
 

 

 

 

 

 

  
NEC Network Queuing System V (NQSV) User's Guide 

[JobManipulator] 



ii 

 

Proprietary Notice 
 

The information disclosed in this document is the property of NEC Corporation (NEC) and/or its 

licensors. NEC and/or its licensors, as appropriate, reserve all patent, copyright and other 

proprietary rights to this document, including all design, manufacturing, reproduction, use and 

sales rights thereto, except to the extent said rights are expressly granted to others.  

 

The information in this document is subject to change at any time, without notice. 

  



iii 

 

Preface 
 

The NEC Network Queuing System V (NQSV) User's Guide [JobManipulator] explains how to use 

NQSV/JobManipulator.  

February  2018  1st edition 

September 2022 14th edition 

January 2023 15th edition 

March 2023 16th edition 

June 2023 17th edition 

July 2024 18 th edition 

 

Remarks 

(1) This manual conforms to Release 1.00 and subsequent releases of NEC Network 

Queuing System V(NQSV)/JobManipulator  

 

(2) All the functions described in this manual are program products.  

The typical functions of them conform to the following product names and product 

series numbers: 

Product Name product series numbers 

NEC Network Queuing System V (NQSV) 

/JobManipulator 

UWAH00 

UWHAH00 (Support Pack) 

 

(3) UNIX is a registered trademark of The Open Group. 

 

(4) Intel is a trademark of Intel Corporation in the U.S. and/or other countries. 

 

(5) OpenStack is a trademark of OpenStack Foundation in the U.S. and/or other countries. 

 

(6) Red Hat OpenStack Platform is a trademark of Red Hat, Inc. in the U.S. and/or other 

countries. 

 

(7) Linux is a trademark of Linus Torvalds in the U.S. and/or other countries. 

 

(8) Docker is a trademark of Docker, Inc. in the U.S. and/or other countries. 

 

(9) InfiniBand is a trademark or service mark of InfiniBand Trade Association. 

 

(10) Zabbix is a trademark of Zabbix LLC that is based in Republic of Latvia. 

 

(11) All other product, brand, or trade names used in this publication are the trademarks or 

registered trademarks of their respective trademark owners. 

  



iv 

 

About This Manual 
This manual consists of the following chapters: 

Chapter Title Contents 

1 Overview of JobManipulator Overview 

2 Environment Architecture Setting of Install and Scheduling of  

JobManipulator 

3 Operation Management Basic Feature of Scheduling 

4 Advanced Features Advanced Feature of Scheduling 

5 Functions for SX-Aurora 

TSUBASA 

Functions for SX-Aurora TSUBASA 

6 Command Reference Command Reference 

 

Related manuals that relate to this manual are as follows. 

G2AD01E NQSV User's Guide [Introduction] 

G2AD02E NQSV User's Guide [Management] 

G2AD03E NQSV User's Guide [Operation] 

G2AD04E NQSV User's Guide [Reference] 

G2AD05E NQSV User's Guide [API] 

G2AD07E NQSV User's Guide [Accounting & Budget Control] 

 

Notation Conventions and Glossary 

The following notation rules are used in this manual:  

Omission Symbol ... This symbol indicates that the item mentioned previously can be 

repeated. The user may input similar items in any desired number. 

Vertical Bar | This symbol divides an option and mandatory selection item. 

Brackets { } A pair of brackets indicates a series of parameters or keywords from 

which one has to be selected. 

Braces [ ] A pair of braces indicate a series of parameters or keywords that can 

be omitted. 

 

Glossary 

 

Term Definition 

Vector Engine 

(VE) 

The NEC original PCIe card for vector processing based on 

SX architecture. It is connected to x86-64 machine. VE 

consists of more than one core and shared memory. 

Vector Host 

(VH) 

The x86-64 architecture machine that VE connected. 

Vector Island 

(VI) 

The general component unit of a single VH and one or more 

VEs connected to the VH. 

Batch Server 

(BSV) 

Resident system process running on a Batch server host to 

manage entire NQSV system. 



v 

 

Job Server 

(JSV) 

Resident system process running on each execution host to 

manage the execution of jobs. 

JobManipulator 

(JM) 

JobManipulator is the scheduler function of NQSV. 

JM manages the computing resources and determines the 

execution time of jobs. 

Accounting Server Accounting server collects and manages account information 

and manages budgets. 

Request A unit of user jobs in the NQSV system. It consists of one or 

more jobs. Requests are managed by the Batch Server. 

Job A job is an execution unit of user job. It is managed by Job 

Server. 

Logical Host A logical host is a set of logical (virtually) divided resources 

of an execution host. 

Queue It is a mechanism that pools and manages requests 

submitted to BSV. 

BMC Board Management Controller for short. It performs server 

management based on the Intelligent Platform Management 

Interface (IPMI). 

HCA Host Channel Adapter for short. The PCIe card installed in 

VH to connect to the IB network. 

IB InfiniBand for short. 

MPI Abbreviation for Message Passing Interface. MPI is a 

standard for parallel computing between nodes. 

NIC Network Interface Card for short. The hardware to 

communicate with other node. 

 

 



 

vi 

 

CONTENTS 
Proprietary Notice ....................................................................................................................... ii 
Preface ......................................................................................................................................... iii 
About This Manual ..................................................................................................................... iv 
CONTENTS ................................................................................................................................. vi 
Contents of Figures ...................................................................................................................... x 
Chapter 1. Overview of JobManipulator ................................................................................ 1 

1.1 Introduction .................................................................................................................. 1 
1.2 Features of JobManipulator ......................................................................................... 1 

Chapter 2. Environment Architecture .................................................................................... 2 
2.1 Configuration of JobManipulator ................................................................................ 2 
2.2 Package Configuration ................................................................................................. 3 
2.3 Basic Environment Architecture ................................................................................. 3 

2.3.1 Environment .......................................................................................................... 3 
2.3.2 Installation of Package ......................................................................................... 4 
2.3.3 JobManipulator Start ........................................................................................... 4 
2.3.4 Queue Setting ........................................................................................................ 4 
2.3.5 Setting of the Client Environment ....................................................................... 5 
2.3.6 JobManipulator Stop ............................................................................................ 5 

2.4 Unit Management ......................................................................................................... 6 
2.5 Setting of JobManipulator Start .................................................................................. 6 

2.5.1 Configuration file .................................................................................................. 6 
2.5.2 Starting of the multiple JobManipulator ............................................................ 7 
2.5.3 Updating from R1.05 or earlier to R1.06 or later .............................................. 10 
2.5.4 Start Option of JobManipulator ......................................................................... 13 
2.5.5 Command environment file ................................................................................ 14 

2.6 Scheduler Log File Setting ......................................................................................... 14 
2.7 Scheduling Parameter Setting ................................................................................... 15 

2.7.1 Run Limit ............................................................................................................ 15 
2.7.2 Assign Limit ........................................................................................................ 21 
2.7.3 Request Priority Order ....................................................................................... 25 
2.7.4 Queue Type .......................................................................................................... 26 
2.7.5 Setting of Complex Queue Feature .................................................................... 27 
2.7.6 Setting of Escalation Feature ............................................................................. 32 
2.7.7 No Overtaking Control at Pick-up ..................................................................... 35 
2.7.8 Setting of Assign Policy ...................................................................................... 37 
2.7.9 Setting of Wait Time of Rescheduling ................................................................ 41 
2.7.10 Set ON/OFF of Scheduling Feature ................................................................... 42 

Chapter 3. Operation Management ...................................................................................... 43 
3.1 Scheduling Basic Feature .......................................................................................... 43 

3.1.1 Scheduler Map ..................................................................................................... 43 
3.1.2 Real Time Scheduling ......................................................................................... 50 
3.1.3 Usage Data Collection and Adjustment ............................................................. 51 
3.1.4 Scheduling Priority ............................................................................................. 54 
3.1.5 Algorithm for Picking up Request ...................................................................... 62 
3.1.6 Algorithm for Starting Request.......................................................................... 63 
3.1.7 Elapse Margin ..................................................................................................... 65 
3.1.8 Assign Policy........................................................................................................ 68 
3.1.9 Suspended Request ............................................................................................. 72 
3.1.10 Job Condition ....................................................................................................... 73 
3.1.11 Exit Delay Scheduling ........................................................................................ 73 

3.2 System Information Display ...................................................................................... 74 



 

vii 

 

Chapter 4. Advanced Scheduling Features .......................................................................... 75 
4.1 Urgent Request/Special Request ............................................................................... 75 

4.1.1 Block of Assignment by Urgent Request ........................................................... 76 
4.2 Interactive Request .................................................................................................... 77 
4.3 Parametric Request .................................................................................................... 79 
4.4 Workflow ...................................................................................................................... 79 
4.5 Execution Time Reservation ...................................................................................... 80 

4.5.1 Specify the Execution Start Time ...................................................................... 80 
4.5.2 Action for Failing in Time Specification ............................................................ 81 

4.6 Advance Reservation (Resource Reservation Section) ............................................. 81 
4.6.1 Create the Reserved Section .............................................................................. 81 
4.6.2 Job Submission to Reserved Section .................................................................. 83 
4.6.3 Deleting the Reserved Section ........................................................................... 84 
4.6.4 Job Assignment to the Resource Reservation Section ...................................... 85 
4.6.5 Display the Information of the Resource Reservation Section ........................ 85 
4.6.6 Accounting for Resource Reservation Section Specifying Execution Queue ... 87 
4.6.7 Set section for health-check and clean-up ......................................................... 87 
4.6.8 Creation Function of the Resource Reservation Section Specifying Template 88 

4.7 ShareDB Merge Feature ............................................................................................ 92 
4.7.1 Overview of ShareDB Merge Feature ................................................................ 92 
4.7.2 Set ShareDB Merge Feature .............................................................................. 94 
4.7.3 Display the Usage Data of ShareDB.................................................................. 96 
4.7.4 ShareDB Merge Configuration File ................................................................... 97 

4.8 Elapse Unlimited Feature ........................................................................................ 100 
4.8.1 Set Elapse Unlimited Feature .......................................................................... 100 
4.8.2 Display the Setting of Elapse Unlimited ......................................................... 101 

4.9 Scheduling with the change in the number of CPUs/GPUs................................... 101 
4.10 Support for Failover System .................................................................................... 102 
4.11 Scheduling in Problem on Node ............................................................................... 102 

4.11.1 Rescheduling at Node Problem ........................................................................ 102 
4.11.2 Forced Rerunning of Running Job ................................................................... 103 
4.11.3 Waiting to Forced Rerunning on Connection with BSV ................................. 103 
4.11.4 Keep Forward Schedule .................................................................................... 104 
4.11.5 Top Priority Execution of the Failure Encounter Request ............................. 105 

4.12 Deadline Scheduling ................................................................................................. 106 
4.12.1 Overview of Deadline Scheduling .................................................................... 106 
4.12.2 Setting of Deadline Scheduling ........................................................................ 106 
4.12.3 Submission of Deadline Request ...................................................................... 107 
4.12.4 Scheduling of Deadline Request ....................................................................... 107 
4.12.5 Usage Data of Deadline Request ...................................................................... 110 

4.13 Incorporating External Policy .................................................................................. 113 
4.13.1 Overview of Incorporating External Policy ..................................................... 113 
4.13.2 Setting of Incorporating External Policy feature ............................................ 114 
4.13.3 Connection to External Policy Daemon ........................................................... 115 
4.13.4 External Policy on Submitting ......................................................................... 115 
4.13.5 External Policy on Request Priority ................................................................ 116 
4.13.6 External Policy on Assignment ........................................................................ 117 
4.13.7 API Functions .................................................................................................... 119 

4.14 Power-saving Function ............................................................................................. 123 
4.14.1 Overview of Power-saving Function ................................................................ 123 
4.14.2 Dynamic Power-saving Function ..................................................................... 124 
4.14.3 Scheduled Power- saving Function .................................................................. 131 

4.15 Custom Resource Function ...................................................................................... 134 
4.15.1 Overview of Custom Resource Function .......................................................... 134 



 

viii 

 

4.15.2 Scheduling using Custom Resource Information ............................................ 134 
4.15.3 Examples of Using Custom Resource Function .............................................. 135 

4.16 Provisioning with OpenStack .................................................................................. 136 
4.16.1 Overview of Provisioning with OpenStack ...................................................... 136 
4.16.2 Setting Re-scheduling Waiting Time at Failure of Start of Execution Host . 137 
4.16.3 Scheduling of the Execution Hosts at Provisioning ........................................ 138 
4.16.4 The Waiting time of Stage-out of the Request on Baremetal Server ............. 140 

4.17 Provisioning with Docker ......................................................................................... 140 
4.17.1 Overview of Provisioning with Docker ............................................................ 140 
4.17.2 Setting Re-scheduling Waiting Time at Failure of Start of Execution Host . 140 
4.17.3 Scheduling of the Execution Hosts at Provisioning ........................................ 141 

4.18 Setting Function of the First Stage-in Time ........................................................... 141 
4.19 Pre-Staging Function ............................................................................................... 142 

4.19.1 Overview of Pre-Staging Function ................................................................... 142 
4.19.2 Setting of Stage-in Starting Time Threshold .................................................. 143 

4.20 Display the Detail of the Execution Host Information........................................... 143 
4.21 Node group selection function for minimum network topology ............................. 146 

4.21.1 Overview ............................................................................................................ 146 
4.21.2 Setting ................................................................................................................ 148 

4.22 FIFO Scheduling ....................................................................................................... 150 
4.23 Cloud Bursting Function .......................................................................................... 151 

4.23.1 Overview of Cloud Bursting Function ............................................................. 151 
4.23.2 Overview of Cloud Bursting Settings .............................................................. 153 
4.23.3 Setting of Cloud Bursting Template ................................................................ 154 
4.23.4 Setting of Cloud Bursting Node Group ............................................................ 157 
4.23.5 Setting of Node Agent ....................................................................................... 161 
4.23.6 Setting of Job Server on the instance .............................................................. 169 
4.23.7 Overview of Cloud Bursting Policy .................................................................. 173 
4.23.8 Setting of Scheduling ........................................................................................ 174 
4.23.9 Submit a request ............................................................................................... 178 
4.23.10 Policy of selection cloud ................................................................................ 180 
4.23.11 Forced Rerunning of Running Jobs for Cloud Bursting Requests ............. 181 

4.24 Request Assignment Mode ....................................................................................... 181 
4.25 Indication of the scheduled start time of execution during the scheduling process

 182 
4.26 Caching of non-schedulable requests ...................................................................... 183 

Chapter 5. Functions for SX-Aurora TSUBASA ................................................................ 184 
5.1 Overview .................................................................................................................... 184 
5.2 VE Assignment Feature ........................................................................................... 184 
5.3 Scheduling in VE Node Degradation ....................................................................... 184 

5.3.1 Overview of the Feature ................................................................................... 184 
5.3.2 Feature of Setting of Scheduling Method at VE Degradation ....................... 184 
5.3.3 Display by sstat ................................................................................................. 186 

5.4 HCA Assignment Feature ........................................................................................ 187 
5.4.1 Overview of HCA Assignment Feature ............................................................ 187 
5.4.2 HCA and the Information of Topology ............................................................. 189 
5.4.3 Using HCA ......................................................................................................... 195 
5.4.4 Topology information and HCA ........................................................................ 198 

5.5 Scheduling with topology performance ................................................................... 198 
5.5.1 Setting ................................................................................................................ 199 
5.5.2 Operation Considering Topology Performance ................................................ 199 

5.6 Suspend Jobs Using VEs .......................................................................................... 201 
5.6.1 Suspend ve jobs with the 5.6.1 smgr(1M) command ....................................... 201 
5.6.2 Suspending VE Jobs to Run Urgent Requests ................................................ 202 



 

ix 

 

5.7 Dynamic JSV Priority............................................................................................... 203 
5.7.1 Overview ............................................................................................................ 203 
5.7.2 Settings .............................................................................................................. 204 
5.7.3 Calculation Method ........................................................................................... 204 
5.7.4 Setting up calculation elements ....................................................................... 205 

Appendix.A Update history ..................................................................................................... 206 
Index ......................................................................................................................................... 207 
 

  



 

x 

 

Contents of Figures 
 

Figure 2-1 JobManipulator component map ............................................................... 2 

Figure 2-2 Example of Run Limit ............................................................................... 17 

Figure 2-3 Example of Assign Limit ........................................................................... 25 

Figure 2-4 Example of Complex Queue...................................................................... 27 

Figure 2-5 The movement of a request to forward space on the scheduler map .... 33 

Figure 2-6 Overtaking assignment for small-scale requests .................................... 36 

Figure 3-1 Scheduler Map ........................................................................................... 43 

Figure 3-2 Map Width and Pickup ............................................................................. 46 

Figure 3-3 Setting of the Map Width for each queue ................................................ 47 

Figure 3-4 The image of network topology node group definition ........................... 71 

Figure 4-1 Image of Merge of ShareDB ..................................................................... 93 

Figure 4-2 Example of scheduling that prioritizes job execution ........................... 146 

Figure 4-3 Example of network topology-first scheduling ...................................... 147 

Figure 4-4 Functional image of cloud bursting ....................................................... 151 

Figure 4-5 Image of cloud startup ............................................................................ 152 

Figure 4-6 Cloud bursting configuration ................................................................. 153 

Figure 4-7 Template and node group settings ......................................................... 153 

Figure 4-8 The policy of cloud bursting .................................................................... 173 

Figure 4-9 Setting of scheduling ............................................................................... 174 

Figure 5-1 SX-Aurora TSUBASA System ................................................................ 187 

Figure 5-2 Execution of Program.............................................................................. 188 

Figure 5-3 Example of Topology Configuration ....................................................... 188 

Figure 5-4 Example of Device Group with PCIeSW ............................................... 189 

Figure 5-5 Example of Device Group without PCIeSW .......................................... 190 

Figure 5-6 Assignment of VE at using HCA 1 ......................................................... 197 

Figure 5-7 Assignment of VE at using HCA 2 ......................................................... 198 

Figure 5-8 Example of the Operation Considering Topology Performance 1 ........ 200 

Figure 5-9 Example of the Operation Considering Topology Performance 2 ........ 200 

 

file:///C:/Users/kei_t/Box/RMG・SMG共有/NQSV/Manual/NQSV/NQSV_2306/g2ad06e-NQSVUG-JobManipulator.docx%23_Toc138147121


 

1 

 

Chapter 1. Overview of JobManipulator 
 

1.1 Introduction 

JobManipulator is the job scheduler which is tailored to mixed operation of single and 

multi-node job execution on the large-scale cluster system. It is based on FIFO 

mechanism and enables scheduling that assigns the earliest time for job execution by 

managing unused amount of calculation resources (CPU, memory and others).  

 

1.2 Features of JobManipulator 

The main features of JobManipulator are as follows. 

⚫ Backfill scheduling which enables high and effective utilization of calculation 

resources based on the required resources of CPU, memory and others and the 

planned execution start time (ELAPSE time)  

⚫ Fair-share Scheduling which enables to control the priority of requests based on 

the resource usage and the distribution ratio of calculation resources per user and 

group 

⚫ The escalation which optimizes resource assignment of requests when a space of 

resource occurred by an end of execution before a plan or occurred by cancel of 

requests  

⚫ Advance Reservation feature (Resource Reservation Section) which enables to 

reserve the starting time of request execution and required calculation resources 

before execution  

⚫ Interrupting assignment managing which ensures assignment of calculation 

resource to the high-priority request(urgent request, special request) and enables 

immediate execution of the request  

⚫ Power-saving function which automatically power off execution host which does 

not have plan of execution of requests and Maximum Number of operation nodes 

can be set 

 

In addition, JobManipulator has the following various scheduling functions, and it 

satisfies diverse user needs. 

⚫ The flexible scheduling setting functions by setting of run limit, the setting of 

assign limit, the setting of request priority order, the overtake control at pick-up, 

the setting of assign policy and the setting of a JSV assign policy, etc. 

⚫ Automatic setting function of the scheduling priority using more than 10 kinds of 

item and weighting of it. 

⚫ The Elapse Margin function which adds a margin time to elapsed time limit of a 

request so that the execution of a request does not overlap with other request 

⚫ The Custom Resource Function which defines a virtual resource and makes 

available in scheduling optionally 

⚫ Function of scheduling at node failure which reschedule request to normal node so 

that usage rates of calculation resources are maintained 



 

2 

 

Chapter 2. Environment Architecture 

2.1 Configuration of JobManipulator 

JobManipulator is job scheduler for NQSV exclusive use. It schedules requests which 

are submitted by each user managed by NQSV/Batch server. 

 

Figure 2-1 JobManipulator component map 

 

 

The following list shows the file configuration of JobManipulator.  

files explanation 

/opt/nec/nqsv/sbin/nqs_jmd JobManipulator scheduler 

/opt/nec/nqsv/bin/sstat The command to display scheduler 

information 

/opt/nec/nqsv/sbin/smgr The command to manage scheduler 

configuration 

/opt/nec/nqsv/sbin/sushare The command to manage user share 

Default path:  /etc/opt/nec/nqsv/nqs_jmd.conf Configuration file 

The file defines the operation 

environment of JobManipulator. 

This file is a text file managed by the 

system administrator. 

/etc/opt/nec/nqsv/jmtab List of configuration file of 

JobManipulator. 

This file is a text file managed by the 

system administrator. 

Default path: /etc/opt/nec/nqsv/jm_sharedb.conf The file contains user share 

distribution value and usage data. 



 

3 

 

This file is a text file managed by the 

system administrator. 

Default path: 

/var/opt/nec/nqsv/nqs_jmd_<scheduler_id>.log 

Log file 

The log file of JobManipulator. 

/etc/opt/nec/nqsv/nqs_jmd_cmdapi.conf Command environment file 

The file defines connection between 

JobManipulator commands and 

JobManipulator Scheduler 

(BatchServerHost). This file is a text 

file managed by the system 

administrator. 

 

2.2 Package Configuration 

The product of JobManipulator consists of following packages: 

Product name Package and the function contents 

NEC Network Queuing System V/ 

ResourceManager 

NQSV-Client-X.XX-X.x86_64.rpm 

A command interface function and user 

agent.(CUI) 

NEC Network Queuing System V/ 

JobManipulator 

NQSV-JobManipulator-X.XX-X.x86_64.rpm 

The batch scheduler. 

Please refer to NQSV User's Guide [Introduction] for installation procedure of each 

software package. 

 

2.3 Basic Environment Architecture 

The minimum procedure for starting JobManipulator is described in this section. 

 

2.3.1 Environment 
 

The following installation environment is assumed for procedure of the creation of 

JobManipulator environment. 

 

We assume that JobManipulator is installed in a batch server host. 

 

Batch server host 

Host name IP address Machine ID 

bsv1.nec.co.jp 192.168.1.1 10 

 

User 



 

4 

 

NQSV administrator user root (batch server host) 

General user  user (a batch server host and a client host) 

Queue 

Execution queue name execque1 

 

2.3.2 Installation of Package 
 

(1) Batch server host 

 

Install the NQSV/JobManipulator package on the batch server host. 

 

(2) Client hosts 

 

Install the NQSV/Client package on the client hosts on which display the information 

of scheduler and do the management operation. sstat, smgr, and sushare commands 

are included in it. They are called JobManipulator command. 

 

2.3.3 JobManipulator Start 
 

JobManipulator starts if you execute following command with root privilege. 

 

#systemctl start nqs-jmd 

 

When JobManipulator is started first, the status of scheduling is stop. 

Scheduling is started by execution of following command using smgr(1M) command 

after starting JobManipulator. 

For details refer to "2.7.10 Set ON/OFF of Scheduling Feature". 

 

#smgr -Po 

Smgr: start scheduling 

Start Scheduling. 

 

2.3.4 Queue Setting 
 

Queues to accept and execute a request on the NQSV system must be created. For 

creation of environment of NQSV system and creation and setting execution queues, 

refer to NQSV User's Guide [Introduction]. 

 



 

5 

 

For execution of requests, you need to bind execution queues to scheduler. Do bind with 

scheduler_id=1 because the default of scheduler ID is 1.  

 

#qmgr -P m 

Mgr: bind execution_queue scheduler execque1 scheduler_id=1 

 

The execution queue bound once is bound automatically at the time of a next start of 

JobManipulator. 

2.3.5 Setting of the Client Environment 
 

To display information of JobManipulator and to do management operation of it you 

can use the JobManipulator command on a client host. The setting of it is as follows. 

 

The file /etc/opt/nec/nqsv/nqs_jmd_cmdapi.conf is used for this setting. You should 

specify JobManipulator's running host name to jm_host in this file. 

 

Add following line to /etc/opt/nec/nqsv/nqs_jmd_cmdapi.conf using editor with root 

privilege. 

 

jm_host   bsv.nec.co.jp 

 

The JobManipulator command and man data installed in following paths. 

 

Command path 

  /opt/nec/nqsv/bin  

  /opt/nec/nqsv/sbin 

 

man path 

  /opt/nec/nqsv/man (English)  

  /opt/nec/nqsv/man /ja (Japanese) 

 

2.3.6 JobManipulator Stop 
 

JobManipulator stops if you execute following command with root privilege. 

 

#systemctl stop nqs-jmd 

 



 

6 

 

2.4 Unit Management 

NQSV/JobManipulator has one unit as follows. For detail of unit, refer to the manual of 

systemd and systemctl. 

 

Package Name 
Unit 

Target Unit Name Service Unit Name 

NQSV/JobManipulator nqs-jmd.target nqs-jmd.service 

 

The unit which has .service extension is called service unit and manages daemon. The 

unit which has .target extension is called target unit, and controls multiple units. 

(NQSV/JobManipulator has one target unit) 

 

Service unit is connected with target units. The connection become effective just after 

the installation of NQSV/JobManipulator. So NQSV/JobManipulator start 

automatically at starting of OS.  

 

If you want to disable automatic starting of NQSV/JobManipulator at starting of OS, 

execute following command with root privilege. It makes ineffective the connection 

with nqs-jmd.target. .service extension can be omitted. 

 

#systemctl disable nqs-jmd 

 

If you want to enable automatic starting of NQSV/JobManipulator at starting of OS 

again, you need to execute following command to enable the connection with service 

unit. 

 

#systemctl enable nqs-jmd 

 

2.5 Setting of JobManipulator Start 

 

2.5.1 Configuration file 
 

You can specify scheduler ID, batch server host name, etc. in the configuration file on 

the host which NQSV/JobManipulator is installed. Default path of the configuration 

file is /etc/opt/nec/nqsv/nqs_jmd.conf. You need to add lines to configuration file as 

follows. 

 

<directive>: <set value> 

 



 

7 

 

Settings of configuration file is as follows. 

directive set value explanation 

JM_SCHNO scheduler ID If you use scheduler ID except 1, you need to 

set this directive. The default is 1. You can 

specify an integer within the range of 0 to 15. 

JM_SCHNAME scheduler name You can specify character string which is 

displayed by -D option of qstat(1) command 

etc. 

BSV_HOST batch server host name When JobManipulator is installed on a 

different host from batch server host, you need 

to specify batch server host name to this 

directive. When this directive is omitted 

localhost is used. 

JM_CMDPORT port number <JM_CMDPORT>+<JM_SCHNO> is port 

number which is used by JobManipulator 

command to connect to JobManipulator. 

The default is 13000. 

 

Add directive to configuration file with root privilege if you need to. 

 

The content in the configuration file (/etc/opt/nec/nqsv/nqs_jmd.conf) is loaded when 

starting JobManipulator. If configuration file contain error, JobManipulator stops. 

 

If you want to use a different file from default configuration file, you need to edit the 

list of JobManipulator's configuration file which is written in /etc/opt/nec/nqsv/jmtab. 

Only "default" is written in /etc/opt/nec/nqsv/jmtab by default.  

 

If you want to use a different file from default configuration file, you need to comment 

out the "default" line using "#" or delete it and add full path of different configuration 

file. 

 

Example: in case of using /etc/opt/nec/nqsv/nqs_jmd_001.conf 

 

# JobManipulator scheduler startup table 

# "default" is /etc/opt/nec/nqsv/nqs_jmd.conf 

 

# default 

/etc/opt/nec/nqsv/nqs_jmd_001.conf 

 

2.5.2 Starting of the multiple JobManipulator 
 



 

8 

 

The procedure when more than one JobManipulator where scheduling setting is 

different are connected to one batch server for batch requests and for interactive 

requests, etc., is explained in this section. 

 

Firstly, you need to set unique scheduler ID to each JobManipulator. 

That is, when you run multiple JobManipulator on one machine, 

You need to make configuration files for each JobManipulator and specify different 

value to JM_SCHNO in each file. 

 

Next, you create definition files of the service unit into /etc/systemd/system. 

/etc/opt/nec/nqsv/nqs-jmd0.service.sample is a sample file. You can use this file as a 

reference to create a definition file. 

 

The following is a concrete example. In this example, the configuration file 

/etc/opt/nec/nqsv/nqs_jmd2.conf with 2 as scheduler ID is created. The following is an 

example nqs_jmd2.conf. 

 

# 

# Job scheduler configuration file 

# 

 

JM_SCHNO: 2 

#JM_SCHNAME: 

BSV_HOST: bsv.nec.co.jp 

#JM_CMDPORT : 13000 

#JM_RERUNWAIT: 600 

 

You create a file that describes the startup parameters you give to JobManipulator. If 

you don't want to give JobManipulator a startup parameter, you don't have to give it to 

JobManipulator. In this example, assume that the file /etc/opt/nec/nqsv/nqs_jmd2.env 

is created. Specify the parameters to be given after JM_PARAM=. 

 

# Environment variables for NQSV/JobManipulator 

# Parameters to give NQSV/JobManipulator 

 

JM_PARAM="-s ON" 

 

You create a definition file of the service unit. In this case, this file is 

/etc/systemd/system/nqs-jmd2.service. 

 

[Unit] 



 

9 

 

Description=NQSV JobManipulator - Job Scheduler 

PartOf=nqs-jmd.target 

 

[Service] 

Type=forking 

ExecStart=/opt/nec/nqsv/sbin/nqs_jmd -f /etc/opt/nec/nqsv/nqs_jmd2.conf $JM_PARAM 

EnvironmentFile=/etc/opt/nec/nqsv/nqs_jmd2.env 

PIDFile=/run/nec/nqsv/nqs_jmd.pid/02/jm_pid_file 

 

[Install] 

RequiredBy=nqs-jmd.target 

 

 

ExecStart= specifies the name of the executable file and its startup parameters. You 

can specify the configuration file that is create by you in -f. 

EnvironmentFile= specifies the file which contains the startup parameters. You can 

omit this line if you don't want to give any. 

PIDFile= is a file that describes the process ID of JobManipulator. You replace the xx 

part below with the scheduler ID. If the scheduler ID is a single digit, please replace 

the 0 with a two digit ID. 

 

PIDFile=/run/nec/nqsv/nqs_jmd.pid/xx/jm_pid_file 

 

You execute the following command with root privilege after creating the definition file 

of service unit. 

 

# systemctl daemon-reload 

 

You execute the following command with root privilege to start JobManipulator with 

scheduler ID 2. 

 

# systemctl start nqs-jmd2.service 

 

You execute the following command with root privilege to start JobManipulator 

automatically at OS start up. 

 

# systemctl enable nqs-jmd2.service 

 

You execute the following command with root privilege to start JobManipulators that 

start automatically at OS start up. 

 



 

10 

 

# systemctl start nqs-jmd.target 

 

You execute the following command with root privilege to stop JobManipulator with 

scheduler ID 2. 

 

# systemctl stop nqs-jmd2.service 

 

You execute the following command with root privilege to stop JobManipulators that 

start automatically at OS start up. 

 

# systemctl stop nqs-jmd.target 

 

You execute the following command with root privilege to deactivate that 

JobManipulator starts automatically at OS start up. 

 

# systemctl disable nqs-jmd2.service 

 

2.5.3 Updating from R1.05 or earlier to R1.06 or later 
 

It is different to manage JobManipulator between R1.05 or earlier and R1.06 or later 

when multiple JobManipulators is running. Therefore, you need to update manually 

your environment to R1.06 or later if multiple JobManipulator is running in R1.05 or 

earlier. The procedure is shown below. You need to have root privileges to perform the 

following procedures. 

 

In this case, if the following is written in /etc/opt/nec/nqsv/jmtab example. 

 

# JobManipulator scheduler startup table 

# "default" is /etc/opt/nec/nqsv/nqs_jmd.conf 

 

/etc/opt/nec/nqsv/nqs_jmd.conf 

/etc/opt/nec/nqsv/nqs_jmd2.conf 

/etc/opt/nec/nqsv/nqs_jmd3.conf 

 

In addition, suppose that each configuration file contained the following. 

 

nqs_jmd.conf 

# 

# Job scheduler configuration file 

# 



 

11 

 

 

JM_SCHNO: 1 

#JM_SCHNAME: 

BSV_HOST: bsv.nec.co.jp 

#JM_CMDPORT : 13000 

#JM_RERUNWAIT: 600 

 

nqs_jmd2.conf 

# 

# Job scheduler configuration file 

# 

 

JM_SCHNO: 2 

#JM_SCHNAME: 

BSV_HOST: bsv.nec.co.jp 

#JM_CMDPORT : 13000 

#JM_RERUNWAIT: 600 

 

nqs_jmd3.conf 

# 

# Job scheduler configuration file 

# 

 

JM_SCHNO: 3 

#JM_SCHNAME: 

BSV_HOST: bsv.nec.co.jp 

#JM_CMDPORT : 13000 

#JM_RERUNWAIT: 600 

 

You update JobManipulator. 

 

# rpm -Uvh NQSV-JobManipulator-1.06-xxx.x86_64.rpm 

 

You create definition files of the service units based on /etc/opt/nec/nqsv/nqs-

jmd0.service.sample. In this case, you create 3 files because 3 JobManipulators 

execute. Here are 3 definition files nqs-jmd.service, nqs-jmd2.service and nqs-

jmd3.service. 

 

nqs-jmd.service 



 

12 

 

[Unit] 

Description=NQSV JobManipulator - Job Scheduler 

PartOf=nqs-jmd.target 

 

[Service] 

Type=forking 

ExecStart=/opt/nec/nqsv/sbin/nqs_jmd -f /etc/opt/nec/nqsv/nqs_jmd.conf $JM_PARAM 

EnvironmentFile=/etc/opt/nec/nqsv/nqs_jmd.env 

PIDFile=/run/nec/nqsv/nqs_jmd.pid/01/jm_pid_file 

 

[Install] 

RequiredBy=nqs-jmd.target 

 

nqs-jmd2.service 

[Unit] 

Description=NQSV JobManipulator - Job Scheduler 

PartOf=nqs-jmd.target 

 

[Service] 

Type=forking 

ExecStart=/opt/nec/nqsv/sbin/nqs_jmd -f /etc/opt/nec/nqsv/nqs_jmd2.conf $JM_PARAM 

EnvironmentFile=/etc/opt/nec/nqsv/nqs_jmd2.env 

PIDFile=/run/nec/nqsv/nqs_jmd.pid/02/jm_pid_file 

 

[Install] 

RequiredBy=nqs-jmd.target 

 

nqs-jmd3.service 

[Unit] 

Description=NQSV JobManipulator - Job Scheduler 

PartOf=nqs-jmd.target 

 

[Service] 

Type=forking 

ExecStart=/opt/nec/nqsv/sbin/nqs_jmd -f /etc/opt/nec/nqsv/nqs_jmd3.conf $JM_PARAM 

EnvironmentFile=/etc/opt/nec/nqsv/nqs_jmd3.env 

PIDFile=/run/nec/nqsv/nqs_jmd.pid/03/jm_pid_file 

 



 

13 

 

[Install] 

RequiredBy=nqs-jmd.target 

 

The points to note when creating the definition file are as follows. 

 

1. The -f option of nqs_jmd for ExecStart is one of the configuration files to 

jmtab as a parameter. 

2. Environment files is the name of the file containing the startup parameters 

given to nqs_jmd. 

3. Match the scheduler ID in the configuration file to the directory specified in 

the PIDFile. 

 

You make systemd reload the definition files of the service units. 

 

# systemctl daemon-reload 

 

You set to start automatically the service units if necessary. 

 

# systemctl enable nqs-jmd.service nqs-jmd2.service nqs-jmd3.service 

 

2.5.4 Start Option of JobManipulator 
 

You can start JobManipulator with specifying IP address to perform failover or with 

specifying start/stop of scheduling feature or with specifying port number used for 

connection to BSV. 

 

To perform failover, start JobManipulator with specifying the -a option. For details, 

refer to "4.11 Support for Failover System". 

 

To specify scheduling status, start JobManipulator with specifying the -s option. 

Specifying ON to -s option means starting scheduling. Specifying OFF to -s option 

means stopping scheduling. Unspecifying of -s option means inheriting from status of 

previous starting. Unspecifying of -s option on first starting of JobManipulator means 

scheduling status is stop. 

 

If you want to start JobManipulator by changing the port number to connect to BSV 

from the default (602), please specify the -p option. 

 

You need to specify start option of JobManipulator to JM_PARAM in 

/etc/opt/nec/nqsv/nqs_jmd.env. 

 

Example: in case of start JobManipulator with -s ON, -a 192.168.1.1 and -p 12345. 



 

14 

 

# Environment variables for NQSV/JobManipulator 

# Parameters to give NQSV/JobManipulator 

 

JM_PARAM="-s ON -a 192.168.1.1 -p 12345" 

 

 

2.5.5 Command environment file 
 

The setting of the JobManipulator command using 

/etc/opt/nec/nqsv/nqs_jmd_cmdapi.conf file on client host is explained in this section. 

 

By default, sch_id is 1 in /etc/opt/nec/nqsv/nqs_jmd_cmdapi.conf as follows. In this 

setting, JobManipulator commands connect to JobManipulator whose scheduler ID is 

1. 

 

When you specify other than 1 to JM_SCHNO in configuration file, you need to specify 

same number to sch_id in /etc/opt/nec/nqsv/nqs_jmd_cmdapi.conf to change default 

scheduler ID. 

 

sch_id       1 

 

When multiple JobManipulator runs, to change scheduler ID from default scheduler ID 

at using JobManipulator command you need to use -s option. 

For details, please refer to NQSV User's Guide [Reference]. 

 

When you specify JM_CMDPORT directive at start of JobManipulator, to set 

port number to connect from JobManipulator command to JobManipulator you need to 

specify jm_base_port in /etc/opt/nec/nqsv/nqs_jmd_cmdapi.conf. 

<JM_CMDPORT>+<JM_SCHNO> is port number which is used by JobManipulator 

command to connect to JobManipulator. 

 

jm_base_port <port number which is specified to JM_CMDPORT> 

 

Specify JobManipulator's running host name to jm_host. 

 

jm_host <JobManipulator's running host name> 

 

2.6 Scheduler Log File Setting 

 



 

15 

 

Set to output the log file of the scheduler. The following parameters can be set for the 

log.  

 

The path of log file 

The path name of the scheduler log file can be specified optionally. If not specified, the 

logs are output to the default path (/var/opt/nec/nqsv/nqs_jmd_<scheduler_id>.log). 

When the path name is changed while operating the scheduler, the file of previous path 

name is closed, a file of a new path name is created, and the logs are output.  

 

Log level 

A level from 1 to 5 can be specified. The default setting of the log level is 1, and it is 

recommended to use. 

 

The size of log file 

It is possible to set the log file size. The default setting of the logfile size is 2MB. In 

case the size is not set, it will be set to the current size. In case the size is set to 0, it 

will be set to unlimited.  

 

The number of backup files  

It is also possible to set the backup numbers of the log files and default is set to 1. In 

case the number of backup is not set, it will be set to the current numbers of backup. If 

the number of backup is set to 0, it will be 1. If it exceeds the set size when output the 

log file, it will make the backup files with the numbering and output the log files to the 

new files. 

 

The set logfile subcommand of smgr(1M) sets these items.  

 

# smgr -P m 

 Smgr:set logfile file =  

/var/opt/nec/nqsv/nqs_jmd_<scheduler_id>.log  size = 1000000  save 

= 10 

 

2.7 Scheduling Parameter Setting 

This section describes how to set the parameters to schedule using JobManipulator.  

 

2.7.1 Run Limit 
 

"Run Limit" is the restriction value of request that can be executed simultaneously. 

2.7.1.1 Limits of the Number of Requests that can be Executed 
Simultaneously 

 



 

16 

 

It is possible to limit the number of requests that can be executed simultaneously. If it 

exceeds the limit, a request cannot be assigned to the same time. The items and 

descriptions are as below.  

This number is the amount of the requests which are assigned into scheduler map. 
 

Item Description 

Per scheduler 

Request run limit for 

scheduler 

global_run_limit  

This limits the number of requests which can be 

executed simultaneously in the scheduler. 

Request run limit per users 

or for each user 

global_user_run_limit  

This limits the number of requests which one user can 

execute simultaneously in the scheduler for all users 

or each user. The limit for each user is set by 

specifying a user or multiple users.  

Request run limit per groups 

or for each group 

global_group_run_limit  

This limits the number of requests which one group 

can execute simultaneously in the scheduler for all 

groups or each group. The limit for each group is set by 

specifying a group or multiple groups. 

Per queue 

Request run limit in a queue 

queue run_limit  

This limits the number of requests which can be 

executed simultaneously in a queue.  

Request run limit per user or 

for each user in a queue 

queue user_run_limit  

This limits the number of requests which one user can 

execute simultaneously in a queue for all users or each 

user.  

The limit for each user is set by specifying a user or 

multiple users. 

Request run limit per group 

or for each group 

queue group_run_limit  

This limits the number of requests which one group 

can execute simultaneously in a queue for all groups or 

each group.  

The limit for each group is set by specifying a group or 

multiple groups. 

Per complex queue 

Request run limit in a 

complex queue 

complex_queue run_limit  

This limits the number of requests which can be 

executed simultaneously in a complex queue.  

Request run limit per user in 

a complex queue 

complex_queue 

user_run_limit  

This limits the number of requests which one user can 

execute simultaneously in a complex queue.  

Note that this limit cannot be set for each user. The 

same limit value is used for all users. 

When 0 is specified, the value will be unlimited. 

(Default: unlimited)  

 

(Refer to "2.3.5 Setting of Complex Queue Feature" for details of complex queue.) 



 

17 

 

 

* The limit for each user/group isn't set by default and other limit value is 0 (unlimited) 

by default. 

* When the limit for each user/group is set, it is limited by this value but not the limit 

for users/groups. 

 

 

 

 

These limit values are set by using the set subcommand of smgr(1M). If the limit is not 

necessary, the limit values can be ignored by setting to 0.  

 

# smgr -P m 

Smgr: set global_run_limit = 100 

Smgr: set global_user_run_limit = 3 

Smgr: set global_user_run_limit = 2 users = (userA,userB) 

Smgr: set global_group_run_limit = 10 groups = groupA 

Smgr: set queue run_limit = 100 bq1 

Smgr: set queue user_run_limit = 2 bq1 

Smgr: set queue user_run_limit = 3 users = userA bq1 

Smgr: set queue group_run_limit = 15 bq1 

Smgr: set queue group_run_limit = 5 groups = groupA bq1 

Smgr: set complex_queue run_limit = 100 cq1 

Smgr: set complex_queue user_run_limit = 2 cq1 

 

Figure 2-2 Example of Run Limit 

 

Empty area of  is considered below. 

⚫ When the request run limit is 2: 

There is no request which can be assigned to this area. 



 

18 

 

⚫ When the  request run limit per user is 2: 

A userA's request cannot be assigned to this area but a userB's request can be 

assigned to this area.  

⚫ When the UserA's request run limit for each user is 3 and UserB's request run 

limit for each user is 2:  

Both userA's request and userB's request can be assigned to this area. 

 

The setting of per scheduler can be displayed by using sstat(1) with the -S,-f option. 

The setting of per queue can be displayed by using sstat(1) with the -Q,-f option. And 

the setting of each user/group can be displayed with --limit extra specified  

 

The setting of each user/group can be deleted by using the delete subcommand of 

smgr(1M).  

 

# smgr -P m 

Smgr: delete global_group_run_limit groups = groupA 

Smgr: delete global_user_run_limit users = (userA,userB) 

Smgr: delete queue group_run_limit groups = groupA bq1 

Smgr: delete queue user_run_limit users = userA bq1 

 

2.7.1.2 Limits of the Number of CPUs that can be Executed 
Simultaneously 

 

It is possible to limit the number of CPUs that can be executed simultaneously. If it 

exceeds the limit, a request cannot be assigned to the same time.  

 

CPU number that is limited by this function is calculated using limit on the number of 

CPUs that can be executed simultaneously of a request. This value can be displayed by 

using qstat(1) with -f options("CPU Number" of "Logical Host Resources" item). Refer 

to NQSV User’s Guide [Operation] for details. 

 

The items and descriptions are as below.  

Item Description 

Per scheduler 

CPU run limit per users or for 

each user 

global_user_cpu_run_limit  

This limits the number of CPUs which one user can 

execute simultaneously in the scheduler for all 

users or each user. The limit for each user is set by 

specifying a user or multiple users.  

