NEC

NEC Network Queuing System V (NQSV) User's Guide

[API]

Proprietary Notice

The information disclosed in this document is the property of NEC Corporation (NEC) and/or its
licensors. NEC and/or its licensors, as appropriate, reserve all patent, copyright and other
proprietary rights to this document, including all design, manufacturing, reproduction, use and sales

rights thereto, except to the extent said rights are expressly granted to others.

The information in this document is subject to change at any time, without notice.

1i

Preface

This guide explains API of NEC Network Queuing System V (NQSV) job management system.

The manual of NEC Network Queuing System V (NQSV) is composed by following user's guides.

Name

Contents

NEC Network Queuing System V (NQSV)

User's Guide [Introduction]

This guide explains the overview of NQSV

and configuration of basic system.

NEC Network Queuing System V (NQSV)

User's Guide [Management]

This guide explains the various

management functions of the system.

NEC Network Queuing System V (NQSV)
User's Guide [Operation]

This guide explains the various functions

that used by general user.

NEC Network Queuing System V (NQSV)

User's Guide [Reference]

The command reference guide.

NEC Network Queuing System V (NQSV)
User's Guide [API]

This guide explains the C programming
interface (API) to control NQSV.

NEC Network Queuing System V (NQSV)
User's Guide [JobManipulator]

This guide explains about the scheduler

component : JobManipulator.

NEC Network Queuing System V (NQSV)
User's Guide

Control]

[Accounting & Budget

This guide explains the functions of

accounting.

February 2018
September 2019

1st edition
4th edition
5th edition
6th edition
7th edition

8th edition

January 2020
July 2020
March 2021
January 2023

1ii

Remarks

(1) This manual conforms to Release 1.00 and subsequent releases of the NEC Network Queuing

System V (NQSV).

(2) All the functions described in this manual are program products and conform to the following

product names and product series numbers:

Product Name

product series numbers

NEC Network Queuing System V (NQSV)

/ResourceManager

UWAFO00
UWHATFO00 (support pack)

NEC Network Queuing System V (NQSV)
/JobServer

UWAGO0
UWHAGOO (support pack)

NEC Network Queuing System V (NQSV)
/JobManipulator

UWAHO00
UWHAHOO0 (support pack)

(3) UNIX is a registered trademark of The Open Group.

(4) Intel is a trademark of Intel Corporation in the U.S. and/or other countries.

(5) OpenStack is a trademark of OpenStack Foundation in the U.S. and/or other countries.

(6) Red Hat OpenStack Platform is a trademark of Red Hat, Inc. in the U.S. and/or other countries.

(7) Linux is a trademark of Linus Torvalds in the U.S. and/or other countries.

(8) Docker is a trademark of Docker, Inc. in the U.S. and/or other countries.

(9) InfiniBand is a trademark or service mark of InfiniBand Trade Association.

(10) Zabbix is a trademark of Zabbix LLC that is based in Republic of Latvia.

(11) All other product, brand, or trade names used in this publication are the trademarks or

registered trademarks of their respective trademark owners.

v

About This Manual

Notation Conventions

The following notation rules are used in this manual:
Omission Symbol This symbol indicates that the item mentioned previously can be
repeated. The user may input similar items in any desired number.

Vertical Bar | This symbol divides an option and mandatory selection item.

Brackets {} A pair of brackets indicates a series of parameters or keywords
from which one has to be selected.

Braces [] A pair of braces indicate a series of parameters or keywords that
can be omitted.

Glossary

Term Definition

Vector Engine
(VE)

The NEC original PCle card for vector processing based on
SX architecture. It is connected to x86-64 machine. VE

consists of more than one core and shared memory.

Vector Host

The x86-64 architecture machine that VE connected.

(VH)

Vector Island The general component unit of a singe VH and one or more
(VD VEs connected to the VH.

Batch Server Resident system process running on a Batch server host to
(BSV) manage entire NQSV system.

Job Server Resident system process running on each execution host to
(JSV) manage the execution of jobs.

JobManipulator JobManipulator is the scheduler function of NQSV.

(JM) JM manages the computing resources and determines the

execution time of jobs.

Accounting Server

Acconting server collects and manages account information

and manages budgets.

Request A unit of user jobs in the NQSV system. It consists of one or
more jobs. Requests are managed by the Batch Server.
Job A job is an execution unit of user job. It is managed by Job

Server.

Logical Host

Alogical host is a set of logical (virtually) divided resources of

an execution host.

Queue It is a mechanism that pools and manages requests
submitted to BSV.

BMC Board Management Controller for short. It performs server
management based on the Intelligent Platform Management
Interface (IPMI).

HCA Host Channel Adapter for short. The PCle card installed in
VH to connect to the IB network.

1B InfiniBand for short.

MPI Abbreviation for Message Passing Interface. MPI is a
standard for parallel computing between nodes.

NIC Network Interface Card for short. The hardware to

communicate with other node.

vi

Contents

ProPTietary INOTICE. .. .uviiiiiiii et e ettt e e e e e e ettt e e e e e e e e e e tabaeeeeeaeeeenaatsraeeeaeeesennnsssrees il
PrOTACE. ..ttt ettt ettt e b et st e bt e s bt e st e bt e naeesateen 1i1
REIMATKS .ttt ettt ettt e a e st e sttt e bt s bt e e st et e it eeaaees v
ADOUt This MANUALeoiiiiiiiiie ettt ettt e st e sttt e bt e sttt e sbeeesateesaaeees \%
L070) 01723 01 7 TR OO O T OO O P O SO TP SRUPPRRPPPTOTOROTOTRON vii
1. How to use NQSV/APLttt sttt et st nbe e st sateeaees 1
1.1, OVverview Of NQSV/APLoooooiiiiieeee et e eete e e eete e e e e etre e e e eataeeeeeaaes 1
1.2, InStAll LioCAtION ..c.utiiiiiiiiiiieeee ettt et ettt sttt e 1
1.3, How to use NQSV/APL......coiiiiiee ettt sttt ettt et e saneens 1
1.3.1. HOW £0 COMIPILE L.eiiiiiiiiiiiiiie ettt ettt s bt e e e bbbt e st e e st e e e sabbeeeebbeeesanees 1

1.3.2. Connection to batCh SEIVET.......c.ccccoiiiiiiiiiiiiiiiii e e 1

1.3.3. RESULE GO ittt ettt e st e ettt e e ettt e st e e e st e e e et eeeanaee 1

1,304, AGETIDULES .. veeiieiiiie ettt e e ettt e et e e e e e b e e e e abe e e e eab e e e etba e e e tbbeeaetbaee e tbaaaeanbaeeeentbeeeenarees 1

T.8.8. EVEIIb ettt ettt ettt e ettt e et e ettt e e e b bt e e e bbteeeaeaes 3

2. State Transition Of REQUEST..........cooiiiiieiie et e e e e e 4
D228 I 1721 I I 10 T3 1 o) o PR 4
2.2. State Transition in ROULING QUEUEoooourriiiiiei et e e 6
P2 I 1 - o) a <Y |0 L=Y] ORI 6
2.4, ReqUESE SAll...ooeeiiiiiiieeeee et e e e e e e e e e e araaes 8

B T N o B D3 X =P R 9
B 20 R D7y s L v g oY== J R 9

4. AGEFIDULE TaDIES oottt ettt et st e et 13
4.1. Batch server attribUtes ...ooo.ii i e e 14
4.2, Scheduler attribUteS . .cccuuii i ettt et 19
4.3, JOD SETVETr AttIIDULES ..oo.eiiiiiiiiie ettt et 20
4.4, Execution host attribUtes.....cooiiiiiiiiii e e 23
4.5. Queue attributes (for batch queue, INteractive qUEUE)cccveveeieeieieiiieieeeeeeeeeeeenas 26
4.6. Routing qUEUE attrIDULESceiiiiiiiiiiiiieee e e e e et e e e e e e e eeaens 39
4.7. Network qUEUE attrIDULEScoiiiiiiiiiiiiiee et e e e e e etrr e e e e e e e eeeaens 42
4.8, RequeSst attriULES . ..oooiiieieeee e e e a e e e e eeeaaes 44
4.9, JOD AUEIIDULES .eiiie ettt et ettt st e et e e 55
4.10. Node group attrIDULES.ueeiiii ittt e e e e e e e e et a e e e e eeaaes 58
411, WOrkflow attribULescoeeeiiiie et et 59
4.12. Custom resource attriDULEScviiiiiiiriiiiieiieet et 60
5. Definition of Data Types and COnStANTScccvvveiiiiiiiiiiieieeeee e ee e 61
ST DR)7 411 oY) B 10 1] 72 0 1 7= RO 61

Vil

D2, SEIUCTUTES. ¢ttt ettt st e et e st e sttt e et e e e bt e e sabe e e s abeeeabeenanee 62
6. AP FUNCEIONS ..eiiiiiiiiitiiiteeet ettt ettt ettt et e sttt e s bt e e abeesbb e e sabeeesabeesbaeeeas 85
6.1. Attribute list fUNCEIONS ...coviiiiiiiiiice e e 85
6.1.1. Create AtErIbUte LIStcociiiiiiiiiiii ettt bbb 85

6.1.2. Release Attribute LISt ..c...cooiiiiiiiiiiiiiie et 86

6.1.3. Add Values to Attribute Listcoooeiiiiiiiiiiiii e 87

6.1.4. Delete Values to Attribute LAStcocerieriiiiiiiiiiiinieieeeece ettt s 88

6.1.5. Refer to Values in Attribute List.......ccoceriiriiiiiiiiiniiieiciececeene e e 89

6.1.6. Operation of AttribUte BEntryccoooiiiiiiiiiiiii e e e 91

6.2. API initialize/exit fUNCIONS . ..cc.eiiiieeiie ettt et 94
6.2.1. OPEIAPT LINKuiiiiiiiiiiieiieeieee e et e e e e e et e e e e e e et a e e e e e e enarraae e e e e e araaaeas 94

6.2.2, CloSE APT LINK ...ttt ettt sttt ettt ettt 97

6.3. API event related fUNCEIONSc.eeeiiieeiiieciee ettt e e e et eeneeeeenes 98
6.3.1. Gt APT EVENT .ottt ettt ettt et 98

6.3.2. Set EVent FIIEerooiiiiiiiiiiiii et e 100

6.4. Scheduler related fUNCEIONSc.civiiiieiiieie e et eearee e 102
6.4.1. Register Scheduler Identifier...........ccciiiiiiiiieiiii ettt e e are e eeenes 102

6.4.2. Operation of Scheduler Entrycccociiiiiiiiiiiiiiiiciiee ettt e eve e e 104

6.4.3. Operation of Scheduler AtErIDULES.......cooiiiirieiiie e ee e e e e 106

6.5. Batch server related fUNCEIONScoviiiiiiiiiiii e 108
6.5.1. Operate Batch Server AttriDULESc..eiiiiiiieieiie et e e et ee e e e e e 108

LS T T 170 o 0 2721 7o) B 1Y i 4 SRR 110

6.5.3. Registration of EXecution HOSESccceiiiiiiiiiiiiie ettt 111

6.6. Job server related fUNCEIONS.cooiiiiiiiii e 113
6.6.1. Operation of Job SETVEr ENEIYcccociiiiiiiiie et e e s tee e et ee e esaaeeeennns 113

6.6.2. Operation of Job Server AIIDULESccciciiieieiie e et e e et eeeeneaeeeennns 115

6.6.3. ContIOl JOD SEIVET ...ccuuiiiiiiiiiiiiiieet ettt sttt e st ettt et st et e e 117

6.7. Execution host related fUnctions..........ccoceiiiiiiiiiiiiiie e 121
6.7.1. Operation of Execution host ENtrycccooeiiiiiiiiiiiiieie et 121

6.7.2. Operation of Execution host AttriDULES........ccccuiiiiiiiieiiiiie e e ee e e 123

6.8. Queue related FUNCEIONSiiii ittt e e e e e e e e e e eeesataeeeeeeeeeeenanes 125
6.8.1. Operation of QUEUE ENEry.......cccooiiiiiiiiiiiieiiee e e e e e e e eaara e e e e e e e e aeraaeeas 125

6.8.2. Operation of QUEUE AttrIDULES.....cccuiiiiiii e e e e e et e e e e e e aaaraaeeas 127

6.8.3. Create QUETE ...ooeiuiiii ittt et e ettt e e et e e et e e ettt e e e bt e e e eabeeeeaanees 129

6.8.4, DELEte QUEUE ...ooiniiiiiiieiee ettt e et e ettt e e e bt e e e eabaeeeaanees 131

6.8.5. Connect SCREdULETcooiiiiiii ettt s 133

6.8.6. DiSconnect SChEedULETcooiiiiiiiiiiiiie ettt sttt 135

6.8.7. CONNECt JOD SEIVET.....uiiiiiiiiiiiiiiiit ettt sttt ettt e st e st e bt e saneesaneesanee e 137

viil

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.

6.8.8. DISCONIIECE JOD SOIVET ...uuuiieicccec e s e sasasasssasssnsssnsasnnnsnsnnnsnnnnnnnnnnn 139

Request related FUNCEIONSoiiiiiiiiieeiee e eeee e e e e e e e e e e e eenaes 141
6.9.1. Operation of ReqUest ENtryccoooiiiiiiiiiiii et e 141
6.9.2. Operation of Request AtErIDULEScc.uiiiiiiiieeeie e e e e e e e 144
6.9.3. Create REQUEST oottt e e et e e et e et e e e ettt e e eataeeeennees 146
6.9.4. Create jJob and Start STAZE TNc..eiiiiiiie ettt e e e et s et e et e e ateeeeenaees 150
6.9.5. SEATT REQUEST . .iiiiiiiiiiiiie ettt ettt e et e e e sttt eeeestbeeeetbtea e abbeeeensbaeeessbaaeeastbeaeenraeeennnees 153
6.9.6. Delete REGUEST.....uuiiiiiiiiieiecic et e et e e e e e sttt e e e e e et bb et e e e e e narbaaeeeeeennraaaeas 155
6.9.7. Send Signal t0 REQUEST ..ccuuvviiiiiiieiiiieeeee et e e e 157
6.9.8. HOLA REQUEST ..ottt e e e ettt e e e e e sttt e e e e e sesstasbeaeeeesennnsbeaeeeesennnnrreeeas 160
6.9.9. Release ReQUEST......uiiiiiiiiiiiiiiee e et e e e e et e e e e e sttt e e e e e e e narbraeaeeeennnrraaeas 162
6.9.10. ReStart REQUEST.......ciiiiiiiiiiiiie et e e e e e sttt e e e e e st bb e e e e e e e e aarbaaeaeeeennnrraaeas 164
6.9. 11, ReTUN REQUEST....uuiiiiiiiiiiiiiiic ettt e e e ettt e e e e e sretbr e e e e e e e sesstabaaaeeeesassssbeaeaessessssssneeas 166
6.9.12, Move Request BetWeen QUEUES..........coiiiiiiiiiiiiiieieeiiiiieee ettt e e e e e eearree e e e e s eaarreaeeessessnnnseeeas 168

3 Fo) QR <1 P 1Yo B R e Lo n o) o =TT 170
6.10.1. Operation of JOD BNtycccooiiiiiiiiiiiiccee et e e e br e e eera e e eaaes 170
6.10.2. Operation Of JOD ATEIIDULESccoiiiiiiiiee ettt e e eeere e e e e e et e e e e e e eeeanraeeens 172
6.10.3. Send SigNal t0 dOD....c.uiiiiiiiiiii e st 174
L U T L T3 0 1 7S L) o TSRS 176

Node Group related fUNCLIONSccuvvviiiiei i e e e re e 178
6.11.1. Operations of Node Group ENtry........ccoociiiiiiiiiiiiiiiece ettt e 178
6.11.2. Operation of Node Group AtEFIDULES ...ccc.viieieiiieeeiiee ettt e e et ee e e e e e enees 180
6.11.3. Create/Delete NOAE GIOUDccccuiiiiiiiieeiiiie ettt e ettt e et ee e ettt e e s eeteeeesstaeeeeeseeesnsaeesansaeeeansaeesnnnnes 182
6.11.4. Add Job Server t0 NOAE GIOUDccccvvieeriiieeeiiieeeiiieeestieeeeeteeeestreeesteeeeeeraeesnsaeessssaeeeessaeesannees 184
6.11.5. Remove Job server from NOAe GIOUDeeeriiiieiiiiieeiiiee et e et ete e etre e e et eeesnraeeeennes 186
6.11.6. Bind/Unbind Node Group t0 QUEUEeeeeiuiiieiiiieeeiiiieeetieeeeieeeesieeeeeereeessnsaeeessreeesnsaeesennnes 188

Template related fUNCEIONS.coooiiiiiiiiie e e 190
6.12.1. Create/Delete TemMPLAtEcceeciiieiieeeeciiee ettt et e e et e e et e e e st e e e enbaeesnsaeeesnsaeaeensaeesannees 190
L 0 e L =S 401 o) P2 SRR 192
6.12.3. Lock and Unlock TemPIatecceecuiieiiiiieieiiee e esiiee ettt e e et eeeerae e sstaeeesntaeeeenneaeesennnes 194

OpenStack Template related fUNCEIONSceeiviviiiiiiiiiic e e e 196
6.13.1. Create/Delete OpenStack Templateccccvuvieiiiiiiiiiiiiiiee e e e e e saarreeeas 196
6.13.2. Edit OpenStack TemMPLate......ccccuiiiiiiiiiiiiie ettt e e st e ettt e e et e e s 198
6.13.3. Lock and Unlock OpenStack Templateeveeiiiiiiiiiiiiiieeeieiiiieee et eeeeivrreee e e e eeanrsaeeas 200

Baremetal server related functionscccceveerieiiiiniiiiiiii e 202
6.14.1, Attach and detach baremetal SEXVETc.ccovviiiiiiiiiiiiii e 202

Custom Resource related functionscccceceeviiiiiiiiiniiiiieicccecce e 204
6.15.1. Operations of Custom Resource Entry........cccccccoiiiiiiiiiiiiiiiiiie e 204

1X

6.15.2. Operation of Custom Resource AttriDULESooeviuiiiiiiiiiieeie e 206

6.15.3. Create/Delete Custom RESOUICEc...covuiiiiiiiiiiiiiiiiic ettt 208

6.16. UBIIIEY fUNCEIONS ..veeieiiiieee et ettt ettt eeetve e e ettt e e eetaeeeeeetbeeeeeebaeeeeeetseeeeenatreeeeentreeeeses 210
6.16.1. Gt API VEISION .. .eiiiiiiiiiieiieeriiteeite ettt ettt ettt ettt e bttt e sat e e sbbe e st e sabeesateesareesaree e 210

6.16.2. Convert between Machine ID and Host Namecccceriiiriiiiniiiniiiiiiincieciec e 211

S T 0] o] (S 70 e [T 213
7.1. Display the Load Information of Execution Host..........ccccoooviiiiiiiiiiiiiiiieee e, 213
7.2. Display the Request Status EVentccccovviiiiiiiiiiii e 215
AppendiX. AUpPdate RISTOrY ... e e e e e e e e e e e s neneaees 218

1. How to use NQSV/API
1.1. Overview of NQSV/API

NQSV/API is the C language API to refer the information and control with batch server. It is able to

create the original client command and scheduler by using this API.

1.2. Install Location

Install location of NQSV/API include file and library files:
® Include file
/opt/nec/ngsv/include/ngsv.h
® /opt/nec/ngsv/include/ngsv.h Library files
/opt/nec/nqsv/lib64/libngsv.a Static Link library
/opt/nec/nqsv/lib64/libngsv.so Dynamic Link library

1.3. How to use NQSV/API

1.3.1. How to compile
To use NQSV/API, include the header file nqsv.h on the source code and link the NQSV library file

libngsv.a or libngsv.so.

Example of compile command line: it compiles apitest.c

cc -1 /opt/nec/ngsv/include apitest.c /opt/nec/ngsv/lib64/1ibngsv. a

1.3.2. Connection to batch server

NQSV/API performs reference, control and other processing with batch server, after TPC connection
is established with batch server. Therefore when you use the following various NQSV/API functions,
it is necessary to call NQSconnect() at first. And when you terminates the NQSV/API processing, call

NQSdisconnect() to terminates the connection.

1.3.3. Result Code
Each functions of NQSV/API return the result of its processing by nqs_res structure. ngs_res

includes error number and error message.

1.3.4. Attributes
NQSV/API can set/get various information of queues, requests, jobs, etc. managed by batch server.

The information unit to set/get is called "attribute". The attributes of queue, request and other

objects managed by batch server are listed in 4. Attribute Tables.

Each attributes have "scope" which indicates the area that the attribute is applied. The scope

identifiers associated with each attributes are as follows:

Scope Scope Identifiers
Batch Server SCPE_BSV
Scheduler SCPE_SCH
Job Server SCPE_JSV
Execution Host SCPE_HST
Queue SCPE_QUE
Request SCPE_REQ
Job SCPE_JOB
Process SCPE_PRC
Node Group SCPE_NGRP
Workflow SCPE_WFL

To set/get attributes, make an attribute list of target

attributes and pass the attribute list to

attribute control API functions. NQSalist() is used to make attribute list. Attribute list has the data

structure including chained attribute header data. The attribute header data can contain attribute

values. Some attribute list has multiple attribute values, and it is connected by list structure. This

attribute value connection is called as "chain".

Attribute Header

A

" type: ATTR_ACLIST
. scope: SCPE_QUE

type: ATTR_QUEID)
. scope: SCPE_QUE

type:
name:

uid: 3ee4

uid: 20e

ROUTE
bgl

Attribute Value

The attribute list data is dynamically made in the heap

function.

area, it is necessary to free by NQSafree()

To set/get attributes, use NQSV/API function as following sequence.

® To get attributes

1. Make attribute list (NQSalist()

2. Use attribute control function for each information type with ATTROP_GET mode.
(NQSattrxxx()

3. Get attribute value from the attribute list data. (NQSaref())

® To set attributes
1. Make attribute list (NQSalist()
2. Set attribute values to the attribute list. (NQSaadd()
3. Use attribute control function for each information type with ATTROP_SET mode.
(NQSattrxxx()

1.3.5. Event
To get various NQSV events that occur in batch server, use NQSV/API functions as follows using the
socket file descriptor returned by NQSconnect().
1. Connect to the batch server by NQSconnect().
Set event types to get by NQSevflt().
Wait an input to the socket file descriptor by select() or poll().
After detecting input to the socket, get the event data using NQSevent().
Handle the event data included in ngs_event structure.

Return to 3.

A

2. State Transition of Request
2.1. State Transition

The following figure shows the states of the request in batch queue and interactive queue, and its
state transition. The state enclosed by solid line is the real state of the request and the state enclosed
by dotted line is the virtual state. In the figure, the arrows show the direction of state transition and
the reasons of the state transitions are described with the arrows.
When a request's state transition occurs, the request state type event will be sent to the NQSV/API
client. The request state type event includes the following information and NQSV/API client
program can trace requests using the event information.

Current state of the request

Previous state of the request

Reason of the state transition

Submit with HELD

Received from

other queue
Submit with start time Received
Reception succeeded (with HELD) from other BSV
Delete
Rerun Reception succeeded Reception failed
WAITING +— —— ARRAIVING
Hold (with start time) Delete
Release Set start timei qalter
Submit
""""" o
------------ 7 i MOVED i
qm‘me o | iamove
Y v After preset execution time Reception succeeded
Delete Hald
HELD QUEUED
Rerun
4 Release Delete/Rerun
Migration
Migration succeeded/failed
. Stage In succeeded/failed Pre-running failed
MIGRATING STAGING
Stage In
Run
Delete/Rerun
Delete/Rerun
- PRE-RUNNING
Delete/Rerun
Pre-running succeeded
Suspend failed
Delete
RUNNING SUSPENDING
Suspend Rerun
Suspend
Delete
SUSPENDED
Rerun

Running exited
Delete
Rerun
System failure

Resuming failed
Resume

Resuming succeeded

RESUMING

POST-R

UNNING

Delete/Rerun

Post-running succeeded,/failed
Delete/Rerun

EXITING

Rerun

Exiting completed/Delete

2.2. State Transition in Routing Queue

The figure to the right illustrates states where a request can accept in the routing queue.

No API event is created pertaining to the request state transition made in the routing queue.

Batch Request Status Transition in Routing Queue

Before preset execution time

Before preset execution time
After preset execution time

Reception succeeded

h 4

Start of transiting

v

Transiting failed & Re-transiting enabled TRANSITING

-9

Transiting succeeded | |Transiting failed & Re-transiting disabl¢

il

EXITED

(4) SUBMIT request (E) RELEASE request
(C) DELETE request (K) MOVE request
(D) HOLD request

o

2.3. State of Request

NQSV request can have the states as follows.

ARRIVING

The request is being received from a routing queue.
TRANSITING

The request is being transferred from a routing queue to another queue.
WAITING

The request is waiting until the time when the execution is scheduled to start.

QUEUED
The request is queued and scheduled for execution. It will transit to RUNNING state when
the batch scheduler signals to start execution.
STAGING
Batch jobs or network request are generated. The stage-in files are transferred from client
hosts to the execution host.
PRE-RUNNING
The information required to execute batch jobs is being transferred to each job server. The
master job synchronizes with all related slave jobs before execution. Pre-processing is
performed and if an error occurs during processing, the request will return to the QUEUED
state after cancelling each process up to that point backwards.
RUNNING
Batch jobs associated with the batch request is being executed. In case of the MPI job, it
transits to POST-RUNNING state as soon as the master job is finished.
The RUNNING state will be maintained as long as the master job is executed even though
all slave jobs are completed to execute.
The finishing of the slave jobs does not give any influence to the state.
In case of the distributed jobs (non MPI job), the request transits to the POST-RUNNING
state when all batch jobs are finished.
POST-RUNNING
Post-processing after completing execution of batch jobs is performed.
EXITING
The standard/error output file and stage-out file of the request are transferred from the
execution host to the client host.
CHKPNTING
A periodic checkpoint for the request has been issued. After storing the checkpoint restart
file, the batch jobs continue execution.
Checkpoint processing is performed and if an error occurs during processing, the request
will return to the RUNNING state after cancelling each process up to that point backwards.
HOLDING
A checkpoint request has been issued. After storing the checkpoint restart file, the batch
jobs will be ended.
Checkpoint processing is performed and if an error occurs during processing, the request
will return to the RUNNING state after cancelling each process up to that point backwards.
HELD
The request is not the target of scheduling and does not accept "run" or "restart" request
from the scheduler.

If a checkpoint request has been issued during RUNNING state, the checkpoint restart file

is generated in this (HELD) state.
RESTARTING
The request is being restarted from the checkpoint file previously stored.
Restart processing is performed and if an error occurs during processing, the state will
return to the QUEUED state after cancelling each process up to that point backwards.
SUSPENDING
The request is waiting until all of its batch jobs are stopped.
SUSPENDED
All the batch jobs for the request are stopped.
RESUMING
The request is waiting until all of its batch jobs are restarted.
MIGRATING

The batch jobs associated with the request are being moved to other job servers.

The following states are virtual states.
EXITED
This virtual state is defined as the end of a state transition request in which the request is

gone.

MOVED
This virtual state is defined as the end point before movement or the beginning point after
movement where a request has already moved from one queue to another. The request state
1s 1dentical before and after movement. For example, when a HELD request is moved to

another queue, the state of the request in the destination queue is also HELD. This is also
true to QUEUED and WAITING queues.

2.4. Request Stall

A request with a child job temporarily stops changing its status and waits until its link is established
again if the link breaks between the batch server and the job server that controls a job in an
execution node. The request in this status is called a "stalled" request.

It is possible to do only deletion or re-running to the stalled request.

3. API Events

3.1. Event Types

Event Types Event Identifier Reference Timing of Occurrence
Batch server related events
NQSEVT_BSV NQSEVT_BSV_LINKDOWN (none) The API link is broken.
Execution host state related events
NQSEVT HST NQSEVT_HST_ACTIVE evt.hst The execution host is activated.
NQSEVT_HST_INACTIVE The execution host is inactivated.
Job server related events
NQSEVT_JSV_LINKUP A link with the job server is established.
NQSEVT_JSV_LINKDOWN A link with the job server is broken.
NQSEVT_JSV_ATTACH The job server is registered to the batch server.
NQSEVT_JSV evt_jsv The job server's registration is removed from the batch
NQSEVT_JSV_DETACH
server.
NQSEVT_JSV_BOUND The job server is bound to a queue (first time only).
NQSEVT_JSV_UNBOUND The job server is unbound from all queues.
Queue state related events
NQSEVT_QST_ACTIVE The queue is active (executable).
NQSEVT_QST_INACTIVE The queue is inactive (unexcitable).
NQSEVT_QST NQSEVT_QST_ENABLE evt_qgst The queue is enabled.

NQSEVT_QST DISABLE

NQSEVT_QST_CREATE

The queue is disabled.

The queue is created.

10

NQSEVT_QST_DELETE

NQSEVT_QST BINDJSV

NQSEVT QST BINDSCH

NQSEVT_QST_BINDNGRP

NQSEVT_QST_UNBINDJSV

NQSEVT_QST_UNBINDSCH

NQSEVT_QST_UNBINDNGRP

The queue is deleted.

