ADVANCED SCIENTIFIC LIBRARY
ASL C INTERFACE
User's Guide
<Basic Functions Vol.3>

PROPRIETARY NOTICE

The information disclosed in this document is the property of NEC Corporation (NEC) and/or its licensors.
NEC and/or its licensors, as appropriate, reserve all patent, copyright and other proprietary rights to this
document, including all design, manufacturing, reproduction, use and sales rights thereto, except to extent said
rights are expressly granted to others.

The information in this document is subject to change at any time, without notice.

Copyright 2023
NEC Corporation

PREFACE

This manual describes general concepts, functions, and specifications for use of the Advanced
Scientific Library (ASL) C interface.

The manuals corresponding to this product consist of seven volumes, which are divided into the
chapters shown below. This manual describes the basic functions, volume 3.

Basic Functions Volume 1

Chapter Title Contents
1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.
2 Storage Mode Explanation of algorithms, method of using, and usage example
Conversion of function related to storage mode conversion of array data.
3 Basic Matrix Algebra | Explanation of algorithms, method of using, and usage example
of function related to basic calculations involving matrices.
4 Eigenvalues and Explanation of algorithms, method of using, and usage example
Eigenvectors of function related to

the standard eigenvalue problem for real matrices, complex
matrices, real symmetric matrices, Hermitian matrices, real sym-
metric band matrices, real symmetric tridiagonal matrices, real
symmetric random sparse matrices, Hermitian random sparse
matrices and

the generalized eigenvalue problem for real matrices, real
symmetric matrices, Hermitian matrices, real symmetric band
matrices.

Basic Functions Volume 2

Chapter Title Contents
1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.
2 Simultaneous Linear Explanation of algorithms, method of using, and usage example
Equations of function related to simultaneous linear equations correspond-
(Direct Method) ing to real matrices, complex matrices, positive symmetric ma-

trices, real symmetric matrices, Hermitian matrices, real band
matrices, positive symmetric band matrices, real tridiagonal ma-
trices, real upper triangular matrices, and real lower triangular
matrices.

Basic Functions Volume 3

Chapter

Title

Contents

Introduction

Explanation of the organization of this manual, how to view each
item, and usage limitations.

Fourier Transforms
and their applications

Explanation of algorithms, method of using, and usage ex-
ample of function related to one-, two- and three-dimensional
complex Fourier transforms and real Fourier transforms, one-,
two- and three-dimensional convolutions, correlations, and power
spectrum analysis, wavelet transforms, and inverse Laplace
transforms.

Basic Functions Volume 4

Chapter

Title

Contents

1

Introduction

Explanation of the organization of this manual, how to view each
item, and usage limitations.

Differential Equations
and Their Applications

Explanation of algorithms, method of using, and usage example
of function related to

ordinary differential equations initial value problems for
high-order simultaneous ordinary differential equations, implicit
simultaneous ordinary differential equations, matrix type ordi-
nary differential equations, stiff problem high-order simultane-
ous ordinary differential equations, simultaneous ordinary dif-
ferential equations, first-order simultaneous ordinary differential
equations, and high-order ordinary differential equations, and
ordinary differential equations boundary value problems
for high-order simultaneous ordinary differential equations, first-
order simultaneous ordinary differential equations, high-order or-
dinary differential equations, high-order linear ordinary differen-
tial equations, and second-order linear ordinary differential equa-
tions, and

integral equations for Fredholm’s integral equations of second
kind and Volterra’s integral equations of first kind, and

partial differential equations for two- and three-dimensional
inhomogeneous Helmholtz equation.

Numerical Differentials

Explanation of algorithms, method of using, and usage exam-
ple of function related to numerical differentials of one-variable
functions and multi-variable functions.

Numerical Integration

Explanation of algorithms, method of using, and usage example
of function related to numerical integration over a finite inter-
val, semi-infinite interval, fully infinite interval, two-dimensional
finite interval, and multi-dimensional finite interval.

Interpolations and
Approximations

Explanation of algorithms, method of using, and usage example
of function related to interpolations, surface interpolations, least
squares approximations, least squares surface approximations,
and Chebyshev’s approximations.

Spline Functions

Explanation of algorithms, method of using, and usage example
of function related to interpolation, smoothing, numerical deriva-
tives, and numerical integrals using cubic splines, bicubic splines
and B-splines.

Basic Functions Volume 5

Chapter

Title

Contents

Introduction

Explanation of the organization of this manual, how to view each
item, and usage limitations.

Special Functions

Explanation of algorithms, method of using, and usage example
of function related to Bessel functions, modified Bessel functions,
spherical Bessel functions, functions related to Bessel functions,
Gamma functions, functions related to Gamma functions, elliptic
functions, indefinite integrals of elementary functions, associated
Legendre functions, orthogonal polynomials, and other special
functions.

Sorting and Ranking

Explanation and usage examples of function related to sorting
and ranking.

Roots of Equations

Explanation of algorithms, method of using, and usage exam-
ple of function related to roots of algebraic equations, nonlinear
equations, and simultaneous nonlinear equations.