CPU run limit per groups or for 

each group 

global_group_cpu_run_limit  

This limits the number of requests which one group 

can execute simultaneously in the scheduler for all 

groups or each group. The limit for each group is set 

by specifying a group or multiple groups. 



 

19 

 

Per queue 

CPU run limit per user or for 

each user in a queue 

queue user_cpu_run_limit  

This limits the number of CPUs which one user can 

execute simultaneously in a queue for all users or 

each user.  

The limit for each user is set by specifying a user or 

multiple users. 

CPU run limit per group or for 

each group 

queue group_cpu_run_limit  

This limits the number of CPUs which one group 

can execute simultaneously in a queue for all groups 

or each group.  

The limit for each group is set by specifying a group 

or multiple groups. 

 

* The limit for each user/group isn't set by default and other limit value is 0 (unlimited) 

by default. 

* When the limit for each user/group is set, it is limited by this value but not the limit 

for users/groups. 

 

These limit values are set by using the set subcommand of smgr(1M). If the limit is not 

necessary, the limit values can be ignored by setting to 0.  

 

# smgr -P m 

Smgr: set global_user_cpu_run_limit = 150 

Smgr: set global_user_cpu_run_limit = 100 users = (userA,userB) 

Smgr: set global_group_cpu_run_limit = 1500 

Smgr: set global_group_cpu_run_limit = 1000 groups = groupA 

Smgr: set queue user_cpu_run_limit = 150 bq1 

Smgr: set queue user_cpu_run_limit = 100 users = userA bq1 

Smgr: set queue group_cpu_run_limit = 1500 bq1 

Smgr: set queue group_cpu_run_limit = 1000 groups = groupA bq1 

 

The setting of per scheduler can be displayed by using sstat(1) with the -S -f option. 

The setting of per queue can be displayed by using sstat(1) with the -Q -f option. And 

the setting of each user/group can be displayed with --limit extra specified. 

UNLIMITED is displayed if the setting is 0(unlimited). 

 

The setting of each user/group can be deleted by using the delete subcommand of 

smgr(1M).  

 

# smgr -P m 

Smgr: delete global_user_cpu_run_limit users = (userA,userB) 

Smgr: delete global_group_cpu_run_limit groups = groupA 

Smgr: delete queue user_cpu_run_limit users = userA bq1 



 

20 

 

Smgr: delete queue group_cpu_run_limit groups = groupA bq1 

 

2.7.1.3 Limits the Number of VEs that can be Executed Simultaneously 

It is possible to limit the number of VEs that can be executed simultaneously. If it 

exceeds the limit, a request cannot be assigned or escalation to the same time.  

VE number that is limited by this function is calculated using limit on the number of 

VEs that can be executed simultaneously of a request. This value can be displayed by 

using qstat(1) with -f options("VE Node Number" of "Logical Host Resources" item). 

Refer to NQSV User’s Guide [Operation] for details. 

 

This function can be used on the environment that execution host is SX-Aurora 

TSUBASA system. 

 

The items and descriptions are as below.  

Item Description 

Per scheduler 

VE run limit per users or for 

each user 

global_user_ve_run_limit  

This limits the number of VEs which one user can 

execute simultaneously in the scheduler for all users 

or each user. The limit for each user is set by 

specifying a user or multiple users.  

VE run limit per groups or for 

each group 

global_group_ve_run_limit  

This limits the number of requests which one group 

can execute simultaneously in the scheduler for all 

groups or each group. The limit for each group is set 

by specifying a group or multiple groups. 

Per queue 

VE run limit per user or for 

each user in a queue 

queue user_ve_run_limit  

This limits the number of VEs which one user can 

execute simultaneously in a queue for all users or 

each user.  

The limit for each user is set by specifying a user or 

multiple users. 

VE run limit per group or for 

each group 

queue group_ve_run_limit  

This limits the number of VEs which one group can 

execute simultaneously in a queue for all groups or 

each group.  

The limit for each group is set by specifying a group 

or multiple groups. 

 

* The limit for each user/group isn't set by default and other limit value is 0 (unlimited) 

by default. 

* When the limit for each user/group is set, it is limited by this value but not the limit 

for users/groups. 

 



 

21 

 

These limit values are set by using the set subcommand of smgr(1M). If the limit is not 

necessary, the limit values can be ignored by setting to 0.  

 

# smgr -P m 

Smgr: set global_user_ve_run_limit = 150 

Smgr: set global_user_ve_run_limit = 100 users = (userA,userB) 

Smgr: set global_group_ve_run_limit = 1500 

Smgr: set global_group_ve_run_limit = 1000 groups = groupA 

Smgr: set queue user_ve_run_limit = 150 bq1 

Smgr: set queue user_ve_run_limit = 100 users = userA bq1 

Smgr: set queue group_ve_run_limit = 1500 bq1 

Smgr: set queue group_ve_run_limit = 1000 groups = groupA bq1 

 

The setting of per scheduler can be displayed by using sstat(1) with the -S -f option. 

The setting of per queue can be displayed by using sstat(1) with the -Q -f option. And 

the setting of each user/group can be displayed with --limit extra specified. 

UNLIMITED is displayed if the setting is 0(unlimited). 

 

The setting of each user/group can be deleted by using the delete subcommand of 

smgr(1M).  

 

# smgr -P m 

Smgr: delete global_user_ve_run_limit users = (userA,userB) 

Smgr: delete global_group_ve_run_limit groups = groupA 

Smgr: delete queue user_ve_run_limit users = userA bq1 

Smgr: delete queue group_ve_run_limit groups = groupA bq1 

 

 

The change of run limit does not make an impact on assigned requests. Even if they 

exceed the changed limit, assignment of the assigned requests does not be changed. 

The changed limit becomes effective after the next scheduling (scheduling per interval 

or escalation) 

 

 

2.7.2 Assign Limit 
 

It is possible to set the number of requests that can be assigned simultaneously. The 

items and descriptions are shown below. This number is the amount of the requests 

which are assigned into scheduler map. It includes the number of running requests. 

 

* There are no priorities among following limits. They are checked by each limit value, 

and it will stop assignment when it conflicts with any limit.  



 

22 

 

 

Item Description 

Per scheduler (core) 

Request assign limit for user 

global_user_assign_limit 

This limits the number of requests which can be 

assigned simultaneously for one user in the scheduler.  

If it exceeds this assign limit, a request cannot be 

assigned.  

Note that this limit cannot be set for each user. The 

same limit value is used for all users. 

When 0 is specified, the value will be unlimited. 

(Default: unlimited)  

Per queue 

Request assign limit for user 

in a queue 

queue user_assign_limit 

This limits the number of requests which can be 

assigned simultaneously for one user in a queue.  

If it exceeds this assign limit, a request cannot be 

assigned. 

Note that this limit cannot be set for each user. The 

same limit value is used for all users.  

When 0 is specified, the value will be unlimited. 

(Default: unlimited)  

Per complex queue 

Request assign limit for user 

in a complex queue 

complex_queue 

user_assign_limit  

This limits the number of requests which can be 

assigned simultaneously for one user in a complex 

queue.  

If it exceeds this assign limit, a request cannot be 

assigned. 

Note that this limit cannot be set for each user. The 

same limit value is used for all users.  

When 0 is specified, the value will be unlimited. 

(Default: unlimited)  

Per host 

Limit of the usable ratio of 

CPUs on the host 

executionhost 

cpunum_limit_ratio 

This limit controls the usable ratio of the number of 

CPUs on the host.  

This limits the ratio for simultaneous use of the total 

number of CPUs on the host, and the value is specified 

by the percent value divided by 100.  

When 1 (= 100%) is set for the CPU limit, jobs for the 

total number of CPUs on the machine are assigned. If 

the host has 8 CPUs and 2 (= 200%) is set for this 

limit, jobs for 16 CPUs can be assigned.  

Setting 0 (= 0%), this limit will be invalid and the 

number of CPUs is not checked for assigning jobs.  

Limit of the usable ratio of 

memory size on the host 

This limit controls the usable ratio of memory size on 

the host.  

This limits the ratio of total memory size which can be 



 

23 

 

executionhost 

memsz_limit_ratio 

used simultaneously on the host, and the value is 

specified by the percent value divided by 100.  

When 1 (= 100%) is set for the memory limit, jobs for 

the total memory of the machine are assigned. If the 

host has 10 GB of memory and 2 (= 200%) is set for 

this limit, jobs for 20 GB of memory can be assigned.  

Setting 0 (= 0%), this limit will be invalid and the 

memory size is not checked for assigning jobs.  

Per RSG 

Limit of the usable ratio of 

CPUs per RSG 

executionhost 

rsg_cpunum_limit_ratio 

This limit controls the usable ratio of the number of 

CPUs per RSG.  

This limits the ratio for simultaneous use of the 

number of CPUs set per RSG (Icpu), and the value is 

specified by the percent value divided by 100.  

When 1 (= 100%) is set for the CPU limit, jobs for the 

number of CPUs set per RSG (Icpu) are assigned. If 

Icpu = 4 and 2 (= 200%) is set for this limit, jobs for 8 

CPUs can be assigned.  

Setting 0 (= 0%), this limit will be invalid and the 

number of CPUs is not checked for assigning jobs.  

Limit of the usable ratio of 

memory size per RSG 

executionhost 

rsg_memsz_limit_ratio 

This limit controls the usable ratio of memory size per 

RSG. 

This limits the ratio for simultaneous use of the 

memory size per RSG (Imem), and the value is 

specified by the percent value divided by 100.  

When 1 (= 100%) is set for the memory limit, jobs for 

the memory size set per RSG (Imem) are assigned. If 

Imem is 10 GB and 2 (= 200%) is set for this limit, jobs 

for 20 GB of memory can be assigned.  

Setting 0 (= 0%), this limit will be invalid and the 

memory size is not checked for assigning jobs.  

 

RSG (Resource Sharing Group) is the name of each divided unit by resource division of 

execution host by CPUSET function. Refer to NQSV User's Guide [Management] for 

details of the CPUSET function. 

 

- If you change RSG of a queue, it is necessary to delete the requests submitted in 

the queue and submit these requests again.  

- When using the CPU ratio (cpunum_limit_ratio) and Socket Scheduling 

function together, if the CPU ratio is set to a value other than 1, the number of 

CPUs that can be assigned to the job differs from the number installed on the 

execution host, so CPU core can not be assigned by core unit to the job. 

Therefore, enter the following contents in the job server environment setting 

file (/etc/opt/nec/nqsv/ 

nqs_jsv.env) and start the job server. 

 

  JSV_PARAM = '--no-cpu-topology' 

 



 

24 

 

In this case, CPU core is assigned by socket unit to the job. Refer to 18.1 Socket 

Scheduling function in the NQSV User's Guide [Management] for details of the 

Socket Scheduling function. 

 

 

These limit values are set by using the set subcommand of smgr(1M). When the 

resource limit is not necessary, the limit values can be ignored by setting to 0.  

 

 

 

By specifying a node group instead of an execution host, the limit values can be set to 

all execution hosts in the specified node group.  

 

 # smgr -P m 

 Smgr: set executionhost cpunum_limit_ratio = 2 node_group = GrpA 

 Smgr: set executionhost memsz_limit_ratio = 0 node_group = GrpA 

 Smgr: set executionhost rsg_cpunum_limit_ratio = 1.5 rsg_number = 

0 node_group = GrpA 

 Smgr: set executionhost rsg_memsz_limit_ratio = 0 rsg_number = 0 

node_group = GrpA 

 

 

If an execution host is added to a node group in BSV, to apply the settings that have 

been specified for the node group to the added execution host, specify the same settings 

to the added execution host individually, or specify the settings to the node group 

again. If an execution host is deleted from a node group, the settings specified for the 

node group remains as is. Therefore, it is necessary to specify the settings to each 

execution host of the node group.  

 

 

The above settings can be specified only for the execution hosts that have been 

registered (attached) to the system. 

If an execution host is deleted (detached) from the system, the settings of the deleted 

execution host are also deleted from the DB.  

 

# smgr -P m 

 Smgr: set global_user_assign_limit = 10 

 Smgr: set queue user_assign_limit = 0 bq1 

 Smgr: set complex_queue user_assign_limit = 0 cq1 

 Smgr: set executionhost cpunum_limit_ratio = 2 hostname 

 Smgr: set executionhost memsz_limit_ratio = 0 hostname 

 Smgr: set executionhost rsg_cpunum_limit_ratio = 1.5 rsg_number = 

0 hostname 

 Smgr: set executionhost rsg_memsz_limit_ratio = 0 rsg_number = 0 

hostname 



 

25 

 

The settings specified for the execution host can be displayed by using sstat(1) with -E 

[-a] specified. The -E [-a] -g node_group option displays the limit for available resources 

of the execution host belonging to the specified node group.  

 

 #sstat -E -g node_groupA 

 ExecutionHost   CPUNRatio  MemRatio 

 --------------- ------------------- 

 hostA            2.000000  0.00000 

   (RSG 0)        1.500000  0.00000 

   (RSG 1)        0.500000  0.00000 

 hostB            2.000000  0.00000 

   (RSG 0)        1.500000  0.00000 

   (RSG 1)        0.500000  0.00000 

 

Figure 2-3 Example of Assign Limit 

 

 

2.7.3 Request Priority Order 
 

It is possible to set the parameters to tune the order of priority for scheduling requests. 

(3.1.3 Scheduling Priority) The weight coefficients for parameters are specified by 

using the set subcommand of smgr(1M). The followings are the parameters which can 

be set.  

 

Parameter Name Description 

weight_request_priority weighted coefficient of request priority 



 

26 

 

weight_cpu_number weighted coefficient of declared number of CPUs 

weight_elapse_time weighted coefficient of declared ELAPSE time 

weight_memory_size weighted coefficient of declared memory size 

weight_job_number weighted coefficient of number of jobs 

weight_ve_number weighted coefficient of declared number of VEs 

weight_run_wait_time 
weighted coefficient of period of waiting for 

execution from being submitted 

weight assign_wait_time 
weighted coefficient of period of waiting for 

execution from becoming assignable 

weight_restart_wait_time 
weighted coefficient of period of waiting for 

restart from being suspended 

weight_user_share  weighted coefficient of user share value 

baseup_interrupted 
based up value for a request suspended by urgent 

request 

baseup_reschedule based up value for rescheduled requests 

baseup_user_definition  based up value for user definition 

pastusage_weight_request_priority 
weighted coefficient for past usage data of request 

priority 

pastusage_weight_cpu_number 
weighted coefficient for past usage data of 

number of CPU 

pastusage_weight_elapse_time 
weighted coefficient for past usage data of elapse 

time 

pastusage_weight_memory_size 
weighted coefficient for past usage data of 

memory size 

pastusage_weight_ve_number 
weighted coefficient for past usage data of 

number of VE 

2.7.4 Queue Type 
 

To use 4.1 Urgent Request and 4.2 Special Request, set "urgent" or "special" to the 

queue type of the execution queue to start the request immediately by interrupting the 

running request. The queue type is specified by using the set queue type subcommand 

of smgr(1M). Note that the setting above is valid only for JobManipulator, and it has no 

influence on the attribute of the execution queue.  

 

# smgr -P m 

 Smgr: set queue_type = urgent bq1   set bq1 to an urgent queue 

 Smgr: set queue_type = special bq1  set bq1 to a special queue 



 

27 

 

 Smgr: set queue_type = normal bq1   set bq1 to a normal queue 

 

The queue type of a queue which has a request cannot be changed. 

  

2.7.5 Setting of Complex Queue Feature 

Outline of Functions  

 

It is possible to set the following 3 limits for a group of multiple queues. That feature is 

called the complex queue feature and a group of multiple queues is called complex 

queue. 

 

Request run limit  

Request run limit for user  

Request assign limit for user  

 

This enables to set the limits not only for a queue but also for the complex queues. A 

queue is also able to belong to multiple complex queues and limits can be set more 

flexibly. 

 

* The following is the image of complex queue.  

 

Figure 2-4 Example of Complex Queue 

 

 



 

28 

 

It is set by using smgr(1M) command for setting the complex queue and 

adding/deleting the execution queues to/from complex queues. And it is possible to 

show the complex queue information by using sstat(1). The setting of complex queue 

will be activated from scheduling after the setting is completed.  

 

2.7.5.1 Creating Complex Queue 

Create the complex queue by using create complex queue subcommand of smgr(1M). 

 

# smgr -P m 

 Smgr: create complex_queue = complex-queue-name  queue = (queue-

name [,queue-name...]) 

 

⚫ Specify the complex queue name to complex-queue-name.  

⚫ The longest name of complex queue is 63 characters.  

⚫ Each limit (Request run limit/Request run limit for user/Request assign limit for 

user) will be set to unlimited just after creating the complex queue.  

⚫ To queue-name, specify the name of execution queue that belongs to the created 

complex queue.  

⚫ The longest execution queue name is 15 characters.  

⚫ It is possible to specify the following queues as an execution queue.  

○ The queue which belongs to other complex queues (The queues can 

belong to multiple complex queues.)  

○ The execution queues whose queue type are different  

○ The queue which is not controlled by JobManipulator.  

⚫ It is necessary to have the administrator privileges to create the complex queue.  

 

 

In case there are any defects in the specified complex queue name or execution queue 

name, the complex queue will not be created.  

 

 

* In following cases, it leads to an error and the complex queue is not created.  

⚫ In case the creating complex queue already exist  

Error message: Specified complex queue already exists.  

⚫ In case the name of the creating complex queue exceeds 63 characters  

Error message: Complex queue name too long.  

⚫ In case the name of the execution queue which belongs to complex queue 

exceeds 15 characters.  

Error message: Execution queue name too long.  

⚫ In case a user who executed commands does not have the administrator 

privileges  

Error message: Operation not permitted.  

 



 

29 

 

2.7.5.2 Deleting Complex Queue 

Delete the complex queue by using the delete complex_queue subcommand of 

smgr(1M). 

 

# smgr -P m 

 Smgr: delete complex_queue = complex-queue-name 

 

To complex-queue-name, specify the name of the complex queue to be deleted.  

It is necessary to have the administrator privileges to delete the complex queue.  

 

* In following cases, it leads to an error and the complex queue is not deleted.  

⚫ In case the deleting complex queue does not exist  

Error message: Specified complex queue doesn't exist.  

⚫ In case a user who executed commands does not have the administrator 

privileges  

Error message: Operation not permitted.  

 

 

 

 

2.7.5.3 Adding Execution Queue to Complex Queue 

Add the complex queue by using the add complex_queue subcommand of smgr(1M). 

 

# smgr -P m 

 Smgr: add complex_queue = (queue-name [,queue-name...])  complex-

queue-name 

 

⚫ Specify the complex queue name to complex-queue-name.  

⚫ The longest name of execution queue is 15 characters.  

⚫ It is possible to specify the following execution queue to queue-name.  

○ The queue which belongs to other complex queues (The queues can 

belong to multiple complex queues.)  

○ The execution queue whose queue type are different  

○ The queue can belong to complex queue in advance even if it is 

currently managed by other scheduler or it is to be managed by 

JobManipulator in the future.  

⚫ Execution queues can belong to multiple complex queues. And also, it is 

possible to activate all the complex queues.  

⚫ It is necessary to have the administrator privileges to add the complex queue.  

 

 

In case the name of any specified execution queue exceeds the character limits, it does 

not add to any execution queue.  



 

30 

 

 

 

* In following cases, it leads to an error and execution queue is not added to the 

complex queue.  

⚫ In case the specified complex queue does not exist  

Error message: Specified complex queue doesn't exist.  

⚫ In case a user who executed commands does not have the administrator 

privileges  

Error message: Not permitted to modify attribute.  

⚫ In case the name of the specified execution queue exceeds 15 characters.  

Error message : Execution queue name too long.  

 

2.7.5.4 Removing Execution Queue from Complex Queue 

Remove the execution queue by using the remove complex_queue subcommand of 

smgr(1M). 

 

# smgr -P m 

 Smgr: remove complex_queue = (queue-name [,queuename...])  

complex-queue-name 

 

* In following cases, it leads to an error and execution queue will not be removed from 

the complex queue.  

⚫ In case the specified complex queue does not exist. 

Error message: Specified complex queue doesn't exist.  

⚫ In case the specified execution queue doesn't exist in complex queue.  

Error message: Specified execution queue doesn't exist in complex queue.  

⚫ In case of specifying the same execution queue doubly  

Error message: Same execution queue name were specified doubly.  

⚫ In case a user who executed commands does not have the administrator 

privileges  

Error Message: Not permitted to modify attribute. 

 

2.7.5.5 Setting of Complex Queue 

It is possible to set limits to complex queue by using the following three subcommands 

of smgr(1M). 

 

[Request run limit]  

# smgr -P m 

 Smgr: set complex_queue run_limit = run-limit complex-queue-name 

 



 

31 

 

⚫ To run-limit, specify the request run limit to complex queue specified by 

complex-queue-name.  

⚫ It will be set to unlimited in case 0 is specified to run-limit.  

⚫ The defaults of these limits are unlimited.  

⚫ The maximum value of these limits are up to 2^31.  

 

[Request run limit for user]  

# smgr -P m 

 Smgr: set complex_queue user_run_limit = run-limit complex-queue-

name 

 

⚫ To run-limit, specify the request run limits for user to complex queue specified 

by complex-queue-name.  

⚫ It will be set to unlimited in case 0 is specified to run-limit.  

⚫ The defaults of these limits are unlimited.  

⚫ The maximum value of these limits are up to 2^31.  

 

[Request assign limit for user]  

# smgr -P m 

 Smgr: set complex_queue user_assign_limit = assign-limit complex-

queue-name 

 

⚫ To assign-limit, specify the request assign limit for user to complex queue 

specified by complex-queue-name.  

⚫ It will be set to unlimited in case 0 is specified to run-limit.  

⚫ The defaults of these limits are unlimited.  

⚫ The maximum value of these limits are up to 2^31.  

 

* In following cases, it leads to be error and not to change the limits.  

⚫ In case the specified complex queue does not exist  

Error message: Specified complex queue doesn't exist.  

⚫ In case the specified limits exceeds the maximum value of 2^31  

Error message: Assign-limit out of bounds.  

Run-limit out of bounds.  

⚫ In case a user who executed commands does not have the administrator 

privileges  

Error message: Not permitted to modify attribute.  

 

2.7.5.6 Showing Complex Queue Information  

The information of the complex queue is displayed by using the -C option of sstat(1). 

 

# sstat -C 

 QueueName   Type     RL  URL  UAL  TOT   EXC   QUE  ASG   RUN    EXT  HLD   SUD  



 

32 

 

 ---------- --------- ------------  --------------------------------------------

-  

 Complex_1   -       ULIM ULIM ULIM  0     0     0     0     0     0     0     0  

 [jmq0]      Urgent  ULIM ULIM ULIM  0     0     0     0     0     0     0     0  

 [jmq1]      Special ULIM ULIM ULIM  0     0     0     0     0     0     0     0  

 Complex_2   -       ULIM ULIM ULIM  0     0     0     0     0     0     0     0  

 [jmq2]      Normal  ULIM ULIM ULIM  0     0     0     0     0     0     0     0  

 [jmq4]      -       -    -    -     -     -     -     -     -     -     -     - 

 

The displayed contents are followings.  

⚫ The name of complex queue  

⚫ The execution queue which belongs to the complex queue  

⚫ Request run limit  

⚫ Request run limit for user  

⚫ Request assign limit for user  

 

* Regarding the queue which is not controlled by JobManipulator, only the queue name 

is displayed and other items displays "-" like as the above example of jmq4.  

 

2.7.6 Setting of Escalation Feature 

Early Execution  

If a request finishes earlier than the scheduled execution time, the assigned space of 

node resources will be free. In order to fill this free space, the requests assigned 

backward on the same node are assigned if they can be executed immediately. The 

target request is selected with the following order.  

 

1. A request with highest scheduling priority at the moving up moment  

2. A request which was submitted earliest  

 

JobManipulator performs "Early Execution" as default, and this feature is not 

influenced by the following settings of the escalation feature.  

 

Setting the interval of escalation  

JobManipulator supports the feature that checks free space on the scheduler map and 

moves requests to suitable spaces periodically at regular intervals. This feature is 

"Escalation". The value of interval of escalation can be set by set escalation interval 

subcommand of smgr(1M). ( Unit: scheduling interval )  

There are the following two types of escalation.  

 

⚫ Forward Escalation 

The execution start time moves forward without change of node.  



 

33 

 

⚫ Side Escalation 

The execution start time moves forward with change of node.  

If there are unfilled resources both forward (forward of the same node) and side 

(forward of the other node), forward escalation will be executed.  

 

Figure 2-5 The movement of a request to forward space on the scheduler map 

 

 

Note that a request with SUSPENDED status cannot be moved by escalation with node 

change.  

By using the set use_escalation subcommand of smgr(1M), it is possible to choice one of 

following three settings of escalation.  

⚫ off : Escalation is not executed 

⚫ forward : Forward Escalation. 

⚫ all : Forward Escalation or Side Escalation. 

 

The default is off. ( = not execute escalation ) 

Even if the escalation feature is set to off, early execution will be performed if a request 

finishes earlier and at the timing a request assigned backward can be moved.  

 

  Early Execution Escalation 

Execution 

Timing 
When a request is exiting 

Executes with intervals 

defined by user 

Target 
The requests assigned on the same node 

with the finished request 
All of the assigned requests 



 

34 

 

ON/OFF 

Setting 
none It can be set by smgr (1M) 

 

The following is an example of setting the escalation feature to off.  

 

# smgr -P m 

 Smgr: set use_escalation = off 

 

Specifying the conditions of selecting target requests to be 
escalated 

Side Escalation is a high-load processing, because the batch job/jobs of target request 

need to be deleted once and then perform the process of staging. In order to avoid that 

Side Escalation happens frequently, following conditions of selecting the target request 

can be set in JobManipulator. The conditions can be set per queue.  

 

⚫ When the difference of scheduled start time between before escalation and 

after escalation is less than or equal to a limited time (Side Escalation 

Difference Limit), Side Escalation is not performed.  

⚫ When the planned start time is within a limited period from current time 

(Side Escalation Start Time Limit) and the number of jobs with execution 

host change is larger than a limited number (Side Escalation Number of 

Jobs Limit), Side Escalation is not performed. 

 

The conditions of selecting target requests of escalation can be set by using the set 

queue escalation_limit subcommand of smgr(1M). 

The conditions can be confirmed by sstat -Q -f.  

 

⚫ Min Forward Time: Side Escalation Difference Limit 

⚫ No Escalation Period: Side Escalation Start Time Limit 

⚫ Max Side Escalation Jobs: Side Escalation Number of Jobs Limit 

 

Specifying adjusting time of estimated stage-in time 

The stage-in time (the time of file staging) is considered when determining whether 

Side Escalation can be done to the request. The considered stage-in time is estimated 

by the largest value of stage-in time among the previous stage-in, however, the real 

stage-in time may fluctuate to a certain degree according to the operation. If the stage-

in isn't completed by the scheduled start time of the request due to the fluctuation, the 

Side Escalation of this request will be canceled. 

To reduce its impact, a feature adding a certain time to the estimated time of stage-in 

time is supported. The value should be set according to the degree of fluctuation of 

stage-in time of the requests in your system by system manager. 

 

The value can be set by using set stage-in_margin subcommand of smgr(1M). 



 

35 

 

The setting can be displayed by using sstat(1) with the -S,-f option.  

 

#sstat -S -f 

JobManipulator Server Host: bsv.nec.co.jp 

    JobManipulator Version   = R1.00 

    JobManipulator Status    = Active 

            : 

    Keep Forward Schedule    = 0S 

    Stage-in Margin = { 

      Additional Margin for Escalation = 0S 

      Stage-in Threshold = 0S 

      First Stage-in Time = 0S 

    } 

: 

 

2.7.7 No Overtaking Control at Pick-up 
 

The no overtaking control feature is supported in order to avoid that a large scale 

request is not executed eternally.  

 

No overtaking control is set for each queue type with the set use_overtake_priority 

subcommand of the smgr (1M) command. If the setting is off, no overtaking control will 

not be performed 

 

# smgr -P m 

 Smgr: set use_overtake_priority = on normal 

 

In the above example, no overtaking control for normal queues is set to valid. 

 

No overtaking control is realized by setting a scheduling priority threshold (threshold 

for overtaking control). If the scheduling priority of a request exceeds the no overtaking 

control threshold, scheduling of that request takes precedence. Until the execution 

start time of the request is determined, the request whose other scheduling priority is 

lower than the no overtaking control threshold cannot determine the scheduled 

execution start time. 

The no overtaking control threshold is set with the set overtake_priority subcommand 

of smgr (1M) command. The value is set for each queue type. 

The following is an example of setting the scheduling priority not to be overtaken for 

normal queues to 100.  

 

# smgr -P m 

 Smgr: set overtake_priority = 100 normal 



 

36 

 

 

The no overtaking control setting does not affect requests submitted to queues that are 

more urgent than the set queue type. For example, even if the scheduling priority value 

of a request in the normal queue exceeds the threshold of no overtaking control of the 

normal queue, the request submitted to the special queue or the urgent queue can be 

overtaken. 

No overtaking control is controlled from the timing when the request scheduling 

priority exceeds the no overtaking control threshold. Requests that overtake and 

determine the scheduled execution start time before the threshold is exceeded will 

start execution as scheduled. 

 

2.7.7.1 Overtaking Assignment for Small-scale Requests 

If you enable a scheduling priority value that disallows overtaking, and a large-scale 

request exceeds that priority value, then any requests submitted after that will not be 

assigned. Even if there is a small request that can be executed in the free space on the 

scheduler map, it will not be assigned and will wait for the large request to be 

assigned. It provides an overtaking assignment function for small-scale requests that 

allows assignment of requests that fit in the free space between the beginning of the 

scheduler map and the end of the scheduler map. 

This feature allows small-scale requests to be executed in the gap first, without having 

to wait for large-scale requests to be assigned, leading to higher utilization and 

improved TAT (Turn Around Time) for jobs. 

 

 

Figure 2-6 Overtaking assignment for small-scale requests 

 

This function is turn on or off with the set overtake allow_small_request subcommand 

of the smgr(1M) command. 

 

# smgr -P m 

 Smgr: set overtake allow_small_request = on 

 

When this function is on, small-scale requests that fit in the shaded area in Figure 2-6 

will be assigned to overtake the yellow large-scale requests. 



 

37 

 

 

 

If a large-scale request is assigned and then escalated due to the termination of a 

forward job, the small request that was previously assigned to a gap in the scheduler 

map may be a disincentive to escalation. 

 

 

 

2.7.8 Setting of Assign Policy 

2.7.8.1 CPU number concentrated assignment or Resource balance 
assignment 

JobManipulator supports the CPU number concentrated assignment policy to which 

jobs are assigned to one node until usable limit of the number of CPUs and the 

resource balanced assignment policy to which jobs are assigned so that number of 

using CPU may become uniform. 

When the policy is "CPU number concentrated assignment", space nodes are secured as 

much as possible in order to make it easy to execute large scale request. When the 

policy is "Resource balanced assignment", it is possible to distribute load among nodes. 

 

CPU number concentrated assignment (CPU_concentration) 

Jobs are assigned to a node until usable limit of the number of CPUs. Jobs are not 

assigned to the other node until exceeds usable limit of the number of CPUs. 

(Concentrated use of resources) 

 

Resource balanced assignment (resource_balance) 

Jobs are assigned to a node whose CPU usage is least at the assignment timing. 

 

This assignment policy per scheduler can be set by the set assign_policy subcommand 

of smgr(1M). 

The default is CPU_concentration. 

 

# smgr -P m 

 Smgr: set assign_policy = CPU_concentration 

 

In the above example, the "CPU number concentrated assign" policy is set as the 

assignment policy of the scheduler. 

 

The operator privilege or higher is required for this setting.  

 

The assignment policy per queue can be set by the set queue assign_policy 

subcommand of smgr(1M).  



 

38 

 

 

# smgr -P m 

 Smgr: set queue assign_policy=CPU_concentration bq1 

 

In the above example, the "CPU number concentrated assignment" policy is set as the 

request assign policy of the queue "bq1". 

 

The operator privilege or higher is required for this setting.  

The assignment policy per queue is not set by default. In this case, the assignment 

policy per scheduler is applied. When the setting of the assignment policy per queue 

and the assignment policy per scheduler is different the assignment policy per queue is 

applied. 

 

In the operation by which one job occupies a node and executes, the result of "CPU 

number concentrated assignment" and "resource balance assignment" are same. In 

such operation, it is recommended that you set the "CPU number concentrated 

assignment" to get relatively higher scheduling performance. 

 

⚫ This assignment policy per queue can be set only for the queues managed by 

JobManipulator. 

⚫ When this assignment policy is changed, rescheduling is not performed and it is 

applied to the requests waiting to be assigned. 

 

 

When "CPU number concentrated assignment" policy is set, request requiring GPU is 

assigned to a node by "GPU number concentrated assignment". That is, such request 

are assigned to a node in the smallest usable quantity of GPU. 

When usable quantity of GPU is same, "CPU number concentrated assignment" is 

used. 

2.7.8.2 Setting the Order of Execution Host Assignment 

 

In JobManipulator, priority order of job servers (JSV Assign Priority) can be set for 

each queue, so that execution hosts can be assigned to requests based on it.  

 

JSV Assign Priority can be set per job server of each queue by using the set queue jsv 

assign_priority subcommand of smgr(1M). 

 

Smgr: set queue jsv_assign_priority = 100 job_server_id = 1 bq1 

 

In the above example, 100 is set to JSV Assign Priority of the job server whose ID is 1 

of queue "bq1".  

 



 

39 

 

JSV Assign Priority can be set only to the queues that are bound with JobManipulator. 

JSV Assign Priority can be set to job servers on the attached execution host regardless 

of their bind state. The operator privileges or higher is required for specifying this 

setting. The default value is 0. 

 

 

⚫ The JSV Assign Priority set by this feature is used after job condition when 

selecting job servers. Therefore, when JSV Assign Priority is different between 

job servers, other lower assign policies will not be applied when selecting job 

servers. In order to make other lower assign policies effective among the 

execution hosts not shared with other queues, a same value should be set to 

these execution hosts as JSV Assign Priority.  

⚫ By specifying a node group with the set queue jsv assign_priority subcommand, 

the JSV Assign Priority of JobServers included in the node group can be set all 

at once. 

 

 

All JSV Assign Priorities of JobManipulator can be displayed by using sstat -J.  

 

 # sstat -J 

 JSVNO Queue    Priority 

 ----- -------- ----------- 

     0 bq1              200  

     1 bq1              100 

     1 bq2              100 

     2 bq2              200 

 

In the above example, bq1 and bq2 share JSV 1. In this case, set a lower JSV Assign 

Priority to JSV 1.  

 

JSV Assign Priorities of a queue can be displayed by using sstat -Q -f -j. Only JSV 

Assign Priorities of job servers that are bound with the queue are displayed. To display 

JSV Assign Priorities of job servers that are not bound with the queue, execute 

sstat -Q -f -a.  

 

 # sstat -Q -f -j bq1 

 Execution Queue: bq1  

     ...omission... 

     JSV Assign Priority{ 

         JSV    0 =         200 

         JSV    1 =         100 

     } 

  Request Statistical information: 

     ...omission... 



 

40 

 

 

2.7.8.3 Setting of Priority or Disablement of Assignment Policy 

 

The priority of either following assignment policies can be set and these assignment 

policies can be disabled as well. 

  

⚫ The assignment which is considered about network topology. 

（Refer to 3.1.7.2 The assignment which considered a network topology）  

⚫ Preferential assignment policy of the node without staging job whose 

scheduled start time has been canceled. 

(Refer to 3.1.7.3 Preferential Assignment Policy of the Node without Stating 

Job) 

 

The priority and disablement can be set per scheduler by using the set 

assign_policy_priority subcommand of smgr(1M).  

 

#smgr -P m 

 Smgr : set assign_policy_priority = priority assign_policy = 

assign_policy  

 

Following policies can be set as "assign_policy". 

network_topology The assignment which is considered about network 

topology 

staging_job Preferential assignment policy of the node without any 

staging job whose scheduled start time has been canceled. 

 

 

 

 

The following can be set as "priority". 

low The priority is low. 

high The priority is high. 

disable The assignment policy is disabled. 

  

  The defaults of above assignment policies are as follows. 

network_topology : high 

staging_job : low 

 

Operator privilege is needed. 

Please refer to 3.1.8.1 Priority of Assignment Policy for the criteria to determine 

the priority.  

  



 

41 

 

The setting can be displayed by using sstat(1) with the -S,-f option.  

 

#sstat -S -f 

  JobManipulator Server Host: bsv.nec.co.jp 

      JobManipulator Version   = R1.00 

      JobManipulator Status    = Active 

                  : 

      Request Assign Policy    = CPU concentration 

      Assign Policy Priority = { 

        Network Topology = high 

        Staging Job       = low 

      } 

      Global Run Limit         = 10 

: 

 

2.7.9  Setting of Wait Time of Rescheduling 
 

By specifying a wait time of rescheduling, it is possible to wait a certain period of time 

from rescheduling a request if a stage-in or PRE-RUNNING (starting request 

execution) processing failed after assigning the request. This feature prevents request 

rescheduling from being repeated immediately after a stage-in or PRE-RUNNING 

processing failed. A wait time of rescheduling can be set to each queue by using the 

set_queue_retry_time subcommand of smgr(1M). 

 

# smgr -P o 

 Smgr: set queue retry_time staging = 600 pre-running = 300 bq1   

 

# 600 seconds is set as waiting time of rescheduling at Stage-in 

processing failure and 300 seconds is set as waiting time of 

rescheduling at PRE-RUNNING processing failure to queue "bq1".   

 

In the above example, the following are set to queue "bq1". 

 

⚫ A wait time of rescheduling at Stage-in processing failure is set to 600 seconds. 

⚫ A wait time of rescheduling at PRE-RUNNING processing failure is set to 300 

seconds. 

The operator privileges or higher is required for specifying this setting. The default is 0 

seconds.  

 

In addition, if the request is made to wait for rescheduling because a stage-in or PRE-

RUNNING processing failed, it is possible to release the job from such a state and 

specify the request as the rescheduling target again. This can be performed by using 

the stop waiting_retry subcommand of smgr(1M). 



 

42 

 

 

# smgr -P o 

 Smgr: stop waiting_retry request = 123.bsv.nec.co.jp # stop the 

request 123.bsv.nec.co.jp to wait rescheduling.                                 

The operator privileges or higher is required for specifying this setting.  

 

2.7.10 Set ON/OFF of Scheduling Feature 
 

You can set start and stop the scheduling by JobManipulator. 

The start_scheduling/stop_scheduling subcommand of smgr (1M) sets this feature. 

Using the start scheduling subcommand loads starting scheduling. Using the stop 

scheduling subcommand loads stopping scheduling. The setting at immediate after 

installing of JobManipulator is stop scheduling 

 

# smgr -P m 

 Smgr: start scheduling 

 Smgr: stop scheduling 

 

The operator privileges or higher is required for specifying this setting. 

 

The scheduling by JobManipulator for a queue starts by making the state of the queue 

active. However, the priority order among queues like prioritizing by queue priority 

may be ignored because of the setting order of activation. 

In this case, stop the scheduling by JobManipulator using this feature, make the state 

of all queues active and start the scheduling by JobManipulator using this feature all 

at once, so that the priority order among queues is effective. 

 

 



 

43 

 

Chapter 3. Operation Management 
 

3.1 Scheduling Basic Feature 

This section describes the basic operation of JobManipulator.  

3.1.1 Scheduler Map 
 

JobManipulator uses scheduler map for assignment of the execution start time and 

resources. This enables planned distribution of calculation resources to jobs.  

The scheduler map is an aggregation of cells (i.e. the pieces of calculation resources 

divided time-specially for each job server). The cell is minimum unit of width of the 

scheduler map (i.e. map width).  

The size of a cell (cell size) is also called the scheduling interval. JobManipulator 

schedules at intervals of the scheduling interval. 

The initial value of scheduling interval is 60 seconds. The initial value of map width is 

1 day (86400 sec). 

JobManipulator assigns jobs to the map. It depends on the setting of map width how 

many cells can be controlled in the future. For example, the number of cells per job 

server is 1440 (= 86400/60) when the value of map width is 1 day (86400 sec) and the 

value of scheduling interval is 1 minute (60 sec).  

 

The following is a simple image of the scheduler map.  

 

Figure 3-1 Scheduler Map 



 

44 

 

 

* In the above image, "Request: 100" and "Request: 101" are executing. After finishing 

executing "Request: 101", "Request: 102" will start to execute.  

 

The Backfill scheduling is realized effectively by setting of long map width. 

The Fair-Share scheduling is realized effectively by setting of short map width. 

The Current Scheduling is realized by setting of enough short map width ( than the 

declaration elapsed time of the request). 

 

3.1.1.1 Map Width Set Up 

It is possible to set the map width by the following two ways.  

 

A) Set the map width for each scheduler  

B) Set the map width for each queue  

 

* Refer to the followings for details.  

  



 

45 

 

A. Set the map width for each scheduler  

How to set up 

 

The values of scheduling interval and map width can be set by the set mapsize 

subcommand of smgr(1M). The minimum value of the map width is scheduling 

interval. 

When the scheduling interval is changed, the scheduler map information is 

reconfigured and the scheduled start times of requests which were assigned on the map 

are deleted from the map.  

In the case of increasing map width without changing scheduling interval, more 

requests can be assigned as map width increases. Conversely, when map width is 

decreased, the requests that doesn't fit in the decreased map will be targets of 

rescheduling and canceled on the map.  

 

 

The map size must be set larger than the scheduling interval.  

 
 

  



 

46 

 

Relation of map width and request pick-up  

The following picture is an image of map width and pick-up. 

* The requests in the assign pool are aligned in order of scheduling priority (which is 

the calculated priority).  

 

Figure 3-2 Map Width and Pickup 

 

 

Assign Pool : The group of the requests which are not assigned on the map yet 

             (i.e. the request whose planned start time is not decided yet.) 

Pick-up : Select the request in order to assign on the map. 

 

It is possible to change the scheduling feature by setting the map width of 

JobManipulator. 

Short map width: The fair-Share scheduling is conducted effectively 

Long map width: The Backfill scheduling conducted effectively(=improvement of the 

resource usage)  

 



 

47 

 

B. Set the map width for each queue  

Map width can be set by each queue. By setting map width for each queue, it enables to 

have an appropriate scheduling operation feature (Fair-share or Backfill) for each 

queue. It can be more thorough and detailed scheduling operation than setting by each 

scheduler.  

 

The following picture is an image of setting the map width by each queue.  

 

* The scheduling feature can be set by each queue in one JobManipulator. The 

following operation is conducted in the picture below.  

 

⚫ In order to submit small scale jobs in "Queue: A", fair-share focused 

scheduling is conducted by setting map width to be short.  

⚫ In order to submit large scale jobs in "Queue:B", backfill focused scheduling 

(which increases resource usage rate) is conducted by setting map width to 

be long.  

 

Figure 3-3 Setting of the Map Width for each queue 

 

 

 

* In "Queue:A", map width are set to be short and fair-share focused scheduling is 

conducted. In "Queue:B", map width are set to be long and backfill focused scheduling 

is conducted.  

 



 

48 

 

 

It can be set one scheduling interval for each scheduler. The scheduling interval size 

cannot be set for each queue.  

 

 

How to set up 

The value of map width for each queue can be set by the set queue mapsize sched_time 

subcommand of smgr(1M). The scheduling interval cannot be set for each queue. The 

scheduling interval size which is set for each scheduler is used.  

 

#smgr -P m 

 Smgr : set queue mapsize sched_time = sched_time queue-name 

  

[Example] # In this example, it set the mapsize of "execqueue1" to 

10000 seconds. 

 Smgr: set queue mapsize sched_time = 10000 execqueue1 

 Set queue Mapsize. 

 

⚫ Specify map width, which is set to the queue specified by queue-name, to 

sched_time.  

⚫ The map width is specified by seconds. The minimum value that can be set 

is the scheduling interval. 

⚫ In case the value specified to sched_time exceeds map width set by 

scheduler, it will be an error.  

⚫ The maximum value of map width set by each queue is the map width set 

by scheduler.  

⚫ The unset map width of the queue will be the map width set by scheduler.  

⚫ In case of changing the map width, all the jobs except executing jobs will be 

reassigned.  

⚫ The name of the queue whose map width is changed to the map width set 

by scheduler will be output to the log file (Default file name: 

/var/opt/nec/nqsv/nqs_jmd_<scheduler_id>.log).  

⚫ It is necessary to have the operator privileges or higher to set map width 

for each queue.  

 

 

In case the smaller value than map width of each queue is specified to the map width of 

scheduler, the map width of the corresponding queue will be changed to map width set 

by scheduler.  

Message : Some queues were changed to the mapsize of the system.  

The name of the queue which map width was changed will be output to the log file 

(Default file name : /var/opt/nec/nqsv/nqs_jmd_<scheduler_id>.log).  