A job server is connected to the queue. (first time only)

A scheduler is connected to the queue.

A node group is connected to the queue

A job server is disconnected from the queue.

A scheduler is disconnected from the queue.

A node group is disconnected from the queue.

Queue

attribute related events

NQSEVT_QAT RESLIM

The resource limit value of the queue is changed.

NQSEVT_QAT NQSEVT_QAT_PRIORITY evt_qat The queue priority is changed.

NQSEVT_QAT _RSTFDIR The restart file storage directory is changed
Request state related events

NQSEVT_RST_ARRIVING The request is ARRIVING.
NQSEVT_RST_WAITING The request is WAITING.
NQSEVT_RST _QUEUED The request is QUEUED.
NQSEVT_RST_STAGING The request is STAGING.
NQSEVT_RST_PRERUNNING The request is PRERUNNING.
NQSEVT_RST_RUNNING The request is RUNNING.

NQSEVT_RST evt_rst

NQSEVT_RST_POSTRUNNING

NQSEVT_RST_EXITING

NQSEVT_RST_EXITED

NQSEVT_RST_CHKPNTING

NQSEVT_RST_HOLDING

NQSEVT_RST_HELD

The request is POSTRUNNING.

The request is EXITING.

The request is EXITED.

The request is CHKPNTING.

The request is HOLDING.

The request is HELD.

NQSEVT_RST _RESTARTING

NQSEVT_RST SUSPENDING

NQSEVT_RST SUSPENDED

NQSEVT_RST _RESUMING

NQSEVT_RST _MIGRATING

NQSEVT_RST MOVED

NQSEVT_RST_STALLED

NQSEVT_RST_REVIVED

The request is RESTARTING.

The request is SUSPENDING.

The request is SUSPENDED.

The request is RESUMING.

The request is MIGRATING.

The request is MOVED.

The request is stalled.

The request is revived.

Request attribute related events

NQSEVT_RAT

NQSEVT_RAT RESLIM

NQSEVT_RAT_ACCTCODE

NQSEVT_RAT_EXETIME

NQSEVT_RAT_RSVTIME

NQSEVT_RAT PRIORITY

evt_rat

NQSEVT_RAT MIGRATABL

NQSEVT_RAT_HOLDABL

NQSEVT_RAT MAILADDR

NQSEVT_RAT _KNLPRM

The resource limit value of the request is changed.

The account code of the request is changed.

The execution time of the request is changed.

The reservation time of the request is changed.

The request priority of the request is changed.

The migration attribute of the request is changed.

The hold attribute of the request is changed.

The e-mail address of the request is changed.

Node group related e

vents

NQSEVT_NGRP

NQSEVT_NGRP_CREATE

NQSEVT_NGRP_DELETE

NQSEVT_NGRP_ADDNODE

evt_ngrp

NQSEVT_NGRP_DELNODE

A node group is created.

The value of kernel parameter of the request is changed.

A node group is deleted.

Job server is added to the node group.

Job server is removed from the node group.

Template related events

11

12

NQSEVT_TMPL

NQSEVT_TMPL_CREATE

NQSEVT_TMPL_DELETE

evt_template

NQSEVT_TMPL_MODIFY

A template is created.

A template is deleted.

The configuration of the template is changed.

Custom resource related events

NQSEVT_CRS

NQSEVT_CRS_CREATE

NQSEVT_CRS_DELETE

evt_crs

NQSEVT_CRS_RESCHANGED

A custom resource is created.

A custom resource 1s deleted.

The configuration of the custom resource is changed.

* Request state related events and Request attribute related events are sent to the each sub-request of parametric request.

4. Attribute Tables

This section describes attributes that the NQSV handles.
The "Reference" field in the Attribute Table shows an API authority type required to refer to an attribute and the "Alter" field shows the
possibility of attribute alteration by NQSattrxxx (3) and an API authority required for attribute alteration.

The API authorities are classified as follows:

Symbol Description

MGR API authority of PRIV_MGR or higher
OPE API authority of PRIV_OPE or higher
USR API authority of PRIV_USR or higher

USRR) API authority of PRIV_USR or higher (The PRIV_USR authority must be the owner of the
request or job. The PRIV_GMGR authority must be the group manager of the request or job.)
USR(Q) API authority of PRIV_USR or higher (The PRIV_USR authority must be allowed to access
the queue. The PRIV_GMGR authority must be allowed to access the queue of the managed

group.)

X Reference and alteration of the attribute are prohibited.

Refer the next chapter about the data types.

13

14

4.1. Batch server attributes

g Scope
Attribute name Attribute type Type Reference Alte;atlo Chain Description BSV
Batch server version
Version number |ATTR_VERNO char * USR X X 0
[Max. length: NQS_LEN_VERSION]
Name of batch server host
Host name ATTR_HOSTNAME |char * USR X X 0
[Max. length: NQS_LEN_HOSTNAME]
Machine ID ATTR_MID int USR X X Machine ID of batch server 0
] Full path name of NQS log file
Log file name ATTR_LOGPATH char * USR OPE X 0
[Max. length: NQS_LEN_FILENAME]
Log level ATTR_LOGLEVEL ngs_range USR OPE X Output level of NQS log 0
No. of log files _)
) ATTR_LOGFGEN ngs_range USR OPE X Number of old NQS log files retained 0
retained
Max. log file) Max. length of the NQS log file
ATTR_LOGFLEN int USR OPE X) o 0
length [in bytes, 0 for unlimited length]
License]]
)) ATTR_LICINFO ngs_license USR X 0 Use status of each license 0
information
Interval of heart beat transmission between batch
Heart beat
) ATTR_HBINTVAL int USR OPE X [server and job server 0
interval
[in seconds, O for transmission stop]
Load
)) Interval of sampling load information of the
information
) ATTR_LHINTVAL int USR OPE X |execution host 0
sampling

interval

[in seconds, 0 for sampling stop]

Job resource

Interval of sampling the size of resource used by

size sampling ATTR_JUINTVAL int USR OPE the job
interval [in seconds, 0 for sampling stopl
Routing queue Run limit of routing queues in the entire batch
o ATTR_ROURLIM ngs_range USR OPE
run limit server
Routing queue Time allowed before the routing queue tries
) ATTR_ROURTYIVAL |int USR OPE)
retry interval another transfer (in seconds)
Routing queue Span allowed that routing queue repeats the
ATTR ROURTYSPAN |ngs_range USR OPE o
retry span retrial(in seconds)
Network queue Run limit of network queues in the entire batch
o ATTR_NETRLIM ngs_range USR OPE
run limit server
Network queue Time allowed before the network queue tries
ATTR_NETRTYIVAL |int USR OPE
retry interval another transfer (in seconds)
Network queue Span allowed that the network queue repeats the
ATTR NETRTYSPAN nqgs_range USR OPE o
retry span retrial(in seconds)
ACCT server
ATTR ACCTHOST char * USR OPE ACCT server host name.
host name
ACCT Server)
) TCP port number which ACCT server
TCP port ATTR_ACCTPORT int USR OPE))
communicate with NQSV
number
Job account Output directory for job account file on the BSV.
) ATTR_JACCT_DIR |char* USR MGR _]
output directory Default is /var/opt/nec/ngsv/acm/jacct
] Setting for enabling budget check by accounting
Budget check ATTR_NQS_BUDGETCHECK |int USR MGR

server.

15

16

0: Do not check the budget (OFF) (default)

1: Check the budget of request.

2: Check the budget of reservation.

3: Check the budget of request and reservation.

Request Switch for request accounting.
accounting ATTR_RACCTSW int USR MGR X 0: OFF (default)
switch 1: ON
Request account Request account file name.
ATTR_RACCTPATH |char * USR MGR X .
file Default is /var/opt/mec/ngsv/bsv/account/reqacct
Reservation Switch for reservation accounting.
accounting ATTR RESERVATION_ACCT |int USR MGR X 0: OFF (default)
switch 1: ON
Reservation Reservation account file name.
ATTR RESERVATION ACCT_FILE char * USR MGR X .
account file Default is /var/opt/nec/ngsv/acm/rsvacct/rsvacct
) It indicates that Designated Group Execution
Specify Group)))
ATTR SPCFYGRP int USR OPE X Function for Request is enable or not.
for Request)
(0:disable 1:enable)
It indicates that specifying absolute path for the
Allow Absolute) S
Path ATTR_ABSLT_EXEPATH |int USR MGR X staging files allowed or not.
a
(O:refuse 1:allow)
Items for maximum number of submitted requests
o Maximum number of requests to submit per a
Submit limit ATTR_GBLSBLM ngs_range USR OPE X
batch server
User submit ATTR_USRSBLM int USR OPE X Maximum number of requests to submit per a

limit

user of the batch server
(0 or positive integer, O for unlimited number of

request)

Group submit

Maximum number of requests to submit per a

group of the batch server

ATTR_GRPSBLM int USR OPE X
limit (0 or positive integer, O for unlimited number of
request)
Maximum number of requests to submit of the
Specified user) specified user per the batch server
o ATTR_USRSBLM_N |ngs_int_u USR OPE 0 o o
submit limit (0 or positive integer, O for unlimited number of
request)
Maximum number of requests to submit of the
Specified group) specified group per the batch server
ATTR_GRPSBLM_N |ngs_int_g USR OPE 0

submit limit

(0 or positive integer, 0 for unlimited number of

request)
Parametric request
Sub-request Maximum number of sub-requests in a
o ATTR GBLSUBREQENT |ngs_range USR OPE X) _
number limit parametric request. (1-999999) Default is 100.
Template

OpenStack nqs_ostemp o

ATTR_OSTEMPLATE USR OPE) Definition of OpenStack Template.
Template late
Container nqs_cotemp o)

ATTR_COTEMPLATE USR OPE) Definition of Container Template.
Template late
Number of ATTR_TEMP_REQS |ngs_temp_r USR X 0 Number of requests using template.

17

18

requests using

template

eqs

4.2. Scheduler attributes

Scope
Attribute name Attribute type Type Reference | Alteration | Chain Description SCH
Scheduler ID ATTR_SCHID ngs_schid USR X X |Identifier of the scheduler 0
Scheduler version
Version number |[ATTR_VERNO char * USR X X 0
[Max. length: NQS_LEN_VERSION]
Name of scheduler
Scheduler name |ATTR_SCHNAME char * USR X X 0
[Max. length: NQS_LEN_SCHNAME]
Host ID ATTR_HSTID ngs_hid USR X X |Identifier of host running the scheduler 0
Scheduler Messages from the scheduler
) ATTR_SCHDMSG char * USR SCH X 0
Information [Max. length: NQS_LEN_SCHDMSG]
Scheduling) o]
‘ ATTR_SCHINTERVAL [int USR SCH X |Scheduling interval (JobManipulator) o
interval
) Scheduling Status
Scheduling) o]
cat ATTR_SCHSTAT int USR SCH X SCHST_START: Scheduling is in service. 0
status

SCHST_STOP: Scheduling is out of service.

19

20

4.3. Job server attributes

Scope
Attribute name Attribute type Type |Reference|Alteration | Chain Description
JSV
Job server ID ATTR_JSVID ngs_jsvid USR X X |Identifier of job server 0
Job server version
Version number |[ATTR_VERNO char * USR X X 0
[Max. length: NQS_LEN_VERSION]
Name of job server
Job server name |ATTR_JSVNAME char * USR X X 0
[Max. length: NQS_LEN_JSVNAME]
Job server status |ATTR_JSVST ngs_jsvst USR X X |Status of job server 0
Execution host ID [ATTR_HSTID ngs_hid USR X X |Identifier of host running the job server 0
Queue ID ATTR_QUEID ngs_qid USR X o |Identifier of connected queue 0
RSG number assigned to a job under control
RSG number ATTR_RSGNO ngs_range USR X o |(All RSG numbers related to the bound queues can 0
be get by chain.)
Migration) parameters for tuning performance of job
ATTR_MIGPRM ngs_migprm USR OPE X)) 0
parameter migration
Scheduler Messages from the scheduler
) ATTR_SCHDMSG |char * USR SCH X 0
Information [Max. length: NQS_LEN_SCHDMSG]
)] True: Using a JobManipulator's license
JM license status |ATTR_JMLICENSE [int USR X X 0
False: Not using a JobManipulator's license
Node group ID ATTR_NGRPID ngs_ngrpid USR X o |Noe group the job server belongs to 0
Execution host] Type of execution host.
ATTR_HSTTYPE int USR X X 0

type

EXECUTION(0) or BAREMETAL(1)

Defined GPU

ATTR_DEFINED_NGPUS [int USR X X |Defined GPU Number of baremetal server
Number
Defined Memory])
S ATTR_DEFINED_MEMORY |ngs_rsgres| USR X X |Defined Memory size of baremetal server

ize

Defined CPU

ATTR_DEFINED_NCPUS [int USR X X |Defined CPU Number of baremetal server
Number
OpenStack ngs_ostem)

ATTR_OSTEMPLATE USR X X |Template which used to boot the baremetal server.
Template plate

RSG information (memory, swap, number of
RSG information |ATTR_RSGINFO ngs_rsginfo USR X o) CPUs, load averages, number of GPUs, and
number of VEs) of the JSV host
The action for JSV when HCA failure is detected.
Actionof HOA iR HOACHK |int USR | OPE | X HEACTIEOFE
in
failure detected B HCACHK_DOWN
HCACHK_UNBIND
Items for host load information

Memory Information on physical memory size per
)) ATTR_RBSPMEM |ngs rsgres USR X X)
information execution host
Swapping : o :
)] ATTR_RBSPSWAP |ngs rsgres USR X X |Information on swapping size per execution host
information
Number-of-CPUs Information on number of CPUs per execution
i i ATTR_RBCPUNM |ngs rsgres USR X X
information host
Load average . .
)) ATTR_RBLDAVG ngs_rsgavg USR X X |Information on load average per execution host
information

21

22

CPU average

information

ATTR_RBCPUAVG

ngs rsgavg

USR

Information on CPU average per execution host

4.4. Execution host attributes

Scope
Attribute name Attribute type Type Reference | Alteration |Chain Description Execution
host
Execution host ID |ATTR_HSTID ngs_hid USR X X |Identifier of execution host 0
Operating system OS name of execution host
ATTR_SYSNAME char * USR X X o}
name [Max. length: NQS_LEN_UTSNAME]
OS version OS version of execution host
ATTR_VERNO char * USR X X o}
number [Max. length: NQS_LEN_UTSNAME]
OS release name of execution host
OS release number|ATTR_RELNO char * USR X X o}
[Max. length: NQS_LEN_UTSNAME]
Hardware name of execution host
Hardware name |ATTR_ HWNAME char * USR X X o}
[Max. length: NQS_LEN_UTSNAME]
Job server ID ATTR_JSVID ngs_jsvid USR X X |Job server ID of the execution host 0
] Host in which the Node agent running to
Node agent ATTR_NODEAGENT |ngs_hid USR X X) o}
watch the execution host.
Host state of running.
State of the host |ATTR_HST ngs_hst USR X X HOSTST ACTIVE Running o}
HOSTST_INACTIVE Stop
Execution host Type of execution host.
ATTR_HSTTYPE int USR X X o}
type EXECUTION(0) or BAREMETAL(1)
Defined GPU
Numb ATTR_DEFINED_NGPUS |int USR X X |Defined GPU Number of baremetal server o}
umber

23

24

Defined Memory])
< ATTR_DEFINED_MEMORY |ngs_rsgres USR X X |Defined Memory size of baremetal server
ize
Defined CPU
ATTR_DEFINED_NCPUS [int USR X X |Defined CPU Number of baremetal server
Number
OpenStack ngs_ostem Template which used to boot the baremetal
ATTR_OSTEMPLATE USR X X

Template plate server.

Socket Resource)

)) ATTR_SOCKETINFO |ngs_socket USR X o |Amount of socket resource and it usage.

information

CPUSET . .

)) ATTR_CPUSETINFO |ngs_cpuset USR X o |Resource information of every CPUSET

information

GPU detailed) Each GPU detailed information on the

)) ATTR_GPUINFO ngs_gpuinfo USR X))

information execution host.

VE node) Detailed information of VE node on the

)) ATTR_VEINFO ngs veinfo |USR X))

information execution host.
RSG information (Total value of memory,
swap, number of CPUs, load averages, number
of GPUs, and number of VEs) of the execution

RSG information |ATTR_RSGINFO ngs rsginfo USR X X

host.

* Available members of RSG information are
different according to the operating system
as follows.

Items for host load informati

on

Memory Information on physical memory size per
)) ATTR_RBSPMEM ngs_rsgres USR X X)

information execution host

Swapping ATTR_RBSPSWAP ngs_rsgres USR X X |Information on swapping size per execution

information

host

Number-of-CPUs

Information on number of CPUs per execution

)) ATTR_RBCPUNM ngs_rsgres USR

information host

Number-of-GPUs Information on number of GPUs per execution

)) ATTR_RBGPUNM ngs rsgres USR

information host

Load average Information on load average per execution

)) ATTR_RBLDAVG ngs_rsgavg USR

information host

CPU average Information on CPU average per execution

)) ATTR_RBCPUAVG |ngs rsgavg USR

information host

Number of VE Information on number of VE nodes per
ATTR_RBVENM ngs rsgres USR

node information

execution host.

25

26

4.5. Queue attributes (for batch queue, interactive queue)

Scope
5o e | e |
2IFEHS |8 |F|E
Attribute name Attribute type Type Reference | Alteration | Chain Description == 2|z 8 |2
g | gz @ |8
58
Queue ID ATTR_QUEID ngs_qid USR X X |Identifier of execution queue 0
Queue status |ATTR_QUEST ngs_qst USR@Q OPE X |Current queue status 0
Priority ATTR_PRIORITY ngs_range USR@ OPE X |Queue priority 0
. Identifier of connected
Scheduler ID |ATTR_SCHID nqgs_schid USR@ X X 0
scheduler
Name of connected scheduler
Scheduler
ATTR_SCHNAME char * USR@Q X X |[Max. length:| o
name
NQS_LEN_SCHNAME]
Periodic checkpoint interval of
) 0 or positive integer (unit:
Checkpoint _
) ATTR_CHKPNTABL |ngs_range USR@Q OPE X |minute). 0
attribute

No checkpoint where 0. (Batch

queue only)

Hold privilege

ATTR_HOLDPRIV

int

USR@Q

OPE

Authority privilege of client
necessary for holding request
in the RUNNING state. (batch
queue only)

PRIV_SCH:

Scheduler authority and
above
PRIV_MGR:

Manager authority and
above
PRIV_OPE:

Operator authority and
above

PRIV_GMGR:

Group Manager authority
and above

PRIV_SPU:

Special user authority
and above

PRIV_USR:

General wuser authority
and above

PRIV_NON:
Any authority is
acceptable.

27

28

Authority privilege of client

necessary for suspending

Suspend request in the RUNNING
o ATTR_SUSPRIV int USR@ OPE
privilege state.
(For privilege type, please
refer to
"Hold privilege".)
Information of User EXIT
User Exit
)) ATTR_USEREXIT |ngs_uexit USR@Q OPE which started by each
information
execution phase of batch job.
Refuse to submit a batch
request by route.
RFUSSB_QSUB:
Refuse to submit via gsub
(NQScrereq)
Refusing RFUSSB_QMOV:

. . Refuse to submit wia
submission by [ATTR_RFUSSB int USR@Q OPE qmove (NQSmovreq).
route (exclude interactive queue)

RFUSSB_LCRQ:
Refuse to routing via local
routing queue
RFUSSB_RMRQ:
Refuse to routing via
remote routing queue
o A range which NQSV Manager
Priority
ATTR_MGRPRRNG |ngs_hilo USR@ MGR can set for the request priority.
Range(MGR)

(exclude interactive queue)

A range which NQSV Operator

Priorit
R (yOPE) ATTR_OPEPRRNG |ngs_hilo USR@Q MGR can set for the request priority.
ange
& (exclude interactive queue)
o A range which Special User can
Priority) o
ATTR_SPUPRRNG |ngs_hilo USR@ MGR set for the request priority.
Range(SPU) ' .
(exclude interactive queue)
o A range which a general user
Priority) o
ATTR_USRPRRNG |ngs_hilo USRQ MGR can set for the request priority.
Range(USR) . .
(exclude interactive queue)
_ ACL_ACCESS:

ACL mode ATTR_ ACLMODE int USR@Q MGR Users are allowed to access
the queue only when the
user name 1is in the ACL

ACL user name user name list or the group

ATTR_ACLUNAME char * USR(Q) MGR name j_s in the ACL group

list

name list.

29

30

ACL_NOACCESS:

Users are not allowed to
access the queue when the
user name is in the ACL
user name list or the group
name is in the ACL group

ACL group name list.
) ATTR_ACLGNAME |char * USR(Q) MGR The maximum length of the
name list
user name is
NQS_LEN_USERNAME.
The maximum length of the
group name 1s
NQS_LEN_GROUPNAME.
Set valid/invalid of submit
limit of request using
Submit Limit supplementary group name.
with) If true, the supplementary
ATTR_SUPGIDCHK |int USR@Q OPE)
Supplementary group name at request creation
group name time is added to the target for
submit limit check with ACL
group name list.
Number of
requests Number of requests counted
ATTR_NREQST ngs nregst USR@Q X

counted per

status

per status

Controls the auto bind at JSV

link up
. True:
JSV Auto bind .)
ATTR_AUTOBIND |int USR@ OPE JSV is bound automatically.
control (default)
False:
JSV is not bound
automatically.
Full path in which the restart
Restart file's file is stored on execution host
) ATTR_RSTFDIR char * USR@ OPE [Max. length:
directory NQS_LEN RSTFPATH]
(exclude interactive queue)
Scheduler Messages from the scheduler
) ATTR_SCHDMSG char * USR@ SCH [Max. length:
Information NQS_LEN_SCHDMSG]
Job Number) A range of batch jobs which can
ATTR_NJOBRNG nqgs_hilo USR@ OPE
Range be created for each request
) Total number of the job servers
Number of JSV [ATTR_NJSVS int USRQ X]]
which bind to the queue
Maximum sub-request number
Sub-request) of the parametric request
ATTR_SUBREQLM [int USR@ OPE '
number limit submitted to the queue.
(exclude interactive queue)
The request is attachable or not
Attach function
ATTR_QATTACH int USR@Q MGR 1: enable
enable
0: disable

31

32

Process manager setting of

IntelMPI IntelMPI request.
process ATTR_INTMPL PMGR |int USRQ OPE NQSII_IMPT_HYDRA: }a’d}fa
efa
manager ult)
NQSII_IMPI_MPD :mpd
Controls the hook script
Hook script) function.
) ATTR_HOOKFUNC |int USR@Q OPE _
function 0: disabled (default)
1: enabled
Time-out time of UserEXIT
Time-out of .
. script (sec).
UserEXIT ATTR_UEXIT_TIMEOUT |int USR@ OPE
] Time-out is disabled when 0
script i
specified. (default: 0)
Time-out time of UserPP script
Time-out of ~ |ATTR_UPP_TIMEOU | (sec).
) int USRQ OPE) o
UserPP script |T Time-out is disabled when 0
specified. (default: 300 sec)
Custom ngs_quecri Custom resource information
~ |ATTR_QUECRINFO USR@Q OPE
resource limit nfo about the queue.
Total VE node Number of total VE node range
ATTR_TOTALVENUM |ngs_rrange | USR@Q) OPE ‘
number that can submit
Range for
Number of VE node range that
number of VE [ATTR_VENUM ngs_rrange | USRQ OPE

node

can run simultaneously

Defined VE node number that
Defined VE) o)
ATTR_VENUMDEFINE |int USR@Q OPE used to submitting with total
node number
VE node number.
Allowance for [ATTR_EXCLUSIVE |int USR(Q) MGR
exclusive Allowance for exclusive
execution execution request
request
ATTR_DOSTGOUT |int USR OPE The request do the stage-out or
Stage-out not
enable 0: skip the stage-out
1: do the stage-out

Delete the ATTR_DELURGNTR |int USR(Q) OPE Whether to delete the urgent
urgent request [EQ request that failed to execute
that failed to 0: not delete (default)
execute 1: delete

_ ATTR_USEPPS int USR(Q) OPE Whether to use the partial
Use partial)

process swapping
process
) 0: not use
swappin
pping 1: use (default)

Interactive queue information (only for interactive queue)

33

34

Waiting option

ATTR_REALTIME_SCHEDULING

int

USR@Q

OPE

Actions when execution host is
not assigned immediately for
an interactive request:

MODE_CANCEL:
Submission is canceled.
MODE_WAIT:
Request waits scheduling.
MODE_MANUAL:

Cancel or wait by glogin's
option.

Forced shell

ATTR_RESTRICT_SHELL

char *

USR@Q

OPE

The shell program specified in
this attribute is used to execute
interactive session.

If this attribute is not set,
submitted user's login shell or
the shell specified by glogin's -S

option is used.

Idle timer

ATTR_IDLETIMER

int

USR@Q

OPE

The default idle timer (unit:
minute) of the request
submitted to the queue. (0

means idle timer is OFF.)

Items for resource limits

Max. elapsed

time

ATTR_ELPSTIM

ngs_rlim

USR@Q

OPE

X

Maximum time elapse allowed

since the execution started

Max. CPU time

ATTR_CPUTIM

ngs_rlim

USR@Q

OPE

X

Maximum CPU activity time

Max. number of]

Maximum number of CPUs

ATTR_CPUNUM ngs_rnum USRQ OPE)
CPU that can run simultaneously
Max. number of| Maximum number of files
] ATTR_FILENUM ngs_rnum USRQ OPE)
files opened opened simultaneously
Max. memory Maximum memory size
) ATTR_MEMSZ nqs_rlim USR@Q OPE)
size available
. . Maximum data segment size
Max. data size |ATTR_DATASZ ngs_rlim USR@ OPE)
available
Max. stack size |ATTR_STACKSZ ngs_rlim USR@Q OPE Maximum stack size available
Max. core file Maximum core file size to be
) ATTR _CORESZ ngs_rlim USR@Q OPE
size created
Max. file size |ATTR_FILESZ ngs_rlim USR@Q OPE Maximum file size to be created
Maximum number of requests
o to submit per a queue (0 or
Submit limit [ATTR_GBLQSBLM |ngs_range USR@ OPE S o
positive integer, 0 for unlimited
number of request)
Maximum number of requests
. to submit per a user of the
User submit . (e
ATTR_USRQSBLM |int USR@Q OPE queue (0 or positive integer, 0

limit

for unlimited number of]

request)

35

36

Group submit

Maximum number of requests

to submit per a group of the

limit ATTR_GRPQSBLM |int USR@ OPE queue (0 or positive integer, 0
imi
for unlimited number of
request)
Max. virtual Maximum virtual memory size
) ATTR_VMEMSZ ngs_rlim USR@Q OPE)
memory size available
Max. number of Maximum number of GPUs
ATTR_GPUNUM ngs_rnum USR@ OPE)
GPU that can run simultaneously
Number of
ATTR_TOTALVENUM |ngs_rrange |[USRQ) OPE Total VE node number
total VE node
Limit for Range of VE node number to
number of ATTR_VENUM ngs_rrange [USRQ) OPE submit that can run
VEnode simultaneously.
Defined VE node number that
Defined VE
ATTR_VENUMDEFINE |int USR@ OPE is used to submit with total VE
node number
node number.
Limit for CPU) o
) ATTR_CPUTIMRNG |ngs_rrange [USRQ) OPE Range of CPU Time limit.
time range.
Limit for CPU
ATTR_CPUNUMRNG |ngs_rrange |[USRQ) OPE Range of CPU number limit.
number range.
Limit for
memory size |[ATTR_MEMSZRNG |ngs_rrange |USRQ) OPE Range of Memory size limit.

range.

