relevant usage control 

information before changing the unit. 

 

(3) Changing the kind of actual value collection 

Use the "set custom_resource check_mode" subcommand to change the setting of the kind of 

actual value collection when creating custom resource information. 

[Example] 

$ qmgr -Pm 

Mgr: set custom_resource check_mode=moment Power 

Set Consumer to Custom_resoure (Power). 

 

However, check_mode could not be changed to "off" if the terminate_job is "on". If you want to 

change it to "off ", you must change the terminate_job to "off" first. 

 

(4) Changing the setting of job termination 

Use the "set custom_resource terminate_job" subcommand to change the setting of the job 

termination when the actual value exceed the limit when creating custom resource information. 



 

186 

 

[Example] 

$ qmgr -Pm 

Mgr: set custom_resource terminate_job=on Power 

Set Consumer to Custom_resoure (Power). 

 

However, terminate_job could not be changed to "on" if the check_mode is "off". If you want to 

change it to "on ", you must change the check_mode to "moment" or "integrate" first. 

 

 

(5) Changing the unit 

Use the "set custom_resource unit" subcommand to change the unit of the custom resource. 

[Example] 

$ qmgr -Pm 

Mgr: set custom_resource unit=volt Power 

Set Consumer to Custom_resoure (Power). 

 

Equal or less than 5 characters could be specified for the unit.  

 

(6) Add the amount control information to custom resource 

Use the edit custom_resource add subcommand to add a custom resource usage control 

information piece. Specify the usage control target type (type) and target (target) and set the 

maximum resource amount that can be used concurrently (available). If they are already set, 

they will be overwritten.  

The following shows an example to set the values for the custom resource information named 

"Power". 

・ The maximum resource amount that can be used concurrently of the entire BSV is 5000. 

・ The maximum resource amount that can be used concurrently per execution host is 100. 

・ The maximum resource amount that can be used concurrently of the execution host 

"host_a" is 120. 

$ qmgr -Pm 

Mgr: edit custom_resource add type=bsv available=5000 Power 

Add Available_info from Custom_resource (Power). 

Mgr: edit custom_resource add type=host available=100 Power 

Add Available_info from Custom_resource (Power). 

Mgr: edit custom_resource add type=host target=host_a available=120 Power 

Add Available_info from Custom_resource (Power). 

 

When type=bsv, the maximum resource amount that can be used concurrently of the entire 

BSV is set. 

When type=host, the maximum resource amount that can be used concurrently per execution 

host is set. When type=host, the maximum resource amount that can be used concurrently can 



 

187 

 

be set to a certain execution host by specifying its name for target. 

 

(7) Deleting the custom resource usage control information 

Use the edit custom_resource delete subcommand to delete the custom resource information. 

Specify the usage control target type (type) and target (target) of the target information to 

delete. The following shows an example to delete information of the execution host host_a from 

the custom resource information named "Power".  

$ qmgr -Pm 

Mgr: edit custom_resource delete type=host target=host_a Power 

Deleted Available_info from Custom_resource (Power). 

 

When type=host, if target is not specified, whole information of the target execution host are 

deleted. (That is, the maximum resource amount that can be used concurrently per execution 

host and that of the execution host with the name specified are all deleted.) 

 

(8) Deleting the custom resource information 

Use the delete custom_resource subcommand to delete the custom resource information. 

$ qmgr -Pm 

Mgr: delete custom_resource=Power 

Custom_resource Power deleted. 

 

17.1.3. Displaying the custom resource information 

Use the qstat(1) command with the --custom specified to display the custom resource 

information. 

[Example] 

$ qstat --custom 

Custom Resource : Power 

  Consumer = job 

  Check Mode = Integrate 

  Terminate Job = On 

  Unit = MW 

  Type = bsv :                          Available Resource Limit = 5000 

  Type = host: Target = (default)       Available Resource Limit = 100 

               Target = host_a          Available Resource Limit = 120 

 

Custom Resource : License 

  Consumer  = request 

  Check Mode = Integrate 

  Terminate Job = Off 

  Unit = (none) 

  Type = bsv :                          Available Resource Limit = 50 

 

Custom Resource : Virtual 

  Consumer = job 



 

188 

 

  Check Mode = Moment 

  Terminate Job = Off 

  Unit = (none) 

  Type = bsv :                          Available Resource Limit = 100 

  Type = host: Target = (default)       Available Resource Limit = 1 

 

17.2. Custom resource usage limit information of a queue 

17.2.1. Custom resource usage limit information of a queue 

When the custom resource information is defined, each queue has the custom resource usage 

limit information that is set to a request. This information includes the default usage, usage 

specification range, and setting of whether it is possible to specify the usage of a request to be 

uncontrolled. When a batch server accepts a submitted request, the server determines whether 

to allow a job to submit according to this custom resource usage limit information. If necessary, 

the batch server applies the default value. 

 

The following table describes the details of the custom resource usage limit information of a 

queue. 

Element name explanation 

Custom resource name Name of the custom resource name defined in the custom 

resource information. 

Default usage set to a 

request 

Default usage set to a request. 

If no usage is specified when submitting a request, this default 

value is used. 

The following can be specified. 

・ Specify an integer of 1 to 2147483647. 

・ unused (or, 0) < default value> 

* unused means that the specified custom resource will not 

be used (the usage is 0) and its usage will be 

uncontrolled. 

Specification range of the 

usage set to a request 

Upper and lower limits of the custom resource usage set to a 

request. 

Specify an integer of 1 to 2147483647. 

Whether it is possible to 

specify the usage of a 

request to be 

uncontrolled 

Set whether it is possible to specify the usage of a request to be 

uncontrolled when the request is submitted. 

・ yes  Allows to set the usage of the submitted request to  

      be uncontrolled (unused or 0). (Default) 

・ no  Does not allow to set the usage of the submitted request 

     to be uncontrolled. 

 

17.2.2. Setting the custom resource usage limit information of a queue 



 

189 

 

Use the qmgr(1M) subcommands to set the custom resource usage limit information of a queue. 

The operator privilege is required to set the custom resource usage limit information of a queue. 

The following table shows the qmgr(1M) subcommands that are used to set items of the custom 

resource usage limit information of a queue and their default value. 

Setting item qmgr(1M) sub-commands  Default 

Default usage set to 

a request 

set execution_queue custom_resource =cr_name  
standard=std  queue 
set interactive_queue custom_resource 

=cr_name  standard=std  queue 

unused (0) 

Specification range 

of the usage set to a 

request 

set execution_queue custom_resource =cr_name  
range=(min,max)  queue 
set interactive_queue custom_resource 

=cr_name  range=(min,max)  queue 

(1, 2147483847) 

Whether it is 

possible to specify 

the usage of a 

request to be 

uncontrolled 

set execution_queue custom_resource =cr_name  
permit_unused={ yes | no }  queue 
set interactive_queue custom_resource 

=cr_name  permit_unused={ yes | no }  queue 

yes 

* It is possible to 

specify the 

usage of a 

request to be 

uncontrolled 

 

The above three items of the custom resource usage limit information can be specified on one 

line. The following shows an example to set a custom resource information named "Power" 

with the following usage limit information for the batch queue bq: default value of 30, value 

range of (10,50), and for which setting the usage of a request to be uncontrolled is not allowed. 

$ qmgr -Po 

Mgr: set execution_queue custom_resource=Power standard=30 range=(10,50) 

permit_unused=no bq 

Set Custom_resource_info (Power). queue: bq 

 

17.2.3. Displaying the custom resource usage limit information of a queue 

Use the -Qf option of the qstat(1) command to display the custom resource usage limit 

information of a queue (Custom Resources). 

[Example] 

$ qstat -Qf 

Execution Queue: bq@bsv 

    Run State = Active 

    Submit State = Enable 

      : 

  UserExit Script: 

    (none) 

  Custom Resources: 

    Power            : Range (min,max) = 10,50        Std = 30         : Permit Unused = 

No 

    License          : Range (min,max) = 1,20         Std = unused     : Permit Unused = 

Yes 



 

190 

 

    Virtual          : Range (min,max) = 1,1          Std = 1          : Permit Unused = 

No 

  Resources Limits: 

    (Per-Req) Elapse Time Limit       = Max: UNLIMITED Warn: UNLIMITED Std:     3600S 

    (Per-Job) CPU Time                = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

      : 

  Kernel Parameter: 

    Resource Sharing Group     = 0 

    Nice Value                 = 0 

      : 

 

17.3. Requests when using the custom resource function 

In an environment on which the custom resource function is used, a user specifies a custom 

resource name and its usable amount for the --custom option of a job submit command (qsub(1), 

qlogin(1), qrsh(1)). If no name and usable amount are set by a job submit command, the default 

custom resource names and usages set to a queue are applied. 

A scheduler references the specified usable amount, sums the custom resource amount that is 

used concurrently, and controls scheduling so that the total resource usage does not exceed the 

defined custom resource upper limit. 

 

For the custom resource usage of a request, set the environment variables of a job as follows: 

NQSV_CR_<custom resource name>=<amount> 

   and 

NQSII_CR_<custom resource name>=<amount> 

Above 2 kinds of environment variable has same value. 

 

[Environment variable setting example] 

NQSV_CR_Power = 20 

NQSV_CR_License = unused 

NQSV_CR_Virtual = 1 

 

The unit of the custom resource that request have, set the environment variables of a job as 

follows. There are 2 kinds of environment variable, but they have same value. If the unit is not 

specified for the custom resource, "" is set for <unit>. 

 

NQSV_CR_UNIT_<custom resource name>=<unit> 

   and 



 

191 

 

NQSII_CR_UNIT_<custom resource name>=<unit> 

 

These environment variables can be referenced in the following user defined process scripts. 

・ User EXIT script (for details, see 5.1.2. User EXIT) 

・ Hook script (for details, see 13. Hook Script Function) 

・ UserPP script (for details, see 14. User Pre-Post Script Function) 

 

17.4. Resource monitoring script 

If it is set the check mode to "moment" or "integrate", the resource usage on the execution host 

is monitored by resource monitoring script. Create the resource monitoring script for each 

custom resource, place it under /opt/nec/nqsv/sbin/custom_prog directory and set the script 

name to the same name as custom resouce name. 

Following environment variables are applied when the script is executed. 

 

Environment variable Value Explanation 

CR_ASSIGNED_VE 0~231-1 Assigned VE number 

CR_ASSIGNED_CORE 0~231-1 Assigned CPU core number (*) 

CR_NUMA_NODE 0~231-1 Assigned NUMA node number 

(*) 

CR_<custom resource 

name> 

0~231-1 The Limit of the custom resource 

CR_UNIT_<custom resource 

name> 

character The Unit of the custom resource 

CR_CPUNUM 0~231-1 CPU number limit of the job 

CR_GPUNUM 0~231-1 GPU number limit of the job 

CR_VENUM 0~231-1 VE number limit of the job 

CR_JOBID <jobno>:<seqno>.<hosts> Monitoring target Job ID 

CR_TMPDIR directory path Temporary directory to save the 

information. 

CR_EJID 1~Max number of PID Session ID of the job 

 

(*) It is only available when the socket scheduling feature is enabled.  

 

Resource monitoring script is transferred to the execution host and it is executed periodically 

with root privilege. The monitored usage value is output to standard output. If the exit status 

of the script is not 0, it is treated as the monitoring failure and the job execution is interrupted. 



 

192 

 

 

The system manager must create the resource monitoring script to monitor the custom 

resource. 

 

Two examples is shown below. One is the example which collects the I/O amount in VH, the 

other is the example which collects power consumption in VI. 

 

[Script Example: Collection the I/O amount] 

 

The I/O statics is recorded in ‘/proc/<pid>/io’ file. The following script refers the file of job 

process, and gets the total amount(KiB) read and written of I/O. The script cannot get the I/O 

amount of Direct communication on VE. 

#!/bin/bash 

SAVED_DIR=${CR_TMPDIR}/ioacct 

SID=${CR_EJID} 

declare -A PID_HASH 

 

if [ ! -e ${SAVED_DIR} ];then 

    mkdir -p ${SAVED_DIR} 

else 

    for fl in `ls ${SAVED_DIR}`; 

    do 

        PID_HASH[${fl}]=`cat ${SAVED_DIR}/${fl}` 

        rm ${SAVED_DIR}/${fl} 

    done 

fi 

 

PIDS=`ps -s ${SID} -o pid` 

IO=0 

for pid in ${PIDS}; 

do 

    IOFL="/proc/${pid}/io"; 

    if [ -e ${IOFL} ];then 

        RCHAR=`cat ${IOFL} | grep rchar | awk -F ':' '{print $2}'`; 

        WCHAR=`cat ${IOFL} | grep wchar | awk -F ':' '{print $2}'`; 

         

        # B to KiB 

        CHAR=$((${RCHAR}/1024+${WCHAR}/1024)) 



 

193 

 

        IO=$((${IO}+${CHAR})) 

        if [ -n "PID_HASH[${pid}]" ];then 

            PID_HASH[${pid}]=0 

            echo ${CHAR} > ${SAVED_DIR}/${pid} 

        fi 

    fi 

done 

ACC=${PID_HASH["ACC"]} 

PID_HASH["ACC"]=0 

for val in ${PID_HASH[@]}; 

do 

    ACC=$((${ACC}+${val})) 

done 

 

echo ${ACC} > ${SAVED_DIR}/ACC 

IO=$((${IO}+${ACC})) 

echo ${IO} 

exit 0 

 

[Script Example: Collection power consumption] 

In a rack with Intelligent PDU, you can get the power consumption with remote command 

through SNMP protocol. The following script example is that it get the power consumption 

from the PDU with snmapwalk command in the execution host. 

Set the following variables if you use the script. 

 

 Variable    :  Description 

  PDU_IP   :  Specify the ip address of PDU. 

  OUTLETS  :  Specify the outlet number of the execution host. 

  PWR_MIB    :  Specify Object ID which can get power consumption in the PDU MIB file. 

#!/bin/bash 

SNMPBIN=/usr/bin/snmpwalk 

PDU_IP=<IP_Address of PDU> 

OUTLETS=<Outlet_numbers> 

SUM=0 

for outlet in ${OUTLETS}; 

do 

    PWR_MIB=".1.3.6.1.4.1.13742.6.5.4.3.1.6.1.${outlet}.6" 

    POWER=`${SNMPBIN} -v 2c -c public ${PDU_IP} ${PWR_MIB} | awk -F ':' '{print 



 

194 

 

$4}'` 

    if [ $? -ne 0 ]; then 

        exit 1 

    fi 

    SUM=$((${SUM} + ${POWER})) 

done 

echo $SUM 

exit 0 

 

  



 

195 

 

18. Socket Scheduling 

When using a NUMA architecture scalar machine (Linux) as execution host, NQSV can assign 

suitable resource (the number of CPU and memory) to the job (socket scheduling). It is also 

possible to split the host resources by cooperating with the CPUSET function of the Linux. 

 

18.1. Socket Scheduling function 

Socket scheduling function is the function to assign suitable resource (the number of CPU and 

memory) to the job. CPU is allocated by the core unit and memory is allocated by the socket 

unit. 

The use of the socket scheduling feature can be enabled on a per queue configuration. 

In a socket scheduling enabled queue, a core binding policy that controls how CPUs are 

assigned and a memory allocation policy that controls how memory are allocated in the job. 

In addition, when socket scheduling is enabled on a queue, the following two features are 

available at the time of request submission 

• The function to specify per job CPU number by using the number of socket 

• The function to check the ratio of per job CPU number and per job memory size 

 

18.1.1. Enabling socket scheduling function 

To use the socket scheduling feature, run qmgr(1M) with operator privileges, and use the 

following sub-commands to enable the socket scheduling feature of the queue. 

Queue qmgr(1M) sub-command 

Batch queue set execution_queue numa_control = { on | off } <queue> 

Interactive queue set interactive_queue numa_control = { on | off } <queue> 

on Use socket scheduling function 

off Don't use socket scheduling function 

 

[Example] 

$ qmgr -Po 

Mgr: set execution_queue numa_control = on que1 

Set Numa Control ON. queue: que1 

 

[Notes] 

• It is necessary to bind JSV which execution host is a NUMA architecture scalar 

machine (Linux) to the queue that socket scheduling feature is enabled. 

• When binding more than one execution host to a queue, all execution hosts have the 

same socket configuration. 

• When binding same execution host to multiple queues, the configuration for socket 



 

196 

 

scheduling feature must be same at all bound queues. It is not able to mix the ON and 

OFF configuration. 

• When socket scheduling is enabled, the number of CPUs per logical host is 

automatically set to OMP_NUM_THREADS environment variable. On the job which 

uses VEs, set OMP_NUM_THREADS environment variable appropriately according 

to the number of VEs used in the job script. 

• When the GPU-CPU Affinity feature is ON, the Socket Scheduling feature cannot be 

disabled. Please turn off the GPU-CPU Affinity feature before disable it. For details 

on the GPU-CPU Affinity feature, please refer to 18.3 GPU-CPU Affinity Feature. 

 

18.1.2. Core bind policy 

Following 2 kinds of policy for the socket assignment are available. 

• Socket concentration policy  

Assign cores concentrated in a socket. Lesser free core in the socket is preferentially 

selected. 

• Socket distribution policy 

Assign cores to be distributed among sockets. More free core in the socket is 

preferentially selected. 

 

The core bind policy can be configured to each queue that enabled socket scheduling function. 

To configure it, use following qmgr (1M) sub-commands with operator privilege. 

Queue qmgr(1M) sub-commands 

Batch queue set execution_queue numa_option core_bind_policy = <policy> 

<queue> 

Interactive queue set interactive_queue numa_option core_bind_policy = <policy> 

<queue> 

It is possible to specify following value as <policy>. 

concentration   : Socket concentration policy (default) 

balance         : Socket dispersion policy 

 

18.1.3. Memory allocation policy 

Following 3 kinds of policy for the memory allocation between the socket are available. 