 

 



 

49 

 

* The following cases, it leads to an error and the map width is not changed.  

 

⚫ In case the map width specified for each queue is larger than the map width of 

scheduler  

Error message: Mapsize too large. (Range of value = xx - xx)  

⚫ In case the queue which is not managed by JobManipulator is specified  

Error message: No such queue. (name: <queue-name> ).  

⚫ In case a user who executed commands does not have the operator privileges or 

higher  

Error message: Not permitted to modify attribute.  

⚫ In case the map width specified for each queue is smaller than the scheduling 

interval. 

Error message: Mapsize too small. (Range of value = xx - xx).  

 

 

In case more than two queues share the same execution host, pay attention to the 

followings.  

In case the map width of equal to or more than two queues which use the same host 

and the same RSG are changed, it will cause that the requests will be barely assigned 

to the queue which has a short map width. In order to avoid this situation, we 

recommend the operation as follows.  

⚫ In the operation changing the map width for each queue, we recommend 

the operation that each queue manage the different hosts.  

⚫ In case the queues manage the same host, we recommend managing the 

host resources divided by RSG to avoid confliction of the resource.  

In case of not managing by RSG, the resource confliction also can be avoided by setting 

the CPU limit rate and memory limit rate of JobManipulator.  

 

 

3.1.1.2 Map Width and Scheduling Interval Display Feature 

A. Set the map width for each scheduler  

The map width and the scheduling interval for each scheduler is shown by using -S,-f 

option of sstat(1).  

 

#sstat -S -f 

JobManipulator Server Host: bsv.nec.co.jp 

    JobManipulator Version   = R1.00 

    JobManipulator Status    = Active 

    Scheduler ID             = 1 

    Schedule Interval        = 10S 

    Schedule Time            = 86400S 

: 

 



 

50 

 

B. Set the map width for each queue  

The map width for each queue is shown by using -Q,-f option of sstat(1) command. 

  

#sstat -Q -f  

Execution Queue: jmq0 

    Queue Type            = Normal 

    Schedule Time         =  86400S 

: 

 

3.1.1.3 Notes on settings 

JobManipulator schedules at intervals of the scheduling interval. When there is a large 

number of requests, scheduling may not be completed within the scheduling interval 

and processing may be terminated. 

Adjust the scheduler map and scheduling interval according to the amount of requests 

at the site you are operating so that requests whose scheduled start time cannot be 

determined do not languish. 

 

3.1.2 Real Time Scheduling 
 

JobManipulator schedules when a request is submitted and starts executing when it is 

ready to start execution. As described in the 3.1.1 Scheduler Map, JobManipulator 

determines the width of the scheduling interval as the smallest unit, but it is possible 

to start without waiting for the scheduling interval if the resource is free. 

 

This feature has been enhanced with NQSV/JobManipulator R1.06. If you want to the 

scheduling and execution of requests at scheduling interval as before, the system 

administrator specify off in the set realtime_scheduling subcommand of the smgr(1M) 

command. 

 

3.1.2.1 Request Realtime Scheduling Mode 

In the scheduling interval, there is a dedicated time period for processing events such 

as JSV LINKDOWN and LINKUP. This time period is called the "event time". During 

the event time, we do not perform realtime scheduling of requests in order to 

concentrate on event processing. Therefore, requests submitted during the event time 

will be scheduled after the next interval, even if there is no event processing. If you 

change the request immediate scheduling mode to always using the set 

realtime_scheduling mode subcommand of the smgr(1M) command, requests will be 

scheduled and executed immediately, even during event times. By default, realtime 

scheduling of requests is not performed during event times. If you specify the request 

realtime scheduling mode to default in the set realtime_scheduling mode subcommand 

of the smgr(1M) command, the setting returns to the default value. 

The value of the request realtime scheduling mode can be confirmed in the "Realtime 

Scheduling Mode" column of sstat -Sf. 



 

51 

 

 

3.1.3 Usage Data Collection and Adjustment 
 

3.1.3.1 Collection of usage data 
 
JobManipulator collects the amount of actual used system resources for each batch 

request and stores the accumulated value after calculating for each user. 

Following system resources are collected for calculating usage data:  

 

Number of CPU 
Number of CPU (declared value by user) x 

Time (Elapsed) 

Calculated by each 

request 

Elapse Time Elapse time (Usage value) 
Calculated by each 

request 

Memory amount 

used 

Memory amount used (Measured) x Time 

(Elapsed) 

Calculated by each 

request 

Request Priority 
Request Priority (declared value by user) x 

Time (Elapsed) 

Calculated by each 

request 

Number of VE 
Number of VE (declared value by user) x 

Time (Elapsed) 

Calculated by each 

request 

 

Usage data is accumulated together with adjusted past usage data by half decay time. 

Usage data is accumulated while reducing usage data values accumulated for each 

user at every request termination.  

It is possible to set half-life decay time by the set half_reduce_period subcommand of 

smgr(1M). 

 

3.1.3.2 Reduction of usage data values 
 
JobManipulator accumulates usage data while reducing past usage data values 

accumulated for each user at every request termination.  

 

New usage data value = Usage data (accumulated) * 0.5 ^ (( current 

time - previous time ) / Half life decay time ) + usage data value 

obtained at current time 

 



 

52 

 

3.1.3.3 Reflection of usage data values to the scheduling priority 
 
The weight can be specified to each component used for usage data values such as the 

number of CPU and elapsed time and the values are compared relatively with a scale 

set by system. These weight coefficients can be specified by set subcommand of 

smgr(1M). The parameters are as below.  

 

Parameter name Description 

pastusage_weight_request_priority  weight coefficient for usage data of request priority 

pastusage_weight_cpu_number  weight coefficient for usage data of number of CPU 

pastusage_weight_elapse_time  weight coefficient for usage data of elapse time 

pastusage_weight_memory_size  weight coefficient for usage data of memory size 

pastusage_weight_ve_number  weight coefficient for usage data of number of VE 

 

Normalized past usage is used to calculate scheduling priority. The normalization 

formulas are as follows. 

 

(a) Number of CPU 

The declared value is taken as the number of CPU. Usage data is 

accumulated together with adjusted past usage data by half decay time.  

It will be the value of 1 when the standard CPU number is (assumed to be) 

used without limit. 

 

Normalization formula: 

CPU usage data (accumulated value) / ( Standard Number of CPUs 

/ loge2 * Half life decay time ) 

 

(b) Elapse Time 

Usage data is accumulated together with adjusted past usage data by half 

decay time. 

It will be the value of 1 when the standard CPU number is (assumed to be) 

used without limit. 

 

Normalization formula: 

Elapse time usage data (accumulated value) / ( Standard Number 

of CPUs / loge2 * Half life decay time ) 

 

(c) Used memory amount 

Usage data is accumulated together with adjusted past usage data by half 

decay time. 



 

53 

 

It will be the value of 1 when standard all installed memory is (assumed to be) 

used without limit. 

 

Normalization formula: 

Memory usage data (accumulated value) / ( Standard total memory 

size / loge2 * Half life decay time ) 

 

(d) Request Priority 

The declared value is taken as the request priority. Usage data is 

accumulated together with adjusted past usage data by half decay time.  

It will be the value of 1 when a request whose priority is 1023 is (assumed to 

be) kept executing unlimitedly. 

 

Normalization formula: 

Request priority usage data value(accumulated value) / ( 1023 / 

loge2 * Half life decay time ) 

 

(e) Number of VE 

The declared value is taken as the number of VE. Usage data is 

accumulated together with adjusted past usage data by half decay time.  

It will be the value of 1 when the standard VE number is (assumed to be) used 

without limit. 

 

Normalization formula: 

VE usage data (accumulated value) / ( Standard Number of VEs / 

loge2 * Half life decay time ) 

 

3.1.3.4 Display of usage data values 
 
Usage data values can be displayed by -S option of sushare(1). The usage data of each 

user and the total usage data of each group are displayed hierarchically by group. "*" is 

displayed at the beginning of group name as follows, if the displayed data is the total 

usage data of a group.  

 

Parameter 

name 
Description 

Group Name 
Display group name. It is displayed at the beginning when usage 

data of a group is displayed. 

User 
Display User name or group name. If it is group name, "*" will be 

displayed at the beginning of the group name. 

Acctcode 
Display account code of a user. If no account code for the user, 

"none" is displayed. "none" is displayed for usage data of a group. 



 

54 

 

Share 
Display share distribution ratio of each user or group. Refer to 

User Share Value for share distribution ratio. 

PU_cpunum 
Display a user's or group's CPU usage data and its percentage of 

the system total. 

PU_memsz 
Display a user's or group's memory usage data and its percentage 

of the system total. 

PU_elapstim 
Display a user's or group's usage data of elapsed time and its 

percentage of the system total. 

PU_reqpri 
Display a user's or group's usage data of request priority and its 

percentage of the system total. 

PU_venum 
Display a user's or group's VE usage data and its percentage of 

the system total. 

 

An example is shown as follows.  

 

[Group Name : TOP_GROUP]   <== #group name 

 User     Acctcode Share  PU_cpunum (%)         PU_venum (%)          PU_memsz (%)        PU_elapstim (%)        PU_reqpri (%)  

------------------------------------------------------------------------------------------------------------------------------------- 

  *nec      none     0.333     4.190M ( 50.002)     4.190M ( 50.002)     3.996M ( 50.002)   1163:58:00 ( 50.002)     4.190M ( 50.002) 

 #group total usage data of each 

  *nqs      none     0.667     4.190M ( 49.998)     4.190M ( 49.998)     3.996M ( 49.998)   1163:53:44 ( 49.998)     4.190M ( 49.998)  

 #group total usage data of each 

 

  [Group Name : nec] 

   User     Acctcode Share  PU_cpunum (%)       PU_venum (%)          PU_memsz (%)        PU_elapstim (%)        PU_reqpri (%) 

  --------------------------------------------------------------------------------------------------------------------------------- 

   necusr1  none     0.167     2.095M ( 25.001)   2.095M ( 25.001)     1.998M ( 25.001)    581:59:01 ( 25.001)     2.095M ( 25.001)  

#usage data of each user 

   necusr2  none     0.167     2.095M ( 25.001)   2.095M ( 25.001)     1.998M ( 25.001)    581:58:58 ( 25.001)     2.095M ( 25.001) 

 

  [Group Name : nqs] 

   User     Acctcode Share  PU_cpunum (%)       PU_venum (%)          PU_memsz (%)        PU_elapstim (%)        PU_reqpri (%) 

  --------------------------------------------------------------------------------------------------------------------------------- 

   nqsusr1  none     0.167     1.048M ( 12.500)   1.048M ( 12.500)  1022.954K ( 12.500)    290:58:24 ( 12.500)     1.048M ( 12.500) 

   nqsusr2  none     0.167     1.048M ( 12.500)   1.048M ( 12.500)  1022.955K ( 12.500)    290:58:25 ( 12.500)     1.048M ( 12.500) 

   nqsusr3  none     0.167     1.048M ( 12.500)   1.048M ( 12.500)  1022.956K ( 12.500)    290:58:26 ( 12.500)     1.048M ( 12.500) 

   nqsusr4  none     0.167     1.048M ( 12.500)   1.048M ( 12.500)  1022.956K ( 12.500)    290:58:26 ( 12.500)     1.048M ( 12.500) 

 

3.1.4 Scheduling Priority 

3.1.4.1 Scheduling Priority 

 



 

55 

 

The Scheduling Priority is used to decide the order of execution host assignment 

(picking up of request) or the order of escalation in the execution queue. The elements 

for calculation of the scheduling priority are shown below.  

The requests are picked up in order of the priority of the execution queue to which the 

requests are submitted. When multiple requests are existent in the execution queue, 

the order depends on the value of scheduling priority of each request. The scheduling 

priority is calculated based on the following elements. 

 

⚫ User share value  

⚫ Usage data value  

⚫ User rank  

⚫ Request priority  

⚫ Amount of required resources of the request  

⚫ Wait time for execution from being submitted  

⚫ Wait time for execution from becoming assignable 

 

3.1.4.2 Formula of the Scheduling Priority 

The formula for calculation of the scheduling priority is as follows. 

Scheduling Priority = 

User Share Value        x weight coefficient (User Share) 

    + Usage Data Value (Total) 

    + User Rank (Normalized) x weight coefficient (User Rank) 

    + Request Priority (Normalized) 

        x weight coefficient (Request Priority) 

    + Declared Number of CPUs (Normalized) 

x weight coefficient (Declared Number of CPUs) 

    + Declared Elapsed Time (Normalized) 

x weight coefficient (Declared Elapsed Time) 

    + Declared Memory Size (Normalized) 

x weight coefficient (Declared Memory Size) 

    + Number of Jobs (Normalized) 

x weight coefficient (Number of Jobs) 

    + Declared Number of VEs (Normalized) 

x weight coefficient (Declared Number of VEs) 

      + Wait Time for Execution from being submitted 

x weight coefficient (Wait Time for Execution from being 

  submitted) 

    + Wait Time for Execution from becoming assignable 

x weight coefficient (Wait Time for Execution from becoming 

   assignable) 

    + Wait Time for Restart  

x weight coefficient (Wait Time for Restart) 

   (+ base-up for a request suspended by urgent request) 

   (+ base-up for a rescheduled request) 

   (+ base-up defined by user)  

 



 

56 

 

The details of each item are described below.  

 

User Share Value  

The "User Share Value" is calculated by the scheduler, using a configuration file which 

sets the share ratio. (Share distribution ratio configuration file) 

The share distribution ratio configuration file is read by sushare(1) command. If it isn't 

specified the configuration file when using sushare(1), the default path of this 

configuration file is /etc/opt/nec/nqsv/jm_sharedb.conf. The following is the format of 

the file.  

 

TOP_GROUP = { 

    (G:Group-name | U:User-name[:Account-name]) = Share-distribution-

ratio 

    (G:Group-name | U:User-name[:Account-name]) = Share-distribution-

ratio 

    ... 

    } 

    Group-name = { 

    (G:Group-name | U:User-name[:Account-name]) = Share-distribution-

ratio 

    (G:Group-name | U:User-name[:Account-name]) = Share-distribution-

ratio 

    ... 

    } 

    ...     

 

A user belongs to one of Group-names, and each group is managed by the tree 

structure. 

The top group of the tree structure is TOP_GROUP, and Share-distribution-ratio sets 

the distribution ratio in the group. 

When Account-name is omitted, users are not distinguished according to the account 

code. 

The user share value of a user who does not exist in the share distribution ratio 

configuration file is 0.  

 

The following is a setting example.  

/etc/opt/nec/nqsv/jm_sharedb.conf  

    TOP_GROUP = { 

    U:root=50 

    G:GroupA=30 

    G:GroupB=20 

    } 

    GroupA = { 

    U:User1=20 

    U:User2=10 



 

57 

 

 

Usage Data Value(Total)  

UaActual Usage Data Value (Total) =  

Number of CPUs (Normalized)x weight coefficient (for usage data of Number of CPUs) 

   + Elapsed Time (Normalized)   x weight coefficient (for usage data of Elapsed Time) 

   + Memory Size (Normalized)    x weight coefficient (for usage data of Memory Size) 

   + Request Priority (Normalized) x weight coefficient (for usage data of Request 

Priority) 

   + Number of VEs (Normalized)x weight coefficient (for usage data of Number of VEs) 

 

User Rank  

A user rank is a value calculated according to an actual usage and a predetermined 

share value, and used to decide the order(priority) among users located hierarchically.  

 

⚫ Calculation method of the User rank 

Users are managed with a hierarchical structure. The share and usage data of a 

lower layer are managed in total by the parent node to which it belongs. The high-

ranked share has stronger influence than the lower-ranked share. In particular, 

the share of the highest layers is given priority. 

 

 

⚫ Calculation Method and Formulas 

1. Calculates the rank value of each user. 

    } 

    GroupB = { 

    U:User10=10 

    U:User11=10 

    U:User12=10 

    U:User13=10 

    U:User14=10 

    }         



 

58 

 

(i) The user share value divided by the total usage data is used in order that the 

ranking value of all users can be compared relatively. 

 

(ii) Above value is divided by coefficient which is composed of the number of users 

and layers(the number of the hierarchy) in order to correct it to the balanced 

value in hierarchical user structure. In other words, the logarithmic value of 

the total number of users(log N) from the higher layers and the layer to which 

the user belongs multiplied with the number of layers(= L : the top layer is 

assumed to be 0) is the coefficient. 

 

log N: The value will be greater as the number of users (N) is greater. The more 

users who share resource exist, the greater the denominator is. Then, the 

usage data (which is calculated at (i)) is corrected to be smaller. 

L   : The value multiplied by the number of layers will be the coefficient for the 

purpose that the high-ranked share is given priority and the share value 

among the highest ranked sites will have much influence.  

 

2. Calculates the user rank of the user located at a hierarchical position. This 

means the amount of the value of all the direct higher users calculated with the 

method described at 1.  

 

3. Normalizes the value to be the value from 0 to 1. The denominator at 

normalization is different each layer to which the user belongs. 

 

 

Request Priority  

(i)  r = (log R) / (log N*L) 

R = User share value / Total of Usage data 

(0.01 <= R <= 100. The value of out of the range will be the maximum or the 

minimum value.) 

N = The number of users (The amount of users in the layers from top to the 

user. The top layer is not included.) 

L = The number of layers (The top layer is assumed to be 0.) 

 

(ii) UserRank = r1 + r2 + r3 + ... + r(L-1) 

 

(iii)The maximum value of the numerator of r of (i) is +2,  

and the minimum value is -2.  

Therefore, the maximum value of r is +2/(log N*L), 

and the minimum value is -2/(log N*L). 

The maximum value of the total amount is equal to +2(1/(log N1*1) 

+ 1/(log N2*2) + ... + 1/(log NL*L)) 

The minimum value of the total amount is equal to -2(1/(log N1*1) 

+ 1/(log N2*2) + ... + 1/(log NL*L)) 

Normalization Formula = 0.5 + UserRank / (2*2(1/(log N1*1) 

+ 1/(log N2*2) + ... + 1/(log NL*L))) 



 

59 

 

The "Request Priority" is specified by the -p option of qsub. 

It will be the value of 1 in the case request priority = 1023, and will be the value of 0 in 

the case request priority = -1024.  

 

 

 

Required Resource Usage of Requests  

The following resource limits are used for required resource usage.  

 

Number of CPUs  The number of CPUs that can be used simultaneously per 

logical host 

    qsub --cpunum-lhost  

Elapsed Time  The elapsed time per request 

    qsub -l elapstim_req  

Memory (optional)  The memory size per logical host 

    qsub --memsz-lhost 

Number of Jobs  The number of jobs 

    qsub -b  

Number of VEs The number of VEs that can be used simultaneously per 

logical host 

    qsub --venum-lhost 

If The total number of VEs is specified with qsub --venode, 

the default number of incorporated VE nodes in the queue is 

used. 

 

⚫ Number of CPUs 

It will be a value from 0 (physical number of CPUs) to 1 (about 1 CPU) according 

to the number of CPUs declared by a user.  

Normalization Formula 

       1 - ( Declared number of CPUs / Physical number of CPUs ) 

 

⚫ Elapsed Time 

It will be a value from 0 (unlimited) to 1 (about 1 second) according to the elapsed 

time declared by a user.  

Normalization Formula 

          0.5 ^ ( Elapsed Time / Half-life decay time) 

 

⚫ Memory (optional) 

It will be a value from 0 (maximum size of memory) to 1 (about 1 byte) according to 

the memory size declared by a user.  

Normalization Formula 

Normalization Formula 

      (Request Priority + 1024 ) / ( 1023 + 1024 ) 



 

60 

 

       1 - ( Declared size of memory / Maximum size of memory ) 

 

⚫ Number of Jobs 

It will be a value from 0 (number of jobs = standard number of jobs) to 1 (number 

of jobs = 1) according to the number of jobs declared by a user.  

 

 

 

⚫ Number of VEs 

It will be a value from 0 (physical number of VEs) to 1 (about 1 VE) according to 

the number of VEs declared by a user.  

Normalization Formula 

       1 - ( Declared number of VEs / Physical number of VEs ) 

 

Wait time for execution from being submitted to a queue  

The wait time for execution per half-life decay time will be the value of 1. 

 

 

 

Wait time for execution from becoming assignable  

The wait time for execution per half-life decay time will be the value of 1. 

 

 

 

 

The factor of wait time for execution from becoming assignable is reset by binding 

JobManipulator and queue, restarting JobManipulator and batch server. 

If you have set a high weighting for the wait time for execution from becoming 

assignable, you may want to adjust the priority of the other factors for requests that 

you want to give preference to even after binding JobManipulator and queue, 

restarting JobManipulator and batch server. 

 

 

Wait time for restart from SUSPENDED  

The wait time for restart per half-life decay time will be the value of 1. 

 

 

 

Base-up for a request suspended by urgent request 

Normalization Formula 

       1 - ( Declared number of jobs / Standard number of jobs ) 

Wait time for execution from being submitted / Half-life decay 

time 

Wait time for execution from becoming assignable / Half-life 

decay time 

Wait time for restart / Half-life decay time 



 

61 

 

Set the base-up value of the scheduling priority for requests forced to be SUSPENDED 

status because a special request was submitted. This base-up value is set to all 

applicable requests equally. The value is able to be set for each scheduler.  

 

Base-up for a rescheduled request  

Set the base-up value of the scheduling priority for requests rescheduled in execution 

or requests which cannot be started on schedule. This base-up value is set to all 

applicable requests equally. The value is able to be set for each scheduler.  

 

Base-up defined by user  

Set this base-up value in the case the manager wants to change the scheduling priority. 

This base-up value can be dynamically set to each request by the smgr(1M) command.  

 

3.1.4.3 Calculation Timing of the Scheduling Priority 

The timing to calculate the scheduling priority is described below. 

⚫ When a request is submitted  

⚫ When a request attribute is changed by the qalter command.  

 

The scheduling priority including waiting time is recalculated at the timing of picking 

up a request.  

 

3.1.4.4 Processes Using the Scheduling Priority 

The scheduling priority is used to pick up a request in the following processing.  

⚫ Assignment of the execution host  

⚫ Escalation  

⚫ Control of overtaking  

 

3.1.4.5 Subcommands for Weight Coefficients 

Set the value of weight coefficient to each item of scheduling priority items by using set 

subcommand of smgr(1M). The subcommands for each item are described below. The 

operator privilege is required to specify.  

 

Item smgr(1M) subcommand 

Weight Coefficient 

weight coefficient for request priority set priority weight_request_priority 

weight coefficient for number of CPU set priority weight_cpu_number 

weight coefficient for elapse time set priority weight_elapse_time 

weight coefficient for memory size set priority weight_memory_size 



 

62 

 

weight coefficient for job number set priority weight_job_number 

weight coefficient for number of VE set priority weight_ve_number 

weight coefficient for wait time for 

execution from being submitted  
set priority weight_run_wait_time 

weight coefficient for wait time for 

execution from becoming assignable  
set priority weight_assign_wait_time 

weight coefficient for wait time for 

restarting 
set priority weight_restart_wait_time 

weight coefficient for user share value set priority weight_user_share 

weight coefficient for user rank set priority weight_user_rank 

Base-Up 

base-up for a request suspended by urgent 

request 
set priority baseup_interrupted 

base-up for a rescheduled request set priority baseup_reschedule 

base-up for defined by user (Specifies for 

each request)  
set request baseup_user_definition 

Weight Coefficient for Usage data 

weight coefficient for usage data of request 

priority 

set priority 

pastusage_weight_request_priority 

weight coefficient for usage data of number 

of CPU 

set priority 

pastusage_weight_cpu_number 

weight coefficient for usage data of elapse 

time 

set priority 

pastusage_weight_elapse_time 

weight coefficient for usage data of memory 

size 

set priority 

pastusage_weight_memory_size 

weight coefficient for usage data of number 

of VE 

set priority 

pastusage_weight_ve_number 

The following is an example setting to set weight coefficient for request priority to 1 at 

assignment.  

 

# smgr -Pm 

 Smgr: set priority weight_request_priority = 1 processing_pattern 

= assign 

 

3.1.5 Algorithm for Picking up Request 
 



 

63 

 

When multiple queues and multiple requests exist, the request to be scheduled is 

picked up according to the following policies.  

 

1. Queue type is higher when request is submitted. (in the order of urgent, 

special and normal queue)  

2. Queue priority is higher when the request is submitted  

3. Scheduling priority is higher  

4. The time submitted to a queue is earlier  

5. In case one request cannot be decided with the conditions above, the 

scheduler picks up one of rest requests  

 

Thus, the order of priority of the request is decided, and the request with higher 

priority will be processed as a scheduling object.  

 

[Attention] 

As a special case, when the map is full of urgent or special requests and the next 

urgent or special request cannot be assigned, a request submitted to a queue with 

lower priority will be scheduled. In such a case, execution of the request may be 

stopped by another urgent or special request even if assigned on the map once.  

 

 

[Example] In case of submitting the following jobs, the request of "queue type: Special / 

queue priority: 100"will be assigned first to the resource effectively.  

 

⚫ queue type: Special/ queue priority:100 

⚫ queue type: Normal/ queue priority:100  

 

3.1.6 Algorithm for Starting Request 
 

JobManipulator assigns job servers and set execution start time to the request selected 

by the "3.1.4 Algorithm for Picking Up Request".  

 

In case job condition is specified to a request, job servers applied to the job condition 

will be the target of the job assignment. In case no job condition is specified, all of the 

job servers bound to the execution queue to which a request was submitted will be the 

target of the job assignment.  

 

In a job condition, a condition sentence is specified to "condition" and a target job 

number that job condition is applied is specified to "job_number". Refer to NQSV User’s 

Guide [Operation] for details. Assignment method of job servers by the value of the 

condition are as follows. 

 

condition assign method of the job of job_number 



 

64 

 

JSV(Job Server Number) 
one of them of a job server of the JSV number specified in 

"condition" 

HW(Hardware) 
one of them of a job server of the hardware specified in 

"condition" 

NGRP(Name of Node 

Group) 

one of them of a job server in the node group specified in 

condition 

 

The declaration items that the user must specify in order to use backfill scheduling are 

as follows. It is specified by -l option of qsub(1) command.  

 

Mandatory option 

⚫ Elapsed time (option -l ,sub-option elapstim_req)  

* In case "4.8 Elapse Unlimited Feature" is set on, it will be selectable option to 

specify Elapse time. 

⚫ The number of CPUs that can be executed simultaneously per job (option -

l ,sub-option cpunum_job)  

* To specify cpunum_job is not required when specifying the --exclusive option with the 

qsub(1) command. 

⚫ The number of GPU Limit per job (option -l sub-option gpunum_job) if the 

request use GPU. 

⚫ Requests that use VE nodes must specify the number of VE nodes per 

logical host (--venum-lhost) or the number of VE nodes (--venode) option. 

 

Requests to which these declaration values are not set (unlimited) will not be target for 

scheduling. In this case, the error message is output to the log file (Default file 

name :/var/opt/nec/nqsv/nqs_jmd_<scheduler_id>). Even after submitted with these 

items unlimited, the request can be target for scheduling by specifying these values by 

qalter command. 

 

[Example] The following is the log message in case of not setting Elapse Time Limit.  

 

Judge_assignable :  Request cannot be scheduled. (Elapse time 

unlimited) <Request-ID> 

 

If the number of available CPUs is specified to "cpunum_job" or –exclusive option is 

set, the execution hosts also can be assigned by host. 

 

Also, the user must specify by option the declaration item below by option in case of 

performing the scheduling using memory size.  

 

Selectable option 

⚫ Memory size per job (option -l ,suboption memsz_job)  

 



 

65 

 

Requests to which these declaration values are not set (unlimited) will not be target for 

scheduling though the scheduling uses memory size. And also, in case of performing 

the scheduling with using memory size, it is necessary to set the limit of memory usage 

(memsz_limit_ratio) on the execution host by using smgr(1M) .  

 

The priority items in choosing the execution host for job assignment are as shown as 

below and the space that satisfies all of them is selected. When there is no space to 

assign a job (the scheduled start time is out of the range of the map), it will be 

suspended until the next assign processing of assignment.  

 

1. The resources for calculation can be reserved (Elapsed time, CPU and 

GPU(when number of GPU is specified))  

2. Memory can be reserved (Optional)  

3. The scheduled start time is the earliest  

 

In backfill scheduling, utilization of node resource is considered as highest priority at 

assignment of jobs. So the order of execution of jobs will not always match to the 

assigned order.  

 

3.1.7 Elapse Margin 
 

Elapse Margin is a function to give margin to a request until following request is 

executed by adding a margin time to its elapsed-time limit value. When Elapse Margin 

is set, the resource occupation time in the scheduler map is decided based on the sum 

of the elapsed-time limit and the margin time. When it is not set, the resource 

occupation time is decided based on its elapsed-time limit value.  

When Elapse Margin is not set, the elapsed-time limit of a request is the resource 

occupation time in the scheduler map. However, the time taken in following states is 

not counted up to the elapsed time limit of the request.  

 

⚫ PRE-RUNNING  

⚫ POST-RUNNING  

 

Therefore, if the sum of the time taken in above states and the elapsed time of the 

request exceeds the elapsed-time limit, the request will be executed with exceeding its 

resource occupation time and then overlaps with the resource occupation time of 

following request. If the requests take long time in above states in your operation, it is 

recommended to set Elapse Margin, so that the execution of a request does not overlap 

with other request. 

 

3.1.7.1 Setting Elapse Margin 

Elapse Margin is set by queue. If the sizes of requests are different for each queue in 

you site, Elapse Margin can be set corresponding to the size of the request. 

 



 

66 

 

Setting method  

Elapse Margin can be set by set queue elapse_margin a subcommand of smgr(1M).  

 

#smgr -P m 

 Smgr: set queue elapse_margin = elapse_margin queue-name 

 

⚫ The initial value of elapse margin is 0.  

⚫ The value of Elapse Margin can be set with elapse_margin to a queue 

specified with queue-name.  

⚫ The value of Elapse Margin is set in seconds. And values in 0 to 

2147483647 can be specified.  

⚫ When the value of Elapse Margin is changed, requests other than running 

ones will be reassigned.  

⚫ Operator privileges is needed.  

 

*In following cases, an error will occur and Elapse Margin will not be set or changed.  

1. When specified Elapse Margin value beyond the range of value that can be 

specified.  

Error message: Elapse margin value out of bounds.  

2. When a queue which is not managed by JobManipulator is specified.  

Error message: No such queue. (name: <queue-name>)  

3. When the user execute the command has no operator privileges or higher 

ones.  

Error message: Not permitted to modify attribute.  

 

 

The time taken in PRE-RUNNING/POST-RUNNING of requests should be taken into 

consideration when setting Elapse Margin. The time is depended on the operational 

environment such as the system performance, user EXIT script set to the queue and so 

on. Note following facts when setting Elapse Margin.  

 

⚫ If a too large value of Elapse Margin is set, the number of requests which 

can be assigned to scheduler map will reduce.  

⚫ If a too small value of Elapse Margin is set, the resource occupation time of 

requests cannot be guaranteed.  

 

 

3.1.7.2 Display Elapse Margin 

A. Elapse Margin set to a queue  

The value of Elapse Margin set to a queue can be displayed by -Q,-f option of sstat(1).  

#sstat -Q -f 

 Queue Name: jmq0 

    Queue Type            = Normal 



 

67 

 

 

B. Elapse Margin of a request  

The value of Elapse Margin of a request can be displayed by -f option of sstat(1) 

The value of Elapse Margin of a request is the value of Elapse Margin set to the queue 

to which the request is submitted. 

Planned End Time and Elapse Time include the value of Elapse Margin.  

Request ID: 5208.batch_serverhost 

    Request Name = test_jm 

    User  Name = nqs_user 

    User  ID   = 2019 

    Group ID   = 500 

    Current State           = Running 

    Previous State          = Pre-running 

    State Transition Time   = 2008-05-01 16:17:55 

    State Transition Reason = PRERUN_SUCCESS 

    Queue = testq 

    Reservation ID      = -1 

    Scheduling Priority (Assign)     = 0.998855 

      User Share                     = 0.000000 

      User Rank                      = 0.000000 

      Request Priority               = 0.000000 

      CPU Number                     = 0.000000 

      VE Number                      = 0.000000 

      Elapse Time                    = 0.998855 

      Memory Size                    = 0.000000 

      Job Number                     = 0.000000 

      Run Wait Time                  = 0.000000 

      Restart Wait Time              = 0.000000 

      Baseup Interrupted              = 0.000000 

      Baseup Reschedule              = 0.000000 

      Baseup User Definition         = 0.000000 

      PastUsage Request Priority     = 0.000000 

      PastUsage CPU Number           = 0.000000 

      PastUsage Elapse Time          = 0.000000 

      PastUsage Memory Size          = 0.000000 

    Schedule Time         = DEFAULT 

    Run Limit             = UNLIMITED 

    User Run Limit        = UNLIMITED 

    User Assign Limit     = UNLIMITED 

    Elapse Margin         = 600S  <== #Elapse Margin 

                 ...  

             



 

68 

 

    Scheduling Priority (Escalation) = 0.500244 

      User Share                     = 0.000000 

      User Rank                      = 0.000000 

      Request Priority               = 0.500244 

      CPU Number                     = 0.000000 

      VE Number                      = 0.000000 

      Elapse Time                    = 0.000000 

      Memory Size                    = 0.000000 

      Job Number                     = 0.000000 

      Run Wait Time                  = 0.000000 

      Restart Wait Time              = 0.000000 

      Baseup Interrupted              = 0.000000 

      Baseup Reschedule              = 0.000000 

      Baseup User Definition         = 0.000000 

      PastUsage Request Priority     = 0.000000 

      PastUsage CPU Number           = 0.000000 

      PastUsage VE Number            = 0.000000 

      PastUsage Elapse Time          = 0.000000 

      PastUsage Memory Size          = 0.000000 

    Planned Start Time = (Already Running...) 

    Planned End Time   = 2008-05-01 16:44:35 <== #Planned End 

Time with Elapse Margin included 

    Elapse Margin      = 600S <== #Elapse Margin 

  Job Server a Job belongs to (Job No.:JSV No.): 

       0:500 

  Resources Limits: 

    Elapse Time = 1600S  <== #The sum of the Elapse Margin and 

the elapsed-time limit value 

    CPU Number  = 8 

    Memory Size = 256MB 

 

3.1.8 Assign Policy 
 

3.1.8.1 Priority of Assignment Policy 

As a normal assignment policy, the following policies are applied in following order to 

select the nodes for assigning a request. The priority of some of these policies can be 

adjusted by setting the priority. (Refer to 2.7.8.3 Setting of Priority or Disablement of 

Assignment Policy for details) 

1. The node on which a request can be assigned earliest. 

2. The node with the highest JSV Assign Priority. 

3. Preferential assignment policy of the node without staging job whose 

scheduled start time is canceled. (When 'high' is set as the priority.) 



 

69 

 

(Refer to 3.1.7.3 Preferential Assignment Policy of the Node without any 

Staging Job) 

4. The assignment which is considered about network topology. (When 'high' 

is set as the priority.) 

（Refer to 3.1.7.2 The assignment which considered a network topology） 

5. Topology performance scheduling (if the execution host is SX-Aurora 

TSUBASA system) (Refer to 5.5 Assignment with topology performance 

scheduling) 

6. CPU Number Concentrated Assignment or Resource Balanced Assignment 

7. Assignment looking at ahead and behind 

8. Preferential assignment policy of the node without staging job whose 

scheduled start time is canceled. (When 'low' is set as the priority.) 

9. Preferential assignment policy of the node with the fewest queues bound. 

10. The assignment which is considered about network topology. (When 'low' is 

set as the priority.) 

 

As an interrupting assign policy, in addition to the above order, a request is assigned to 

the node in consideration of the following.  

1. The node with high Dynamic JSV Priority (when the execution host is SX-

Aurora TSUBASA). 

2. The node which does not have request(s) in the RUNNING state. 

3. The node with fewest requests that will be re-scheduled by the 

interruption. 

 

For details on Dynamic JSV Priority, refer to 5.7 Dynamic JSV Priority in Chapter 5. 

Functions for SX-Aurora TSUBASA. 

 

The priority of above configurable assignment policies can be set by using the set 

assign_policy_priority subcommand of smgr(1M). These assignment policies also can be 

disabled. Please refer to 2.7.8.3 Setting of Priority or Disablement of Assignment Policy 

for details. 

 

3.1.8.2 The assignment which considered a network topology 

In case of assigning a node for a request that performs communication between 

multiple nodes at the system configuration with which more than one node are 

connected by the network switch(NW-SW) of the multistep, the request is assigned to a 

group of nodes that are connected with same NW-SW (network switch) in order to 

maximize communication speed between nodes. This feature is called "the feature of 

the assignment which considered a network topology". 

In order to use this assignment function in consideration of network topology, it is 

necessary to group nodes with low communication latency into a node group before 

starting JobManipulator.  

 

In order to process a node group, mgrs. is used. (Refer to NQSV users guide for details) 



 

70 

 

The priority of this assignment policy can be set to "network_topology" by using the set 

assign_policy_priority subcommand. It is recommended that you set the priority as 

'low' when you emphasize the system utilization. 

 

(1) Usage of Assignment Considering Network Topology 

 

It is necessary to group nodes with low communication latency. 

 

⚫ Node Group Creation 

Create a node group. Note that type is "nw_topo". 

 

#qmgr -Pm 

Mgr: create node_group = <ngrp_name> type = nw_topo [switch_layer = <layer>] 

 

⚫ node_group : any name of node group 

⚫ type : nw_topo (fixed） 

⚫ switch_layer : number of layers of network switch. Up to 2 layers can be 

scheduled. 

 

⚫ Node Registration to Node Group 

Register nodes with low communication latency to a node group. 

Note that a node cannot be registered to multiple node groups. 

In case of this feature, node group cannot be nested. 

 

#qmgr -Pm 

Mgr: edit node_group add job_server_id = <jsvid>-<jsvid> <ngrp_name> 

Mgr: edit node_group add job_server_id = (<jsvid>,<jsvid>,...) <ngrp_name> 

 

The image of node grouping is as follows: 



 

71 

 

 

Figure 3-4 The image of network topology node group definition 

 

 

(2) Stoppage of Assignment Considering Network Topology 

 

In order to stop assignment considering network topology, it is necessary to set 

"disable" to "network_topology" by using the set assign_policy_priority 

subcommand of smgr(1M) or delete node group (with nw_topo type) created at 

the about (1) step for network topology. 

 

#qmgr -Pm 

Mgr: delete node_group = ngrp_name 

 

3.1.8.3 Preferential Assignment Policy of the Node without any Staging 
Job 

 

When the staging of files isn't finished in time, the scheduled start time of the request 

will be canceled and it will be re-assigned after the staging is finished. When assigning 

another request, the node without such staging job will be selected preferentially, so 

that the node with such staging job can be left to the request whose scheduled start 

time has been canceled. 

 

In the operation of staging and emphasizing the TAT of the request whose scheduled 

start time has been canceled, it is recommended that you set the priority of this 

assignment policy as 'high'. 

 



 

72 

 

3.1.9 Suspended Request 
 

⚫ When a request is suspended by the qsig command 

JobManipulator does not operate on the request in particular. 

The resource gotten by the suspended request is held. In this case, the elapsed 

time progresses and the request will be terminated by the batch server when 

reaching the declared elapsed time. It therefore has no influence on the scheduling 

of the follow-on requests. This operation is constant regardless of the privileges 

that executed the qsig command. It can be confirmed by -f option of sstat(1) 

whether the request is suspended by the qsig command. If yes, SIGSTOP is 

displayed in Suspend Reason filed.  

 

⚫ When a request is suspended by smgr (1M) 

The memory is kept to be used but it is assumed that all resources held by the 

suspended request are released and the elapsed time of the request stops once and 

the request will not be reassigned. Only the user with manager privileges or 

operator privileges can suspend request by smgr(1M). It is performed by the 

suspend request subcommand.  

 

Whether the request is suspended by smgr(1M) can be confirmed by -f option of 

sstat(1). If yes, SMGR_SUSPEND is displayed in Suspend Reason field.  

A resumption request for this request can be sent by the resume request 

subcommand of smgr(1M), and then it is assigned based on the result of 

subtracting the executed period from required elapsed time and the request is 

resumed by the scheduler when reaching the rescheduled start time. Whether a 

resumption request has been sent for the request suspended by smgr(1M) can be 

confirmed by -f option of sstat(1). If yes, SMGR_RESUME is displayed in Suspend 

Reason field.  

 

⚫ When a request is suspended by the scheduler due to interruption of an urgent or 

special request 

The memory is kept to be used but it is assumed that all resources held by the 

suspended request are released. The elapsed time of the request stops once and the 

request is assigned based on the result of subtracting the executed period from all 

elapsed time. Reaching the rescheduled start time, the request will be resumed by 

the scheduler. 

 

Whether the request is suspended by the scheduler due to interruption can be 

confirmed by -f option of sstat(1). If yes, INTERRUPT is displayed in Suspend 

Reason field.  

 

If the execution host is an SX-Aurora TSUBASA system, see also 5.6 Suspend Jobs 

Using VEs. 

 

 

About the request suspended by smgr(1M) or the interruption:  

○ CPU is released, however memory is kept because the process is remained. 

Therefore, it should be ensured that enough memory or swap can be gotten even 



 

73 

 

if other requests are executed while the request is suspended. If the memory 

becomes insufficient during executing of other requests, it can lead abort of jobs. 

○ The manager can resume the suspended request by the qsig command. Since 

the resumed request can be executed immediately, there is a possibility that it 

competes with other running requests for resources. 

 

 

3.1.10 Job Condition 
 

JobManipulator determines which host (job server) execute a job of a request 

submitted by users. However it would be necessary to execute a particular job on the 

specified host (job server) in some cases (based on user request types and site 

operations policy). In such case, you can specify the job condition to the job. 

 

The job condition is specification of the execution condition such as executing a job on 

specific host or the job server. JobManipulator schedules based on the job condition. 

 

The job condition is specified in with -B option of qsub(1), qlogin(1) and qrsh(1) 

commands. Refer to the command reference of qsub(1), qlogin(1) or qrsh(1) of NQSV 

User's Guide [Reference] for the description of specification of the job condition. 

 

3.1.11 Exit Delay Scheduling 
 

Sometimes a job does not finish due to I/O failure or other reasons, and the request 

execution time exceeds the resource occupancy time on the scheduler map. 

To prevent resource duplication in this situation, this function excludes from 

scheduling the node allocated to the request whose completion is delayed. It also 

reschedules the affected requests. After the delayed termination request is completed, 

the node concerned returns to the scheduling target. 

 

To enable this function, add “EXITDELAY_SCHEDULING” line to the 

NQSV/JobManipulator’s config file (/etc/opt/nec/nqsv/nqs_jmd.conf). After the settings, 

restart NQSV/JobManipulator. 

 

EXITDELAY_SCHEDULING: ON 

 

 

Running requests for which the elapsed time limit was increased to more than the 

resource occupation time by the qalter(1) command are subject to this function, and 

subsequent requests may be rescheduled. To prevent rescheduling, execute the 

qrerun(1) command in conjunction with the qalter(1) command.

 



 

74 

 

3.2 System Information Display 

Execute the sstat(1) command to see JobManipulator system information.  

 

Each information is displayed by execution of the sstat(1) command with the following 

options.  

 

Information Option 

Batch Request Information no option 

Map Information -A 

Resource Reservation Section Information -B 

Complex Queue Information -C 

Power-saving Schedule Information -D 

Execution Host Information -E 

JSV Assign Priority Information -J 

Information of Scheduling Priority -M 

Queue Information -Q 

Information of Scheduler Server Host  -S 

 

Detailed information can be displayed for the batch request, the scheduler server and 

the queue. Execute the sstat(1) with each option and the -f option when more detailed 

information of them is required.  

 

  



 

75 

 

Chapter 4. Advanced Scheduling Features 

4.1 Urgent Request/Special Request 

 

An urgent request is a request that is assigned and executed in preference to a normal 

request. 

There are three levels of queues: urgent, special, and normal, which are set on a per-

queue basis. Requests submitted to queues of the urgent type are called urgent 

requests, requests submitted to queues of the special type are called special requests, 

and requests submitted to queue of the normal-type are called normal requests. 

An urgent request is a request that is submitted to urgent queue. It is assigned and 

starts execution in preference to special requests and normal requests. 

A special request is a request that is submitted to special queue. Special requests are 

assigned and started in preference to normal requests. 

 

The type of queue can be set by the subcommands of the smgr (1M) command as below. 

 

smgr(1M) 

set queue type = urgent | special | normal <queue-name> 

 

For urgent/special requests, you can specify an interrupt location. You can choose 

whether these requests interrupt the execution of a normal request to execute 

immediately, or to execute an urgent/special request after the normal request executed. 

You can set it to whole scheduler and each queue units, if there are no settings for each 

queue, the whole scheduler setting is applied. 

If you want to interrupt the execution of a normal request, configure the interrupt 

position to "current". 