Limit for

Range of Virtual Memory size

virtual memory|ATTR_VMEMSZRNG |nqs_rrange |[USRQ) OPE X Lt
imit.

size range.
Limit for GPU o

ATTR_GPUNUMRNG |ngs_rrange |[USRQ) OPE X |Range of GPU number limit.
number range.
Limit for VE

' ATTR_VECPUTIMRN S
CPU time G ngs_rrange |USRQ) OPE X |Range of VE CPU time limit.
range.
Limit for VE
' ATTR_VEMEMSZRN o
memory size ngs_range |USRQ OPE X |Range of VE memory size limit.
range.
HCA port ATTR_HCA nqs_hca USR(Q) |OPE X Number of HCA port number
number range that can submit
Items for limitations of the specified user
Job Number A range of batch jobs of the
Range of ATTR_NJOBRNG_U |ngs_hilo_u USR OPE o |specified user which can be
specified user created for each request
Max. elapsed Maximum time elapse of the
time of ATTR_ELPSTIM_U |ngs_rlim_u USR OPE o |specified user allowed since the
specified user execution started
Maximum number of requests

Submit limit of) _ o

ATTR_USRQSBLM_N |ngs_int_u USR OPE 0 |to submit of the specified user

specified user

of the queue

Items for limitations of the specified group

37

38

Job Number A range of batch jobs of the
Range of ATTR_NJOBRNG_G |nqgs_hilo_g USR OPE o |specified group which can be
specified group created for each request
Max. elapsed Maximum time elapse of the
time of ATTR_ELPSTIM_G |ngs_rlim_g USR OPE o |specified group allowed since
specified group the execution started
o Maximum number of requests
Submit limit of)) o
- ATTR_GRPQSBLM_N |ngs_int_g USR OPE 0 |to submit of the specified group
specified group
of the queue
Items for Kernel parameters
RSG number Resource sharing group
ATTR_RSGNO ngs_range USR@Q OPE X
number
Nice value ATTR_NICE ngs_range USR@Q OPE X |Nice value

4.6. Routing queue attributes

Attribute name Attribute type Type Reference | Alteration | Chain Description Scope
Queue
Queue ID ATTR_QUEID ngs_qid USR X X |Queue identifier of routing queue o)
Queue status ATTR_QUEST ngs_gst USR@Q OPE X |Current queue status)
Priority ATTR_PRIORITY ngs range USR@Q OPE X |Queue priority 0
Run limit Maximum number of simultaneously executed
ATTR_ROURLIM ngs_range USR@ OPE X |) 0
1tems per routing queue
Destination queue |[ATTR_DESTQUE ngs_qdesc USRQ OPE o |Information on the destination queue o)
Refuse to submit a batch request by route.
RFUSSB_QSUB:
) Refuse to submit via gsub(NQScrereq)
Refusing RFUSSB_QMOV:
submission by ATTR_RFUSSB int USR@Q OPE) Refuse to submit via gmove(NQSmovreq) 0
route RFUSSB_LCRQ:
Refuse to routing via local routing queue
RFUSSB_RMRQ:
Refuse to routing via remote routing queue
ACL mode ATTR_ACLMODE |int USRQ | MGR x [ACL_ACCESS: 0
Users are allowed to access the queue only
when the user name is in the ACL user
ACL user name list ATTR_ACLUNAME |char * USRQ MGR o name list or the group name is in the ACL|

group name list.

39

40

ACL group name

ACL_NOACCESS:

Users are not allowed to access the queue
when the user name is in the ACL user
name list or the group name is in the ACL
group name list.

) ATTR_ACLGNAME |char * USR@ MGR
list The maximum length of the user name 1is
NQS_LEN_USERNAME.
The maximum length of the group name is
NQS_LEN_GROUPNAME.
Set valid/invalid of submit limit of request using
Submit Limit with supplementary group name.
Supplementary ATTR_SUPGIDCHK |int USR@Q OPE If true, the supplementary group name at
group name request creation time is added to the target for
submit limit check with ACL group name list.
Number of Number of requests counted of each status
requests of each |ATTR_NREQST ngs nreqgst USR@Q X
status
) Controls the hook script function.
Hook script))
) ATTR_ HOOKFUNC |int USR@ OPE 0: disabled (default)
function
1: enabled
Maximum number of requests to submit per a
Submit limit ATTR_GBLQSBLM |ngs range USR@Q OPE queue (0 or positive integer, 0 for unlimited

number of request)

Maximum number of requests to submit per a

User submit limit |ATTR_USRQSBLM |int USR@ OPE X |user of the queue (0 or positive integer, O for
unlimited number of request)
Maximum number of requests to submit per a
Group submit limit ATTR_GRPQSBLM |int USR@ OPE X |group of the queue (0 or positive integer, O for

unlimited number of request)

Items for limitatio

ns of the specified user/group

Specified user

submit limit

ATTR_USRQSBLM_N

ngs_int_u

USR

OPE Maximum number of requests to submit of the
)
specified user of the queue

Specified group

submit limit

ATTR_GRPQSBLM_N

ngs_int_g

USR

Maximum number of requests to submit of the
OPE)

specified group of the queue

41

42

4.7. Network queue attributes

Attribute name Attribute type Type Reference | Alteration | Chain Description Scope
Queue
Queue ID ATTR_QUEID nqgs_qid USR X X |Identifier of network queue)
Queue status ATTR_QUEST nqs_qgst USR@Q OPE X |Current queue status)
Priority ATTR_PRIORITY ngs range USR@Q OPE X |Queue priority 0
o ATTR_NETRLIM ngs range Maximum number of simultaneously executed
Run limit USR@ OPE X | 0
items per network queue
Run limit per batch Maximum number of simultaneously executed
ATTR_BREQRLIM |ngs range USR@Q OPE X | 0
request items per batch request
) Name of a client host to be staged
Client host name [ATTR_HOSTNAME |char * USR@ OPE X o
[Max. length: NQS_LEN_HOSTNAME]
Network request |ATTR_NETREQ ngs netreq USRR) X 0 |Information of network request 0
Information of network request
STGMTD_INTERNAL:
Staging Method |[ATTR STGMETHOD [int USRQ OPE X Internal Staging Method of NQSV o

default function

STGMTD_EXTERNAL:
External Staging Method

Extended buffer

size

ATTR_EXSTGBSZ

ngs_range

USR@

OPE

Extended buffer size for file staging function.
This unit is "byte" and its range is from 0 up to
512x1024.

If you specify 0 as a buffer size, NQSV uses the
standard buffer for the file staging.

The size of the standard buffer is 4000 bytes.

43

44

4.8. Request attributes

Scope
oS (TS

Attribute name Attribute type Type Reference | Alteration | Chain Description f.é s g ?
Request ID ATTR_REQID ngs_rid USR X X |Identifier of request 0
Request status |ATTR_REQST ngs_rst USR X X |Current request status 0

Bit map of request type:

REQTYP_FLAG_QLOGIN (0x000001):
Request type |ATTR_REQTYP int USR X X Interactive request submitted by glogin 0

REQTYP_FLAG_QRSH (0x000002):

Interactive request submitted by qrsh

Identifier of queue where the request is
Queue ID ATTR_QUEID nqgs_qid USRR) X X) 0

submitted

Information on request owner
Request owner |ATTR_REQOWN ngs_udesc | USRR) X X |(The gid of ngs_udesc is same group of| o

request)

Information on request group
o maowsone s | s | x| x e mmn e |

Function is enabled, Request group is the

specified group when submitting the request.)

Job execution topology
JTPLGY_DISTRIB: Distributed job
JTPLGY_NECMPI: necmpi job

Job topology ATTR_JTPLGY int USRR) USRR) JTPLGY_OPENMPI: openmpi job
JTPLGY_INTMPI: intmpi job
JTPLGY_MVAPICH: mvapich job
JTPLGY_PLTMPI: pltmpi job

' ' "Re-runnable" flag ("true" for re-runnable)
Re-run attribute ATTR_RERUNABL |int USRR) | USR®
(batch request only)
Restart ' "Restartable" flag ("true" for restart)
) ATTR_RESTARTABL |int USRR®) X

attribute (batch request only)

Periodic checkpoint interval of -1, 0 or positive
_ integer (unit: minute). (batch request only)
Checkpoint)
cteibut ATTR_CHKPNTABL [ngs_range | USRR) USRR) No checkpoint where 0.

attribute
The ATTR_CHKPNTABL of execution queue is
used as interval where -1.

Migration) "job migratable" flag ("true" for migratable)

) ATTR_MIGRATABL [int USRR) USRR)
attribute (batch request only)
)) "Holdable" flag ("true" for holdable)

Hold attribute [ATTR_HOLDABL int USRR) USRR®R)

(batch request only)

45

46

Client authority for holding (batch request
only)

OPBY_SCHEDULER : Held by the scheduler
OPBY_MANAGER : Held by the manager
OPBY_OPERATOR : Held by the operator

Hold type ATTR_HOLDTYPE |int USRR)
OPBY_GMANAGER : Held by the group
manager
OPBY_SPUSER : Held by the special user
OPBY_USER : Held by the request
owner
OPBY_NONE : Not held
Client authority for suspending
OPBY_SCHEDULER : Suspended by the
scheduler
OPBY_MANAGER : Suspended by the
manager
OPBY_OPERATOR : Suspended by the
operator
Suspend type |ATTR_SUSPTYPE [int USRR) OPBY_GMANAGER : Suspended by the
group
manager
OPBY_SPUSER : Suspended by the
special
user
OPBY_USER : Suspended by the
request
owner
OPBY_NONE : Not Suspended
Rerun count ATTR_RERUNCNT |int USRR) Rerun count of request

Account code

Account code ATTR_ACCTCODE |char * USRR®R) USRR)
[Max. length: NQS_LEN_ACCTCODE]
Priority ATTR_PRIORITY ngs_range | USRR) USRR) Request priority
Request name
Request name |ATTR_REQNAME [char * USR®) USRR)
[Max. length: NQS_LEN_REQNAME]

Standard Destination of standard output file
output path ATTR_STDOUT ngs_pdesc | USRR) USRR)
name
Standard error Destination of standard error output file
output path ATTR_STDERR ngs_pdesc | USRR) USRR)
name
Request log Destination of request log output file
output path ATTR_STDLOG ngs_pdesc | USRR) USRR)
name
Request log Request log output level

ATTR_LOGLEVEL |ngs_range | USRR) USR®R)
output level
Staging] Information on files to be staged
)) ATTR_STGFILE nqs_stgfile| USRR) X
information

Full path name of job execution shell

Shell name ATTR_SHELLPATH |char * USRR) USRR)

[Max. length: NQS_LEN_PATHNAME]

47

48

Mail posting option (Two or more options can

be specified at a time.)

Mail option |ATTR_MAILOPTS |int USRR | USR® MAIL_SENDBGN:
Mailed when the request execution starts.
MAIL_SENDEND:
Mailed when the request execution ends.
Mail address ATTR_MAILADDR |ngs_mdesc| USRR) USRR) Mail address
Job execution Conditions on execution host for each job
environment ATTR_JOBCOND nqgs_jcond USRR) X
condition
Number of) Total entry counts of conditions on execution
ATTR_NJCONS int USRR) X)
JOBCOND jobs
Request group |[ATTR_REQGRP ngs_rgrp USRR) X Request group for request connection
))) Time when request was created (seconds
Creation time |ATTR_CRETIME time t USRR) X]
elapsed since EPOCH)
Submission Time when request is submitted to current
) ATTR_ENTTIME time_t USRR®) X)
time queue (seconds elapsed since EPOCH)
o) Time when request exited WAITING status
Execution time [ATTR_EXETIME time_t USRR) USRR))
(seconds elapsed since EPOCH)
Time reserved to start execution of request
Reserved time [ATTR_RSVTIME time_t USRR) USRR) (seconds elapsed since EPOCH)
(exclude interactive request)
Time when execution of request started
Start time ATTR_BGNTIME time_t USRR®) X

(seconds elapsed since EPOCH)

Time at which execution of request ended

Exit time ATTR_ENDTIME time_t USRR®R) X)
(seconds elapsed since EPOCH)
UMASK value [ATTR_UMASK int USRR®R) X UMASK value when request is submitted
Job Where there is an environment variable name
environment ATTR_ENVIRON ngs_keyval X X and variable value
variable
The migration files are user files, or
checkpoints files which are copied to
Migration file |[ATTR_MIGFILE ngs_migfile USRR) X destination host as the job is moved while job
migration
(exclude interactive request)
User Custom The attribute that user can define
) ATTR_USERATTR |ngs keyval USRR) X
Attribute
The relative path on the execution host to
Restart file path|ATTR_RSTFDIR char * USRR) USRR®R) which the restart file is stored
[Max. length: NQS_LEN_PATHNAME]
Reservation ID for advance reservation ID is
_) an integer value of 0 or greater. A negative
Reservation ID |ATTR_ADVRSVID int USRR) X
number means unset.
(exclude interactive request)
))] The time that the request is planned to start
Assigned time |[ATTR_ASSTIME time_t USRR®R) SCH

execution

49

50

The request is attachable or not

Attach function)
ATTR_QATTACH int USRR®R) MGR 1: enable
enable
0: disable
Request is Request is under attach or not.
under attach or |[ATTR_QATTACH_EXEC |int USRR) X 0: Not attached
not 1: Attached
The flag which indicates the request has jobs
. or not.
Job flag ATTR_JOBEXIST int USRR®) X)
0: No jobs.
1: Any jobs are created.
Preceding))
ATTR_PRECEDING |ngs_rid USRR) X The request IDs of preceding requests.
requests
Parallel
execution ATTR_PARALLEL |ngs_rid USRR) X The request IDs of parallel execution requests.
requests
The flag which indicates following requests are
Following canceled or not when the request terminates
requests cancel |[ATTR_CANCELAFTER |int USR®R) X abnormally.
flag 1: Canceled.
0: Not canceled.
Workflow ID ATTR_WFID ngs_wid USRR) X The workflow ID to which the request belongs.
UserPP script |ATTR_USERPP ngs_upp USRR) USRR) UserPP script information.
OpenStack ngs_ostem o
ATTR_OSTEMPLATE USRR) X Specified OpenStack template.

Template

plate

Container ngs_cotem o)

ATTR_COTEMPLATE USRR) X X |Specified Container template.
Template plate
Custom)

nqs_reqeri -))
resource ATTR_REQCRINFO ; USRR) USRR) o |Specified custom resource information.
nfo

information
Total VE node ngs_rrang Number of total VE node range that can

ATTR_TOTALVENUM USR®) X X _
number e submit

_ ATTR_EXCLUSIVE |int USRR) Type of exclusive execution
Exclusive
) X X 0: Not exclusive execution
execution
1: Host unit exclusive execution

Actual usage |ATTR_CRUSG ngs_crusg | USR(R)
value of the X O |Actual usage value of the custom resources
custom resource

ATTR_ACCEPTSIGT |int USR[R) Whether to capture SIGTERM to capture
Whether to

ERM SIGTERM
capture USRR) X

0: Ignore SIGTERM (Default)
SIGTERM
1: Can capture SIGTERM
Parametric request information (for parametric request only)

Number of Number of sub-requests to execute in the

ATTR_NSUBREQS |ngs nsubreq | USRR) X X)
sub-requests parametric request.
Specified string The string which indicates sub-request
for sub-request |ATTR_SUBREQSTR |char * USRR) X X |numbers specified by qsub -t.

number

Interactive request information (for interactive request only)

51

52

]) Submitted host name of the interactive
Submitted host |ATTR_SUBMIT_HOST |nqgs_hid USRR) X X
request.
_) The port number to connect the interactive
Session port ATTR_PORT int USRR®R) X X)
session.
Action of submitted interactive request when
. . . no execution host is assigned immediately.
Wait option ATTR_SCH_WAIT |int USRR) X X o
MODE_CANCEL: Cancel the submission.
MODE_WAIT: Wait for scheduling.
The shell program which is mandatory used to
Forced shell ATTR_RESTRICT SHELL |char * USRR®) OPE X ' ' '
execute Interactive session.
)) Idle timer (unit: minute).
Idle timer ATTR_IDLETIMER |int USRR) USR X
0 means the idle timer is OFF.
Items for resource limit values
Max. elapsed) Maximum elapsed time allowed since the start
] ATTR_ELPSTIM ngs_rlim USRR) USRR®R) X]
time of execution
Max. CPU time [ATTR_CPUTIM ngs_rlim USRR) USRR) X |Maximum CPU activity time
Max. number of Maximum number of CPUs running
ATTR_CPUNUM |ngs_rnum | USRR) USRR) X |
CPU simultaneously
Max. number of Maximum number of files opened
‘ ATTR_FILENUM |ngs_rnum | USR®R) | USR®) X |
files opened simultaneously
Max. memory] Available maximum memory size limit
' ATTR_MEMSZ ngs_rlim USRR) | USR® X
size
Max. data size |ATTR_DATASZ ngs_rlim USRR) USRR) X |Maximum data segment size available
Max. stack size [ATTR_STACKSZ ngs_rlim USRR) USRR) X |Maximum stack size available

Max. core file

Maximum core file size that can be created

. ATTR_CORESZ ngs_rlim USRR) USRR) X
size
Max. file size ATTR_FILESZ ngs_rlim USRR®R) USRR) X |Maximum file size that can be created
Max. virtual Available maximum virtual memory size limit
) ATTR_VMEMSZ ngs_rlim USRR) USRR) X
memory size
Max. number of Maximum number of GPUs running
ATTR_GPUNUM |ngs_rnum | USRR) USRR) X |
GPU simultaneously
Range for Range for number of VE nodes running
ngs_rrang)
number of VE |ATTR_VENUM USRR) USRR) X [simultaneously
e
node
Max. CPU time |ATTR_VECPUTIMR |ngs_rrang Maximum CPU activity time of VE
USRR) USRR) X
of VE NG e
Max. memory |ATTR_VEMEMSZR |ngs_rrang Available maximum memory size limit of VE
. USRR) USRR) X
size of VE NG e
HCA port ATTR_HCA ngs_hca USRR) USR®R) X Range for number of HCA port number
number
) ATTR_JOBGROUP |ngs_jobgro| USR(R) | USR(R) Different attribute values for each group of]
Group of jobs o | . o
up jobs in the hybrid jobs
Items for Kernel parameters
RSG number ATTR_RSGNO ngs_range | USRR) X X |Resource sharing group number
Nice value ATTR_NICE ngs_range | USRR) OPE X |Nice value
Ttems for resource used values
) i Elapsed time after request starts execution
Elapsed time |ATTR USEELPSTIM |int USRR) X X

[unit: second]

53

54

CPU time in use (Total CPU time used by the
system and CPU time used by the user)

CPU time usage |ATTR USECPUTIM long long USRR)))
The terminated processes are not included.
[unit: microseconds]
Amount of CPU time from start of execution
(Total CPU time used by the system and CPU
Amount of CPU .]
p 1 ATTR_ ACCCPUTIM long long USRR) time used by the user) The terminated
ime use
processes are included.
[unit: microseconds]
Size of memory in use (total of memories for
Memory usage [ATTR USEMEMSZ long long USRR) text, data and stack, shared memory, etc.)
[unit: bytel
Virtual memory Size of virtual memory in use
ATTR USEVMEMSZ |long long USRR)

usage

[unit: byte]

4.9. Job attributes

Scope
: : : . L s |7 S
Attribute name Attribute type Type Reference | Alteration |Chain Description s |3 ?
D
i |2
Job ID ATTR_JOBID nqgs_jid USR X X |Identifier of batch job 0
Execution job ID Job identifier assigned by Kernel SID
ATTR_EXEJID int USRR) X X |(session ID). Negative integer while job is| o
not in progress
Job owner ATTR_JOBOWN ngs_udesc USRR) X X |Information on job owner 0
Job server ID ATTR_JSVID ngs_jsvid USR® X X |Job server controlling the job 0
Execution host ID [ATTR_HSTID ngs_hid USR® X X |Execution host having the job 0
VM host or Container hostname having the
VM host ID ATTR_VMHOSTNAME |char * USR® X X [job 0
* If the job does not execute on VM or
Container, it returns NULL.
) Assigned socket number.
Assigned socket |ATTR_SOCKETS char * USRR®R) X X .)))
*"(none)" will be returned if not assigned.
Job exit code Exit code of job (Highest process in the job)
ATTR_EXITCODE int USR®) X X [Negative integer if execution 1s not| o
completed
Restart file ATTR_RSTFINFO nqs_rstf USRR) X X |Information of restart file. 0
Account code This attribute is not given to each job.
ATTR_ACCTCODE |char * USRR) X X) | o
The attribute value of parent request is

55

56

referred to.

Items for resource limits

Max. CPU time USRR) X X
Max. number of
USRR) X X
CpPU
Max. number of
. USRR®) X X
files opened
Max. memory size USRR) X X
Max. data size USRR®R) X X
Max. stack size USRR) X X)
These attributes are not given to each job.
Max. core file size [Same as those of batch request| USRR) X X)
) The attribute values of parent request are
Max. file size attributes USR®R) X X
referred to.
Max. virtual
. USRR®) X X
memory size
Max. number of
USRR®) X X
GPU
Max. CPU time of
USRR®) X X
VE
Max. memory size
USRR) X X
of VE
Items for Kernel parameters
RSG number USRR) X X |These attributes are not given to each job.
Same as those of batch request)
) The attribute values of parent request are
Nice value attributes USRR) X X

referred to.

Items for resource usage

CPU time in use (Total CPU time used by
the system and CPU time used by the
CPU time usage |ATTR USECPUTIM long long USRR) X X |user). The terminated processes are not
included.
[unit: microseconds]
Amount of CPU time from start of
Amount of CPU execution.(Total CPU time used by the
e weed ATTR_ ACCCPUTIM long long USRR) X X |system and CPU time used by the user)
The terminated processes are included.
[unit: microseconds]
Size of memory in use (total of memories
for text, data and stack, shared memory,
Memory usage ATTR_USEMEMSZ |long long USRR) X X otc)
[unit: bytes]
Virtual memory Size of virtual memory in use. [unit: bytes]
ATTR_USEVMEMSZ |long long USRR) X X
usage
Actual usage
value of the ATTR_CRUSG ngs_crusg | USR(R) X O |Actual usage value of the custom resources
custom resource

57

58

4.10.Node group attributes

Scope
Attribute name Attribute type Type Reference | Alteration | Chain Description Node
group
Node group ID ATTR_NGRPID ngs ngrpid |[USR X X |Identifier of the node group. 0
Comment ATTR_COMMENT |char * USR OPE X |Comment of the node group. 0
.) The flag which indicates the node group can be
Bind flag ATTR_BINDABLE |int(boolean) |[USR OPE X 0
bound to a queue or not.
o List of the job servers that belong to the node
Job server ID ATTR_JSVID nqs_jsvid |USR X 0 0
group.
] List of the queues to which the node group is
Queue ID ATTR_QUEID ngs_qid USR X o) 0

bound.

4.11. Workflow attributes

S
Attribute name Attribute type Type Reference | Alteration | Chain Description TS
Workflow
Workflow ID ATTR_WFID ngs wid USR X X |Identifier of the workflow 0
] Request ID of the requests which is included
Request ID ATTR_REQID ngs_rid USR X 0 0
in the workflow
Owner of workflow | ATTR. WFLOWN ngs_udesc |USR X X | Owner information of the workflow 0

59

60

4.12. Custom resource attributes

Scope
Attribute name Attribute type Type Reference | Alteration | Chain Description Batch
server
Custom resource)
D ATTR_CRID ngs_crid USR X X |Custom resource ID 0
Consumer of custom resource.
Consumer ATTR_CONSUMER |int USR MGR X CR_JOB: job 0
CR_REQ: request
Resource amount ngs_crreso Amount control information of custom
ATTR_CRRESOURCE USR MGR 0 0
control information urce resource.
Resource monitoring mode.
CR_CM_OFF: Not check the actual value
CR_CM_MOMENT: Check as momental
Check Mode ATTR_CR_CHKMD |int USR MGR X 0
value
CR_CM_INTEGRATE: Check as
integrate value
Terminate the job if it exceed the limit.
Job Termination ATTR _CR_TRMJB |int USR MGR X |0: Disabled 0
1: Enabled
The unit of the resource.
Unit ATTR_CR_UNIT char * USR MGR X 0

[Maximum: NQS_LEN_CRUNIT]

5. Definition of Data Types and Constants

5.1. Symbol constants

NQSV defines the constants listed below with ngsv.h.

Constant name Value Description
NQS_MAX_JSVNO 10239 | Maximum job server number
NQS_MAX_JOBNO 10239 | Maximum job number
NQS_MAX_SCHNO 15 | Maximum batch scheduler number
NQS_LEN_HOSTNAME 255 | Maximum host name length
NQS_LEN_FILENAME 255 | Maximum file name length
NQS_LEN_PATHNAME 1023 | Maximum path name length
NQS_LEN_UTSNAME 63 | Maximum UTS name length
NQS_LEN_JSVNAME 15 | Maximum job server name length
NQS_LEN_SCHNAME 15 | Maximum batch scheduler name length
NQS_LEN_QUENAME 15 | Maximum queue name length
NQS_LEN_REQNAME 63 | Maximum request name length
NQS_LEN_ACCTCODE 127 | Maximum account code length
NQS_LEN_MAILADDR 1023 | Maximum mail address length
NQS_LEN_JOBCOND 9255 Maxi_rl}um length.of job execution environment

condition expression
NQS_LEN_ERRMSG 127 | Maximum API error message length
NQS_LEN_USERNAME 47 | Maximum user name length
NQS_LEN_GROUPNAME 47 | Maximum group name length
NQS_LEN_VERSION 15 | Maximum version character string length
NQS_LEN_LICNAME 15 | Maximum license feature name length
NQS_LEN_COMMENT 63 | Maximum comment character string length
NQS_LEN RSTFPATH A7 ?lgamximum length of restart file storage path
NQS_LEN_SCHDMSG 4000 | Maximum scheduler message length
NQS_LEN_COMMAND 2047 | Maximum length of command
NQS_LEN_JOBNODSC 1535 | Maximum length of job number string
NQS_LEN_NGRPNAME 15 | Maximum length of node group name
NQS_LEN_TEMPLATENAME 47 | Maximum length of template name
NQS_LEN_VMIMGNAME 47 | Maximum length of image name
NQS_LEN_FLAVORNAME 47 | Maximum length of flavor name
NQS_LEN_TEMPLATECUSTOM 400 | Maximum length of custom define
NQS_LEN_TEMPLATECOMMENT 255 | Maximum length of comment
NQS_MAX_CRNUM 20 | Maximum number of custom resource
NQS_LEN_CRNAME 15 | Maximum length of custom resource name
NQS_LIM_UNUSED 0 | Unused specification of custom resource
NQS_LEN_CPUSETNAME 255 | Maximum length of CPUSET name
NQS_LEN_CPUS 255 | Maximum length of CPU number string
NQS_LEN_MEMS 955 ls\;I;}g;num length of memory node number
NQS_LEN_GPUNAME 255 | Maximum length of GPU device name

61

5.2. Structures

ngs_aid (Attribute identifier)

typedef struct ngs aid {
int type; /* attribute type */
int scope; /* scope */

} ngs_aid;

"type" is the type of the attribute while "scope" indicates a range to which the
attribute is applied.

nqs_alist (Attribute list identifier)
‘typedef int ngs_alist;

This structure is used to identify an attribute list and is an integer of O or above.

ngs_cotemplate (Container template)

typedef struct ngs cotemplate {
char template name[NQS LEN TEMPLATENAME+1]; /* template name */
char image name [NQS LEN VMIMGNAME+l]; /* image name */
int cpunum; /* CPU number */
int memsz; /* memory size */
int memunit; /* memory size unit */
int gpunum; /* GPU number */
char custom[NQS LEN TEMPLATECUSTOM+1]; /* custom define */
char comment [NQS LEN TEMPLATECOMMENT+1]; /* comment */

int lock; /* lock status */
int starttimeout; /* start time-out */
int stoptimeout; /* stop time-out */

int venum;
ngs_usehca usecha;
} ngs_cotemplate;

/* VE number */
/* HCA port number */

This structure is information about Container template.

The member lock has a value of TEMPLATE LOCK or TEMPLATE UNLOCK.

nqs_cpuset (CPUSET information)
typedef struct ngs cpuset ({
int no; /*

RSG number*/

62

char name[NQS LEN CPUSETNAME+1];
char cpus[NQS LEN CPUS+1];
char mems[NQS LEN MEMS+1];

} ngs_cpuset;

/* CPUSET name */
/* core number */
/* memory node number */

This structure has CPUSET information that is matched with RSG number.

nqgs_crid (Custom resource ID)

typedef struct ngs crid {
char cr_ name[NQS LEN CRNAME+1];
} ngs_crid;

/* Custom resource */

cr_name has a custom resource name.

nqgs_crresource (Custom resource amount control information)

typedef struct ngs_ crresource {
int cr_type;

/* type */

char cr target[NQS LEN HOSTNAME+1]; /* target */
int cr_available; /* available */
} ngs_crresource;

This structure has amount control information of a custom resource.

The maximum of the simultaneous available resource to a target of the amount
control indicated at cr_type and cr_target is stocked in cr_available.

cr_type is target type of amount control, and the set value is following one of them
(macro-definition).

CR_BSV_DEFAULT The target of amount control i1s BSV

(default value).

CR_HOST_DEFAULT The target of amount control is execution host
(default value).