Extremal Problems
and Optimization

Explanation of algorithms, method of using, and usage example
of function related to minimization of functions with no con-
straints, minimization of the sum of the squares of functions
with no constraints, minimization of one-variable functions with
constraints, minimization of multi-variable functions with con-
straints, and shortest path problem.

Basic Functions Volume 6

Chapter

Title

Contents

1

Introduction

Explanation of the organization of this manual, how to view each
item, and usage limitations.

Random Number Tests

Explanation and usage examples of function related to uniform
random number tests, and distribution random number tests.

Probability
Distributions

Explanation and usage examples of function related to continu-
ous distributions and discrete distributions.

Basic Statistics

Explanation and usage examples of function related to basic
statistics, variance-covariance and correlation.

Tests and Estimates

Explanation and usage examples of function related to interval
estimates and tests.

Analysis of Variance
and
Design of Experiments

Explanation and usage examples of function related to one-way
layout, two-way layout, multiple-way layout, randomized block
design, Greco-Latin square method, cumulative Method.

Nonparametric Tests

Explanation and usage examples of function related to tests using
x? distribution and tests using other distributions.

Multivariate Analysis

Explanation and usage examples of function related to principal
component analysis, factor analysis, canonical correlation analy-
sis, discriminant analysis, cluster analysis.

Time Series Analysis

Explanation and usage examples of function related to auto-
correlation, cross correlation, autocovariance, cross covariance,
smoothing and demand forecasting.

10

Regression analysis

Explanation and usage examples of function related to linear
Regression and nonlinear Regression.

Shared Memory Parallel Functions

Chapter Title Contents

1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.

2 Basic Matrix Algebra | Explanation of algorithms, method of using, and usage example
of function related to obtain the product of real matrices and
complex matrices.

3 Simultaneous Linear Explanation of algorithms, method of using, and usage example

Equations of function related to simultaneous linear equations correspond-
(Direct Method) ing to real matrices, complex matrices, real symmetric matrices,
and Hermitian matrices.

4 Simultaneous Linear Explanation of algorithms, method of using, and usage example
Equations of function related to simultaneous linear equations correspond-
(Iteration Method) ing to real positive definite symmetric sparse matrices, real sym-

metric sparse matrices and real asymmetric sparse matrices.

5 Eigenvalues and Explanation of algorithms, method of using, and usage example
Eigenvectors of function related to the eigenvalue problem for real symmetric

matrices and Hermitian matrices.

6 Fourier Transforms Explanation of algorithms, method of using, and usage exam-
and their applications | ple of function related to one-, two- and three-dimensional com-

plex Fourier transforms and real Fourier transforms, two- and
three-dimensional convolutions, correlations, and power spec-
trum analysis.

7 Sorting Explanation and usage examples of function related to sorting
and ranking.

Document Version 3.0.0-230301 for ASL, March 2023
Remarks

(1) This manual corresponds to ASL 1.1. All functions described in this manual are program products.

(2) Proper nouns such as product names are registered trademarks or trademarks of individual manufacturers.

(3) This library was developed by incorporating the latest numerical computational techniques. Therefore,
to keep up with the latest techniques, if a newly added or improved function includes the function of an
existing function may be removed.

Contents

1 INTRODUCTION 1
1.1 OVERVIEW 1
1.1.1 Introduction to The Advanced Scientific Library ASL C interface 1
1.1.2 Distinctive Characteristics of ASL C interface 1
1.2 KINDS OF LIBRARIES e s e 2
1.3 ORGANIZATION e s 3
1.3.1 Introduction e 3
1.3.2 Organization of Function Description. oo 3
1.3.3 Contents of Each Item 3
1.4 FUNCTION NAMES e s s 7
1.5 NOTES . . . o 9
2 FOURIER TRANSFORMS AND THEIR APPLICATIONS 11
2.1 INTRODUCTION o s e e e s e e 11
2.1.1 Notes . . . o s 12
2.1.2 Algorithms Used e 13
2.1.2.1 One-Dimensional (Continuous) Fourier Transforms 13
2.1.2.2 Multidimensional (Continuous) Fourier Transforms 16
2.1.2.3 Ome-Dimensional Fourier Transform 17
2.1.2.4 Multidimensional Fourier Transforms 20
2.1.2.5 Fast Fourier transform oL oL 22

2.1.2.6 One-Dimensional (Continuous) Convolutions and One-Dimensional (Continuous)
Correlations L e 25

2.2

2.3

2.4

2.1.2.7 One-Dimensional Discrete Convolution and One-Dimensional Discrete Correlation 26
2.1.2.8 Multidimensional (Continuous) Convolution and Multidimensional (Continuous)

Correlation o o 32
2.1.2.9 Power Spectrum e e 32
2.1.2.10 Laplace Transform 37
2.1.2.11 Wavelet transform o o 41
2.1.3 Reference Bibliography 45
ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE) ... 46
2.2.1 [DEPRECATED]ASL dfclfb, ASL_rfclfb
One-Dimensional Complex Fourier Transforms (Including Initialization) 46
2.2.2 [DEPRECATED]ASL_dfc1bf, ASL_rfclbf
One-Dimensional Complex Fourier Transforms (After Initialization) 50

ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE) 57
2.3.1 [DEPRECATED]ASL zfclfb, ASL_cfclfb

One-Dimensional Complex Fourier Transforms (Including Initialization) o7
2.3.2 [DEPRECATED]ASL zfc1bf, ASL_cfclbf

One-Dimensional Complex Fourier Transforms (After Initialization) 61
ONE-DIMENSIONAL REAL FOURIER TRANSFORM 67

24.1 [DEPRECATED]ASL_dfrlfb, ASL_rfrlfb
One-Dimensional Real Fourier Transforms (Including Initialization) 67

i

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.4.2 |[DEPRECATED]ASL_dfrlbf, ASL_rfr1bf

One-Dimensional Real Fourier Transforms (After Initialization) 71
MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT
TYPE) . . 77
2.5.1 [DEPRECATED]ASL_dfcmfb, ASL rfcmfb

Multiple One-Dimensional Complex Fourier Transforms (Include Initialization) 7
2.5.2 [DEPRECATED]ASL_dfcmbf, ASL _rfcmbf

Multiple One-Dimensional Complex Fourier Transforms (After Initialization) 81
MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGU-
MENT TYPE) 89
2.6.1 [DEPRECATED]ASL zfcmfb, ASL_cfcmfb

Multiple One-Dimensional Complex Fourier Transforms (Include Initialization) 89
2.6.2 [DEPRECATED]ASL zfcmbf, ASL_cfcmbf

Multiple One-Dimensional Complex Fourier Transforms (After Initialization) 93
MULTIPLE ONE-DIMENSIONAL REAL FOURIER TRANSFORM 101
2.7.1 [DEPRECATED]ASL_dfrmfb, ASL_rfrmfb

Multiple One-Dimensional Real Fourier Transforms (Including Initialization) 101
2.7.2 [DEPRECATED]ASL_dfrmbf, ASL_rfrmbf

Multiple One-Dimensional Real Fourier Transforms (After Initialization) 106
TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE) . . . 113
2.8.1 [DEPRECATED]ASL._dfc2fb, ASL rfc2fb

Two-Dimensional Complex Fourier Transform (Including Initialization) 113
2.8.2 |[DEPRECATED]ASL._dfc2bf, ASL rfc2bf

Two-Dimensional Complex Fourier Transform (After Initialization) 117

TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE) 123
2.9.1 [DEPRECATED]ASL zfc2fb, ASL_cfc2fb

Two-Dimensional Complex Fourier Transform (Including Initialization) 123
2.9.2 [DEPRECATED]ASL zfc2bf, ASL_cfc2bf

Two-Dimensional Complex Fourier Transform (After Initialization) 127
TWO-DIMENSIONAL REAL FOURIER TRANSFORM 132
2.10.1 [DEPRECATED]ASL_dfr2fb, ASL_rfr2fb

Two-Dimensional Real Fourier Transform (Including Initialization) 132
2.10.2 [DEPRECATED]ASL_dfr2bf, ASL_rfr2bf

Two-Dimensional Real Fourier Transform (After Initialization) 136

THREE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE) . . 142
2.11.1 [DEPRECATED]ASL_dfc3fb, ASL_rfc3fb

Three-Dimensional Complex Fourier Transform (Including Initialization) 142
2.11.2 [DEPRECATED]ASL_dfc3bf, ASL rfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization) 146

THREE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)153
2.12.1 [DEPRECATED]ASL zfc3fb, ASL_cfc3fb

Three-Dimensional Complex Fourier Transform (Including Initialization) 153
2.12.2 [DEPRECATED]ASL zfc3bf, ASL_cfc3bf

Three-Dimensional Complex Fourier Transform (After Initialization) 157
THREE-DIMENSIONAL REAL FOURIER TRANSFORM 164
2.13.1 [DEPRECATED]ASL_dfr3fb, ASL rfr3fb

Three-Dimensional Real Fourier Transform (Including Initialization) 164
2.13.2 [DEPRECATED]ASL_dfr3bf, ASL rfr3bf

Three-Dimensional Real Fourier Transform (After Initialization) 169
CONVOLUTIONS e s 177
2.14.1 ASL_dfenld, ASL_rfenld

One-Dimensional Convolutions 177

2.14.2 ASL_dfcn2d, ASL_rfen2d
Two-Dimensional Convolutions 0 0 o e e e e 187

2.14.3 ASL_dfcn3d, ASL_rfcn3d

Three-Dimensional Convolutions 195
2.15 CORRELATIONS o e e e e e 206
2.15.1 ASL_dfcrld, ASL_rferld
One-Dimensional Correlations 206
2.15.2 ASL_dfer2d, ASL _rfer2d
Two-Dimensional Correlations 216
2.15.3 ASL_dfcr3d, ASL_rfcr3d
Three-Dimensional Correlations L 224
2.16 POWER SPECTRUM ANALYSIS e e 235
2.16.1 ASL_dfpsld, ASL_rfpsld
One-Dimensional Fourier Periodograms 235
2.16.2 ASL_dfps2d, ASL_rfps2d
Two-Dimensional Fourier Periodograms 243
2.16.3 ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms 252
2.17 LAPLACE TRANSFORM o e 267
2.17.1 ASL_dflara, ASL_rflara
Inverse Laplace Transform (Rational Function) 267
2.17.2 ASL_dflage, ASL_rflage
Inverse Laplace Transform (General Function) 273
2.18 WAVELET TRANSFORM e e 277
2.18.1 ASL_dfwthl, ASL rfwthl
Haar Function Generation L e 277
2.18.2 ASL_dfwthr, ASL _rfwthr
Wavelet Transform According to Haar Functions 280
2.18.3 ASL_dfwths, ASL_rfwths
Inverse Wavelet Transform According to Haar Functions 284
2.18.4 ASL_dfwth2, ASL _rfwth2
Haar Function Generation (Equally Spaced Sampling Data) 289
2.18.5 ASL_dfwtht, ASL_rfwtht
Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data) 292