If you want to execute an urgent/special request after the normal request has been 

executed, set the interrupt position to "next_run". 

If you select the interrupt position to "current" and the running request at the time of 

urgent/special request is submitted belongs to the same level, it is assigned to the after 

of the running request. 

 

You can choose to "suspend" and "rerun" for the way to interrupt the execution of a 

normal request. This setting is on a scheduler basis. This setting is enabled only when 

the interrupt position is set to "current". 

If you choose "suspend" for a way to interrupt the execution of a normal request, the 

suspended request will be assigned to the after of the urgent/special request. It is 

resumed after the urgent/special request ends. 

If you choose "rerun" for a way to interrupt the execution of a normal request, the re-

run request is rescheduled. On this rescheduling, JobManipulator add the base-up for a 

rescheduled request to the scheduling priority to the request to schedule as a priority. 



 

76 

 

In addition, even if the interrupted request is set to re-run prohibited, it will be forced 

to re-run. 

 

To configure the interrupt position and how to interrupt the running normal requests, 

use the following subcommand of the smgr (1M) command. 

 

smgr(1M) 

set interrupt_to_where: Setting interrupt position (scheduler units) 

set queue interrupt_to_where: Setting interrupt positions (queue units) 

set interruption_method: How to interrupt the execution of a normal request 

 

If the execution host is an SX-Aurora TSUBASA system, see also 5.6 Suspend Jobs 

Using VEs. 

 

 

Note when the method of interrupting the running request is suspend: 

If there is a request that suspended by the suspend request subcommand of the 

smgr(1M) or the qsig(1) command, an urgent/special request cannot be used. If you run 

an urgent/special request, resource management for suspended requests is not 

guaranteed. 

 

 

4.1.1 Block of Assignment by Urgent Request 
An urgent request may not be executed immediately due to lack of resources and may 

be waiting to be executed. In this case, a small free resource may occur ahead of the 

time when the urgent request is assigned. It is possible to prohibit the assignment of 

newly submitted lower type requests to such free resources. When this setting is 

enabled, the entire execution host to which the urgent request waiting to be executed is 

assigned will become unassignable. The assignment prohibition will be removed when 

the urgent request starts executing. 

 

 

Figure 4-1 A small free resource that occurs before the time the urgent request is assigned 



 

77 

 

This feature makes it possible to initiate an urgent request as soon as the necessary 

resources are available for the urgent request waiting to be executed. This is the 

default behavior, as it gives the highest priority to the execution of urgent requests. 

 

If the amount of urgent requests is large, it may be necessary to allow lower type 

requests submitted later to be assigned and executed before the urgent requests. In 

such a case, by setting this function to off, it is possible to allow the assignment and 

execution of lower type requests that are submitted later to overtake the urgent 

requests. Use the set interrupt_assign_block subcommand of the smgr (1M) command 

below to set the settings. 

 

smgr(1M) 

set interrupt_assign_block = on | off 

 

 

When the execution host is an SX-Aurora TSUBASA system and the method to 

suspend the execution of a request is suspend, even if this function is set to off, the 

assignment of a newly submitted lower type request is not allowed until the suspended 

VE job is resumed. This is a behavior to reserve VE resources for the job to be resumed. 

 

 

 

4.2 Interactive Request 

The interactive request is a request that is mainly used in debugging and usually 

required to be executed immediately after it is submitted. By setting a small value to 

the scheduling interval and scheduler map width, the interactive request is 

immediately executed and assigned in the submitting order. The standard scheduling 

interval is two seconds, and the standard scheduler map width is three seconds. The 

interactive request supports the backfill scheduling function as well as the batch 

request. 

 

⚫ For the scheduler map width, be sure to specify a value that is one or more 

seconds greater than the scheduling interval.  

⚫ When the interactive request and batch request are scheduled by using different 

scheduling intervals, they must be manipulated by different JobManipulator 

instances.  

⚫ The parameters that must be specified to scheduling the interactive request are 

the same as those of the batch request. For details, refer to "3.1.5 Algorithm for 

Starting Request".  

 

 

As well as the batch request, the interactive request is scheduled with the maximum 

number of usable CPUs and the memory usage limit of the execution host not 

exceeded. 



 

78 

 

 

When multiple queues and multiple interactive requests exist, the request to be 

scheduled is picked up by the following policies.  

 

1. The priority of the queue to which the interactive request was submitted is 

higher.  

2. The scheduling priority of the interactive request is higher.  

3. The time when the interactive request was submitted to the queue is 

earlier.  

4. When the priority could not be determined by the above three policies, any 

of the requests that are the same in the above policies is selected.  

 

The scheduling priority is determined as follows:  

Scheduling priority  =  User-defined base-up value  

 

If the interactive request cannot be executed immediately, the behavior of the request 

differs depending on whether submit_cancel or wait is specified by set 

interactive_queue real_time_scheduling of qmgr(1M).  

 

⚫ If submit_cancel is specified, 

the interactive request is deleted.  

⚫ If wait is specified, 

the interactive request will be executed at the scheduled execution start time if 

it is assigned. If the request is not assigned, it is scheduled at the specified 

scheduling interval.  

 

Information of the interactive queue is displayed by using the -Q option of sstat(1). 

When the -Q -i option is specified, information of only the interactive queue is 

displayed. When the -f option is also specified, detailed information of the queue is 

displayed.  

 

 #sstat -Q -i 

 [INTERACTIVE QUEUE] 

 =================== 

 QueueName       RL  URL  UAL   TOT   EXC   QUE   ASG   RUN   EXT   SUD 

 ------------- -------------- ------------------------------------ 

 iq              ULIM     0     0     0     0     1     0     0 

 

As well as the batch request, information of the interactive queue is displayed by using 

sstat(1). By specifying the -f option, detailed information can be displayed. 

 

The interactive request supports the basic scheduling function of the batch request, but 

does not support the urgent and special types and the deadline scheduling.  

 



 

79 

 

 

4.3 Parametric Request 

The sub requests of the parametric request are treated and scheduled in the same way 

as the normal batch request. In the following operations, the subrequests in the 

parametric request can be displayed and operated by specifying them. In addition, by 

specifying the parametric request, the subrequests in the specified parametric request 

can collectively be displayed and operated. For the specification, see the description of 

each command. 

 

⚫ Displaying the sub requests in the parametric request by sstat(1) 

⚫ Setting the user-defined base-up value of the scheduling priority by using the 

set request baseup_user_definition subcommand of smgr(1M) 

⚫ Canceling the rescheduling waiting by using the stop waiting_retry request 

subcommand of smgr(1M) 

⚫ Suspending the request by the administrator by using the suspend request 

subcommand of smgr(1M) 

⚫ Resuming the request by the administrator by using the resume_request 
subcommand of smgr(1M) 

 

Refer to NQSV User's Guide [Operation] for details of the parametric request. 

4.4 Workflow 

The requests in the workflow are assigned according to the time relationship (*) of the 

request execution order of the workflow. This request execution order of the workflow is 

also applied to rescheduling, escalation, and early execution of the requests.  

 

* There are the following two types of the time relationship of the request execution 

order.  

 

⚫ Sequential execution 

This is the relationship of the request which is specified by the --after option of 

the qsub(1) command. The preceding request is executed, and then the following 

requests are executed in order. To maintain this relationship, assign the 

requests in the execution order.  

⚫ Concurrent execution 

This is the relationship of the request which is specified by the --parallel option 

of the qsub(1) command. Multiple requests are executed concurrently. (These 

requests are called concurrent requests.) To maintain this relationship, assign 

the concurrent requests to the same time so that these requests can be executed 

at the same time.  

 

If the requests within the workflow are rescheduled, the requests within the 

concurrent request and the subsequent requests of the relevant request are also 

rescheduled.  

 



 

80 

 

The priority of the (assignment and escalation) scheduling of the requests within the 

workflow is the same as that of the normal batch request, with the following 

exceptions:  

 

Even if the scheduling priority of the subsequent request is higher than that of the 

preceding request, the preceding request is scheduled, and then the subsequent request 

is scheduled immediately after the preceding request is assigned.  

The scheduling priority of the concurrent requests is treated as the highest among the 

requests within the concurrent requests. 

 

⚫ Because the subsequent request refers to the execution result file of the 

preceding request, the files must be linked between the preceding and 

subsequent requests by using a shared file system. 

⚫ It may take a certain amount of time to stage out the execution result file of the 

preceding request from a local disk to a shared file system, if it isn't written to 

the shared file system directly. Therefore, if the subsequent request is assigned 

right after the preceding request, the subsequent request may not refer to the 

execution result of the preceding request at the execution of the subsequent 

request starts. It is recommended to specify the stage-out wait time (the 

subsequent request is assigned after the scheduled execution end time of the 

preceding request at this interval) to ensure that the subsequent request is 

executed at the scheduled execution start time. To specify the stage-out wait 

time, use the set queue wait_stageout subcommand of smgr(1M).  

⚫ Because the concurrent requests have the same scheduling priority, they must be 

submitted in the same type of queue. If they are submitted in different type 

queues, they are not to be scheduled. 

⚫ When a parametric request is specified as the preceding request, the following 

request is assigned after finish of the all subrequests.  When subrequests are 

specified as the preceding request, the following request is assigned after 

assignment of the subrequests. 

⚫ If a hybrid request (a request which requires a different resource for each job by 

using the --job-separator or --- option for qsub(1) command) is submitted to 

execute concurrently, the request is not scheduled. 

 

 

4.5 Execution Time Reservation 

4.5.1 Specify the Execution Start Time 
 

It is possible to start execution of request at the user's specified time by specifying the 

request execution start time using the -s option of qsub(1). (Time Specification)  

However the requests reserved by time specification will be controlled as follows in 

order to be executed at the specified time without fail.  

 

⚫ The request will not be escalated even if the forward escalation is possible. 

 



 

81 

 

The requests reserved by time specification can be interrupted by a request submitted 

to the queue of higher queue type.  

 

⚫ The normal request can be interrupted by the urgent or the special requests.  

⚫ The special request can be interrupted by the urgent requests. 

  

4.5.2 Action for Failing in Time Specification 
 

It is possible to select from the following actions in case of failing to assign at the 

specified time, although a request was submitted by time specification. This setting can 

be selected by using the set treat_unbookable_request subcommand of smgr(1M).  

 

⚫ The request is deleted with a message notifying that time reservation was not 

successful. 

⚫ The request is assigned at the nearest time of the specified time.  

 

 

4.6 Advance Reservation (Resource Reservation 
Section) 

You can reserve resources for a specified section in advance. 

 

There are two types of advance reservation functions: reserved sections for 

maintenance and reserved sections for job execution. 

 

Type Description 

For maintenance Used for maintenance of hardware, etc. Requests are not executed 

in the reserved section for maintenance. 

It is created by specifying the execution host name or node group. 

This reservation section is also called an execution host-specified 

reservation section. 

For job execution Used to ensure that user requests are executed. 

It is created by specifying an execution queue. This reservation 

section is also called an execution-queue-specified reservation 

section. A template-specified reservation section can also be 

created. 

 

4.6.1 Create the Reserved Section 
 

The amount of resource demanded and section are specified to make a Resource 

Reservation Section. An ID ( from 0 to 9999 ) is assigned for it when making it. This ID 



 

82 

 

is used for the job submission to it and for deleting it.  

It can be reserved only for the attached execution host and also outside of the scheduler 

map.  

 

The Resource Reservation Section can be created by using the create 

resource_reservation subcommand of smgr(1M) and specifying following conditions.  

 

⚫ Start time of the Resource Reservation Section  (mandatory)  

⚫ The period of the Resource Reservation Section  (mandatory)  

⚫ The execution queue or the execution host. (It is necessary to specify either of 

them.)  

⚫ The number of the execution host ( -optional condition when the execution 

queue is specified- )  

⚫ The number of CPU per execution host ( -optional condition when the execution 

queue is specified-)  

⚫ Group name (-optional condition when the execution queue and the number of 

execution host is specified-) 

This is to specify the group which can use the reservation. If group isn't 

specified, all users can use this reservation.  

 

NQSV operator privileges or higher is required in order to demand the reservation. 

 

⚫ If you specify the execution host (hostname), the section is reserved for 

maintenance and the job cannot be executed. To execute a job, specify the 

execution queue(queue). 

⚫ If a user/group does not have access permit to the execution queue, a reservation 

section cannot be created. For the detail of access limit of queue, refer to NQSV 
User's Guide [Management]. 

 

 

Reservation policy  

The Resource Reservation Section can be created except the following place. 

⚫ The time period when the job is already assigned on the execution host 

⚫ Time period when the reserved section has already been set on the execution host 

⚫ When a power-saving plan has already been set on the execution host 

 

The reservation section with a queue specified can be created in the host and the 

section in which the request can be executed. 

 

There are two types of reservation with a queue specified. 

⚫ Created with the number of execution hosts specified. 

⚫ Created without the number of execution host specified (reserve all execution 

hosts bound to the queue).  

 



 

83 

 

If no resource are available in the section to be reserved, an error occurs and the 

reservation section cannot be created. 

If you create the reservation without specifying the number of execution hosts, the 

execution host that was added to the execution queue after the reserved section is 

created will also be reserved. 

If the accounting function for the resource reservation section is set to ON in the batch 

server, it is necessary to specify the number of execution hosts when creating the 

reservation section. 

Furthermore, if budget control is set to ON in the accounting server and the billing 

rate is set for the queue, it is necessary to specify the group name in addition to the 

number of execution hosts when creating the reserved section. 

If the required specification is omitted, an error will occur and the reserved section 

cannot be created. 

 

After creating reserved section, reservation section will be disabled if the reserved 

hosts will be removed from operation due to a failure or unbind. The remaining 

execution hosts are still available for the reservation. 

Request can be executed in the reserved section specified by the execution queue. 

Please configure the duration of the reservation section by determining to the elapse 

margin and the stage-out wait time. 

 

4.6.2 Job Submission to Reserved Section 
 

By specifying the Reservation ID for the -y option of the qsub(1) command, the request 

is executed by using the resources that reserved by specifying the queue. You must 

have access permission to the queue to submit the job to in the reserved section. Even 

if the start time of the reserved section has passed, you can still submit and execute a 

new request as long as the reserved section ends. Multiple requests can be executed in 

the reserved section as long as the reserved resources are free. You can also submit a 

request by specifying the start time with -s option of the qsub(1) command. 

For template-specified requests, it is possible to submit to the reserved section by 

specifying the execution queue in the case of submitting request with container 

templates. In the case of submitting request with OpenStack templates, it cannot be 

submitted. When provisioning VE jobs using Docker, use a queued specified reservation 

instead of a template specified reservation. 

 

In order to execute a request in the reserved section, you must specify the elapsed time 

(-l elapstim_req option) even if you are using the Elapse unlimited feature. 

 

The request is not checked whether it can be executed in the reserved section when 

qsub(1) command is executed. After submitting the request, JobManipulator 

determines whether it can be assigned to the reserved section. JobManipulator 

determines the following points: resources of execution hosts, whether the queue 

specified the reserved section matches the queue which the request is submitted, and 

checks the time of -s option specification for the qsub(1) command and the time related 

to the workflow. 



 

84 

 

 

You can check whether a request has been assigned to the reserved section by using the 

-f and -B -f options on the sstat(1) command. If it is assigned, it will be marked as 

Assigned, and if not, it will be marked as Queued. 

 

4.6.3 Deleting the Reserved Section 
 

There are two ways to delete the reserved section, one is deleting by the smgr (1M) 

command and the other is automatic deletion by the end of the request in the reserved 

section. 

 

4.6.3.1 Delete by a smgr command 

The reserved section can be deleted by specifying the Reservation ID in the delete 

resource_reservation subcommand of the smgr(1M) command. 

If there is a request submitted with the -y option of qsub (1), the reserved section is not 

deleted. However, if you specify the force option to the delete resource_reservation sub-

command, delete all requests that exist in the reserved section, and then delete the 

reserved section. JobManipulator will send an email to the owner of the deleted request 

to inform them that the request has been deleted. 

 

To delete a reserved section, it requires the operator privilege of the NQSV privileges. 

However, to delete the reserved section where the job exists, administrator privilege is 

required. 

 

4.6.3.2 Automatic deletion by end of request in the resource reservation 

 

By default, the reserved section is still valid even if there are no requests submitted 

with the -y option of qsub (1) for the queued reserved section. 

It is possible to delete the reserved section when any request exists in the reserved 

section after the start time of the reserved section. To enable this option, specify on in 

the set auto_delete_resource_reservation subcommand of the smgr(1M) command. The 

default value is off. 

 

The reserved section will be deleted at the end time of reserved section. Before deleting 

the reserved section JobManipulator deletes all requests that exist in the reserved 

section. JobManipulator will send an email to the owner of the deleted request to 

inform them that the request has been deleted. 

 

Also, when you DETACH a reserved execution host from the reserved section that is 

created by specifying the execution host, JobManipulator deletes the reserved section if 

all the execution host is detached. 

 



 

85 

 

4.6.4 Job Assignment to the Resource Reservation Section 
 

The requests submitted to the reserved section is scheduled to the earliest start time 

that the request can be executed in the reserved section. Even if the submit time is 

already in the reserved section, JobManipulator assigns it to the time as possible as 

earliest time from the submit time. If a submitted request cannot be assigned within 

the reserved section, the request will remain in the Queued status. 

 

4.6.5 Display the Information of the Resource Reservation 
Section 
 

The information of the Resource Reservation Section is displayed. The information 

displayed is as follows.  

 

⚫ The Resource Reservation Section ID  

⚫ The Resource Reservation Section name (detail display) 

⚫ The group name (the Resource Reservation Section with a queue specified) 

⚫ The execution queue (the Resource Reservation Section with a queue specified)  

⚫ The start time of the Resource Reservation Section  

⚫ The period of the Resource Reservation Section  

⚫ The demanded number of the execution hosts of the Resource Reservation 

Section  

⚫ The demanded number of CPUs for each execution host of the Resource 

Reservation Section  

⚫ The execution host name in the Resource Reservation Section and its state 

(detail display)  

⚫ Information of Request that use Resource Reservation Section (detail display) 

 

Commands 

The information of the Resource Reservation Section is referred to by sstat(1) with the -

B option.  

 

# sstat –B 

[Queue or Host Resource Reservations] 

 RES ID Start Time            End Time              NodeNum CPUNum  Queue 

 ------ ------------------- ------------------- ------- ------ -------- 

     27 2007-10-12 13:00:00 2007-10-12 13:20:00       1       0  execque1 

 

To display group-specified Resource Reservation Section, specify the --group option in 

conjunction with the -B option. Only group-specified Resource Reservation Section  

information is displayed. The group name is also displayed. 

 

# sstat –B --group 

[Queue or Host Resource Reservations] 



 

86 

 

 RES ID Start Time            End Time              NodeNum CPUNum  Queue  GrpName 

 ------ ------------------- ------------------- ------- ------ -------- -------- 

     27 2007-10-12 13:00:00 2007-10-12 13:20:00       1       0  execque1 groupA 

 

The Resource Reservation Section with a queue specified is displayed as follows. 

 

--group specification Privilege Scope of Display 

specified 

User 

Special user 

The Resource Reservation Section of his/her 

own group 

Group manager 
The Resource Reservation Section of his/her 

managed group 

Operator 

Manager 

The Resource Reservation Section with a 

group specified 

not specified 

User 

Special user 

The Resource Reservation Section without a 

group specified 

Group manager 
The Resource Reservation Section of his/her 

managed group 

Operator 

Manager 
All Resource Reservation Section 

Note that the Resource Reservation Section of a queue to which you do not have access 

permit isn't displayed. 

 

The Resource Reservation Section for maintenance is displayed to all users except that 

--group is specified with sstat(1). 

 

Also, in case of displaying more detail information, use sstat(1) with the -B,-f option. 

# sstat -Bf 

 Resource Reservation ID: 27 

     Resource Reservation Name = (none) 

     Group Name = groupA 

     Queue Name = execque1 

     Reserve Start Time = 2007-10-12 13:00:00 

     Reserve End Time   = 2007-10-12 13:20:00 

     Execution Host Number = 1 

     Reserve CPU Number by Host = ALL_CPU 

   Reserved Hosts (HOST_NAME : STATUS): 

       hostserver : ACTIVE 

   Requests uses this reservation area: 



 

87 

 

 

 

4.6.6 Accounting for Resource Reservation Section Specifying 
Execution Queue 
 

If accounting for Resource Reservation Section of batch server and accounting server is 

enabled, for the Resource Reservation Section specified by the execution queue and the 

number of execution host, the budget overrun check is performed at creation of the 

Resource Reservation Section, and the reservation accounting file is generated and 

accounting is performed based on it when ending or deleting the Resource Reservation 

Section. 

In this case, specifying "hostnum" and "group" to "create resource_reservation" 

subcommand of smgr(1M) command is needed for creation of Resource Reservation 

Section.  

For details of setting for the accounting for Resource Reservation Section, refer to 

NQSV User’s Guide [Accounting & Budget Control]. 

4.6.7 Set section for health-check and clean-up 
 

For the operation performing health-check and clean-up respectively before or after the 

reservation, sections can be respectively set on the front and the back of the 

reservation, which is created by specifying an execution queue and the number of 

execution hosts, to enable it. Such sections are called PRE-MARGIN and POST-

MARGIN respectively. 

 

[PRE-MARGIN + demanded period + POST-MARGIN] is reserved. The health-check 

and clean-up are requested via BSV to the side of execution host respectively at the 

start of PRE-MARGIN and POST-MARGIN, so that the scripts for the health-check 

and clean-up can be executed, which are prepared in advance. 

 

A job cannot be assigned to the section of PRE-MARGIN or POST-MARGIN.  

 

Setting of PRE-MARGIN and POST-MARGIN 

The setting of PRE-MARGIN and POST-MARING can be set by queue the set queue 

resource_reservation subcommand of smgr(1M).  

 

# smgr -P m 

Smgr : set queue resource_reservation pre-margin = seconds | post-

margin = seconds queue_name 

 

⚫ The unit is second. 

       none 



 

88 

 

⚫ The initial value is 0 (not perform the health-check or clean-up). 

⚫ This value cannot be changed to a larger one, if there is a reservation of the 

queue. If it is changed to a smaller one, it will be applied to existing 

reservations of the queue.   

⚫ Operator privilege is needed. 

 

The setting can be displayed by using sstat(1) with the -Q,-f option. 

# sstat –Q –f testq 

Execution Queue: testq 

    Queue Type            = Normal 

    Schedule Time         = DEFAULT 

...omission... 

    Wait_Stageout = 0S 

    Min Operation Hosts = 10240 

    Reservation Margin = { 

      Pre-margin  = 0S  

      Post-margin = 0S 

    }  

 

Placing of the script for the health-check and clean-up 

The script for the health-check and clean-up can be placed in /opt/nec/nqsv/sbin/extscr/ 

of the execution hosts as the name of following. 

⚫ Health-check: /opt/nec/nqsv/sbin/extscr/HealthCheck 

⚫ Clean-up: /opt/nec/nqsv/sbin/extscr/CleanUp 

A queue name as the first argument and a queue type ("batch" or "interactive") as the 

second argument are passed to the script when calling it, so that a processing can be 

defined per queue in it.  

 

⚫ When restarting JobManipulator, [PRE-MARGIN + demanded period + POST-

MARGIN] is re-allocated for the reservation and it cannot be re-allocated for the 

reservation that has already started. 

⚫ If there is any execution host failed in health-check before the start of 

reservation, an alternative one can be reserved and health check is performed 

for it. However, if it still fails, when the reservation has started, this 

unavailable reservation will be deleted automatically.  

 

 

4.6.8 Creation Function of the Resource Reservation Section 
Specifying Template 
 

This function is NOT available for the environment whose execution host is SX-Aurora 

TSUBASA system. 



 

89 

 

It is possible to make the reservation section which designated the number of machines 

which start by a template and a template in the reservation section making function of 

the execution queue designation. The number of machines is number of a virtual 

machine (VM), number of a baremetal server or number of a container here. Resource 

amount which is specified by template name and machine number is reserved at the 

start time by JobManipulator. 

 

It is possible to make the reservation section which plural virtual machine (VM) or 

container will start running on the identical execution host in the single reservation 

section. In this case, execution hosts are reserved according to the assign policy. For 

details, please refer to 2.3.8 Setting of Assign Policy. 

 

The reservation section for executing request of template designation is created by 

designating template for the reservation section which designated of the execution 

queue. The ID for the reservation section specifying template is designated and 

invested by -y option of qsub (1). The template designated as a request in this case has 

to be parallel with a designation template of a reservation section. When those aren't 

identical, a request isn't scheduled. 

 

 

⚫ In case of provisioning, a health-check and a clean-up are not performed in the 

reservation area specifying template because OS or container is started and 

stopped at every execution of requests. Setting of PRE-MARGIN and POST-

MARGIN for the queue that is specified at making reservation are ignored. For 

health check and cleanup at every execution of request health-check and clean-up 

procedure can be set in userexit script at PRERUNNING and POSTRUNNING 

for the virtual machine (VM) or container. For baremetal server they can be set in 

start script and stop script In this case elapse margin for virtual machine (VM) 

and container or timeout for booting and timeout for stopping for the baremetal 

server must be set by an appropriate time. 

⚫ A reservation section specified by a template that specifies a container template 

in which VEs is defined cannot be created. 

⚫ If the number of VEs of the container template specified at the time of creating 

the reservation section is changed to 1 or more by qmgr (1M), the reservation 

section created with the template will be deleted. When submitting a job to the 

reservation section with the changed template, use the reservation section 

specifying a queue. 

 

 

4.6.8.1 Creation of the Resource Reservation Section Specifying Template 

 

A reservation section of template designation designates and makes the number of 

machines which start by the opening time, a period, a queue name, a template name 

and a template by the create resource_reservation sub-command of the smgr(1M) 

command. 

 



 

90 

 

#smgr -P m  

Smgr: create resource_reservation starttime = <start_time> blocktime = 
<block_time> queue = <queue_name> template = <template_name> machinenum = 
<machine_num> [name = <resource_reservation_name>] [group = <group_name>] 

 

⚫ Template name is specified to template_name. 
⚫ The number of machines that is started with template template_name is 

specified to machine_num with its value 1 to 10240. 

⚫ Specifying of template_name and machine_num, specifying of hostnum and 

specifying of cpunum cannot be set at the same time, 

⚫ When specify group_name, only the user who belongs to a specified group can 

use a reservation section. 

⚫ Operator privilege is needed. 

 

When there are no spaces of a resource in the section I try to reserve, when making a 

reservation, it'll be an error. 

 

4.6.8.2 Display the Resource Reservation Section Specifying Template 

 

Summary information on a reservation section specifying template is displayed by 

using sstat (1) command with -B option. 

 

$sstat -B  

[Template Resource Reservations] 

RES ID Start Time          End Time            Template MacNum Queue 

------ ------------------- ------------------- -------- ------ -------- 

     2 2016-03-30 18:00:00 2016-03-30 19:00:00 ostmp1        6 tmp_que 

 

When specify --group with -B option, only reservation section information on group 

designation is displayed. 

 

$sstat -B --group 

[Template Resource Reservations] 

RES ID Start Time          End Time            Template MacNum Queue    GrpName 

------ ------------------- ------------------- -------- ------ -------- -------- 

     3 2016-03-30 18:00:00 2016-03-30 19:00:00 ostmp2        2 tmp_que  group1 

 

All reservation section information is displayed by -B option. Only reservation section 

information specifying template is displayed which -B and --template are specified. 

 

Detailed information of a reservation section specifying template is displayed when -B -

f option are specified. 



 

91 

 

 

$sstat -B -f 

Resource Reservation ID: 1 

: 

Reserve End Time   = 2016-07-27 15:00:00 

    Reserve Template = vm_1 

    Reserve Machine Number = 6 

  Reserved Machines (HOST_NAME : STATUS): 

      192.168.0.1 : ACTIVE 

      192.168.0.1 : ACTIVE 

      192.168.0.2 : ACTIVE 

      192.168.0.2 : ACTIVE 

      192.168.0.3 : ACTIVE 

      192.168.0.4 : ACTIVE 

  Requests uses this reservation area: 

: 

 

4.6.8.3 Job Submission to the Resource Reserved Section Specifying 
Template 

 

When you submit a request into resource reservation section specifying template, you 

can specify reservation ID to -y option and template to --template option of qsub(1) 

command. In this case the template must be the template which is specified at making 

reservation. 

JobManipulator assigns one machine in the reservation area to one job of a request. 

 

$qsub -y< reservation ID> --template=< template> 

 

The request put in a reservation area of template designation indicates-B -f option of 

the sstat (1) command in addition to the sstat (1) command. 

 

$sstat -B -f 

Resource Reservation ID: 1 

: 

Requests uses this reservation area: 

  RequestID       ReqName  UserName Queue                  Pri STT PlannedStartTime 

  --------------- -------- -------- -------- ----------------- --- ------------------- 

  1               sleep    user     vmque    500.2443/  0.5002 QUE -: 

 



 

92 

 

4.6.8.4 Accounting for Resource Reservation Section Specifying Template  

 

If accounting for Resource Reservation Section specifying template of batch server and 

accounting server is enabled, for the Resource Reservation Section specified by the 

template, the budget overrun check is performed at creation of the Resource 

Reservation Section, and the reservation accounting file is generated and accounting is 

performed based on it when ending or deleting the Resource Reservation Section. 

In this case, specifying "group" to "create resource_reservation" subcommand of 

smgr(1M) command is needed for creation of Resource Reservation Section specifying 

template. 

For details of setting for the accounting for Resource Reservation Section, refer to 

NQSV User’s Guide [Accounting & Budget Control]. 

 

4.7 ShareDB Merge Feature 

We recommend using "ShareDB Merge Feature" in order to conduct Fair-share 

scheduling on all the calculating clusters. Fair-share scheduling for each calculating 

cluster was supported.  

 

On the user system which is operating the multiple computing clusters, if 

JobManipulator is operated on each computing cluster because job operation policy is 

different between clusters, ShareDB (= the file keeping share and usage data of each 

user) are kept by each JobManipulator.  

 

ShareDB Merge Feature is the feature which merges the usage data by each user in 

ShareDB which stored by each JobManipulator and uses this merged data. All the 

JobManipulators keep the same merged data. 

For example, it is possible to use the ShareDB data merged with usage data of a cluster 

and another cluster for calculating scheduling priority.  

 

4.7.1 Overview of ShareDB Merge Feature 
 

After collecting the usage data stored by each JobManipulator, these data are merged 

by each user. These merged usage data will be stored to ShareDB in each 

JobManipulator instance as the usage data used for calculating priority afterwards.  

The target usage data which will be merged is all the usage data stored in ShareDB as 

follows.  

 

⚫ Elapse time  

⚫ The number of CPU  

⚫ The amount of Memory usage  

⚫ Request priority  

⚫ The number of VE 

 



 

93 

 

For the calculation of these usages, it is possible to specify the merge rate for each 

JobManipulator. For example, it enables the operation that the usage data of each 

scheduler can be merged by the rate of "10 to 1" at the time of merging.  

 

 

[Example] The following shows the differences in case of merging usage data by using 

two kinds of rates below for each scheduler in one of the system circumstances.  

 

A. cluster1 :cluster2 = 5 : 1  

B. cluster1 :cluster2 = 2 : 1  

 

If the more resources of cluster1 are used than the one of cluster2, it enables to reflect 

the larger value to the merged usage data under operation of A than under operation of 

B.  

 

 

At the time of merging, it is possible to specify scheduler flexibly in the following 

operations. (It is also possible to specify scheduler in other operations.)  

 

⚫ In case of operating the multiple schedulers on one host  

⚫ In case of operating one scheduler on one host and the multiple schedulers on 

another host  

⚫ In case of operating the multiple scheduler on the multiple hosts  

 

The following picture is an image of ShareDB Merge processing.  

 

Figure 4-1 Image of Merge of ShareDB 

 

 



 

94 

 

* By using the sushare(1) command with the -M option, it processes (1)-(3) below at 

one time.  

 

(1) The operator requests merge processing to the target JobManipulator by using 

the sushare(1) command. After collecting the usage data in ShareDB stored by each 

JobManipulator instance, these data is merged.  

(2) The merged data is stored to each JobManipulator instance as the merged values 

and is registered to ShareDB. (These usage values are added up to both to the local 

value and the merged usage data.)  

(3) When calculating the scheduling priority, each JobManipulator instance use 

these merged data.  

 

⚫ By using the sushare(1) command with the -M option, the local usage data of 

each scheduler is collected and calculated according to configuration file (Refer 

to "4.7.4 ShareDB Merge Configuration File" for details.) Then, update the 

merged data at one time.  

⚫ Both data of local and merged are stored to database 

/var/opt/nec/nqsv/nqs_jmd/database /<scheduler_id>/pu_db on the host 

managing JobManipulator.  

⚫ After merging, the usage data is added up to the local value and the merged 

value on each cluster.  

 

4.7.2 Set ShareDB Merge Feature 
 

Merge processing of usage data can be set by using the -M option of the sushare(1) 

command.  

 

# sushare -Pm -M [file name of merge setting] -l [log file 

name]  

 

⚫ In case of specifying log file, specify the log file name just after the -l option.  

⚫ The log file is stored on the hosts which executes the sushare(1) command with 

the -M option.  

⚫ By using the sushare(1) command with the -M option, the data on the ShareDB 

file is merged by connecting to each JobManipulator instance specified in 

configuration file through TCP/IP connection.  

⚫ It is necessary to install the sushare(1) command to the appropriate host and on 

this host the sushare(1) command with the -M option can be executed.  

⚫ The data on ShareDB file is merged according to the contents specified in the 

configuration file (default file name: /etc/opt/nec/nqsv/jm_merge_sharedb.conf).  

⚫ It is necessary to locate the configuration file on the host executing the 

sushare(1) command because the sushare(1) command reads this file directly.  

⚫ In case of changing the merge rate in operation, this change will be updated 

when the executing sushare(1) command with the -M option next time. (This 

change is not updated to the merged usage data at the time of changing.)  



 

95 

 

⚫ In case of rewriting the merged usage data to ShareDB, if the target user is not 

existent in ShareDB, this process will be ignored. (The new user will not be 

created.)  

⚫ It is necessary to have an operator privilege or higher to set ShareDB merge 

feature.  

 

 

Without executing the sushare(1) command with the -M option, it never execute merge 

processing. In case of executing merge processing regularly, use "corn".  

 

 

[Example] The following is an example of executing the sushare(1) command. This 

specifies "test2" as a configuration file name after the -M option and "test2.log" as a log 

file name after the -l option. When executing merge process, the following image will be 

output as standard output.  

 

# sushare -P m -M test2 -l test2.log 

  sushare : 7 records were acquired from host1(sch_id=2)<==This 

indicates that 7 records were read from server "host1" and 

scheduler number"2". 

  sushare : 5 records were acquired from host1(sch_id=1) 

  sushare : 7 records are transmitted to all hosts. 

  sushare : Completed. <==Completed merge process. 

 

The detail of merge process is output to the log file (default file name : 

nqs_jmd_sharedb_merge.log). The following is the output image of the log file. The red 

letters are explanation.  

 

Tue Dec 11 20:44:27 2007 sushare :  host1(2), user1[(none)], 

CPU=0.000000, VE=0.000000, MEMORY=0.000000,  

  ELAPSE=0.000000, PRIORITY=0.000000 

==>The above indicates that the data of user1(non-account code) was 

received from server "host1" and scheduler number "2".  

     The value is the local value. 

 

  Tue Dec 11 20:44:27 2007 sushare : 7 records were acquired from 

host1(sch_id=2) 

  ==>The above indicates that 7 records were read from 

server"host1" and scheduler number"2". 

 

  Tue Dec 11 20:44:27 2007 sushare :  user1[(none)], 

CPU=6722.278397, VE=5213.331234,MEMORY=6083.999465,  

  ELAPSE=6722.278397,PRIORITY=6083.999465 

  ==>The above indicates that the data of user1(non-account code) 

was merged. The value is the merged value. 

 



 

96 

 

* In the following cases, an error occurs and merge process is not executed with the 

sushare(1) command.  

 

⚫ The specified file name does not exist in the setting file.  

⚫ The host specified in the setting file is not in operation  

⚫ The host specified in the setting file is in operation but JobManipulator is not 

started  

 

 

The merge process by the sushare(1) command can be executed while JobManipulator 

is running without stopping scheduling. If the system problem occurred and the 

running merge process was aborted, merge process will be executed including the 

uncompleted process at the next time of executing the sushare(1) command with the -M 

option.  

 

 

4.7.3 Display the Usage Data of ShareDB 
 

The usage data of ShareDB can be displayed by using following options of the 

sushare(1) command.  

 

⚫ -S option (the merged usage value) 

⚫ -L option (the merged usage value and the local usage value) 

 

The followings are execution examples. 

By using sushare(1) with the -S(capital) option, each usage value of scheduler is 

displayed as a merged usage value.  

 

[Group Name : TOP_GROUP] 

 User     Acctcode Share  PU_cpunum (%)      PU_venum (%)         PU_memsz (%)        PU_elapstim (%)        PU_reqpri (%)  

--------------------------------------------------------------------------------------------------------------------------------- 

*nec      none     0.333     4.190M (50.002)   4.190M (50.002)     3.996M (50.002)   1163:58:00 (50.002)     4.190M (50.002)    

*nqs      none     0.667     4.190M (49.998)   4.190M (49.998)     3.996M (49.998)   1163:53:44 (49.998)     4.190M (49.998) 

 

[Group Name : nec] 

 User     Acctcode Share  PU_cpunum (%)      PU_venum (%)          PU_memsz (%)        PU_elapstim (%)        PU_reqpri (%)  

--------------------------------------------------------------------------------------------------------------------------------- 

 necusr1  none     0.167     2.095M (25.001)    2.095M (25.001)     1.998M (25.001)    581:59:01 (25.001)     2.095M (25.001)  

 necusr2  none     0.167     2.095M (25.001)    2.095M (25.001)     1.998M (25.001)    581:58:58 (25.001)     2.095M (25.001)  

   

[Group Name : nqs] 

 User     Acctcode Share  PU_cpunum (%)      PU_venum (%)         PU_memsz (%)        PU_elapstim (%)        PU_reqpri (%) 

--------------------------------------------------------------------------------------------------------------------------------- 

 nqsusr1  none     0.167     1.048M (12.500)    1.048M (12.500)  1022.954K (12.500)    290:58:24 (12.500)     1.048M (12.500) 

 nqsusr2  none     0.167     1.048M (12.500)    1.048M (12.500)  1022.955K (12.500)    290:58:25 (12.500)     1.048M (12.500) 

 nqsusr3  none     0.167     1.048M (12.500)    1.048M (12.500)  1022.956K (12.500)    290:58:26 (12.500)     1.048M (12.500) 

 nqsusr4  none     0.167     1.048M (12.500)    1.048M (12.500)  1022.956K (12.500)    290:58:26 (12.500)     1.048M (12.500) 



 

97 

 

 

By using sushare(1) with the -L option, each usage value of scheduler is displayed in a 

format of "merged usage value/local usage value".  

 
[Group Name : TOP_GROUP] 

 User     Acctcode Share             PU_cpunum (%)                      PU_venum (%)                            PU_memsz (%)                             PU_elapstim (%)                           PU_reqpri (%)                

  --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

-------------- 

*nec      none     0.333     4.190M/    4.190M (50.002/50.002)     4.190M/    4.190M (50.002/50.002)     3.996M/    3.996M (50.002/ 50.002)   1163:58:19/  1163:58:19 (50.002/50.002)     4.190M/    4.190M (50.002/50.002)     

*nqs      none     0.667     4.190M/    4.190M ( 49.998/ 49.998)   4.190M/    4.190M ( 49.998/ 49.998)   3.996M/    3.996M ( 49.998/ 49.998)  1163:54:03/  1163:54:03 ( 49.998/ 49.998)   4.190M/    4.190M ( 49.998/ 49.998)  

 

  [Group Name : nec] 

   User     Acctcode Share             PU_cpunum (%)                      PU_venum (%)                            PU_memsz (%)                             PU_elapstim (%)                           PU_reqpri (%)           

  --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

--------------- 

necusr1  none     0.167     2.095M/    2.095M ( 25.001/ 25.001)     2.095M/    2.095M ( 25.001/ 25.001)     1.998M/    1.998M ( 25.001/ 25.001)    581:59:10/   581:59:10 ( 25.001/ 25.001)     2.095M/    2.095M ( 25.001/ 

25.001)   

necusr2  none     0.167      2.095M/    2.095M ( 25.001/ 25.001)     2.095M/    2.095M ( 25.001/ 25.001)  1.998M/    1.998M ( 25.001/ 25.001)    581:59:08/   581:59:08 ( 25.001/ 25.001)   2.095M/    2.095M ( 25.001/ 

25.001)  

 

[Group Name : nqs] 

 User     Acctcode Share             PU_cpunum (%)                     PU_venum (%)                            PU_memsz (%)                             PU_elapstim (%)                           PU_reqpri (%)                 

  --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

-------------- 

 nqsusr1  none     0.167     1.048M/    1.048M ( 12.500/ 12.500)     1.048M/    1.048M ( 12.500/ 12.500)  1022.958K/ 1022.958K ( 12.500/ 12.500)    290:58:29/   290:58:29 ( 12.500/ 12.500)     1.048M/    1.048M ( 12.500/ 

12.500) 

 nqsusr2  none     0.167     1.048M/    1.048M ( 12.500/ 12.500)     1.048M/    1.048M ( 12.500/ 12.500)1022.960K/ 1022.960K ( 12.500/ 12.500)    290:58:30/   290:58:30 ( 12.500/ 12.500)       1.048M/    1.048M ( 12.500/ 

12.500)  

 nqsusr3  none     0.167     1.048M/    1.048M ( 12.500/ 12.500)     1.048M/    1.048M ( 12.500/ 12.500) 1022.961K/ 1022.961K ( 12.500/ 12.500)    290:58:31/   290:58:31 ( 12.500/ 12.500)      1.048M/    1.048M ( 12.500/ 

12.500)  

 nqsusr4  none     0.167     1.048M/    1.048M ( 12.500/ 12.500)     1.048M/    1.048M ( 12.500/ 12.500)  1022.961K/ 1022.961K ( 12.500/ 12.500)    290:58:31/   290:58:31 ( 12.500/ 12.500)     1.048M/    1.048M ( 12.500/ 

12.500) 

 

*The "-s (small letter) option" of the sushare(1) command can be used to specify a 

scheduler ID of JobManipulator. (Without specifying with the -s option, the default 

scheduler will be specified.) 

(Refer to the sushare(1) command with the -s option in NQSV User's Guide [Reference] 

for details.)  

 

4.7.4 ShareDB Merge Configuration File 
 

The merge process is executed according to the configuration file (default file name: 

/etc/opt/nec/nqsv/jm_merge_sharedb.conf). The following contents can be specified in 

setting file.  

 

⚫ Comment Line  

The line starting with '#' is comment.  

⚫ HOST Line  

Specify the host name or IP address executing JobManipulator. HOST Line 

needs to be specified before SCH ID (scheduler ID) Line and Merge Rate Line.  

⚫ SCH_ID Line  

Scheduler ID of JobManipulator  

⚫ MERGE_RATE Line  

Merge Rate. The value which is the local usage value multiples by merge rate is 

merged.  

⚫ CPU Line  

CPU Merge Rate. The value which is the CPU local usage value multiples by 

merge rate is merged. This content can be omitted and if it is omitted, 

MERGE_RATE will be used.  



 

98 

 

⚫ ELAPSE Line  

ELAPSE Merge Rate. The value which is the ELAPSE local usage value 

multiplied by merge rate is merged. This content can be omitted and if it is 

omitted, MERGE_RATE will be used.  

⚫ MEMORY Line  

MEMORY Merge Rate. The value which is the MEMORY local usage value 

multiplied by merge rate is merged. This content can be omitted and if it is 

omitted, MERGE_RATE will be used.  

⚫ PRIORITY Line  

PRIORITY Merge Rate. The value which is the PRIORITY local usage value 

multiplied by merge rate is merged. This content can be omitted and if it is 

omitted, MERGE_RATE will be used.  

⚫ VE Line 

VE Merge Rate. The value which is the VE local usage value multiplied by 

merge rate is merged. This content can be omitted and if it is omitted, 

MERGE_RATE will be used. 

 

 

Merge Rate is multiplying rate. Merge Rate for each resource is also multiplying rate.  

 

[Example] The following is a calculating example of CPU usage value with using 

multiplying rate.  

 Scheduler : A                Scheduler : B 

          CPU usage value : 100      CPU usage value : 150 

          CPU Merge Rate : 2          CPU Merge Rate : 3 

In the above case, the calculation will be "100 * 2 + 150 * 3" and the merged value will 

be 650.  

 

 

[Example] The following is an example of configuration file that two JobManipulators 

are targets of merging cluster1 and cluster2.  

 

The first half is the setting for cluster1. The second half is the setting for cluster2. The 

Merge rate is 10:1. 