CR_HOST The target of amount control is execution host

that 1s, individual specified
The target by which cr_target is amount control only when cr_type is CR_HOST,
an individual specified execution host name is stocked. Other cases are NULL

character.

nqs_entry (Entry identifier)
typedef int ngs entry;

This structure is used to identify an entry and is an integer of O or above.

ngs_event (API event)
typedef struct ngs event ({

int event id; /* event identifier */

time t occur time; /* time of event occurrence time */

union {
struct evt jsv Jjsv; /* job server related event */
struct evt gst gst; /* queue status related event */
struct evt gat qgat; /* queue attribute related event */
struct evt rst rst; /* request state related event */
struct evt rat rat; /* request attribute related event */
struct evt ngrp ngrp; /* node group related event */
struct evt hst hst; /* Execution host related event */
struct evt template tmpl; /* Template related event */
struct evt crs; /* Custom resource related event */

} cargo; /* event content */

} ngs_event;

struct evt jsv {

ngs_jsvid jsvid; /* job server ID */
ngs_hid hid; /* host ID */

int state_link; /* Link status */
int bind count; /* Bind status */

ngs vjsvid vjsvid; /* Internal Use Only */

b

struct evt gst {
ngs gid gid; /* queue ID */

63

64

ngs gst gst; /* current queue state */

int bind id; /* bound/unbound object ID */

ngs ngrpid ngrpid; /* bound/unbound node group */
}i

struct evt gat {

ngs_gid gid; /* queue ID */
ngs aid aid; /* attribute ID */
ngs alist ad; /* attribute list */

b

struct evt rst ({

ngs rid rid; /* request ID */
ngs gid gid; /* queue ID */
ngs_rst rst; /* current request state */

b

struct evt rat {

ngs rid rid; /* request ID */
ngs_gid gid; /* queue ID */

ngs aid aid; /* attribute ID */
ngs alist ad; /* attribute list */

b

struct evt ngrp {
ngs ngrpid ngrpid; /* node group ID */
ngs aid aid; /* attribute ID */
ngs_alist ad; /* attribute list */
bi

struct evt hst {

ngs_hid hid; /* host ID */
ngs_hst hst; /* host state */
ngs jsvid jsvid; /* job server ID */

b

typedef struct evt template {
int type; /* template type */
union {
struct ngs vmtemplate vm tmpl;
struct ngs ostemplate os tmpl; /* OpenStack template */
struct ngs cotemplate co tmpl; /* Container template */
1tl;
} evt template;

struct evt crs {

ngs_crid crid; /* Custom resource ID */
int consumer; /* consumer */

ngs_aid aid; /* attribute ID */

ngs alist ad; /* attribute list */

b

Judge the "ngs_event.cargo" union member that stores event contents from the

event type. Use NQSEVT_TYPE macro to get event types.

"evt_rst.qid" and "evt_rat.qid" set the identifier of a queue to which a request is

submitted.

"evt_jsv.hid" sets the identifier of the execution host where the job server exists.

"evt_gst.bind_id" sets the job server number of the job server that is connected or
disconnected when the event identifier is NQSEVT_QST_BINDJSV or
NQSEVT_QST _UNBINDJSV. Similarly, "evt_gst.bind_id" sets the scheduler
number of the scheduler when the event identifier is NQSEVT_QST_BINDJSV or
NQSEVT_QST _UNBINDJSV. The evt_gst.bind_id value is indeterminate for other

queue status related events.

The attribute values in the attribute related event is data in the attribute list
format and created in the API as an attribute list for event processing. The old

attribute list is discarded each time the NQSevent function is executed.

When node group related event is received, job server ID (ATTR_JSVID) added to
the node group (or removed from the node group) can be get using "aid" and "ad" in
the ‘"evt_ngrp" if event ID 1s NQSEVT_NGRP_ADDNODE or
NQSEVT_NGRP_ADDNODE.

In case of the template event, when the template type '"type" 1is
"NQSII_TEMPLATE_TYPE_OPENSTACK", information on making, change or an
eliminated OpenStack template can be acquired by "os_tmpl" in the "evt_template".
And when the template type "type" is "NQSII_TEMPLATE_TYPE_CONTAINER",
information on making, change or a template for eliminated containers can be

acquired by "co_tmpl" in the "evt_template".

When an event identifier is NQSEVT_CRS_RESCHANGED in case of the custom
resource system event, an addition or an eliminated amount control information

list ATTR_CRRESOURCE) can acquire it by aid, ad in evt_crs.

nqs_gbcset (GBC assign information)

typedef struct ngs gbcset ({

int njobs from; /* Number od jobs (Start number of range) */
int njobs_to; /* Number of jobs (Last number of range) */
int ngbc; /* number of GBCs */

} ngs_gbcset;

Number of GBCs assigned to the request (number of jobs is in tha range of

"njobs_from"-"njobs_to") is set to "ngbc".

ngs_gdesc (Group descriptor)

typedef struct ngs gdesc {
gid t gid; /* Group ID */
char *gname [NQS LEN GROUPNAME+1]; /* Group Name */

65

66

|} ngs_gdesc;

This structure indicates the group has a group name "gname" and a group ID of
llgidll‘

nqs_gpuinfo (GPU detailed information)
typedef struct ngs gpuinfo {
int device no;
char name [NQS LEN GPUNAME];
int total global mem;
} ngs_gpuinfo;

/* GPU device number */
/* GPU device name */
/* Global memory (MB) */

This structure has GPU detailed information.

nqs_hid (Host identifier)

typedef struct ngs hid {
struct in addr ip;

} ngs_hid;

/* IP address */

"ip" is the IP address of a remote host (such as execution host and client host)

recognized by the batch server. It is a network byte order.

ngs_hilo (Maximum and Minimum value)

typedef struct ngs hilo {
int high; /* Maximum value */
int low; /* Minimum value */
} ngs_hilo;

"ngs_hilo" contains maximum value and minimum value of an attribute.

ngs_hilo_g (Maximum and Minimum value of Group)
typedef struct ngs hilo g {
ngs_gdesc group; /* Group descriptor */

ngs _hilo hilo; /* Minimum and Maximum value */
} ngs hilo g;

"ngs_hilo_g" contains maximum and minimum value, and the restricted group

information of an attribute.

ngs_hilo_u (Maximum and Minimum value of User)
typedef struct ngs hilo u {
ngs_udesc user; /* User descriptor */

ngs _hilo hilo; /* Minimum and Maximum value */
} ngs _hilo u;

"ngs_hilo_u" contains maximum and minimum value, and the restricted user

information of an attribute.

nqgs_hst (Host State)
typedef struct ngs_hst {

int state curr;
int state prev;
int state reason;
time t state time;

/* Current State */
/* Previous State */
/* Reason */

/* Occurrence Time */

|} ngs hst;

"ngs_hst" structure contains the information of execution host state as

"state_curr"(current state), "state_prev"(previous state), "state reason"(state

transition reason) and "state_time"(state transition time).

The state can take the following values.

HOSTST_ACTIVE
HOSTST_INACTIVE

Running

Stopped

The state transition reason is as follows.

State Transition Reason

Description

HOSTRSN_POWERSAVING_
DCOFF

Inactivated by scheduler's Power-saving function.

HOSTRSN_RETURN_POWE
RSAVING_DCOFF

Activated by scheduler's Power-saving function.

HOSTRSN_JSVLINKUP

Activated by jobserver LINK UP.

HOSTRSN_JSVLINKDOWN

Inactivated by jobserver LINK DOWN.

HOSTRSN_NODE_ABNORM
AL_STOP

Inactivated when node was down by failure
detection program.

* When node agent was not use

d

HOSTRSN_JSVLINKUP

Activated by jobserver LINK UP.

HOSTRSN_JSVLINKDOWN

Inactivated by jobserver LINK DOWN.

nqs_int_g (Limit value of Group)

typedef struct ngs int g
ngs_gdesc group;
int val;

} ngs_int g;

{

/* Group descriptor */
/* Limit value */

This structure indicates a group information and the limit value.

nqs_int_u (Limit value of User)

typedef struct ngs int u
ngs_udesc user;
int val;

} ngs_int u;

{

/* User descriptor */
/* Limit value */

This structure indicates a user information and the limit value.

nqs_jcond (Job execution environment condition)

typedef struct ngs_ jcond
int jobno;
char *condition;

} ngs_jcond;

{

/* Job number */
/* Condition expression */

"condition" specifies a condition that the execution host starts a job "jobno". The

format of "condition" is defined for each batch scheduler. The character string from
the top to NQS_LEN_JOBCOND bytes is valid in "condition".

nqs_jid (Job identifier)

|typedef struct ngs_jid {

67

68

ngs rid rid; /* Request ID */
int Jjobno; /* Job number */
} ngs jid;

"rid" is a request identifier of a parent request and "jobno" is a serial number (job
number) of a job having an identical request as a parent. "jobno" of 0 indicates a

master job and "jobno" of 1 or above is a slave job.

nqs_jsvid (Job server identifier)
typedef struct ngs jsvid {

int jsvno; /* Job server number */
} ngs_jsvid;

"jsvno" is a job server number (integer) in the range of 0 to NQS_MAX_JSVNO

nqs_jsvst (Job server status)
typedef struct ngs jsvst {
int state link; /* Link Status */
int state bind; /* Bind Status */
} ngs_Jjsvst;

"state_link" is the link status (TCP connection) between the job server while the
batch server. "state_bind" is the connection status between the job server and the
execution queue.

The "state_link" and "state_bind" values are as follows:

state_link
JSVST LINKUP The job server is linked to the batch server.
JSVST_LINKDOWN The job server is not linked to the batch server.
state_bind
JSVST_BIND The job server is connected to the queue.
JSVST_UNBIND The job server is not connected to the queue.

nqs_keyval (Key value pair)

typedef struct ngs keyval ({
char *key; /* Key */
char *val; /* Value */

} ngs_keyval;

This structure indicates a pair of a key character string and a value character
string. The total length of "key" and "val" character strings must be up to 4000
bytes (conforming to the API packet restriction).

ngs_license (License information)

typedef struct ngs license {
feature[NQS LEN LICNAME + 1]; /* License function name */
int max license; /* Number of maximum licenses */
int busy license; /* Number of licenses under use */
} ngs_license;

The number of licenses of each function names (FEATURE) is stored.

nqgs_mdesc (Mail address descriptor)

typedef struct ngs mdesc {
char mail [NQS LEN MAILADDR + 1]; /* Mail address */
} ngs _mdesc;

"mail" is a mail address in the "user name@mail domain" format. Delimit them

with a space or comma character to specify two or more mail addresses.

nqs_migfile (information of the migration file)

typedef struct ngs migfile {
char path[NQS LEN PATHNAME + 1];
/* absolute path of migration file */
define MIG TFL CHKPF "chkpnt files"
/* marker for checkpoint file */
} ngs migfile;

"path" sets a absolute path of a user file, or a checkpoint file which is copied from
the source migration host to the destination migration host. If path is a directory,
the all files in the directory are copied. Exceptionally, all checkpoint files (open files
at the time of execution of checkpoint) are copied if "path" is set to the string value
chkpnt_files. Files are not copied if the specified path already exists on destination
host.

nqs_migprm (Migration parameters)
typedef struct ngs migprm {
char if hname[NQS LEN HOSTNAME + 1];
/* hostname of network I/F used for file transfer */
int sockbuf sz; /* size of socket buffer */
ngs range iobuf sz; /* size of file I/O */
} ngs_migprm;

"ngs_migprm" defines the parameters for control copying of files between execution
hosts with the job migration. Files are copied by network-I/F specified for
"if_hname". The socket buffer size specified for "sockbuf_sz" is set to both ends of
socket. "sockbuf_sz" is an integer of 0 or above(unit:byte), and 0 means OS default
value. "iobuf_sz" holds the buffer size used for disk-I/0, socket-I/0, and the value
must be from 1 to 8388608(8M byte).(unit:byte)

nqs_netreq (Network request information)

typedef struct ngs netreq {
ngs rid rid; /* Parent batch request ID */
ngs_pdesc file; /* Transmitting place/agency file name */
ngs udesc user; /* Owner of network request */
int dir; /* Direction of staging */
int stgno; /* Staging file number */
int state; /* Status of network request */
ngs_res res; /* Result code */
} ngs netreq;

"ngs_netreq" structure shows information on the network request. "rid" is the

69

batch request ID by which this network request is created. "file" is staging object
file name on the client host. If "dir" is STAGE_IN, the file is transmitting agency
file name. If "dir" is STAGE_OUT, the file is transmission place file name.

"state" is the present status of the network request. The value is as shown in the

table below.
REQST_QUEUED waiting to start staging.
REQST_RUNNING staging is being executed.
REQST_WAITING waiting to retry.

When "state" is REQST_WAITING, "res" shows the cause of failure in staging.

nqs_ngrpid (Node group ID)

typedef struct ngs ngrpid {
int type; /* Type of node group */
char name[NQS LEN NGRPNAME + 1]; /* Node group name */

} ngs_ngrpid;

"name" is the node group name and "type" is the type of the node group. "type" can

take the following values.

type value Description
NQS_NGRPTYPE_COMMON Common node group
NQS_NGRPTYPE_NWTOPOLOGY | Network topology type node group

nqgs_nreqst (Requests number of each status)

typedef struct ngs nregst {
int outset; /* REQST OUTSET */
int arriving; /* REQST ARRIVING */
int waiting; /* REQST WAITING */
int queued; /* REQST QUEUED */
int prerunning; /* REQST PRERUNNING */
int running; /* REQST RUNNING */
int postrunning; /* REQST POSTRUNNING */
int exiting; /* REQST EXITING */
int exited; /* REQST EXITED */
int held; /* REQST HELD */
int holding; /* REQST HOLDING */
int restarting; /* REQST RESTARTING */
int suspending; /* REQST SUSPENDING */
int suspended; /* REQST SUSPENDED */
int resuming; /* REQST RESUMING */
int migrating; /* REQST MIGRATING */
int moved; /* REQST MOVED */
int transiting; /* REQST TRANSITING */
int staging; /* REQST STAGING */
int chkpnting; /* REQST CHKPNTING */
int g queued; /* REQST GQUEUED */
int forwarding; /* REQST FORWARDING */

} ngs nregst;

The number of requests counted of each status is stored.

ngs_nsubreq (Sub-request information)

typedef struct ngs nsubreq {

int total; /* Total number of sub-requests */

int active; /* Number of sub-requests resides in the batch
server */

int done; /* Number of exited sub-requests */

char option[NQS LEN COMMAND+1];
/* String to describe sub-request numbers */

} ngs nsubregq;

nqs_odesc (Object descriptor)

typedef struct ngs odesc {
int obj type; /* Object type */
union {
ngs_schid schid; /* Scheduler identifier */
ngs_jsvid jsvid; /* Job server identifier */
ngs_hid hid; /* Host identifier */
ngs gid qgid; /* Queue identifier */
ngs_rid rid; /* Request identifier */
ngs_Jjid jid; /* Job identifier */
ngs ngrpid ngrpid; /* Node group identifier */
ngs wid wid; /* Workflow identifier */
} obj;
} ngs_odesc;

This structure is a control unit in the batch server. This is used to specify seven
kinds of objects. Each identifier in the "obj" union must be the same as that
specified by "obj_type". The table below shows available "obj_type" values and

identifiers to be referred to.

obj_type value Reference Description

identifier
NQS_OBJ_BSV (None) Indicates the batch server.
NQS_OBJ_SCH obj.schid Indicates the scheduler.
NQS_OBJ_JSV obj.jsvid Indicates the job server.
NQS_OBJ_HST obj.hid Indicates the host.
NQS_OBJ_QUE obj.qid Indicates the queue.
NQS_OBJ_REQ obj.rid Indicates the request.
NQS_OBJ_PRM obj.rid Indicates the parametric request.
NQS_OBJ_JOB obj.jid Indicates the job.
NQS_OBJ_NGRP obj.ngrpid Indicates the node group.
NQS_OBJ_WFL obj.wid Indicates the workflow.

nqs_ostemplate (OpenStack template)

typedef struct ngs ostemplate {
char template name[NQS LEN TEMPLATENAME+1];/* template name */
char image name [NQS LEN VMIMGNAME+1]; /* 0S image name */
int cpunum; /* CPU number */
int memsz; /* memory size */
int memunit; /* memory size unit */
int gpunum; /* GPU number */
char custom[NQS LEN TEMPLATECUSTOM+1]; /* custom define */
char comment [NQS_LEN_TEMPLATECOMMENT-I—l]; /* comment */
int lock; /* lock status */
char flavor[NQS LEN FLAVORNAME+1]; /* flavor name */
int starttimeout; /* start time-out */

71

int stoptimeout; /* stop time-out */
} ngs ostemplate;

This structure is information about OpenStack template.
The member lock has a value of TEMPLATE_LOCK or TEMPLATE_UNLOCK.

nqgs_pdesc (Path descriptor)

typedef struct ngs pdesc {
char path[NQS LEN PATHNAME + 1]; /* BAbsolute path name */
char host[NQS LEN HOSTNAME + 1]; /* Host name */

} ngs_pdesc;

This structure indicates the file has an absolute path name of "path" on the host

"host".

The path element can contain the meta characters below.

%r Expanded to a request ID (sequence number. host name).
%s Expanded to a sequence number in the request ID.

%m Expanded to a machine ID (integer value) in the request ID.
%] Expanded to a job number.

%% Expanded to a "%".

nqgs_qgdesc (Queue descriptor)
typedef struct ngs gdesc {

char name[NQS LEN QUENAME + 11]; /* Queue name */

char host[NQS LEN HOSTNAME + 1]; /* Host name */

int retry mode; /* Retry mode flag */

time t retry at; /* next retry time (elapsed since EPOCH) */

time t retry in;
/* retry mode start time (elapsed since EPOCH) */

} ngs_gdesc;

This structure indicates a queue with a queue name "name" on the host "host".
The above description indicates that the destination queue of an attribute to be
referred to is in the RETRY mode when "retry_mode" is not 0. "retry_at" sets a
time point where the next transfer is made while "retry_in" sets a time point where
the destination queue first entered the RETRY mode in this event.

In attribute alteration, "retry_xxx" is ignored.

nqs_qgid (Queue identifier)

typedef struct ngs gid {
int type; /* Queue type */
char name[NQS LEN QUENAME + 1]; /* Queue name */
} ngs_gid;

"type" and "name" are the type and name of a queue respectively. The queue types

are as follows:

QUETYP_EXECUTE Batch queue
QUETYP_INTERACTIVE Interactive queue
QUETYP_ROUTING Routing queue

72

QUETYP_NETWORK Network queue

nqs_gst (Queue status)

typedef struct ngs gst {

int state run; /* Permission to execute */

int state sub; /* Permission to submit */

int state accept; /* Permission to receive global requests */
} ngs gst;

"state_run" indicates the permission status to execute a request, while "state_sub"
indicates the permission status to submit a request.
state_run
QUEST_ACTIVE Can execute a request.
QUEST_INACTIVE Cannot execute a request

state_sub
QUEST_ENABLE Can submit a request.
QUEST_DISABLE Cannot submit a request

The "permission to execute a request" status does not change when "state_run" is
QUEST_UNSPEC in attribute alteration. Similarly, the "permission to submit a
request" status does not change when "state_sub" is QUEST_UNSPEC.

nqs_quecrinfo (Custom resource information about queue)
typedef struct ngs quecrinfo {
ngs crid crid;
int cr_std;
ngs hilo cr limit;
int cr permit unused;
} ngs_quecrinfo;

This structure has amount control information on a custom resource of a queue.

/* Custom resource name */
/* standard value */

/* resource limit range */
/* permit unused or not */

cr_permit_unused is a flag of whether amount control non-applicable specify of the
custom resource which is at the time of request investment is permitted, and the
price which can be taken is following one of them (macro-definition).

CR_PERMIT _UNUSED_YES Permit to specify unused(0).

CR_PERMIT UNUSED_NO Not permit to specify unused(0).

nqs_range (Integer range)

typedef struct ngs range {
unsigned int uﬁier; /* High limit value */
unsigned int curr; /* Current value */
unsigned int lower; /* Low limit value */

} ngs_range;

"upper" sets a high limit value and "lower" sets a low limit value. "curr" is always a

value between "upper" and "lower" values and must not be outside this range. Only

73

74

"curr" can be changed. ("upper" and "lower" cannot be changed.)

ngs_reqcrinfo (Custom resource information about request)

typedef struct ngs reqgcrinfo {
ngs_crid crid; /* Custom resource name */
int cr reg; /* Specified amount of the resource */
} ngs_reqgcrinfo;

This structure has the use amount information of a custom resource of a request.

The use amount about the custom resource indicated in crid is stocked in cr_req.

nqgs_res (API result code)

typedef struct ngs_ res {
int err; /* error number */
char msg[NQS LEN ERRMSG + 1]; /* error message */
} ngs_ res;

This structure is used to inform the content of an error of the API function. An
error number representing the type of error is set for "err" while a character string

describing the details of the error is set for "msg".

nqs_rgrp (Request group specification)

typedef struct ngs rgrp {

ngs rid rid; /* lead request ID */
int grpno; /* request group number */
} ngs_rgrp;

"ngs_rgrp" specifies the request group which joins in request connection. "rid" is
the request ID of the lead request (first submit request). "grpno" is the request

group number and is an integer value over 0.

When lead request ID is the same request, execution is scheduled according to the
following rules.
All requests in the request group which includes the lead request are
scheduled first.
The request group with the same request group number is scheduled
according to the same time.
If the request-group-number is different, a small-number-group is faster than
a large one for scheduling. Note that the following group is not scheduled until

all requests in a preceding group end.

A negative value is stored in "grpno" if it is not the request connection.

ngs_rid (Request identifier)

typedef struct ngs rid {
int seqgno; /* Sequence number */
int mid; /* Machine ID */

int subreqg no; /* Sub-request number */
} ngs_rid;

"seqno" is a sequence number made by the batch server when a request is created

and "mid" is a machine ID of the batch server host (or machine ID of a submitting

host when the request is created on the NQS).

"subreq_no" is the sub-request number of the parametric request. But the "rid"
indicates the parametric request, "subreq_no" is -2 and the "rid" indicates the

single request, "subreq_no" is -1.

Type of request subreq_no
Single request (Not a parametric request) -1
Parametric request -2
Sub-request in a parametric request >=(

ngs_rlim (Size/time limit value)

typedef struct ngs rlim {
int max limit; /* High limit value */
int max unit; /* Unit of high limit value */
int cur limit; /* Warning value */
int cur unit; /* Unit of warning value */
int std limit; /* Standard value */
int std unit; /* Unit of standard value */

} ngs _rlim;

"max_limit" and "max_unit" indicate a high limit value. Similarly, "cur_xxx " and
"std_xxx " indicate a warning value and a standard value respectively. "xxx_unit"

values can be as shown below.

NQS_LIM_BYTE In bytes
NQS_LIM_KBYTE In kilobytes
NQS_LIM_MBYTE In megabytes
NQS_LIM_GBYTE In gigabytes
NQS_LIM_TBYTE In terabytes
NQS_LIM_PBYTE In petabytes
NQS_LIM_EBYTE In exabytes
NQS_LIM_SEC In seconds

The size/time is not limited when "xxx_limit" is NQS_LIM_UNLIMITED. In
attribute alteration, attributes having NQS_LIM_UNSPECIFIED specified for
"xxx_limit" are not altered. Specify NQS_LIM_UNSPECIFIED for "max_limit" and
alter the attribute to alter warning and standard values only (without altering the
high limit values). This is also true when altering other values (without altering

the warning value or standard value).

"std_xxx" is valid only for attributes related to queue resource limits and ignored

for other attributes. (These value are indeterminate in attribute reference.)

75

nqs_rlim_g (Size/time limit value of Group)
typedef struct ngs rlim g{

ngs_gdesc group; /* Group descriptor */

ngs rlim rlim; /* Size/time limit value */
} ngs _rlim g;

This structure indicates a group information and the size/time limit value.

ngs_rlim_u (Size/time limit value of User)

typedef struct ngs rlim u{
ngs udesc user; /* User descriptor */
ngs_rlim rlim; /* Size/time limit value */
} ngs_rlim u;

This structure indicates a user information and the size/time limit value.

ngs_rnum (Number limit value)

typedef struct ngs rnum {
int max limit; /* High limit value */
int std limit; /* Standard value */

} ngs_rnum;

"max_limit" indicates a high limit value while "std_limit" indicates a standard
value. The number is not limited when "xxx_limit" is NQS_LIM_UNLIMITED. In
attribute alteration, attributes with NQS_LIM_UNSPECIFIED specified for
"xxx_limit" are not altered. To alter the standard value only (without altering the
high limit). Specify NQS_LIM_UNSPECIFIED for "max_limit" to alter the
attribute. This is also true to alter other values (without altering the standard
value).

"std_limit" is valid only for attributes related to queue resource limits and ignored

for other attributes. (In attribute reference, this value is indeterminate.)

ngs_hca (HCA port number Ranges)

typedef struct ngs hca {
ngs_rrange for io; /* HCA port number range for ScaTeFS */
ngs rrange for mpi; /* HCA port number range for MPI */

ngs rrange for all; /* HCA port number range for both of ScaTeFsS

and MPI*/

} ngs_hca;

The range of HCA port number by the type of HCA

nqgs_rrange(Resource Ranges)
typedef struct ngs ngs rrange({

int min limit; /* Minimum limit */
int min unit; /* Unit of minimum limit */
int max limit; /* Maximum limit */

int max unit; /* Unit of maximum limit */

/* Warning limit */
int warn unit; /* Unit of Warning limit */
int std limit; /* Standard limit */
int std unit; /* Unit of Standard limit */
} ngs_ rrange;

int warn limit;

This structure indicates resource ranges value.

nqs_rsgavg (Average information)

typedef struct ngs rsgavg {
double avg0l; /* Average of latest one minute */
double avg05; /* Average of latest five minutes */
double avglh; /* Average of latest fifteen minutes */
} ngs_rsgavg;

"ngs_rsgavg" sets average information of the execution host. Each member sets the
average of loads (average processes waiting to be executed) or the CPU average
(multiplying the CPU activity ratio by the number of CPUs) for a unit time period

(1, 5 or 15 minutes).

nqs_rsgres (Resource information)

typedef struct ngs rsgres {
int initial; /* Quantity of resource allocated */
int using; /* Quantity of resource in use */
int maximum; /* Maximum quantity of resource available */
int unitsz; /* Unit size of resource quantity */
} ngs_rsgres;

"ngs_rsgres" sets resource information of the execution host. "ngs_rsgres" sets
resource information of each execution host. The "initial" value is always equal to
the "maximum" value which set the physical memory size or swapping size (in
pages) of the host. "using" sets the physical memory size or swapping size (in
pages) currently used. The page size is stored in "unitsz" with byte in case of
memory/swap. "unitsz" is always 1 for CPU number. The "initial" and "maximum"
values are the number of CPUs recognized by the OS. "using" sets the number of
CPUs in use (multiplying the number of CPUs by the ratio of currently used) when
the attribute type is ATTR_RBCPUNM.

nqs_rsginfo (RSG information)

typedef struct ngs rsginfo {
int rsgno; /* RSG number */
ngs_rsgres rbspmem; /* RB: SP memory */
ngs_rsgres rblpmem; /* RB: LP memory */
ngs rsgres rbspswap; /* RB: SP swap size */
ngs_rsgres rblpswap; /* RB: LP swap size */
ngs rsgres rbcpunum; /* RB: CPU */
ngs_rsgavg rbldavg; /* RB: Load average */
ngs rsgavg rbcpuavg; /* RB: CPU average */
ngs_rsgres rbgpunum; /* RB: GPU */
ngs_rsgres rbvenum; /* RB: VectorEngine */

} ngs_rsginfo;

77

"ngs_rsginfo" is the RSG setting information of execution host. When the execution

n n n n

host is Linux, "rsgno" is 0 only and only "rbspmem", "rbspswap", "rbcpunum",

"rbldavg", "rbepuavg” and "rbgpunum" have values.

nqs_rst (Request status)
typedef struct ngs rst {

int state curr; /* current request state*/
int state prev; /* Jjust previous request state */
int state reason; /* Reason of state transition */

time t state time; /* Time of transition to current request
state */

int stalled; /* True when the request is stalled */
int exit status; /* Request exit status */

int elaps_time; /* Real elapse time of request execution */
int deleted by; /* User privilege that deleted the request */
ngs_res res; /* Result code */

ngs_bsv bsv; /* Forwarded destination BSV */

int bsv_selected; /* True if execution BSV is selected.*/
int vm ctrl; /* True if VM/Container is operated in PRR or POR*/

} ngs rst;

"state_curr" sets the current request state while "state_prev" sets the previous
request state. "state_reason" sets the cause of the state transition. When the state
transition is due to an error, "res" sets the error type. When the result code
indicates a normal status transition, "res.err" sets NQS_ESUCCESS. "state_time"
sets the time period (seconds elapsed since EPOCH) where the request enters the
current state.

When "state_curr" is REQST_POSTRUNNING, "exit_status" sets the exit status of

the request (master job).