• membind policy 

Only the memory on the socket which the job's execution core belongs to is used.  

Swap is used when the memory insufficient. 

 

• localalloc policy 

A memory on the socket which job's execution core belongs to is used with priority. 



 

197 

 

A memory on the socket that other jobs is using when the memory insufficient. 

 

• interleave policy 

A memory of the socket assigned to a job is used alternately.  

If there is not enough memory, the memory on the socket of the other job is used. 

 

Socket scheduling function can establish a memory allocation policy by the queue unit to the 

queue made more effective. qmgr (1M) is started by operator privilege in setting and the 

following sub-command is used. 

Queue qmgr(1M) sub-commands 

Batch queue set execution_queue numa_option memory_allocation_policy = 

<policy> <queue> 

Interactive queue set interactive_queue numa_option memory_allocation_policy = 

<policy> <queue> 

It is possible to specify following value as <policy>. 

membind membind policy 

localalloc localalloc policy (default) 

interleave interleave policy 

 

[Notes] 

• If HugePages are configured on the system for SX-Aurora TSUBASA and the 

membind policy in socket scheduling is specified, there is a possibility that enough 

Hugepages are not available depending on the number of cpus requested by the job. 

• VE programs on SX-Aurora TSUBASA require Hugepages to run fast. And it is 

recommended that the memory binding policy localalloc or interleave is specified.  

• In case of the memory binding policy membind is used, please refer the SX-Aurora 

TSUBASA Installation Guide "4.11 HugePages Setting", and enable the MEMBIND 

option in the HugePages configuration command. It is necessary to bind JSV which 

execution host is a NUMA architecture scalar machine (Linux) to the queue that 

socket scheduling feature is enabled. 

 

18.1.4. Specify per job CPU number limit by using number of socket 

If socket scheduling is on, you can specify the number of sockets per job (socknum_job) instead 

of the number of CPUs per job (cpunum_job) in the qsub -l option when submitting a request. 

(1) The way to specify the per job CPU number limit 

Whether allow requests to be submitted by specifying the number of sockets per job or not, it 

can be set in a queue that the socket scheduling function is enabled. 

To set this configuration, use qmgr(1M) command with the operator privileges and use the 



 

198 

 

following sub-commands. 

queue qmgr(1M) sub-commands 

Batch queue set execution_queue submit_cpu_unit = { cpu | socket | any } 

<queue> 

Interactive queue set interactive_queue submit_cpu_unit = { cpu | socket | any } 

<queue> 

The meaning of the specify value is as follows in submit_cpu_unit. 

cpu Only cpunum_job can be specified. 

socket Only socknum_job can be specified. 

any Either cpunum_job or socknum_job can be specified. (Default)  

 

(2) Submitting request with socket number 

you can specify the number of sockets per job (socknum_job) with the qsub -l option if  the 

socket scheduling is ON and the queue is set to allow socknum_job to be specified. 

To submit a request by specifying the number of sockets per job, use the -l 

socknum_job=<limit> option of qsub command. Note that socknum_job cannot be specified 

with the -l cpunum_job option. 

 

[Example] 

$ qsub -q bq -l socknum_job=4 job_script 

Request 226.bsv.example.com submitted to queue: bq. 

 

The number of sockets specified by socknum_job is automatically converted to the number of 

CPUs per job based on the sockets information on the hosts that bound to the queue. 

In this automatic conversion, the number of CPUs is calculated as follows. 

(The number of specified sockets) x (the number of CPUs per a socket (core) of the execution host that 

bound to a queue) 

 

[Notes] 

• This function is used to alternate specifying per job CPU number limit. It does not 

mean the CPU core always assigned by socket unit. 

• Since this function uses information on the socket of the executing host, a submission 

error occurs if no JSVs are bound to the queue or all JSVs that bound to the queue 

have never been linked up. 

• When all job servers bound to a queue and linked up are down, the number of CPUs 

is converted using the information before the down.. 

 

18.1.5. Check function of the ratio of per job CPU number and memory size 



 

199 

 

Check the ratio of the number of CPUs per job and memory size per job specified at qsub 

command are equal to the ratio of the number of CPUs (cores) and memory size on the socket 

of the execution host. 

This function allows you to assign the CPUs to use the local memory in the socket is used as 

much as possible when a job is executed on the execution host. 

 

This check the ratio of the number of CPUs and the amount of memory per job function can be 

used on the queue that the socket scheduling function is enabled. It can be configured to the 

queue by using following qmgr(1M) sub-command command with operator privileges. 

 

queue qmgr(1M) sub-commands  

Batch queue set execution_queue numa_unit_check = { on | off }  <queue> 

Interactive queue set interactive_queue numa_unit_check = { on | off }  <queue> 

on  : a ratio checking function of CPU number and the memory size are used. 

off  : a ratio checking function of CPU number and a ratio checking function of the 

memory size aren't used. (default) 

 

[Notes] 

• Since this function uses information on the socket of the executing host, a submission 

error occurs if no JSVs are bound to the queue or all JSVs that bound to the queue 

have never been linked up. 

• When all job servers bound to a queue and linked up are down, the number of CPUs 

is converted using the information before the down.. 

 

 

18.1.6. Referring socket scheduling information 

(1) Queue information 

You can refer all setting about socket scheduling function (NUMA Control, NUMA option, 

Submit CPU Unit, NUMA Unit Check) in queue information that displayed in qstat - Qf. 

[Example] 

$ qstat -Qf 

Execution Queue: que1@bsv1 

    Run State    = Active 

    Submit State = Enable 

      : 

    Restart option = { 

      Ignore modify 

    } 

    NUMA Control = ON 

    NUMA option = { 

      Core Bind Policy = concentration 



 

200 

 

      Memory Allocation Policy = localalloc 

    } 

    Submit CPU Unit = any 

    NUMA Unit Check = OFF 

    Hold Privilege    = (none) 

    Suspend Privilege = (none) 

      : 

 

(2) Execution host information 

You can refer socket information and a socket usage information (Socket Resource Usage) of 

Linux execution host by using qstat - Ef. It is displayed when the socket scheduling function 

is enabled. 

[Example] 

$ qstat -Ef 

Execution Host: host1 

  Batch Server = bsv1 

      : 

  Average Information: 

    LOAD (Latest  1 minute ): 0.230000 

    LOAD (Latest  5 minutes): 0.270000 

      : 

  Cpuset Information: 

    Resource Sharing Groups = { 

      RSG Number 0  = Name: cpuset  Cpus: 0-31  Mems: 0-7 

    } 

  Socket Resource Usage: 

    NUMA Nodes = { 

      Node 0 (Cpus: 0-3)   = Cpu: 4/4 Memory: 0.5GB/4.0GB 

      Node 1 (Cpus: 4-7)   = Cpu: 4/4 Memory: 0.5GB/4.0GB 

      Node 2 (Cpus: 8-11)  = Cpu: 0/4 Memory: 0B/4.0GB 

      Node 3 (Cpus: 12-15) = Cpu: 0/4 Memory: 0B/4.0GB 

      Node 4 (Cpus: 16-19) = Cpu: 0/4 Memory: 0B/4.0GB 

      Node 5 (Cpus: 20-23) = Cpu: 0/4 Memory: 0B/4.0GB 

      Node 6 (Cpus: 24-27) = Cpu: 0/4 Memory: 0B/4.0GB 

      Node 7 (Cpus: 28-31) = Cpu: 0/4 Memory: 0B/4.0GB 

    } 

 

(3) Job information 

You can refer the assigned socket number that the running job by using in qstat - Jf when the 

socket scheduling function enabled. (Assigned Sockets) 

[Example] 

$ qstat -Jf 

Request ID: 166.bsv1 

    Batch Job Number = 0 

    Execution Job ID = 3662 

       : 

    Remaining CPU Time = UNLIMITED 

    Virtual Memory = 0.000000B 

    Assigned Sockets = 0-1 



 

201 

 

      : 

 

18.2. CPUSET function 

When using a scalar machine (Linux) supporting NUMA architecture as execution host, 

resource divide function equivalent to Resource Sharing Group (RSG) in SUPER-UX is offered 

in virtual way by using the CPUSET function of the Linux. This is called the CPUSET function. 

It is cooperate with the CPUSET function of the Linux OS. It divides the resources (CPU and 

memory) of execution host and make it relate to every queue, to schedule the huge resources 

efficiently. 

 

 

  

Figure 18-1 : Conceptual diagram of CPUSET function 

 

Physical CPU core and memory node on each socket of execution host are grouped by the 

CPUSET function of the Linux and it is assigned to each job by the CPUSET function. The 

CPU core and the memory node assigned when the job execute by socket scheduling function 

are made in CPUSET which related to a queue (RSG) as CPUSET and a process of a job is 

executed in the CPUSET. A job can use the resources of the execution host exclusively by this. 

 

Below is the key map which makes CPUSET for the jobs in a job of the request which was 

submitted in queue2 for which CPUSET_B on the execution host (RSG2) is used. 



 

202 

 

 

 

Figure 18-2 : Conceptual diagram of making CPUSET for jobs 

 

CPUSET for jobs is made at the timing of execute starting. The job executes only using a CPU 

core and a memory node in the CPUSET(RSG) related to the queue the request submitted. 

 

18.2.1. Configure CPUSET function 

The CPUSET function is connected with socket scheduling function. Therefore please enables 

socket scheduling function of a queue first to use the CPUSET function. (Details are in 18.1.1. 

Enabling socket scheduling function.) 

 

After enabling the function, please make the configuration file to define the CPUSET on the 

execution host for which the CPUSET function is used (cpuset.conf). Create cpuset.conf in 

/etc/opt/nec/nqsv of each execution host that describes by the following form. 

 

➢ The memory size of a socket (It is possible to omit.)  

Sizeof_MemoryNode <Memory size> 

It is possible to omit. When omitting it, the memory size is acquired automatically from a 

host. 

 

➢ Definition of CPUSET (It is possible to define more than one. It is impossible to omit.)  

<CPUSET name>  <range of CPU core number>  <range of memory node number>  <RSG number 

> 

Please divide into 1 line by a space character in 1 CPUSET and configure the following items. 

• CPUSET name. It is the name of CPUSET generated on the Linux host. 



 

203 

 

· The range of the core number used in CPUSET (N-M) * 

• The range of the memory node number used in CPUSET (N-M) * 

• RSG number that correspond to CPUSET (0-31) 

* If you want to describe non-consecutive values for the CPU core number and memory node 

number, separate the values by commas and do not include spaces. (N1,N2-M2,...) 

 

 [Notes] 

• The first CPUSET must be defined to meet the following conditions 

   - The name of the CPUSET must be "cpuset". 

   - Specify the CPU core number and memory node number to be the amount of  

resources for the entire execution host. 

   - The corresponding RSG number is "0". 

   - The range of core numbers used in CPUSET is specified as per socket. 

• In the following CPUSET definition lines, unique values are set for the CPUSET 

name and corresponding RSG number. 

• If you change the setting of cpuset.conf, restart JSV. 

• If you delete the CPUSET definition line that originally existed in cpuset.conf, 

please delete the CPUSET on the executing host manually. 

• If you use the CPUSET function of NQSV, you must not manually create or delete 

the CPUSET on the executing host. (Except as described above) 

• Please make sure that the CPU core number and memory node number do not 

overlap between each CPUSET. (except for "cpuset") 

• Do not bind the same JSV to the queue using "cpuset" (RSG number 0) and other 

cpusets (RSG number 1 or above).  

Below is a definition example of cpuset.conf. 

Sizeof_MemoryNode 4.0GB 

###################################################### 

# A first CPUSET line is resources of the host total. 

# The CPUSET sets 'cpuset'. The RSGNO must set '0'. 

###################################################### 

#CPUSET     CPUS        MEMS        RSGNO 

cpuset      0-31        0-7         0 

###################################################### 

# Following CPUSET lines is divided resources. 

# CPUSET and RSGNO should set unique values. 

###################################################### 

cpusetA     0-11        0-2         1 

cpusetB     12-15       3           2 

cpusetC     16-31       4-7         3 

 

Set the RSG number of CPUSET to each queue after creating CPUSET. Use following qmgr 



 

204 

 

(1M) sub-command with operator privilege. 

queue qmgr(1M) sub-command 

Batch queue set execution_queue kernel_param rsg_number = <value> 

<queue> 

Interactive queue set interactive_queue kernel_param rsg_number = <value> 

<queue> 

 

Below is the setting example when using CPUSET of RSG number 1 in que1. 

$ qmgr -Po 

Mgr: set execution_queue kernel_param rsg_number = 1 que1 

Set RSG Number (Kernel-Parameter): que1 

 

18.2.2. Referring CPUSET information 

(1) Execution host information 

You can refer the CPUSET information (Cpuset Information) of Linux execution host by using 

qstat -Ef command when the CPUSET function used. 

[Example] 

$ qstat -Ef 

Execution Host: host1 

  Batch Server = bsv1 

      : 

  Average Information: 

    LOAD (Latest  1 minute ): 0.230000 

    LOAD (Latest  5 minutes): 0.270000 

      : 

    CPU  (Latest 15 minutes): 0.008000 

  Cpuset Information: 

    Resource Sharing Groups = { 

      RSG Number 0  = Name: cpuset  Cpus: 0-31  Mems: 0-7 

      RSG Number 1  = Name: cpusetA Cpus: 0-11  Mems: 0-2 

      RSG Number 2  = Name: cpusetB Cpus: 12-15 Mems: 3 

      RSG Number 3  = Name: cpusetC Cpus: 16-31 Mems: 4-7 

    } 

  Socket Resource Usage: 

    NUMA Nodes = { 

      Node 0 (Cpus: 0-3)   = Cpu: 4/4 Memory: 0.5GB/4.0GB 

      Node 1 (Cpus: 4-7)   = Cpu: 4/4 Memory: 0.5GB/4.0GB 

      Node 2 (Cpus: 8-11)  = Cpu: 0/4 Memory: 0B/4.0GB 

      Node 3 (Cpus: 12-15) = Cpu: 0/4 Memory: 0B/4.0GB 

      Node 4 (Cpus: 16-19) = Cpu: 0/4 Memory: 0B/4.0GB 

      Node 5 (Cpus: 20-23) = Cpu: 0/4 Memory: 0B/4.0GB 

      Node 6 (Cpus: 24-27) = Cpu: 0/4 Memory: 0B/4.0GB 

      Node 7 (Cpus: 28-31) = Cpu: 0/4 Memory: 0B/4.0GB 

    } 

 



 

205 

 

(2) Queue information  

You can refer the RSG number of CPUSET used by a queue in qstat -Qf (Kernel Parameter: 

Resource Sharing Group). 

 [Example] 

$ qstat -Qf 

Execution Queue: que1@bsv1 

    Run State    = Active 

    Submit State = Enable 

      : 

  Resources Limits: 

    (Per-Req) Elapse Time Limit       = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

    (Per-Job) CPU Time                = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

      : 

    (Per-Prc) Permanent File Capacity = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED 

  Kernel Parameter: 

    Resource Sharing Group     = 1 

    Nice Value                 = 0 

      : 

 

 

 

  



 

206 

 

18.3. GPU-CPU Affinity function 

The GPU-CPU Affinity function aims to improve the calculation speed of GPU jobs. 

NQSV recognizes the physical distance between the GPU and CPU sockets on the execution 

host and allocates jobs to the CPU and GPU combinations that are in close proximity. 

 

 

Figure 18-3 : Distance between GPU and CPU 

 

The GPU-CPU Affinity function can be used on a queue which is the socket scheduling feature 

is enabled per queue. 

When a request that uses the GPU is submitted to a queue which is the GPU-CPU Affinity 

feature enabled, a combination of CPU and GPU in close proximity can be assigned to the 

request. 

 

18.3.1. Enable the GPU-CPU Affinity function 

When use the GPU-CPU Affinity feature, execute qmgr(1M) command with operator privileges 

or higher, and use the following sub-command to set the GPU-CPU Affinity feature to ON of 

the queue. 

 

Queue qmgr(1M) sub-command 

Batch Queue set execution_queue gpu_affinity = { on | off } <queue> 

Interactive Queue set interactive_queue gpu_affinity = { on | off } <queue> 

 on：Use GPU-CPU Affinity feature 

 off：Don't use GPU-CPU Affinity feature (Default value) 

 

[Example] 

$ qmgr -Po 

Mgr: set execution_queue gpu_affinity = on que1 

Set GPU-CPU Affinity ON. queue: que1 

 

 



 

207 

 

[Notes] 

- Please turn off the check function of the ratio of per job CPU number and memory 

size in the socket scheduling function. If this function is on, the GPU-CPU Affinity 

feature cannot be turned on. Also, when the GPU-CPU Affinity feature is on, the queue 

setting of check function of the ratio of per job CPU number and memory size cannot be 

changed to cpu or socket. 

- When binding the same execution host to multiple queues, the GPU-CPU Affinity 

feature cannot be mixed on and off between those queues. 

- Do not bind the same execution host to multiple queues with different settings for the 

number of CPUs per GPU. If bind, the GPU-CPU allocation will not be correct. 

 

18.3.2. Number of CPUs per GPU 

GPU-CPU Affinity feature allocates a combination of CPUs and GPUs in close proximity as 

a one bundle. Set the number of CPUs per GPU by the number of cores in a CPU socket divided 

by the number of GPUs that are close to that CPU socket. 

This is the number of CPU cores per GPU, which allows select a combination of CPU and GPU 

that are in close proximity when scheduling jobs. 