# JobM for cluster1 

HOST=hostA 

SCH_ID=1 

MERGE_RATE=10 

 

# JobM for cluster2 

HOST=hostB 

SCH_ID=11  

 



 

99 

 

* It is necessary to store the configuration file on the host executing the sushare(1) 

command because the sushare(1) command refer to this file directly. 

 

* The following cases, it leads to an error and merge process is not executed with 

output the contents of error line and error type.  

 

⚫ In case HOST Line does not exist or HOST Line is specified after SCH_ID 

(Scheduler ID) Line or Merge Rate Line  

Error message: "HOST" is not specified.  

⚫ In case SCH_ID Line does not exist  

Error message: "SCH_ID" is not specified.  

⚫ In case MERGE_RATE is unset and CPU Line does not exist  

Error message: "CPU" is not specified.  

⚫ In case MERGE_RATE is unset and ELAPSE Line does not exist  

Error message: "ELAPSE" is not specified.  

⚫ In case MERGE_RATE is unset and PRIORITY Line does not exist  

Error message: "PRIORITY" is not specified.  

⚫ In case MERGE_RATE is unset and MEMORY Line does not exist  

Error message: "MEMORY" is not specified.  

⚫ In case MERGE_RATE is unset and VE Line does not exist  

Error message: "VE" is not specified.  

⚫ In case the value except number is specified to SCH_ID  

Error message: Only the numerical value can be specified for "SCH_ID"  

⚫ In case the value except number is specified to CPU  

Error message: Only the numerical value can be specified for "CPU"  

⚫ In case the value except number is specified to ELAPSE  

Error message: Only the numerical value can be specified for "ELAPSE"  

⚫ In case the value except number is specified to PRIORITY  

Error Message: Only the numerical value can be specified for "PRIORITY"  

⚫ In case the value except number is specified to MEMORY  

Error Message: Only the numerical value can be specified for "MEMORY"  

⚫ In case the value except number is specified to MERGE_RATE  

Error message: Only the numerical value can be specified for 

"MERGE_RATE"  

⚫ In case the value except number is specified to VE  

Error Message: Only the numerical value can be specified for "VE"  

⚫ In case invalid line was written  

Error message: Unknown key word.  

⚫ In case HOST address specified in HOST Line was not transformed  

Error message: Unknown host name.  

⚫ In case the multiple same hosts are specified  

Error message: Host is doubly specified.  

⚫ In case SCH_ID Line is doubly specified  

Error message: "SCH_ID" is doubly specified.  

⚫ In case CPU Line is doubly specified  

Error message: "CPU" is doubly specified.  

⚫ In case ELAPSE Line is doubly specified  

Error message: "ELAPSE" is doubly specified.  

⚫ In case PRIORITY Line is doubly specified  

Error message: "PRIORITY" is doubly specified.  



 

100 

 

⚫ In case MEMORY Line is doubly specified.  

Error message: "MEMORY" is doubly specified.  

⚫ In case VE Line is doubly specified.  

Error message: "VE" is doubly specified.  

 

4.8 Elapse Unlimited Feature 

Elapse Unlimited Feature enables to schedule requests without specifying the 

limitation value of elapse time (=Unlimited).  

 

* In case of specifying elapse time, refer to "3.1.5 Algorithm for Starting Request". 

* It is necessary to specify the CPU number of run limit for each job (by using  

 

cpunum_job sub-option, -l option of the qsub command).  

The following operation policies are set in the scheduling with activating Elapse 

Unlimited Feature.  

Requests whose limit value of elapse time specified are also scheduled.  

It is possible to assign requests with specifying elapse time or unlimited just after the 

request with specifying elapse time.  

No request is assigned behind the unlimited request (= the request without specifying 

elapse time)  

If the unlimited request finished running, the resource is released and other requests 

will be assigned.  

 

4.8.1 Set Elapse Unlimited Feature 
 

To set the Elapse Unlimited Feature (=scheduling the elapse time unlimited request 

can be set by the set use_elapstim_unlimited subcommand of smgr(1M).  

 

#smgr -P m 

 Smgr : set  use_elapstim_unlimited = on | off  

 

In case "on" is specified, it enables to schedule the requests that elapse time is specified 

to unlimited.  

The initial set value is "off (=with elapse limit)".  

It can be set by each scheduler.  

It is necessary to have the operator privilege or higher to set "Elapse Unlimited 

Feature".  

 

In case "on" is specified to the elapse limit, the unlimited request which was already 

submitted will be start scheduling.  

 



 

101 

 

In case "off "is specified to the elapse limit, the unlimited request which was not 

assigned yet will not be scheduled. The requests already assigned are kept assigned 

and started to run on planed schedule.  

 

 

The unlimited request is not assigned to the host where Advance Reservation 

(Resource Reservation Section is set because the Resource Reservation Section has 

higher priority than the Request Unlimited Feature.  

 

 

4.8.2 Display the Setting of Elapse Unlimited 
 

The set values (on/off) of elapse unlimited can be displayed by using sstat(1) with the -

S,-f option.  

 

#sstat -S -f 

  JobManipulator Server Host: bsv.nec.co.jp 

      JobManipulator Version   = R1.00 

      JobManipulator Status    = Active 

      Scheduler ID               = 5    

      Schedule Interval        = 60S 

      Schedule Time             = 604800S 

      Use Elapse Unlimited     = ON 

: 

 

4.9 Scheduling with the change in the number of 
CPUs/GPUs 

In cases of change in the number of available CPUs/GPUs, such as failure and recovery 

of CPU/GPU, setting change of RSG/RB etc., JobManipulator performs scheduling 

based on the updated number of available CPUs/GPUs and the requests that have been 

assigned to the scheduler map will be reassigned. The targets of reassignment are as 

follows.  

 

⚫ The requests that are assigned to the execution hosts with change in the 

number of available CPUs/GPUs and are waiting to run.  

⚫ The requests assigned behind of the multi-node request which is assigned to the 

execution hosts with change in the number of available CPUs/GPUs.  

 

The order of reassigning the targets to the scheduler map is from the request with 

earlier planned start time determined when previous assignment.  

 



 

102 

 

 

 

This feature depends on Load Interval of NQSV batch server. When the value of Load 

Interval is set to 0, this feature does not work. Therefore, Load Interval should be set 

as a value larger than 1 to make this feature work. Load Interval controls the timing of 

updating available CPUs/GPUs. Consequently, when a large value is set to Load 

Interval, the interval of updating available CPUs/GPUs is large and it will take a bit of 

time to do scheduling based on the updated number of available CPUs/GPUs. Refer to 

NQSV User's Guide [Management] for Load Interval. 

 

 

4.10 Support for Failover System 

JobManipulator supports EXPRESSCLUSTER. By the redundant JobManipulator 

hosts configured with EXPRESSCLUSTER, it is possible to continue scheduling 

without system down. 

By using the -a option at JobManipulator (nqs_jmd) starting up, it can specify the 

virtual IP address supplied by EXPRESSCLUSTER.  

 

If the virtual-IP-address is specified, JobManipulator performs as follows.  

 

⚫ The JobManipulator server hostname displayed by sstat(1) is the hostname 

that corresponds to this IP address.  

 

In case Fail-over occurs, the running requests will continue to run, and the scheduled 

start time of the requests which has already been assigned and is waiting to be 

executed is cleared and the requests is rescheduled.  

 

4.11 Scheduling in Problem on Node 

When node problem (which means unlink of the job server) occurred on the job server 

with assigned jobs, the jobs are cleared and rescheduled.  

 

4.11.1  Rescheduling at Node Problem 
 

The followings are request states which exist on the node.  

1. Running request 

2. Request waiting for execution 

3. Request under stage-in 

 

In case of node down due to the failures when these requests exist on the node, the 

requests are rescheduled as follows.  



 

103 

 

 

Refer to "4.11.2 Forced Rerunning of Running Job" for running requests.  

 

A request waiting for execution will be in QUEUED status after purging its jobs, and 

rescheduled. 

 

The operations above are valid in not only problems on the node but also in the case of 

unbinding the job server by the operator. Therefore, rescheduling requests can also 

work when a node is down for maintenance.  

 

Using "Keep Forward Schedule function", it is possible to hold the number of requests 

to which the scheduled start time is changed to a minimum, by maintaining the 

scheduled start time of a request which begins to execute after fixation time from a 

node failure. 

Refer to "4.11.4 Keep Forward Schedule" for Keep Forward Schedule function. 

 

4.11.2  Forced Rerunning of Running Job 
 

The job will be stalled when node problem occurs on node where a running job exists. 

This stalled job can be rerun forcibly by setting of scheduler. The running job which 

stalled will be rescheduled by executing rerun. 

The forced rerunning of the running job is set by the set forced_rescheduling 

subcommand of smgr(1M). Operator privilege or higher is required to set. The default 

is OFF and a job is rescheduled after waiting for node recovery.  

The state of the request subject to forced rerun is as follows: 

- RUNNING 

- SUSPENDING 

- SUSPENDED 

- RESUMING 

- POST-RUNNING 

4.11.3  Waiting to Forced Rerunning on Connection with BSV 
 

If stalled jobs exist on connection of JobManipulator and batch server, JobManipulator 

will wait a period specified by JM_RERUNWAIT (default is 10 minutes) to force 

rerunning of the stalled jobs. 

If the jobs recover from stalled state during the waiting time, forced rerunning will not 

be done. If the jobs are still in stalled state after the waiting time and the Forced 

Rerunning of Running Job function is set to ON, forced rerunning will be done to the 

jobs. 

The waiting time can be specified in configuration file. The setting shown as follows 

can be added to configuration file (/etc/opt/nec/nqsv/nqs_jmd.conf) to customize it.  

 

JM_RERUNWAIT: 600 #waiting time for waiting to forced 

rerunning on start-up(specified in second)   

 



 

104 

 

 

This function only works on connection of JobManipulator and batch server. The jobs 

detected as stalled jobs  during operation after completion of connection of 

JobManipulator and batch server will be forced to rerun immediately, when Forced 

Rerunning of Running Job function is set to ON.  

 

 

 

4.11.4 Keep Forward Schedule 
 

4.11.4.1 Overview of Keep Forward Schedule 

 

This function enables that the schedule of requests after a time is maintained on node 

failure to minimize the schedule change. The schedule of requests assigned at earlier 

time than this time will be canceled and rescheduled. It is useful when you can fix the 

node failure as soon as possible after it happened and want to maintain the schedule as 

much as possible. If node failure is not fixed until the scheduled start time of the 

request, it will be rescheduled.  

 

4.11.4.2 Setting of Keep Forward Schedule 

 

The time can be configured by using the set keep_forward_schedule subcommand of 

smgr(1M).  

 

#smgr -P m 

 Smgr : set keep_forward_schedule = second  

 

Set the time to determine to maintain the schedules of which requests when 

node problem (HW failure or only unlink down of the job server) occurred with 

specifying a time of period in second by second. The schedules of the requests 

whose scheduled start time is [time of HW failure occurrence + second] or a 

later one are maintained.  

When 0 is specified in second, the schedule is not maintained. The initial value 

is 0. Operator privilege is needed. 

When the state of the node by which failures occurred does not change to 

ACTIVE even if this setting time is passed, the requests which are assigned to 

the node are rescheduled. 

 

4.11.4.3 Display of Setting of Keep Forward Schedule 

 

The setting can be displayed by using sstat(1) with the -S,-f option.  



 

105 

 

 

#sstat -S -f 

JobManipulator Server Host: bsv.nec.co.jp 

    JobManipulator Version   = R1.00 

    JobManipulator Status    = Active 

    Scheduler ID               = 5 

            :      

    Keep Forward Schedule     = 3600S 

: 

 

4.11.5 Top Priority Execution of the Failure Encounter Request 
 

We do not recommend using this function because it greatly affects the execution of 

many requests and the utilization of the entire system. When using it, be sure to fully 

understand the notes before using it. 

 

4.11.5.1 Overview of Top Priority Execution of the Failure Encounter 
Request 

 

When a node failure occurs, you can rerun the running request that encountered the 

failure, assign it backwards, and re-execute it. However, in an operation where many 

requests are executed, it may take a long time for the failure encounter request to be 

executed again. Therefore, by using this function, it is possible to re-schedule and re-

execute a running request that has encountered a failure with the highest priority. If 

you use this function, for a request scheduled to be executed, the scheduled start time 

will be canceled and the request will not be started even if there is space on the 

execution host until the failure encounter request is re-executed. We do not recommend 

using this function because it greatly affects the execution of many requests and the 

utilization of the entire system. 

 

4.11.5.2 Setting of Top Priority Execution of the Failure Encounter 
Request 

 

To use this function, the following line must be added to the configuration file 

(/etc/opt/nec/nqsv/nqs_jmd.conf). After adding, it will be enabled by rebooting 

JobManipulator. 

 

HWFAILURE_OVERTAKE: ON 

 

If there is no above description or if the value is OFF, this function will be disabled. 

In addition, to use this function, it is necessary to enable 4.11.2 Forced Rerunning of 

running jobs function. 



 

106 

 

 

4.11.5.3 Notes when using this function 

We do not strongly recommend using this function. Please note the following when 

using this function. 

-Until the re-execution schedule of the failure encounter request is decided, all the 

scheduled start times of other requests are canceled, and they will not be started even 

if there is space on the execution host. Therefore, it greatly affects the utilization of the 

entire system. 

-If a request encounters a failure, all scheduled start times of other requests will be 

cancelled. Other requests will not be able to be executed at the scheduled start time 

that has already been determined. 

-If a failure occurs and there are insufficient execution hosts or resources for the failure 

encounter request to be re-executed, all job execution will be stopped unless the failure 

is recovered.  

 

4.12 Deadline Scheduling 

4.12.1  Overview of Deadline Scheduling 
 

JobManipulator assigns requests to the earliest possible time in backfill scheduling, 

while it assigns requests with deadline time specified to a time as close to the specified 

deadline time as possible, so that it can finish at the specified deadline time, and other 

requests can be assigned to the free resource at the head of the scheduler map first. 

The request with deadline time specified is named Deadline Request. 

 

It is disadvantageous to Deadline Request in scheduling such as escalation because its 

priority is lower than non-deadline request. Therefore, JobManipulator supports a 

function to reduce the usage data of Deadline Request, which is used to calculate 

scheduling priority. It can give incentive to the user of Deadline Request. 

Deadline scheduling is enabled for Deadline Request which is submitted to the normal 

queue only, while urgent/special requests are not scheduled as Deadline Request. 

Deadline Request will be started to run immediately to prevent lowering of utilization 

of the system, when there is no request waiting to be assigned and there are free 

resources at current time for execution of the Deadline Request. 

 

4.12.2  Setting of Deadline Scheduling 
 

The setting of deadline scheduling for a queue should be set as on to enable deadline 

scheduling. This can be set by the set queue deadline mode subcommand of smgr(1M). 

If it is set to off, the deadline time set to Deadline Request is disregarded and this 

request will be scheduled in backfill scheduling. 

When deadline scheduling ON/OFF is changed during operation, Deadline Request is 

handled as follows.  

- OFF to ON  

Deadline time is displayed by the qstat/sstat command, and Deadline 



 

107 

 

Scheduling is applied at the next scheduling interval. Although Deadline 

Request which has already been assigned is not rescheduled at this time, it is 

rescheduled in deadline scheduling at the next escalation interval.  

- ON to OFF  

"(none)" is displayed in the field of Deadline Time by the qstat/sstat command, 

and Deadline Request which has already been assigned is not rescheduled, 

while the job of Deadline Request which has been assigned to outside of the 

scheduler map is deleted and this request is rescheduled as QUEUED request.  

 

4.12.3  Submission of Deadline Request 
 

Deadline Request is submitted by the qsub command with specifying a deadline time. 

The syntax is as below.  

 

% qsub -Y deadline_time script 

 

  deadline_time : [[[[CC]YY]MM]DD]hhmm[.SS] 

           

          CC: First two digits of year  

          YY: Last two digits of year  

          MM: Month(01-12) 

          DD: Date(01-31) 

          hh: Hours(00-23) 

          mm: Minutes(00-59) 

          SS: Seconds(00-61) 

 

Specify deadline time to deadline_time. 

 

 

Consistency between current time and specified deadline time is not checked at 

submitting Deadline Request. If a passed time is specified to deadline time, this 

request is scheduled as non-deadline request.  

 

 

Deadline time can be confirmed with the qstat -f or sstat -f command. If deadline time 

is not specified, the command displays Deadline Time as "(none)".  

 

4.12.4  Scheduling of Deadline Request 
 

JobManipulator schedules Deadline Request to finish at deadline time to a maximum 

extent, when deadline scheduling setting of the queue is set as on and Deadline 



 

108 

 

Request is submitted. Deadline Request is handled from submission to starting 

execution as follows. 

 

Pick up from assign pool  

Deadline Request is picked up from assign pool in the order of scheduling priority like 

non-deadline requests.  

Assigning 

JobManipulator assigns Deadline Request to the scheduler map where the planned end 

time can be closest to the deadline time. The assignment time is decided in following 

order.  

 

1. The planned end time is as same as the deadline time.  

2. The planned end time is before the deadline time and is closest to the 

deadline time.  

3. The planned end time is after the deadline time and is closest to the 

deadline time.  

 

 

If there are always no free resources in scheduler map all of the time, Deadline 

Request cannot be assigned and it will cause Deadline Request always exceeds the 

deadline time. To avoid such situation, Deadline Request can be assigned to outside of 

the scheduler map.  

 

 

Changing Assignment Location  

In case Escalation is set to ON (Refer to "2.7.6 Setting of Escalation Feature" for 

details), Assignment Location of assigned deadline request is checked at every 

escalation interval whether it can be changed. At that time, nodes other than assigned 

one can be candidate for assignment location. 

 

1. In case there are free resources (with which deadline request can be 

executed immediately) at the head of the scheduler map and there is no 

other assignable request in the assignment pool, escalation is performed for 

this request and then the request is assigned at the head of the scheduler 

map and started to run.  

2. In case the planned end time of deadline request can be changed closer to 

the deadline time, the request will be re-assigned.  

 

Running 

When reaching the planned start time of Deadline Request, it starts to runs. Once its 

state becomes RUNNING, Deadline Request is handled as non-deadline request, and is 



 

109 

 

not scheduled in deadline scheduling while batch jobs exist. However, if it is rerun 

during running, it can be scheduled in deadline scheduling as deadline request. 

 

⚫ When a Deadline Request is interrupted by an urgent/special request. 

The request is handled just like non-deadline request. (Refer to "4.1 Urgent / 

Special Request" for details) 

⚫ When a Deadline Request is hold by qhold command. 

The request is returned to the assignment pool like non-deadline request, and 

assigned after released. After released, the request is not scheduled in deadline 

scheduling.  

⚫ When Deadline Request is suspended by smgr. 

The request is returned to the assignment pool like non-deadline request, and 

assigned after resumed by smgr .After resumed, the request is not scheduled in 

deadline scheduling.  

⚫ When Deadline Request is suspended by the qsig command. 

The request keeps occupying the resources on the scheduler map like non-

deadline request. 

 

 

Deadline Request is scheduled to finish by the deadline time, however, there are some 

cases that the planned end time exceeds the deadline time due to following reasons.  

 

1. There are no free resources from current time to the deadline time. 

○ Resource insufficient at assigning 

○ Resource insufficient at rescheduling due to following reasons.  

○ Delay of completion of stage-in  

○ Execution host failure  

○ Interruption by urgent/special request  

○ Rerun by the qrerun command  

○ Released by the qrls command  

○ Resumed by the smgr command  

○ Changing of the length of the scheduler map  

○ Scheduling with the change in the number of CPUs function  

2. The status of the request is unable to be scheduled.  

○ The deadline time is exceeded as if the request was assigned at the 

head of the scheduler map.  

○ The execution queue is stopped.  

○ Job server is not bound to the execution queue.  

○ Deadline Request exceeds the deadline while the scheduling is stopped.  

○ Other request cannot be overtaken due to the overtake control.  

○ Too many resources are specified to the request, or resources become 

insufficient due to the execution host down.  

 

If Deadline Request exceeds the deadline time, it is scheduled to finish at the time 

closest to the deadline time.  

 

 



 

110 

 

4.12.5  Usage Data of Deadline Request 
 

Deadline Request is disadvantageous in scheduling such as escalation because its 

priority is lower than non-deadline request. Therefore, JobManipulator supports a 

function to enable the manager to set some conditions to adjust the usage data which is 

used to calculate scheduling priority by reduce rate of usage data. Usage data is 

adjusted when the each job of the Deadline Request finishes. A usage data after 

subtracting the product of the real usage data and reduce rate from the real usage data 

is updated to the ShareDB. The same reduce rate is applied to the four kinds of usage 

data (elapsed time, number of CPUs, memory usage, request priority). 

Reduce rate of usage data is not uniform. It is proportional to the difference of the 

deadline time and the planned end time of the requests, which is a time after required 

elapsed time and the elapse margin time added to the planned start time. Reduce rate 

can be adjusted as explained below.  

The reduce rate when the request finishes just at the deadline time is as base value. If 

the request finishes before the deadline time, the reduce rate is decreased from the 

base value, while it is increased from the base value if the request finishes after the 

deadline time. The parameters for adjusting the reduce rate can be set per queue by 

the set queue deadline reduce subcommand of smgr(1M). Operator privilege or higher 

is required to set these parameters. 

The user with User privilege or higher can confirm the value of the parameters of the 

queue by the sstat -Q -f command.  

 

Reduce rate adjustment parameters  

Reduce rate is specified by following seven parameters for adjusting reduce rate. (The 

string in [] is short name).  

 

[R3] Maximum reduce rate  

[R2] Ontime reduce rate  

[R1] Minimum reduce rate  

[T3] Start time of rate increase  

[T4] End time of rate increase  

[T2] Start time of rate decrease  

[T1] End time of rate decrease  

 

The time from T1 to T4 is set by relative time from deadline time by seconds. The 

specified value should be integer equal to 0 larger. The reduce rate from R1 to R3 is set 

by real number from 0 to 1.0. 



 

111 

 

 

How to calculate the reduce rate is explained below using above graph. In following 

formula, Rd means the reduce rate and Tr means the planned end time of a request, 

which is indicated by relative time from the deadline time. 

 

When the request finishes before T1, Rd is equal to R1 the minimum reduce rate 

uniformly.  

 

Rd = R1 [ T1 < Tr ]     

 

When the request finishes between T1 and T2, the more Tr increases, in other words, 

the more Tr closes to T1), the more Rd decreases proportionately. However, if T1 is 

equal to T2, Rd is equal to R1.  

 

Rd = ((R2 - R1)/(T1 - T2)) * Tr + ((T1 * R1 - T2 * R2)/(T1 - 

T2)) 

     

[ T1 > T2,T1 ≥ Tr > T2 ] 

 

Rd = R1 [ T1 = T2,T1 ≥ Tr > T2 ]     

 

When the request finishes between T2 and T3 in which the deadline time is included), 

Rd is equal to R2 the ontime reduce rate uniformly.  

 

Rd = R2 [ T2 ≥ Tr , Tr < T3 ]     

 



 

112 

 

When the request finishes between T3 and T4, the more Tr increases, in other words, 

the more Tr closes to T4, the Rd increases proportionately. However, if T3 is equal to 

T4, Rd is equal to R3.  

 

  Rd = ((R3 - R2)/(T4 - T3)) * Tr + ((T4 * R2 - T3 * R3)/(T4 

- T3))     

 

[ T4 > T3,T4 ≥ Tr > T3 ] 

 

  Rd = R3 [ T4 = T3,T4 ≥ Tr > T3 ]     

 

When the request finishes after T4, Rd is equal to R3 the maximum reduce rate 

uniformly.  

 

Rd = R3 [ T4 < Tr ]     

 

The initial value of the parameters for adjusting the reduce rate, the range of the 

values, and limitations are as follows. 

 

Parameter name 
Initial 

value 

Maximum 

value 

Minimum 

value 
Limitations 

R3 Maximum reduce rate 1.0 1.0 0 R3≥R2 

R2 Ontime reduce rate 1.0 1.0 0 none 

R1 Minimum reduce rate 1.0 1.0 0 R1≤R2 

T3 
Start time of rate 

increase 
0 2^31-1 0 T3≤T4 

T4 
End time of rate 

increase 
0 2^31-1 0 none 

T2 
Start time of rate 

decrease 
0 2^31-1 0 T2≤T1 

T1 
Start time of rate 

decrease 
0 2^31-1 0 none 

 

The parameters for adjusting the reduce rate can be set per execution queue by a 

manager with Operator privilege or higher with smgr(1M). When the value of a 

parameter is changed during operation, the reduce rate calculated from the value after 

change modified is applied to the jobs that finishes after the changing.  

 

Applying reduce rate to usage data  



 

113 

 

The reduce rate is applied to usage data of following four kinds of resources at the 

same rate at job termination.  

 

⚫ Elapse Time  

⚫ Number of CPUs  

⚫ Memory Usage  

⚫ Request Priority  

 

The usage data of above 4 kinds of resources after applying the reduce rate is added to 

ShareDB of the user.  

 

4.13 Incorporating External Policy 

4.13.1  Overview of Incorporating External Policy 
 

This feature enables you to customize the scheduling based on your own site policy 

(called External Policy below). JobManipulator performs scheduling based on External 

Policy by using the APIs created by your site, which are shown in following table. The 

following three External Policies can be incorporated into JobManipulator.  

1. External Policy on submitting 

JobManipulator can control the submitting on submitting a request based 

on External Policy such as limiting the resource usage per user/group.  

2. External Policy of request priority 

JobManipulator can adjust the priority of requests based on External 

Policy by setting a value determined by External Policy to a request as the 

request priority on submitting a request.  

3. External Policy on assignment 

JobManipulator can control the assignment on assigning a request based 

on External Policy such as limiting the number of CPUs that can be 

assigned simultaneously to a user/group.  

 

The APIs for Incorporating External Policy feature are as follows.  

API Function 

RLIM_connect Establish the connection with External Policy Daemon 

RLIM_disconnect Disconnect the connection with External Policy Daemon 

RLIM_chkresource Check External Policy on submitting 

RLIM_getpriority Retrieve the request priority by External Policy 

RLIM_chkrunlimit Check External Policy on assignment 

RLIM_relrunlimit Release the check of External Policy on assignment  

 



 

114 

 

4.13.2  Setting of Incorporating External Policy feature 
 

Set the following parameters in the configuration file (/etc/opt/nec/nqsv/nqs_jmd.conf or 

the file specified with the '-f' option on starting JobManipulator), and restart it. Each of 

above-mentioned three features can be enabled/disabled and target request type can be 

set to each feature.  

 

4.13.2.1 Enable Incorporating External Policy feature 

Each of the three features can be enabled or disabled. 

 

⚫ API_SUBREQ_CHK: ON|OFF 

It enables or disables External Policy on submitting.  

⚫ API_SET_PRI: ON|OFF 

It enables or disables External Policy on request priority.  

⚫ API_ASSIGN_CHK: ON|OFF 

It enables or disables External Policy on assignment.  

 

ON: enable 

OFF: disable 

 

It is OFF when the parameter is omitted. If a string other than ON/OFF is set or 

nothing is set behind ":", nqs_jmd outputs an error message to the standard output and 

does not start. If ON is set, the path of shared library of the APIs must be set.  

 

4.13.2.2 Set the type of target request 

The type of target request for each feature can be specified.  

 

⚫ API_SUBREQ_CHK_TYPE: request_type [,request_type...] 

It sets the type of target request of External Policy on submitting.  

⚫ API_SET_PRI_TYPE: request_type [,request_type...] 

It sets the type of target request of External Policy for request priority.  

⚫ API_ASSIGN_CHK_TYPE: request_type [,request_type...] 

It sets the type of target request of External Policy on assignment.  

 

The following can be set to request_type 

normal: The requests submitted to normal queue  

special: The requests submitted to special queue  

urgent: The requests submitted to urgent queue  

all: the requests submitted to normal queue, special queue , and urgent queue. 

 

The request submitted to normal queue is the target, if this parameter is omitted. One 

or more types must be set when this parameter is set. When specifying multiple types 

separate them by using a comma (,). If a string other than normal, special, urgent, all 



 

115 

 

is set to request_type or nothing is set behind ":", nqs_jmd outputs an error message to 

the standard output and does not start.  

 

4.13.2.3 Set the path of shared library of the APIs for Incorporating 
External Policy feature 

Following parameter sets the path of shared library of the APIs.  

API_LIB_PATH: library_path  

The path is set to library_path.  

The path must be set when one of the three features 

(API_SUBREQ_CHK/API_ASSIGN_CHK/API_SET_PRI) is enabled. If this setting is 

omitted, nqs_jmd outputs an error message to the standard error output and does not 

start.  

 

4.13.3  Connection to External Policy Daemon 
 

When Incorporating External Policy is enabled, JobManipulator connects to External 

Policy Daemon by using the RLIM_connect function.  

When it failed to connect to External Policy Daemon, it retries at every scheduling 

interval. External Policy will not be reflected to the scheduling until the connection is 

established.  

 

On terminating of JobManipulator, the connection is disconnected by using the 

RLIM_disconnect function.  

 

4.13.4  External Policy on Submitting 
 

When ON is set to API_SUBREQ_CHK, JobManipulator controls the submitting on 

submitting the request submitted to the queue specified with 

API_SUBREQ_CHK_TYPE based on External Policy such as limiting the resource 

usage per user/group by using the RLIM_chkresource function. It performs the 

processing according to the return value of the RLIM_chkresource function as shown in 

following table.  

Meaning of 

return value: 

return value 

Processing 

Allowed to 

submit: 0 
JobManipulator performs scheduling for the request. 

Disallowed to 

submit: -3 

System error: 

-1 

JobManipulator deletes the request and sends an e-mail to the 

address set to the request. 

The e-mail is as follows. 

Subject: NQSV request: request_id.machine_id is deleted.  

Message body:  



 

116 

 

  Reason: RLIM_chkresource error  

  Detail: the message returned by RLIM_chkresource function 

Connection 

error: -2 

JobManipulator clears the target requests in ASSIGNED state from 

the scheduler map and stops scheduling them until it successfully 

reconnects to External Policy Daemon after retrying at the scheduling 

interval.  

 

The timing checking External Policy on submitting is as follows.  

 

⚫ When a request is submitted.  

⚫ When JobManipulator starts.  

⚫ When JobManipulator successfully reconnects to External Policy Daemon.  

⚫ When an execution queue is bound to JobManipulator.  

 

In addition, the check is not performed to following requests.  

 

⚫ a request in HELD state submitted with the Request Connection function  

⚫ a request in HELD state submitted with "qsub -h"  

⚫ a request in WAITING state submitted with "qsub -a"  

 

4.13.5  External Policy on Request Priority 
 

When ON is set to API_SET_PRI, for the request submitted to the queue specified with 

API_SET_PRI_TYPE, JobManipulator retrieves a value determined by External Policy 

and sets it to the request to adjust the priority of requests by using the 

RLIM_getpriority function. It performs the processing according to the return value of 

the RLIM_getprioirty function as shown in following table.  

Meaning of 

return value: 

return value 

Processing 

Retrieving 

success: 0 
JobManipulator sets the request priority value to the request. 

System error: 

-1 

JobManipulator deletes the request and sends an e-mail to the 

address set to the request. 

The e-mail is as follows. 

Subject: NQSV request: request_id.machine_id is deleted.  

Message body:  

  Reason: RLIM_getpriority error  

  Detail: the message returned by RLIM_getpriority function 

Connection 

error: -2 
JobManipulator clears the target requests in ASSIGNED state from 

the scheduler map and stops scheduling them until it successfully 



 

117 

 

reconnect s to External Policy Daemon after retrying at the scheduling 

interval.  

 

The timing calling RLIM_getpriority is as follows.  

⚫ When a request is submitted.  

⚫ When JobManipulator starts.  

⚫ When JobManipulator successfully reconnects to External Policy Daemon.  

⚫ When an execution queue is bound to JobManipulator.  

 

In addition, it is not performed to retrieve and set the request priority for the following 

request.  

⚫ a request in HELD state submitted with the Request Connection function  

⚫ a request in HELD state submitted with "qsub -h"  

⚫ a request in WAITING state submitted with "qsub -a"  

 

In the following cases, the request is deleted and an e-mail is sent to the address set for 

the request.  

⚫ When the retrieved request priority value is out of the range (from -1024 to 

1023).  

The e-mail is as follows.  

Subject: NQSV request: request_id.machine_id is deleted. 

Message body: Reason: Request priority exceeds limit.  

 

⚫ When setting the request priority is failed. 

The e-mail is as follows.  

Subject: NQSV request: request_id.machine_id is deleted. 

Message body: Reason: Request priority cannot be set.  

 

4.13.6  External Policy on Assignment 

4.13.6.1 Check External Policy on Assignment 

When ON is set to API_ASSIGN_CHK, JobManipulator controls the assignment on 

assigning the request submitted to the queue specified with API_ASSIGN_CHK_TYPE 

based on External Policy such as limiting the number of CPUs that can be assigned 

simultaneously to a user/group, by using the RLIM_chkrunlimit function. It performs 

the processing according to the return value of the RLIM_chkrunlimit function as 

shown in following table. The timing checking External Policy on assignment is just 

before stage-in of the request and after the nodes have been determined which should 

be assigned to the request.  

Meaning of 

return value: 

return value 

Processing 



 

118 

 

Allowed to 

assign: 0 
JobManipulator assigns the request. 

Disallowed to 

assign: -3 

JobManipulator retries to assign it at the scheduling interval until it 

is allowed to assign. 

System error: 

-1 

JobManipulator deletes the request and sends an e-mail to the 

address set to the request. 

The e-mail is as follows. 

Subject: NQSV request: request_id.machine_id is deleted.  

Message body:  

  Reason: RLIM_chkrunlimit error  

  Detail: the message returned by RLIM_chkrunlimit function 

Connection 

error: -2 

JobManipulator clears the target requests in ASSIGNED state from 

the scheduler map and stops scheduling them until it successfully 

reconnect s to External Policy Daemon after retrying at the scheduling 

interval.  

 

4.13.6.2 Release checking External Policy on Assignment 

When the jobs of the target request of checking External Policy on assignment 

terminate or deleted, RLIM_relrunlimit is executed, so that the state of the request can 

be managed in External Policy Daemon. The timing to release checking External Policy 

on assignment is as follows.  

⚫ When the request terminates.  

⚫ When the jobs of the request are canceled by unbinding the job server and 

so on.  

Meaning of 

return value: 

return value 

Processing 

Release 

success: 0 
None 

System error: 

-1 

JobManipulator deletes the request and sends an e-mail to the 

address set to the request. 

The e-mail is as follows. 

Subject: NQSV request: request_id.machine_id is deleted.  

Message body:  

  Reason: RLIM_relrunlimit error  

  Detail: the message returned by RLIM_relrunlimit function 

Connection 

error: -2 

JobManipulator clears the target requests in ASSIGNED state from 

the scheduler map and stops scheduling them until it successfully 

reconnect s to External Policy Daemon after retrying at the scheduling 

interval.  

 



 

119 

 

4.13.7  API Functions 
JobManipulator realizes Incorporating External Policy feature by calling the following 

API functions which you defines for your own site.  

 

(1) RLIM_connect  

Format 

int RLIM_connect(char *msg)  

 

Function 

It establishes the connection with External Policy Daemon. 

When it gets an error, it sets a description on the reason to msg. 

  

Arguments 

char *msg<OUT>: The buffer for an error message (within 128 characters).  

 

Return value 

 

 

 

 

 

(2) RLIM_disconnect 

Format 

int RLIM_disconnect(char *msg)  

 

Function 

It disconnects the connection with External Policy Daemon. 

When it gets an error, it sets a description on the reason to msg.  

 

Arguments 

char *msg<OUT>:The buffer for an error message (within 128 characters). 

  

Return value 

 

 

 

 

 

Connection success :0 

System error :-1 

Connection error :-2 

Disconnection success :0 

System error :-1 

Connection error :-2 



 

120 

 

 (3) RLIM_chkresource 

Format 

int RLIM_chkresource(ReqID *reqid, uid_t uid, gid_t gid, char *qname, 

Resources *resources, char *msg)  

 

Function 

It checks External Policy on submitting the request specified by the 

arguments, and returns the result. 

When it gets an error, it sets a description on the reason to msg.  

Arguments 

 

ReqID *reqid<IN> :Request ID 

 

typedef struct { 

int  mid;        /* Machine ID */ 

int  seqno;      /* Sequential number */ 

int  subreq_no; /* Subrequest number */ 

} ReqID; 

uid_t uid<IN> : User ID of the request owner 

gid_t gid<IN> : Group ID of the request owner 

char *qname<IN> : Queue name of the request 

Resources 

*resources<IN> 

: Declared resources of the request 

 

typedef struct { 

int  job_number; 

int  elapse; 

int  cputime_per_job; 

long  disk_per_job; 

int  cpunum_per_job;   

} Resources; 

job_number: Number of jobs of the request 

elapse: Declared elapse time (second) 

of the request 

cputime_per_job: Declared CPU time per job 

(second) of the request 

disk_per_job: An integer 

cpunum_per_job: Declared CPU number per 

job of the request 
 

char *msg<OUT> : The buffer for an error message (within 128 characters)  

 



 

121 

 

Return value 

 

 
If the request is a hybrid request, which is submitted by qsub(1) command with --job-

separator option or --- option to require the different resources to each jobs, the CPU 

time of the first job group and the number of CPUs are set.

 

 

(4) RLIM_getpriority  

Format 

int RLIM_getpriority(ReqID 

 *reqid, uid_t uid, gid_t gid, int *pri, char *msg) 

  

Function 

It retrieves the request priority determined based on External Policy for 

the request specified by the arguments, and returns the result. 

When it gets an error, it sets a description on the reason to msg.  

 

Arguments 

 

ReqID *reqid<IN> :Request ID 

uid_t uid<IN> :User ID of the request owner 

gid_t gid<IN> :Group ID of the request owner 

int *pri<IN/OUT> :Address in which the request priority is stored 

char *msg<OUT> :The buffer for an error message (within 128 characters)  

 

 

Return value 

 

 

 

 

 

Allowed to submit : 0(It returns "Allowed to submit" when the request is not over the 

limits of External Policy.) 

System error :-1 

Connection error :-2 

Disallowed to 

submit 

:-3(It returns "Allowed to submit" when the request is over the 

limit of External Policy.) 

Success :0 (The retrieved value is set to pri.) 

System error :-1 

Connection error :-2 



 

122 

 

(5) RLIM_chkrunlimit  

Format 

int RLIM_chkrunlimit(ReqID *reqid, uid_t uid, gid_t gid, char *qname, char 

*msg)  

 

Function 

It checks the External Policy on assignment to the request specified by the 

arguments, and returns the result. 

When it gets an error, it sets a description on the reason to msg. 

  

Arguments 

 

ReqID *reqid<IN> : Request ID 

uid_t uid<IN> : User ID of the request owner 

gid_t gid<IN> : Group ID of the request owner 

char *qname<IN> : Queue name of the request 

char *msg<OUT> : The buffer for an error message (within 128 characters)  

 

Return value 

 

 

 

 

 

 

(6) RLIM_relrunlimit  

Format 

int RLIM_relrunlimit(ReqID *reqid, uid_t uid, gid_t gid, char *msg)  

 

Function 

It changes the state of the request in External Policy Daemon and so on, and 

returns the result. For example, it can exclude the request from the targets 

checked by External Policy. 

When it gets an error, it sets a description on the reason to msg.  

Arguments 

 

ReqID *reqid<IN> : Request ID 

uid_t uid<IN> :User ID of the request owner 

Allowed to assign :0 

System Error :-1 

Connection Error :-2 

Disallowed to assign :-3 



 

123 

 

gid_t gid<IN> : Group ID of the request owner 

char *msg<OUT> : The buffer for an error message (within 128 characters)  

 

Return value 

Success : 0 

System error : -1 

Connection error : -2 

 

4.14 Power-saving Function 

4.14.1 Overview of Power-saving Function 
As power saving function, the following two functions are provided. 

 

⚫ Dynamic power saving function to control active nodes optimally according to 

state of running requests. 

⚫ Scheduled power saving function to control nodes based on schedule in which 

time period to stop a node is registered in advance.  

 

Those functions enable to control power supply according to running state of execution 

nodes and to save unnecessary power consumption. 

 

Power saving function can be used for execution hosts that meet all of the following 

conditions. 

 

⚫ Execution hosts of BMC (Baseboard Management Controller) 

⚫ Execution hosts of both queue bound to JobManipulator and JSV bound to 

JobManipulator 

⚫ Execution hosts which has never encountered failures 

⚫ Execution hosts ever linked-up after the operation is started, in which the JSV  

is bound to a queue and the queue is bound to JobManipulator 

 

Setting for Execution Host: 

⚫ Set BMC to enable it. 

⚫ Install ipmitool to the Node Agent host. 

⚫ Start the Node Agent. 

Refer to NQSV User's Guide [Management] for details of Node Agent. 

 

 

The job server on the execution host must be set to start automatically after the 

execution host starts. For details on starting the job server automatically, refer to 3.5 
Job Server Startup in NQSV User's Guide [Management].  



 

124 

 

Note that only set either the job server startup by a launcher daemon of NQSV or the 

job server startup by systemd. If both are set, the job server startup may fail when the 

execution host is started by the power-saving function. 

 

The eco-status of nodes can be displayed by sstat -E --eco-status. 

 

#sstat -E –-eco-status 

ExecutionHost   EcoStatus  StateTransitionTime OFF(D) ACCUM 

--------------- --------- ------------------- ------ ----- 

Host1             PEAKCUT    2015-05-26 16:30:00       1    100 

Host2             EXCLUDED   2015-06-30 12:00:00       1    101 

Host3             -           -                             1     98 

 

The reason why the node has been excluded from the targets of DC power control can 

be displayed by sstat -E --eco-status -f. 

 

%sstat -E --eco-status –f Host2 

Execution Host: Host2 

    Eco Status            = EXCLUDED 

    State Transition Time = 2015-06-30 12:00:00 

    Exclude Reason        = START_FAIL 

    DC-OFF Times (Day)    = 1 

    DC-OFF Times (ACCUM)  = 101 

 

4.14.2 Dynamic Power-saving Function 
Dynamic power-saving function is a function to turn on/off the DC power dynamically 

in accordance with the operating state of the nodes, which is also called Dynamic DC 

Control. It enables peak cut of power consumption by adjusting the maximum number 

of operation nods with setting maximum number of operation nodes per scheduler. 

JobManipulator powers off a part of nodes properly to make operation nodes not more 

than this value. One of following modes on urgency of peak out can be selected. 

    (1) Power off a node after the running request in it is finished. 

    (2) Power off a node immediately with rerunning the running request. 

 

The nodes without requests assigned in a period from current time are powered off. 

However, if too many nodes are powered off, it will affect the operation. In order to 

avoid this, minimum number of operations for each queue should be set, so that 

operation nodes are not less than this value. 

 

When there is a request waiting to be assigned, the nodes will be powered on.  

At that time, the total number of operating node of each queue is kept under "the 

maximum number of operation nodes". When nodes will power on by urgent request, 



 

125 

 

"the maximum number of operation nodes" is ignored for guarantee of execution of the 

urgent request.  

 

When this function is set as ON, all job servers bound to the queue of the 

JobManipulator instance are targets of power control, so if you want to exclude some 

node from power control such as for maintenance, it need to be unbound from all 

queues of the JobManipulator instance. 

 

 

4.14.2.1 Setting of Dynamic Power-saving Function 

The dynamic power-saving function can be enabled or disabled per scheduler by using 

the set dynamic_dc_control subcommand of smgr(1M).  

 

#smgr -P m 

 Smgr : set dynamic_dc_control = on | off  

 

on Start Dynamic Dc Control 

off Stop Dynamic Dc Control 

When changing it from on to off, the nodes bound with the queue bound 

with JobManipulator except the node with HW failure and the node 

stopped according to Eco Schedule will be started immediately, and then 

Dynamic Dc Control is stopped. 

 

The initial value is off.  Operator privilege is needed. 

 

The setting of dynamic power-saving function can be displayed by using sstat(1) with 

the -S,-f option.  

 

#sstat -S -f 

JobManipulator Server Host: bsv.nec.co.jp 

    JobManipulator Version   = R1.00 

    JobManipulator Status    = Active 

Scheduler ID             = 1 

            :  

    Auto Delete Resource Reservation = OFF 

    Forced Re-Scheduling     = OFF 

    Dynamic DC Control       = OFF 

: 

4.14.2.2 Setting of the Maximum Number of operation nodes 

The maximum number of operation nodes can be set per scheduler by using the set 

max_operation_hosts subcommand of smgr(1M).  



 

126 

 

 

#smgr -P m 

 Smgr : set max_operation_hosts = number_of_hosts  

 

The DC power supplies of a part of nodes are turned off so that the nodes in 

operation are not more than the maximum number of operation nodes. 

⚫ The range of the value is 0-10240.  

⚫ The initial value is 10240.  