Request state
REQST_OUTSET Initial status
REQST_ARRIVING Receiving
REQST WAITING Waiting for the execution time
REQST QUEUED Waiting for the execution starts
REQST STAGING Staging
REQST PRERUNNING | Pre-running
REQST _RUNNING Running
REQST _POSTRUNNING | Post-running
REQST_EXITING Exiting
REQST_EXITED Exited
REQST_CHKPNTING periodic checkpointing
REQST_HELD Held
REQST HOLDING Checkpointing for hold
REQST _RESTARTING Restarting
REQST_SUSPENDING Suspending
REQST _SUSPENDED Suspended
REQST_RESUMING Resuming
REQST_MIGRATING Migrating
REQST_MOVED Moved

| Reason for state transition

REQRSN_DELETE

DELETE request

REQRSN_YET EXETIME

Before preset execution time

REQRSN_JUST_EXETIME

After preset execution time

REQRSN_ARRIVE

Receiving from other queue

REQRSN_ARRIVE_SUCCESS

Reception succeeded

REQRSN_ARRIVE_FAIL

Reception failed

REQRSN_SUBMIT

SUBMIT request

REQRSN_STAGEIN

Stage-in request

REQRSN_STAGEIN_SUCCESS

Stage-in succeeded

REQRSN_STAGEIN_FAIL

Stage-in failed

REQRSN_PRERUN_SUCCESS

Pre-running succeeded

REQRSN_PRERUN_FAIL

Pre-running failed

REQRSN_RUN

RUN request

REQRSN_EXIT

Exited

REQRSN_RERUN

RE-RUN request

REQRSN_POSTRUN_SUCCESS

Post-running succeeded

REQRSN_POSTRUN_FAIL

Post-running failed

REQRSN_REQUE_SUCCESS

Re-queuing

REQRSN_DONE Termination
REQRSN_CHKPNT CHECKPOINT request
REQRSN_CHKPNT_SUCCESS CHECKPOINT succeeded
REQRSN_CHKPNT_FAIL CHECKPOINT failed
REQRSN_HOLD HOLD request
REQRSN_HOLD_SUCCESS HOLD succeeded
REQRSN_HOLD_FAIL HOLD failed
REQRSN_RELEASE RELEASE request
REQRSN_RESTART RESTART request
REQRSN_RESTART_SUCCESS | RESTART succeeded
REQRSN_RESTART_FAIL RESTART failed

REQRSN_SUSPEND

SUSPEND request

REQRSN_SUSPEND_SUCCESS

SUSPEND succeeded

REQRSN_SUSPEND_FAIL SUSPEND failed
REQRSN_RESUME RESUME request
REQRSN_RESUME_SUCCESS | RESUME succeeded
REQRSN_RESUME_FAIL RESUME failed

REQRSN_MIGRATE

MIGRATE request

REQRSN_MIGRATE_SUCCESS

MIGRATE succeeded

REQRSN_MIGRATE_FAIL

MIGRATE failed

REQRSN_MOVE

MOVE request

REQRSN_MOVED

Moved from other queue

REQRSN_SYSTEM_FAILURE

System failure on Execution host

REQRSN_ROLLBACK

Rollback request

REQRSN_FORWARD_SUCCESS

Forwarding success

REQRSN_FORWARD_FAIL

Forwarding failed

REQRSN_FORWARD_RFAIL

Forwarding failed (Enable retry)

REQRSN_BSVSELECT

Batch server selected

REQRSN_ALLEXITED

All subrequests terminated

REQRSN_FORCELOCAL

Force execution at local BSV

REQRSN_EXIT FAIL

Failed to delete sub-request

REQRSN_MOVE_FAIL

Failed to move request

79

80

| REQRSN_STAGEOUT_FAIL | External staging failed

For details of request states, see 2 State Transition of Request.

"bsv" was for global requests but is no currently in use.

"vm_ctrl" indicates whether a virtual machine by OpenStack or a container by
Docker is in the start/stop processing.
- 1in case of 1 : A virtual machine by OpenStack is in the start/stop
process.
- incase of 2 ! A container by Docker is in the start/stop process.

- 1n case of 0 : Other than above.

nqs_rstf (Restart file information)
typedef struct ngs rstf {

time t date; /* Creating date */
long long size; /* File size */
int intval; /* Interval of periodic checkpoint */

char rstfdir[NQS LEN RSTFPATH + 1];
/* Restart file stored directory */

} ngs_rstf;

Information of the restart file of the job is stored. The periodic checkpoint is OFF

mode when "interval" is 0. The restart file does not exist when "time" is 0.

nqs_schid (Scheduler identifier)
typedef struct ngs schid {

int schno; /* Scheduler number */
} ngs_schid;

"schno" is a batch scheduler number (integer) in the range of 0 to
NQS_MAX_SCHNO.

nqs_socket (Socket resource information)

typedef struct ngs socket ({

int no; /* Socket number */

int initial cpu; /* CPU number */

int using cpu; /* CPU usage */

long long initial mem; /* Memory size */

long long using mem; /* Memory usage */

char cpus[NQS LEN CPUS+1]; /* core number */

char mems[NQS LEN MEMS+1]; /* memory node number */
} ngs_socket;

This structure has socket resource information of every socket.

nqs_stgfile (Staging file information)
typedef struct ngs stgfile {
int dir; /* Direction of staging */
char cli host[NQS LEN HOSTNAME + 1];

/* Client host name */
char cli path[NQS LEN PATHNAME + 1];
/* Complete path name on client host */
char exe path[NQS LEN PATHNAME + 1];
/* Relative path name on execution host */
char exe jobno[NQS LEN JOBNODSC + 1];
/* Job number array */
int stgno; /* Staging file number */
int status; /* Status of staging */
} ngs_stgfile;

This "ngs_stgfile" describes a file to be staged. "dir" sets the direction of staging
("STAGE_IN" for a file copy direction from client host to execution host or
"STAGE_OUT" for the opposite direction).

When the staging direction is "STAGE_IN," the file "cli_path" on the client host
"cli_host" is copied to a file "exe_path" on each execution host that executes a job

specified by "exe_jobno".

The file "exe_path" on each execution host that executes a job specified by
"exe_jobno" is added to a single file and the single file is copied to the file "cli_path"
on the client host "cli_host" when the staging direction is "STAGE_OUT".

A subscript in the "exe_jobno" arrangement corresponds to a job number, while
only job numbers corresponding to an element of a real value is staged. The

following strings can be specified for "exe_jobno".

(1) Single number 0

(2) All jobs using "ALL" ALL
(3) Two or more numbers using delimiters "," 0,2,5
(4) Consecutive numbers using "-" 0-4

(5) Combination of (3) and (4) 0,2,4-6

"cli_path" must be specified absolutely while "exe_path" must be specified
relatively. The path must be specified relative to the environment variable
"STGDIR" when accessing "exe_path" from a job for I/0.

The specified path is directory if a last character of "cli_path" or "exe_path" is /.

The "cli_path" and "exe_path" elements contain the meta characters below.

%r Expanded to a request ID (sequence number. host name).<
%s Expanded to a sequence number in the request ID.

%m Expanded to a machine ID (integer value) in the request ID.
%] Expanded to a job number.

%% Expanded to a "%".

81

82

"stgno" 1s a serial number for the each stage in/out file.
"status" shows the present staging situation. The value is as shown in the table

below.

STGFST _NOTYET | staging has not been executed yet.
STGFST_PRGRESS | staging is being executed now.
STGFST_SUCCESS | staging succeeded.
STGFST_FAILURE | staging failed.

nqgs_temp_reqs (Number of requests using template)
typedef struct ngs temp regs {
char template name[NQS LEN TEMPLATENAME+1]; /* Template name */
int requests; /* Number of requests using template */
} ngs_ temp regs;

This structure indicates the template name has "template_name", and number of

requests using this template has "requests".

nqs_template (Template information)
typedef struct ngs template {
int type; /* template type */
union {
struct ngs vmtemplate vm tmpl;
struct ngs ostemplate os tmpl; /* OpenStack template */
struct ngs ostemplate co tmpl; /* Container template */
el
} ngs template;

This structure indicates the template type has "type", and definition information of

the template is below.

Type of ¢ Structure of the template

template ybe information

OpenStack NQSII_TEMPLATE_TYPE_ | struct nqs_ostemplate os_tmpl
OPENSTACK

Container NQSII_TEMPLATE_TYPE_ | struct ngs_cotemplate co_tmpl
CONTAINER

nqs_udesc (User descriptor)
typedef struct ngs udesc {

char name[NQS LEN USERNAME + 1]; /* User name */
uid t uid; /* User ID */
gid t gid; /* Group ID */

} ngs_udesc;

This structure indicates the user has a user name "name" and a user ID/group ID

of "uid/gid" respectively.

nqs_uexit (User Exit information)
#define UEXNUM SCR 4 /* Maximum number of script per location */

typedef struct ngs uexit {

int location;
/* Location from which user EXIT script is started */
struct {
int order;
/* Execution sequence number of User EXIT script */
char name [NQS LEN FILENAME+1];
/* File name of user EXIT script */
} uexscr [UEXNUM SCR];
} ngs_uexit;

Information on user EXIT executed in the location specified by "location" is stored.

The value which can be specified for location is as follows.

UEXLOC_PRERUN | Just before starting of execution

[in the PRE-RUNNING statel
UEXLOC_PSTRUN | Just after termination of execution

[in the POST-RUNNING statel
UEXLOC_HLDING | Just after retrieving a hold checkpoint

[in the HOLDING statel]
UEXLOC_RSTING | Just before restarting from the checkpoint
[in the RESTARTING statel

Information on each array element in user EXIT script executed by a specified
location is stored up to four scripts in the array of "uexscr" structure which consists
of four elements. In the "uexscr" structure, "order" is execution sequence in script
and "name" is script file name.

The value which can be specified for "order" is as follows.

UEXODR_NON Not executed

UEXODR_1ST First execution in the location
UEXODR_2ND 2nd execution in the location
UEXODR_3RD 3rd execution in the location
UEXODR_4TH 4th execution in the location

"name" stores the file name of User EXIT script. The file name stored in "name" is
regarded to exist in "/opt/nec/ngsv/sbin/uex_prog/" on the batch server host. "name"
cannot include path element ('/').

When order is set to UEXODR_NON, the value of the corresponding name is

undefined.

nqs_upp (UserPP script information)

typedef struct ngs upp {
int location; /* location */
char path[NQS LEN PATHNAME+1]; /* path */

} ngs_upp;

This structure has a information about UserPP.

The value of location is one of following.

UEXLOC_PRERUN | Just before starting of execution
[in the PRE-RUNNING state]
UEXLOC_PSTRUN | Just after termination of execution
[in the POST-RUNNING state]

ngs_wid (Workflow ID)

83

84

typedef struct ngs wid {

int id; /* Sequence number of the Workflow */
int mid; /* Machine ID the workflow created */
} ngs_wid;

"id" is the sequential number when a workflow is created in the batch server. "mid"

1s the batch server's machine ID.

6. API Functions
6.1. Attribute list functions

6.1.1. Create Attribute List
Name

NQSalist -- Create Attribute List
Format

#include <ngsv.h>

ngs_alist NQSalist(ngs_alist ad, nqs_aid *aid, nqs_res *res)

Function
Creates an attribute list. NQSalist creates a new attribute list having an attribute
header "aid" as the top element when the attribute list identifier "ad" is a negative
integer or add "aid" to an existing attribute list "ad" when the attribute list identifier "ad"

is an integer of 0 or above.

Return value
When executed successfully, NQSalist() returns an integer of 0 or above as the attribute
list identifier. When an error occurs, NQSalist() returns a negative integer and sets an

API result code in "res".

Error
When an error occurs, one of the result codes below 1s set as an error number in the result
code.
[NQS_EEXIST]
Attribute header "aid" already exists in the attribute list.
[NQS_ENOENT]
No attribute list having "ad".
[NQS_EINVAL]
Invalid argument specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.

Related items

NQSafree(3), NQSaadd(3), NQSaref(3), NQSadel(3)

85

6.1.2. Release Attribute List
Name

NQSafree -- Free Attribute List
Format

#include <ngsv.h>

int NQSafree(ngs_alist ad, nqs_aid *aid, ngs_res *res)

Function
Releases an attribute list of the specified attribute list identifier "ad" and deletes only
attributes having "aid" from the attribute list when "aid" is not a null or deletes all

attributes in the list and releases the attribute list itself when "aid" is a null.

Return value
When executed successfully, NQSafree() returns 0. When an error occurs, NQSafree()

returns a negative integer and sets an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOENT]
No attribute list having "ad".
No attribute header "aid" in the attribute list.
[NQS_EINVAL]

Invalid argument specified.

Related items

NQSalist(3), NQSaadd(3), NQSaref(3), NQSadel(3)

86

6.1.3. Add Values to Attribute List
Name

NQSaadd -- Add Attribute Value to Attribute List
Format

#include <ngsv.h>

int NQSaadd(nqgs_alist ad, ngs_aid *aid, void *val, size_t sz, nqgs_res *res)

Function
Adds an attribute value "val" to under an attribute header having "aid" in the attribute
list specified by an attribute list identifier "ad" When the attribute header already has an
attribute value, "val" is added to the end of the attribute value chain. Specify the size of
"val" (in bytes) for "sz".
"val" types are dependent upon attribute values. For more information, see Attribute
List.

Notes
To specify an attribute value of the character type (char *) as "val," specify the size of the

character string (to the end character "\0") for "sz".

Return value
When executed successfully, NQSaadd() returns 0. When an error occurs, NQSaadd(

returns a negative integer and sets an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOENT]
No attribute list having "ad".
No attribute header "aid" in the attribute list.
[NQS_EINVAL]
Invalid argument specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.

Related items
NQSalist(3), NQSafree(3), NQSaref(3), NQSadel(3)

87

6.1.4. Delete Values to Attribute List
Name

NQSadel -- Delete Attribute Value from Attribute List
Format

#include <ngsv.h>

int NQSadel(ngs_alist ad, ngs_aid *aid, void *val, ngs_res *res)

Function
Deletes an attribute value having "aid" from the attribute list specified by an attribute
list identifier "ad". When "val" is NULL, all attribute values are deleted. If "val" is not
NULL then the attribute value equal to "val" is deleted. When attribute values to be

deleted are not exist, NQSadel() ends in normal.

Return value
When executed successfully, NQSadel() returns 0. When an error occurs, NQSadel()

returns a negative integer and sets an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOENT]
No attribute list having "ad".
No attribute header "aid" in the attribute list.
[NQS_EINVAL]

Invalid argument specified.

Related items

NQSalist(3), NQSafree(3), NQSaref(3), NQSaadd(3)

88

6.1.5. Refer to Values in Attribute List
Name

NQSaref -- Refer to Attribute Value in Attribute List
Format

#include <ngsv.h>

void *NQSaref(ngs_alist ad, nqs_aid *aid, void *val, nqs_res *res)

Function

Searches an attribute value of an attribute "aid" in an attribute list having an attribute
list identifier "ad" and returns its pointer. NQSaref returns a pointer to an attribute
under an attribute header when "val" is a null or a pointer to an attribute value just
under an attribute value specified by "val" when "val" is not a null.

When two or more attribute values are chained, you can refer to all attribute values in
the chain by specifying, the pointer that is returned by the first NQSaref() for "val" in the
next NQSaref().

Return value

When executed successfully, NQSaref() returns a pointer to an attribute value in the
attribute list. When the attribute "aid" has no attribute value, NQSaref() returns a null
and NQS_EEMPTY in the error number. When an attribute value in the end of the
attribute value chain is specified for "val," NQSaref() returns a null and sets
NQS_EALLOVER in the error number. When an error occurs, NQSaref() returns a null
and sets a result code in "res".

As NQSaref() returns a "void" type pointer, cast with a type specific to each attribute

value for reference. For details of attribute value types, see Attribute List.

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOENT]
No attribute list having "ad".
No attribute header "aid" in the attribute list.
[NQS_EEMPTY]
The specified attribute has no attribute value.
[NQS_EALLOVER]

Tried to read an attribute value below the end of the attribute value chain.

89

[NQS_EJSVDOWN]
Some of the execution host attributes cannot be referenced when the job server is
down.

[NQS_EINVAL]

Invalid argument specified.

Related items
NQSalist(3), NQSafree(3), NQSaadd(3), NQSadel(3)

90

6.1.6. Operation of Attribute Entry

Name

NQSopenattr, NQSreadattr, NQScloseattr -- Operate Attribute Entry

Format

#include <ngsv.h>

nqs_entry NQSopenattr(ngs_odesc *odesc, int object, nqs_alist ad, nqs_res *res)

nqs_alist NQSreadattr(ngs_entry entry, nqs_res *res)

int NQScloseattr(ngs_entry entry, nqs_res *res)

Function

NQSopenattr() selects objects related to a parent object "odesc" from objects (job server,

request, etc.) specified by "object," creates an attribute list "ad" for each of the selected

objects, gets the attribute values in bulk, creates a list (attribute entry) having the

attribute lists as its elements, initializes its index to 0, and returns an entry identifier to

identify it. When an error occurs, NQSopenattr() returns a negative integer and sets an

API result code in "res".

The table below lists objects that can be specified for "odesc" and "object" and their

available combinations.

odesc.obj_type obj OBJECT Objects
NQS_OBJ_BSV None NQS_OBJ_SCH All schedulers in the system
NQS_OBJ_HST All execution hosts in the
system
NQS_OBJ_JSV All job servers in the system
NQS_OBJ_QUE | All queues in the system
NQS_OBJ_REQ All requests in the system
NQS_OBJ_BREQ | All batch requests in the system
NQS_OBJ_IREQ | All interactive requests in the
system
NQS_OBJ_PRM | All parametric requests in the
system
NQS_OBJ_JOB All jobs in the system
NQS_OBJ_NGRP | All node groups in the system
NQS_OBJ_SCH odesc.obj.schid NQS_OBJ_QUE | All queues bound to the
specified scheduler
NQS_OBJ_JSV odesc.obj.jsvid NQS_OBJ_JOB All jobs controlled by the
specified job server
NQS_OBJ_QUE | All queues bind the specified job
server
NQS_OBJ_NGRP | All node groups include the
specified job server
NQS_OBJ_HST odesc.obj.hid NQS_OBJ_JSV All job servers on the specified
execution host
NQS_OBJ_QUE odesc.obj.qid NQS_OBJ_JSV All job servers bound to the
specified queue
NQS_OBJ_REQ All requests submitted to the

91

specified queue
NQS_OBJ_PRM | All parametric requests
submitted to the specified
queue

NQS_OBJ_NGRP | All node groups bound to the
specified queue

NQS_OBJ_REQ odesc.obj.rid NQS_OBJ_JOB All jobs having the specified

request as the parent

NQS_OBJ_NGRP | odesc.obj.ngrpid | NQS_OBJ_JSV All job servers included in the

specified node group
NQS_OBJ_HST All execution hosts included in
the specified node group
NQS_OBJ_QUE | All queues bind the specified
node group

NQS_OBJ_PRM odesc.obj.rid NQS_OBJ_REQ All sub-requests in the specified

parametric request

NQSreadattr() returns an attribute entry pointed by the internal index by the "ngs_alist"
type and increments the internal index by one. When the last attribute entry comes,
NQSreadattr() returns -1 and sets NQS_EALLOVER in the error number of "res". When
an error occurs, NQSreadattr() returns -1 and sets an API result code in "res".

As the "nqgs_alist" type variable that NQSreadattr() returned is an attribute list identifier,

you can refer to respective attribute values by NQSalist().

NQScloseattr() deletes the attribute entry created by NQSopenattr(). When executed
successfully, NQScloseattr() returns a 0. When an error occurs, NQScloseattr() returns a

negative integer and sets an API result code in "res".

Notes

When you refer to the attribute list identifier returned by NQSreadattr() after
NQScloseattr() was executed, the operation is not assured.
The attribute without a reference right is not acquired and simply ignored. (This is not an

error.)

The attribute acquisition using this function is functionally almost the same as the
attribute acquisition by a set of the NQSopent{jsv,hst,que,req,job} function and the
NQSattrijsv,hst,que,req,job} function, but faster than it.

Error

92

When an error occurs, one of the result codes below is set as an error number in the result

code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot send the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.

[NQS_ENOENT]

Invalid entry identifier specified.

Invalid attribute list identifier specified.
[NQS_EUNKNOWN]

Unknown attribute type specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSaref(3)

93

6.2. APl initialize/exit functions

6.2.1. Open API Link
Name

NQSconnect -- Open API Link
Format

#include <ngsv.h>

int NQSconnect(char *hostname, int port, int priv, nqs_res *res)

Function

Establishes an API link with a batch server on the batch server host "hostname". When
"hostname" i1s a null, NQSconnect uses the name of a batch server host in
"fetc/opt/mec/ngsv/api_client.conf" if it is specified or tries to connect to "localhost" if it is
not specified.

When "port" is 1 or above, NQSconnect uses a port number "port" for connection with the
batch server. When "port" is 0, NQSconnect uses a port number in "api_client.conf" if it is
specified or a default port number if it is not specified for connection with the batch

server.

"priv" specifies an API authority. The API authority is used to limit available API
functions. There are five API authorities.

PRIV_SCH scheduler authority

PRIV_MGR manager authority

PRIV_OPE operator authority

PRIV_GMGR group manager authority

PRIV_SPU special user authority

PRIV_USR general user authority

The PRIV_SCH authority is the highest and the PRIV_USR authority is the lowest. The
PRIV_SCH authority (scheduler authority) can use all API functions, but PRIV_MGR
and PRIV_OPE authorities can use only part of API functions. PRIV_GMGR authority is
the manager authority which limited functions to the scope of management groups. The
lowest PRIV_USR authority (general user authority) cannot use API functions that
require NQS operator or higher authority. The PRIV_SPU authority can refer

informations of requests, jobs, etc for other users in addition to the PRIV_USR authority.

Notes
The socket descriptor returned by NQSconnect() is closed in the API in the execution of

94

NQSdisconnect(). If the socket descriptor is closed in the other method, the API operation

may not be assured.

Return value
When executed successfully, NQSconnect() returns a socket descriptor to supervise API
events. When an error occurs, NQSconnect() returns a negative integer and sets an API

result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ELICENSE]

Cannot get a license for API link.
[NQS_EISCONN]

The API link is already established.
[NQS_ENETDB]

Cannot find a host of the specified host name.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_ESYSCAL]

Error occurred in the system call
[NQS_EPERM]

The batch server rejected a connection by the specified API authority.
[NQS_EACCTAUTHI

The access by an unknown user name was refused.
[NQS_EINVAL]

Invalid argument specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.

File
/etc/opt/mec/ngsv/api_client.conf NQSV/API client setting file

95

Related items
NQSdisconnect(3), NQSevent(3)

96

6.2.2. Close API Link
Name

NQSdisconnect -- Close API Link
Format

#include <ngsv.h>

int NQSdisconnect(ngs_res *res)

Function
Breaks the API link.

Return value

When executed successfully, NQSdisconnect() returns 0. When an error occurs,

NQSdisconnect() returns a negative integer and sets an API result code in "res".

Error

When an error occurs, the result code below 1s set as an error number in the result code.

[NQS_ENOTCONN]

Not connected to the batch server.

Related items
NQSconnect(3)

97

6.3. API event related functions

6.3.1. Get API Event
Name

NQSevent -- Get API Event
Format

#include <ngsv.h>

int NQSevent(ngs_event *event, nqs_res *res)

NQSEVT_TYPE(event_id)

Function
NQSevent() reads one of the received API and stores it in "event". NQSEVT_TYPEQ is a

macro that returns the event type of the event identifier "event_id".

Notes
The attribute value in the event is stored in the dedicated attribute list in the API. This
attribute list is newly created each time NQSevent() reads an event containing attribute

values (and the preceding attribute list is discarded at that time).

Return value
When executed successfully, NQSevent() returns 0. When an error occurs, NQSevent()

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.

98

[NQS_ENOEVENT]

No event received.
[NQS_EUNKNOWN]

Unknown attribute in the event.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSevflt(3)

99

6.3.2. Set Event Filter
Name
NQSevflt -- Set Event Filter

Format

#include <ngsv.h>

int NQSevflt(int event_type, int op, ngs_res *res)

Function
NQSevflt() sets an event filter in the API link to select an event type that the API client
receives. The target event type is specified by "event_type" and sets in the filter according

to the operation "op". Values below can be specified for "op".

EVFLT_ADD
Adds "event_type" to the event filter.
EVFLT_DEL

Deletes "event_type" from the event filter.

Return value
When executed successfully, NQSevflt() returns 0. When an error occurs, NQSevflt()

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EEXISTI

Un-cataloged event type to be added.

100

[NQS_ENOENT]
Un-cataloged event type to be deleted.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSevent(3)

101

6.4. Scheduler related functions

6.4.1. Register Scheduler Identifier
Name
NQSregsch -- Catalog Batch Scheduler Identifier and Name

Format

#include <ngsv.h>

int NQSregsch(ngs_schid *schid, char *name, char *version, ngs_res *res)

Function
NQSregsch() catalogs the identifier and name of a batch scheduler that called
NQSregsch(). NQSregsch() cannot change the identifier that is already cataloged. You
cannot specify an identifier that is used by the other scheduler.
An integer value in the range of 0 to NQS_MAX_SCHNO can be specified as a scheduler

number (ngs_schid.schno) in the batch scheduler identifier.

"name" can be any character string (up to NQS_LEN_SCHNAME) representing a
scheduler name. When "name" is a null, the batch server assigns a proper scheduler

name.

"version" can be any character string (up to NQS_LEN_VERSION) representing a

scheduler version.

Notes
NQSregsch() requires an API authority of PRIV_SCH or higher to run.

Return value
When executed successfully, NQSregsch() returns 0. When an error occurs, NQSregsch(

returns a negative integer and sets an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]
Not connected to the batch server.
[NQS_ECONFAIL]J

Cannot connect to a batch server.

102

[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot send the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to run the API function.
[NQS_ETOOLONG]

Too long scheduler name specified "name".

Too long character string specified "version".
[NQS_EOUTRNG]

The specified scheduler number is outside the valid range.
[NQS_EEXIST]

The specified identifier is now used by the other scheduler.
[NQS_EALREADY]

The specified scheduler already has an identifier cataloged.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items

NQSconnect(3)

103

6.4.2. Operation of Scheduler Entry
Name
NQSopensch, NQSreadsch, NQSrewindsch, NQSclosesch -- Operate Scheduler Entry

Format

#include <ngsv.h>

ngs_entry NQSopensch(ngs_odesc *odesc, ngs_res *res)
nqs_schid *NQSreadsch(ngs_entry entry, nqs_res *res)
int NQSrewindsch(ngs_entry entry, nqgs_res *res)

int NQSclosesch(ngs_entry entry, nqs_res *res)

Function
NQSopensch() selects a scheduler related to a specified object "odesc" from batch
schedulers linked to the batch server, creates a list (scheduler entry) having the scheduler
identifier as the element, initializes the internal index to 0, and returns an entry
identifier to identify it. When an error occurs, NQSopensch() returns a negative integer
and sets an API result code in "res".

The table below lists objects that can be specified for "odesc".

odesc.obj_type value member to be referred Objects

NQS_OBJ_BSV None All schedulers in the system

NQSreadsch() returns an entry pointed to by the internal pointer by the "nqs_schid" type
pointer and increments the internal index by one. When the last entry comes,
NQSreadsch() returns a null and sets NQS_EALLOVER in the error number of "res".

When an error occurs, NQSreadsch() returns a null and sets an API result code in "res".

NQSrewindsch() re-initializes the internal index to 0. When an error occurs,

NQSrewindsch() returns a negative integer and sets an API result code in "res".

NQSclosesch() deletes a job server entry created by NQSopensch() and returns 0 when
executed successfully. When an error occurs, NQSclosesch() returns a negative integer

and sets an API result code in "res".
Notes

When you refer to a pointer pointed by a job server identifier returned by NQSreadsch(

after NQSclosesch() was executed, the operation is not assured.

104

Error

When an error occurs, one of the result codes below is set as an error number in the result

code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.

[NQS_ENOENT]

Invalid entry identifier specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items

NQSconnect(3), NQSattrsch(3)

105

6.4.3. Operation of Scheduler Attributes

Name

NQSattrsch -- Scheduler Attribute Operation Function

Format

#include <ngsv.h>

int NQSattrsch(ngs_schid *schid, ngs_alist ad, int op, nqs_res *res)

Function

Operates the attribute of a scheduler having the identifier "schid". NQSattrsch executes a
specified operation "op" on attributes in the attribute list "ad". A value below can be

specified for "op".

ATTROP_GET
Copies the attribute of the scheduler onto the attribute in the attribute list "ad".

Return value

When executed successfully, NQSattrsch() returns 0. When an error occurs, NQSattrsch()

returns a negative integer and sets an API result code in "res".

Error

106

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority given to access the attribute.
[NQS_ENOENT]

Cannot find the specified attribute list.

[NQS_ENOSCH]

Cannot find the specified scheduler.
[NQS_EUNKNOWN]

Unknown attribute type specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSalist(3), NQSafree(3), NQSaadd(3), NQSaref(3)

107

6.5. Batch server related functions

6.5.1. Operate Batch Server Attributes
Name
NQSattrbsv -- Batch Server Attribute Operate Function

Format

#include <ngsv.h>

int NQSattrbsv(ngs_alist ad, int op, ngs_res *res)

Function
Operates the attribute of a batch server. NQSattrbsv executes an attribute operation "op"

on an attribute in the attribute list "ad". Values below can be specified for "op".

ATTROP_GET

Copies a batch server attribute on an attribute "ad".
ATTROP_SET

Substitutes the batch server attribute by attribute "ad".

Return value
When executed successfully, NQSattrbsv() returns 0. When an error occurs, NQSattrbsv()

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority given to access the attribute.