 

 

 

Figure 18-4 : Calculating the number of CPUs in a job by the number of CPUs per GPU 

 

 

The number of CPUs per GPU should be calculated and set based on the following formula. 



 

208 

 

 

 

In the example above, the number of CPU cores in one socket is 16 and the number of GPUs 

physically close to the socket is 4, so the value of CPUs per GPU is 16 / 4 = 4. 

 

The number of CPUs per GPU value can be set on a queues which is GPU-CPU Affinity turned 

on per queue. To set this, executing qmgr(1M) command with operator privileges and use the 

following sub-commands. 

Queue qmgr(1M) sub-command 

Batch Queue set execution_queue cpunum_per_gpunum = <cpunum> <queue> 

Interactive Queue set interactive_queue cpunum_per_gpunum = <cpunum> <queue> 

<cpunum> can specify value from 0 to 2147483647. The default value is 1. 

Number of CPU cores in one socket / Number of GPUs physically close to the socket 

[Notes] 

 If a value larger than the value calculated by the formula for calculating the number 

of CPUs per GPU is set, the number of cores to be allocated will be insufficient to 

allocate resources, and the job may fail with PRE-RUNNING. Therefore, be sure to 

check the number of GPUs and CPUs of the execution host, and set the appropriate 

number of CPU cores. If the settings are wrong and the job fails with PRE-

RUNNING, please review the settings and then restart the job server where the job 

was executed. 

 If there is a request in the queue, you cannot change the setting of this value. 

 For queues where the GPU-CPU Affinity feature is turned on, the following 

restrictions are added when submitting a request. 

‒ It is not possible to submit requests with the --cpunum-lhost option or the -l 

cpunum_job option in the qsub(1)/qlogin(1)/qrsh(1) command. Also, when 

submitting hybrid requests, you cannot specify the --cpunum-lhost option or the 

-l cpunum_job option in all job groups. 

‒ When a request is submitted without specifying the --cpunum-lhost option or the 

-l cpunum_job option in the qsub(1)/qlogin(1)/qrsh(1) command, the number of 

CPUs per logical host is automatically calculated by the number of CPU per GPU, 

the standard value of the per-logical-host/per-job CPU limit of the queue will be 

ignored. 

‒ If the default value of the limit of the number of GPUs per logical host/per job for 

the batch queue and interactive queue is set to 0, be sure to specify a value of 1 

or more for the --gpunum-lhost option or the -l gpunum_job option in the 

qsub(1)/qlogin(1)/qrsh(1) command.  

 



 

209 

 

 

18.3.3. Topology settings 

The system administrator defines the CPU socket, socket number, and GPU topology 

information for PCIeSW in a file on the execution host. This file is called the device resource 

configuration file. This file is the same as the file described in [JobManipulator] 5.4.2 HCA and 

the Information of Topology, but the file format is different. 

The settings cannot be changed during operation. If you want to change the settings, restart 

the JSV. 

GPUs that are connected to the same CPU socket or the same PCIeSW (when the CPU socket 

and PCIeSW are connected) are grouped together and called a device group. 

 

(1) Device group 

Examples of device groups to which the GPU-CPU Affinity can be applied are as follows.  

 

‒ When the default value of the limit of the number of GPUs per logical host/per 

job for batch queue and interactive queue is set to 1 or more, you cannot specify 

a value of 0 for the --gpunum-lhost option or the -l gpunum_job option in the 

qsub(1)/qlogin(1)/qrsh(1) command. 

‒ When submitting a hybrid request, be sure to specify a value of 1 or more in the 

--gpunum-lhost or -l gpunum_job option for all job groups. 

‒ The qalter(1) command cannot be used to change the per-logical-host/per-job CPU 

and GPU limits for submitted requests. 

 When the CPU-CPU Affinity function is turned on in the destination queue of the 

routing queue, requests with a GPU number limit of 0 per logical host/per job or 

with the --cpunum-lhost (-l cpunum_job) option specified cannot be transferred. 



 

210 

 

 

Figure 18-5 : GPU Topology Example 

 

(2) Device resource configuration file 

Device resource configuration file is /etc/opt/nec/nqsv/resource.def on the execution host. 

 

(3) Device resource configuration file format 

The format of the device resource definition file for the GPU-CPU Affinity function is as follows.  

 

Format: <Resource> 

<Resource>: Resource information 

Format：<Type> = { <List> } 

<Type>: Type of resource 

Format：<Type> = Socket | PCIeSW | GPU 

The meaning of each string is as follows. 

⚫ Socket : CPU socket 

⚫ PCIeSW:PCIeSW 

⚫ GPU: GPU  

⚫ Infiniband: HCA 

 



 

211 

 

<List> : A list of resource details. Topology information is expressed by describing 

resource information in a nested. 

Format：<Resource> | <Attribute> 

<Attribute>: resource information detail 

Format：<Name> : <Value> 

The detailed resource information that can be defined for each <Type> is as 

follows.  

All of them must be set.  

⚫ Socket 

 <Name> : <Value> 

Socket Number:socket number 

⚫ PCIeSW : PCI Switch 

No detailed resource information 

⚫ GPU 

<Name> : <Value> 

Number : GPU physical number (range can be specified) 

⚫ Infiniband 

 <Name> : <Value> 

PCI ID  : PCI ID 

Port Number: port number 

Mode: Usage of HCA（IO and MPI can be specified. Multiple uses can be specified 

separated by commas.） 

    IO  : Indicates I/O for direct communication. 

    MPI : Indicates MPI for direct communication. 

 

The character string to be set can be written in either upper or lower case. 

If any of the following conditions are met, an error will occur when starting the JSV. 

- PCIeSW was defined as a resource outside the Socket. 

- GPU was defined as a resource outside of PCIeSW or Socket. 

- A non-existent PCI ID was specified. 

- VE" and "GPU" were specified at the same time, as described in [JobManipulator] 5.4.2 HCA 

and the Information of Topology. 

 

(4) Device resource configuration file example 



 

212 

 

The following is an example of the configuration shown in Figure 18-5: GPU Topology Example, 

two PCIeSWs physically close to the sockets, and two GPUs installed in one PCIeSW. 

 

Socket = { 

  Socket Number = 0 

  PCIeSW = { 

    GPU = { 

      Number : 0-1 

    } 

    Infiniband = { 

      PCI ID      : 0000:05:00.0 

      Port Number : 1 

      Mode        : IO, mpi 

    } 

  } 

  PCIeSW = { 

    GPU = { 

      Number : 2-3 

    } 

    Infiniband = { 

      PCI ID      : 0000:0b:00.0 

      Port Number : 1 

      Mode        : IO, mpi 

    } 

  } 

} 

Socket = { 

  Socket Number = 1 

  PCIeSW = { 

    GPU = { 

      Number : 4-5 

    } 

    Infiniband = { 

      PCI ID      : 0000:13:00.0 

      Port Number : 1 

      Mode        : IO, mpi 

    } 

  } 



 

213 

 

  PCIeSW = { 

    GPU = { 

      Number : 6-7 

    } 

    Infiniband = { 

      PCI ID      : 0000:19:00.0 

      Port Number : 1 

      Mode        : IO, mpi 

    } 

  } 

} 

 

For the configuration without PCIeSW, the setting is without {} in PCIeSW as shown below. 

Socket = { 

  Socket Number = 0 

  GPU = { 

    Number : 0-1 

  } 

} 

Socket = { 

  Socket Number = 1 

  GPU = { 

    Number : 2-3 

  } 

} 

 

(5) Refer to the device resource configuration file settings 

You can check the settings of the device resource configuration file by using the qstat(1) -E -f 

command. The number next to PCIeSW indicates the ID of the device group. 

 

$ qstat -E -f 

  … 

  Socket Resource Usage: 

    NUMA Nodes = { 

      Node 0 (Cpus: 0-3) = Cpu: -/4 Memory: -/7.9GB 

Node 1 (Cpus: 4-7) = Cpu: -/4 Memory: -/7.9GB 

    } 



 

214 

 

  Device Topology: 

    Socket 0 = { 

      PCIeSW 0 = { 

        GPU: 0-1 

        HCA: 0000:05:00.0 1 (IO,MPI) 

      } 

      PCIeSW 1 = { 

        GPU: 2-3 

        HCA: 0000:0b:00.0 1 (IO,MPI) 

      } 

    } 

    Socket 1 = { 

      PCIeSW 2 = { 

        GPU: 4-5 

        HCA: 0000:13:00.0 1 (IO,MPI) 

      } 

      PCIeSW 3 = { 

        GPU: 6-7 

        HCA: 0000:19:00.0 1 (IO,MPI) 

      } 

    } 

 

If there is no PCIeSW, the PCIeSW part will not be displayed as shown below. 

Device Topology: 

    Socket 0 = { 

        GPU: 0-1 

    } 

    Socket 1 = { 

        GPU: 2-3 

    } 

 

If there is no device resource configuration file, the display will be as follows. 

Device Topology:(none) 

 

18.3.4. Using cgroups 

The GPU-CPU Affinity feature allows you to limit the CPU and GPU allocated by cgroups. The 

restriction process is performed by shell scripts. 

 



 

215 

 

To restrict with cgroups, please place a shell script in the following path on the executing host. 

If this script does not exist, cgroups will not be restricted, but no error will occur. This script 

will be executed by root privilege on the executing host. 

/opt/nec/nqsv/sbin/system_startup_prog/cgroups.sh 

 

The following environment variables are passed when the shell script is executed. 

Environment 

variable name 

Description 

NQSV_CG_JOBID Job ID. 

NQSV_CG_GPUNUM GPU number limit. 

NQSV_CG_GPULIST Assigned GPU number. 

Example: If numbers 2 and 3 are assigned, the following 

values are obtained. 

NQSV_CG_GPULIST=2,3 

NQSV_CG_CPUNUM CPU number limit. 

This is (the value of --gpunum-lhost) x (the number of 

CPUs per GPU set in the queue). 

NQSV_CG_CPULIST Assigned CPU number. 

Example: If numbers 2 and 3 are assigned, the following 

values are obtained. 

NQSV_CG_CPULIST=2,3 

NQSV_CG_MEMMAX Maximum memory size limit. 

The unit is represented by a single byte character at the 

end of the number. The concrete value is B, K, M, G, T, P, 

E. 

B：Byte, K：KByte, M：MByte, G：GByte, T：TByte, P：

PByte, E：EByte 

In the case of unlimited, UNLIMITED is stored. 

NQSV_CG_MEMWARN Warning value for memory size limit. 

The unit is represented by a single byte character at the 

end of the number. The concrete value is B, K, M, G, T, P, 

E. 

B：Byte, K：KByte, M：MByte, G：GByte, T：TByte, P：

PByte, E：EByte 

In the case of unlimited, UNLIMITED is stored. 

 

When installing or updating NQSV/JobServer, a sample shell script is installed below, so 



 

216 

 

please refer to it to create cgroup.sh. 

/opt/nec/nqsv/sbin/system_startup_prog/cgroups.sh.sample 

 

The cgroup setting will be automatically deleted when the job is finished. 

 

[Notes] 

When cgroups are used to limit the CPUs and GPUs allocated by the GPU-CPU Affinity 

feature, the CUDA_VISIBLE_DEVICES environment variable will not be passed to the 

jobs because all GPUs visible to the job are those assigned to the job.  

  



 

217 

 

 

19. Failure Detection and Power Supply Control 

NQSV provides the ability to detect execution host failures and power-saving capabilities by 

power control of the execution host. The node management agent described below, is required 

to use this function. 

19.1. Failure Detection 

In Linux, OSS (Open Source Software) for operation management such as Zabbix can be used 

to detect node abnormalities such as CPU high temperatures, H/W failures such as CPU 

failures, OS stalls, etc. (These are collectively called failures).  

When the operations management OSS detects a failure, a node management agent that was 

started on the operations management host executes a failure notification command to notify 

the batch server of the failure. 

In addition, if OSS for failure detection is not used, a simple failure detection script can be 

used to notify the batch server of the failure. 

⚫ It is possible to detect HW failure of a node in a short time, and exclude the node 

immediately. 

⚫ Failure type can be identified. 

 

 

 

Figure 0-1：Failure Detection 

 

19.1.1. Failure Detection Settings 

(1) Failure detection with a simple failure detection script 

On the operations management host, edit the simple failure detection script  

/opt/nec/nqsv/sbin/ping_check.sh  

and set the monitored execution host on the NODELIST= line.  



 

218 

 

#!/bin/bash 

NODELIST="host1 host2 host3" 

 

for node in $NODELIST; 

do 

    ping -c 5 $node >/dev/null 2>&1 

    if [ $? -ne 0 ]; then 

        /opt/nec/nqsv/sbin/nqs_ntfr -m "Down" $node >/dev/null 2>&1 

    fi 

done 

 

On the operations management host, set this simple failure detection script to be executed 

periodically by cron. This allows the simple failure detection script to periodically check the 

execution hosts and notify the BSV of the failure if it cannot connect.  

When a failure notification is received from a simple failure detection script, the BSV links 

down the JSV of the failed execution host.  

 

It is possible to confirm the status of the execution hosts by qstat command with -Etf option. 

The following is a display image with the qstat -Etf command of the execution host that was 

notified of the failure by a simple failure detection script. 

$ qstat -Etf host1 

Execution Host: host1 

    Batch Server = host1.example.com 

    Current State           = Inactive 

    State Transition Time   = Tue Sep 29 13:41:03 2017 

    State Transition Reason = ABNORMAL STOP 

    Message = Down 

    Job Server Number  = 11 

    LINK Batch Server = DOWN 

 

(2) OSS failure Detection 

When using OSS to detect faults, use the nqs_ntfr notification command. The failure 

notification command informs the BSV of the failure through the node management agent.  

 

The failure notification command nqs_ntfr is installed on /opt/nec/nqsv/sbin. 

The format is as follows:  

nqs_ntfr [-o operation]  [-m message]  hostname | IP_address 

 

The nqs_ntfr command informs the BSV that the execution host specified by the IP address or 

hostname has failed.  

-o operation specifies how the BSV performs (do nothing/stop JSV/unbind JSV from queue) on 

the JSV in response to a failure notification.  



 

219 

 

It is possible to notify the details of failure with -m message. It is possible to confirm the 

contents of message by qstat command with -Etf option (Message item).  

 

The details of options are as follows: 

-o operation 

Specifies the operation of the JSV during a failure notification.  

One of the following can be specified for the operation. 

Operate only when JSV is in LINKUP state. 

① nothing To do nothing 

② down To LINKDOWN JSV  

③ unbind To unbind the JSV from the queue 

If there is no -o option, it means "down". 

 

The behavior of BSV by specifying –o operation, the LINK state of 

the JSV during failure notification, and the BIND state with 

the queue are as follows:  

operation 
 LINK state of JSV  

BSV behavior during failure notification 
LINK BIND 

nothing UP/DOWN BIND 

/UNBIND 

Do nothing to JSV. 

BIND state of the JSV does not change. 

down 

UP 
BIND 

/UNBIND 

LINKDOWN JSV 

The execution host state becomes INACTIVE. 

BIND state of the JSV does not change 

DOWN Do nothing to JSV.  

BIND state of the JSV does not change. 

unbind 

UP 

BIND UNBIND the JSV from the queue. 

UNBIND JDo nothing to JSV. 

BIND state of the JSV does not change.  

DOWN BIND 

/UNBIND 

Do nothing to JSV. 

BIND state of the JSV does not change. 

※ When other than the -o down is specified, BSV does not LINKDOWN JSV. 

Linkdown is caused when the connection to the JSV is disconnected due to a failure.  

-m message 

Notify the message of the detail of failure 

The maximum string length of message is 255 bytes.  

If it exceeds 255 bytes, the excess string is truncated. 

Displays with qstat -Etf, regardless of the status of the JSV. 

 

Explains how to set failure detection using OSS(Zabbix). NQSV uses Zabbix version 2.4.6 to 

verify that Zabbix can use nqs_ntfr to notify node management agents of failures. 

To detect a failure using Zabbix, the configuration steps are as follows: Please refer to Zabbix's 



 

220 

 

manual for detailed configuration operations.  

Configure Zabbix to monitor the state of the execution host.  

Create an Action and set the conditions for the failure to detect.  

For example, if you want to detect memory exhaustion on the host 

as a failure, set it as Conditions as follows:  

Trigger = host1: Lack of available memory on server host1 

As an Operations for the created Action, please set the following items. 

Target: Current host 

Type: Custom script 

Execute on: Zabbix server 

Commands: /opt/nec/nqsv/sbin/nqs_ntfr -m "{TRIGGER.NAME}" 

{HOST.NAME1} 

 

 

19.2. Power Supply Control 

JobManipulator realizes a power saving function that links request scheduling and host 

start/stop.  

In this function, the execution host is started using IPMI via a node management agent.  

The node management agent uses ipmitool(/usr/bin/ipmitool) installed on the operations 

management host to access the BMC(Baseboard Management Controller) on the execution 

host and start the host.  

To use the power control function, please make the following setting in advance. 

⚫ Set BMC to be available on each execution host 

⚫ Install the ipmitool on the node management host 

 

 

 

 



 

221 

 

Figure 0-2：Power Control Function 

 

19.3. Node Management Agent Settings 

In order to operate node management agent, the following settings are necessary. 

1)  Configure in order to use BMC on execution host. 

* If password to access BMC is set, a file in which the password is described is to be 

created. 

The file path is set at the step 3) and 4) below. 

2)  Install ipmitool in node management host 

3)  Configure for node management agent (/etc/opt/nec/nqsv/nag.conf) 

4)  Configure for managed host and access to BMC (/etc/opt/nec/nqsv/nag_nodelist) 

 

In this section, 3) and 4) are explained. 