⚫ Operator privilege is needed. 

 

The setting of the maximum number of operation nodes can be displayed by using 

sstat(1) with the -S,-f option.  

 

#sstat -S -f 

JobManipulator Server Host: bsv.nec.co.jp 

    JobManipulator Version   = R1.00 

    JobManipulator Status    = Active 

    Scheduler ID               = 1 

                  : 

   Auto Delete Resource Reservation = OFF 

    Forced Re-Scheduling     = OFF 

    Dynamic DC Control       = OFF 

    Max Operation Hosts      = 10240 

:        
 

 

4.14.2.3 Setting of the Mode on Urgency of Peak Cut 

The mode on urgency of peak cut can be set per scheduler by using the set 

peak_cut_urgency subcommand of smgr(1M).  

 

#smgr -P m 

 Smgr : set peak_cut_urgency = wait_run | right_now 

 

Set whether to power off a node immediately when the node will be powered off 

by the function of adjusting maximum operation of Dynamic DC Control.  

wait_run  

The node is powered off after the running request is finished. 

right_now  

The running request is rerun, the assigned requests are rescheduled 

and then the node is powered off immediately. 

 

The initial value is wait_run. Operator privilege is needed. 



 

127 

 

 

The setting of the mode on urgency of peak cut can be displayed by using sstat(1) with 

the -S,-f option.  

 

#sstat -S -f 

JobManipulator Server Host: bsv.nec.co.jp 

    JobManipulator Version   = R1.00 

            : 

    Auto Delete Resource Reservation = OFF 

    Forced Re-Scheduling     = OFF 

    Dynamic DC Control       = OFF 

    Max Operation Hosts      = 10240   

    Peak Cut Urgency         = wait_run 

: 
 

 

4.14.2.4 Setting of the Minimum Number of Operation Nodes of A 
Queue 

The minimum number of operation nodes can be set per queue by using the set queue 

min_operation_hosts subcommand of smgr(1M).  

 

#smgr -P m 

 Smgr : set queue min_operation_hosts = number_of_hosts queue_name 

 

Set the minimum number of operation nodes of the queue specified by 

queue_name to number of hosts. The DC power of a node can be turned off by 

Dynamic DC Control so as not to make the number of operation nodes of the 

queue less than this value. 

⚫ The initial value is 10240  

⚫ The range of value is 0-10240.  

⚫ Operator privilege is needed. 

 

The setting of the minimum number of operation nodes can be displayed by using 

sstat(1) with the -Q, -f option.  

 

#sstat -Q -f 

Execution Queue: bq1  

     ...omission... 

     Min Operation Hosts = 10240      

  Request Statistical information: 

 

     ...omission... 

 



 

128 

 

4.14.2.5 Setting of the DC Power Off Limit 

This feature is to limit the number of times of stopping a node by Dynamic Power-

saving function per day in since frequent stop-start of node may cause a HW failure. 

The number of times to stop the node per day is limited to the number of times that is 

set by using set dc-off_limit subcommand of smgr(1M).  

 

#smgr -P m 

 Smgr : set dc-off_limit = number_of_times  

 

Set DC Power Off Limit to number_of_times. 

⚫ The range of value is 1-200.  

⚫ The default value is 5.  

⚫ Operator privilege is needed. 

 

The setting of the DC Power Off Limit can be displayed by using sstat(1) with the -S,-f 

option.  

 

# sstat -S -f 

JobManipulator Server Host: bsv.nec.co.jp 

    JobManipulator Version   = R1.00 

    JobManipulator Status    = Active 

    Scheduler ID             = 1 

            : 

    Dynamic DC Control       = OFF 

    Max Operation Hosts      = 10240 

    Peak Cut Urgency         = wait_run 

    Min Idle Time            = 300S 

    Estimated DC-OFF Time    = 3600S 

    DC-OFF Limit             = 5 

    Use Overtake Priority = { 

      Normal  = OFF 

      Special = OFF 

    }  

:  

 

4.14.2.6 Setting of the Minimum Idle Time 

This feature is to stop a node after the elapse of a certain period of time (Minimum Idle 

Time) from following time in order to avoid stopping the node right after it becomes the 

target of operation or the job in it is finished. If a job is executed in the node during this 

period, it will not be stopped. 

 

The start of this period is the latest one of following time. 



 

129 

 

 

⚫ When there is no running job in the node. 

⚫ When the node is started. 

⚫ When JobManipulator is started. 

⚫ When you enable the Dynamic Power-saving function by smgr. 

⚫ When you bind the Job Server to a queue which is bound with 

JobManipulator. 

⚫ When you bind JobManipulator to the queue with the node bound.  

 

The Minimum Idle Time can be set per scheduler by using the set min_idle_time 

subcommand of smgr(1M).  

 

#smgr -P m 

 Smgr : set min_idle_time = seconds  

 

Set the Min Idle Time to seconds. 

⚫ The range of value is 0-2147483647.  

⚫ The default value is 300.  

⚫ Operator privilege is needed. 

 

The setting of Min Idle Time can be displayed by using sstat(1) with the -S,-f option.  

 

# sstat -S -f 

JobManipulator Server Host: bsv.nec.co.jp 

    JobManipulator Version   = R1.00 

    JobManipulator Status    = Active 

    Scheduler ID             = 1 

            :    

    Dynamic DC Control       = OFF 

    Max Operation Hosts      = 10240 

    Peak Cut Urgency         = wait_run 

    Min Idle Time            = 300S 

    Estimated DC-OFF Time    = 3600S 

:  

 

4.14.2.7 Setting of the Estimated DC-OFF Time 

This feature is to stop a node when it is possible to stop for not less than a certain 

period of time, in other words, when there is no job scheduled from current time to 

Estimated DC-OFF Time (threshold) later in the node as shown in following figure. It 

is to avoid unnecessary stop of the node such as that the node is stopped but is started 

immediately after the stopping of it.  



 

130 

 

 

 

 

The Estimated DC-OFF Time (threshold) can be set per scheduler by using the set 

estimated_dc-off_time subcommand of smgr(1M).  

 

#smgr -P m 

 Smgr : set estimated_dc-off_time = seconds  

 

Set the Estimated DC-OFF Time to seconds.  

⚫ The unit is second. 

⚫ The range of value is 2-2147483647. 

⚫ It must be equal to or larger than the sum of the margin for stopping a 

node and the margin for starting a node. (Refer to 4.16.2.8 Setting of the 

Margin for Stopping a Node and the Margin for Starting a Node)  

⚫ The default value is 3600.  

⚫ Operator privilege is needed. 

 

The setting of Min Idle Time can be displayed by using sstat(1) with the -S,-f option.  

 

# sstat -S -f 

JobManipulator Server Host: bsv.nec.co.jp 

    JobManipulator Version   = R1.00 

    JobManipulator Status    = Active 

    Scheduler ID             = 1 

            :     

    Dynamic DC Control       = OFF 

    Max Operation Hosts      = 10240 

    Peak Cut Urgency         = wait_run 

    Min Idle Time            = 300S 



 

131 

 

    Estimated DC-OFF Time    = 3600S  

:  

 

4.14.2.8 Setting of the Margin for Stopping a Node and the Margin 
for Starting a Node 

Because of taking time of several minutes for stopping a node, the margin for stopping 

a node is provided as expected time of stopping a node. And because of taking time of 

several minutes for starting a node, the margin for starting a node is provided as 

expected time of starting a node. The minimum time between stopping a node and 

starting the node for power-saving is "the margin for stopping a node" + "the margin for 

starting a node. 

 

The margin for stopping a node and the margin for starting a node can be set in the 

configuration file (/etc/opt/nec/nqsv/nqs_jmd.conf). 

 

MARGIN_FOR_STOP_HOST:300 

MARGIN_FOR_START_HOST:600  

 

Specify the margin for stopping a node with MARGIN_FOR_STOP_HOST, and the 

margin for starting a node with MARGIN_FOR_START_HOST.  

⚫ The unit is second.  

⚫ The range of value is 1-2147483647.  

⚫ The default value of MARGIN_FOR_STOP_HOST is 300. 

⚫ The default value of MARGIN_FOR_START_HOST 600. 

⚫ These two parameters can be omitted. If omitted, the values are the 

default. 

 

These parameters are also applied to Scheduled Power-saving function. 

 

 

 In the dynamic power-saving function, a node is excluded from power saving 

control targets if it remains powered on after the margin to stop the node has 

elapsed. 

 The node that is excluded from power saving control targets returns to the target 

by LINKUP the JSV. 

 The node status can be checked with the -E --eco-status option of the sstat(1) 

command or EcoStatus with the -E -f option. 

 

 

4.14.3 Scheduled Power- saving Function 
 



 

132 

 

Scheduled power-saving function is a function to turn on/off the DC power of execution 

host according to on/off schedule (scheduled power-saving period) that administrator 

determines if there is disproportionate operating rate of the nodes. (e.g. High on 

weekdays and low on weekends. There exists seasonality in operating rate. Etc.) 

 

Scheduled power-saving function begins to stop the execution host after schedule start 

time of scheduled power-saving period (Eco Schedule), and to start the execution host 

so that job operation can be re-started at ending time of Eco Schedule. When Dynamic 

Power-saving function is enabled, whether to start the execution host is determined by 

Dynamic Power-saving function. 

 

During the period of Eco Schedule, any request cannot be assigned.  

However, as for urgent request, if it can be assigned and executed on the execution host 

that is stopped according to Eco Schedule after starting this execution host, then the 

execution host is started to execute it after deleting the Eco Schedule. 

 

4.14.3.1 Create Eco Schedule 

Eco Schedule is created by smgr(1M) with create eco_schedule sub-command. The 

operator privilege or higher is required for this creation. 

 

create eco_schedule starttime = start_time endtime= end_time 

hostname = host_name 

 

⚫ Specify the start time of Scheduled power-saving period with starttime. 

⚫ Specify the end time of Scheduled power-saving period with endtime. 

⚫ Specify the target host name with hostname. 

 

Eco Schedule ID (from 0 to 9999) is assigned. This Eco Schedule ID is used to delete it. 

 

Note that the interval between starttime and endtime needs to be equal to or larger 

than following. 

 Margin for stopping a node + Margin for starting a node.  

 

Multiple Eco Schedule can be created but any of periods for the same execution host 

cannot overlap each other. 

 

Additionally, in case of the following, Eco Schedule cannot be created. 

⚫ During the specified period, there has existed assigned request in the specified 

execution host. 

⚫ During the specified period, a Reservation Section is set with specified queue in 

the specified execution host. 

 



 

133 

 

4.14.3.2 Delete Eco Schedule 

Eco Schedule is deleted by smgr(1M) with delete eco_schedule sub-command. The 

operator privilege or higher is required for this deletion. 

 

delete eco_schedule = eco_schedule_id 

 

4.14.3.3 Display Eco Schedule 

Eco Schedule ID, start time of Eco Schedule, end time of Eco Schedule and execution 

host are displayed by sstat -D command. 

 

$sstat -D 

EcoID EcoStartTime          EcoEndTime           ExecutionHost 

------ ------------------- ------------------- --------------- 

      0 2014-12-06 18:00:00 2014-12-06 23:00:00 host1 

      1 2014-12-06 18:00:00 2014-12-06 23:00:00 host2 

 

  



 

134 

 

Additionally, detail information can be displayed by sstat -Df. 

 

$sstat -Df 

Eco Schedule ID: 0 

    Scheduled Start Time   = 2014-12-06 18:00:00 

    Scheduled End Time     = 2014-12-06 23:00:00 

    Number of Scheduled Hosts = 1 

  Scheduled Hosts: 

      host1 

 

Eco Schedule ID: 1 

    Scheduled Start Time   = 2014-12-06 18:00:00 

    Scheduled End Time     = 2014-12-06 23:00:00 

    Number of Scheduled Hosts = 1 

  Scheduled Hosts: 

      host2 

 

4.15 Custom Resource Function 

4.15.1 Overview of Custom Resource Function 
 

In scheduling based on defined custom resource information, the custom resource 

function is the function which controls the use amount of the custom resource used at 

the same time. A system administrator defines a virtual resource optionally. This is 

called "custom resource information. A custom resource name, and a unit for which a 

resource are spent, the reach of the target where the resource amount used at the same 

time is controlled and the upper limit value are set as custom resource information. 

The user specify the use amount as each custom resource name in--custom option by 

the submit command (qsub(1), qlogin(1) or qrsh(1)) at the time of request submitting. 

JobManipulator refers to this value and totals the use amount of the custom resource 

used at the same time, and schedules so that there isn't that beyond the upper limit 

value of the defined custom resource. 

 

Refer to NQSV User's Guide [Management] for details of a custom resource function, 

setting method of the custom resource information, a setting method of a queue. Refer 

to NQSV User's Guide [Operation] for details of a request submitting method with the 

custom resource function. 

 

4.15.2 Scheduling using Custom Resource Information 
 



 

135 

 

The use amount of the custom resource specified in the request can be displayed by 

using qstat(1) with -f option("Custom Resources" item). Refer to NQSV User’s Guide 
[Operation] for details. 

 

When a request submitted with the use amount of the custom resource, 

JobManipulator counts the use amount of the custom resource of a request by the 

consumption unit of the custom resource, and a job is assigned in whichever time on 

the scheduler map also not to exceed the maximum of the simultaneous available 

resource in the reach of the target classification of the use amount control (batch server 

or execution host). 

 

4.15.3 Examples of Using Custom Resource Function  

4.15.3.1 Setting of occupied nodes and shared nodes 

 

 



 

136 

 

4.15.3.2 Scheduling by Electric power 

 

 

4.15.3.3 Scheduling by Software License of ISV software 

 

 

4.16 Provisioning with OpenStack 

4.16.1 Overview of Provisioning with OpenStack 
 

Virtual machine (VM) and baremetal server are supported as provisioning with 

OpenStack. Please refer to NQSV User’s Guide [Management] for detail of provisioning 

with OpenStack. Please refer to NQSV User’s Guide [Operation] for detail the method of 



 

137 

 

submitting of provisioning with OpenStack. JobManipulator does scheduling for virtual 

machine (VM) and baremetal server. 

This function is NOT available for the environment whose execution host is SX-Aurora 

TSUBASA system. 

4.16.2 Setting Re-scheduling Waiting Time at Failure of Start of 
Execution Host 
 

At failing of starting virtual machine (VM) and baremetal server under environment of 

provisioning with OpenStack, all request assigned to such execution host are re-

scheduled and starting is retried for beginning of request according to situation of 

scheduling after re-scheduling. 

 

Execution host of which set the waiting time of the re-scheduling and failed in a start 

fixes re-scheduling by the template which failed in a start. This time is called the re-

scheduling waiting time which is at the time of execution host start failure. Incorrect of 

a template is considered as the failed cause of the start as which such template was 

designated. There is a possibility that a retry of a start is failed once again in that case. 

Execution host which is set the re-scheduling waiting time by the template which 

failed in a start by this function, and maintenance is done during that mean time and 

becomes possible to prevent repeating start failure. 

Re-scheduling waiting time can be set retry waiting time (second) by using 

provisioning_start_retry_time subcommand of smgr(1M).  

 

#smgr -P m 

Smgr: set provisioning_start_retry_time = <seconds> 

 

⚫ The unit is second. 

⚫ The initial value is 0. In this case, re-scheduling is done immediately 

⚫ The value after changing of this setting is apply execution host that waiting 

re-scheduling from before changing of thin setting 

⚫ Operator privilege is needed. 

 

The setting of this function can be displayed using sstat(1) with -S -f option. 

 

$ sstat -S -f 

: 

     Stage-in Margin = { 

        Additional Margin for Escalation = 0S 

        Stage-in Threshold               = 0S 

        First Stage-in Time              = 0S 

    } 

    Provisioning Start Retry Time = 0S <- re-scheduling retry time 

  Request Statistical Information: 

: 



 

138 

 

 

Waiting of re-scheduling is released by using stop waiting_retry subcommand of smgr 

(1M) 

 

#smgr -P m 

Smgr: stop waiting_retry executionhost = <hostname> 

 

⚫ Execution host name of provisioning is specified to hostname. 

⚫ Operator privilege is needed. 

 

Scheduling with specifying template for the execution host specified to hostname is re-

started. 

 

4.16.3 Scheduling of the Execution Hosts at Provisioning 
 

When provisioning of virtual machine (VM) and baremetal server in the environment 

of provisioning with OpenStack requests are submitted with specifying template. In 

this case it is set so that start and stop time of virtual machine (VM) is included in 

Elapse margin, Also it is set so that start and stop time is timeout for booting and 

timeout for stopping of template. Please refer to NQSV User’s Guide [Management] for 

detail of timeout for booting and timeout for stopping of template. 

 

When a request is executed on virtual machine (VM), the request is executed after 

starting of virtual machine (VM) and after finishing of the request the virtual machine 

(VM) is stopped. When a request is executed on baremetal server the request is 

executed after starting of the baremetal server and after finishing of the request the 

baremetal server is stopped.  

 

At failure of stopping of virtual machine (VM) and baremetal server which is started 

under the environment of provisioning with OpenStack, such host is omitted from 

operation. Such host is displayed by using sstat(1) with -E --hw-failure option. 

 

$ sstat -E --hw-failure 

ExecutionHost Status                V 

--------------- ---------------- - 

executionhost1 EXCLUDED            - 

 

Execution host which is omitted from scheduling is added to scheduling by unbind from 

all queue (bind with JobManipulator) and bind to any queue after solving problem. 

 

The execution host of virtual machine is target of power saving function but baremetal 

server is not target of power saving function because baremetal server is started and 

ended when starting and ending of request that is assigned to such execution hist. 



 

139 

 

 

Situation as baremetal server is omitted from power saving function is displayed by 

using sstat(1) with -E --eco-status. 

 

$ sstat -E --eco-status 

ExecutionHost EcoStatus StateTransitionTime OFF (D) ACCUM 

--------------- --------- ------------------- ------ ----- 

BareMetal host EXCLUDED 2016-07-13 09:07:30 0 0 

 

FIFO scheduling is scheduling that runs in the order in which requests are submitted. 

To use, it is available to the system administrator by setting the set queue 

schedule_type subcommand of the smgr (1M) command to fifo. Fifo scheduling settings 

are per queue. 

 

In a queue that you set up for FIFO scheduling, the start time of the submitted request 

is determined immediately if you have the resources needed to execute at that time. 

Also, if the start time of the previously submitted request is determined, the next 

request is scheduled, and the start time is determined if there is a necessary resources 

for execution. 

Requests that cannot be started immediately due to the reservation interval, time 

specification, or workflow will not be displayed until the resource is available and the 

execution time is possible. 

 

Exceptions include requests that are in the HELD state for a collaboration request, 

requests that hold requests by the qhold(1) command, and requests that are in waiting 

state by the -a option of the qalter(1) command, which are over bound by requests 

submitted later. 

 

When FIFO scheduling is applied, overtaking control on pickup is disabled. In addition, 

FIFO scheduling cannot be used in conjunction with the first stage-in time. 

  



 

140 

 

4.16.4 The Waiting time of Stage-out of the Request on 
Baremetal Server 
 

When execution host is a baremetal server, a stage out doesn't put it into effect 

concurrently with execution starting of other requests, and after a stage out of a 

request has been completed, I begin to restart a baremetal server and carry out a 

request of following. Therefore it is possible to consider and schedule stage out time by 

setting time to have a stage out of a request (the stage out waiting time). 

The stage out waiting time is set by the set queue wait_stageout sub-command of the 

smgr(1M) command. 

 

# smgr -P m 

Smgr: set queue wait_stageout = <second> < queue - name>. 

 

⚫ The stage out waiting time is set in second. 
⚫ The unit is a second. 

⚫ The initial value is 0. 

⚫ Operator privilege is needed 

 

A following request is assigned as the one which restarts a baremetal server after the 

time when the stage out waiting time was emptied from the execution end scheduled 

time of the request carried out by a baremetal server. The set stage out waiting time 

can be confirmed by -Q -f option of the sstat(1) command. 

 

4.17 Provisioning with Docker 

4.17.1 Overview of Provisioning with Docker 
 

Container is supported as provisioning with Docker. Please refer to NQSV User’s Guide 

[Management] for detail of provisioning with Docker. Please refer to NQSV User’s Guide 

[Operation] for detail the method of submitting of provisioning with Docker. 

JobManipulator does scheduling for container. 

This function is NOT available for the environment whose execution host is SX-Aurora 

TSUBASA system. 

 

4.17.2 Setting Re-scheduling Waiting Time at Failure of Start of 
Execution Host 
 

At failing of starting container under environment of provisioning with Docker, all 

request assigned to such execution host are re-scheduled and starting is retried for 

beginning of request according to situation of scheduling after re-scheduling. 

 



 

141 

 

Execution host of which set the waiting time of the re-scheduling and failed in a start 

fixes re-scheduling by the template which failed in a start. This time is called the re-

scheduling waiting time which is at the time of execution host start failure. The 

scheduling waiting time is same the case of 4.17 Provisioning with OpenStack. 

Incorrect of a template is considered as the failed cause of the start as which such 

template was designated. There is a possibility that a retry of a start is failed once 

again in that case. Execution host which is set the re-scheduling waiting time by the 

template which failed in a start by this function, and maintenance is done during that 

mean time and becomes possible to prevent repeating start failure. 

 

For details of setting of re-scheduling waiting time, displaying of setting and releasing 

of setting please refer to 4.17.2 Setting Re-scheduling Waiting Time at Failure of Start 

of Execution Host. 

 

4.17.3 Scheduling of the Execution Hosts at Provisioning 
 

When provisioning of container in the environment of provisioning with Docker 

requests are submitted with specifying template. In this case it is set so that start and 

stop time of container is included in Elapse margin. Please refer to NQS User’s Guide 
[Management] for detail of timeout for booting and timeout for stopping of template. 

 

When a request is executed on container, the request is executed after starting of 

container and after finishing of the request the container is stopped.  

 

At failure of stopping of container which is started under the environment of 

provisioning with Docker, such host is omitted from operation. Such host is displayed 

by using sstat(1) with -E --hw-failure option. 

 

$ sstat -E --hw-failure 

ExecutionHost Status                V 

--------------- ---------------- - 

executionhost1 EXCLUDED            - 

 

Execution host which is omitted from scheduling is added to scheduling by unbind from 

all queue (bind with JobManipulator) and bind to any queue after solving problem. 

 

The execution host of container is target of power saving function. 

 

4.18 Setting Function of the First Stage-in Time 

 

When the request which does file staging is assigned around the head of the scheduler 

map there is a possibility that its scheduled start time is cleared because of delay of the 

stage-in. So, you can set the estimated first stage-in time as First Stage-in Time per 



 

142 

 

scheduler. JobManipulator consider first stage-in time of a request to be it at 

scheduling. 

 

When stage-in finish during First Stage-in Time, scheduled start time does not be 

cleared.  

 

First Stage-in Time is set by using set stage-in_margin first_stage-in_time 

subcommand of smgr(1M). 

 

#smgr -P m 

Smgr: set stage-in_margin first_stage-in_time = <value> 

 

⚫ First stage-in time is set to value. 

⚫ The unit is second. 

⚫ The initial value is 0.  

⚫ Operator privilege is needed. 

 

It is possible to confirm the set value by sstat(1) with -S -f option. 

 

$ sstat -S -f 

: 

    JobManipulator Version   = R1.00 

            : 

    Keep Forward Schedule    = 0S 

    Stage-in Margin = { 

        Additional Margin for Escalation = 0S 

        Stage-in Threshold = 0S 

        First Stage-in Time = 0S  

    } 

: 

 

4.19 Pre-Staging Function 

4.19.1 Overview of Pre-Staging Function 
 

The function to which a request can be assigned without staging is supported. The load 

of filesystem from simultaneous occurring of a lot of staging of request at assignment 

or escalation will be reduced by this function. Staging frequency between assignment 

and start of execution of a request will be reduced too. Stage-in will start when time to 

scheduled start time is less than stage-in starting time threshold set by set stage-

in_margin stage-in_threshold subcommand of smgr(1M) command. 

  



 

143 

 

4.19.2 Setting of Stage-in Starting Time Threshold 
 

Stage-in starting time threshold is set by using the set stage-in_margin stage-

in_threshold subcommand of smgr(1M) command. 

 

#smgr -P m 

Smgr: set stage-in_margin stage-in_threshold = <value> 

 

⚫ Stage-in starting time threshold is set to value. The unit is second. 

⚫ The initial value is 0. In this case, staging start immediately after 

assignment of a request on scheduler map. 

⚫ Operator privilege is needed. 

⚫ It becomes effective by assignment after setting change at the time of setting 

change. 

 

The setting of this function can be displayed using sstat(1) with the -S -f option. 

 

$ sstat -S -f 

: 

    JobManipulator Version   = R1.00 

    : 

    Keep Forward Schedule    = 0S 

    Stage-in Margin = { 

        Additional Margin for Escalation = 0S 

        Stage-in Threshold = 0S  

        First Stage-in Time = 0S  

    } 

: 

 

4.20 Display the Detail of the Execution Host 
Information 

 
Detailed information of the execution host can be displayed by using sstat(1) command 

with -E -f option. The information that is displayed by using -E option, -E --eco-status -f 

option and -E --hw-failure option are displayed collectively. 

 

An image of execution of "sstat -E -f" is as follows. 

 

$sstat -E –f 

Execution Host: Host1 

    CPU Number Ratio  = 1.000000 



 

144 

 

    CPU Number Ratio of RSG = { 

        RSG 0 = 1.000000 

    } 

    Memory Size Ratio = 0.000000 

    Memory Size Ratio of RSG = { 

        RSG 0 = 0.000000 

    } 

    Eco Status = { 

        Status                = EXCLUDED 

        State Transition Time = 2017-06-20 10:49:36 

        Exclude Reason        = HW_FAILURE 

        DC-OFF Times (Day)    = 0 

        DC-OFF Times (ACCUM)  = 0 

    } 

    Hardware Failure = { 

        Status = CPUERR 

    } 

 

Execution Host: Host2 

    CPU Number Ratio = 1.000000 

    CPU Number Ratio of RSG = { 

        RSG 0 = 1.000000 

    } 

    Memory Size Ratio = 0.000000 

    Memory Size Ratio of RSG = { 

        RSG 0 = 0.000000 

    } 

    Eco Status = { 

        DC-OFF Times (Day)    = 0 

        DC-OFF Times (ACCUM)  = 0 

    } 

    Hardware Failure = { 

        Status = EXCLUDED 

        Exclude Reason = VE_DEGRADATION 

        VE Degradation = YES 

    } 

 

An image of execution of "sstat -E -f -a" is as follows. Hardware Failure column is not 

displayed to unbound host. In this example Host3 is unbound and Host4 is bound. 

 

$sstat -E –f –a 

Execution Host: Host3 

    CPU Number Ratio  = 1.000000 

    CPU Number Ratio of RSG  = { 

        RSG 0 =  1.000000 



 

145 

 

        ................. 

        RSG 31 =  1.000000 

    } 

    Memory Size Ratio = 0.000000 

    Memory Size Ratio of RSG = { 

        RSG 0 =  0.000000 

        ................. 

        RSG 31 =  0.000000 

    } 

    Eco Status = { 

        Status                = EXCLUDED 

        State Transition Time = 2017-06-20 10:49:36 

        Exclude Reason        = UNBIND 

        DC-OFF Times (Day)    = 0 

        DC-OFF Times (ACCUM)  = 0 

    } 

Execution Host: Host4 

    CPU Number Ratio  = 1.000000 

    CPU Number Ratio of RSG  = { 

        RSG 0 =  1.000000 

        ................. 

        RSG 31 =  1.000000 

    } 

    Memory Size Ratio = 0.000000 

    Memory Size Ratio of RSG = { 

        RSG 0 =  0.000000 

        ................. 

        RSG 31 =  0.000000 

    } 

    Eco Status = { 

        DC-OFF Times (Day)    = 0 

        DC-OFF Times (ACCUM)  = 0 

    } 

    Hardware Failure = { 

        Status = EXCLUDED 

        Exclude Reason = VE_DEGRADATION 

        VE Degradation = YES 

    } 

 

  



 

146 

 

4.21 Node group selection function for minimum 
network topology 

4.21.1 Overview 
 

For the purpose of faster communication of MPI jobs, nodes are selected so that the 

number of network topology node groups to which the node belongs is minimized. 

 

The JobManipulator's assignment policy prioritizes the nodes whose requests can be 

executed at the earliest time. Therefore, even if the assignment settings take the 

network topology into account, there is a possibility that the request will be assigned 

across the network switches. 

For example, if you submit requests in the following order: Req1, Req2, Req3, Req4, 

Req5, Req3 will be scheduled across two network switches. The default assignment 

policy of JobManipulator gives priority to run jobs on free nodes earlier. 

 

 

Figure 4-2 Example of scheduling that prioritizes job execution 

  



 

147 

 

Node group selection function for minimum network topology selects the smallest 

possible network topology group even if the start time is delayed. 

It selects nodes within the minimum number of network topology groups for each 

request, even if there are nodes that can assign the request at a faster time. 

If this function is applied in the previous example, the scheduling will be as follows: 

Since one group is the minimum for Req3, select nodes so that they are selected within 

one group, and assign them afterward. Req4 and Req5 will be scheduled in the free 

space in front. 

 

 

Figure 4-3 Example of network topology-first scheduling 

 

 

⚫ The purpose of this function is to provide faster communication for MPI jobs. 

Therefore, requests with the job topology Distribute are not applicable. 

⚫ This feature is applied to the smallest network topology node group of the 

switch layer level specified by the create node_group switch_layer or set 

node_group switch_layer subcommand of qmgr(1M). 

⚫ If a JSV is specified to which jobs are assigned using job conditions, it is not 

guaranteed that the request will select the smallest network topology node 

group, since job conditions take precedence. 

⚫ If the order of jobs is important, please consider the order of job execution before 

turning this function on. Under certain conditions, it may be easier for a 

request submitted later to overtake a request submitted earlier. For example, if 

a group consists of 8 nodes and most of the requestss are 4-node jobs, then each 

time a request finishes, 4 nodes will be free. Therefore, a 4-node jobs submitted 

later may overtake a 5 or more node jobs. However, a request with 5 or more 

nodes will not start running later than the originally determined start time. 

 



 

148 

 

 

4.21.2 Setting 
 

The target requests that uses Node group selection function for minimum network 

topology is set to a queue unit by "set queue network_topology min_group" sub-

command of the smgr(1M) command. NQSV operator privileges or higher is required. 

The default value for a queue is off. 

 

example: 

# smgr -P o 

Smgr: set queue network_topology min_group = on bq1 

 

All requests submitted in bq1 are scheduled with Node group selection function for 

minimum network topology. 

 

 

To find the minimum number of groups for a request, set the number of hosts to be 

executed per node group. The number of executing hosts per node group is set per 

queue by the set queue network_topology host_per_group subcommand of the 

smgr(1M) command. You must have operator or higher privileges to configure this 

setting. 

 

example: 

# smgr -P o 

Smgr: set queue network_topology host_per_group = 512 execution_queue 

 

For example, if the number of nodes per node group is set to 512, requests that use up 

to 512 nodes will always be assigned to one group. Even if there is a group with less 

than 512 nodes, or if the number of nodes is less than 512 due to failure or power 

saving factors, scheduling is performed assuming that each group has available 512 

nodes. 

 

 

It is recommended that you explicitly set the number of execution hosts per node 

group. 

If not set, the default value is automatically selected the number of hosts to be used for 

each scheduling. 

In the case of automatic selection by default, the number of execution hosts with the 

highest number of occurrences is selected among the number of execution hosts per 

network topology node group of the execution hosts to be scheduled that are BINDed in 

the request submission queue. 



 

149 

 

If you want to avoid the influence of the number of execution hosts changing due to 

failure encounters or queue configuration, explicitly set the number of execution hosts 

per node group. 

 

  



 

150 

 

The setting can be displayed by using sstat(1) with the -Q -f option. 

#sstat -Q -f 

Execution Queue: jmq0 

    Queue Type            = Normal 

    Schedule Time         = DEFAULT 

          : 

    Network Topology Control = { 

      Network Topology Minimum Scheduling = ON 

      Hosts per group = 4 (Default) 

    } 

: 

 

The value of each request can be displayed by sstat(1) with - f option. 

#sstat -f 

Request ID: 1467.bsv0 

    Request Name = batch job 1 

    User  Name = user1 

          : 

    Network Topology Control: 

      Network Topology Minimum Scheduling = ON 

      Hosts per group = 4 (Default) 

      Jobs per host   = 1 (Default) 

: 

 

4.22 FIFO Scheduling 

The FIFO scheduling enables the execution of the requests in the same order of those 

submitted. 

The system administrator can specify it with a subcommand of the smgr(1M) just like, 

set queue schedule_type = fifo. FIFO scheduling settings are per a queue. 

 

JobManipulator immediately determines start time of the execution of the request 

submitted into the queue with the FIFO scheduling enables, if the resources for the 

request to run are available. 

Also, if the start time of the previously submitted request is determined, the next 

request is scheduled, and the start time is determined, if necessary resources are 

available for execution. 

 

Start time is not displayed for the request for which necessary resources are not 

available, due to the reservation section, the specified start time or the workflow. The 

start time can be displayed, when necessary resources are available. 

 

Exceptionally a request submitted later overtakes the held request for the request 

connection, the request that is held by qhold(1) and the waiting request by qalter(1) -a. 

 

When FIFO scheduling is applied, overtaking control on pickup is disabled. In addition, 

FIFO scheduling cannot be used in conjunction with the first stage-in time. 



 

151 

 

 

 

Both the queue that is set FIFO scheduling and the queue that is set Backfill 

scheduling must not have a same execution host if you use FIFO scheduling.

 

 

4.23 Cloud Bursting Function 

4.23.1 Overview of Cloud Bursting Function 
 

The cloud bursting function is a function that improves the TAT of a job by bursting the 

job to a computing resource in the cloud and executing it when there are more than a 

certain number of jobs waiting to be executed in the HPC cluster. The functional image 

is as follows: 

 

Figure 4-4 Functional image of cloud bursting 

 

The overall flow of cloud bursting is as follows: 

1. The user submits a request to the queue by specifying "Burst target 

possible". 

2. NQSV decides whether to perform bursting according to the policy at each 

scheduling interval. 

3. Calculate the bursting priority for each request to determine which 

requests to burst. 

4. NQSV selects an image that is close to the requested amount of the request 

to be bursted and launches the cloud. 

5. The request to be bursted is executed on the launched cloud environment. 

6. NQSV will stop the cloud environment in sequence when the request for 

bursting is completed. 

 

The cloud startup image is shown below. 



 

152 

 

 

Figure 4-5 Image of cloud startup 

 

The details of the cloud startup flow are as follows. 

1. JobManipulator selects a cloud bursting template and cloud bursting node 

group for each request according to the policy and issues the required 

amount of cloud startup. 

2. Node Management Agent launches the cloud via a shell script according to 

the requested cloud bursting template and cloud bursting node group 

information. 

3. If the startup is successful, one JSV number will be assigned to one cloud 

node on BSV, and the execution host will be attached. 

4. Since the cloud OS image has been created in advance so that JSV will 

start automatically, JSV will start automatically when the cloud instance 

starts. 

5. When the JSV and BSV TCP link is established (JSV LINKUP), the queue 

bound to the specified cloud bursting node group and JSV are automatically 

bound. 

6. The request will be scheduled and executed in the cloud launched with the 

selected cloud bursting template. 

7. As soon as the request is complete, JobManipulator will request the cloud 

to stop. Node Management Agent will stop the cloud via a shell script 

according to the requested information. 

8. When the stop is complete, the cloud node on the BSV and JSV will be 

automatically unbound from the queue and the execution host will be 

detached and unmanaged. 

 

NQSV supports the following cloud environments. 

- Amazon AWS (Amazon Web Service) 

- Microsoft Azure 

- Oracle OCI (Oracle Cloud Infrastructure) 

 



 

153 

 

4.23.2 Overview of Cloud Bursting Settings 
This section describes the flow of settings for using cloud bursting. 

 

Figure 4-6 Cloud bursting configuration 

 

Cloud bursting accesses the cloud portal via Node Management Agent and launches the 

cloud. Cloud Controller of the Node Management Agent can start, monitor, and stop the 

cloud with a shell script, so the administrator can start, monitor, and stop the cloud by 

customizing the shell script according to the cloud environment. 

In order to perform cloud bursting, you first need to create a cloud bursting template 

and cloud bursting node group as shown in the figure below: 

 

Figure 4-7 Template and node group settings 

 

1. [Administrator] Create an image that can be used in the cloud environment 

as a cloud bursting template. 



 

154 

 

2. [Administrator] Create a cloud bursting node group that defines the cloud 

environment. 

3. [Administrator] Bind the cloud bursting node group and the queue. 

 

By submitting a request to the queue bound to the cloud bursting node group,  

JobManipulator decides whether to perform bursting according to the policy and 

selects the appropriate image from the templates added to the cloud bursting node 

group. 

The queue can be an execution queue or an interactive queue. 

 

The following sections explain the detailed setting method and job submission method 

for using the cloud bursting function. 

 

4.23.3 Setting of Cloud Bursting Template 
Information such as the OS image and resources of the instance to be started in the 

cloud environment is defined as a cloud bursting template (From now on, it is called a 

template). 

By registering a template in the cloud bursting node group, NQSV automatically 

selects the template closest to the amount of job request resources and executes the job 

in the cloud environment indicated by that template. The user does not need to specify 

the template when submitting the request. 

 

4.23.3.1 Defining a template 

A template is defined by a system administrator. Multiple template can be defined. In a 

template, the following elements can be defined for each template as information of 

cloud environment. 

 

Element name Definition 

Template name Template name. 

A name can consist of up to 47 characters. 

A space, double quotation mark ("), and @ symbol cannot be used in a 

template name. 

Image name 

(image) 

Image name of a cloud instance to start. 

This must be an image name that can be used to launch the cloud 

instance. 

This can consist of up to 127 characters. 

Number of CPUs 

(cpu) 

Number of CPUs to be assigned. 

This must be an integer of 1 or larger. 

This is also used as the limitation on the number of CPUs per job of 

the request for which the relevant template is specified. 

Memory size Memory size to be assigned. 

This must be an integer of 1 or larger followed by a unit (B, KB, MB, 



 

155 

 

(memsz) GB, TB, PB, EB). 

This is also used as the limitation on the memory size per job of the 

request for which the relevant template is specified. 

Number of GPUs 

(gpu) 

Number of GPUs to be assigned. 

This must be an integer of 0 or larger. Specify 0 if no GPU is assigned. 

The default is 0. 

This is also used as the limitation on the number of GPUs per job of 

the request for which the relevant template is specified. 

Number of VEs 

(ve) 

Number of VEs to be assigned. 

This must be an integer of 0 or larger. Specify 0 if no VE is assigned. 

The default is 0. 

This is also used as the limitation on the number of VEs per job of the 

request for which the relevant template is specified. 

Estimated 

startup time 

(boot_timeout) 

Timeout time until JSV LINKUP after starting the cloud instance. 

This must be an integer of 1 to 2147483647. The unit is seconds. The 

default is 300 seconds. 

Estimated stop 

time 

(stop_timeout) 

Timeout time to stop the cloud instance. 

This must be an integer of 1 to 2147483647. The unit is seconds. The 

default is 300 seconds. 

Custom definition 

(custom) 

If there is information uniquely defined as a startup environment, 

describe it. 

Up to 400 characters can be described. 

Comment 

(comment) 

Comments for a template can be described. 

Up to 255 characters can be described. 

 

4.23.3.2 Using a template 

(1) Creating a template 

Start qmgr(1M) with the administrator privilege and use the "create cloud_template" 

subcommand below to create a new template. 

create cloud_template=<template_name> image=<OS_image> cpu=<cpunum> 

 memsz=<memory_size> [gpu=<gpunum>] [ve= <venum>] 

 [custom="<custom_define>"] [comment="<comment>"] [boot_timeout=<timeout>] 

[stop_timeout=<timeout>] 

 

An example to create a template named AWS_MEDIUM_RHEL8 with the following 

settings configured is shown below. 

- Image of the instance to start : ami-12ab34cd56ef78gh9 

- Number of CPUs to be assigned : 8 

- Memory to be assigned  : 64GB 

- Comment   : For AWS medium instance 

$ /opt/nec/nqsv/bin/qmgr -Pm 

Mgr: create cloud_template=AWS_MEDIUM_RHEL8 image=ami-12ab34cd56ef78gh9 cpu=8 

memsz=64gb comment="For AWS medium instance" 



 

156 

 

Cloud_Template AWS_MEDIUM_RHEL8 created. 

 

(2) Deleting a template 

Start qmgr(1M) with the administrator privilege and use the "delete cloud_template" 

subcommand below to delete the created template. However, if some requests use the 

target template, the template cannot be deleted. 

delete cloud_template =<template_name> 

 

(3) Editing a template 

Start qmgr(1M) with the administrator privilege and use the "set cloud_template" 

subcommand below to edit the created template. However, if some requests use the 

target template, the template cannot be edited. 

set cloud_template image=<OS_image>  <template_name> 

set cloud_template cpu=<cpunum>  <template_name> 

set cloud_template memsz=<memory_size>  <template_name> 

set cloud _template gpu=<gpunum>  <template_name> 

set cloud _template ve=<venum>  <template_name> 

set cloud_template custom="<custom_define>"  <template_name> 

set cloud_template comment="<comment>"  <template_name> 

set cloud_template boot_timeout=<timeout>  <template_name> 

set cloud_template stop_timeout=<timeout>  <template_name> 

 

(4) Locking and unlocking a template 

A template can be locked to temporarily prevent use when the above "delete 

cloud_template" and "set cloud_template" subcommands are executed.  

The locked template will no longer be selected when executing the request in the cloud 

environment. It has no effect on requests that are already running in the cloud 

environment. 

For example, if you want to edit a template, first lock the target template, prohibit the 

use of the template for new requests, and then edit the template. After editing, unlock 

the template and make it available. 

 

Start qmgr(1M) with the administrator privilege and use the "lock cloud_template" 

subcommand below to lock a template. 

lock cloud_template =<template_name> 

 

Start qmgr(1M) with the administrator privilege and use the "unlock cloud_template" 

subcommand below to unlock a template. 

unlock cloud_template =<template_name> 

 

 



 

157 

 

4.23.3.3 Displaying a template 

Use qstat --template to reference the information of the template defined in a system. 

[Display example] 

$qstat --template 

[Cloud Template] 

====================================================================================== 

Template   L Image      CPU  Memory GPU  VE  Custom               Comment 

---------- - ---------- ---- ------ ---- --- -------------------- -------------------- 

AWS_MEDIUM - ami-12ab34    8  64.0G    0   0 (none)               For AWS medium insta* 

 

Use qstat --template -f to reference the more detailed information of templates. 

[Display example] 

$qstat --template -f 

Cloud Template: AWS_MEDIUM_RHEL8 

  Lock State   = UNLOCK 

  OS Image     = ami-12ab34cd56ef78gh9 

  CPU Number   = 8 

  Memory Size  = 64GB 

  GPU Number   = 0 

  VE Number    = 0 

  Boot Timeout = 300 

  Stop Timeout = 300 

  Custom       = (none) 

  Comment      = For AWS medium instance 

 

4.23.4 Setting of Cloud Bursting Node Group 
  The cloud bursting node group (From now on, it is called a node group) is a node 

group required to start a cloud instance, and defines information such as the number of 

instances to be started (set within the range of Job Server numbers), the template for 

starting an instance, the network name of the cloud environment. If requests to able 

cloud bursting are submitted to the queue that the node group has been bound to, the 

cloud instances will be started with the template and Job Server number defined in the 

node group. Job servers are started on that instances and jobs are executed. 

 

4.23.4.1 Create the node group 

  You can create the node group with qmgr(1M) command. You give "create 

node_group" sub-command the option "type=cloud". 

  The following is an example of how to create a node group named "cl_ng1". You must 

execute qmgr(1M) command with the manager privilege. 



 

158 

 

$ qmgr -Pm 

Mgr: create node_group = cl_ng1 type=cloud 

Node_group cl_ng1 created. 

 

4.23.4.2 Add templates to the node group 

  At starting cloud instances the template that is added the node group is used. The 

node group requires the cloud bursting template. You can set the template to the node 

group at creating it. Or you can add the templates to the node group with "edit 

node_group add template" sub-command of qmgr (1M). A node group can have 20 

templates. You must execute qmgr (1M) command to add the templates with the 

manager privilege. 

$ qmgr -Pm 

Mgr: edit node_group add template = AWS_MEDIUM_RHEL8 cl_ng1 

Add template to Node_group (AWS_MEDIUM_RHEL8). 

 

You can also add multiple templates at once, as following. 

$ qmgr -Pm 

Mgr: edit node_group add template =(AWS_MEDIUM_RHEL8.1,AWS_MEDIUM_RHEL8.2) cl_ng1 

Add template to Node_group (AWS_MEDIUM_RHEL8.1). 

Add template to Node_group (AWS_MEDIUM_RHEL8.2). 