108

[NQS_ENOENT]

Cannot find the specified attribute list.
[NQS_ERANGE]

Attribute value outside a specified range.
[NQS_EUNKNOWN]

Unknown batch server attribute specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSalist(3), NQSafree(3), NQSaadd(3), NQSaref(3)

109

6.5.2. Stop Batch Server
Name

NQSshutbsv -- Stop Batch Server
Format

#include <ngsv.h>

int NQSshutbsv(ngs_res *res)

Function

Shuts down the batch server.

Notes
NQSshutbsv() requires an API authority of PRIV_MGR or higher to run.

Return value
When executed successfully, NQSshutbsv() returns 0. When an error occurs,

NQSshutbsv() returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to run the API.

Related items
NQSconnect(3)

110

6.5.3. Registration of Execution Hosts
Name

NQSattachhst, NQSdetachhst -- Managing the registration of execution hosts
Format

#include <ngsv.h>

int NQSattachhst(ngs_hid *hid, nqs_jsvid *jsvid, nqs_res *res)
int NQSdetachhst(ngs_hid *hid, nqs_jsvid *jsvid, int opt, nqs_res *res)

Function
NQSattachhst() registers execution host specified as "hid" with the job server ID as
"jsvid" to the batch server. The registration can be executed while the job server is down.

If "hid" or "jsvid" is already registered, NQSattachhst() returns error.

NQSdetachhst() removes registration of execution host specified by "hid" or "jsvid".
Either "hid" or "jsvid" can have value and the other must be set to NULL.

When "ip.s_addr=0" in "hid" and "jsvno=-1"in "jsvid" are specified, all execution hosts are
removed.

No execution host specified by "hid" or "jsvid" is registered, NQSdetachhst() returns error.

And the execution host has a job NQSdetachhst() also returns error.

opt value Action

DETACH_FLAG _DEFAULT | When the execution host has a job, NQSdetachhst()

returns error.

Notes
NQSattachhst() and NQSdetachhst() require an API authority of PRIV_MGR or higher to

run.

Return value
When executed successfully, NQSattachhst) and NQSdetachhst() return 0. When an
error occurs, NQSattachhst() and NQSdetachhst() return a negative integer and set an

API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.

[NQS_ENOTCONN]

Not connected to the batch server.

111

[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to run the API.

Related items
NQSconnect(3)

112

6.6. Job server related functions

6.6.1. Operation of Job server Entry
Name
NQSopenjsv, NQSreadjsv, NQSrewindjsv, NQSclosejsv -- Operate Job Server Entry

Format

#include <ngsv.h>

nqs_entry NQSopenjsv(ngs_odesc *odesc, nqs_res *res)
nqgs_jsvid *NQSreadjsv(ngs_entry entry, nqs_res *res)
int NQSrewindjsv(ngs_entry entry, nqs_res *res)

int NQSclosejsv(ngs_entry entry, nqs_res *res)

Function
NQSopenjsv() selects a job server related to an object "odesc" from job servers linked to
the batch server. Creates a list (job server entry) having the job server identifier as its
element, initializes the internal index to 0, and returns an entry identifier to identify it.
When an error occurs, NQSopenjsv() returns a negative integer and sets an API result
code in "res".

The table below lists objects that can be specified for "odesc".

odesc.obj_type value | obj member to be referred | Objects

NQS_OBJ_BSV None All of servers

NQS_OBJ_HST odesc.obj.hid All job servers on the specified

execution host

NQS_OBJ_QUE odesc.obj.qid All job servers bound to a specified

execution queue

NQSreadjsv() returns an entry pointed to by the internal index by the "ngs_jsvid" type
pointer and increments the internal index by one. When the last entry comes,
NQSreadjsv() returns a null and sets NQS_EALLOVER in the error number of "res".

When an error occurs, NQSreadjsv() returns a null and sets an API result code in "res".

NQSrewindjsv() re-initializes the internal index to 0. When an error occurs,

NQSrewindjsv() returns a negative integer and sets an API result code in "res".

NQSclosejsv() deletes a job server entry created by NQSopenjsv() and returns 0 when the

113

processing is completed. When an error occurs, NQSclosejsv() returns a negative integer

and sets an API result code in "res".

Notes
When you refer to a pointer that points to a job identifier returned by NQSreadjsv() after

NQSclosejsv() was executed, the operation is not assured.

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_ENOENT]

Invalid entry identifier specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items

NQSconnect(3), NQSattrjsv(3)

114

6.6.2. Operation of Job server Attributes
Name

NQSattrjsv -- Job Server Attribute Operation Function

Format

#include <ngsv.h>

int NQSattrjsv(ngs_jsvid *jsvid, nqs_alist ad, int op, ngs_res *res)

Function
Operates the attribute of a job server having the identifier "jsvid". NQSattrjsv executes a
specified operation "op" on attributes in the attribute list "ad". A value below can be

specified for "op".

ATTROP_GET
Copies the attribute of the job server onto the attribute "ad".

Return value
When executed successfully, NQSattrjsv() returns 0. When an error occurs, NQSattrjsv()

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority given to access the attribute.
[NQS_ENOENT]

No specified attribute list.

115

[NQS_ENOJSV]

No specified job server.
[NQS_EUNKNOWN]

Unknown job server attribute specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.
Related items

NQSconnect(3), NQSopenjsv(3), NQSreadjsv(3), NQSclosejsv(3), NQSalist(3),
NQSafree(3), NQSaadd(3), NQSaref(3)

116

6.6.3. Control Job Server

Name

NQSctljsv -- Job Server Control Function

Format

#include <ngsv.h>

int NQSctljsv(ngs_jsvid *jsvid, int cmd, void *args, nqs_res *res)

Function

Executes a control command specified for "emd" to a job server having the identifier

"jsvid". If "emd" needs an argument, set a pointer of the argument to "args".

The list below shows a control command that can be specified for "cmd" and a type for

"args" and an explain of the function.

"emd": JSVCTL_LINKDOWN

"args": NULL (not necessary)

Disconnect the TCP-connect between a job server indicated by jsvid and a batch

server forcedly. If it has been already disconnected, NQSctljsv() ends in normal.

"emd": JSVCTL_BOOTUP

"args": char *host_name

jsvid args Action

jsvid.jsvno=-1 | host name Start the job server whose host name is "host_name"
with the registered job server ID.

jsvid.jsvno>=0 | host name Start the job server whose host name is "host_name"
with the specified job server ID.

jsvid.jsvno=-1 | NULL All job server registered in the batch server is

started.

"emd": JSVCTL_SHUTDOWN

"args": int *force

jsvid args Action

jsvid.jsvno>=0 | force =0 Shutdown the job server whose ID is "jsvid".
But shutdown of the job server which has jobs is
rejected.

jsvid.jsvno>=0 | force !=0 Shutdown the job server whose ID is "jsvid".

Shutdown is done regardless the job server has batch

117

jobs or not.

"emd": JSVCTL_SHUTJSV

"args": char *host_name

jsvid args Action

jsvid.jsvno>=0 | NULL Shutdown the job server whose ID is "jsvid".
But shutdown of the job server which has jobs is
rejected.

jsvid.jsvno=-1 | host name Shutdown the job server whose host name is
"host_name".
But shutdown of the job server which has jobs is
rejected.

jsvid.jsvno=-1 | NULL Shutdown all job server registered in the batch

server.

But shutdown of the job server which has jobs is

rejected.
"emd": JSVCTL_FSHUTJSV

"args": char *host_name

jsvid args Action

jsvid.jsvno>=0 | NULL Shutdown the job server whose ID is "jsvid".
Shutdown is done regardless the job server has batch
jobs or not.

jsvid.jsvno=-1 | host name Shutdown the job server whose host name is
"host_name".
Shutdown is done regardless the job server has batch
jobs or not.

jsvid.jsvno=-1 | NULL Shutdown all job server registered in the batch

server.

Shutdown is done regardless the job server has batch

jobs or not.
"emd": JSVCTL_BOOTNGRP
"args": char *node_group
jsvid args Action

jsvid.jsvno=-1

node group

Start the job server on the hosts which belong to

node group specified by "node_group".

118

"emd": JSVCTL_SHUTNGRP

"args": char *node_group

jsvid args

Action

jsvid.jsvno=-1 | node group

Shutdown the job server on the hosts which belong to
node group specified by "node_group".

But shutdown of the job server which has jobs is

rejected.
"emd": JSVCTL_FSHUTNGRP
"args": char *node_group
jsvid args Action

jsvid.jsvno=-1 | node group

Shutdown the job server on the hosts which belong to
node group specified by "node_group".
Shutdown is done regardless the job server has batch

jobs or not.

Notes

The API authority of PRIV_MGR or higher is required to execute NQSctljsv().
To execute JSVCTL_BOOTUP, the launcher daemon needs to reside on the execution

host.

Return value

When executed successfully, NQSctljsv(Q returns 0. When an error occurs, NQSctljsv()

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below 1s set as an error number in the result

code.
[NQS_ENOTCONN]

Not connected to the batch server.

[NQS_ECONFAIL]J

Cannot connect to the batch server.

[NQS_EPKTSEND]

Cannot send the API packet.

[NQS_EPKTRECV]

Cannot receive the API packet.

[NQS_EDISCONN]

Disconnected from the batch server in transmission.

119

[NQS_EPERM]
No authority to run the API function.
[NQS_ERANGE]
The JSV ID specified is outside a range.
[NQS_ENOJSV]
No specified job server. (In case except cmd is JSVCTL_BOOTUP.)
[NQS_EALREADY]
The job server specified has already started up.
(In case cmd is JSVCTL_BOOTUP.)
[NQS_EREFUSE]
Rejected because the job server specified had the batch jobs.
(In case cmd is JSVCTL_SHUTDOWN.)
[NQS_EINVAL]

Invalid argument specified.

Related items

120

NQSconnect(3)

6.7. Execution host related functions

6.7.1. Operation of Execution host Entry
Name

NQSopenhst, NQSreadhst, NQSrewindhst, NQSclosehst -- Operate Host Entry
Format

#include <ngsv.h>

nqs_entry NQSopenhst(ngs_odesc *odesc, ngs_res *res)
ngs_hid *NQSreadhst(ngs_entry entry, nqs_res *res)
int NQSrewindhst(ngs_entry entry, nqs_res *res)

int NQSclosehst(ngs_entry entry, nqs_res *res)

Function
NQSopenhst() selects an execution host related to a specified object "odesc" from
execution hosts (having one or more job servers linked to the job server) that is recognized
by the batch server, creates a list (execution host entry) having the host identifier as the
element, its index to 0, and returns an entry identifier to identify it. When an error occurs
NQSopenhst() returns a negative integer and sets an API result code in "res".

The table below lists objects that can be specified for "odesc".

odesc.obj_type value obj member to be referred Objects

NQS_OBJ_BSV None All execution hosts

NQSreadhst() returns an entry pointed to by the internal index by the "ngs_hid" type
pointer, and increments the internal index by one. When the last entry comes,

NQSreadhst() returns a null and sets NQS_EALLOVER in the error number of "res".

When an error occurs, NQSreadhst() returns a null and sets an API result code in "res".

NQSrewindhst() re-initializes the internal index to 0. When an error occurs,

NQSrewindhst() returns a negative integer and sets an API result code in "res".

NQSclosehst() deletes a job entry created by NQSopenhst(). And returns 0 when executed
successfully. When an error occurs, NQSclosehst() returns a negative integer and sets an

API result code in "res".

Notes

When you refer to a pointer that points to an execution host identifier returned by

121

NQSreadhst() after NQSclosehst() was execute, the operation is not assured.

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_ENOENT]

Invalid entry identifier specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items

NQSconnect(3), NQSattrhst(3)

122

6.7.2. Operation of Execution host Attributes
Name
NQSattrhst -- Execution Host Attribute Operation Function

Format

#include <ngsv.h>

int NQSattrhst(nqs_hid *hid, nqs_alist ad, int op, nqs_res *res)

Function
Operates the attribute of an execution host having a host identifier "hid". NQSattrhst()
executes a specified operation "op" on attributes in the attribute list "ad". A value below

can be specified for "op".

ATTROP_GET

Copies the attribute of the execution host onto the attribute "ad".

Return value
When executed successfully, NQSattrhst() returns 0. When an error occurs, NQSattrhst(

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority given to access the attribute.
[NQS_ENOENT]

Cannot find the specified attribute list.

123

[NQS_ENOHST]

Cannot find the specified execution host.
[NQS_EUNKNOWN]

Unknown attribute type specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.
Related items

NQSconnect(3), NQSopenhst(3), NQSreadhst(3), NQSclosehst(3), NQSalist(3),
NQSafree(3), NQSaadd(3), NQSaref(3)

124

6.8. Queue related functions

6.8.1. Operation of Queue Entry
Name

NQSopenque, NQSreadque, NQSrewindque, NQScloseque -- Operate Queue Entry
Format

#include <ngsv.h>

ngs_entry NQSopenque(ngs_odesc *odesc, ngs_res *res)
ngs_qid *NQSreadque(ngs_entry entry, nqs_res *res)
int NQSrewindque(ngs_entry entry, ngs_res *res)

int NQScloseque(ngs_entry entry, ngs_res *res)

Function
NQSopenque() selects a queue related to a specified object "odesc" from queues (batch
queue, interactive queue or routing queue) on the batch server, creates a list (queue
entry) having the queue identifier as the element, initializes the internal index to 0, and
returns an entry identifier to identify it. When an error occurs, NQSopenque() returns a
negative integer and sets an API result code in "res".

The table below lists objects that can be specified for "odesc".

odesc.obj_type value | obj member to be referred | Objects

NQS_OBJ_BSV None All queues in the system

NQS_OBJ_SCH odesc.obj.schid All execution queues bound to the

specified scheduler

NQSreadque() returns an entry pointed to by the internal index by the "nqs_qid" type
pointer, and increments the internal index by one. When the last entry comes,

NQSreadque() returns a null and sets NQS_EALLOVER in the error number of "res".

When an error occurs, NQSreadque() returns a null and sets an API result code in "res".

NQSrewindque() re-initializes the internal index to 0. When an error occurs,

NQSrewindque() returns a negative integer and sets an API result code in "res".
NQScloseque() deletes a queue entry created by NQSopenque(). When executed
successfully, NQScloseque() returns 0. When an error occurs, NQScloseque() returns a

negative integer and sets an API result code in "res".

Notes

125

When you referred to a pointer pointed to the queue identifier returned by NQSreadque()

after NQScloseque() was executed, the operation is not assured.

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_ENOENT]

Invalid entry identifier specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items

NQSconnect(3), NQSattrque(3)

126

6.8.2. Operation of Queue Attributes
Name

NQSattrque -- Queue Attribute Operation Function

Format

#include <ngsv.h>

int NQSattrque(nqs_gid *qid, nqs_alist ad, int op, nqs_res *res)

Function
Operates the attribute of an execution queue or routing queue having the identifier "qid".
NQSattrque() executes a specified operation "op" on attributes in the attribute list "ad". A

value below can be specified for "op".

ATTROP_GET

Copies the queue attribute onto the attribute in the attribute list "ad".
ATTROP_SET

Replaces the queue attribute by the attribute in the attribute list "ad".
ATTROP_ADD

Adds the attribute in the attribute list "ad" to the queue attribute.
ATTROP_DEL

Deletes the attribute in the attribute list "ad" from the queue attribute.

You can specify ATTROP_ADD and ATTROP_DEL only for attributes that can chain

attribute values.

Return value
When executed successfully, NQSattrque() returns 0. When an error occurs,

NQSattrque() returns a negative integer and sets an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]
Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to the batch server.

127

[NQS_EPKTSEND]
Cannot send the API packet.
[NQS_EPKTRECV]
Cannot receive the API packet.
[NQS_EDISCONN]
Disconnected from the batch server in transmission.
[NQS_EPERM]
No authority given to access the attribute.
[NQS_ENOENT]
Cannot find the specified attribute list.
Cannot delete the destination queue as it has not been registered.
[NQS_ENOQUE]
Cannot find the specified queue.
[NQS_ELOOP]
Destination queue specified in loop.
[NQS_EEXIST]
Cannot add the queue as the destination queue is already cataloged.
[NQS_EFLOOD]
Too many destination queues (more than the maximum number of queues
registered).
[NQS_EOPE]
ATTROP_ADD was executed on an attribute that cannot chain attribute values.
ATTROP_DEL was executed on an attribute that cannot chain attribute values.
[NQS_ENAMPDB]
The specified host has not been registered in the NMAP database.
[NQS_EUNKNOWN]
Unknown attribute type specified.
[NQS_ENOMEM]
Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified
Related items

NQSconnect(3), NQSopenque(3), NQSreadque(3), NQScloseque(3), NQSalist(3),
NQSafree(3), NQSaadd(3), NQSaref(3)

128

6.8.3. Create Queue
Name

NQScreque -- Create Queue

Format

#include <ngsv.h>

int NQScreque(ngs_qid *qid, nqs_alist ad, nqs_res *res)

Function
Creates a new execution queue or routing queue having a queue type and a queue name
specified by a queue identifier "qid". The attribute in the attribute list "ad" is set in the

created queue.

Notes
NQScreque() requires an API authority of PRIV_MGR or higher to run.

Return value
When executed successfully, NQScreque() returns 0. When an error occurs, NQScreque()

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to execute the API function.
[NQS_ENOENT]

Cannot find the specified attribute list.

129

[NQS_EEXIST]

Existing queue specified.
[NQS_EUNKNOWN]

Unknown attribute type specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSqttrque(3), NQSalist(3), NQSafree(3), NQSaadd(3), NQSaref(3)

130

6.8.4. Delete Queue
Name
NQSdelque -- Delete Queue

Format

#include <ngsv.h>

int NQSdelque(nqs_gid *qid, ngs_res *res)

Function
Deletes an execution queue or routing queue having a queue type and a queue name
specified by the queue identifier "qid". Only disabled queues without a request can be
deleted.

Notes
NQSdelque(requires an API authority of PRIV_MGR or higher to run.

Return value
When executed successfully, NQSdelque() returns 0. When an error occurs, NQSdelque(

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to execute the API function.
[NQS_ENOQUE]

Cannot find the specified queue.

131

[NQS_EENABLE]

Queue enabled status.
[NQS_EHASREQ]

Request existing in the queue.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSqttrque(3), NQSalist(3), NQSafree(3), NQSaadd(3), NQSaref(3)

132

6.8.5. Connect Scheduler
Name
NQSbindsch -- Connect Execution Queue to Batch Scheduler

Format

#include <ngsv.h>

int NQSbindsch(ngs_qid *qid, nqs_schid *schid, nqs_res *res)

Function
NQSbindsch() connects (or binds) a batch scheduler having the identifier "schid" to a
queue having the identifier "qid".

The queue types that can be specified to "qid" are batch queue and interactive queue.

Notes
The API authority of PRIV_MGR or higher is required to execute NQSbindsch().

Return value
When executed successfully, NQSbindsch() returns 0. When an error occurs,

NQSbindsch(returns a negative integer and sets an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]
Not connected to a batch server.
[NQS_ECONFAIL]
Cannot connect to the batch server.
[NQS_EPKTSEND)]
Cannot send the API packet.
[NQS_EPKTRECV]
Cannot receive the API packet.
[NQS_EDISCONN]
Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority given to execute the API function.

[NQS_ENOQUE]

133

Cannot find the specified queue.
[NQS_EWRNGTYP]

The queue type of specified queue is wrong.
[NQS_ENOSCH]

The specified scheduler is not linked to the batch server.
[NQS_EBINDSCH]

The specified queue is already bound to a scheduler.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSunbindsch(3)

134

6.8.6. Disconnect Scheduler
Name

NQSunbindsch -- Disconnect Execution Queue from Batch Scheduler

Format

#include <ngsv.h>

int NQSunbindsch(nqs_gid *qid, ngs_schid *schid, ngs_res *res)

Function
NQSunbindsch() breaks a connection between a specified batch scheduler "schid" and a
specified queue "qid".

The queue types that can be specified to "qid" are batch queue and interactive queue.

Notes
NQSunbindsch() requires an API authority of PRIV_MGR or higher to run.

Return value
When executed successfully, NQSunbindsch() returns 0. When an error occurs,

NQSunbindsch() returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to execute the API function.

[NQS_ENOQUE]

135

Cannot find the specified queue.
[NQS_EWRNGTYP]

Unacceptable the queue type of specified queue.
[NQS_ENOSCH]

The specified scheduler is not linked to the batch server.
[NQS_EBINDSCH]

The specified queue is not bound to the scheduler.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSbindsch(3)

136

6.8.7. Connect Job Server
Name

NQSbindjsv -- Connect Execution Queue to Job Server

Format

#include <ngsv.h>

int NQSbindjsv(ngs_gid *qid, nqs_jsvid *jsvid, ngs_res *res)

Function
NQSbindjsv(connects (or binds) a job server having the server identifier "jsvid" to a
queue having the identifier "qid".
The queue types that can be specified to "qid" are batch queue and interactive queue.

NQSbindjsv() cannot bind a job server that is already connected to the queue.

Notes
The API authority of PRIV_MGR or higher is required to execute NQSbindjsv().

Return value
When executed successfully, NQSbindjsv() returns 0. When an error occurs, NQSbindjsv()

returns a negative integer and sets an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]
Not connected to a batch server.
[NQS_ECONFAIL]
Cannot connect to the batch server.
[NQS_EPKTSEND)]
Cannot send the API packet.
[NQS_EPKTRECV]
Cannot receive the API packet.
[NQS_EDISCONN]
Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority given to execute the API function.

137

[NQS_ENOQUE]

Cannot find the specified queue.
[NQS_EWRNGTYP]

Unacceptable the queue type of specified queue.
[NQS_ENOJSV]

The specified job server is not linked to the batch server.
[NQS_EBINDJSV]

The specified job server is already bound to a queue.
[NQS_EQUEDOM]

The specified job server is waiting a job submitted to other queue.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSunbindjsv(3)

138

6.8.8. Disconnect Job Server
Name

NQSunbindjsv -- Disconnect Execution Queue from Job Server

Format

#include <ngsv.h>

int NQSunbindjsv(ngs_qid *qid, nqs_jsvid *jsvid, nqs_res *res)

Function
NQSunbindjsv() breaks a connection between a specified job server "jsvid" and a specified
queue "qid".

The queue types that can be specified to "qid" are batch queue and interactive queue.

Notes
NQSunbindjsv() requires an API authority of PRIV_MGR or higher to run.

Return value
When executed successfully, NQSunbindjsv() returns 0. When an error occurs,

NQSunbindjsv() returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to run the API function.

[NQS_ENOQUE]

139

Cannot find the specified queue.
[NQS_EWRNGTYP]

Unacceptable the queue type of specified queue.
[NQS_ENOJSV]

The specified job server is not linked to the batch server.
[NQS_EBINDJSV]

The specified job server is not bound to the queue.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSbindjsv(3)

140

6.9. Request related functions

6.9.1. Operation of Request Entry
Name
NQSopenreq, NQSopenbreq, NQSopenireq, NQSreadreq, NQSrewindreq, NQSclosereq
-- Operate Request Entry
NQSopenprm, NQSreadprm, NQSrewindprm, NQScloseprm

-- Operate Parametric request Entry

Format

#include <ngsv.h>

nqs_entry NQSopenreq(ngs_odesc *odesc, nqs_res *res)
ngs_entry NQSopenbreq(nqgs_odesc *odesc, nqs_res *res)
ngs_entry NQSopenireq(ngs_odesc *odesc, ngs_res *res)
ngs_rid *NQSreadreq(ngs_entry entry, nqs_res *res)

int NQSrewindreq(nqgs_entry entry, nqs_res *res)

int NQSclosereq(ngs_entry entry, nqs_res *res)

ngs_entry NQSopenprm(ngs_odesc *odesc, ngs_res *res)
ngs_rid *NQSreadprm(ngs_entry entry, nqs_res *res)
int NQSrewindprm(nqgs_entry entry, nqs_res *res)

int NQScloseprm(nqgs_entry entry, nqs_res *res)

Function
NQSopenreq() selects a request (sub-request is selected for the parametric request)
related to a specified object "odesc" from requests on the batch server, creates a list
(request entry) having the request identifier as the element, initializes the internal index
to 0, and returns an entry identifier to identify it. When an error occurs, NQSopenreq()
returns a negative integer and sets an API result code in "res".

The table below lists objects that can be specified for "odesc".

odesc.obj_type value | obj member to be referred | Objects

NQS_OBJ_BSV None All requests
NQS_OBJ_QUE odesc.obj.qid All requests in the specified queue
NQS_OBJ_PRM odesc.obj.rid All sub-request in the specified

parametric request.

NQSopenbreq() and NQSopenireq can open the request entry for batch request and

interactive request separately.

141

NQSreadreq() returns an entry pointed to by the internal pointer by the "nqs_rid" type
pointer and increments the internal index by one. When the last attribute entry comes,
NQSreadreq() returns a null and sets NQS_EALLOVER in the error number of "res".

When an error occurs, NQSreadreq() returns a null and sets an API result code in "res".

NQSrewindreq() re-initializes the internal index to 0. When an error occurs,

NQSrewindreq() returns a negative integer and sets an API result code in "res".

NQSclosereq() deletes a request entry created by NQSopenreq() and returns 0 when
executed successfully. When an error occurs, NQSclosereq() returns a negative integer

and sets an API result code in "res".

For parametric request, use NQSopenprm(), NQSreadprm(), NQSrewindprm() and
NQScloseprm(), instead.

Notes

When you refer to a pointer pointed to by the request identifier returned by NQSreadreq()

after NQSclosereq() was executed, the operation is not assured.

Error

142

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot send the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_ENOENT]

Invalid entry identifier specified.

[NQS_ENOMEM]

Cannot allocate memory dynamically.

[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSattrreq(3)

143

6.9.2. Operation of Request Attributes
Name

NQSattrreq -- Request Attribute Operation Function

Format

#include <ngsv.h>

int NQSattrreq(ngs_rid *rid, ngs_alist ad, int op, nqs_res *res)

Function
Operates the attribute of a request having the identifier "rid". NQSattrreq executes a
specified operation "op" on attributes in the attribute list "ad". A value below can be

specified for "op".

ATTROP_GET

Copies the attribute of the request onto the attribute in the attribute list "ad".
ATTROP_SET

Replaces the attribute of the request by the attribute in the attribute list "ad".
ATTROP_ADD

Adds attribute values in the attribute list "ad" to the attribute of the request.
ATTROP_DEL

Deletes attribute values in the attribute list "ad" from the attribute of the

request.

You can specify ATTROP_ADD and ATTROP_DEL only for attributes that can chain
attribute values.
You can not specify ATTROP_SET for sub-request of parametric request specified by "rid"

(rid.subreq_no >= 0).

Return value
When executed successfully, NQSattrreq() returns 0. When an error occurs, NQSattrreq()

returns a negative integer and sets an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.

144

[NQS_ECONFAIL]
Cannot connect to the batch server.

[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority given to access the attribute.
[NQS_ENOENT]

Cannot find the specified attribute list.
[NQS_ENOREQ]

Cannot find the specified request.
[NQS_EUNKNOWN]

Unknown attribute type specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.
Related items

NQSconnect(3), NQSopenreq(3), NQSreadreq(3), NQSclosereq(3), NQSalist(3),
NQSafree(3), NQSaadd(3), NQSaref(3)

145

6.9.3. Create Request

Name

NQScrereq, NQSleadreq -- Create Batch Request and Set it to Queue

Format

#include <ngsv.h>

int NQScrereq(ngs_rid *rid, ngs_gid *qid, ngs_alist ad, char *script, ngs_res *res)

int NQSleadreq(nqgs_rid *rid,nqs_res *res)

Function

NQScrereq() creates a new request having a specified file "script" as a job script and sets

it in a batch queue having a queue identifier "qid". When the attribute list identifier "ad"

1s an integer of 0 or more, all attributes in the attribute list are set as the initial attribute

of the request.

NQSleadreq() notifies the batch server when all connected requests were submitted.

Request ID of the lead request (request submitted first in request connection) is set in

Hrid" .