 

◆ /etc/opt/nec/nqsv/nag.conf (configuration file) 

In the configuration file for node management agent (/etc/opt/nec/nqsv/nag.conf), each item 

is set in the following format. 

Parameter : Value 

Lines preceded by # and blank lines are ignored as comment. 

If same parameter are set on multiple lines, the last one is valid. 

The followings can be set. 

Parameter 
Value 

(Settable value range 

or character number) 

Description 

BSVHOST Character string 

(Max:255 characters) 

BSV host name. IP address may be set instead. 

If BSVHOST is not set, default is localhost. 

PORT Integer 

(1 to 65535) 

BSV port number.  

If PORT is not set, default is 602. 

LOGFILE Character string 

(Max:1023 characters) 

Pathname of Log file for node management 

agent. 

If LOGFILE is not set, the default is 

/var/opt/nec/nqsv/node_agent_log. 

LOGLEVEL Integer 

(0 to 4) 

Output level of log. 

The larger value is, the more detail information 

is output. 

If LOGLEVEL is not set, the default is 1. 

Definition of each level is as follows. 

0: Only warning and error information without 

debug information are output. 

1: In addition to warning and error information, 

node management agent start/stop, batch 

server connection, and failure detection 

information are output. 



 

222 

 

2: In addition to 1, debug information is output. 

3: In addition to 2, information of processing of 

all packets is output. 

4: In addition to 3, information of contents of all 

packets is output. 

LOGSIZE Integer 

(1 to 2147483647) 

 or UNLIMITED 

The largest size of one log file (unit:byte) 

The maximum value is 2147483647 (2GB-1). 

If LOGSIZE is not set or UNLIMITED is set, the 

maximum value is 2147483647. 

LOGSAVE Integer 

(0 to 2147483647) 

The number of files to retain when a logfile 

exceeds the specified size in LOGSIZE.  

When the number of save file exceeds the 

number specified in LOGSAVE, the oldest file 

will be deleted. 

If 0 is set, no log files are retained.  

If LOGSAVE is not set, the default is 3. 

IPMIUSER Character string 

(Max:47 characters) 

User name to access BMC 

On executing ipmitool, set user name specified 

with -U option.  

If IPMIUSER is not set, -U option should not be 

specified. 

IPMIPASSW

DFL 

Character string 

(Max:1023 characters) 

Pathname of the file in which password is 

described to access BMC. 

On executing ipmitool, set the path of password 

file specified with -f option. 

If IPMIPASSWDFL is not set, -f option should 

not be specified. 

 

In case that the above setting change is made while node management agent is in operation, 

the setting change needs to be reflected by using the following systemctl command for node 

management agent.  

root# systemctl reload nqs_nag.service 

 

◆ /etc/opt/nec/nqsv/nag_nodelist (node list file) 

In nag_nodelist, target execution host of node management agent, IP address of BMC, and 

pathname of file containing username and password to access BMC are to be set. 

Only if both user name and password different from IPMIUSER and IPMIPASSWDFL in 

nag.conf need to be used on each execution host, please set pathname of file containing user 

name and password.  

If the settings exist in both nag_nodelist and nag.conf, settings in nag_nodelist is given 

priority. 

Each setting can be set in the following format with space separator. 

<host name>|<IP address>  <BMC's IPaddress> [<user name> <password file path>] 

Lines preceded by # and blank lines are ignored as comment. 

If same parameter are set on multiple lines, the last one is valid. 

 



 

223 

 

Multiple node management agents can be operated. Do not define duplicate execution hosts 

in each agent's node list file. 

 

If node file list is modified, node management agent needs to be restarted. 

root# systemctl restart nqs-nag.service 

 

19.4. Failure Detection Function Settings 

(1) Failure Detection by Simplified Failure Detection Script 

Please set target execution host to be monitored to NODELIST= line by editing the simplified 

failure detection script, /opt/nec/nqsv/sbin/ping_check.sh on node management host. 

#!/bin/bash 

NODELIST="host1 host2 host3" 

 

for node in $NODELIST; 

do 

    ping -c 5 $node >/dev/null 2>&1 

    if [ $? -ne 0 ]; then 

        /opt/nec/nqsv/sbin/nqs_ntfr -m "Down" $node >/dev/null 2>&1 

    fi 

done 

 

In addition, on node management host, cron needs to to be configured so that this simplified 

failure detection script is periodically executed by cron. This enables simplified failure 

detection script to periodically check whether execution host is alive and to notify BSV of 

failure if it cannot connect with execution host.  

 

BSV which receives failure notification from simplified failure detection script brings JSV of 

execution host with failure in LINKDOWN. 

 

State of execution host can be checked with qstat -Etf.  

The followings are display image of qstat -Etf for execution host about which simplified failure 

detection script notified failure. 

$ qstat -Etf host1 

Execution Host: host1 

    Batch Server = host1.example.com 

    Current State           = Inactive 

    State Transition Time   = Tue Sep 29 13:41:03 2017 

    State Transition Reason = ABNORMAL STOP 

    Message = Down 

    Job Server Number  = 11 

    LINK Batch Server = DOWN 

 



 

224 

 

(2) Failure Detection by OSS 

Failure notification command, nqs_ntfr is used in order to detect failure by using OSS. Failure 

notification command notifies BSV of failures via node management agent. 

 

Failure notification command, nqs_ntfr is installed in /opt/nec/nqsv/sbin. 

Its format is as follows. 

nqs_ntfr [-o operation]  [-m message]  hostname | IP_address 

 

nqs_ntfr command notifies BSV of failures about execution host specified by hostname or 

IP_address. 

Action (no action, JSV down and unbind) taken by BSV against JSV on receiving failure 

notification is specified by -o operation. In addition, failure detail can be notified by specifying 

-m message. Content of message can be checked with qstat -Etf. 

 

Details of each options are as follows. 

• -o operation 

Specify action against JSV on failure notification. 

operation can be set to either of the followings. 

Action is taken only if JSV is in LINKUP state. 

 nothing no action taken against JSV 

 down bring JSV into LINKDOWN 

 unbind UNBIND JSV from queue 

If -o option is not specified, the default action is "down". 

 

BSV action depending on combination of -o operation, JSV LINK state and BIND 

state with queue is as follows.  

operation 

JSV state on failure 

notification BSV action on failure notification 

LINK BIND 

nothing UP/DOWN BIND 

/UNBIND 

No action against JSV. 

BIND state of JSV does not change. 

down 

UP 
BIND 

/UNBIND 

Bring JSV into LINKDOWN. 

State of execution host turns INACTIVE. 

BIND state of JSV does not change. 

DOWN No action against JSV. 

BIND state of JSV does not change. 

unbind UP BIND UNBIND JSV from queue. 



 

225 

 

UNBIND No action against JSV. 

BIND state of JSV does not change. 

DOWN BIND 

/UNBIND 

No action against JSV. 

BIND state of JSV does not change. 

* Unless -o down is specified, BSV does not take action to bring JSV into 

LINKDOWN. 

If connection with JSV is lost due to failure, its state turns LINKDOWN. 

• - m message 

Failure detail is specified with message. 

The maximum length of message is 255 byte.  

If character string exceeds 255 byte, excess characters are discarded. 

Any JSV state can be checked with qstat -Etf. 

 

As for OSS settings to execute failure notification command on failure detection, settings for 

Zabbix are as follows. 

For NQSV, Zabbix Version2.4.6 was used and it was confirmed that failure could be notified 

node management agent of by using nsq_ntfr from Zabbix. 

Setting procedure to notify failure using Zabbix are as follows. For detail setting operations, 

please refer to Zabbix manual. 

 Configure Zabbix so that state of execution host can be monitored. 

 Create "Action" and specify condition to detect failures 

For example, in order to detect lack of memory on host as failure, the followings need 

to be specified as "Conditions". 

Trigger = host1: Lack of available memory on server host1 

 As Operations of created action, the followings are to be specified. 

Target: Current host 

Type: Custom script 

Execute on: Zabbix server 

Commands: /opt/nec/nqsv/sbin/nqs_ntfr -m "{TRIGGER.NAME}" {HOST.NAME1} 

 

 

  



 

226 

 

19.5. Node Health Check Function 

NQSV can use shell scripts to check whether the node on which a job is executed is healthy 

when the job starts (PRE-RUNNING) and when the job finishes (POST-RUNNING). NQSV 

can detect various HW failures such as CPU, GPU, VE, HCA, etc. by creating shell scripts for 

the check according to the operation policy of each site. NQSV will re-run the request that 

triggered the check when a node health check detects a failure, and can UNBIND or 

LINKDOWN the problem node to remove it from operation. In addition, e-mail notification 

can be sent to the owner of the request using a pre-defined user notification script. 

 

19.5.1. Overview of Node Health Check Settings 

To use the node health check function, configure the settings in the following order. 

 

1. Create and place health check scripts 

2. Configuring actions on failure detection nodes 

3. Setting up scripts for user notification 

4. Adjusting health check time with Elapse margin 

 

The following sections describe the detailed settings for using the node health check function 

and the operation when a failure is detected. 

 

19.5.2. Health Check Scripts 

 

The health check script is to be created by the system administrator according to the 

operational policy of each site. The script name and location is the following path on the 

execution host where the JSV is running. 

 

/opt/nec/nqsv/sbin/healthchk.sh 

 

If the above script does not exist or if the execution permissions are not set properly, no node 

health check will be performed. To perform a node health check on the execution host, please 

create this script in advance and place it on the execution host. 

 

The following environment variables are set by NQSV when the health check script is 

executed. The script uses this information to check the status of various HW. 

 

Environment Variables Description Value 



 

227 

 

NQSV_HEALTHCHK_TIMING Timing of Health 

Check 

PRE-RUNNING 

POST-RUNNING 

NQSV_HEALTHCHK_RID Request ID Normal request: 

<sequence 

number>.<hostname> 

Parametric request: 

<sequence 

number>[].<hostname> 

NQSV_HEALTHCHK_JID Job ID <job number>:<request 

ID> 

NQSV_HEALTHCHK_SID Session ID of the job 1 to maximum value of 

process ID 

NQSV_HEALTHCHK_REQOWNER Owner name of the 

request 

User name 

NQSV_HEALTHCHK_REQOWNERGRP Group name of the 

owner of the request 

Group name 

NQSV_HEALTHCHK_CPULIST List of CPU numbers 

assigned to the job. 

The value is set only 

when the socket 

scheduling feature is 

enabled. 

CPU number, 

separated by commas. 

Example: 0,1,2,3,4 

NQSV_HEALTHCHK_VELIST List of VE node 

numbers assigned to 

the job. The value is 

set only if VE is used 

for the job. 

VE node number, 

separated by commas. 

Example: 0,1,2,3,4 

NQSV_HEALTHCHK_GPULIST List of GPU numbers 

assigned to the job. 

The value is set only 

for jobs that use a 

GPU. 

GPU number, 

separated by commas. 

Example: 0,1,2,3,4 

NQSV_HEALTHCHK_HCALIST List of HCA device 

names assigned to 

the job. The value is 

set only for jobs that 

use HCA. 

A HCA device name 

string separated by 

commas. 

Example: 0000:3e:00.0, 

0000:4d:00.0 

 



 

228 

 

To avoid taking wrong actions against requests and nodes due to excessive failure detection, 

please perform necessary failure detection based on the information of resources allocated to 

the job in the script. For example, when detecting VE failures, check the value of the 

environment variable NQSV_HEALTHCHK_VELIST, and if there is a VE node number, take 

the appropriate action. Note that since CPU resources are always used by jobs, failure 

detection can always be performed. 

 

The result of the health check should be returned as the exit code of the shell script, and 

NQSV will acquire the exit code and check whether there was a failure in the health check. If 

the exit code of the shell script is 0, it assumes that there is no failure and continues to 

execute the request. If any other value is returned, it is determined that there is a failure 

and the request is re-executed or action is taken on the node concerned. 

 

(1) Sample Script for VE and HCA Health Check 

The health check sample script for VE and HCA failure detection is installed on the 

execution host. Please refer to this sample to create a script that implements the necessary 

failure detection process, and place it in the appropriate path. 

 

Note: This sample is provided to show a minimum implementation image of the functions, 

and does not guarantee operation in all environments. When building the environment, 

please implement the appropriate process according to the actual environment. 

 

Installation path: 

/opt/nec/nqsv/sbin/healthchk.sh.sample 

 

Processing Overview: 

In this sample, failure detection of VE and HCA is performed in the order of VE to HCA. For 

VE, we use the VE node abnormality check command provided by VEOS 

(/opt/nec/ve/veos/libexec/ve_check_job: called ve_check_job) to check for abnormalities in VE 

and VEOS at the start and end of a job. For HCA, NQSV calls the shell script for HCA failure 

detection (/opt/nec/nqsv/sbin/hcachk.sh: called hcachk.sh) that is installed on the execution 

host to check for failures in the HCA device.  

 

If an failure is detected in the VE failure detection, the HCA failure detection is not 

performed. When a failure is detected, information about the job, failure code, detection 

timing, and other information is output to /var/log/messages of the Linux OS. Note that if no 

VE or HCA is assigned to the job, the relevant detection process is not performed. 

 



 

229 

 

VE fault detection is performed in the following flow. 

1. Checks if a VE has been assigned to the job. If it is not assigned, skip the check process. 

2. Checks for the existence of ve_check_job. If it does not exist or does not have the 

permission to execute, output the log and skip the VE failure detection as no failure. 

3. Call ve_check_job with the options (-s: at the start of the job, -e: at the end of the job) 

indicating the check timing, VE node number, and session ID of the job according to the 

health check timing (PRE-RUNNING or POST-RUNNING). 

4. If the return value of ve_check_job is 0, the system assumes there is no failure. 

Otherwise, it judges that there is a failure. When a failure is detected, the related 

information is output to /var/log/messages of the Linux OS as warning information. 

When multiple VEs are assigned to a job, even if a failure is detected in one of the VEs 

during the process, the failure detection process is continued for the remaining VEs. 

5. If a failure is detected in one or more of the VEs assigned to the job, it returns exit code 1 

as the result of the health check. 

 

HCA failure detection is performed in the following flow. 

1. Checks if HCA is assigned to the job. If it is not assigned, skip the check process. 

2. Checks for the existence of hcachk.sh. If it does not exist or does not have the permission 

to execute, it will output a log and skip HCA failure detection as no failure. 

3. Call hcachk.sh with the HCA device name. The timing of the health check is not 

specified. 

4. If the return value of hcachk.sh is 0, it assumes there is no failure. Otherwise, it is 

determined that there is a failure. When a failure is detected, the related information is 

output to /var/log/messages of the Linux OS as warning information. When multiple 

HCAs are assigned to a job, if a failure of one HCA is detected during the process, the 

process is aborted without continuing the failure detection process for the remaining 

HCAs. 

5. If a failure is detected in one of the HCAs assigned to the job, exit code 2 is returned as 

the result of the health check. 

 

19.5.3. Setting the action of the failure detection node 

When a failure is detected by the node health check, one of the following actions can be selected 

per execution host for the failed node: unbind/down/nothing. 

 

When "unbind" is selected, all the queues bound to the node where the failure was detected 

will be unbound. Except for the job that triggered the failure detection, the jobs running on the 

node will continue to run. Select "unbind" when the failure affects only the job in question and 

does not affect other jobs running on the same node when a failure occurs in VE or GPU. 



 

230 

 

 

When "down" is selected, the node where the failure was detected will be LINKDOWN. The 

jobs running on the node will be stalled, except for the job that triggered the failure detection. 

When the forced re-run function of the running job of JobManipulator is ON, the job is forced 

to be re-run. Jobs that are assigned to the back of the node will be unassigned and reassigned 

to other nodes. If the failure affects all jobs running on the node, select down. 

 

If you select "nothing", no action will be taken on the detected failed node. 

 

The following subcommands of qmgr(1M) are used to configure the settings. Operator 

privileges are required for the setting. 

 

Subcommand of qmgr(1M) 

set job_server health_check_action = <action> job_server_id=<jsvid> 

set job_server health_check_action = <action> job_server_id=(<jsvids>) 

 

The following is an example of configuring UNBIND for the number 1 of the JSV. 

 

$ qmgr -Po 

Mgr: set job_server health_check_action = unbind job_server_id=1 

Set node health check action. 

 

The result of the configuration is displayed as follows with the -S -f option of the qstat(1) 

command. 

 

$ qstat -Qf 

Job Server Name: JobServer0035 

    Job Server Number  = 1 

      : 

    HCA Failure Check = OFF 

    Health Check Action = UNBIND 

: 

 

19.5.4. Configure the script for user notification 

When the -m a option is specified at the time of the request submission, if a failure is detected 

by the node health check at the time of the job end, the owner of the request who detected the 

failure is notified by e-mail. If the failure is detected at the start of the job, the user will not be 

notified because the job has not yet started and will be rolled back to the QUEUED state and 



 

231 

 

re-executed. 

 

The following is the format of the notification email. 

 

NQSV request:  <rid> aborted. 

Request name:   <Name of job script> 

Request owner:  <owner> 

Mail sent at:   <date and time of sending> 

[jobno <job number>]: Job has aborted by node health check error. 

 

If you also specify a mail address for notification with the -M option when submitting a job, e-

mail notification is sent to the specified mail address. If the -m a option is not specified at the 

time of job submission, no e-mail notification is sent. By default, the following shell script on 

the batch host will perform mail notification. 

/opt/nec/nqsv/sbin/nofity_prog/nqsv_notify.sh 

 

By modifying the above shell script, you can customize the means of notification, the contents 

of the notification, and the destination of the notification. Also, if you have a site-specific 

notification script, you can specify the path to the script in the batch server configuration 

file. For details, please refer to 2.3.18 User Notification Script Settings. 