2.18.6 ASL_dfwthi, ASL_rfwthi
Inverse Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data) . 296
2.18.7 ASL_dfwtmf, ASL_rfwtmf

Mexican Hut Function Computation 301
2.18.8 ASL_dfwtmt, ASL_rfwtmt

Wavelet Transform According to Mexican Hut Functions 303

2.18.9 ASL_dfwtff, ASL_rfwtff
French Hut Function Computation 306

2.18.10 ASL _dfwtft, ASL_rfwtft
Wavelet Transform According to French Hut Function 308
A MACHINE CONSTANTS USED IN ASL C INTERFACE 311
A.1 Units for Determining Error e 311

A.2 Maximum and Minimum Values of Floating Point Data 311

i

Chapter 1
INTRODUCTION

1.1 OVERVIEW

1.1.1 Introduction to The Advanced Scientific Library ASL C interface

Table 1—1 lists correspondences among product categories, functions of ASL and supported hardware platforms.
Interfaces of those functions that have the same name and that belong to the same version of ASL are common

among hardware platforms.

Table 1—1 Classification of functions included in ASL

Classification of Functions Volume

Basic functions Vol. 1-6

Shared memory parallel functions | Vol. 7

1.1.2 Distinctive Characteristics of ASL C interface
ASL C interface has the following distinctive characteristics.

(1) Functions are optimized using compiler optimization to take advantage of corresponding system hardware

features.

(2) Special-purpose functions for handling matrices are provided so that the optimum processing can be per-
formed according to the type of matrix (symmetric matrix, Hermitian matrix, or the like). Generally,
processing performance can be increased and the amount of required memory can be conserved by using

the special-purpose functions.

(3) Functions are modularized according to processing procedures to improve reliability of each component

function as well as the reliability and efficiency of the entire system.

(4) Error information is easy to access after a function has been used since error indicator numbers have been

systematically determined.

1.2 KINDS OF LIBRARIES

Numeric storage units of ASL C interface is 4-byte.

Table 1—2 Kinds of libraries providing ASL C interface

i iabl Declarati
Size of variable(byte) eclaration Kind Kind of library
of arguments
integer real
4 8 int 32bit integer Double-precision
double function
32bit integer library
(link option: -lasl_sequential)
4 4 int 32bit integer Single-precision
float function
8 8 lon 64bit integer Double-precision
double function
64bit integer library
(link option: -lasl_sequential i64)
8 4 long 64bit integer Single-precision
float function

(*1) Functions that appear in this documentation do not always support all of the four kinds of functions listed above.
For those functions that do not support some of those function kinds, relevant notes will appear in the corresponding

subsections.

(*¥2) For compiling the program with functions in the 64-bit integer library, the option “~DASL_LIB_INT64” must be
specified (See the Note (2) in 1.5).

1.3 ORGANIZATION

This section describes the organization of Chapters 2 and later.

1.3.1 Introduction

The first section of each chapter is a general introduction describing such information as the effective ways of

using the functions, techniques employed, algorithms on which the functions are based, and notes.

1.3.2 Organization of Function Description

The second section of each chapter sequentially describes the following topics for each function.
Function

Usage

Arguments and return value

Restrictions

Error indicator (Return Value)

Notes

7) Example

Each item is described according to the following principles.

1.3.3 Contents of Each Item

(1) Function
Function briefly describes the purpose of the ASL C interface function.

(2) Usage
Usage describes the function name and the order of its arguments. In general, arguments are arranged

as follows. When an argument is an address-passing variable, & is appended in front of the argument name.
ierr = function-name (input-arguments, input/output-arguments, output-arguments, isw, work);

isw is an input argument for specifying the processing procedure. ierr is a return value. In some cases,

input/output arguments precede input arguments. The following general principles also apply.

e Array are placed as far to the left as possible according to their importance.

e The dimension of an array immediately follows the array name. If multiple arrays have the same
dimension, the dimension is assigned as an argument of only the first array name. It is not assigned

as an argument of subsequent array names.

(3) Arguments and return value
Arguments and return value are explained in the order described above in paragraph (2). The explanation
format is as follows.
Arguments and return value Type Size Input/Output Contents

(2) (b) (o) (d) ()

Contents of Each Item

(a) Arguments and return value

Arguments and return value are explained in the order they are designated in the Usage paragraph.