Attributes that can have the initial request attribute are as follows:

Attribute name Attribute type Type Scope
Request | Job | Process

Job Topology ATTR_JTPLGY int 0
Re-run Attribute ATTR_RERUNABL | int 0
Checkpoint Attribute ATTR_CHKPNTABL | int 0
Migration Attribute ATTR_MIGRATABL | int 0
Hold Attribute ATTR_HOLDABL int 0
Hold Type ATTR_HOLDTYPE | int 0
Account Code ATTR ACCTCODE char * o}
Priority ATTR_PRIORITY ngs_range 0
Request Name ATTR_REQNAME char * 0
Standard Output Path | ATTR_STDOUT nqgs_pdesc 0
Name

Standard Error Output | ATTR_STDERR ngs_pdesc 0
Path Name

Request Log Output ATTR_STDLOG ngs_pdesc 0
Path Name

146

Request Log Output ATTR_LOGLEVEL ngs_range
Level

Staging File ATTR_STGFILE nqgs_stgfile
Information

Shell Name ATTR_SHELLPATH | char *
Mail Option ATTR_MAILOPTS int

Mail Address ATTR_MAILADDR ngs_mdesc
Job Execution ATTR_JOBCOND nqgs_jcond
Environment Condition

Request Group ATTR_REQGRP ngs_rgrp
Execution Time ATTR_EXETIME time_t

Job Environment ATTR_ENVIRON nqgs_keyval
Variable

Migration file ATTR_MIGFILE nqgs_migfile
User Custom Attribute | ATTR_USERATTR nqs_keyval
Restart file Path ATTR_RSTFDIR char *
Reservation ID ATTR_ADVRSVID int

Max. Elapsed Time ATTR_ELPSTIM ngs_rlim
Max.CPU Time ATTR CPUTIM ngs_rlim
Max. number of CPU ATTR_ CPUNUM ngs_rnum
Max. number of Files ATTR_FILENUM ngs_rnum
Opened

Max. Memory Size ATTR_MEMSZ ngs_rlim
Max. Data Size ATTR_DATASZ ngs_rlim
Max. Stack Size ATTR_STACKSZ ngs_rlim
Max. Core File Size ATTR_CORESZ ngs_rlim
Max. File Size ATTR_FILESZ ngs_rlim
Max. virtual memory ATTR VMEMSZ ngs_rlim
size

Max. number of GPU ATTR_ GPUNUM ngs_rnum

Range for number of
VE node

ATTR_VENUM

ngs_rrange

Notes
It is necessary to set the ATTR_REQGRP attribute in all connected requests (includes
lead request) as requesting an initial attribute. However, in the ATTR_REQGRP
attribute of the lead request, set only an appropriate value (request group number) in

grpno, and always set -1 in seqno and mid. (When NQSleadreq(3) is executed, the batch

147

server set lead request ID's seqno and mid)

Return value
When an error occurs, NQScrereq() sets the request ID of a newly created request in "rid"
and returns O as the return value. When an error occurs, NQScreque() returns a negative

integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_ESYSCAL]

Error in the system call.
[NQS_EWRNGSZ]

Cannot transfer the job script.

[NQS_ENOENT]

Cannot find the specified attribute list "ad".
[NQS_EACCTAUTHI

Un-cataloged request owner account.
[NQS_EACCESSDEN]

Inhibited to access the batch server.
[NQS_EFATAL]

Cannot take a sequence number.
[NQS_ETOOLONG]

Too long result file name.
[NQS_EUNKNOWN]

Unsupported initial attribute in the attribute list "ad".
[NQS_EWRNGTYP]

Submit a connected request to wrong queue.

148

[NQS_EUNSUPPORT]

Unsupported job type specified.
[NQS_EBADVAL]

The request attribute with an illegal value exists.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSalist(3), NQSafree(3), NQSaadd(3), NQSaref(3)

149

6.9.4. Create job and Start stage-in

Name

NQSstgreq -- Create jobs and start stage-in sequence

Format

#include <ngsv.h>

int NQSstgreq(ngs_rid *rid, int num, nqs_jsvid jsvidll, ngs_res *res)

Function

NQSstgreq() requires the batch server to create the batch jobs for specified batch request
"rid", and requires to start the stage-in sequence for batch request. This function is valid
only for QUEUED requests in the execution queue.

The number of batch jobs newly generated is specified for "num". "jsvid" array specifies a
job server that runs the job. The subscript of "jsvid" array is corresponding to a job
number. For example, "jsvid[3].jsvno=7" indicates that job #3 is allocated to job server #7.
A "num" value (number of jobs) can be 1 to NQS_MAX_JOBNO + 1). If STGOPT_LEAVE
is specified to jsvno of "jsvid" array, the execution of this element is not done, and status

of the batch job doesn't change.

When a batch job corresponds to job number specified already exists, the old batch job is

abandoned and this batch job will be created newly on the job server specified for jsvid.

The execution queue containing the request to be run must be bound to a process (usually

a scheduler) that called NQSstgreq0).

You cannot specify parametric request (rid.subreq_no=-2) to "rid".

Notes

150

NQSstgreq() requires an API authority of PRIV_SCH or higher to run.

The stage-in files are transmitted from the client host to the batch server host
temporarily(/var/opt/nec/nqsv/bsv/private/root/input), and then they are transmitted to
each execution hosts on which the job will be executed. NQSstgreq() returns the
NQS_EDISCONTI error if the batch job of job number O(master job) is not included or the

job number is not consecutive when all the batch jobs are created.

When NQSstgreq() is successfully called, batch requests will be STAGING, then stage-in
procedure will start. All batch jobs are cancelled if an error happens in STAGING, and

requests will be QUEUED.

Return value
When executed successfully, NQSstgreq() returns 0. When an error occurs, NQSstgreq()
returns a negative integer and sets an API result code in "res". If NQSstgreq() returns an
error, the status of each batch job is returned to the status immediately before

NQSstgreq(is called.

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]
Not connected to the batch server.
[NQS_ECONFAIL]
Cannot connect to a batch server.
[NQS_EPKTSEND]
Cannot send the API packet.
[NQS_EPKTRECV]
Cannot receive the API packet.
[NQS_EDISCONN]
Disconnected from the batch server in transmission.
[NQS_EPERM]
No authority to run the API function.
[NQS_EBINDSCH]
The calling process is not bound to the queue that contains the request.
[NQS_EOUTRNG]
The specified job server number is outside the valid range.
The specified job number is outside the valid range.
[NQS_ENOREQ]
Cannot find the specified request.
[NQS_EWRNGSTS]
Unacceptable request status.
[NQS_ENOMEM]
Cannot allocate memory dynamically.
[NQS_EINVAL]
Invalid argument specified.
[NQS_EDISCONTI]

The job numbers of the batch job are not consecutive.

151

Related items
NQSconnect(3), NQSbindsch(3), NQSrunreq(3)

152

6.9.5. Start Request
Name

NQSrunreq -- Run Request

Format

#include <ngsv.h>

int NQSrunreq(ngs_rid *rid, nqs_res *res)

Function
NQSrunreq() asks the batch server to run a specified request "rid". It is necessary already
to create the job with NQSstgreq(3) as for the request. This function is valid only for
QUEUED requests in the execution queue except requests that have been QUEUED from
HOLDING (requests having a restart file on the job server).
You need to bind the execution queue the process where NQSrunreq is called like the
scheduler. And also need to bind the execution queue all job servers which manage the

object job.

You cannot specify parametric request (rid.subreq_no=-2) to "rid".

Notes
NQSrunreq() requires an API authority of PRIV_SCH or higher to run.

Return value
When executed successfully, NQSrunreq() returns 0. When an error occurs, NQSrunreq()

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.

153

[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to run the API function.
[NQS_EBINDSCH]

The calling process is not bound to the queue containing the request.
[NQS_EBINDJSV]

The job server is not bound to a queue containing the request.
[NQS_ENOREQ]

Cannot find the specified request.
[NQS_ENOJOB]

There is no job.
[NQS_EWRNGSTS]

Unacceptable request status.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSbindjsv(3), NQShindsch(3), NQSstgreq(3)

154

6.9.6. Delete Request
Name
NQSdelreq -- Delete Request

Format

#include <ngsv.h>

int NQSdelreq(ngs_rid *rid, int grace, nqs_res *res)

Function
NQSdelreq() deletes a specified request "rid". When the execution host has a job in
execution, NQSdelreq() forcibly terminates the job by a signal. In this case, NQSdelreq()
first sends SIGTERM to the job, waits a specified time period "grace" (in seconds) and
sends SIGKILL. When "grace" is 0, NQSdelreq() immediately sends SIGKILL only.

Notes
NQSdelreq() requires an API authority of PRIV_MGR or higher, API authority
PRIV_GMGR for the group of the request or the owner of the request.

Return value
When executed successfully, NQSdelreq() returns 0. When an error occurs, NQSdelreq(

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to delete the request.

155

[NQS_ENOREQ]

Cannot find the specified request.
[NQS_EREFUSE]

The request is temporarily undeletable.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSrqureq(3)

156

6.9.7. Send Signal to Request
Name

NQSsigreq -- Send Signal to Request

Format

#include <ngsv.h>

int NQSsigreq(nqs_rid *rid, char *sig, nqs_res *res)

Function
NQSsigreq() sends a specified signal "sig" to all jobs having a specified request "rid" as
the parent. NQSsigreq() is valid for jobs whose parent request is RUNNING or
SUSPENDED. For other jobs, NQSsigreq() returns an error.
"sig" specifies a signal name having a prefix "SIG" which is one of signal names in the
Signal List below. If the specified signal is not supported by the operating system of the

execution host, NQSsigreq() does not send the signal and simply ignores it.

When SIGSTOP is specified for a RUNNING request, the request changes its status to
SUSPENDING and undergoes suspending process.

When SIGCONT is specified for a SUSPENDED request, the request changes its status
to RESUMING and undergoes resuming process.

Signal Linux
SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGABRT(SIGIOT)
SIGBUS
SIGFPE
SIGKILL
SIGSEGV
SIGUSR1
SIGUSR2
SIGPIPE
SIGALRM
SIGTERM
SIGCHLD(SIGCLD)
SIGCONT
SIGSTOP

o|lo|0o|O0O|C OO |O|O|O|O|OC|OC|O|OC|O|OC|O

157

SIGTSTP
SIGTTIN
SIGTTOU
SIGURG
SIGXCPU
SIGXFSZ
SIGWINCH
SIGIO
SIGPOLL
SIGPWR
SIGVTALRM
SIGPROF
SIGSTKFLT
SIGUNUSED

Clo|O|O|O0|OC|O|O|O|O|O|O|OC |O

Notes
NQSsigreq() requires an API authority of PRIV_MGR or higher, API authority
PRIV_GMGR for the group of the request or the owner of the request.

Return value
When executed successfully, NQSsigreq() returns 0. When an error occurs, NQSsigreq()

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to send a signal to the request.
[NQS_ENOREQ]

Cannot find the specified request.

158

[NQS_EWRNGSTS]

The request is not RUNNING or SUSPENDED.
[NQS_ESTALLED]

The request is being stalled.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSsigjob(3)

159

6.9.8. Hold Request
Name
NQShldreq -- Hold Request

Format

#include <ngsv.h>

int NQShldreq(ngs_rid *rid, ngs_res *res)

Function
NQShldreq() starts holding a request "rid". A request to be held must be QUEUED,
WAITING, or RUNNING. When hold prohibition is set to the request, NQShldreq()
becomes an error.
When holding a RUNNING request, NQShldreq() automatically gets an exit type

checkpoint for each job and creates a restart file on the execution host.

When a request holding succeeds, the authority of the client which carried out holding is
set in the hold type attribute (ATTR_HOLDTYPE).

Notes
NQShldreq() requires an API authority of PRIV_MGR or higher, API authority
PRIV_GMGR for the group of the request or the owner of the request.

Return value
When executed successfully, NQShldreq() returns 0. When an error occurs, NQShldreq(

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.

160

[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to hold the request.
[NQS_ENOREQ]

Cannot find the specified request.
[NQS_EWRNGSTS]

The request is not QUEUED, WAITING, or RUNNING.
[NQS_EDISABLE]

The request is set to DISABLED (Inhibited to Be Held).
[NQS_ESTALLED]

The request is stalled.
[NQS_ESYSCAL]

Error in the system call.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSrlsreq(3), NQSrstreq(3)

161

6.9.9. Release Request
Name

NQSrlsreq -- Release Request

Format

#include <ngsv.h>

int NQSrlsreq(ngs_rid *rid, nqs_res *res)

Function

NQSrlsreq() starts to release a specified request "rid". The request to be released must be
HELD.

Notes
NQSrlsreq() requires a HOLD type attribute (that stores the authority for HOLD process)
set in the request or a higher API authority to run.

Return value
When executed successfully, NQSrlsreq() returns 0. When an error occurs, NQSrlsreq()

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to release the request.
[NQS_ENOREQ]

Cannot find the specified request.

162

[NQS_EWRNGSTS]

The request is not HELD.
[NQS_ESYSCAL]

Error in the execution of a system call.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQShldreq(3), NQSrstreq(3)

163

6.9.10. Restart Request

Name

NQSrstreq -- Restart Request

Format

#include <ngsv.h>

int NQSrstreq(ngs_rid *rid, nqs_res *res)

Function

NQSrstreq() restarts a specified request "rid". Only QUEUED requests can be started by
NQSrstreq(). All jobs to be restarted must exist as restart files on the execution host.

The execution queue containing the request to be restarted must be bound to a process
(usually a scheduler) that called NQSrstreq() and the job server managing the jobs to be

restarted must be bound to this queue.

Notes

NQSrstreq() requires an API authority of PRIV_SCH or higher to run.

Return value

When executed successfully, NQSrstreq() returns 0. When an error occurs, NQSrstreq()

returns a negative integer and sets an API result code in "res".

Error

164

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to restart the request.

[NQS_ENOREQ]
Cannot find the specified request.
[NQS_EWRNGSTS]
The request is not QUEUED.
[NQS_EBINDSCH]
The calling process is not bound to the queue that contains the request.
[NQS_EBINDJSV]
The job server managing the jobs to be restarted is not bound to the queue.
[NQS_ENOJOB]
No job having the specified request as the parent.
[NQS_ENOMEM]
Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQShldreq(3), NQSrlsreq(3), NQSbindjsv(3), NQSbindsch(3)

165

6.9.11. Re-run Request

Name

NQSrqureq -- Stop and Re-queue Request

Format

#include <ngsv.h>

int NQSrqureq(ngs_rid *rid, int grace, ngs_res *res)

Function

NQSrqureq() stops the processing of specified request "rid" and backs the request to the
QUEUED status with no batch jobs. (This is called re-queuing.) NQSrqureq(first sends
SIGTERM to jobs executed on the execution host, waits for a specified time period "grace"
(in seconds) and then sends SIGKILL. When "grace" is 0 or below, SIGKILL is
immediately sent to jobs on the execution host.

NQSrqureq() is valid for requests that has batch jobs regardless of the status. When
given to a request with no batch jobs, NQSrqureq() returns an error. Similarly, when

given to a request that is inhibited to re-run, NQSrqureq() returns an error.

Notes

NQSrqureq() requires an API authority of PRIV_OPE or higher, API authority
PRIV_GMGR for the group of the request or the owner of the request.

Return value

When executed successfully, NQSrqureq() returns 0. When an error occurs, NQSrqureq(

returns a negative integer and sets an API result code in "res".

Error

166

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]
Not connected to the batch server.
[NQS_ECONFAIL]
Cannot connect to a batch server.
[NQS_EPKTSEND]
Cannot send the API packet.
[NQS_EPKTRECV]
Cannot receive the API packet.

[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to run the API function.
[NQS_ENOREQ]

Cannot find specified request.
[NQS_EWRNGSTS]

The request is not RUNNING.
[NQS_EDISABLE]

The request is inhibited to re-run.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSdelreq(3)

167

6.9.12. Move Request Between Queues
Name

NQSmovreq -- Move Request Between Queues

Format

#include <ngsv.h>

int NQSmovreq(ngs_rid *rid, nqs_qid *qid, nqgs_res *res)

Function
NQSmovreq() moves a request "rid" to a queue "qid" (batch queue, interactive queue or
routing queue). Only QUEUED, WAITING, and HELD requests having no job (having no
job restart file on the execution host) can be moved. The request after movement has the

same status as that before movement.

You cannot specify parametric request (rid.subreq_no=-2) to "rid".

Notes
NQSmovreq() requires an API authority of PRIV_OPE or higher, API authority
PRIV_GMGR for the group of the request or the owner of the request.

Parametric request cannot be specified to "rid".

Return value
When executed successfully, NQSmovreq() returns 0. When an error occurs,

NQSmovreq() returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.

168

[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to move the request.
[NQS_ENOREQ]

Cannot find the specified request.
[NQS_ENOQUE]

Cannot find the specified queue.
[NQS_EWRNGSTS]

The request is not QUEUED, WAITING, or HELD.
[NQS_EWRNGTYP]

Unacceptable the queue type of specified queue.
[NQS_EHASJOB]

The specified request has a job.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

169

6.10.Job related functions

6.10.1. Operation of Job Entry

Name
NQSopenjob, NQSreadjob, NQSrewindjob, NQSclosejob -- Operate Job Entry

Format

#include <ngsv.h>

ngs_entry NQSopenjob(ngs_odesc *odesc, nqs_res *res)

nqgs_jid *NQSreadjob(ngs_entry entry, nqs_res *res)

int NQSrewindjob(ngs_entry entry, ngs_res *res)

int NQSclosejob(ngs_entry entry, nqs_res *res)

Function

NQSopenjob() selects jobs related to an object "odesc" from jobs in the execution host,

creates a list (job entry) having their job identifiers as its elements, initializes its index to

0, and returns an entry identifier to identify it. When an error occurs NQSopenjob()

returns a negative integer and sets an API result code in "res".

The table below lists objects that can be specified for "odesc".

odesc.obj_type value | obj member to be referred | Objects

NQS_OBJ_BSV None All jobs

NQS_OBJ_JSV odesc.obj.jsvid All jobs controlled by a specified job
server.

NQS_OBJ_REQ odesc.obj.rid All jobs having a specified request as

the parent

170

NQSreadjob() returns an entry pointed to by the

internal index by the "ngs_jid" type

pointer and increments the internal index by one. When the last entry comes,

NQSreadjob() returns a null and sets NQS_EALLOVER in the error number of "res".

When an error occurs, NQSreadjob() returns a null and sets an API result code in "res".

NQSrewindjob() re-initializes the internal index to 0. When an error occurs,

NQSrewindjob() returns a negative integer and sets an API result code in "res".

NQSclosejob() deletes a job entry created by NQSopenjob(). When an error occurs,

NQSclosejob() returns a negative integer and sets an API result code in "res".

Notes
When you refer to a pointer that points to a job identifier returned by NQSreadjob() after

NQSclosejob() was executed, the operation is not assured.

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_ENOENT]

Invalid entry identifier specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items

NQSconnect(3), NQSattrjob(3)

171

6.10.2. Operation of Job Attributes

Name

NQSattrjob -- Job Attribute Operation Function

Format

#include <ngsv.h>

int NQSattrjob(nqgs_jid *jid, ngs_alist ad, int op, ngs_res *res)

Function

Operates the attribute of a job having a job identifier "jid". NQSattrjob executes a
specified operation "op" on attributes in the attribute list "ad". Values below can be

specified for "op".

ATTROP_GET

Copies the attribute of the job onto the attribute "ad".
ATTROP_SET

Replaces the job attribute by the attribute "ad".

Return value

When executed successfully, NQSattrjob) returns 0. When an error occurs,

NQSattrjob() returns a negative integer and sets an API result code in "res".

Error

172

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority given to access the attribute.

[NQS_ENOENT]

Cannot find the specified attribute list.
[NQS_ENOREQ]

Cannot find the parent request of the specified job.
[NQS_ENOJOB]

Cannot find the specified job.
[NQS_EUNKNOWN]

Unknown attribute type.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSalist(3), NQSafree(3), NQSaadd(3), NQSaref(3)

173

6.10.3. Send Signal to Job
Name
NQSsigjob -- Send Signal to Job

Format

#include <ngsv.h>

int NQSsigjob(ngs_jid *jid, char *sig, nqs_res *res)

Function
NQSsigjob() sends a specified signal "sig" to a specified job "jid" NQSsigjob(is valid for
jobs whose parent request is RUNNING or SUSPENDED. For other jobs, NQSsigjob()
returns an error.
"sig" specifies a signal name having a prefix "SIG" which is one of signal names in the
Signal List of "Function" of NQSsigreq(). If the specified signal is not supported by the
operating system of the execution host, NQSsigjob() does not send the signal and simply

ignores it.

Notes
NQSsigjob() requires an API authority of PRIV_MGR or higher, API authority
PRIV_GMGR for the group of the parent request of the job or the owner of the parent
request of the job.

Return value
When executed successfully, NQSsigjob() returns 0. When an error occurs, NQSsigjob()

returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.

174

[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to send a signal to the job.
[NQS_ENOREQ]

Cannot find the parent request of the specified job.
[NQS_ENOJOB]

Cannot find the specified job.
[NQS_EWRNGSTS]

The parent request of the job is not RUNNING or SUSPENDED.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSsigreq(3)

175

6.10.4. Migrate Job

Name

NQSmigjob -- Migrate Batch Job

Format

#include <ngsv.h>

int NQSmigjob(ngs_jid *jid, ngs_jsvid *jsvid, nqs_res *res)

Function

NQSmigjob() migrates a job "jid" to under control of a job server "jsvid". Even when the
source job serve stops, NQSmigjob() can migrate a job, but if the destination job server
stops, an error occurs.

To migrate between two different execution hosts, the job server databases

(/var/opt/nec/nqsv/jsv) of the hosts must be shared by a shared file system such as NFS.

Notes

NQSmigjob() requires an API authority of PRIV_OPE or higher to run.

Return value

When executed successfully, NQSmigjob() returns 0. When an error occurs, NQSmigjob()

returns a negative integer and sets an API result code in "res".

Error

176

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to migrate a batch job.

No authority to execute the job on the destination host.
[NQS_ENOREQ]

Not exist parent request for the specified job.
[NQS_ENOJOB]

Not exist the specified job.
[NQS_ENOJSV]

Cannot find the specified job server.
[NQS_EWRNGSTS]

The parent request of the job is not HELD.
[NQS_EQUEDOM]

The batch job attempted to move to the queue which is not current.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQShldreq(3)

177

6.11. Node Group related functions

6.11.1. Operations of Node Group Entry

Name

NQSopenngrp, NQSreadngrp, NQSrewindngrp, NQSclosengrp -- Operate Node Group
Entry

Format

#include <ngsv.h>

nqs_entry NQSopenngrp (ngs_odesc *odesc, nqs_res *res)
ngs_ngrpid *NQSreadngrp(nqs_entry entry, nqs_res *res)
int NQSrewindngrp(ngs_entry entry, nqs_res *res)

int NQSclosengrp(ngs_entry entry, nqgs_res *res)

Function

NQSopenngrp() selects a node group related to a specified object "odesc" from nodegroups
that is recognized by the batch server, creates a list (node group entry) having the node
group identifier as the element, its index to 0, and returns an entry identifier to identify
it. When an error occurs NQSopenngrp() returns a negative integer and sets an API
result code in "res".

The table below lists objects that can be specified for "odesc".

odesc.obj_type value | obj member to be referred | Objects

NQS_OBJ_BSV None All node groups

NQS_OBJ_JSV odesc.obj.jsvid Node groups which include specified
job server

NQS_OBJ_QUE odesc.obj.qid Node groups which is bound to

specified queue

178

NQSreadngrp() returns an entry pointed to by the internal index by the "ngs_ngrpid"
type pointer, and increments the internal index by one. When the last entry comes,
NQSreadngrp() returns a null and sets NQS_EALLOVER in the error number of "res".

When an error occurs, NQSreadngrp() returns a null and sets an API result code in "res".

NQSrewindngrp() re-initializes the internal index to 0. When an error occurs,

NQSrewindngrp() returns a negative integer and sets an API result code in "res".

NQSclosengrp() deletes a node group entry created by NQSopenngrp(). And returns 0

when executed successfully. When an error occurs, NQSclosengrp() returns a negative

integer and sets an API result code in "res".

Notes
When you refer to a pointer that points to a node group identifier returned by

NQSreadngrp() after NQSclosengrp() was execute, the operation is not assured.

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_ENOENT]

Invalid entry identifier specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items

NQSconnect(3), NQSattrngrp(3)

179

6.11.2. Operation of Node Group Attributes
Name

NQSattrngrp -- Node group Attribute Operation Function

Format

#include <ngsv.h>

int NQSattrngrp(ngs_ngrpid *ngrpid, nqs_alist ad, int op, nqs_res *res)

Function
Operates the attribute of a node group having a node group identifier "ngrpid".
NQSattrngrp() executes an operation specified by "op" on attributes in the attribute list

specified by "ad". A value below can be specified for "op".

ATTROP_GET

Copies the attribute of the node group onto the attribute "ad".
ATTROP_SET

Replace the attribute values of the node group attributes specified by "ad".

Return value
When executed successfully, NQSattngrpt) returns 0. When an error occurs,

NQSattrngrp(returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority given to access the attribute.

180

[NQS_ENOENT]

Cannot find the specified attribute list.
[NQS_ENONGRP]

Cannot find the specified node group.
[NQS_EUNKNOWN]

Unknown attribute type specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSalist(3), NQSafree(3), NQSaadd(3), NQSaref(3)

181

6.11.3. Create/Delete Node Group
Name
NQScrengrp, NQSdelngrp -- Create/Delete Node Group

Format

#include <ngsv.h>

int NQScrengrp(nqs_ngrpid *ngrpid, nqs_alist ad, nqs_res *res)
int NQSdelngrp(nqs_ngrpid *ngrpid, nqs_res *res)

Function
NQScreangrp() creates a new node group with the group identifier specified by "ngrpid".
If an attribute list including ATTR_COMMENT attribute is specified to "ad", the

comment 1s set at the creation.

NQSdelngrp(deletes the node group whose identifier is "ngrpid".

Notes
NQScrengrp() and NQSdelngrp() require an API authority of PRIV_MGR or higher to

run.

Return value
When executed successfully, NQScrengrp() and NQSdelngrp() return 0. When an error
occurs, NQScrengrp() and NQSdelngrp() return a negative integer and set an API result

code 1n "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.

182

[NQS_EDISCONN]

Disconnected from the batch server in transmission.

[NQS_EPERM]

No authority to execute the API function.
[NQS_ENOENT]

Cannot find the specified attribute list.
[NQS_EEXIST]

Existing node group specified.
[NQS_EUNKNOWN]

Unknown attribute type specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

183

6.11.4. Add Job server to Node Group
Name
NQSincludejsv, NQSincludejsvrange, NQSincludengrp -- Add Jobserver to Node Group

Format

#include <ngsv.h>

int NQSincludejsv(ngs_ngrpid *ngrpid, nqs_jsvid jsvid[l, nqs_res *res)
int NQSincludejsvrange(nqs_ngrpid *ngrpid, ngs_jsvid jsvid[l, ngs_res *res)

int NQSincludengrp(ngs_ngrpid *ngrpid, nqs_ngrpid *source, nqs_res *res)

Function
NQSincludejsv(), NQSincludejsvrange() and NQSincludengrp() add job servers to the
node group specified by "ngrpid".
NQSincludejsv(is used to specify job servers by list of job server identifiers to "jsvid[]".
NQSincludejsvrange() is used to specify job servers by range of job server identifiers.
Specify the start job server number to "jsvid[0]" and the last job server number to
"ysvid[1]".

NQSincludengrp() is used to specify job servers by source node group to "source".

The job server to be added by NQSincludejsv(), NQSincludejsvrange() or
NQSincludengrp() must be already registered in the batch server.

Notes
NQSincludejsv(), NQSincludejsvrange() and NQSincludengrp() require an API authority
of PRIV_MGR or higher to run.

Return value
When executed successfully, NQSincludejsvO0, NQSincludejsvrange() and
NQSincludengrp() return 0. When an error occurs, they return a negative integer and

set an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.

[NQS_ENOTCONN]

Not connected to the batch server.

184

[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to execute the API function.
[NQS_ENONGRP]

Cannot find the specified node group.
[NQS_ENOJSV]

Cannot find the specified job server.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

185

6.11.5. Remove Job server from Node Group

Name
NQSexcludejsv, NQSexcludejsvrange, NQSexcludengrp -- Remove Jobserver from Node
Group

Format

#include <ngsv.h>

int NQSexcludejsv(ngs_ngrpid *ngrpid, nqs_jsvid jsvidll, ngs_res *res)
int NQSexcludejsvrange(nqs_ngrpid *ngrpid, nqgs_jsvid jsvid[l, nqs_res *res)

int NQSexcludengrp(ngs_ngrpid *ngrpid, nqs_ngrpid *source, nqs_res *res)

Function
NQSexcludejsv(), NQSexcludejsvrange() and NQSexcludengrp() remove job servers from
the node group specified by "ngrpid".
NQSexcludejsv() is used to specify job servers to remove by list of job server identifiers to
"jsvid[]".
NQSexcludejsvrange() is used to specify job servers to remove by range of job server
identifiers. Specify the start job server number to "jsvid[0]" and the last job server
number to "jsvid[1]".
NQSexcludengrp() is used to specify job servers to remove by source node group to

"source".

When the specified job server is not included in the node group of "ngrpid",
NQSexcludejsv(), NQSexcludejsvrange() and NQSexcludengrp() only skip to perform for

the job server.

Notes
NQSexcludejsv(), NQSexcludejsvrange() and NQSexcludengrp() require an API authority
of PRIV_MGR or higher to run.