 

4.23.4.3 Delete templates from the node group 

  You can delete the added templates from the node group with "edit node_group delete 

template" sub-command of qmgr (1M). You must execute qmgr (1M) command to delete 

the templates with the manager privilege. 

$ qmgr -Pm 

Mgr: edit node_group delete template = AWS_MEDIUM_RHEL8 cl_ng1 

Delete template to Node_group (AWS_MEDIUM_RHEL8). 

 

You can also delete multiple templates at once, as following. 

$ qmgr -Pm 

Mgr: edit node_group delete template =(AWS_MEDIUM_RHEL8.1,AWS_MEDIUM_RHEL8.2) cl_ng1 

Delete template to Node_group (AWS_MEDIUM_RHEL8.1). 

Delete template to Node_group (AWS_MEDIUM_RHEL8.2). 

 

4.23.4.4 Add Job Servers for instances to the node group 

  You add job servers to the node group so cloud instances to able to execute are added 

to the node group. The job servers as following cannot be added to the node group 

because they will be able to start in the cloud instances. 



 

159 

 

- Job servers belong to another node groups. 

- Job servers have been already bound the queues. 

- Job servers have been already attached to the execution hosts. 

 

  You cannot also add any node groups to the node group. 

  You can add job servers to the node group with "edit node_group add job_server_id" 

sub-command of qmgr (1M). How to use this sub-command is same case of common 

type node group. 

 

4.23.4.5 Delete Job Servers for instances from the node group 

  You delete job servers from the node group so cloud instances to able to execute are 

deleted from the node group. In following case error occurs. 

- These instances have jobs. 

- These instances are starting or stopping. 

 

  In case of deleting multiple job servers if a job server is failed to delete, all specified 

job server are not deleted. 

  You can delete job servers from the node group with "edit node_group delete 

job_server_id" sub-command of qmgr (1M). How to use this sub-command is same case 

of common type node group. 

 

4.23.4.6 Set priority to the node group 

  Some node groups can be bound to a queue for cloud bursting. When executing a 

request for cloud bursting, you can set which node group to prioritize in the node group 

priority. You can set the priority with "set node_group priority" sub-command of qmgr 

(1M) command. This sub-command requires operator privilege. The priority value is 

specified by a number from 0 to 63. The default value is 1. 

$ qmgr -Po 

Mgr: set node_group priority = 10 cl_ng1 

Set priority to Node_group (cl_ng1). 

 

4.23.4.7 Set network name to the node group 

  You can set the network name where the cloud instance started by the template set 

in the node group is located for each node group. Setting network name is not 

mandatory. If set, the information will be passed to the cloud instance startup script as 

an environment variable when the cloud instance is started. This setting allows you to 

launch cloud instances in different network environments in the same cloud (for 

example, different availability zone or different sub-network). 

  You can set the network name with "set node_group network" sub-command of 

qmgr(1M) command. This sub-command requires operator privilege. Maximum length 

of the network name is 255 characters. 

$ qmgr -Po 



 

160 

 

Mgr: set node_group network = subnet-A cl_ng1 

Set network to Node_group (cl_ng1). 

 

4.23.4.8 Display node groups 

  qstat(1) command with "-G" option display status of node groups. If the node group is 

cloud type, the item "Type" is displayed as "cloud". 

$ qstat -G 

NodeGroup       Type      BatchServer     Comment          JSVs BindQueue            

--------------- --------- --------------- ---------------- ---- -------------------- 

cl_ng1          cloud     bsv1.example.co (none)              1 cloud_bq1 

 

  You can also display detailed information for each node group by adding the "-f" 

option to qstat(1) -G. 

$ qstat -G -f 

Node Group: cl_ng1 

    Type = cloud 

    Comment = (none) 

    Bind Queue list = { 

      cloud_bq1     

    } 

    Job Server number list = { 

        100 

    } 

    Lock State = UNLOCK 

    Priority = 1 

    Instances = Live: 0 / Max: 1 

    Network Name = (none) 

    Template = { 

      (none) 

    } 

 

  Following items are only processed by cloud type node groups. 

  Priority: the priority to select the node group. 

  Instances: number of cloud instances. "Live" is number of instances currently 

running. "Max" is maximum number of the instances that can be started. "Max" equals 

number of job servers that are added to the node group. 

  Network Name: network name of the cloud. 

  Template: cloud template name to start cloud instances. 

 



 

161 

 

4.23.4.9 Lock/Unlock the node group 

  There may be cases where the instance cannot be started due to configuration errors. 

In this case you can lock the node group to disable it temporary. The locked node group 

isn't selected to start cloud instances. Already started cloud instances are not affected 

by locking the node group. The node group may be automatically locked by exit code of 

the cloud instance startup script, stop script, or monitoring script if an error occurs 

during the start, stop or execution of the cloud instance. Please refer to 4.23.5 for detail 

of the script. 

  You can lock the node group manually with "lock node_group" sub-command of 

qmgr(1M) command. This sub-command requires manager privilege. 

qmgr -Pm 

Mgr: lock node_group = cl_ng1 

node_group cl_ng1 locked. 

 

  The locked node group isn't unlocked automatically. You can unlock the node group 

with "unlock node_group" sub-command of qmgr(1M) command. This sub-command 

requires manager privilege. 

qmgr -Pm 

Mgr: unlock node_group = cl_ng1 

node_group cl_ng1 unlocked. 

 

  You can lock only cloud type node group. Common type or nw_topo type node group 

cannot be locked. 

 

4.23.4.10 Delete the node group 

  You can delete the node group with "delete node_group" sub-command of qmgr(1M) 

command. This sub-command requires manager privilege. The node group that is 

bound to the queue cannot be deleted. 

$ qmgr -Pm 

Mgr: delete node_group = cl_ng1 

Node_group cl_ng1 deleted. 

 

4.23.5 Setting of Node Agent 

4.23.5.1 Configure the node group to be managed 

  If you write names of the cloud bursting node group to the configuration file of Node 

Agent (/etc/opt/nec/nqsv/nag.conf), Node Agent manages them and can start, stop and 

monitor cloud instances. How to configure is following. Multiple names can be written 

by separating them with commas. 

CLOUD_NGRP:<cloud_ngrp_name1>,<cloud_ngrp_name2>.... 

 



 

162 

 

Node Agent must be restarted after you configure this. This configuration isn't applied 

by systemctl reload. 

 

4.23.5.2 Cloud Instance Startup Script 

  It operates to start cloud instances by the script that is created by the system 

manager. This is allocated in /opt/nec/nqsv/sbin/cloud_prog/cloud_start.sh. 

  The script must operate following processes. 

(1) Start cloud instances 

The script creates and launches a cloud instance be executing CLI commands in the 

cloud environment. Information on the instance to be started are given by environment 

variables. The script is executed once per an instance. 

 

(2) Wait for starting up to complete 

The script waits for starting up to complete. The timeout period can be set freely by the 

script, but it cannot exceed the estimated startup time that the template has. 

 

(3) Return startup result 

The script writes the instance startup result to standard output. 

 

The script is given following environment variables. 

Environment variable Value 

NQSV_CLOUD_IMAGE Image name for starting a cloud instance. 

This is OS image that selected cloud bursting 

template has. 

NQSV_CLOUD_NETWORK_NAME Network name of the cloud. 

This is network name that selected cloud bursting 

node group has. 

NQSV_CLOUD_HOSTNAME Host name of the cloud instance. 

This is one of the ID of job servers that were added 

to the selected cloud bursting node group. This 

value can be used as the host name of the instance. 

NQSV_CLOUD_NAME Name of the cloud. 

This is name of the cloud bursting node group that 

is selected. 

 

  The script writes the instance startup result as following format to standard output. 

When startup is successful: 

NQSV_INSTANCE_UP_RESULT:OK 

NQSV_INSTANCE_ID:<instance-id> 

NQSV_INSTANCE_IP:<ip-address> 

 



 

163 

 

  The script writes above information to standard output one line at a time. 

  <instance-id> is identifier of the started instance. This will be used to stop this 

instance at terminating a job. 

  <ip-address> is IP address of the started instance. Either a public or private IP 

address is acceptable, as long as it is accessible from Batch Server host. 

 

When startup fails: 

NQSV_INSTANCE_UP_RESULT:NG 

 

NQSV_INSTANCE_UP_FAILSTOP:YES|NO 

NQSV_INSTANCE_UP_FAILLOCK: YES|NO 

 

  The script writes above information to standard output one line at a time. 

 

  NQSV_INSTANCE_UP_FAILSTOP indicates whether or not the instance needs to be 

stopped. Specify YES if stopping is required, and NO if stopping is not required. 

Normally, specify NO when some errors occur before launching the instance, and 

specify YES when some errors occur after launching the instance or when the launch 

timeout occurs. 

If you specify YES, output the following information of the instance you want to stop 

line by line. If the following information is not output, the instance cannot be stopped. 

Set the IP address to a value within the valid range. 

 

NQSV_INSTANCE_ID:<instance-id> 

NQSV_INSTANCE_IP:<ip-address> 

 

 

NQSV_INSTANCE_UP_FAILLOCK indicates whether or not to lock the cloud bursting 

node group. Specify YES if locking is required, and NO if locking is not required. 

 

4.23.5.3 Cloud Instance Monitoring Script 

It operates to monitor cloud instances by the script that is created by the system 

manager. This is allocated in /opt/nec/nqsv/sbin/cloud_prog/cloud_watch.sh. 

The script is executed by NQSV at regular intervals. The default interval is 60 seconds. 

The monitoring interval can be specified in the NQSV_CLOUD_WATCH_INTERVAL 

environment variable. 

  The script must operate following processes. 

(1) Monitor cloud instances 

The script monitors cloud instances by executing CLI commands in the cloud 

environment. Information on the instances to be monitored are given by environment 

variables. 

 



 

164 

 

(2) Return monitoring results 

The script writes monitoring results of the instances to standard output. 

 

  The script is given following environment variable.  

Environment variables Value 

NQSV_CLOUD_WATCH_INSTANCES The cloud instance IDs to be monitored. 

Multiple IDs can be written by separating 

them with commas if multiple instances are 

monitored. 

 

  The script writes monitoring results of the instances as following format to standard 

output. 

If no error occurs: 

NQSV_INSTANCE_WATCH_RESULT:OK 

 

  The script writes above information to standard output. 

 

If some errors occur: 

NQSV_INSTANCE_WATCH_RESULT:NG 

NQSV_INSTANCE_WATCH_FAILLOCK:YES|NO 

NQSV_INSTANCE_ID:<instance-id> 

 

The script writes above information to standard output one line at a time. 

  NQSV_INSTANCE_WATCH_FAILLOCK indicates whether or not the cloud bursting 

node group needs to be locked. Specify YES if locking is required, and NO if locking is 

not required. 

  <instance-id> is an identifier of the instance in which error occurred. If errors 

occurred in multiple instances, the script must write multiple lines for 

NQSV_INSTANCE_ID: <instance-id>. 

 

4.23.5.4 Cloud Instance Stop Script 

  It operates to stop cloud instances by the script that is created by the system 

manager. This is allocated in /opt/nec/nqsv/sbin/cloud_prog/cloud_stop.sh. 

  The script must operate following process. 

(1) Stop cloud instance 

  The script stops a cloud instance by executing CLI commands in the cloud 

environment. Information on the instance to be stopped are given by environment 

variables. The script is executed once per an instance. Also, make sure that the 

instance can be stopped in two modes: normal stop and forced stop. If an instance 

cannot be stop by normal stop mode, NQSV requires to stop the instance by forced stop 

mode. 

 



 

165 

 

(2) Wait for stopping to complete 

  The script waits for stopping to complete. The timeout period can be set freely by the 

script, but it cannot exceed the estimated stop time that the template has. 

 

(3) Return stop result 

  The script writes the instance stop result to standard output. 

 

  The script is executed by following format. In forced stop mode case "force" as an 

argument is given. 

/opt/nec/nqsv/sbin/cloud_prog/cloud_stop.sh [force] 

 

The script is given following environment variable.  

Environment variable Value 

NQSV_CLOUD_STOP_INSTANCE Cloud instance ID to be stopped. 

 

The script writes the instance stop result as following format to standard output. 

When normal stop is successful: 

NQSV_INSTANCE_DOWN_RESULT:OK 

 

  The script writes above information to standard output. 

 

When normal stop fails: 

NQSV_INSTANCE_DOWN_RESULT:NG 

NQSV_INSTANCE_DOWN_FAILSTOP:YES|NO 

NQSV_INSTANCE_DOWN_FAILLOCK:YES|NO 

 

  The script writes above information to standard output one line at a time. 

  NQSV_INSTANCE_DOWN_FAILSTOP indicates whether or not the instance needs 

to be forcibly stopped. Specify YES if stopping is required, and NO if stopping is not 

required. 

NQSV_INSTANCE_DOWN_FAILLOCK indicates whether the cloud bursting node 

group needs to be locked. Specify YES if locking is required, and NO if locking is not 

required. 

 

When forced stop is successful: 

NQSV_INSTANCE_FORCEDOWN_RESULT:OK 

 

  The script writes above information to standard output. 

 

When forced stop fails: 



 

166 

 

NQSV_INSTANCE_FORCEDOWN_RESULT:NG 

NQSV_INSTANCE_FORCEDOWN_FAILLOCK:YES|NO 

 

  The script writes above information to standard output one line at a time. 

  NQSV_INSTANCE_FORCEDOWN_FAILLOCK indicates whether the cloud bursting 

node group needs to be locked. Specify YES if locking is required, and NO if locking is 

not required . 

 

4.23.5.5 Sample Scripts 

  Sample scripts to start, to monitor and to stop for AWS, OCI and azure are installed 

on Batch Server host. Using these samples as a reference, system manager must create 

scripts that implement each of the above processes. and place them in the appropriate 

paths. 

 

[Notes] These samples are provided to show a minimum implementation image of the 

functions, and isn't guaranteed to work in all cloud environments. When building the 

environment, please implement the appropriate processes according to the actual 

environment. 

 

The summary of each sample script is as follows. 

 

Sample cloud instance startup script 

Installed path: 

/opt/nec/nqsv/sbin/cloud_prog/aws_start.sh.sample 

/opt/nec/nqsv/sbin/cloud_prog/azure_start.sh.sample 

/opt/nec/nqsv/sbin/cloud_prog/oci_start.sh.sample 

 

Summary of processing: 

  In AWS case: 

  The script start a cloud instance with the image identifier that environment variable 

NQSV_CLOUD_IMAGE has. Given environment variables are used as following. 

NQSV_CLOUD_HOSTNAME: set as name tag of the instance. 

NQSV_CLOUD_NETWORKNAME: set as sub-network identifier. 

 

  Type of the instance is t2.micro, availability zone is ap-northeast-1a. 

  The script monitors in 5 seconds intervals until status of the instance become 

running. Whole monitoring time is 300 seconds. If the instance doesn't become status 

running over 300 seconds, it is failed to start the instance. 

  If the instance starts normally, the script writes instance identifier and IP address of 

the instance to standard output. If the instance cannot start normally, the script write 

abnormal status to standard output. 



 

167 

 

  NQSV doesn't give the script following information. The script specifies an 

appropriate value according to your actual environment. 

- Key pair 

- Security group identifier 

 

  In azure case: 

  The script start a cloud instance with the image identifier that environment variable 

NQSV_CLOUD_IMAGE has. Given environment variables are used as following. 

NQSV_CLOUD_HOSTNAME: set as the computer name and VM name of the instance. 

NQSV_CLOUD_NETWORKNAME: set as sub-network identifier. 

 

  Type of the instance is Standard_DS1_v2. 

 

  The script monitors in 5 seconds intervals until status of the instance become VM 

running. Whole monitoring time is 300 seconds. If the instance doesn't become status 

VM running over 300 seconds, it is failed to start the instance. 

  If the instance starts normally, the script writes instance identifier and IP address of 

the instance to standard output. If the instance cannot start normally, the script write 

abnormal status to standard output. 

  NQSV doesn't give the script following information. The script specifies an 

appropriate value according to your actual environment. 

- Resource group 

 

  In OCI case: 

  The script start a cloud instance with the image identifier that environment variable 

NQSV_CLOUD_IMAGE has. Given environment variables are used as following. 

NQSV_CLOUD_HOSTNAME: set as the host name and displaying name of the 

instance. 

NQSV_CLOUD_NETWORKNAME: set as sub-network identifier. 

 

  Type of the instance VM.Standard.E2.1.Micro, availability domain is NTMs:AP-

OSAKA-1-AD-1. 

  The script monitors in 5 seconds intervals until status of the instance become VM 

running. Whole monitoring time is 300 seconds. If the instance doesn't become status 

VM running over 300 seconds, it is failed to start the instance. 

  If the instance starts normally, the script writes instance identifier and IP address of 

the instance to standard output. If the instance cannot start normally, the script write 

abnormal status to standard output. 

  NQSV doesn't give the script following information. The script specifies an 

appropriate value according to your actual environment. 

- Compartment identifier 

 



 

168 

 

Sample cloud instance monitoring script 

Installed path: 

/opt/nec/nqsv/sbin/cloud_prog/aws_watch.sh.sample 

/opt/nec/nqsv/sbin/cloud_prog/azure_watch.sh.sample 

/opt/nec/nqsv/sbin/cloud_prog/oci_watch.sh.sample 

 

Summary of processing: 

  In AWS case: 

  The script checks the instances that are specified by instance identifier. If multiple 

identifier are given, the script checks all instances. If status of the instance is "running", 

the script determines that the instances are normal. In other case the script determines 

that the instances are abnormal. 

  The script writes status of monitoring to standard output. The script writes instance 

identifier to standard output if abnormal. 

 

  In Azure case: 

  The script checks the instances that are specified by instance identifier. If multiple 

identifier are given, the script checks all instances. If status of the instance is VM running, 

the script determines that the instances are normal. In other case the script determines 

that the instances are abnormal. 

  The script writes status of monitoring to standard output. The script writes instance 

identifier to standard output if abnormal. 

 

  In OCI case: 

  The script checks the instances that are designated by instance identifier. If multiple 

identifier are given, the script checks all instances. If status of the instance is "running", 

the script determines that the instances are normal. In other case the script determines 

that the instances are abnormal. 

  The script writes status of monitoring to standard output. The script writes instance 

identifier to standard output if abnormal. 

 

Sample cloud instance stop script 

Installed path: 

/opt/nec/nqsv/sbin/cloud_prog/aws_stop.sh.sample 

/opt/nec/nqsv/sbin/cloud_prog/azure_stop.sh.sample 

/opt/nec/nqsv/sbin/cloud_prog/oci_stop.sh.sample 

 

Summary of processing: 

  In AWS case: 

  The script stops and terminates the instances that are specified by instance identifier. If 



 

169 

 

"force" as an argument is given, the script directly terminates the instance without stopping. 

  The script monitors in 5 seconds intervals until status of the instance become 

stopping. Whole monitoring time is 180 seconds. If the instance doesn't become status 

stopping over 180 seconds, it is failed to stop the instance. If the status is already 

"stopped", "stopping", "shutting-down" and "terminated", the script has nothing to do 

for stopping the instance. 

  The script monitors in 5 seconds intervals until status of the instance become 

terminated. Whole monitoring time is 180 seconds. If the instance doesn't become 

status terminated over 180 seconds, it is failed to stop the instance. 

  The script writes status to stop the instance to standard output. 

 

  In Azure case: 

  The script stops and deletes the instances that are specified by instance identifier. If 

"force" as an argument is given, the script directly terminates the instance without deleting. 

  In stopping case the script monitors in 5 seconds intervals until status of the 

instance become VM stopped. Whole monitoring time is 180 seconds. If the instance 

doesn't become status VM stopped over 180 seconds, it is failed to stop the instance. If 

the status is already "VM stopped", "VM stopping", "VM deallocating" and "VM 

deallocated", the script has nothing to do for stopping the instance. 

  In deleting case the script monitors in 5 seconds intervals until status of the instance 

become terminated. Whole monitoring time is 180 seconds. If the instance doesn't 

become status VM deallocated over 180 seconds, it is failed to stop the instance. 

  The script writes status to stop the instance to standard output. 

  NQSV doesn't give the script following information. The script specifies an appropriate 

value according to your actual environment. 

- Resource group 

 

  In OCI case: 

  The script stops and terminates the instances that are specified by instance identifier. If 

"force" as an argument is given, the script directly terminates the instance without stopping. 

  In stopping case the script monitors in 5 seconds intervals until status of the 

instance become STOPPED. Whole monitoring time is 180 seconds. If the instance 

doesn't become status STOPPE over 180 seconds, it is failed to stop the instance. If the 

status is already "STOPPED", "STOPPING", "TERMINATING" and "TERMINATED", 

the script has nothing to do for stopping the instance. 

  The script monitors in 5 seconds intervals until status of the instance become 

TERMINATED. Whole monitoring time is 180 seconds. If the instance doesn't become 

status TERMINATED over 180 seconds, it is failed to stop the instance. 

  The script writes status to stop the instance to standard output. 

 

4.23.6 Setting of Job Server on the instance 
NQSV/JobServer must be included in the OS image for the instance when the OS 

image is made to execute job server in the instance. 



 

170 

 

  Job server to execute in the instance will have its number automatically assigned by 

Batch Server. Therefore nqs_shpd is started without job server number (option -n). The 

script (/opt/nec/nqsv/sbin/systemd_prog/nqs_jsv.sh) to start job server must be modified 

as following to start job server without its number. nqs_jsv.sh isn't modified as 

following at installing NQSV/JobServer. 

 

before 

#!/bin/sh 

# NQSV JobServer Startup Script. 

 

# Auto start config file (Don't change!) 

JSV_START_CONF=/etc/opt/nec/nqsv/.jsv_start 

 

PATH=/sbin:/usr/sbin:/bin:/usr/bin 

export PATH 

 

case $1 in 

start) 

    if [ "$JSV_NUMBER" = "AUTO" ] 

    then 

        if [ -f $JSV_START_CONF ] 

        then 

            cat $JSV_START_CONF | \ 

            while read line 

            do 

                set $line 

                jsvno2=`printf "%04d" $1` 

                /opt/nec/nqsv/sbin/nqs_shpd -h $2 -n $1 $JSV_PARAM 

                if [ $? = 0 ] 

                then 

<snip> 

    else 

        for jsvno in $JSV_NUMBER 

        do 

            jsvno2=`printf "%04d" $jsvno` 

            /opt/nec/nqsv/sbin/nqs_shpd -h $BSV_HOST_NAME -n $jsvno $JSV_PARAM > 

/dev/null 

            if [ $? = 0 ] 

            then 

                RCNT=0 



 

171 

 

                while [ $RCNT -lt 5 ] 

                do 

 

after 

#!/bin/sh 

# NQSV JobServer Startup Script. 

 

# Auto start config file (Don't change!) 

JSV_START_CONF=/etc/opt/nec/nqsv/.jsv_start 

 

PATH=/sbin:/usr/sbin:/bin:/usr/bin 

export PATH 

 

case $1 in 

start) 

    if [ "$JSV_NUMBER" = "AUTO" ] 

    then 

        if [ -f $JSV_START_CONF ] 

        then 

            cat $JSV_START_CONF | \ 

            while read line 

            do 

                set $line 

                jsvno2=`printf "%04d" $1` 

                /opt/nec/nqsv/sbin/nqs_shpd -h $2 $JSV_PARAM 

                if [ $? = 0 ] 

                then 

<snip> 

    else 

        for jsvno in $JSV_NUMBER 

        do 

            jsvno2=`printf "%04d" $jsvno` 

            /opt/nec/nqsv/sbin/nqs_shpd -h $BSV_HOST_NAME $JSV_PARAM > /dev/null 

            if [ $? = 0 ] 

            then 

                RCNT=0 

                while [ $RCNT -lt 5 ] 

                do 



 

172 

 

 

  You can use qstat(1) command with option -E to check if the execution host is in the 

cloud or not. If the execution host is the cloud instance, "[C]" is displayed at the item 

"Execution Host". In qstat -Ef case "[Cloud]" is displayed at the item "Execution Host". 

$ qstat -E host1 

ExecutionHost   BatchServer     OS         Release    Hardware     VE  Load   Cpu 

--------------- --------------- ---------- ---------- ---------- ---- ----- ----- 

[C]host1        host0           Linux      4.18.0-477 x86_64        0   0.0   0.8 

 

$ qstat -Ef host1 

Execution Host: host1 [Cloud] 

    Batch Server = host0 

    Operating System = Linux (Rocky Linux release 8.8 (Green Obsidian)) 

    Version = 

    Release = 4.18.0-477.15.1.el8_8.x86_64 

    Hardware = x86_64 

    Cloud Template = cl_tmpl 

<snip> 

 

  You can also use qstat -S to check it. If the execution host is the cloud instance, "[C]" 

is displayed at the item "Execution Host". In qstat -Sf case "[Cloud]" is displayed at the 

item "Execution Host". 

$ qstat -S 1000 

JSVNO JobServerName   BatchServer     ExecutionHost   LINK BIND Queue    Jobs  Load   

Cpu 

----- --------------- --------------- --------------- ---- ---- -------- ---- ----- 

----- 

 1000 JobServer1000   host0           [C]host1        UP   Y    bq,iq       1   

0.0   0.0 

 

$ qstat -Sf 1000 

Job Server Name: JobServer1000 

    Job Server Number  = 1000 

    Job Server Version = R1.08 (linux) 

    Batch Server   = host0 

    Execution Host = host1 [Cloud] 

    LINK Batch Server = UP 

    BIND Queue = BIND 

<snip> 

 



 

173 

 

  The execution host and job server for the cloud bursting is automatically operated by 

NQSV. You cannot operate the following operations with qmgr(1M). 

⚫ Attach job server to the execution host (attach execution_host) 

⚫ Start job server (start job_server) 

⚫ Stop job server (stop job_server) 

⚫ Bind job server to the queue (bind execution_queue job_server / bind 

interactive_queue job_server) 

⚫ Unbind job server from the queue (unbind execution_queue job_server / 

unbind interactive_queue job_server) 

 

  You can detach job server from the execution host exceptionally. You can operate this 

to stop the cloud instance. 

$ qmgr -Pm 

Mgr: detach execution_host host=host1 

 

4.23.7 Overview of Cloud Bursting Policy 
 

The following policy is used to select the target request and cloud bursting node group. 

 

 

Figure 4-8 The policy of cloud bursting 

 

1. Calculates the occupancy rate of the queue's scheduler map (HPC cluster) 

and checks if it exceeds the threshold at each scheduling interval. 

2. If the occupancy of the queue's scheduler map (HPC cluster) exceeds the 

threshold, calculate the bursting priority of each request and determine the 

requests to be bursted. 



 

174 

 

3. Check the resources in the cloud bursting template set for each node group 

according to the priority of the cloud bursting node group bound to the 

queue, and select the most suitable node group and template for the target 

request for bursting, and start a cloud instance with the OS image of that 

template.  

4. The request to be bursted is scheduled and executed on the cloud started 

with the selected OS image. 

5. After all the requests are executed on the cloud, it will stop the cloud 

instances. Once all the cloud instances are stopped, the process will start 

from the beginning again. 

 

The calculation of the occupancy rate is done at each scheduling interval. The next 

cloud bursting is performed after the request execution is finished and all cloud 

instances are stopped. 

 

4.23.8 Setting of Scheduling 
In order to bursting the submitted requests and execute them in the cloud, the 

following scheduling configuration is required. 

 

Figure 4-9 Setting of scheduling 

 

4.23.8.1 Setting of occupancy ratio of cloud bursting 

The threshold for cloud bursting when the scheduler map occupancy rate exceeds a 

certain percentage is set for each queue by the set queue cloud_bursting 

occupancy_ratio subcommand of the smgr(1M) command. The value is specified as a 

decimal number in the range of 0 to 1. 0 means that cloud bursting is always 

performed. 1 means that no bursting is performed. The default value is 1. 

 

Scheduler map occupancy is the ratio of the sum of the resources assigned to a node for 

jobs, reserved sections, and planned power saving to the resources on the execution 

hosts (excluding execution hosts on cloud instances managed by NQSV) bound to the 

queue * map length. When the current scheduler occupancy exceeds the bursting 

threshold, the requests submitted to the queue can be bursted onto the cloud. 

You can check the bursting threshold, the status of bursting or not, and the current 

scheduler map occupancy with sstat -Qf as follows. 

 



 

175 

 

$ sstat -Qf 

Execution Queue: bq 

: 

    Elapse Margin         = 0S 

    Cloud Bursting Occupancy Ratio = 1.000000 

    Current Cloud Bursting Occupancy Ratio = 0.000000 

    Current Cloud Bursting Status = DISABLE 

    Display Cloud Bursting Priority = ON 

: 

 

 

4.23.8.2 Setting of request number target of cloud bursting 

The number of requests to be selected for cloud bursting at a time is set by set 

cloud_bursting request_number in the smgr(1M) command. The default value is 0 (not 

selected). The maximum number of nodes that can actually be used at one time is the 

number of instances defined in the cloud bursting node group. The number of requests 

should be the number of requests that can be executed within that number of nodes. 

You can check the current setting values with the sstat -Sf command. 

 

$ sstat -Sf 

JobManipulator Server Host: bsv 

: 

    Device Group Topology = ON 

    Cloud Bursting Request Number = 10 

    Cloud Bursting Priority Weight = { 

: 

 

4.23.8.3 Setting of calculate of request bursting priority 

When the occupancy rate of the queue's scheduler map exceeds the bursting threshold, 

the bursting priority of each request submitted to the queue is calculated. The number 

of requests to be bursted is selected in the order of increasing bursting priority. 

 

The bursting priority is calculated for requests to be scheduled that do not have start 

time. It is not calculated for requests with scheduled start times, running requests, or 

requests that have jobs on HPC cluster nodes. 

 

The bursting priority is calculated when the scheduler map occupancy threshold is 

exceeded, but it is always calculated if set queue cloud_bursting 

display_bursting_priority is set to on in the smgr(1M) command. The default value is 

off. Even if it is off, the bursting priority is calculated if the scheduler map occupancy 

threshold is exceeded. The bursting priority calculation is performed at each 

scheduling interval. 

 

The bursting priority consists of four elements: requested resource, waiting time, 

scheduling priority, and custom resources. Each element can be assigned a weight. The 



 

176 

 

default value is that the bursting priority is calculated based on the waiting time only, 

and the longer the waiting time, the higher the priority. 

The specific calculation formula is as follows 

 

bursting priority = (requested resource elements (normalization) + 

                   waiting time elements + 

                   scheduling priority elements + 

                   custom resource 1 elements (normalization) + 

                   [custom resource 2 elements (normalization)…]) 

* enable cloud bursting  

 

If the bursting priority is less than or equal to 0, the request cannot cloud bursting. 

Note that a request may not be able to be burstable due to a negative value of 

scheduling priority or custom resource. 

 

This section describes each element of the bursting priority. 

 

1)Requested resource elements 

The formula for calculating the requested resource elements is as follows 

 

requested resource elements = 

  (CPU number per request * elapse time (normalization) + 

  GPU number per request * elapse time (normalization) + 

  memory size per request * elapse time (normalization) ) 

   * weight for requested resource elements 

 

The weight of the request resource element is set by set cloud_bursting 

priority_weight_resource in the smgr(1M) command. The default value is 0. 

 

2)Wait time elements 

The formula for calculating the wait time elements is as follows. 

 

wait time elements = (now time - the request submitted time)  

* weight for wait time elements 

 

The weight of the wait time element is set by set cloud_bursting 

priority_weight_wait_time in the smgr(1M) command. The default value is 1.  

 

3)Scheduling priority elements 

The formula for calculating the scheduling priority elements is as follows. 



 

177 

 

 

scheduling priority elements = 

 scheduling priority * weight for scheduling priority elements  

 

The weight of the scheduling priority elements is set by set cloud_bursting 

priority_weight_scheduling_priority in the smgr(1M) command. The default value is 0.  

 

4)Custom Resource elements  

The elements of a custom resource are calculated for each custom resource which 

defined. The weight is also set for each custom resource. 

 

A custom resource whose unit of request is calculated as follows 

 

Custom Resource 1 element = 

The value Custom Resource 1 of the request * Weight for Custom Resource 1 

 

A custom resource whose unit of job is calculated as follows 

 

Custom Resource 2 element = 

The value Custom Resource 2 of request * job number of request  

* Weight for Custom Resource 2  

 

The weighting of the elements of the custom resource is set for each custom resource by 

set cloud_bursting priority_weight_custom_resource in the smgr(1M) command. The 

default value is 0. 

 

5)Enable cloud bursting elements 

If the request disable cloud bursting, the bursting priority of the request is 0.  

 

If --enable-cloud-bursting=yes is specified in qsub(1), qlogin(1), or qrsh(1) when a 

request submitted, multiply the bursting priority by 1. If --enable-cloud-bursting=no is 

specified, or if it is not specified, multiply by 0.  

 

You can use sstat -Sf to check the set value of weight for each element to calculate the 

request bursting priority. 

$ sstat -Sf 

JobManipulator Server Host: bsv 

: 

    Device Group Topology = ON 

    Cloud Bursting Request Number = 10 

    Cloud Bursting Priority Weight = { 

      Resource            = 20 

      Wait Time           = 20 



 

178 

 

      Scheduling Priority = 30 

      Custom Resource = { 

        cr1 = 10 

        cr2 = 20 

      } 

    } 

: 

 

4.23.9 Submit a request 
 

You give --enable-cloud-bursting=yes to qsub(1) command (if batch requests) or to 

qlogin(1) command or qrsh(1) command (if interactive requests) to submit cloud 

bursting available requests. Requests submitted with this option will be bounced to the 

cloud when they are ready to be bounced. 

qsub --enable-cloud-bursting=yes 

qlogin --enable-cloud-bursting=yes 

qrsh --enable-cloud-bursting=yes 

 

  Requests that are submitted with --enable-cloud-bursting=no or without --enable-

cloud-bursting will be never bounced to the cloud. 

  You can also use the qalter(1) command to change the bursting availability of 

requests that have already been submitted. 

qalter --enable-cloud-bursting={yes|no} <rid> 

 

  If yes, the request will be changed to be available bursting on the cloud if necessary; 

if no, the request will be changed to never be bursting. <rid> is the request ID. 

  It doesn't take effect for requests that have already started executing. 

  You can check whether cloud bursting is enabled or disabled by using qstat -f. The 

Enable Cloud Bursting item will show whether it is enabled or disabled. 

$ qstat -f 1.bsv 

Request ID: 1.bsv 

    Request Name = STDIN 

    User  Name = user 

    Group Name = group 

    User  ID   = 851 

    Group ID   = 701 

    Current State           = Running 

    Previous State          = Pre-running 

    State Transition Time   = Wed Apr 21 11:02:21 2021 

    State Transition Reason = PRERUN_SUCCESS 

    Queue = cloud@host0 (Execution Queue) 

    Job Topology = Distribute Job 



 

179 

 

    Request Priority  = 0 

    Request Loglevel  = 0 

    Rerunable    = Yes 

    Holdable     = Yes 

    Hold Type    = (none) 

    Migratable   = Yes 

    Suspend Type = (none) 

    Account Code = (none) 

    Stdout = host0:/home/user/STDIN.o1 

    Stderr = host0:/home/user/STDIN.e1 

    Reqlog = (none) 

    Shell = (none) 

    Mail Address = user@host0 

    Mail Option  = (none) 

    Job Condition: 

        Job NO: 0 "" 

    Number of Jobs = 1 

    Created Request Time = Wed Apr 21 11:01:03 2021 

    Entered Queue Time   = Wed Apr 21 11:01:03 2021 

    Planned Start Time   = Wed Apr 21 11:02:21 2021 

    Execute Request Time = (none) 

    Started Request Time = Wed Apr 21 11:02:21 2021 

    Ended Request Time   = (none) 

    Requested Start Time = (none) 

    Deadline Time        = (none) 

    UMASK = 022 

    Checkpoint Interval = 0 

    Restart File Directory = (none) 

    Reservation ID      = (none) 

    qattach command = Enable 

    Attach = No 

    Cluster Type Select = NONE 

    Cloud Template = host1 

    UserPP Script = (none) 

    Exclusive = (none) 

    HCA Number = (none) 

    Accept Sigterm = No 

    Enable Cloud Bursting = Yes 



 

180 

 

  Execution Hosts(JSVNO): 

    host1(1000) 

<The following is omitted> 

 

  You can use qstat -J to check whether the jobs are actually running in the cloud or 

not. If they are running on the cloud, "[C]" will be added to the ExecutionHost item. In 

the detail view with -f, "[Cloud]" will be appended to the Execution Host item. 

$ qstat -J 1.bsv 

JNO RequestID        EJID   Memory      CPU JSVNO ExecutionHost   UserName Exit 

---- --------------- ----- -------- -------- ----- --------------- -------- ---- 

   0 1.bsv           14714    5.58M     0.00  1000 [C]host0        user        - 

 

$ qstat -Jf 1.bsv 

Request ID: 1.bsv 

    Batch Job Number = 0 

    Execution Job ID = 14714 

    User  Name = user 

    User  ID   = 851 

    Group ID   = 701 

    Job Server Number = 1000 

    Job Server Name = JobServer1000 

    Execution Host = host1 [Cloud] 

    Exit Code = (none) 

  Resources Information: 

<The following is omitted> 

 

 

4.23.10 Policy of selection cloud 
If the occupancy of the scheduler map exceeds the threshold, the bursting priority of 

each request is calculated, and the number of bursting target requests is selected in 

descending order of the bursting priority. 

 

For each request, select the cloud that the request will execute from the cloud node 

group bound to the request submission queue. If multiple cloud bursting node groups 

are bound, select the cloud bursting node group in order of the cloud bursting node 

group's priority. 

If there are multiple templates available in the cloud bursting node group, select the 

template with the closest resources per job or that request. 

 

 



 

181 

 

The following requests will not be selected for bursting regardless of the bursting 

priority value. 

⚫ Request with advance reservation(qsub -y) 

⚫ Request with scheduled time(qsub -s) 

⚫ Request with deadline time(qsub -Y) 

⚫ Request which the preceding request specified qsub --after has not yet 

finished.  

⚫ The number of request submitted in at a time with --parallel exceeds 

request number target of bursting.  

⚫ Request with template of OpenStack or Container. 

 

 

4.23.11 Forced Rerunning of Running Jobs for Cloud 
Bursting Requests 
In a cloud computing environment, a network interruption may cause a linkdown of 

the job server. If the forced rerunning of running jobs (see 4.11.2 Forced Rerunning of 

Running Job details) is set to "on", the request will be rerunning every time there is a 

network interruption, and the cloud environment may stop and start up again. 

 

Therefore, the forced rerunning of running jobs for cloud bursting requests is set 

differently from the forced rerunning of running jobs in the HPC cluster environment. 

set forced_rescheduling = on in the set forced_rescheduling command of the smgr(1M) 

command. In the set forced_rescheduling command of the smgr(1M) command, add 

"cloud" at the end like "forced_rescheduling = on cloud" to enable the setting only for 

cloud bursting requests. The default value is off, which means that cloud bursting 

requests will not be rerun due to the linkdown of the job server. 

 

4.24 Request Assignment Mode 

As described in 3.1.1 Scheduler Map 3.1.1.3 Notes on settings, if there are  too many 

requests, it is desirable to adjust the scheduler map and schedule interval to prevent 

requests from becoming backlogged. 

 

This function is provided for cases where it is difficult to adjust the above parameters. 

This function allows the user to select whether or not to continue processing at the next 

scheduling interval, when processing has been terminated at this scheduling interval 

time. Note that this does not result in policy-aware scheduling. 

This function can be set using the set scheduling_method assign_mode subcommand of 

the smgr(1M) command. The default value is reset, which means that if scheduling 

takes too long, it will stop after a certain amount of time; if it is set to continue, it will 

continue without terminating. 

This setting can be confirmed in "Assign Mode" under "Scheduling Method" in sstat -Sf. 

 

 



 

182 

 

If set to continue, scheduling will not take into account policies such as scheduling 

priority at the current time. It will continue scheduling the request according to 

policies such as scheduling priority at the time of the scheduling interval in which the 

interruption first occurred. 

 

 

4.25 Indication of the scheduled start time of execution 
during the scheduling process 

When there is a large number of requests, scheduling may take a certain amount of 

time. During this time, it may take some time to refer to the scheduled start time of 

execution with the sstat(1) command. 

In that case, please refer to the scheduled start time with the --planned-start-time 

option of the qstat(1) command. 

 

If it is difficult to refer to the scheduled start time with the qstat(1) command, you can 

refer to the most recent scheduled start time with the sstat(1) command even during 

the scheduling process by using the following settings. This function is applicable to 

the sstat(1) command without options. 

 

To enable this function, set the FORK_WHILE_SCHEDULING directive line in the 

NQSV/JobManipulator config file (/etc/opt/nec/nqsv/nqs_jmd.conf) to set the 

FORK_WHILE_SCHEDULING directive line. Then, specify the number of seconds 

from the start of the scheduling process until the scheduled execution start time can be 

referenced with the sstat(1) command. 

The setting value can be specified from 0 to the scheduling interval -5 seconds. 

After setting, restart NQSV/JobManipulator. 

The following is an example of enabling the sstat(1) command to reference the 

scheduled execution start time when the scheduling process takes more than 30 

seconds. 

 

FORK_WHILE_SCHEDULING:30 

 

 

⚫ This function is available only when JM and the batch server to which JM 

is connected are operating on the same host. 

⚫ If the sstat(1) command, smgr(1M) command, or sushare(1M) command 

with options are executed during the scheduling process, an error will 

occur. 

⚫ When using this function, the smgr(1M) and sushare(1M) commands 

should be executed while all queues are stopped by the qmgr(1M) 

command. 

 



 

183 

 

4.26 Caching of non-schedulable requests 

As described in 3.1.1 Scheduler Map 3.1.1.3 Notes on settings, when there are too 

many requests, scheduling may not finish within the scheduling interval and 

processing may be terminated. If these requests continuously submitted by the same 

user with the same conditions and whose scheduled start time cannot be determined, 

Caching of non-schedulable requests function is effective. 

This function is the scheduling results can be cached to increase the number of 

requests to be scheduled within the scheduling interval. 

 

To enable this function, execute the following subcommand of the smgr(1M) command 

with operator or higher. 

 

Smgr: set scheduling_method non_scheduled_request_cache = on 

 

 

It has no effect if the scheduled start time has already been determined. 

It has no effect if requests with different conditions or if they are not submitted 

consecutively. 

 

  



 

184 

 

Chapter 5. Functions for SX-Aurora 
TSUBASA 
 

5.1 Overview 

This chapter describes the functions for SX-Aurora TSUBASA of JobManipulator. 

This function is available only for the environment whose execution host is SX-Aurora 

TSUBASA system. 

 

5.2 VE Assignment Feature 

When using VE, VE node number is specified by "--venum-lhost option" or "--venode 

option" of the qsub (1) command, the qlogin (1) command or the qrsh (1) command.  

JobManipulator select the execution host (VI) to the request which requires VE nodes 

in order to satisfy required number of VE nodes. 

 

5.3 Scheduling in VE Node Degradation 

 

5.3.1 Overview of the Feature 
 

In cases of change in the number of available VEs, such as failure and recovery of VE, 

you can select following Scheduling method. 

(Such change of the number of available VEs is called VE node degradation) 

 

1. "continue" 

Schedule with the change in the number of VE node  

2. "exclude" 

Exclude VI with degraded VE nodes from the targets of scheduling 

3. "auto" 

Exclude VI with one or more degraded VE nodes from the target of 

scheduling. And when all of degraded VE nodes are recovered, the VI gets 

back to the target of scheduling automatically. 

 

5.3.2 Feature of Setting of Scheduling Method at VE 
Degradation 
 

This feature can be set per scheduler by using set scheduling_method ve_degradation 

subcommand of smgr(1M). The operator privilege or higher is required for this setting. 



 

185 

 

The initial value is "continue". In this setting, JobManipulator schedules with the 

change in the number of VE node. When "exclude" is specified, JobManipulator 

excludes VI with degraded VE nodes from the targets of scheduling. 

When "auto" is specified, if one or more VE nodes are degraded, the VI is excluded from 

scheduling. If all the degraded VEs are recovered, the VI will immediately return to the 

scheduling target. 

 

The operation when the set value is changed is as shown in the table below. 

 

Table 5-1 Operation of the scheduling method during VE node contraction 

Before After Operation 

continue exclude JobManipulator excludes immediately VI which 

degraded VE nodes. 

continue auto JobManipulator excludes immediately VI which 

degraded VE nodes. 

If all the degraded VE nodes are recovered, the VI will 

immediately return to the scheduling target. 

exclude continue VIs which are excluded from operation by degradation 

of VE nodes is returned to operation immediately. 

exclude auto VIs that have been excluded from scheduling due to 

VE node degradation remain excluded. 

If all the degraded VE nodes are recovered, the VI will 

immediately return to the scheduling target. 

auto continue VIs which are excluded from operation by degradation 

of VE nodes is returned to operation immediately. 

auto exclude VIs that have been excluded from scheduling due to 

VE node degradation remain excluded. 