 

(1) Script for user notification 

User notification scripts can be created by system administrators according to the operational 

policies of each site. You can also decide the script name and location. The created script should 

be applied to the batch server configuration file by specifying the path. 

 

The following environment variables are set by NQSV when the user notification script is 

executed. 

 

Environment variable Description Value 

NQSNOTIFY_RID Request ID Normal request: 

<sequence number>. <hostname> 

Parametric request:  

<sequence number>[].<hostname> 

NQSNOTIFY_TITLE Subject of the 

email 

NQSV request:<request ID> 

aborted. 

NQSNOTIFY_CONTENTS Body of the 

email 

Request name: <job script name> 

Request owner: <owner> 



 

232 

 

Mail sent at: <date sent> 

[jobno <job number>]: Job has 

aborted by node health check error. 

NQSNOFITY_REQOWNER_EMAIL Email address 

of the request's 

owner 

Email address 

NQSNOTIFY_REQOWNERGRP Group name of 

the request's 

owner 

Group Name 

NQSNOTIFY_QUEUE Queue name to 

submit the 

request 

Queue Name 

 

19.5.5. Adjusting Health Check Time with Elapse Margin 

The health check process is executed by PRE-RUNNING and POST-RUNNING of the request. 

If the node health check takes a long time, the PRE-RUNNING and POST-RUNNING times 

will be longer. You can tune this time by setting the Elapse margin in JobManipulator 

appropriately. This will allow you to operate without overlapping resource occupation time 

with requests that are assigned backwards. For more information about Elapse Margin, please 

refer to 3.1.7 Elapse Margin in JobManipulator chapter. 

 

19.5.6. Rerun the fault detection request 

If the node health check detects a fault, rerun the request that triggers the failure detection. 

If a failure is detected at the start of the job (PRE-RUNNING), the request is returned from 

the PRE-RUNNING state to the QUEUED state and rerun. If there are multiple jobs in a 

request, if the health check fails for only some jobs, the health check returns to the QUEUED 

state after the health check at the end of the job for the job with a successful health check. 

If only some jobs fail the health check, the health check at the end of the jobs with a successful 

health check is passed back to the QUEUED state. 

If a fault is detected at the end of the job (POST-RUNNING), the request is returned to the 

QUEUED state and rerun. 

The reason for the state transition of the request is "SYSTEM_FAILURE". 

 

19.5.7. Accounting and budget of failure detection requests 

If the node health check detects a failure, the node health check fails flag to the account of the 

request that triggers the failure detection. It is able to  check the fault information for each 

job or request using the --hw-failure option in the account reference commands 

scacctjob(1)/scacctreq(1). If a fault is detected, 20 is displayed in the HW FAILURE column as 



 

233 

 

follows. If a request with more than one job detects one or more failures in the jobs, set a fault 

detection flag for the request. The display image of the account reference command is as 

follows: 

$ scacctjob --hw-failure -I 1 

====================================================================================================

==== 

JOB                             REQUEST  … QUEUED   START    END                   CPU    REAL      HW 

ID     REQUEST_ID               NAME    …  NAME     TIME     TIME     TIME       (SECS)  (SECS) FAILURE 

====================================================================================================

==== 

32816 1.bsv1(0000)              job1   …   bq       20:29:48 20:29:48 20:32:48     0.02  179.75      20 

34769 1.bsv1(0001)              job1   …   bq       20:29:48 20:29:48 20:32:49     0.08  180.12       0 

 

$ scacctreq --hw-failure -I 1 

================================================================================================================== 

REQUEST                   REQUEST  USER       QUEUE    QUEUED   START    END           CPU    REAL              HW 

ID                        NAME     NAME       NAME     TIME     TIME     TIME       (SECS)  (SECS) STATUS  FAILURE 

================================================================================================================== 

1.bsv1                    job1     user       bq       20:29:48 20:29:48 20:32:49     0.02     180 DELETED      20 

 

It is not charged for requests that trigger fault detection. In the case of parametric requests, 

it is not charged for sub-requests that detect faults, but it is charged for sub-requests that can 

be executed successfully. 

 

20. Failover 

20.1. Redundancy Function without using EXPRESSCLUSTER 

Redundancy function can realize simple redundancy of Batch server, Accounting server, or 

Scheduler without using EXPRESSCLUSTER. 

 

Please refer "20.2.Redundancy Function using EXPRESSCLUSTER" if you want to use 

EXPRESSCLUSTER for redundancy. 

 

This redundancy function monitors failures using OSS such as Zabbix or the accompanying 

simple failure monitoring program. When Redundancy function detects a failure, primary 

server to preconfigured stand-by server.  

 



 

234 

 

 

Figure 20-1 : The whole image of Redundancy function 

 

On this manual mainly explains about redundancy of batch server. But you can duplicate the 

accounting server and scheduler too, by using same way. 

 

20.1.1. Install Boot-up Daemon 

When Redundancy function is used, NQS/ResourceManager package needs to be installed on 

the stand-by host.  

 

After install, Boot-up daemon is started or stopped as following.  

 

[STARTING] 

# systemctl start nqs-btu.service 

 

[STOPPING] 

# systemctl stop nqs-btu.service 

 

Boot-up daemon executes the following four shell scripts according to the situation. These shell 

scripts need to be prepared beforehand being tailored to the environment of your system.  

1. Configuration script of boot-up environment 

 (/opt/nec/nqsv/sbin/btu_prog/btup_configure.sh) 

2. Boot-up script of redundancy target (/opt/nec/nqsv/sbin/btu_prog/btup_bootup.sh) 

3. Stop script of boot-up environment (/opt/nec/nqsv/sbin/btu_prog/rlbk_configure.sh) 

4. Stop script of redundancy target (/opt/nec/nqsv/sbin/btu_prog/rlbk_bootup.sh) 

Details of these scripts are described later. 

 

20.1.2. Redundancy Function Settings 



 

235 

 

(1) Preliminary preparations 

When Redundancy Function is used, do the following configuration on the BSV host. 

 

・ Assign machine ID to host name corresponding to virtual IP address 

・ Configure shared disk so that things under /var/opt/nec/nqsv are shared 

・ Share things under /etc/opt/nec/nqsv where definition files are placed. However, they 

can exist on local disk if they are synchronized manually 

・ Auto start and stop by systemd for the substituted component need to be disabled. 

 

On the primary host, Start Batch server by specifying its virtual IP address to -a option of 

nqs_bsvd command. 

# /opt/nec/nqsv/sbin/nqs_bsvd -a <Virtual_IP_Address> 

 

When virtual IP address is specified, Batch server works as below. 

・ When Batch server, Routing server and Staging server that are started by Batch server 

make a TCP connection to remote processes, virtual IP address is used as local address. 

From the viewpoint of remote processes, IP address of Batch server is always the 

virtual IP address by this. Therefore, IP address is always kept the same IP address 

between the failover nodes.  

・ Batch server host name returned by NQSV/API is the one corresponding to virtual IP 

address. Thus, host name displayed as Batch server name by client such as CUI 

command, Scheduler, etc. using NQSV/API is the host name corresponding to virtual 

IP address. Host name is also always kept the same IP address between the failover 

nodes. 

 

On the stand-by host, edit the BSV_PARAM in /etc/opt/nec/nqsv/nqs_bsv.env file as follows to 

inherit the virtual IP address. 

BSV_PARAM="-a ${VIRTUAL_IP_ADDRESS}" 

 

(2) Boot-up Daemon Settings 

Boot-up daemon wait the order to boot-up the components on the substitute host from node 

agent. After receive the order to boot-up, it execute the following script for boot-up the 

components which is created on the substitute host. 

Type of script Default Path 

Boot-up environment configuration script /opt/nec/nqsv/sbin/btu_prog/btup_configure.sh 

Redundancy target booting up script /opt/nec/nqsv/sbin/btu_prog/btup_bootup.sh 

Boot-up environment stopping script /opt/nec/nqsv/sbin/btu_prog/rlbk_configure.sh 



 

236 

 

Redundancy target stopping script /opt/nec/nqsv/sbin/btu_prog/rlbk_bootup.sh 

 

For Boot-up daemon, path name of 4 shell scripts and TCP port number can be changed by 

specifying start-up options. 

# nqs_btud [-p <port>] [-c <1_path>] [-b <2_path>] [-C <3_path>] [-B <4_path>] 

 

<port> is TCP port number used by Boot-up daemon. Port number can range between 0 and 

65535.  If it is not set or it is set to value out of range, default is 49600. 

 

<1_path> <2_path> <3_path> <4_path> are path name of shell script, respectively. The 

maximum length of path name is 1023 characters. If path name exceeds the maximum length, 

default value of path name is used. 

 

Item Content Default Value 

<1_path> Boot-up environment 

configuration script 

/opt/nec/nqsv/sbin/btu_prog/btup_configure.sh 

<2_path> Redundancy target booting up 

script 

/opt/nec/nqsv/sbin/btu_prog/btup_bootup.sh 

<3_path> Boot-up environment stopping 

script 

/opt/nec/nqsv/sbin/btu_prog/rlbk_configure.sh 

<4_path> Redundancy target stopping 

script 

/opt/nec/nqsv/sbin/btu_prog/rlbk_bootup.sh 

 

◆Boot-up environment configuration script 

This script configures environment for substitute host to add virtual IP address and/or to 

mount shared file system where database is deployed. Virtual IP address is passed as an 

argument to script. Configuration example is as follows. 

 

#!/bin/sh 

# sample /opt/nec/nqsv/sbin/btu_prog/btup_configure.sh 

export PATH=/sbin:/bin:/usr/bin 

# mount NFS for configuration files & database files 

case $1 in 

192.168.1.1) 

    mount -t nfs nfs_server:/exports/etc/opt/nec/nqsv/host-a /etc/opt/nec/nqsv || exit $? 

    mount -t nfs nfs_server:/exports/var/opt/nec/nqsv/host-a /var/opt/nec/nqsv || exit $?;; 

192.168.1.2) 

    mount -t nfs nfs_server:/exports/etc/opt/nec/nqsv/host-a /etc/opt/nec/nqsv || exit $? 



 

237 

 

    mount -t nfs nfs_server:/exports/var/opt/nec/nqsv/host-b /var/opt/nec/nqsv || exit $?;; 

192.168.1.3) 

    mount -t nfs nfs_server:/exports/etc/opt/nec/nqsv/host-c /etc/opt/nec/nqsv || exit $? 

    mount -t nfs nfs_server:/exports/var/opt/nec/nqsv/host-c /var/opt/nec/nqsv || exit $?;; 

esac 

# add secondary ip address / subnetmask to eth0 temporarily 

ip address add $1/24 dev eth0 

 

◆Redundancy target booting up script 

This script starts up redundancy target of batch server and so forth. Virtual IP address is 

passed by environment variable VIRTUAL_IP_ADDRESS. Description example is as follows. 

#!/bin/sh 

# sample /opt/nec/nqsv/sbin/btu_prog/btup_bootup.sh 

export PATH=/bin:/usr/bin 

if ps -ef | fgrep -q '/opt/nec/nqsv/sbin/nqs_bsvd' 

then 

    systemctl stop nqs-bsv.service 

fi 

systemctl start nqs-bsv.service || exit $? 

if ps -ef | fgrep -q '/opt/nec/nqsv/sbin/nqs_jmd' 

then 

    systemctl stop nqs-jmd.service 

fi 

 

systemctl start nqs-jmd.service 

 

◆Boot-up environment stopping script 

This script stops substitute host. It deletes virtual IP address and unmount shared file system 

where database is deployed. Virtual IP address is passed as an argument to script. Description 

example is as follows. 

#!/bin/sh 

# sample /opt/nec/nqsv/sbin/btu_prog/rlbk_configure.sh 

export PATH=/sbin:/bin:/usr/bin 

# add secondary ip address / subnetmask 

if ip address show dev eth0 | fgrep -q -w "$1" 

then 

    ip address del $1/24 dev eth0 || exit $? 

fi 



 

238 

 

# unmount NFS for configuration files & database files 

if mountpoint -q /var/opt/nec/nqsv 

then 

    umount /var/opt/nec/nqsv || exit $? 

fi 

if mountpoint -q /etc/opt/nec/nqsv 

then 

    umount /etc/opt/nec/nqsv 

fi 

 

◆Redundancy target stopping script 

This script stops redundancy target of batch server. Virtual IP address is passed by  

environment variable VIRTUAL_IP_ADDRESS. Description example is as follows. 

#!/bin/sh 

# sample /opt/nec/nqsv/sbin/btu_prog/rlbk_bootup.sh 

export PATH=/bin:/usr/bin 

if ps -ef | fgrep -q '/opt/nec/nqsv/sbin/jmd' 

then 

    systemctl stop nqs-jmd.service || exit $? 

fi 

if ps -ef | fgrep -q '/opt/nec/nqsv/sbin/nqs_bsvd' 

then 

    systemctl stop nqs-bsv.service 

fi 

 

(3) Node Management Agent Settings 

Redundancy function uses node management agent. (Please refer to 18.3. Failure Detection 

Function Settings 

20.1.3. Failure Detection by Simplified Failure Detection Script for Redundancy Function 

You can detect the failure of the host by using the simplified failure detection script without 

system management software like Zabbix. It is installed to following path if node management 

agent is installed. 

 

Simplified failure detection script:  /opt/nec/nqsv/sbin/check_alive.sh 

 

This section describes about detecting failure by using this script. 

 

Please set target host to be monitored, BMC of the host, BMC user name and BMC password 



 

239 

 

after the "# HostList" line by editing the simplified failure detection script, 

/opt/nec/nqsv/sbin/check_alive.sh on node management host. 

#!/bin/bash 

export PATH=/bin:/usr/bin:/opt/nec/nqsv/sbin/nqsv 

tempfile=`mktemp` 

sed '1,/^# HostList/d; /#/d' $0 > $tempfile 

exec < $tempfile 

while read host bmc user pw 

do 

    if ping -c 4 $host > /dev/null 2>&1 

    then 

        : 

    else 

        nqs_ntfr -s $host 

        ipmitool -I lanplus -H $bmc -U $user -P $pw chassis power off 

    fi 

done 

rm $tempfile 

exit 0 

# HostList 

# Information of the hosts to check alive are written in following lines. 

# Physical_IP_Address BMC_IP_Address BMC_User_Name BMC_Password 

host-a  host-a-bmc  bmc-a-user  bmc-a-pw 

host-b  host-b-bmc  bmc-b-user  bmc-b-pw 

 

In addition, on node management host, cron needs to be configured so that this simplified 

failure detection script is periodically executed by cron. This enables simplified failure 

detection script to periodically check whether batch server host is alive and to notify node 

management agent of failure if it cannot connect with batch server host.  

Node management agent which receives failure notification from simplified failure detection 

script switches the failed host to a substitute host. 

 

(1) Failure Detection by OSS 

Failure notification command, nqs_ntfr is used in order to detect failure by using OSS. Failure 

notification command notifies node management agent of failures and node management 

agent starts redundancy processing. 

Failure notification command is installed in following path of node management agent host. 

 



 

240 

 

Failure notification command:  /opt/nec/nqsv/sbin/nqs_ntfr 

 

Its format is as follows.  

nqs_ntfr -s hostname | IP_address 

 

nqs_ntfr command notifies node management agent of failures about execution host, where 

redundancy target such as batch server works, specified by hostname or IP_address. 

 

(2) Failure Record 

When failures are notified, they are recorded in the log file of node management agent, 

/var/opt/nec/nqsv/node_agent_log. 

[Note] 

In case that log level is set to 0, all of failure notifications are not necessarily recorded. This 

is because failure notification itself is just normal process of node management agent, so it 

is not fallen into neither error nor warning as long as the failure notification is processed 

normally. Therefore, it is not recommended to set log level to 0. 

 

Once failure is notified and failed host is normally switched to a substitute host, the following 

message is to be recorded. (Date and time is actually recorded at the beginning of a message) 

xxx.xxx.xxx.xxx is physical IP address of failed host and yyy.yyy.yyy.yyy is physical IP address 

of a substitute host. This message is not recorded at log level of 0. 

[INFO  ] IP: xxx.xxx.xxx.xxx was switched. => IP: yyy.yyy.yyy.yyy 

 

When there is no substitute host available even though failure occurs, the following message 

is to be recorded. xxx.xxx.xxx.xxx is physical IP address of failed host. 

[ERROR ] no available waiting node.. (IP: xxx.xxx.xxx.xxx) 

 

When power on of a substitute host switched to fails, the following message is to be recorded. 

xxx.xxx.xxx.xxx is physical IP address of failed host. At this time, if another substitute host is 

available, the substitute host is used.  

[ERROR ] failed to power on. (IP: xxx.xxx.xxx.xxx) 

 

When a substitute host switched to doesn’t respond, the following message is to be recorded. 

xxx.xxx.xxx.xxx is physical IP address of failed host. At this time, if another substitute host is 

available, the substitute host is used. 

[ERROR ] no response waiting node. (IP: xxx.xxx.xxx.xxx) 

 

When boot-up of a substitute host switched to fails, the host is automatically stopped. If the 



 

241 

 

host is successfully stopped, the following message is to be recorded. xxx.xxx.xxx.xxx is 

physical IP address of failed host. At this time, if another substitute host is available, the 

substitute host is used. 

[ERROR ] failed to boot up. (IP: xxx.xxx.xxx.xxx) 

 

When boot-up process fails and then the stop also fails, the following message is to be recorded. 

xxx.xxx.xxx.xxx is physical IP address of failed host. In this case, even if another substitute 

host is available, the substitute host is not used. 

[ERROR ] failed to boot up and roll back. (IP: xxx.xxx.xxx.xxx) 

 

20.1.4. Failed Host Recovery 

(1) Status Check 

Node Management Agent records the latest status of redundancy to status record file. Path of 

status record file is following. 