Return value
When executed successfully, NQSexcludejsv), NQSexcludejsvrange() and
NQSexcludengrp() return 0. When an error occurs, they stop removing job servers and

return a negative integer. Also an API result code is set in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result

186

code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to execute the API function.
[NQS_ENONGRP]

Cannot find the specified node group.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

187

6.11.6. Bind/Unbind Node Group to Queue
Name
NQSbindngrp, NQSunbindngrp() -- Bind/Unbind Node group to a queue.

Format

#include <ngsv.h>

int NQSbindngrp(ngs_qid *qid, nqs_ngrpid *ngrpid, ngs_res *res)
int NQSunbindngrp(qs_gid *qid, nqs_ngrpid *ngrpid, nqs_res *res)

Function
NQSbindngrp() connects (or binds) the node group specified by "ngrpid" to the queue
whose 1dentifier us "qid". It acts like all job servers included in the node group is bound to

the specified queue.

NQSunbindngrp() disconnects (or unbinds) the node group specified by "ngrpid" from the
queue whose identifier us "qid". It acts like all job servers included in the node group is

unbound from the specified queue.

The queue types that can be specified to "qid" are batch queue and interactive queue.

Notes
The API authority of PRIV_MGR or higher is required to execute NQSbindngrp() and
NQSunbindngrp().

Return value
When executed successfully, NQSbindngrp() and NQSunbindngrp() return 0. When an

error occurs, they return a negative integer and set an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]
Not connected to a batch server.
[NQS_ECONFAILJ

Cannot connect to the batch server.

[NQS_EPKTSEND]

188

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority given to execute the API function.
[NQS_ENONGRP]

Cannot find the specified node group.
[NQS_ENOQUE]

Cannot find the specified queue.
[NQS_EWRNGTYP]

Unacceptable the queue type of specified queue.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

189

6.12. Template related functions

6.12.1. Create/Delete Template
Name
NQScretemp, NQSdeltemp -- Create/Delete Template

Format

#include <ngsv.h>

int NQScretemp(ngs_template *template, nqs_res *res)

int NQSdeltemp(char *template_name, ngs_res *res)

Function
NQScretemp () creates a new template according to the template specified by "template".
Definition information (structure in "template") is designated as the type of made

templates (template->type) below.

;I‘gn}[)l; 1(;{'0 . template->type E;:E;csture in "template" which

OpenStack NQSII_TEMPLATE_TYPE_ | struct nqs_ostemplate os_tmpl
OPENSTACK

Container NQSII_TEMPLATE_TYPE_ | struct nqs_cotemplate co_tmpl
CONTAINER

NQSdeltemp () deletes the template whose identifier is "template_name".

Notes
NQScretemp(), NQSdeltemp() require an API authority of PRIV_MGR or higher to run.

Return value
When executed successfully, NQScretemp() and NQSdeltemp() return 0. When an error

occurs, they return a negative integer and set an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]
Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.

190

[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to execute the API function.
[NQS_ENOENT]

Cannot find the specified template.
[NQS_EEXIST]

Existing template specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

191

6.12.2. Edit Template
Name
NQSedittemp - Edit Template.

Format

#include <ngsv.h>

int NQSedittemp(ngs_template *template, int changeflg, nqs_res *res)

Function
NQSedittemp() overwrites a template of specified template->template_name by
information in "template". Data of an overwritten target is indicated by a flag of
"changeflg".
The flag by which designation is possible in "changeflg" is below. More than one specify is
also possible to take OR.

TMPL. MEMBER_IMGNAME image name
TMPL_MEMBER_CPU CPU number
T™MPL_MEMBER MEM Memory size
TMPL_MEMBER_GPU GPU number
TMPL _ MEMBER CUSTOM Custom define
TMPL_MEMBER_COMMENT Comment
TMPL_MEMBER_FLAVOR Flavor name

(Only when template->type is NQSII_TEMPLATE_TYPE_OPENSTACK)
TMPL_MEMBER_STARTTIMEOUT Start time-out
TMPL_MEMBER_STOPTIMEOUT Stop time-out

Notes
NQSedittemp() require an API authority of PRIV_MGR or higher to run.

Return value
When executed successfully, NQSedittemp() returns 0. When an error occurs,

NQSedittemp() returns a negative integer and sets an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.

192

[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to execute the API function.
[NQS_ENONENT]

Cannot find the specified template.

[NQS_ENOMEM]

Cannot allocate memory dynamically.

[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

193

6.12.3. Lock and Unlock Template
Name
NQSlocktemp, NQSunlocktemp - Lock and Unlock the Template.

Format

#include <ngsv.h>

int NQSlocktemp(char *template_name, nqs_res *res)

int NQSunlocktemp(char *template_name, ngs_res *res)

Function

NQSlocktemp() lock the template specified by "template_name".

NQSunlocktemp() unlock the template specified by "template_name".

Notes
NQSlocktemp() and NQSunlocktemp() require an API authority of PRIV_MGR or higher

to run.

Return value
When executed successfully, NQSlocktemp() and NQSunlocktemp() return 0. When an

error occurs, they return a negative integer and set an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to execute the API function.

194

[NQS_ENONENT]

Cannot find the specified template.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

195

6.13. OpenStack Template related functions

6.13.1. Create/Delete OpenStack Template
Name
NQScreostemp, NQSdelostemp -- Create/Delete OpenStack Template

Format

#include <ngsv.h>

int NQScreostemp(nqs_ostemplate *template, nqs_res *res)

int NQSdelostemp(char *template_name, nqs_res *res)

Function
NQScreostemp () creates a new OpenStack template according to the template specified

by "template".

NQSdelostemp () deletes the OpenStack template whose identifier is "template_name".

Notes
NQScreostemp(), NQSdelostemp() require an API authority of PRIV_MGR or higher to

run.

Return value
When executed successfully, NQScreostemp() and NQSdelostemp() return 0. When an

error occurs, they return a negative integer and set an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.

[NQS_EDISCONN]

Disconnected from the batch server in transmission.

196

[NQS_EPERM]

No authority to execute the API function.
[NQS_ENOENT]

Cannot find the specified template.
[NQS_EEXIST]

Existing template specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

197

6.13.2. Edit OpenStack Template
Name
NQSeditostemp - Edit OpenStack Template.

Format

#include <ngsv.h>

int NQSeditostemp(ngs_ostemplate *template, int changeflg, nqs_res *res)

Function
NQSeditostemp() overwrites a template of specified template->template_name by
information in "template". Data of an overwritten target is indicated by a flag of
"changeflg".
The flag by which designation is possible in "changeflg" is below. More than one specify is
also possible to take OR.

OSTMPL_MEMBER_IMGNAME OS image name
OSTMPL_MEMBER_CPU CPU number
OSTMPL_MEMBER_MEM Memory size
OSTMPL_MEMBER_GPU GPU number
OSTMPL_MEMBER_CUSTOM Custom define
OSTMPL_MEMBER_COMMENT Comment
OSTMPL_MEMBER_FLAVOR Flavor name
OSTMPL_MEMBER_STARTTIMEOUT Start time-out
OSTMPL_MEMBER_STOPTIMEOUT Stop time-out

Notes
NQSeditostemp(require an API authority of PRIV_MGR or higher to run.

Return value
When executed successfully, NQSeditostemp() returns 0. When an error occurs,

NQSeditostemp() returns a negative integer and sets an API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.

198

[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to execute the API function.
[NQS_ENONENT]

Cannot find the specified template.

[NQS_ENOMEM]

Cannot allocate memory dynamically.

[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

199

6.13.3. Lock and Unlock OpenStack Template
Name

NQSlockostemp, NQSunlockostemp - Lock and Unlock the OpenStack Template.

Format

#include <ngsv.h>

int NQSlockostemp(char *template_name, nqs_res *res)

int NQSunlockostemp(char *template_name, nqs_res *res)

Function

NQSlockostemp() lock the template specified by "template_name".

NQSunlockostemp() unlock the template specified by "template_name".

Notes
NQSlockostemp() and NQSunlockostemp() require an API authority of PRIV_MGR or

higher to run.

Return value
When executed successfully, NQSlockostemp() and NQSunlockostemp() return 0. When

an error occurs, they return a negative integer and set an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to execute the API function.

200

[NQS_ENONENT]

Cannot find the specified template.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

201

6.14. Baremetal server related functions

6.14.1. Attach and detach baremetal server
Name
NQSattachhst_bm, NQSdetachhst_bm - Attach and detach the baremetal server.

Format

#include <ngsv.h>

int NQSattachhst_bm(nqgs_hid *hid, nqs_jsvid *jsvid, int cpu, int memsz, int memunit,
int gpu, ngs_res *res)

int NQSdetachhst_bm(nqgs_hid *hid, nqs_jsvid *jsvid, nqs_res *res)

Function
NQSattachhst_bm() attaches baremetal server as an execution host to batch server. It is
specified the job server ID, cpu, memsz, memunit, and gpu.
To attach baremetal server, the job server must not LINKUP. When there is something
about which specified hid or jsvid agrees with the execution host registered already, it'll
be an error.

The following one can be specified for memunit (the unit of the memory size).

NQS_LIM_BYTE Byte
NQS_LIM_KBYTE KiloByte
NQS_LIM_MBYTE MegaByte
NQS_LIM_GBYTE GigaByte
NQS_LIM_TBYTE TeraByte
NQS_LIM_PBYTE PetaByte
NQS_LIM_EBYTE ExaByte

NQSdetachhst_bm() detaches baremetal server. Please set NULL as the person who
designates and doesn't designate one of hid and jsvid.

A job server can carry out elimination of a baremetal server only in the state which
doesn't stand up. When anything to agree with specified hid or jsvid doesn't exist, it'll be

an error.
Notes

NQSattachhst_bm() and NQSdetachhst_bm() require an API authority of PRIV_MGR or

higher to run.

202

Return value
When executed successfully, NQSattachhst_bm() and NQSdetachhst bm() return O.

When an error occurs, they return a negative integer and set an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect with the batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority to execute the API function.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.
[NQS_EALREADY]

Specified host or JSV ID has already attached.

Related items

NQSconnect(3)

203

6.15. Custom Resource related functions

6.15.1. Operations of Custom Resource Entry

Name

NQSopencustom, NQSreadcustom, NQSrewindcustom, NQSclosecustom -- Operate

Custom resource Entry

Format

#include <ngsv.h>

ngs_entry NQSopencustom (ngs_odesc *odesc, nqs_res *res)

ngs_customid *NQSreadcustom(nqgs_entry entry, nqs_res *res)

int NQSrewindcustom(ngs_entry entry, ngs_res *res)

int NQSclosecustom(ngs_entry entry, ngs_res *res)

Function

NQSopencustom() selects a custom resource related to a specified object "odesc" from

custom resources that is recognized by the batch server, creates a list (custom resource

entry) having the custom resource identifier as the element, its index to 0, and returns an

entry identifier to identify it. When an error occurs NQSopencustom() returns a negative

integer and sets an API result code in "res".

The table below lists objects that can be specified for "odesc".

odesc.obj_type value

obj member to be referred

Objects

NQS_OBJ_BSV

None

All custom resources

204

NQSreadcustom() returns an entry pointed to by the internal index by the

"ngs_customid" type pointer, and increments the internal index by one. When the last

entry comes, NQSreadcustom() returns a null and sets NQS_EALLOVER in the error

number of "res". When an error occurs, NQSreadcustom() returns a null and sets an API

result code 1n "res".

NQSrewindcustom() re-initializes the internal index to 0. When an error occurs,

NQSrewindcustom() returns a negative integer and sets an API result code in "res".

NQSclosecustom() deletes a custom resource entry created by NQSopencustom(). And

returns 0 when executed successfully. When an error occurs, NQSclosecustom() returns a

negative integer and sets an API result code in "res".

Notes
When you refer to a pointer that points to a custom resource identifier returned by

NQSreadcustom() after NQSclosecustom() was execute, the operation is not assured.

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to a batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_ENOENT]

Invalid entry identifier specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items

NQSconnect(3), NQSattrcustom(3)

205

6.15.2. Operation of Custom Resource Attributes
Name

NQSattrcustom -- Custom resource Attribute Operation Function

Format

#include <ngsv.h>

int NQSattrcustom(char *cr_name, ngs_alist ad, int op, nqs_res *res)

Function
Operates the attribute of a custom resource having a custom resource name "cr_name".
NQSattrcustom() executes an operation specified by "op" on attributes in the attribute

list specified by "ad". A value below can be specified for "op".

ATTROP_GET

Copies the attribute of the custom resource onto the attribute "ad".
ATTROP_SET

Replace the attribute values of the custom resource attributes specified by "ad".
ATTROP_ADD

Add the attribute of the custom resource onto the attribute "ad".
ATTROP_DEL

Delete the attribute values of the custom resource attributes specified by "ad".

Return value
When executed successfully, NQSattcustomt() returns 0. When an error occurs,

NQSattrcustom() returns a negative integer and sets an API result code in "res".

Error

When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]

Not connected to the batch server.
[NQS_ECONFAIL]

Cannot connect to the batch server.
[NQS_EPKTSEND]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.

206

[NQS_EDISCONN]

Disconnected from the batch server in transmission.
[NQS_EPERM]

No authority given to access the attribute.
[NQS_ENOENT]

Cannot find the specified attribute list.
[NQS_ENOCR]

Cannot find the specified custom resource.
[NQS_EUNKNOWN]

Unknown attribute type specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3), NQSalist(3), NQSafree(3), NQSaadd(3), NQSaref(3)

207

6.15.3. Create/Delete Custom Resource
Name

NQScrecustom, NQSdelcustom -- Create/Delete Custom resource

Format

#include <ngsv.h>

int NQScrecustom(ngs_crid *crid, int consumer, nqs_alist ad, nqs_res *res)

int NQSdelcustom(ngs_crid *crid, nqs_res *res)

Function
NQScrecustom() creates a new custom resource with the custom resource identifier
specified by "crid". The consume unit of the made custom resource is designated in
consumer and the following one of prices are designated.
CR_JOB : job
CR_REQ : request

It is possible to designate control information to use the custom resource in "ad". Even if
this information isn't designated, it is possible to make a custom resource, and -1 is

designated in "ad" in that case.

NQSdelcustom() deletes the custom resource whose identifier is "crid".

Notes
NQScrecustom() and NQSdelcustom() require an API authority of PRIV_MGR or higher

to run.

Return value
When executed successfully, NQScrecustom() and NQSdelcustom() return 0. When an
error occurs, NQScrecustom() and NQSdelcustom() return a negative integer and set an

API result code in "res".

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]
Not connected to the batch server.

[NQS_ECONFAIL]

208

Cannot connect with the batch server.
[NQS_EPKTSEND)]

Cannot send the API packet.
[NQS_EPKTRECV]

Cannot receive the API packet.
[NQS_EDISCONN]

Disconnected from the batch server in transmission.

[NQS_EPERM]

No authority to execute the API function.
[NQS_ENOENT]

Cannot find the specified attribute list.
[NQS_EEXIST]

Existing node group specified.
[NQS_EUNKNOWN]

Unknown attribute type specified.
[NQS_ENOMEM]

Cannot allocate memory dynamically.
[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

209

6.16. Utility functions

6.16.1. Get API Version
Name
NQSapiver -- Get API Version

Format

#include <ngsv.h>

char *NQSapiver(void)

Function

NQSapiver() gets a character string of the NQSV/API version in the format below.

xx.yy (zzzz) xx ... Major version number (2 digits in decimal)
VY Minor version number (2 digits in decimal)
zzzz ... Platform name (OS identification name)

NQSapiver() can be invocated independently of whether the API link is established.

Return value

NQSapiver() always succeeds and returns a pointer to the version character string.

210

6.16.2. Convert between Machine ID and Host Name
Name
NQSmid2hname, NQShname2mid
-- Convert Machine ID to Host Name, Convert Host Name to Machine ID

Format

#include <ngsv.h>

char *NQSmid2hname(int mid, nqs_res *res)

int NQShname2mid(char *hostname, nqs_res *res)

Function
NQSmid2hname() converts a machine ID "mid" to a corresponding host name and returns
a pointer to a character string representing a host name. When failing in conversion,
NQSmid2hname() sets a result code in "res" and returns a null.
NQShname2mid() converts a host name "hostname" to a corresponding machine ID and
returns an integer representing a machine ID. When failing in conversion,

NQShname2mid() sets a result code in "res" and returns a negative integer.

Error
When an error occurs, one of the result codes below is set as an error number in the result
code.
[NQS_ENOTCONN]
Not connected to the batch server.
[NQS_ECONFAIL]
Cannot connect to a batch server.
[NQS_EPKTSEND)]
Cannot send the API packet.
[NQS_EPKTRECV]
Cannot receive the API packet.
[NQS_EDISCONN]
Disconnected from the batch server in transmission.
[NQS_ENETDB]
Cannot find a host of the specified host name.
[NQS_ENAMPDB]
The specified host has not been cataloged in the NMAP database.
[NQS_ENOMEM]

Cannot allocate memory dynamically.

211

[NQS_EINVAL]

Invalid argument specified.

Related items
NQSconnect(3)

212

7. Sample Codes

7.1.

Display the Load Information of Execution Host

This sample displays the load information of each execution host every five seconds.

#include
#include
#include
#include
#include
#include
#include

<sys/types.h>
<stdio.h>
<libgen.h>
<stdlib.h>
<unistd.h>
<arpa/inet.h>
"ngsv.h"

void usage (char *argv[])

{
fprintf (stderr,

exit (1) ;

int main (int argc,

{
int priv =
ngs_odesc obj;
ngs_entry entry;
ngs_alist ad;
ngs_res res;
ngs_hid *hid;

"Usage: %S

char *argvl[])

PRIV USR;

[-h <bsv host>]\n",

basename (axrgv[0]));

int i, sd, c;
char *bsv;
void *p;
ngs_aid aid[] = {
{ATTR HSTID, SCPE_HST},
{ATTR_RBSPMEM, SCPE_HST},
{ATTR_RBSPSWAP, SCPE_HST},
{ATTR_RBCPUNM, SCPE_HST},
{ATTR_RBLDAVG, SCPE_HST},
{ATTR_RBCPUAVG, SCPE_HST},
{ -1, -1}
bi
bsv = NULL;
while ((c = getopt(argc, argv, "h:")) != -1)
switch (c) {
case 'h':
bsv = optarg;
break;
default:
usage (argv) ;
}
}
if ((sd = NQSconnect (bsv, 0, priv, &res)) < 0) {
fprintf (stderr, "NQSconnect: %s\n", res.msqg);
exit (1) ;
}
ad = -1;
i=20;

213

214

while (aid[i].type

= -1) {
if ((ad NQSalist (ad, &aid[i], &res)) < 0) {
fprintf (stderr, "NQSalist#%d: %s\n", 1, res.msqg);
exit (1) ;
}
1 ++;
}
printf ("ExecHost memory swap "
"CPU Load avg.

CPU avg.\n"

fflush (stdout) ;

\n") ;
while (1) {
obj.obj type = NQS OBJ BSV;
if ((entry = NQSopenhst (&obj, &res)) < 0) {
fprintf (stderr, "NQSopenhst: %$s\n", res.msqg);
exit (1),
}
while ((hid NQSreadhst (entry, &res)) != NULL) {
if (NQSattrhst (hid, ad, ATTROP GET, &res) < 0) {
fprintf (stderr, "NQSattrhst: %$s\n", res.msqg);
exit (1),
}
i=20;
while (aid[i].type !'= -1) {
if ((p NQSaref (ad, &aid[i], NULL, &res)) == NULL)
fprintf (stderr, "NQSaref#%d: %s\n", 1, res.msqg);
exit (1) ;
}
switch

(aidf[i].type) |
case ATTR HSTID:

printf ("%s ", inet ntoa(((ngs_hid *)p)->ip));
break;
case ATTR_RBSPMEM:
printf ("%6d %$e6d ",
((ngs_rsgres *)p)->initial,
(

(ngs_rsgres *)p)->using);
break;

case ATTR _RBSPSWAP:
printf ("%6d %6d ",
((ngs_rsgres *)p)->initial,
((ngs_rsgres *)p)->using);
break;
case ATTR_RBCPUNM:
printf ("%3d %3d ",
((ngs_rsgres *)p)->initial,
((ngs_rsgres *)p)->using);
break;
case ATTR _RBLDAVG:

printf ("%6.2f %6.2f %6.2f ",
((ngs_rsgavg *)p)->avg0l,
((ngs_rsgavg *)p)->avg05,
((ngs_rsgavg *)p)->avgld);
break;
case ATTR RBCPUAVG:
printf ("%6.2f %6.2f %6.2f "
((ngs_rsgavg *)p)->avgOl,
((ngs_rsgavg) —>avg05,
(

*)p
(ngs_rsgavg *)p)->avgl5);
break;

{

}

1 ++;
}
printf ("\n");
fflush (stdout) ;

if (NQSclosehst (entry, &res) < 0) {
fprintf (stderr, "NQSclosehst: %$s\n", res.msqg);
exit (1) ;
}
sleep(5);
}
/* NOTREACHED */

7.2. Display the Request Status Event

This sample displays the NQSV event information of the batch request status.

#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <time.h>
#include <libgen.h>
#include "ngsv.h"

void usage (char *argv[])

{

fprintf (stderr, "Usage: %s -h <bsv host>\n", basename (argv[0]));

exit (1) ;
}

int main(int argc, char **argv)
{
fd set rfds;
ngs_res res;
ngs_event event;
int ¢, sd, priv = PRIV USR;
char *bsv, *date, *p;

bsv = NULL;
while ((c = getopt(argc, argv, "h:")) != -1) {
switch (c) {
case 'h':
bsv = optarg;
break;
default:
usage (argv) ;
}
}
if ((sd = NQSconnect (bsv, 0, priv, &res)) < 0) {
fprintf (stderr, "NQSconnect: %s\n", res.msqg);
exit (1) ;
}
if (NQSevflt(NQSEVT_RST, EVFLT_ADD, &res) < 0) {

215

216

fprintf (stderr, "NQSevflt: %s\n", res.msqg);
exit (1) ;
}
FD ZERO (&rfds) ;
while (1) {
FD SET (sd, &rfds);
if (select(sd + 1, &rfds, NULL, NULL, NULL) < 0) {
exit (1) ;
} else if (FD_ISSET(sd, &rfds)) {
if (NQSevent (&event, &res) < 0) {
fprintf (stderr, "NQSevent: %s\n", res.msqg);
exit (1) ;
}
date = ctime (&event.occur time);
if ((p = strchr(date, '\n')) != NULL) {
*p — 1\01;
}
printf ("[%$s] ", date);
switch (NQSEVT TYPE (event.event id)) {

case NQSEVT BSV:
if (event.event id

NQSEVT BSV_LINKDOWN) {

printf ("API link was down.\n");

exit (0);

}

break;

case NQSEVT RST:

switch (event.event id) {

case NQSEVT RST ARRIVING:
break;

case NQSEVT RST WAITING:
break;

case NQSEVT RST QUEUED:
break;

case NQSEVT RST PRERUNNING:
break;

case NQSEVT RST RUNNING:
break;

case NQSEVT RST POSTRUNNING:
break;

case NQSEVT RST EXITING:
break;

case NQSEVT RST EXITED:
break;

case NQSEVT RST HOLDING:
break;

case NQSEVT RST HELD:
break;

case NQSEVT RST RESTARTING:
break;

case NQSEVT RST SUSPENDING:
break;

case NQSEVT RST SUSPENDED:
break;

case NQSEVT RST RESUMING:
break;

case NQSEVT RST MIGRATING:
break;

case NQSEVT RST MOVED:
break;

case NQSEVT RST STAGING:
break;

"ARRIVING";

"WAITING";

p = "QUEUED";

P "PRE-RUNNING";

p = "RUNNING";

P "POST-RUNNING";

p = "EXITING";

"EXITED";

"HOLDING";

"HELD";

"RESTARTING";

"SUSPENDING";

"SUSPENDED";

"RESUMING";

"MIGRATING";

P "MOVED";

9 "STAGING";

}

}

case NQSEVT RST CHKPNTING: p = "CHKPNTING";
break;
}
printf ("rid: %d.%d state: %s ",
event.cargo.rst.rid.seqgno, event.cargo.rst.rid.mid,
if (event.cargo.rst.rst.res.err) {
printf (" (err: %s)\n", event.cargo.rst.rst.res.msqg);
} else {
printf ("\n");
}
fflush (stdout) ;
break;

/* NOTREACHED */

217

Appendix.A Update history

6th edition
- Add the attributes about the urgent request.
- Add the attribute to capture SIGTERM.

Tth edition
- Deleted the description about Multi-cluster.
- 4.8 Request attributes
Add Platform MPI

8th edition

- 2.1 State Transition
Update the figure of the states of the request

218

NEC Network Queuing System V (NQSV) User's Guide
[API]
January 2023 8th edition
NEC Corporation

Copyright: NEC Corporation 2021

No part of this guide shall be reproduced, modified or transmitted without a
written permission from NEC Corporation.

The information contained in this guide may be changed in the future
without prior notice.

	Proprietary Notice
	Preface
	Remarks
	About This Manual
	Contents
	1. How to use NQSV/API
	1.1. Overview of NQSV/API
	1.2. Install Location
	1.3. How to use NQSV/API
	1.3.1. How to compile
	1.3.2. Connection to batch server
	1.3.3. Result Code
	1.3.4. Attributes
	1.3.5. Event

	2. State Transition of Request
	2.1. State Transition
	2.2. State Transition in Routing Queue
	2.3. State of Request
	2.4. Request Stall

	3. API Events
	3.1. Event Types

	4. Attribute Tables
	4.1. Batch server attributes
	4.2. Scheduler attributes
	4.3. Job server attributes
	4.4. Execution host attributes
	4.5. Queue attributes (for batch queue, interactive queue)
	4.6. Routing queue attributes
	4.7. Network queue attributes
	4.8. Request attributes
	4.9. Job attributes
	4.10. Node group attributes
	4.11. Workflow attributes
	4.12. Custom resource attributes

	5. Definition of Data Types and Constants
	5.1. Symbol constants
	5.2. Structures

	6. API Functions
	6.1. Attribute list functions
	6.1.1. Create Attribute List
	6.1.2. Release Attribute List
	6.1.3. Add Values to Attribute List
	6.1.4. Delete Values to Attribute List
	6.1.5. Refer to Values in Attribute List
	6.1.6. Operation of Attribute Entry

	6.2. API initialize/exit functions
	6.2.1. Open API Link
	6.2.2. Close API Link

	6.3. API event related functions
	6.3.1. Get API Event
	6.3.2. Set Event Filter

	6.4. Scheduler related functions
	6.4.1. Register Scheduler Identifier
	6.4.2. Operation of Scheduler Entry
	6.4.3. Operation of Scheduler Attributes

	6.5. Batch server related functions
	6.5.1. Operate Batch Server Attributes
	6.5.2. Stop Batch Server
	6.5.3. Registration of Execution Hosts

	6.6. Job server related functions
	6.6.1. Operation of Job server Entry
	6.6.2. Operation of Job server Attributes
	6.6.3. Control Job Server

	6.7. Execution host related functions
	6.7.1. Operation of Execution host Entry
	6.7.2. Operation of Execution host Attributes

	6.8. Queue related functions
	6.8.1. Operation of Queue Entry
	6.8.2. Operation of Queue Attributes
	6.8.3. Create Queue
	6.8.4. Delete Queue
	6.8.5. Connect Scheduler
	6.8.6. Disconnect Scheduler
	6.8.7. Connect Job Server
	6.8.8. Disconnect Job Server

	6.9. Request related functions
	6.9.1. Operation of Request Entry
	6.9.2. Operation of Request Attributes
	6.9.3. Create Request
	6.9.4. Create job and Start stage-in
	6.9.5. Start Request
	6.9.6. Delete Request
	6.9.7. Send Signal to Request
	6.9.8. Hold Request
	6.9.9. Release Request
	6.9.10. Restart Request
	6.9.11. Re-run Request
	6.9.12. Move Request Between Queues

	6.10. Job related functions
	6.10.1. Operation of Job Entry
	6.10.2. Operation of Job Attributes
	6.10.3. Send Signal to Job
	6.10.4. Migrate Job

	6.11. Node Group related functions
	6.11.1. Operations of Node Group Entry
	6.11.2. Operation of Node Group Attributes
	6.11.3. Create/Delete Node Group
	6.11.4. Add Job server to Node Group
	6.11.5. Remove Job server from Node Group
	6.11.6. Bind/Unbind Node Group to Queue

	6.12. Template related functions
	6.12.1. Create/Delete Template
	6.12.2. Edit Template
	6.12.3. Lock and Unlock Template

	6.13. OpenStack Template related functions
	6.13.1. Create/Delete OpenStack Template
	6.13.2. Edit OpenStack Template
	6.13.3. Lock and Unlock OpenStack Template

	6.14. Baremetal server related functions
	6.14.1. Attach and detach baremetal server

	6.15. Custom Resource related functions
	6.15.1. Operations of Custom Resource Entry
	6.15.2. Operation of Custom Resource Attributes
	6.15.3. Create/Delete Custom Resource

	6.16. Utility functions
	6.16.1. Get API Version
	6.16.2. Convert between Machine ID and Host Name

	7. Sample Codes
	7.1. Display the Load Information of Execution Host
	7.2. Display the Request Status Event

	Appendix.A Update history