(b) Type

I

D
R
Z
C

Type indicates the data type of the argument. Any of the following codes may appear as the type.
: Integer type

: Double precision real

: Real

: Double precision complex

: Complex

There are 64-bit integer and 32-bit integer for integer type arguments. In a 32-bit (64-bit) integer type

function, all the integer type arguments are 32-bit (64-bit) integer. In other words, kinds of libraries

determine the sizes of integer type arguments (Refer to 1.4). In the user program, a 32-bit/64-bit

integer type argument must be declared by int/ long, respectively.

(c) Size

Size indicates the required size of the specified argument. If the size is greater than 1, the required

area must be reserved in the program calling this function.

1

n

: Indicates that argument is a variable.

: Indicates that the argument is a vector (one-dimensional array) having n elements. The
argument n indicating the size of this vector is defined immediately after the specified vector.
However, if the size of a vector or array defined earlier, it is omitted following subsequently
defined vectors or arrays. The size may be specified by only a numeric value or in the form of a
product or sum such as 3 X n or n + m.

(d) Input/Output

Input/Output indicates whether the explanation of argument contents applies to input time or

output time.

i.

ii.

iii.

iv.

When only “Input” appears

When the control returns to the program using this function, information when the argument
is input is preserved. The user must assign input-time information unless specifically instructed
otherwise. When the argument is a variable, the variable value must be passed.
When only “Output” appears

Results calculated within the function are output to the argument. No data is entered at input
time. When the argument is a variable, the variable address must be passed.
When both “Input” and “Output” appear

Argument contents change between the time control passes to the function and the time con-
trol returns from the function. The user must assign input-time information unless specifically
instructed otherwise. When the argument is a variable, the variable address must be passed.
When “Work” appears

Work indicates that the argument is an area used when performing calculations within the
function. A work area having the specified size must be reserved in the program calling this
function. The contents of the work area may have to be maintained so they can be passed along
to the next calculation.

(e) Contents

Contents describes information held by the argument at input time or output time.

Contents of Each Item

e A sample Argument description follows.

Example
The statement of the function (ASL_dbgmlc, ASL_rbgmlc) that obtains the LU decomposition

and the condition number of a real matrix is as follows.

Double precision:
ierr = ASL_dbgmlc (a, lna, n, ipvt, &cond, wl);
Single precision:

ierr = ASL_rbgmlc (a, Ina, n, ipvt, &cond, wl);

The explanation of the arguments and return value is as follows.

Table 1-3 Sample Arguments and Return Value

D:Double precision real = Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
Argument and Input
No. & Type Size put/ Contents
Return Value Output
1 a Note | Inaxn Input | Real matrix A(two-dimensional array)
Dx Output | The matrix A decomposed into the matrix
Rx LU where U is a unit upper triangular matrix
and L is a lower triangular matrix.
2 Ina I 1 Input | Adjustable dimension size of array a
3 n I 1 Input | Order n of matrix A
4 ipvt I* n Output | Pivoting information
ipvt[i—1]: Number of the row exchanged with
row ¢ in the i-th step.
5 cond D 1 Output | Reciprocal of the condition number
R
6 wl Dx n Work | Work area
R
7 ierr I 1 Output | Error indicator (Return Value)

To use this function, arrays a, ipvt and w1 must first be allocated in the calling program so they can

double-precision

be used as arguments. a is a }NOte real array of size [lna X n] , ipvt is an integer

single-precision
double-precision

) o real array of size n.
single-precision

array of size n and wl is a {

When the 64-bit integer version is used, all integer-type arguments (Ina, n, ipvt and ierr) must be

declared by using long, not int.

Note The entries enclosed in brace { } mean that the array should be declared double precision type when using
function ASL_dbgmlc and real type when using function ASL_rbgmlc. Braces are used in this manner throughout

the remainder of the text unless specifically stated otherwise.

Contents of Each Item

Data must be stored in a, lna and n before this function is called. The LU decomposition and
condition number of the assigned matrix are calculated with in the function, and the results are stored

in array a and variable cond. In addition, pivoting information is stored in ipvt for use by subsequent

functions.

ierr is a return value used to notify the user of invalid input data or an error that may occur during

processing. If processing terminates normally, ierr is set to zero.

Since w1 is a work area used only within the function, its contents at input and output time have

no special meaning.

(4) Restrictions

Restrictions indicate limiting ranges for function arguments.

(5) Error indicator (Return Value)

Each function has been given an error indicator as a return value.
uniformly been given the variable name ierr, is placed at the end of the arguments. If an error is detected

within the function, a corresponding value is output to ierr. Error indicator values are divided into five

levels.
Table 1—-4 Classification of Return Values
Level | Return value Meaning Processing result
Normal 0 Processing is terminated normally. Results are guaranteed.
Warning 1000~2999 | Processing is terminated under cer- | Results are conditionally guaranteed.
tain conditions.
3000~3499 | Processing is aborted since an argu- | Results are not guaranteed.
ment violated its restrictions.
Fatal 3500~3999 | Obtained results did not satisfy a cer- | Obtained results are returned (the
tain condition. results are not guaranteed).
4000 or more| A fatal error was detected during | Results are not guaranteed.
processing. Usually, processing is
aborted.
(6) Notes

Notes describes ambiguous items and points requiring special attention when using the function.