Even if all the degraded VE nodes are recovered, the 

VI concerned will not return to the scheduling target. 

 

 

⚫ This feature depends on "Load Interval" of BatchServer. This feature 

doesn't work if "Load Interval" is set 0. You need to set "Load Interval" to 1 

or larger to detect increase and decrease of the number of VE nodes. The 

interval for updating the number of VE nodes is indicated by "Load 

Interval". Therefore, it will take some time for changing number of VE 

nodes to be reflected in the scheduling since it is slow to update number of 

VE nodes if "Load Interval" is set to a large value. 

Please refer to NQSV User's Guide [Management] for "Load Interval" of 

BatchServer. 

⚫ If auto is specified, the number of VE nodes is judged to be degenerated or 

restored by comparing it with the definition in the device resource 

definition file (/etc/opt/nec/nqsv/resource.def on the VI). In VIs where the 

device resource definition file does not exist, the behavior is equivalent to 

continue. For the device resource definition file, refer to 5.4 HCA 

Assignment Feature. 

 

 



 

186 

 

5.3.3 Display by sstat 
 

The setting can be displayed by using sstat(1) with the -S,-f option. 

 

$sstat -S -f 

JobManipulator Server Host: bsv.nec.co.jp 

    JobManipulator Version   = R1.00 

           : 

    Stage-in Margin = { 

      Additional Margin for Escalation = 0S 

      Stage-in Threshold = 0S 

      First Stage-in Time = 0S 

    } 

    Provisioning Start Retry Time = 0S 

    Scheduling Method = { 

      VE Degradation = Continue 

    } 

: 

 

The status of degradation of VE nodes can be displayed by using sstat(1) with "-E --hw-

failure" option. Column "Status" shows status of VI and column "V" shows status of VE 

nodes have degraded in the past.  

 

For "continue" settings, if VE nodes have degraded, "DEGRADED" is displayed at 

column "Status" and "D" is displayed at column "V".  

 

$sstat -E --hw-failure 

ExecutionHost   Status           V 

--------------- ---------------- - 

executionhost1  DEGRADED         D   <- under operation status of VI operation 

with VE nodes degradation 

 

For "exclude" or "auto" settings, if VE nodes have degraded, "EXLUDED" is displayed 

at column "Status" and "D" is displayed at column "V".  

 

$sstat -E --hw-failure 

ExecutionHost   Status           V 

--------------- ---------------- - 



 

187 

 

executionhost1   EXCLUDED        D    <- under exclusion status of VI operation 

with VE nodes degradation 

 

In order to reset VI degradation status you unbind JobManipulator from all bound 

queues and bind JobManipulator to the queues again. 

 

5.4 HCA Assignment Feature 

 

5.4.1 Overview of HCA Assignment Feature 
 

Using the configuration below as an example, this section explains the SX-Aurora 

TSUBASA system that is used as an execution host. 

 

 

 

 

 

 

The vector engine (VE) is a core component of SX-Aurora TSUBASA and performs 

vector operation. The VE is a PCI Express card that is installed into an x86 server. The 

vector host (VH) is the x86 server(host computer) in which the VE is installed. Multiple 

VEs and an InfiniBand NIC (HCA) for communication between VEs may be installed in 

the VH depending on the VH model. 

 

Figure 5-1 SX-Aurora TSUBASA System 



 

188 

 

A host computer in which the VE is installed, the VE, and HCA are called a vector 

island (VI). It can be said that the VI and VH are the same for an execution host. 

NQSV starts a job server and executes jobs on the VH. A program for the VE is run 

from a job script started on the VH. The VE and/or the HCA to run a VE program is 

assigned by NQSV. (In NQSV, the VE to be assigned to a job as a resource is called a 

VE node.) A VE program is run using the VE node assigned by NQSV. 

The following shows an execution image of a VE program on the VH. 

 

Figure 5-2 Execution of Program 

 

 

Jobs can be executed with the appropriate VE node assigned to each job by inputting 

the qsub(1) command with the --venode (total number of VE nodes) or --venum-lhost 

(number of VE nodes per logical host) option specified into the queue bound with the 

VH execution host. 

 

Depending on the SX-Aurora TSUBASA model, the topology configuration in the VH 

may be one in which the VE and HCA are connected to a CPU socket via a PCIe switch. 

The topology is the connection form of the CPU, VE and HCA. The following shows a 

topology configuration example. 

 

Figure 5-3 Example of Topology Configuration 



 

189 

 

 

 

Administrators can define such topology configurations in advance, to enable NQSV to 

assign VE nodes and HCAs for jobs. 

 

5.4.2 HCA and the Information of Topology 
 

Administrators define use HCA per device and define topology information of CPU 

sockets, VE nodes and HCA in a file on execution host. This file is called a device 

resource configuration file. As use of HCA per devices, MPI (RDMA [Remote Direct 

Memory Access]) and I/O (Direct I/O) can be defined. Specifying multiple usages is also 

possible. It is not possible to change this file under operation. Restarting of JSV is 

needed at changing of this file. 

 

VE and HCA connected to identical CPU socket and identical PCIeSW (CPU socket and 

PCIeSW connected) are grouped and it is called a “device group”. 

 

5.4.2.1 Device Group 

 

The examples of the device group are as follows. 

 

Figure 5-4 Example of Device Group with PCIeSW 



 

190 

 

 

 

Figure 5-5 Example of Device Group without PCIeSW 

 

 

5.4.2.2 Device Resource Configuration File 

 

Device resource configuration file is /etc/opt/nec/nqsv/resource.def on the VI. 

 

5.4.2.3 Format of the Device Resource Configuration File 

 

Format of the device resource configuration file is as follows. 

 

Format: <Resource> 

      <Resource>: Resource information 

Format:<Type> = { <List> } 

 



 

191 

 

      <Type>: type of resource 

Format: <Type> = Socket | PCIeSW | VE | Infiniband 

 

  The meaning of each character string are as follows 

  - Socket : CPU Socket 

  - PCIeSW : PCIeSW 

  - VE : VE node 

  - Infiniband:HCA 

 

      <List> : List of resource's detail. Nested descriptions of resource 

                information express topology information. 

Format: <Resource> | <Attribute> 

      <Attribute>: resource detailed information 

Format:<Name> : <Value> 

 

Possible resource detailed information for every <Type> is as follows. 

All settings must be specified. 

 

      - Socket  

            <Name>       : <Value> 

        Socket Number    : socket number 

- PCIeSW : PCI Switch 

        no resource detailed information 

      - VE  

            <Name>       : <Value> 

        Number           : physical VE number (It is possible to specify the 

range.) 

       - Infiniband  

            <Name>       : <Value> 

        PCI ID           : Identification number of PCI 

        Port Number      : port number  

        Mode             : use of HCA (IO and MPI can be 

                           specified. It is possible to specify multiple 

                           delimited by comma 

                           IO   : for direct communication of I/O 

                           MPI  : for direct communication of MPI 

 



 

192 

 

Both of capital letter and small letter are possible for setting character 

string. 

 

Starting of JSV results in an error when one of the following condition is met. 

- PCIeSW is defined as a resource outside Socket. 

- VE and Infiniband is defined as a resource outside PCIeSW or Socket. 

- The PCI ID which doesn't exist is specified. 

 

5.4.2.4 Example of a Setting of the Device Resource Configuration File 

 

Setting example of device group with PCIeSW when HCA is shared between IO and 

MPI is as follows. In this example 2 ports are installed to HCA and they can be 

referenced as independent HCA from VH. 

 

Socket = { 

  Socket Number : 0 

} 

Socket = { 

  Socket Number : 1 

  PCIeSW = { 

    VE = { 

      Number : 0-3 

    } 

    Infiniband = { 

      PCI ID      : 0000:05:00.0 

      Port Number : 1 

      Mode        : IO, MPI 

    } 

    Infiniband = { 

      PCI ID      : 0000:07:00.0 

      Port Number : 2 

      Mode        : IO, MPI 

    } 

  } 

  PCIeSW = { 

    VE = { 

      Number : 4-7 



 

193 

 

    } 

    Infiniband = { 

      PCI ID      : 0000:0b:00.1 

      Port Number : 1 

      Mode        : IO, MPI 

    } 

    Infiniband = { 

      PCI ID      : 0000:0d:00.1 

      Port Number : 2 

      Mode        : IO, MPI 

    } 

  } 

} 

 

When PCIeSW is not included, the setting does not include PCIeSW's "{}" . 

 

Socket = { 

  Socket Number : 0 

   VE = { 

    Number : 0-3 

  } 

  Infiniband = { 

     PCI ID      : 0000:05:00.0 

     Port Number : 1 

     Mode        : IO, MPI 

  } 

} 

Socket = { 

  Socket Number : 1 

  VE = { 

    Number : 4-7 

  } 

  Infiniband = { 

     PCI ID      : 0000:0b:00.1 

     Port Number : 1 

     Mode        : IO, MPI 

  } 



 

194 

 

} 

 

5.4.2.5 Display of the Setting Value of a Device Resource Configuration 
File 

 

The setting of device resource configuration file can be displayed using qstat(1) 

command with -F -f options. In this case, the number next to the PCIeSW is ID of 

device group. 

 

qstat -E -f 

  ..... 

  Socket Resource Usage: 

    NUMA Nodes = { 

      Socket 0 (Cpus: 0-1) = Cpu: -/2 Memory: -/3.0GB 

    } 

  Device Topology: 

    Socket 0 = { 

      (none) 

    } 

    Socket 1 = { 

      PCIeSW 1 = { 

        VE: 0-3 

        HCA: 0000:05:00.0 0 (IO,MPI) 

        HCA: 0000:07:00.0 1 (IO,MPI) 

      } 

      PCIeSW 2 = { 

        VE: 4-7 

        HCA: 0000:0b:00.1 0 (IO,MPI) 

        HCA: 0000:0d:00.1 1 (IO,MPI) 

      } 

    } 

 

When PCIeSW is not included, a part in PCIeSW is not displayed. 

 

  Device Topology: 

    Socket 0 = { 

      (none) 



 

195 

 

    } 

    Socket 1 = { 

        VE: 0-3 

        HCA: 0000:05:00.0 0 (IO,MPI) 

        HCA: 0000:07:00.0 1 (IO,MPI) 

    } 

When there are no device resource configuration file following is displayed. 

 

$ qstat -E -f 

 ..... 

  Socket Resource Usage: 

    NUMA Nodes = { 

      Socket 0 (Cpus: 0-1) = Cpu: -/2 Memory: -/3.0GB 

    } 

  Device Topology: (none) 

 

5.4.3 Using HCA 
 

5.4.3.1 Request Submission 

 

You can submit a request specifying use for direct communication and number of HCA 

port using --use-hca option of qsub(1), qlogin(1) and qrsh(1) command. In this case, the 

port number is the number necessary per device group to which VE belongs in logical 

host. You can specify --use-hca option in #PBS line in script. When --use-hca option and 

--venode option are not specified at the same time, submission error will occur. It will 

be also the same result is case of --use-hca option and --venum-lhost option. 

 

The format of the --use-hca option is as follows. 

 

format of <hca> : [<mode>:]<num> 

 

<num> is the number of HCA port which is used by VE which is assigned to a logical 

host. Values in 0 to 32 can be specified. When specified value is beyond the range of 

value that can be specified or is not number submit error occurs. 

 

<mode> is use the HCA. You can specify one of the following. If mode is not specified it 

is treated as "all". When a character string except the following is specified submit 

error occurs.   

 



 

196 

 

⚫ io : I/O exclusive use 

 

Only HCA that is specified IO in device resource configuration file is assigned. 

 

⚫ mpi : MPI exclusive use 

 

Only HCA that is specified MPI in device resource configuration file is assigned. 

 

 

⚫ all : IO and MPI sharing use (initial value) 

 

Only HCA that is specified IO and MPI in device resource configuration file is 

assigned. 

 

It is possible to specify "io", "mpi" and "all" at the same time. 

 

You cannot change the value of --use-hca by qalter(1) command. 

 

 [Example] When you submit a request that requires 4 VE and requires 1 HCA per 

device group to which belong VE. 

 

qsub --venode=4 --use-hca=1 <script> 

 

[Example] When you submit a request that requires 4 VE and requires 1 HCA that is 

I/O exclusive use and 1 HCA that is MPI exclusive use. 

 

qsub --venode=4 --use-hca=io:1,mpi:1 <script> 

 

[Example] When you submit a request that requires 2 VE per logical host, requires 1 

HCA that is shared by IO and MPI, and requires 2 logical host. 

 

qsub -b 2 --venum-lhost=2 --use-hca=1 <script> 

 

5.4.3.2 Display of the Information of a Request 

 

The information of the request which is submitted with --use-hca option can be 

displayed by using qstat(1) command with -f option. 

 

[Example] When you submit a request that requires 4 VE and requires 1 HCA that is 

I/O exclusive use and 1 HCA that is MPI exclusive use. 



 

197 

 

 

$ qstat -f 

..... 

VE Node Number = 2 

    HCA Number = { 

      For I/O = 1     <- required number of HCA which is MPI exclusive use 

      For MPI = 1     <- required number of HCA which is IO exclusive use 

    } 

 

Number of HCA which is required as IO and MPI sharing use is displayed as follows. 

 For ALL = <n> 

When no HCA are required "HCA Number = (none)" is displayed. 

 

5.4.3.3 Assignment of VE at using HCA 

 

When a request is submitted with "--use-hca" option, VEs which belong to the same 

device group as much as possible are assigned to logical host. 

However, it may not be always so because of emphasis of the request's TAT and the 

rate of operation. 

 

[Example] 

(1) qsub --venode=3 --use-hca=1 

(2) qsub --venode=3 --use-hca=1 

 

When the requests are submitted in numeric order, 3 VEs which belong to the same 

device group are assigned to "(1)", and 3 VEs which belong to another same device 

group are assigned to "(2)". 

Figure 5-6 Assignment of VE at using HCA 1 

 

Next, when a request (3) is submitted as follows: 

(3) qsub --venode=2 --use-hca=1 

 



 

198 

 

If there are no other empty VEs, 2 VEs which belong to different device group are 

assigned to "3". 

Figure 5-7 Assignment of VE at using HCA 2 

 

 

5.4.4 Topology information and HCA 
 

VI without topology information is not target of scheduling of the request which is 

specified "--use-hca". The request which is specified "--venode" or "--venum-lhost" but is 

not specified "--use-hca" is target of this scheduling. 

 

When VI with topology information and VI without topology information are mixed, VI 

without topology information is not target of scheduling of the request which is 

specified "--venode" or "--venum-lhost". 

 

To maximize the execution performance, please bind VIs which have same topology 

configuration such as the numbers of CPU, VE, HCA and those connection form to a 

queue. 

 

 

JobManipulator has following restriction about the request which uses topology 

information.  

The request which is queued status at the timing of unbinding the JobManipulator 

from the queue, or rebooting JobManipulator or BSV, cannot be executed on the same 

execution host of other running request on that timing. 

It start running after the end of a running request. Note that the running request 

contains the suspended request.

 

 

 

5.5 Scheduling with topology performance  

 

By default, JobManipulator assigns jobs by packing ve nodes to the limit on the 

number of available VE nodes in the VI. You can minimize the number of VIs used 

because you do not assign jobs to other VIs until you exceed the limit on the number of 

available VE nodes. As a result, power saving effect can be expected. 



 

199 

 

 

If you want to assign ve node and HCA topology into account, you can do so by enabling 

scheduling with topology performance in mind. 

 

5.5.1 Setting  
 

The scheduling function for topology performance is set by the set 

device_group_topology subcommand of the smgr(1M) command. This needs operator or 

higher privilege. The default value is off, which does not emphasize the distance 

between ve nodes and HCA in VE or HCA assignments. If on is specified, ve and HCA 

are assigned taking into account the distance between the VE node and the HCA. For 

more information, see the 5.5.2 Operational with Topology Performance Considerations 

section. 

 

In addition, when setting it to off, if the CPU concentration is enabled as the lower 

level policy, VEs in a VI, up to the limit of the available VE nodes, can be assigned to 

the request 

 

 

 

In R1.05 or earlier this function was set by VE_CONCENTRATION: parameter in the 

configuration file. If there is VE_CONCENTRATION: parameter in the configuration 

file of R1.05 or earlier, this setting is automatically reflected at the first start 

JobManipulator after it is updated to R1.06 or later. After that, the 

VE_CONCENTRATION: parameter is ignored. Please set this function by set 

device_group_topology subcommand of smgr(1M) command. 

 

 

5.5.2 Operation Considering Topology Performance 
  

JobManipulator may assign VEs to some device groups in one logical host in order to 

emphasize turnaround time and the rate of operation for the request. 

 

On the other hand, JobManipulator can also assign VEs to one device group in the 

logical host in order to emphasize topology performance. For it, all requests make 

require number of VEs that is multiplied VEs that one logical host has, regardless of 

the actual number of VEs used. As a result, VEs which are assigned to a logical host 

are included in one device group and you can always get a good performance. 

 

[Example] 

(1) qsub --venode=4 --use-hca=1 

(2) qsub --venode=4 --use-hca=1 

 



 

200 

 

When the requests are submitted in numeric order, 4 VEs are assigned to logical host 

without dividing into device group and HCA closest from each VE are assigned. You 

can therefore use HCA that is good performance. 

 

Figure 5-8 Example of the Operation Considering Topology Performance 1 

 

 

If the number of VE which is included in a device group is 4, similar assignment is 

possible if all number of required VE is 2. 

 

Figure 5-9 Example of the Operation Considering Topology Performance 2 



 

201 

 

 

 

 

5.6 Suspend Jobs Using VEs 

It is able to swapping out the memory of the VE job to VH or storage, and the memory 

of the VE job can be returned to the VE from storage by using Partial Process 

Swapping (hereafter referred to as PPS) of VEOS. The feature for suspending the VE 

job is implemented by using this PPS feature. 

See the SX-Aurora TSUBASA Installation Guide for information on how to configure 

the Partial Process Swapping feature in VEOS. 

 

There are two ways to suspend using the PPS feature: 

⚫ The system administrator suspends a running VE job by using the suspend 

request subcommand of smgr(1M) 

⚫ NQSV suspends and interrupts normal requests which is using VE to 

execute an urgent/special request which uses VE. 

 

If the execution host is SX-Aurora-TSUBASA, NQSV suspends the request by using the 

PPS feature by default. If you want to stop (SIGSTOP) process to suspend ve jobs 

without using the PPS function, the system administrator should set the set 

execution_queue partial_process_swapping sub-command of qmgr (1M) to off. It is 

configured to the queue that the request to be suspended is submitted. This 

configuration can be set for batch queues only. Interactive queue does not support this 

feature. 

 

5.6.1 Suspend ve jobs with the 5.6.1 smgr(1M) command 
 

The system administrator can suspend a running VE job by using suspend request sub-

command of smgr (1M). This operation requires prior configuration of the PPS 

function. 



 

202 

 

Requests that are suspended are resumed with the resume request sub-command of 

smgr (1M). The Elapse time stops during the request is in suspend status and start the 

measuring Elapse time again after the resume. 

 

The request is rerun if the PPS function fails to swap out or swap-in when suspending 

or resuming with the smgr(1M) command. 

 

To resume a request which is suspended by the smgr(1M) command, it requires there is 

no other running requests on the execution host that the request has been suspended. 

If running request exists, the resume may fail. 

 

 

Multiple concurrent requests (requests submitted with the --parallel option of the 

qsub(1) command) running in a single execution host cannot be suspended with PPS by 

using smgr(1M) command. 

 

 

5.6.2 Suspending VE Jobs to Run Urgent Requests 
 

PPS function swap-outs the processes to suspend the normal requests which is using 

VE to execute an urgent/special request which uses VE. To do the urgent/special 

request wait for the completion of this swap-out and after that it starts running. After 

an urgent/special request finish the execution, the suspended normal requests are 

automatically swapped-in and resumed. 

 

 

Special requests that suspends normal requests using VEs cannot be further 

suspended by the execution of urgent requests. The operation that suspends a request 

which is using VE, must be configured with either urgent request or special request.

 

 

5.6.2.1 Delete urgent requests by the lack of VE memory 

 

There is a case that the VE memory that urgent request requires cannot be secured 

even if the processes of normal request are swapped-out. In this case, the default 

behavior is to rerun the interrupted normal request to execute the urgent request. 

 

If you do not want to rerun the normal request in this case, set the set execution_queue 

delete_failed_urgent_request sub-command of qmgr (1M) to on. This configuration 

make interrupted normal request not to rerun and urgent request is deleted if the VE 

memory that urgent request requires are not available, an interrupted normal request 

is suspended first and then resumed after the urgent request has been deleted. Please 

configure this setting to the batch queue that urgent request is submitted. 



 

203 

 

 

5.6.2.2 Reduce of VE memory to swap-out 

It is expectable to reduce the time for swapping-out by specifying the appropriate value 

to the limit on maximum VE memory size per VE node (--vememsz-venode option). For 

this purpose, all of the following conditions must be met. 

⚫ Version of both NQSV-ResourceManager and NQSV-JobServer is R1.14 or later. 

⚫ Version of VEOS is 3.1.1 or later. 

 

In the case when these conditions are met 

Please specify the value except "unlimited" to the limit on maximum VE memory size 

per VE node for the urgent request. This specification swaps out only the amount of 

memory required by the urgent request. It can be reduced to swap-out memory 

unnecessarily therefore It is expectable to reduce the time for swapping-out. 

If "--vememsz-venode" option is not specified to the request, the default value of the 

queue submitted the request is applied to the request. 

If "unlimited" is specified, all swappable VE memory is swapped-out regardless VE 

memory size required by the urgent request. It takes the same amount of time for 

swapping-out as before. 

 

In the case when these conditions are not met 

As in the past all swappable VE memory is swapped-out regardless VE memory size 

required by the urgent request. It takes the same amount of time for swapping-out as 

before. 

 

5.7 Dynamic JSV Priority 

 

5.7.1 Overview 
As explained in 5.6 Suspend Jobs Using VEs, when executing an urgent request that 

uses VE, the normal request is interrupted to temporarily free up VE memory. If the 

amount of VE memory required by the urgent request cannot be allocated, the 

interrupted normal request is rerun or the urgent request is deleted. 

 

Enabling Dynamic JSV Priority allows node selection based on the status of running 

VE jobs when scheduling urgent requests that use VE. This enables the following 

 

⚫ Avoids nodes where VE jobs are running, reducing the number of interruptions to 

normal requests. 

⚫ It selects nodes that can release more VE memory in priority. Therefore rerunning 

and deleting of requests can be reduced. 

⚫ It selects nodes that has VE jobs with short elapsed execution time in priority. 

Therefore, reducing the impact of request reruns. 

 



 

204 

 

5.7.2 Settings 
You can set Dynamic JSV Priority on a per queue. To enable this function, execute the 

following subcommand of the smgr(1M) command with operator privilege or higher. 

The default value is off. 

If the queue type is set to a queue other than urgent, there is no effect. 

 

Smgr: set queue dynamic_jsv_priority control = on queue 

 

Dynamic JSV Priority is an assignment policy that has priority over JSV Assign 

Priority. See 3.1.8 Assign Policy for details. 

 

5.7.3 Calculation Method 
The Dynamic JSV Priority value is the sum of the Priority values calculated by the five 

elements and up to 20 different custom resource elements. This value is calculated for 

each JSV when scheduling an urgent request. Details of the calculation method are as 

follows. 

 

Dynamic JSV Priority = ∑𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 

 

The Priority value is calculated by the following formula. 

You can choose to calculate the Priority value in ascending or descending order of 

element values. 

 

Ascending order (asce) 

Priority = ((Current Item Value *max_item_priority) /max_item_value) * base 

 

Descending order (desc) 

Priority = (max_item_priority - ((Current Item Value * max_item_priority) / 

max_item_value)) * base 

 

base is the radix. 

max_item_priority is the maximum value of Priority before multiplying by base. 

Current Item Value is the value of the element at the time of scheduling. 

For example, if a regular job using 5 VEs is running at the node, the Current Item 

Value is 5. 

max_item_value is the maximum Current Item Value. 

 

The value of Dynamic JSV Priority can be checked for each queue with the -Q -f -j 

option or the -J --dynamic option of the sstat(1) command. This is the value that was 

calculated when scheduling the urgent request. It may have changed from the situation 

at the time the command was executed. 



 

205 

 

 

5.7.4 Setting up calculation elements 
The Priority calculation factor can be set on a per queue. Execute the set queue 

dynamic_jsv_priority item subcommand of the smgr(1M) command with operator 

privilege or higher. For details on the subcommand, see the reference section. 

The Priority value is 0 by default. 

 

  



 

206 

 

Appendix.A Update history 
 

14th edition 

- Added 4.26 Caching of non-schedulable requests  

- Added 5.7 Dynamic JSV Priority Extended 

 

15th edition 

- Modified 3.1.1 Scheduler Map 

- Modified 4.6 Advance Reservation 

- Modified 4.21 Node group selection function for minimum network topology 

 

16th edition 

- Added note to 4.14.2 Dynamic Power-saving Function. 

 

17th edition 

- Fixed 4.21 ”set queue network_topology min_group" sub-command of the 

smgr(1M) command. 

- Added 5.6.2.2 Reduce of VE memory to swap-out 

 

18th edition 

- Update qstat images in 4.23.6 Setting of Job Server on the instance. 

 

  



 

 

Index 

Ａ 

Adding Execution Queue to Complex 

Queue ................................................... 29 

Advance Reservation .............................. 81 

Assign Limit ............................................ 21 

Assign Policy ........................................... 68 

Assign Pool .............................................. 46 

Ｂ 

Backfill ..................................................... 47 

Base-Up ................................................... 62 

Base-up defined by user ................... 61, 62 

Base-up for a request suspended by 

urgent request ..................................... 60 

Base-up for a rescheduled request ......... 61 

Basic Environment Architecture.............. 3 

BatchServerHost ....................................... 2 

BMC ........................................................... v 

BSV ........................................................... iv 

Ｃ 

cell ............................................................ 43 

change the scheduling feature ............... 46 

ClientHosts ................................................ 2 

Cloud Bursting Function ...................... 151 

Command environment file .................... 14 

Configuration file ...................................... 6 

CPU number concentrated assign ......... 37 

Creating Complex Queue ....................... 28 

Ｄ 

Deleting Complex Queue ........................ 29 

Deleting the Reserved Section ............... 84 

Device Group ......................................... 189 

Device resource configuration file 

resource.def ........................................ 190 

Display the Detail of the Execution Host 

Information ........................................ 143 

Display the Information of the Resource 

Reserved Section ................................. 85 

Display the Information of the Resource 

Reserved Section (details)................... 88 

Display the Setting of Elapse Unlimited

 ............................................................ 101 

Dynamic Power-saving Function ......... 124 

Ｅ 

Early Execution ....................................... 32 

Elapse Margin ........................................ 65 

Elapse Margin(Display format) ............. 66 

Elapse Margin(Setting method) ............ 66 

Elapse Unlimited Feature ................... 100 

Elapsed time ........................................... 64 

Escalation feature .................................. 32 

Execution Hosts ........................................ 2 

Execution start time ............................... 63 

Execution Time Reservation .................. 80 

Exit Delay Scheduling .............................. 73 

Ｆ 

Failover System .................................... 102 

Feature of Setting of Scheduling Method 

at VE Degradation ............................ 184 

FIFO Scheduling .................................. 150 

First Stage-in Time .............................. 141 

Forced Rerunning of Running Job ...... 103 

Formula of the Scheduling Priority....... 55 

Forward escalation ................................. 32 

Ｈ 

HCA ........................................................... v 

HCA Assignment Feature .................... 187 

Ｉ 

IB ............................................................... v 

Interrupting assign policy ...................... 69 

Ｊ 

JM .............................................................. v 

jmd.log ..................................................... 15 

Job Assignment to the Resource Reserved 

Section ................................................. 85 

job condition ............................................ 63 

Job Condition .......................................... 73 

Job Submission to Reserved Section ..... 83 

JSV ............................................................ v 

Ｌ 

limit of memory usage ............................ 65 

Limits of the Number of CPUs that can 

be Executed Simultaneously ........ 18, 20 

Logfile ...................................................... 15 

Ｍ 

map width ......................................... 43, 46 

map width and request pick-up ............. 46 

Map Width Display Feature .................. 49 



 

 

 

Map Width Set Up .................................. 44 

memory usage limit ................................ 65 

merge rate ......................................... 93, 98 

MPI ............................................................ v 

Ｎ 

NIC ............................................................. v 

Node group selection function for 

minimum network topology .............. 146 

normal queue ........................................... 26 

nqs_jmd.env ............................................. 13 

Ｏ 

Operation Considering Topology 

Performance....................................... 199 

Overtake Control at Pick-up .................. 35 

Ｐ 

Pick-up ..................................................... 46 

Power-saving Function ......................... 123 

Provisioning with Docker ..................... 140 

Provisioning with OpenStack ............... 136 

Ｑ 

queue type ............................................... 26 

Ｒ 

Removing Execution Queue from 

Complex Queue ................................... 30 

Request Assign Policy ............................. 37 

Request Assignment Mode ................... 181 

Request Priority ...................................... 58 

Request Priority Order ..................... 25, 63 

Request run limit .................................... 16 

Reservation policy ................................... 82 

Reserved Section Automatic delete ........ 84 

Reserved Section Delete by a command 84 

Reserved Section ID ................................ 81 

Resource balanced assignment .............. 37 

Resource Limit ........................................ 59 

Resource Reserved Section(Advance 

Reservation) ......................................... 81 

RSG Limit of the usable ratio of CPUS . 23 

RSG Limit of the usable ratio of memory 

size per RSG ........................................ 23 

Run Limit ................................................ 15 

Ｓ 

Scheduled Power- saving Function ...... 131 

Scheduler logfile ...................................... 14 

Scheduler Map .................................. 43, 46 

Scheduling by Software License of ISV 

software ............................................. 136 

Scheduling in Problem on Node .......... 102 

Scheduling in VE Node Problem ......... 184 

scheduling interval ................................. 43 

Scheduling Parameter Setting .............. 15 

Scheduling Priority ................................ 54 

Scheduling with the change in the 

number of CPUs ................................ 101 

Scheduling with topology performance 198 

Set Elapse Unlimited Feature ............. 100 

Set the Reserved Section ........................ 81 

set weight coefficients of usage data to 

the scheduling priority ....................... 52 

Setting of Complex Queue ..................... 30 

Share distribution ratio configuration file

 ............................................................. 56 

ShareDB .................................................. 92 

ShareDB Merge ...................................... 92 

Showing Complex Queue Information .. 31 

Side escalation ........................................ 33 

special queue ........................................... 26 

Subcommands for Weight Coefficients .. 61 

Suspended Request ................................ 72 

System Information Display .................. 74 

Ｔ 

The number of CPUs that can be 

executed simultaneously per job ........ 64 

Ｕ 

Unit Management .................................... 6 

urgent queue ........................................... 26 

Urgent Request ....................................... 75 

usage data value ..................................... 55 

User Rank ............................................... 57 

Ｖ 

VE ............................................................. iv 

VE Assignment Feature ....................... 184 

VH............................................................. iv 

VI .............................................................. iv 

Ｗ 

Wait Time of Rescheduling .................... 41 

Waiting to Forced Rerunning on Start-up

 ........................................................... 103 

Workflow ................................................. 79 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     

Copyright: NEC Corporation 2018 

 

No part of this guide shall be reproduced, modified or transmitted without a written 

permission from NEC Corporation.  

The information contained in this guide may be changed in the future without prior 

notice. 

 NEC Network Queuing System V (NQSV) 

User's Guide [JobManipulator] 

July 2024   18th edition 

  

NEC Corporation 


	Proprietary Notice
	Preface
	About This Manual
	CONTENTS
	Contents of Figures
	Chapter 1. Overview of JobManipulator
	1.1 Introduction
	1.2 Features of JobManipulator

	Chapter 2. Environment Architecture
	2.1 Configuration of JobManipulator
	2.2 Package Configuration
	2.3 Basic Environment Architecture
	2.3.1 Environment
	2.3.2 Installation of Package
	(1) Batch server host
	(2) Client hosts

	2.3.3 JobManipulator Start
	2.3.4 Queue Setting
	2.3.5 Setting of the Client Environment
	2.3.6 JobManipulator Stop

	2.4 Unit Management
	2.5 Setting of JobManipulator Start
	2.5.1 Configuration file
	2.5.2 Starting of the multiple JobManipulator
	2.5.3 Updating from R1.05 or earlier to R1.06 or later
	2.5.4 Start Option of JobManipulator
	2.5.5 Command environment file

	2.6 Scheduler Log File Setting
	2.7 Scheduling Parameter Setting
	2.7.1 Run Limit
	2.7.1.1 Limits of the Number of Requests that can be Executed Simultaneously
	2.7.1.2 Limits of the Number of CPUs that can be Executed Simultaneously
	2.7.1.3 Limits the Number of VEs that can be Executed Simultaneously

	2.7.2 Assign Limit
	2.7.3 Request Priority Order
	2.7.4 Queue Type
	2.7.5 Setting of Complex Queue Feature
	2.7.5.1 Creating Complex Queue
	2.7.5.2 Deleting Complex Queue
	2.7.5.3 Adding Execution Queue to Complex Queue
	2.7.5.4 Removing Execution Queue from Complex Queue
	2.7.5.5 Setting of Complex Queue
	2.7.5.6 Showing Complex Queue Information

	2.7.6 Setting of Escalation Feature
	2.7.7 No Overtaking Control at Pick-up
	2.7.7.1 Overtaking Assignment for Small-scale Requests

	2.7.8 Setting of Assign Policy
	2.7.8.1 CPU number concentrated assignment or Resource balance assignment
	2.7.8.2 Setting the Order of Execution Host Assignment
	2.7.8.3 Setting of Priority or Disablement of Assignment Policy

	2.7.9  Setting of Wait Time of Rescheduling
	2.7.10 Set ON/OFF of Scheduling Feature


	Chapter 3. Operation Management
	3.1 Scheduling Basic Feature
	3.1.1 Scheduler Map
	3.1.1.1 Map Width Set Up
	3.1.1.2 Map Width and Scheduling Interval Display Feature
	3.1.1.3 Notes on settings

	3.1.2 Real Time Scheduling
	3.1.2.1 Request Realtime Scheduling Mode

	3.1.3 Usage Data Collection and Adjustment
	3.1.3.1 Collection of usage data  JobManipulator collects the amount of actual used system resources for each batch request and stores the accumulated value after calculating for each user. Following system resources are collected for calculating usag...
	3.1.3.2 Reduction of usage data values  JobManipulator accumulates usage data while reducing past usage data values accumulated for each user at every request termination.
	3.1.3.3 Reflection of usage data values to the scheduling priority  The weight can be specified to each component used for usage data values such as the number of CPU and elapsed time and the values are compared relatively with a scale set by system. ...
	3.1.3.4 Display of usage data values  Usage data values can be displayed by -S option of sushare(1). The usage data of each user and the total usage data of each group are displayed hierarchically by group. "*" is displayed at the beginning of group n...

	3.1.4 Scheduling Priority
	3.1.4.1 Scheduling Priority
	3.1.4.2 Formula of the Scheduling Priority
	3.1.4.3 Calculation Timing of the Scheduling Priority
	3.1.4.4 Processes Using the Scheduling Priority
	3.1.4.5 Subcommands for Weight Coefficients

	3.1.5 Algorithm for Picking up Request
	3.1.6 Algorithm for Starting Request
	3.1.7 Elapse Margin
	3.1.7.1 Setting Elapse Margin
	3.1.7.2 Display Elapse Margin

	3.1.8 Assign Policy
	3.1.8.1 Priority of Assignment Policy
	3.1.8.2 The assignment which considered a network topology
	3.1.8.3 Preferential Assignment Policy of the Node without any Staging Job

	3.1.9 Suspended Request
	3.1.10 Job Condition
	3.1.11 Exit Delay Scheduling

	3.2 System Information Display

	Chapter 4. Advanced Scheduling Features
	4.1 Urgent Request/Special Request
	4.1.1 Block of Assignment by Urgent Request

	4.2 Interactive Request
	4.3 Parametric Request
	4.4 Workflow
	4.5 Execution Time Reservation
	4.5.1 Specify the Execution Start Time
	4.5.2 Action for Failing in Time Specification

	4.6 Advance Reservation (Resource Reservation Section)
	4.6.1 Create the Reserved Section
	4.6.2 Job Submission to Reserved Section
	4.6.3 Deleting the Reserved Section
	4.6.3.1 Delete by a smgr command
	4.6.3.2 Automatic deletion by end of request in the resource reservation

	4.6.4 Job Assignment to the Resource Reservation Section
	4.6.5 Display the Information of the Resource Reservation Section
	4.6.6 Accounting for Resource Reservation Section Specifying Execution Queue
	4.6.7 Set section for health-check and clean-up
	4.6.8 Creation Function of the Resource Reservation Section Specifying Template
	4.6.8.1 Creation of the Resource Reservation Section Specifying Template
	4.6.8.2 Display the Resource Reservation Section Specifying Template
	4.6.8.3 Job Submission to the Resource Reserved Section Specifying Template
	4.6.8.4 Accounting for Resource Reservation Section Specifying Template


	4.7 ShareDB Merge Feature
	4.7.1 Overview of ShareDB Merge Feature
	4.7.2 Set ShareDB Merge Feature
	4.7.3 Display the Usage Data of ShareDB
	4.7.4 ShareDB Merge Configuration File

	4.8 Elapse Unlimited Feature
	4.8.1 Set Elapse Unlimited Feature
	4.8.2 Display the Setting of Elapse Unlimited

	4.9 Scheduling with the change in the number of CPUs/GPUs
	4.10 Support for Failover System
	4.11 Scheduling in Problem on Node
	4.11.1  Rescheduling at Node Problem
	4.11.2  Forced Rerunning of Running Job
	4.11.3  Waiting to Forced Rerunning on Connection with BSV
	4.11.4 Keep Forward Schedule
	4.11.4.1 Overview of Keep Forward Schedule
	4.11.4.2 Setting of Keep Forward Schedule
	4.11.4.3 Display of Setting of Keep Forward Schedule

	4.11.5 Top Priority Execution of the Failure Encounter Request
	4.11.5.1 Overview of Top Priority Execution of the Failure Encounter Request
	4.11.5.2 Setting of Top Priority Execution of the Failure Encounter Request
	4.11.5.3 Notes when using this function


	4.12 Deadline Scheduling
	4.12.1  Overview of Deadline Scheduling
	4.12.2  Setting of Deadline Scheduling
	4.12.3  Submission of Deadline Request
	4.12.4  Scheduling of Deadline Request
	4.12.5  Usage Data of Deadline Request

	4.13 Incorporating External Policy
	4.13.1  Overview of Incorporating External Policy
	4.13.2  Setting of Incorporating External Policy feature
	4.13.2.1 Enable Incorporating External Policy feature
	4.13.2.2 Set the type of target request
	4.13.2.3 Set the path of shared library of the APIs for Incorporating External Policy feature

	4.13.3  Connection to External Policy Daemon
	4.13.4  External Policy on Submitting
	4.13.5  External Policy on Request Priority
	4.13.6  External Policy on Assignment
	4.13.6.1 Check External Policy on Assignment
	4.13.6.2 Release checking External Policy on Assignment

	4.13.7  API Functions

	4.14 Power-saving Function
	4.14.1 Overview of Power-saving Function
	4.14.2 Dynamic Power-saving Function
	4.14.2.1 Setting of Dynamic Power-saving Function
	4.14.2.2 Setting of the Maximum Number of operation nodes
	4.14.2.3 Setting of the Mode on Urgency of Peak Cut
	4.14.2.4 Setting of the Minimum Number of Operation Nodes of A Queue
	4.14.2.5 Setting of the DC Power Off Limit
	4.14.2.6 Setting of the Minimum Idle Time
	4.14.2.7 Setting of the Estimated DC-OFF Time
	4.14.2.8 Setting of the Margin for Stopping a Node and the Margin for Starting a Node

	4.14.3 Scheduled Power- saving Function
	4.14.3.1 Create Eco Schedule
	4.14.3.2 Delete Eco Schedule
	4.14.3.3 Display Eco Schedule


	4.15 Custom Resource Function
	4.15.1 Overview of Custom Resource Function
	4.15.2 Scheduling using Custom Resource Information
	4.15.3 Examples of Using Custom Resource Function
	4.15.3.1 Setting of occupied nodes and shared nodes
	4.15.3.2 Scheduling by Electric power
	4.15.3.3 Scheduling by Software License of ISV software


	4.16 Provisioning with OpenStack
	4.16.1 Overview of Provisioning with OpenStack
	4.16.2 Setting Re-scheduling Waiting Time at Failure of Start of Execution Host
	4.16.3 Scheduling of the Execution Hosts at Provisioning
	4.16.4 The Waiting time of Stage-out of the Request on Baremetal Server

	4.17 Provisioning with Docker
	4.17.1 Overview of Provisioning with Docker
	4.17.2 Setting Re-scheduling Waiting Time at Failure of Start of Execution Host
	4.17.3 Scheduling of the Execution Hosts at Provisioning

	4.18 Setting Function of the First Stage-in Time
	4.19 Pre-Staging Function
	4.19.1 Overview of Pre-Staging Function
	4.19.2 Setting of Stage-in Starting Time Threshold

	4.20 Display the Detail of the Execution Host Information
	4.21 Node group selection function for minimum network topology
	4.21.1 Overview
	4.21.2 Setting

	4.22 FIFO Scheduling
	4.23 Cloud Bursting Function
	4.23.1 Overview of Cloud Bursting Function
	4.23.2 Overview of Cloud Bursting Settings
	4.23.3 Setting of Cloud Bursting Template
	4.23.3.1 Defining a template
	4.23.3.2 Using a template
	4.23.3.3 Displaying a template

	4.23.4 Setting of Cloud Bursting Node Group
	4.23.4.1 Create the node group
	4.23.4.2 Add templates to the node group
	4.23.4.3 Delete templates from the node group
	4.23.4.4 Add Job Servers for instances to the node group
	4.23.4.5 Delete Job Servers for instances from the node group
	4.23.4.6 Set priority to the node group
	4.23.4.7 Set network name to the node group
	4.23.4.8 Display node groups
	4.23.4.9 Lock/Unlock the node group
	4.23.4.10 Delete the node group

	4.23.5 Setting of Node Agent
	4.23.5.1 Configure the node group to be managed
	4.23.5.2 Cloud Instance Startup Script
	4.23.5.3 Cloud Instance Monitoring Script
	4.23.5.4 Cloud Instance Stop Script
	4.23.5.5 Sample Scripts
	Sample cloud instance startup script
	Sample cloud instance monitoring script
	Sample cloud instance stop script


	4.23.6 Setting of Job Server on the instance
	4.23.7 Overview of Cloud Bursting Policy
	4.23.8 Setting of Scheduling
	4.23.8.1 Setting of occupancy ratio of cloud bursting
	4.23.8.2 Setting of request number target of cloud bursting
	4.23.8.3 Setting of calculate of request bursting priority

	4.23.9 Submit a request
	4.23.10 Policy of selection cloud
	4.23.11 Forced Rerunning of Running Jobs for Cloud Bursting Requests

	4.24 Request Assignment Mode
	4.25 Indication of the scheduled start time of execution during the scheduling process
	4.26  Caching of non-schedulable requests

	Chapter 5. Functions for SX-Aurora TSUBASA
	5.1 Overview
	5.2 VE Assignment Feature
	5.3 Scheduling in VE Node Degradation
	5.3.1 Overview of the Feature
	5.3.2 Feature of Setting of Scheduling Method at VE Degradation
	5.3.3 Display by sstat

	5.4 HCA Assignment Feature
	5.4.1 Overview of HCA Assignment Feature
	5.4.2 HCA and the Information of Topology
	5.4.2.1 Device Group
	5.4.2.2 Device Resource Configuration File
	5.4.2.3 Format of the Device Resource Configuration File
	5.4.2.4 Example of a Setting of the Device Resource Configuration File
	5.4.2.5 Display of the Setting Value of a Device Resource Configuration File

	5.4.3 Using HCA
	5.4.3.1 Request Submission
	5.4.3.2 Display of the Information of a Request
	5.4.3.3 Assignment of VE at using HCA

	5.4.4 Topology information and HCA

	5.5 Scheduling with topology performance
	5.5.1 Setting
	5.5.2 Operation Considering Topology Performance

	5.6 Suspend Jobs Using VEs
	5.6.1 Suspend ve jobs with the 5.6.1 smgr(1M) command
	5.6.2 Suspending VE Jobs to Run Urgent Requests
	5.6.2.1 Delete urgent requests by the lack of VE memory
	5.6.2.2 Reduce of VE memory to swap-out


	5.7 Dynamic JSV Priority
	5.7.1 Overview
	5.7.2 Settings
	5.7.3 Calculation Method
	5.7.4 Setting up calculation elements


	Appendix.A Update history
	Index