 

Status record file:  /var/opt/nec/nqsv/nag_redundancy 

 

At the timing of recording messages into a log file, status record file is updated. Latest status 

is always recorded in this file since it is overwritten each time. Regardless of any log level, the 

file is updated.  

 

[Note]  

This file is created when any failure is notified for the first time. So, the file does not exist if 

no failure has occurred. 

Do not edit this file manually. It is used for internal processing of node management agent 

too. 

If there is any conflict between nag_backup.conf and nag_redundancy file, nag_redundancy 

file is renamed to "nag_redundancy.rej" and new nag_redundacy file is created. 

 

Path name of status record file can be changed by specifying the start-up option of node 

management agent. 

nqs_nagd -R <path> 

 

Status record file is recorded in the following format. Each record has a set of three information 

such as (1) a list of failed hosts, (2) header, and (3) status of substitute host(s). 

 A set of the information corresponds to a pair of managed host and substitute host in the 

setting file for managed host and substitute host. Header is just explanation about status of 

substitute host, so it has no significance in itself. A set of the three information is repeatedly 



 

242 

 

recorded as many as those information exist. A line for a list of failed hosts invariably exists 

in each set. Status of a substitute host is recorded in a line, so lines of status of substitute hosts 

exist as many as the number of substitute hosts.  

Date and time of record 

A list of failed host(s) 

Header 

Status of substitute host 

A list of failed host(s) 

Header 

Status of substitute host 

   : 

 

A list of failed host(s) is recorded in the following format. When there is no failed host, "none" 

is recorded. When there exist multiple failed hosts, each host is recorded with a blank delimiter.  

defected hosts= <Physical IP address> ... | (none) 

 

Status of substitute host is recorded in the following format. The part in square brackets, [] is 

to be recorded only when status is running.  

<Physical IP address> <Status description> [<Physical IP address of active host switched 

to>] 

 

There are 5 types of status and each status has the following meaning. 

Status Meaning 

waiting Switching hosts is not done yet and it is in a waiting state.  

switching It is in the process of switch. 

switched Switching hosts is done and it is in a switched state. 

recovering It is in the process of recovery. 

failed Either switching hosts fails or stopping host fails. The substitute host 

cannot be used. 

 

Output example of status record file is as follows. In this example, some failure occurred to the 

host,192.168.1.100 and it was switched to the host, 192.168.1.200. In addition, another failure 

occurred to the host, 192.168.1.101 but it is not switched to any host. Some kind of error 

occurred to the substitute host, 192.168.1.201, so it cannot be used as a substitute host.  

11/11 11:11:11 

defected hosts= 192.168.1.100 192.168.1.101 

# ip waiting host   state       ip switched host 



 

243 

 

192.168.1.200    switched    192.168.1.100 

192.168.1.201    failed 

192.168.1.202    waiting 

defected hosts= (none) 

# ip waiting host   state       ip switched host 

192.168.1.203    waiting 

 

(2) Failed Host Recovery 

Procedure to return the failed host to operation after the host is repaired is explained.  

 

The procedure is divided into 2 stages. 

1. Stop substitute host with nqs_ntfr -r command. 

2. Notify the completion of recovering to node management agent with nqs_ntfr -R 

command. 

 

It is illustrated as an example of recovering the host, 192.168.1.100 which is exemplified in 

status record file in the section, "(1) Status Check".  

[Note]  

There is period that former operation host and substitute host don’t work. 

 

First, please stop the substitute host by using failure notification command. This operation 

needs to be done on node management host. The specified host name or IP address here is not 

the one of substitute host but the former host returned to operation.  

# nqs_ntfr -r <Host name> | <IP address> 

 

In this example, the following command is executed. 

# nqs_ntfr -r 192.168.1.100 

 

When the host is successfully stopped, the following message is recorded. xxx.xxx.xxx.xxx 

below is physical IP address of substitute host. However, it is not recorded at log level of 0. 

[INFO  ] succeeded to stop. (IP: xxx.xxx.xxx.xxx) 

 

In addition, status record file is updated at the same time. Status of corresponding host 

changes to waiting state. 

11/17 17:17:17 

defected hosts= 192.168.1.100 192.168.1.101 

# ip waiting host   state       ip switched host 

192.168.1.200    waiting 



 

244 

 

192.168.1.201    failed 

192.168.1.202    waiting 

defected hosts= (none) 

# ip waiting host   state       ip switched host 

192.168.1.203    waiting 

 

If any trouble happens here, please refer following "Trouble shooting when stopping substitute 

host". 

 

After confirming substitute host is stopped, start the host to be returned to operation. This 

operation needs to be done by administrator. 

After the host returned to operation is successfully started, notify recovery completion by using 

failure notification command. Host name specified here is the one of the former host returned 

to operation.  

# nqs_ntfr -R <Host name> | <IP address> 

 

In this example, the following command is executed. 

# nqs_ntfr -R 192.168.1.100 

 

The following message is recorded in log file. xxx.xxx.xxx.xxx below is physical IP address of 

the  host returned to operation. However, it is not recorded at log level of 0.  

[INFO  ] IP: xxx.xxx.xxx.xxx was recovered. 

 

By checking status record file, it is found that the host, 192.168.1.100 is removed from the list 

of failed host. It means failed host recovery is now complete.  

11/17 18:00:00:00 

defected hosts= 192.168.1.101 

# ip waiting host   state       ip switched host 

192.168.1.200    waiting 

192.168.1.201    failed 

192.168.1.202    waiting 

defected hosts= (none) 

# ip waiting host   state       ip switched host 

192.168.1.203    waiting 

 

Trouble shooting when stopping substitute host 

1)  Status of corresponding host is in recovering state 

 After execute nqs_ntfr -r command, if status of corresponding hosts is in recovering state 



 

245 

 

as follows, recovery is still processing. Please wait status to change into waiting or failed 

described later.  

11/17 17:17:17 

defected hosts= 192.168.1.100 192.168.1.101 

# ip waiting host   state       ip switched host 

192.168.1.200    recovering 

192.168.1.201    failed 

192.168.1.202    waiting 

defected hosts= (none) 

# ip waiting host   state       ip switched host 

192.168.1.203    waiting 

 

2)  Status record file is not updated at all 

If status record file is not updated at all, it is possible that host name specified by nqs_ntfr 

-r is wrong or the host is under the control of other node management agent. Please check 

the host name specified and/or path name of status record file. 

 

3)  Stop of substitute host failed 

When the stop of substitute host by executing nqs_ntfr -r fails for some reason, the 

following message is recorded in log file. xxx.xxx.xxx.xxx below is physical IP address of 

the substitute host failed to stop. 

[ERROR ] failed to stop. (IP: xxx.xxx.xxx.xxx) 

 

In addition, status record file is updated as follows.  

11/17 17:17:17 

defected hosts= 192.168.1.100 192.168.1.101 

# ip waiting host   state       ip switched host 

192.168.1.200    failed        192.168.1.100 

192.168.1.201    failed 

192.168.1.202    waiting 

defected hosts= (none) 

# ip waiting host   state       ip switched host 

192.168.1.203    waiting 

In this case, shutdown substitute host 192.168.1.200 manually, and boot primary host 

192.168.1.100. 

 

After booting primary host, notify recovery completion by using failure notification 

command with -R option. Host name specified here is the primary host returned to 



 

246 

 

operation. 

 

# nqs_ntfr -R 192.168.1.100 

 

The status record file is updated as follows. The recovery is finished. 

11/17 18:00:00 

defected hosts= 192.168.1.101 

# ip waiting host   state       ip switched host 

192.168.1.200    failed 

192.168.1.201    failed 

192.168.1.202    waiting 

defected hosts= (none) 

# ip waiting host   state       ip switched host 

192.168.1.203    waiting 

 

To recover substitute host 192.168.1.200, please refer to "(4).Recovery of Error Occurred 

Substitute Host" 

 

(3) Recovery of Failed Host not substituted 

Recovery procedure is illustrated below as an example of recovering the host, 192.168.1.101 

which is exemplified in status record file in the section, "(1) Status Check". 

 

[Note] 

It is recommended to shut down all substitute hosts with "failed" status in status record file. 

 

After the host returned to operation is successfully started, notify recovery completion by using 

failure notification command. Host name specified here is the one of the former host returned 

to operation. In this example, the following command is executed. 

# nqs_ntfr -R 192.168.1.101 

 

By checking status record file, it is found that the host, 192.168.1.101 is removed from the list 

of failed host. It means failed host recovery is now complete. 

11/17 17:17:17 

defected hosts= 192.168.1.100 

# ip waiting host   state       ip switched host 

192.168.1.200    switched    192.168.1.100 

192.168.1.201    failed 



 

247 

 

192.168.1.202    waiting 

defected hosts= (none) 

# ip waiting host   state       ip switched host 

192.168.1.203    waiting 

 

(4) Recovery of Error Occurred Substitute Host 

Once the cause of error of substitute host with failed status is found out and the error is 

resolved, the host is ready to be used again as substitute host. Recovery procedure is illustrated 

below as an example of recovering the host, 192.168.1.201 which is exemplified in status record 

file in the section, "(1) Status Check".. 

 

After the error is successfully resolved, notify recovery completion by using failure notification 

command. Host name specified here is the one of substitute host returned to operation. In this 

example, the following command is executed 

# nqs_ntfr -R 192.168.1.201 

 

By checking status record file, it is found that status of the host, 192.168.1.201 is changed into 

warning state. It means error occurred host recovery is now complete. 

11/17 17:17:17 

defected hosts= 192.168.1.100 

# ip waiting host   state       ip switched host 

192.168.1.200    switched    192.168.1.100 

192.168.1.201    waiting 

192.168.1.202    waiting 

defected hosts= (none) 

# ip waiting host   state       ip switched host 

192.168.1.203    waiting 

  



 

248 

 

20.2. Redundancy Function using EXPRESSCLUSTER 

A batch server, accounting server, accounting monitor and JobManipulator corresponds to 

duplication by EXPRESSCLUSTER, and it is possible to continue NQSV system service. 

The following EXPRESSCLUSTER versions have been confirmed to work with NQSV. 

 

EXPRESSCLUSTER version Verified OS 

EXPRESSCLUSTER X 5.0 Red Hat Enterprise Linux 8.8 

Rocky Linux 8.8 

 

20.2.1. Notes 

When using NQSV on EXPRESSCLUSTER, please be careful about the following point. 

 

- Specify a floating IP address by -a option of batch server and JobManipulator. 

# /opt/nec/nqsv/sbin/nqs_bsvd -a <Floating_IP_Address> 

# /opt/nec/nqsv/sbin/nqs_jmd -a <Floating_IP_Address> 

 

- Specify the virtual host name of the Accounting server associated with floating IP address, 

for the Accounting server setting if duplicate the Accounting server. 

 

- If duplicate the Accounting server, duplicate the Accounting monitor too. 

 

- Allocate a machine ID to the host name that corresponds to a floating IP address. 

 

- /var/opt/nec/nqsv where a batch server database exists should be shared using by shared 

volume. 

 

- Systemd service for a batch server and a scheduler controlled by EXPRESSCLUSTER need 

to be invalidated for booting or Stopping time. Otherwise, shutdown of the stand-by system 

can make components on the active system stop. 

 

- /var/opt/nec/nqsv where the data base exist, and /etc/opt/nec/nqsv where setting files exist 

should be shared. In particular, move these 2 directories on the shared file system, and 

create the symbolic link to original /var/opt/nec/nqsv and /etc/opt/nec/nqsv. 

 

 

[Notes on EXPRESSCLUSTER] 

If you are using nas for disk resources in EXPRESSCLUSTER X 4.3 or earlier, you 



 

249 

 

cannot use nas for disk resources in EXPRESSCLUSTER X 5.0. 

 

 

20.2.2. Configurations 

This section describes the duplication of NQSV. Parameters that are not listed all have their 

default settings. The following is setting on "Builder" included in EXPRESSCLUSTER 

modules. Please refer the "Installation and Configuration Guide" and "Reference Guide" of 

EXPRESSCLUSTER X for installation and usage of EXPRESSCLUSTER Builder. 

 

(1) Create failover group 

First, create failover group for NQSV on EXPRESSCLUSTER as following. 

 

name NQSVSOFT(Optional) 

Type Failover 

Startup server [Failover is possible at all servers] conditions of default 

Attribute Condition of default 

 

Next, add the following resource to the NQSV group.  

name DK_NQSV(Optional) 

type disk resource 

Dependency Follow the default dependence 

File system ext4 

Device name /dev/sdb1(*) 

Mountpoint /var/opt/nec/nqsv 

*Specify the appropriate device name according to the environment. 

 

Next, add the following resource to the NQSV group.  

name FIP_NQSV (Optional) 

type floating ip resource 

Dependency Follow the default dependence 

IP address 10.34.154.138 (*) 

*Specify the appropriate IP address according to the environment. 



 

250 

 

 

(2) Adding exec resources  

Add exec resources used in NQSV to NQSVSOFT group as follows. On this section, describes 

about duplication of a batch server, but you can change the parameter for the Accounting server, 

Accounting monitor and JobManipulator. 

 

(exec resources for starting and stopping NQSV and JobManipulator) 

setting items  setting parameters  

Info  Name  EXE_BSV 

Type execute resource 

Dependency Follow the default dependence 

Details Script list  Start script  start.sh (*1) 

Stop script  stop.sh (*1) 

Tuning  Parameter Start script  ■Synchronous □Asynchronous  

Stop script ■Synchronous □Asynchronous  

*1 : Script contents are listed in (4) (1)(2) 

 

(exec resource for NQSV and JobManipulator process monitoring) 

setting items  setting parameters  

Info  Name  EXE_BSVMON 

Type execute resource 

Dependency Dependent Resources DK_NQSV 

FIP_NQSV 

EXE_BSV 

Details Script list  Start script  start.sh (*1) 

Stop script  stop.sh (*2) 

Tuning  Parameter Start script  □Synchronous ■Asynchronous  

Stop script ■Synchronous □Asynchronous 

*1 : Script contents are listed in (4) (3) 

*2 : Do not replace stop.sh. Please use a script already set as default. 

 



 

251 

 

(3) Monitor resource setup  

Next, add the PID monitor resources for NQSV. On this section, describes about a batch server, 

but you can change the parameters for the Accounting server, Accounting monitor and 

JobManipulator. 

 

(PID monitor resource or BSV process) 

setting items  setting parameters  

Info  Name  pidw-BSVMON 

Type pid monitor 

Monitor(Common) Target Resource EXE_BSVMON 

Recovery action Recovery Target  NQSVSOFT 

 

Add the following monitor resources. 

 

(Disk monitor resource) 

setting item  setting parameter  

Info  Name  diskw-NQSVSOFT  

Type  disk monitor 

Monitor Method READ(O_DIRECT) 

Target Device Name /dev/sdb1(*) 

Recovery action  Recovery Target  NQSVSOFT 

*Specify the appropriate Target Device Name according to the environment. 

 

(NIC Link UP/Down monitor resource) 

setting item  setting parameters  

Info  Name  miiw-NQSVSOFT  

Type  NIC Link Up/Down monitor  

Monitor  Target  eth0 (*) 

Recovery action  Recovery Target  NQSVSOFT  

*Specify the appropriate Target according to the environment. 

 



 

252 

 

(4) Scripts of exec resource 

Following scripts are used for setting. These scripts process for batch server, but you can 

change the processes for the Accounting server, Accounting monitor and JobManipulator. 