Here gives an example of how to use the function.

combined in a single example. The output results are given in the 32-bit integer version, and may differ

Example

Note that in some cases, multiple functions are

within the range of rounding error if the compiler or intrinsic functions are different.

In addition, when the 64-bit integer version library is used, the long-type conversion specification to be
given to printf or scanf must be %1d. The source codes of examples in this document are included in

User’s Guide. Input data, if required, is also included in it. To build up an executable files by compiling

these example source codes, they should be linked with this product library.

This error indicator, which has

1.4 FUNCTION NAMES

The functions name of ASL C interface basic functions consists of ten characters with a prefix “ASL.” and (six

alphanumeric characters).

Figure 1-1 Function Name Components

ASL_ | 1|2 |3 |4 |5 |6

Characteristic function of individual function

Indicates the numerical application

Indicates the calculation precision

“1” in Figure 1-1: The following eight letters are used to indicate the calculation precision.

d, w Double precision real-type calculation

r, v Single precision real-type calculation

z, j Double precision complex-type calculation
c, i Single precision complex-type calculation

)

However, the complex type calculations listed above do not necessarily require complex arguments.

“2” in Figure 1-1: Currently, the following letters lettererererere are used to indicate the application field
in the ASL C interface related products.

Letter Application Field Volume

a Storage mode conversion 1
Basic matrix algebra 1,7

b Simultaneous linear equations (direct method) 2,7
Eigenvalues and eigenvectors 1,7
Fourier transforms and their applications 3,7
Time series analysis 6

g Spline function 4

h Numeric integration 4

i Special function 5

j Random number tests 6

k Ordinary differential equation (initial value problems) 4

1 Roots of equations 5

m Extremum problems and optimization 5

n Approximation and regression analysis 4,6

o Ordinary differential equations (boundary value problems), integral 4
equations and partial differential equations

p Interpolation

q Numerical differentials 4

Letter Application Field Volume

S Sorting and ranking 5,7
X Basic matrix algebra 1
Simultaneous linear equations (iterative method)
Probability distributions

Basic statics

Tests and estimates

Analysis of variance and design of experiments

Nonparametric tests

S O W N~
S OO OO O

Multivariate analysis

“3—6” in Figure 1—1 : These characters indicate the characteristic function of the individual function.

1.5 NOTES

(1)
(2)

(10)

To use ASL C interface, the header file asl.hmust be included.

For compiling the program with functions in ASL C interface 64-bit integer library, the compile option
“~DASL_LIB_INT64” must be specified. This option will activate the prototype declaration for 64-bit integer
functions in the header file asl.h, and without the option “-~DASL_LIB_INT64”, those for 32-bit integer
functions will be activated.

The name “(6 lowercase letters) following ASL_" is reserved by ASL C interface.

For using 64-bit integer library, you must use “long” for integer type declaration. Otherwise, use “int” for

integer type declaration.

Use the functions of double precision version whenever possible. They not only provide higher precision
solutions but also are more stable than single precision versions, in particular, for eigenvalue and eigenvector

problems.

To suppress compiler operation exceptions, ASL C interface functions are set to so that they conform to
the compiler parameter indications of a user’s main program. Therefore, the main program must suppress

any operation exceptions.

The numerical calculation programs generally deal with operations on finite numbers of digits, so the
precision of the results cannot exceed the number of operation digits being handled. For example, since
the number of operation digits (in the mantissa part) for double-precision operations is on the order of 15
decimal digits, when using these floating point modes to calculate a value that mathematically becomes 1,
an error on the order of 1071 may be introduced at any time. Of course, if multiple length arithmetic is
emulated such as when performing operations on an arbitrary number of digits, this kind of error can be
controlled. However, in this case, when constants such as 7 or function approximation constants, which are
fixed in double-precision operations, for example, are also to be subject to calculations that depend on the
length of the multiple length arithmetic operations, the calculation efficiency will be worse than for normal

operations.

A solution cannot be obtained for a problem for which no solution exists mathematically. For example,
a solution of simultaneous linear equations having a singular (or nearly singular) matrix for its coefficient
matrix theoretically cannot be obtained with good precision mathematically. Numerical calculations cannot
strictly distinguish between mathematically singular and nearly singular matrices. Of course, it is always
possible to consider a matrix to be singular if the calculation value for the condition number is greater than

or equal to an established criterion value.

Generally, if data is assigned that causes a floating point exception during calculations (such as a floating
point overflow), a normal calculation result cannot be expected. However, a floating point underflow that

occurs when adding residuals in an iterative calculation is an exception to this.

For problems that are handled using numerical calculations (specifically, problems that use iterative tech-
niques as the calculation method), there are cases in which a solution cannot be obtained with good precision

and cases in which no solution can be obtained at all, by a special-purpose function.

Depending on the problem being dealt with, there may be cases when there are multiple solutions, and the

execution result differs in appearance according to the compiler used or the computer or OS under which

the program is executed. For example, when an eigenvalue problem is solved, the eigenvectors that are

obtained may differ in appearance in this way.