 

i） start.sh of EXE_BSV  

#! /bin/sh 

#*************************************** 

#*              start.sh               * 

#*************************************** 

 

if [ "$CLP_EVENT" = "START" ] 

then 

 if [ "$CLP_DISK" = "SUCCESS" ] 

 then 

  echo "NORMAL1" 

  ###### for BSV software ###### 

  systemctl start nqs-bsv.service 

  ret=$? 

  if [ $ret -ne 0 ]; then 

   exit $ret; 

  fi; 

  ############################## 

  if [ "$CLP_SERVER" = "HOME" ] 

  then 

   echo "NORMAL2" 

  else 

   echo "ON_OTHER1" 

  fi 

 else 

  echo "ERROR_DISK from START" 

 fi 

elif [ "$CLP_EVENT" = "FAILOVER" ] 

then 

 if [ "$CLP_DISK" = "SUCCESS" ] 

 then 

  echo "FAILOVER1" 

  ###### for BSV software ###### 

  systemctl start nqs-bsv.service 

  ret=$? 

  if [ $ret -ne 0 ]; then 

   exit $ret; 

  fi; 

  ############################## 

  if [ "$CLP_SERVER" = "HOME" ] 

  then 

   echo "FAILOVER2" 

  else 

   echo "ON_OTHER2" 

  fi 



 

253 

 

 else 

  echo "ERROR_DISK from FAILOVER" 

 fi 

else 

 echo "NO_CLP" 

fi 

echo "EXIT" 

exit 0 

 

 

ii） stop.sh of EXE_BSV 

#! /bin/sh 

#*************************************** 

#*               stop.sh               * 

#*************************************** 

 

if [ "$CLP_EVENT" = "START" ] 

then 

 if [ "$CLP_DISK" = "SUCCESS" ] 

 then 

  echo "NORMAL1" 

  ##### For BSV Software ##### 

  systemctl stop nqs-bsv.service 

  ret=$? 

  if [ $ret -ne 0 ]; then 

   exit $ret; 

  fi; 

  ############################ 

  if [ "$CLP_SERVER" = "HOME" ] 

  then 

   echo "NORMAL2" 

  else 

   echo "ON_OTHER1" 

  fi 

 else 

  echo "ERROR_DISK from START" 

 fi 

elif [ "$CLP_EVENT" = "FAILOVER" ] 

then 

 if [ "$CLP_DISK" = "SUCCESS" ] 

 then 

  echo "FAILOVER1" 

  ##### For BSV Software ##### 

  systemctl stop nqs-bsv.service 

  ret=$? 

  if [ $ret -ne 0 ]; then 

   exit $ret; 

  fi; 

  ############################ 

  if [ "$CLP_SERVER" = "HOME" ] 



 

254 

 

  then 

   echo "FAILOVER2" 

  else 

   echo "ON_OTHER2" 

  fi 

 else 

  echo "ERROR_DISK from FAILOVER" 

 fi 

else 

 echo "NO_CLP" 

fi 

echo "EXIT" 

exit 0 

 

iii） start.sh of EXE_BSVMON 

#! /bin/sh 

#*************************************** 

#*              start.sh               * 

#*************************************** 

 

if [ "$CLP_EVENT" = "START" ] 

then 

 if [ "$CLP_DISK" = "SUCCESS" ] 

 then 

  echo "NORMAL1" 

  ##### start BSV MONITOR ##### 

  /var/opt/nec/nqsv/bsvmon.sh  

  ret=$? 

  if [ $ret -ne 0 ]; then 

   exit $ret 

  fi; 

  ################################# 

  if [ "$CLP_SERVER" = "HOME" ] 

  then 

   echo "NORMAL2" 

  else 

   echo "ON_OTHER1" 

  fi 

 else 

  echo "ERROR_DISK from START" 

 fi 

elif [ "$CLP_EVENT" = "FAILOVER" ] 

then 

 if [ "$CLP_DISK" = "SUCCESS" ] 

 then 

  echo "FAILOVER1" 

  ##### start BSV MONITOR ##### 

  /var/opt/nec/nqsv/bsvmon.sh  

  ret=$? 

  if [ $ret -ne 0 ]; then 



 

255 

 

   exit $ret 

  fi; 

  ################################# 

  if [ "$CLP_SERVER" = "HOME" ] 

  then 

   echo "FAILOVER2" 

  else 

   echo "ON_OTHER2" 

  fi 

 else 

  echo "ERROR_DISK from FAILOVER" 

 fi 

else 

 echo "NO_CLP" 

fi 

echo "EXIT" 

exit 0 

 

iv） Contents of /var/opt/nec/nqsv/bsvmon.sh 

#!/bin/sh 

#################################################################### 

# 

# Name: /var/opt/nec/nqsv/bsvmon.sh 

# 

#################################################################### 

 

BSV_PROC[0]="/opt/nec/nqsv/sbin/nqs_bsvd" 

 

# The interval (in seconds) between checking 

# if processes of BSV are up and running. 

INTERVAL=60 

 

while : 

do 

        for PROC in ${BSV_PROC[@]} 

        do 

                pid=`ps -ef | grep "$PROC" | grep -v grep` 

                if [ -z "$pid" ]; then 

                        echo "NOTICE: $PROC is terminated" 

                        exit 1 

                fi 

        done 

 

        sleep $INTERVAL 

done 

      

 

20.2.3. How to start and stop NQSV services 

This section describes how to start and stop the NQSV services in EXPRESSCLUSTER. 



 

256 

 

After configuration, please start and stop the NQSV services by operating the resource of 

EXPRESSCLUSTER, not by using the systemctl command. Not doing so may result in 

failover. 

The documentation below describes how to start and stop the BSV service as an example: 

start/stop the exec resource and the process monitor resource as follows. 

 

- Start of service 

(1) Start the exec resource "EXE_BSV". 

(2) Start the resource "EXE_BSVMON" that monitors the process of BSV service. 

The startup of this resource will also automatically run "pidw-BSVMON". 

 

- Stop of service 

(1) Stop the resource "EXE_BSVMON" that monitors the process of BSV service. 

Stopping this resource will also automatically terminate "pidw-BSVMON". 

(2) Stop the exec resource "EXE_BSV”. 

The stopping of this resource terminates BSV service. 

 

  



 

257 

 

21. Using OSS for Batch Job Collaboration 

NQSV can work with OSS (e.g., Dask-Jobqueue, ClusterMQ, etc.) to submit and execute jobs 

from R or Python directly into the batch job system. 

21.1. Environment Settings 

To link to job submission from OSS, set the NQSV linkage command to be used as a symbolic 

link instead of the SLURM command used in OSS. This enables NQSV commands to be 

invoked to submit, display, and delete jobs when jobs are submitted and executed from OSS. 

Create a symbolic link as shown below. 

Command name Symbolic link destination Description 

sbatch /opt/nec/nqsv/bin/sbatch_cnv.sh This is a batch job submission 

command. 

This command converts the I/F of the 

sbatch command of SLURM to the I/F 

of the qsub(1) command of NQSV to 

submit a batch job. 

squeue /opt/nec/nqsv/bin/squeue_cnv.sh Batch job display command. 

It converts the I/F of the squeue 

command of SLURM to the I/F of the 

qstat(1) command of NQSV to display 

a batch job. 

scancel /opt/nec/nqsv/bin/scancel_cnv.sh This is a batch job deletion command. 

It converts the I/F of the scancel 

command of SLURM to the I/F of the 

qstat(1) command of NQSV to delete a 

batch job. 

When using this function, please create the symbolic link above manually. The location of the 

symbolic link file should be the path of the batch job command to be used from the OSS. 

For details on how to use each OSS, please refer to the OSS website. 

 

  



 

258 

 

Appendix.A Use Case 

A-1 Differences in the functions of running scripts 

The table below describes the differences between the four functions. 

⚫ User Exit 

⚫ Hook Script Function  

⚫ User Pre-Post Script Function 

⚫ Resource Monitoring Script of Custom Resource function 

 
 

Authority When to run Where to 

run 

Purpose of 

use 

Remarks 

User EXIT Root PRE-

RUNNING 

POST-

RUNNING 

HOLDING 

RESTARTING 

JobServer 

host 

Clearing the 

work area 

wait for the 

script 

completion 

 

handling  

the script 

execution 

result 

Hook 

Script 

Root QUEUED 

WAITING 

HELD 

HOLDING 

SUSPENDING 

SUSPENDED 

STAGING 

ARRIVING 

PRE-

RUNNING 

RUNNING 

POST-

RUNNING 

EXITING 

EXITED 

RESUMING 

etc 

BatchServer 

host 

Reject a job 

specified 

with wrong 

parameters 

cannot wait 

for the script 

completion 

 

cannot 

handling  

the script 

execution 

result 



 

259 

 

User Pre-

Post Script  

User PRE-

RUNNING 

POST-

RUNNING 

JobServer 

host 

Health 

check 

 

Resource 

Monitoring 

Script 

root RUNNING JobServer 

host 

Counting 

resource 

usage of 

Custom 

Resource 

 

 

A-2 Example: Limits on standard output and error output files (User-Exit) 

This is an example of a script that prevent the files transfer when the standard output and 

error output file size is too large. 

This script should be run in POST-RUNNING. 

After job running, if files size exceeds 30MB, save the files to /tmp/backup_dir and following 

message outputs. 

"The size of stdout(stderr) exceed 31457280 byte(s).“ 

 

#!/bin/sh 
FILESIZELIMIT=31457280 
BACKUP_DIR_STDOUT=/tmp/backup_dir 
BACKUP_DIR_STDERR=/tmp/backup_dir 
 
case "$UEX_LOCATION" in 
POSTRUNNING) 
    case "$UEX_PROCTYPE" in 
    EXECUTION) 
        JOBID=`echo $UEX_STGDIR | sed 's|.*/\(.*\)/.*|\1|'` 
        STDOUT=/var/opt/nec/nqsv/jsv/jobfile/$JOBID/stdout 
        STDERR=/var/opt/nec/nqsv/jsv/jobfile/$JOBID/stderr 
 
        [ -z "$PBS_JOBNAME" ] && echo 1>&2 "PBS_JOBNAME is not set" && exit 1 
        [ -z "$UEX_STGDIR" ] && echo 1>&2 "UEX_STGDIR is not set" && exit 1 
 
        if [ `wc -c "$STDOUT" | awk '{print $1}'` -gt $FILESIZELIMIT ]; then 
            if [ ! -d "$BACKUP_DIR_STDOUT" ]; then 
                mkdir -p "$BACKUP_DIR_STDOUT" || exit 1 
            fi 
            mv $STDOUT $BACKUP_DIR_STDOUT/$PBS_JOBNAME.o$JOBID || exit 1 
            echo "The size of stdout exceeded $FILESIZELIMIT byte(s)." > $STDOUT 
        fi 
 
        if [ `wc -c "$STDERR" | awk '{print $1}'` -gt $FILESIZELIMIT ]; then 
            if [ ! -d "$BACKUP_DIR_STDERR" ]; then 
                mkdir -p "$BACKUP_DIR_STDERR" || exit 1 
            fi 
            mv $STDERR $BACKUP_DIR_STDERR/$PBS_JOBNAME.e$JOBID || exit 1 



 

260 

 

            echo "The size of stderr exceeded $FILESIZELIMIT byte(s)." > $STDERR 
        fi 
        ;; 
    esac 
    ;; 
esac 

 

 

A-3 Example: Deleting the remaining processes (User-Exit) 

This is an example of a script that delete processes that remained after job run in an interactive 

node. 

This example is only available if the socket scheduling function is enabled. 

This script should be run in POST-RUNNING. 

 

#!/bin/bash 
 
JID=`basename $UEX_JOBDB` 
 
while read line 
do 
    kill -9 $line 
done < /sys/fs/cgroup/cpuset/$JID/tasks 

 

In the case of the queue set RSG number 

The memory cgroup path referenced by the user exit script is different. <cpuset_name> 

contains the CPUSET name corresponding to the RSG number set for the queue. 

 

#!/bin/bash 
 
JID=`basename $UEX_JOBDB` 
 
while read line 
do 
    kill -9 $line 
done < /sys/fs/cgroup/cpuset/<cpuset_name>/$JID/tasks 

 

You can find CPUSET name by the following procedure. 

First, you find RSG number of the queue for which you want to set UserExit. It is the number 

that is displayed in Resource Sharing Group of Kernel Parameter. It is 1 in the following 

example. If it is 0, RSG number is not set. 

 

$ qstat -Qf intque 
Interactive Queue: intque@bsvhost01 
    Run State    = Active 
    Submit State = Enable 
      : 
  Kernel Parameter: 
    Resource Sharing Group     = 1 



 

261 

 

    Nice Value                 = 0 

 

Next, you see /etc/opt/nec/nqsv/cpuset.conf in the execution host. The need item is the CPUSET 

name corresponding to the RSG number. It is "forjob" in the following example. 

 

$ cat /etc/opt/nec/nqsv/cpuset.conf 
CPUSET  0-31  0-1  0 
forjob  8-31  0-1  1 

 

In this case, the UserExit script is following. 

 

#!/bin/bash 
 
JID=`basename $UEX_JOBDB` 
 
while read line 
do 
    kill -9 $line 
done < /sys/fs/cgroup/cpuset/forjob/$JID/tasks 

 

For more information on the CPUSET function, please refer to "18.2 CPUSET function" in this 

document. 

 

A-4 Example: Parameter check and job delete (hook script) 

This is an example of a script that reject jobs which specify wrong parameters. 

 

This script should be run in QUEUED or PRE-RUNNING. 

If “-l cpunum_job=40” is specified but “-l gpunum_job=8” is not specified in the job, the job is 

deleted by qdel. 

 

#!/bin/bash 
 
CPUNUM=`qstat -f ${HOOK_RID} -Pm | grep "(Per-Job) CPU Number" | awk '{print 

$6}'` 
GPUNUM=`qstat -f ${HOOK_RID} -Pm | grep "(Per-Job) GPU Number" | awk '{print 

$6}'` 
 
if (CPUNUM == 40) ; then 
   if (GPUNUM != 8) ; then 
      qdel –Pm ${HOOK_RID}  
   fi 
fi 

 

A-5 Example: Number of GPU (Resource Monitoring Script) 

This is an example of a script that counts number of GPU which a job used. 

 



 

262 

 

This script should be run periodically in RUNNING. 

If you use the script, create a custom resource that Consumer is job and Check mode is moment, 

put it to /opt/nec/nqsv/sbin/custom_prog/<custom resource name>. 

 

#!/bin/bash 
 
NVIDIA_SMI=/usr/bin/nvidia-smi 
NVIDIA_SMI_OPT="pmon -c 1" 
SAVED_FL=${CR_TMPDIR}/gpuacct 
 
SUM=0 
declare -A GPU_HASH 
 
if [ -e ${SAVED_FL} ]; then 
    while read line 
    do 
        GPU=`echo $line | awk '{print $1}'` 
        GPU_HASH["$GPU"]=1 
        SUM=$((${SUM} + 1)) 
    done < $SAVED_FL 
fi 
 
SMIOUT=`${NVIDIA_SMI} ${NVIDIA_SMI_OPT}` 
if [ $? -ne 0 ];then 
    exit 1 
fi 
 
while read line 
do 
    GPU=`echo $line | awk '{print $1}'` 
    PID=`echo $line | awk '{print $2}'` 
    if expr "${PID}" : "[0-9]*$" >&/dev/null; then 
        SID=`ps --no-header -o sid -p ${PID} | awk '{print $1}'` 
        if [ "$SID" = "$CR_EJID" ];then 
            if [ -z ${GPU_HASH["$GPU"]} ];then 
                GPU_HASH["$GPU"]=1 
                SUM=$((${SUM} + 1)) 
            fi 
        fi 
    fi 
done <<EOF 
$SMIOUT 
EOF 
 
echo $SUM 
 
if [ -e ${SAVED_FL} ]; then 
    rm ${SAVED_FL} 
fi 
 
for g in "${!GPU_HASH[@]}" 
do 
    echo $g >> $SAVED_FL 
done 
 
exit 0 



 

263 

 

 

 

 

A-6 Example: OSS Collaboration (Dask-Jobqueue) 

This is an example of submitting and running a batch job using Dask-jobqueue's 

SLURMCluster()/cluster.scale() API in Python3 from the command line. For more details on 

each API and job submission/execution, please refer to the official OSS website. 

 

$ python3 

>>> 

>>> from dask_jobqueue import SLURMCluster  

>>> cluster = SLURMCluster( 

queue='regular',  

project="myproj", 

cores=1, 

memory="1 GB" 

) 

>>> cluster.scale(jobs=1)  

>>> 

 

  



 

264 

 

Appendix.B Update history 

 

17th edition 

 Added Stdout size limit and Stderr size limit in 4.1 and 4.5 

 Added Extended submit limit for the number of VE nodes to section 12.3 

 Added note on Dockerfile creation in 16.1 (4) 

 Added 20.2.3 How to start and stop NQSV services 

 Correct an error in A-5 Example 

 

18th edition 

 List the version of EXPRESSCLUSTER X confirmed to work in 20.2 

 Added an example of user exit script when the queue is set RSG number. 

 

19th edition 

 Added 2.3.21 Change the behavior of submit request number limitayion exceeding during 

request routing. 

 Added 5.1.7 Automatic rerun and billing exclusion function for HW failures. 

 

20th edition 

 Update the qstat image in "3.10 Execution Host Information". 

 Update supported OS versions and instructions in "16.1 Configuring a provisioning 

environment by using Docker". 

 Update supported OS version in "20.2 Redundancy Function using EXPRESSCLUSTER". 

 

21st edition 

 Updated supported OpenMPI version in "9 MPI Request Execution Environment Settings" 

  



 

265 

 

Ａ 

Allow the absolute staging file path ....... 96 

api_client.conf ........................................ 107 

Ｂ 

bare metal .............................................. 150 

Batch queue ............................................. 74 

Batch Queue ............................................. 48 

Batch Server .............................................. 4 

Batch Server Database ............................ 22 

Bind .......................................................... 84 

Binding Job Server ............................ 35, 39 

BMC........................................................... vi 

Boot-up Daemon .................................... 231 

BSV ............................................................. v 

Ｃ 

CPUSET ......................................... 130, 198 

Custom Resource ................................... 179 

Ｄ 

Disable...................................................... 83 

Docker .................................................... 164 

Ｅ 

Enable ...................................................... 83 

Execution Host Registration ................... 32 

EXPRESSCLUSTER ............................. 245 

External Staging ...................................... 97 

Ｆ 

Failure Detection and Power Supply 

Control ........................................................... 214 

File staging .............................................. 96 

Ｇ 

GPU ........................................................ 134 

Group of Request ................................... 120 

Ｈ 

HCA ................................................... vi, 133 

Heartbeat Interval ..................................... 9 



 

266 

 

Hold Privilege .......................................... 56 

Hook Script ............................................ 137 

Ｉ 

IB ............................................................... vi 

Idle Timer ................................................. 68 

Interactive Queue .............................. 59, 76 

Internal Staging ....................................... 97 

Ｊ 

JM ............................................................... v 

Job Migration ......................................... 101 

Job Number .............................................. 57 

Job Server Startup ................................... 37 

Job Server Stop ........................................ 42 

JSV ............................................................. v 

Ｋ 

Kernel Parameter .............................. 54, 65 

Ｌ 

License Update ........................................ 12 

Limit per Group and User ..................... 123 

Local Account ........................................... 28 

Log File ...................................................... 7 

Ｍ 

Machine ID..................................5, 6, 21, 29 

MPI ............................................................ vi 

MPI Request ........................................... 117 

Ｎ 

Network Queue .................................. 72, 79 

NIC ............................................................ vi 

Node Group .............................................. 33 

Node Management Agent ...................... 218 

nqs_group.def ........................................... 29 

nqs_passwd.def ........................................ 28 

Ｏ 

OpenStack .............................................. 141 

Ｐ 

Parametric Request LImit ...................... 10 

provisioning............................................ 164 

Provisioning ........................................... 141 

Ｑ 

qcmd_list ................................................. 111 



 

267 

 

Queue Abort ............................................. 89 

Queue Access Limit.................................. 85 

Queue Delete ............................................ 90 

Queue Priority ....................... 54, 64, 69, 72 

Queue Purge ............................................ 90 

Queue State.............................................. 82 

Ｒ 

Redundancy Function ............................ 230 

Remote Execution ...................................110 

Request Accounting ................................... 9 

Request Priority Range ........................... 57 

Resouce Limit........................................... 59 

Resource Default ................................ 51, 62 

Resource Limit ......................................... 48 

Routing Limit ............................................. 8 

Routing queue .......................................... 69 

Routing Queue ......................................... 78 

Routing Retry Interval .............................. 8 

Routing Retry Span ................................... 9 

Run Limit ........................................... 70, 72 

Ｓ 

Simplified Failure Detection Script ...... 235 

Socket Scheduling .......................... 131, 192 

Staging Method .................................. 73, 97 

status record file .................................... 238 

Submit Limit .............................7, 55, 65, 69 

Subrequest Number ................................. 57 

Suspend Privilege .................................... 66 

Ｔ 

template ......................................... 158, 174 

Time-out of the User EXIT Execution ... 57, 

67, 95 

Ｕ 

User Agent ............................................. 108 

User EXIT .................................... 56, 66, 92 

User Mapping .......................................... 23 

User Pre-Post Script .............................. 140 

UserPP script ......................................... 140 



 

268 

 

Ｖ 

VE ........................................................ v, 131 

VH .............................................................. v 

VI ................................................................ v 

virtual machine ...................................... 141 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NEC Network Queuing System V (NQSV) User's Guide 

[Management] 

January 2025  21st edition 

NEC Corporation 

Copyright: NEC Corporation 2018 

 

No part of this guide shall be reproduced, modified or transmitted without a 

written permission from NEC Corporation.  