(12) The mark “DEPRECATED” denotes that the subroutine will be removed in the future. Use ASL Unified

Interface, the higher performance alternative practice instead.

10

Chapter 2
FOURIER TRANSFORMS AND THEIR
APPLICATIONS

2.1 INTRODUCTION

This chapter describes functions that perform fast Fourier transforms, convolutions, correlations, power spectrum
analysis, wavelet transforms, and inverse Laplace transform.
The following functions are provided for computing the discrete Fourier transform according to the data char-

acteristics.

(1) Complex Fourier transform

Data values are complex numbers.

(2) Real Fourier transform

Data values are only real numbers.

In addition, although the number of equal divisions n of the input data can be transformed by the fast Fourier
transforms handled in this chapter no matter what prime number is used as radix, calculation efficiency decreases
for a sequence formed from a large prime number. Therefore, the number of equal divisions n should be able to
be factored into small radices (2, 3, 5, 7).

The functions, which handles the following data, are provided for performing the convolutions, correlations,

power spectrum analysis.
(1) one-dimensional data
(2) two-dimensional data
(3) three-dimensional data

The following functions are provided for computing the inverse Laplace transform according to the image

function types.
(1) The case when image function is rational function.
(2) The case when image function is general function.

The following functions are provided for computing the wavelet transform according to the type of the base

functions.
(1) When the base functions are Haar functions
(2) When the base function is a Mexican hat function

(3) When the base function is a French hat function

11

Notes

2.1.1 Notes
(1) You should choose the function group that best fits your input data type.

(2) In general, if your input data consists entirely of real numbers, you can use the real Fourier transform

function.

(3) The sample input data n to which the transform is to be applied corresponds to a sample on a single period
[0, 27].

(4) You first must use a transform function that includes initialization. This function performs such tasks as
creating a trigonometric function table. If you plan to continue computing Fourier transforms for the same
number of data n, processing will be more efficient if you use the post-initialization transform function

thereafter since the contents of work areas are retained.

(5) In inverse Laplace transform of general function, you prepare function that calculates the imaginary part of
image function F'(s). When F(s) is a many valued function, care is required so that the correct branch is

calculated within the function. In addition, F'(s) should satisfy the condition below.

lim F(s)=0

|s]—o0

12

Algorithms Used

2.1.2 Algorithms Used

2.1.2.1 One-Dimensional (Continuous) Fourier Transforms

The integral F(§) defined by the following equation is called the Fourier integral of f(z).

£) = a/_oo f(x)e VT dy

Here, a is a constant, and according to the Reference Bibliography, a = 1 is sometimes taken and a = % or
a= \/% is sometimes taken. Also, although i or j is normally used to represent the imaginary unit v/—1, since

this may be confused with the integers i and j used for subscripts, we have decided to use v/—1.

If this integral exists for every value of the parameter £, F(£) is called the (continuous) Fourier transform
of the function f(z). In this case, F(£) is denoted by F{f(x)}. For example, if time ¢ is considered as z, then
& corresponds to angular frequency w, and if a component of the space coordinate r is considered as x, then &
corresponds to a component of the wave vector k. Also, when time t is considered as x, the frequency f defined
by f = 5= is often used instead of angular frequency w. To represent frequency, the symbol v is used instead
of the letter f. The quantity % in space corresponding to f is also called the spatial frequency. The inverse

transform of F'(€) is defined as follows:

1 (o]
=— [F(&eVq
f@) =g | PO
A formal proof that this equation is the inverse transform is as follows.
1 o0
il F(§)e‘/jlfmd§ — / f(n \/jlfndn emfwdg
2ma J_ 2ma

_/ {/ €¢—15<zn>d§} d

%/ f(m2mé(x — n)dn
(z)

Here, 0(x) is the Dirac ¢ function defined as distribution.
Although the last equal sign holds when f(x) is continuous, it will also hold when f(x) is discontinuous if the
value of f(x) at a point of discontinuity & = x¢ is redefined as follows:

. fleo+h)+ f(xo—h)
F(@o) = hlgﬂo 2

Although the continuous Fourier transform may be considered to exist for most functions that actually are
encountered, care must be taken since it does not exist for every function (since it deals with an infinite integral).
For information about the existence conditions for Fourier transforms, refer to a suitable technical text.

Also, note that the definitions of the Fourier transform (also called the Fourier forward transform) and its inverse
transform (Fourier backward transform) are sometimes reversed. For example, when both time and space are
considered, although a complex plane wave is represented by eV=I(kT—wt) by using the angular frequency w and
wave vector k, in this case, it is convenient to reverse the signs of the power of the exponential functions in
the definitions of the Fourier transform for time and the Fourier transform for space. In this case, the Fourier
transform corresponds to the plane wave expansion of the function.

If f(z) is a real function, changing the sign of the power of the exponential function corresponds to changing the

sign of the imaginary part of the Fourier transform, which is obvious from the following Euler’s formula.

eVl% — cosz 4+ /—1sinz

13

Algorithms Used

The combination of f(z) and F'(£) is called the Fourier transform pair.
The following Parseval’s Theorem holds for a Fourier transform pair.