The information contained in this guide may be changed in the future without 

prior notice. 

 

 

 

 

 

 


	Proprietary Notice
	Preface
	Remarks
	About This Manual
	Contents
	Contents of Figures
	1. Unit Management
	2. Batch Server Management
	2.1. TCP/IP port number of a Batch Server
	2.2. Files and Directories for Batch Server Setting
	2.3. Batch Server Setting
	2.3.1. Log File
	2.3.2. Information Interval
	2.3.3. Submit Limit
	2.3.4. Routing Limit
	2.3.5. Routing Retry Interval
	2.3.6. Routing Retry Span
	2.3.7. Heartbeat Interval
	2.3.8. Budget Management Function
	2.3.9. Request Accounting File
	2.3.10. Sub-request of Parametric Request Limit
	2.3.11. Getting of License
	(1) Configuring the license server
	(2) Getting of License
	(3) Waiting for license server preparation

	2.3.12. License Update
	2.3.13. Referencing the number of available licenses
	2.3.14. Delayed Writing to DB
	2.3.15. Accept SIGTERM on job execution
	2.3.16. Setting the Maximum Sequence Number of Request ID
	2.3.17. Setting the Sequence Number of the Next Submitted Request
	2.3.18. User Notification Script Settings.
	2.3.19. Memory management with memory cgroup
	2.3.20. Tuning the Stage-Out Processing Buffer of the Request Result File
	2.3.21. Change the behavior of  submit request number limitation exceeding during request routing

	2.4. Batch Server Status Check
	2.5. Machine ID Management
	2.5.1. Machine ID
	2.5.2. Machine ID Setting
	2.5.3. Alias Hostname Setting

	2.6. Initializing Batch Server Database
	2.7. Batch Server Activation
	2.8. Batch Server Stop
	2.9. User Management
	2.9.1. Local User Names and Remote User Names
	2.9.2. User Mapping
	2.9.3. Local Account

	2.10. Communicate with other Batch server
	2.10.1. Server Setting
	2.10.2. Routing Request Setting


	3. Execution Host Management
	3.1. Files and Directories for Execution Host Setting
	3.2. Execution Host Registration
	3.3. Node Group
	3.3.1. Create Node Group
	3.3.2. Setting of Comment of Node Group
	3.3.3. Addition of Execution Host to Node Group
	3.3.4. Deletion of Execution Host from Node Group
	3.3.5. Deletion of Node Group

	3.4. Execution Node Group Information
	3.5. Job Server Startup
	3.5.1. Startup by qmgr (1M)
	3.5.2. Startup from a Command Line
	3.5.3. Startup by systemctl

	3.6. Binding Job Server and Queue
	3.7. Job Server Status Check
	3.8. Job Server Stop
	3.9. Holding All the Requests on a Job Server
	3.10. Execution Host Information
	3.11. VE node Information

	4. Queue Management
	4.1. Batch Queue
	4.1.1. Create Batch Queue
	4.1.2. Batch Queue Configuration
	(1) Resource Limit
	(2) Resource Default
	(3) Queue Priority
	(4) Kernel Parameter
	(5) Submit Limit
	(6) Hold Privilege
	(7) Suspend Privilege
	(8) User EXIT Script
	(9) Setting Time-out of the User EXIT Execution
	(10) Limitation of the Job Number
	(11) Limitation of Request Priority Range
	(12) Limitation of the Subrequest Number
	(13) Allowance for exclusive execution request
	(14) Disabling the stage-out


	4.2. Interactive Queue
	4.2.1. Create Interactive Queue
	4.2.2. Interactive Queue Configuration
	(1) Resource Limit
	(2) Resource Default
	(3) Queue Priority
	(4) Kernel Parameter
	(5) Submit Limit
	(6) Suspend Privilege
	(7) User EXIT Script
	(8) Setting Time-out of the User EXIT Execution
	(9) Limitation of the Job Number
	(10) Waiting Option
	(11) Compulsion Execution Shell
	(12) Idle Timer
	(13) Allowance for exclusive execution request


	4.3. Routing Queue
	4.3.1. Create Routing Queue
	4.3.2. Routing Queue Configuration
	(1) Queue Priority
	(2) Submit Limit
	(3) Routing Queue Run Limit
	(4) Destination of Routing Queue
	(5) Waiting Interval


	4.4. Network Queue
	4.4.1. Create Network Queue
	4.4.2. Network Queue Configuration
	(1) Queue Priority
	(2) Network Queue Run Limit
	(3) Run Limit for Each Request
	(4) Forwarding Host
	(5) Switching the Staging Method
	(6) Change of Transfer Buffer Size
	(7) Waiting Interval


	4.5. Queue Information
	4.5.1. Batch queue
	4.5.2. Interactive Queue
	4.5.3. Routing Queue
	4.5.4. Network Queue
	4.5.5. Customizing Information

	4.6. Queue State
	4.6.1. Enable/Disable State
	4.6.2. Active/Inactive State

	4.7. Bind to Job Server and Scheduler
	4.8. Queue Access Limit Set
	4.8.1. Access Limitation to User and Group
	4.8.2. Access Limit by Supplementary Group
	4.8.3. Access Limit to Submitting Route

	4.9. Queue Abort
	4.10. Queue Purge
	4.11. Queue Delete

	5. Request Management
	5.1. Batch request
	5.1.1. Request Attribute Change
	5.1.2. User EXIT
	(1) User EXIT setting
	(2) Execution of the user EXIT
	(3) User EXIT I/O
	(4) Time-out of the User EXIT Execution

	5.1.3. File Staging
	(1) Internal Staging Method (Default File Staging Method)
	(2) External Staging Method

	5.1.4. Job Migration
	(1) Execution procedure
	(2) Target File for Migration
	(3) Transmission parameter
	(4) Sharing Job Server Database

	5.1.5. Cleaning up of submit failed connected request
	5.1.6. Limit the number of re-runs
	5.1.7. Automatic rerun and billing exclusion function for HW failures

	5.2. Interactive request
	5.2.1. Request attribute modification
	5.2.2. User EXIT
	5.2.3. Waiting Option
	5.2.4. Compulsion Execution Shell
	5.2.5. Idle Timer
	5.2.6. Notes


	6. Client's Management
	6.1. Setting of api_client.conf
	6.2. User Agent
	6.3. Configuration for interactive request and attach to request

	7. Remote Execution by Interactive Function
	7.1. Register
	7.2. Reference to the Information
	7.3. Execution
	7.4. Deletion
	7.5. Common Remote Execution Program

	8. Preservation of NQSV Environment
	8.1. Environment of Batch Server and Queue
	8.2. Environment of Batch Server
	8.3. Environment of Queue
	8.4. Binding

	9. MPI Request Execution Environment Settings
	9.1. OpenMPI Environment Settings
	(1) Execution Host Settings
	(2) Job and MPI Process Allocation

	9.2. IntelMPI Environment Settings
	9.3. MVAPICH2 Environment Settings
	9.4. PlatformMPI Environment Settings
	9.5. NEC MPI Environment Settings

	10. Group of Request
	10.1. Designated Group Execution Function for Request
	10.2. Enable/Disable Function and Reference of Settings
	10.3. Usage Precautions

	11. Limit per Group and User
	11.1. Submit Number Limit per Batch Server
	(1) Limit Settings
	(2) Limit Cancellation

	11.2. Limitation per Queue
	11.2.1. Submit Limit
	(1) Limit Settings
	(2) Limit Cancellation

	11.2.2. Limitation of the Job Number
	(1) Limit Settings
	(2) Limit Cancellation

	11.2.3. Elapse Time Limit
	(1) Limit Settings
	(2) Limit Cancellation


	11.3. Reference of Limit Information per Group and User
	(1) qstat --limit
	(2) qstat -Bf
	(3) qstat -Qf


	12. VE and GPU Support
	12.1. Configuration for VE environment
	12.2. Submitting a request with the total number of VEs specified and Setting of the default number of incorporated VE nodes
	12.3. Limit of the range of the total number of VEs that can be entered
	Extended submit limit for the number of VE nodes

	12.4. HCA Assignment
	12.5. HCA failure check
	12.6. Concurrent GPU Number Limit
	12.7. Automatic switching of VE NUMA mode
	12.8. Configuration for Multi-instance GPU (MIG)
	12.8.1. About Multi-instance GPU (MIG)
	12.8.2. How to use MIG


	13. Hook Script Function
	13.1. Save a hook script
	13.2. Enabling and disabling a hook script
	13.3. Executing hook script

	14. User Pre-Post Script Function
	14.1. Setting a timeout time of a UserPP script

	15. Provisioning environment in conjunction with OpenStack
	15.1. Configuring a provisioning environment by using a virtual machine
	15.1.1. OpenStack environment setting
	(1) Using the nova command from a BSV host
	(2) Setting an execution host as a Compute node of OpenStack
	(3) Setting up a virtual machine boot image

	15.1.2. Configuring a job server on an execution host
	15.1.3. Virtual machine startup script
	(1) Processes to be executed in a virtual machine startup script
	(2) Environment variables to execute a virtual machine startup script
	(3) Rollback processing
	(4) Timeout
	(5) Notes on creating a virtual machine startup script

	15.1.4. Virtual machine stop script
	(1) Processes to be executed in a virtual machine stop script
	(2) Environment variables to execute a virtual machine stop script
	(3) Timeout

	15.1.5. Sample virtual machine startup and stop scripts
	(1) Sample virtual machine startup script
	(2) Sample virtual machine stop script

	15.1.6. Incorporating a virtual machine to NQSV

	15.2. Configuring a provisioning environment by using a bare metal server
	15.2.1. OpenStack environment setting
	(1) Using the nova command from a BSV host
	(2) Setting up a bare metal server boot image

	15.2.2. Bare metal server startup script
	(1) Processes to be executed in a bare metal server startup script
	(2) Environment variables to execute a bare metal server startup script
	(3) Rollback processing
	(4) Timeout

	15.2.3. Bare metal server stop script
	(1) Processes to be executed in a bare metal server stop script
	(2) Environment variables to execute a bare metal server stop script
	(3) Timeout

	15.2.4. Sample bare metal server startup and stop scripts
	(1) Sample bare metal server startup script
	(2) Sample bare metal server stop script

	15.2.5. Incorporating a bare metal server to NQSV
	(1) Registering a bare metal server
	(2) Removing a bare metal server
	(3) Referencing the registered bare metal server information
	(4) Binding and unbinding a bare metal server
	(5) Resetting a bare metal server


	15.3. Creating an OpenStack template
	15.3.1. Defining a template
	15.3.2. Using a template
	(1) Creating a Create
	(2) Deleting a Delete
	(3) Editing a template
	(4) Locking and unlocking a template

	15.3.3. Displaying a template
	15.3.4. Submitting a request with a template specified and locating a job


	16. Provisioning environment in conjunction with Docker
	16.1. Configuring a provisioning environment by using Docker
	16.1.1. Docker environment setting
	(1) Configuring a Docker environment on a batch server host
	(2) Configuring a Docker environment on an execution host
	(3) Configuring a Docker management server
	(4) Setting up a container boot image

	16.1.2. Configuring a job server on an execution host
	16.1.3. Container Startup Script
	(1) Processes to be executed in a container startup script
	(2) Environment variables to execute a container startup script
	(3) Rollback processing
	(4) Timeout
	(5) Notes on creating a container startup script

	16.1.4. Container delete script
	(1) Processes to be executed in a container delete script
	(2) Environment variables to execute a container delete script
	(3) Timeout

	16.1.5. Sample container startup and delete scripts
	(1) Sample container startup script
	(2) Sample container delete script

	16.1.6. Notes on an execution host on which to start a container and queue

	16.2. Configuring a container template
	16.2.1. Defining a template
	16.2.2. Using a template
	(1) Creating a template
	(2) Deleting a template
	(3) Editing a template
	(4) Locking and unlocking a template

	16.2.3. Displaying a template
	16.2.4. Submitting a request with a template specified and locating a job


	17. Custom Resource Function
	17.1. Custom resource information
	17.1.1. Custom resource information
	17.1.2. Defining and deleting the custom resource information
	(1) Creating custom resource information
	(2) Changing the custom resource consumption unit
	(3) Changing the kind of actual value collection
	(4) Changing the setting of job termination
	(5) Changing the unit
	(6) Add the amount control information to custom resource
	(7) Deleting the custom resource usage control information
	(8) Deleting the custom resource information

	17.1.3. Displaying the custom resource information

	17.2. Custom resource usage limit information of a queue
	17.2.1. Custom resource usage limit information of a queue
	17.2.2. Setting the custom resource usage limit information of a queue
	17.2.3. Displaying the custom resource usage limit information of a queue

	17.3. Requests when using the custom resource function
	17.4. Resource monitoring script

	18. Socket Scheduling
	18.1. Socket Scheduling function
	18.1.1. Enabling socket scheduling function
	18.1.2. Core bind policy
	18.1.3. Memory allocation policy
	18.1.4. Specify per job CPU number limit by using number of socket
	(1) The way to specify the per job CPU number limit
	(2) Submitting request with socket number

	18.1.5. Check function of the ratio of per job CPU number and memory size
	18.1.6. Referring socket scheduling information
	(1) Queue information
	(2) Execution host information
	(3) Job information


	18.2. CPUSET function
	18.2.1. Configure CPUSET function
	18.2.2. Referring CPUSET information
	(1) Execution host information
	(2) Queue information


	18.3. GPU-CPU Affinity function
	18.3.1. Enable the GPU-CPU Affinity function
	18.3.2. Number of CPUs per GPU
	18.3.3. Topology settings
	18.3.4. Using cgroups


	19. Failure Detection and Power Supply Control
	19.1. Failure Detection
	19.1.1. Failure Detection Settings
	(1) Failure detection with a simple failure detection script
	(2) OSS failure Detection


	19.2. Power Supply Control
	19.3. Node Management Agent Settings
	19.4. Failure Detection Function Settings
	(1) Failure Detection by Simplified Failure Detection Script
	(2) Failure Detection by OSS

	19.5. Node Health Check Function
	19.5.1. Overview of Node Health Check Settings
	19.5.2. Health Check Scripts
	(1) Sample Script for VE and HCA Health Check

	19.5.3. Setting the action of the failure detection node
	19.5.4. Configure the script for user notification
	(1) Script for user notification

	19.5.5. Adjusting Health Check Time with Elapse Margin
	19.5.6. Rerun the fault detection request
	19.5.7. Accounting and budget of failure detection requests


	20. Failover
	20.1. Redundancy Function without using EXPRESSCLUSTER
	20.1.1. Install Boot-up Daemon
	20.1.2. Redundancy Function Settings
	(1) Preliminary preparations
	(2) Boot-up Daemon Settings
	(3) Node Management Agent Settings

	20.1.3. Failure Detection by Simplified Failure Detection Script for Redundancy Function
	(1) Failure Detection by OSS
	(2) Failure Record

	20.1.4. Failed Host Recovery
	(1) Status Check
	(2) Failed Host Recovery
	(3) Recovery of Failed Host not substituted
	(4) Recovery of Error Occurred Substitute Host


	20.2. Redundancy Function using EXPRESSCLUSTER
	20.2.1. Notes
	20.2.2. Configurations
	(1) Create failover group
	(2) Adding exec resources
	(3) Monitor resource setup
	(4) Scripts of exec resource
	i） start.sh of EXE_BSV
	ii） stop.sh of EXE_BSV
	iii） start.sh of EXE_BSVMON
	iv） Contents of /var/opt/nec/nqsv/bsvmon.sh


	20.2.3. How to start and stop NQSV services


	21. Using OSS for Batch Job Collaboration
	21.1. Environment Settings

	Appendix.A Use Case
	Appendix.B Update history
	Index