[ls@par= o [R

oo 2ma J_

This can be interpreted as assigning a correspondence between the total energy in the time (or space) domain
and the frequency domain. In particular, if we consider a real time function as f(x)(= f(t)), to prevent the

appearance of a negative frequency, this is modified as follows:
o0 1 o0 .
/ {f@)ydt = — ; |F(w)]’dw [f(t) € R= F(-w) = F(w)’]

For example, when the current flowing through an ideal resistor R (units: Ohms [©2]) in an electrical circuit is i(t)
(units: Amperes [A]), the electrical power corresponding to |f(¢)|? becomes R(i(t))? (units: Watts [W]), and the
amount of electrical power corresponding to [~ |f(t)|dt becomes [*°_R(i(t))%dt (units: Joules [J]). However,
for the frequency spectrum (f) of the current i(t), the units should be set to [A - sec] = [A/Hz], and the size
should be normalized so that the following relationship holds:

/ " (RGi))de = 2 / Rl

Of course, if you want to change the system of units, you should rewrite the constants according to the units used.
In many cases in a power spectrum analysis, a full width half maximum (FWHM) of the peak waveform
that appears in the power spectrum is taken for the problem. In this case, the absolute value of the spectrum
need not be specifically calculated, and a convenient arbitrary unit should be used.

If a real function f(z) is a periodic function with period Tp, that is, for an arbitrary integer j, f(x) = f(z + jTo),
the function can be expanded as follows in a Fourier series. (However, in a similar manner as described for a
continuous Fourier transform, the function at a point of discontinuity is assumed to have as its value the average

of the limit values from the left and right of that point.)

flz) = % + Z{aj cos(jwox) + bj sin(jwox)}

j=1

= , 2
= 3 eV (o= T
0

j=—o0

Here, the expansion coefficients a; and b; (real numbers) and ¢; (complex numbers), which are called Fourier

coeflicients, are given by the following equations.

) (B

a; = _/ f(x) cos(jwoz)dx (j =0,1,2,--)
Ty /| _ T
2 [

b, = _/ f(z)sin(jwoz)dz (j=1,2,---)
1o _%

To

¢j = gla;—V—1b;) = _/ fl@)e VTleordy (j=0,41,42,-)

2 Tp J -1

When f(x) is a complex-valued function (z is a real number), the Fourier coefficients a; and b; also become
complex numbers. If we consider the function g(x), which is defined by extracting only one period of f(x) and

setting it to 0 otherwise, that is g(x) is as follows:

f@) el <

0 Otherwise

g(z) =

14

Algorithms Used

then ¢; is as follows:

To
1 B —vV—1jwozx
c; = i _Ef(:v)e Ljwo .
) 3
2
_ —v —1ljwoz
-7 /_Eg(x)e Tdx
1)
=7 g(gc)e_v —Ljwow gy
0
1
= CLT G(g)ﬁzjwo

Therefore, except for the constant factor, the Fourier coefficients are equal to the value at £ = jwg of the Fourier
transform G(&) of a function (g(x)) that limits the bandwidth of a periodic function (f(z)) to a single period.
Conversely, the Fourier transform (G(€)¢=ju,) at discrete points of a bandwidth-limited function (g(x)) can be
calculated by expanding the function to a periodic function (f(x)) for which that bandwidth is assumed to be one
period and obtaining its Fourier coefficients (c¢;). The following sampling theorem can be used when sampling a

continuous function.

Sampling theorem: For a time function g(¢) that is bandwidth limited by the frequency f., that is, the Fourier
transform G(w) of ¢(t) takes nonzero values at |w| < 27 f,, if the sampling interval is taken as T = ﬁ, then

g(t) can be reconstructed from knowledge of only a sequence of sample values {g(iT")} as follows.

bln 27ch(—4T)
=T Z)

The frequency bandwidth 2f, is called the Nyquist sampling rate.

Actually, when applying a discrete Fourier transform, although the sampling theorem conditions are rarely satis-
fied, sampling is performed based on the Nyquist sampling rate.
In a discrete Fourier transform, the integral in the Fourier series is square approximated as follows so that a

computer can perform the calculation:

To
1 [T
o =g |, f@e TR
1 —! 27 kTo L] can kT | T
S N T e e
O | k= (["1 1) k=0 n
p—2my/—TLE) & —2my/—14k
= — Z fk? n + fk?e n
=(1&]+1) k=0
-l {z fr—}
n
k=0

Here, fi, = f(2)| _sme (k=0,%1,£2,---). Also, || represents the maximum integer that does not exceed = and
[2] represents the minimum integer greater than or equal to z. The final equation uses the fact that since f(x)
is a periodic function for which the period is T, then fj is a discrete periodic function for which the period is n.
From this equation, we see that c; is also a discrete periodic function for which the period is n. Therefore, in a
discrete Fourier transform, n samples in a time (or space) domain and n corresponding samples of a

frequency domain represent one period of a waveform in a time domain and frequency domain. From

15

Algorithms Used

its periodicity, a discrete Fourier transform can also be approximated by using the trapezoidal formula

for the integral in the Fourier series.

n—1 n—1
1 —ony Tk 1 1 ConyTiE Copy /TG
E{E fre™? 1"} Elg §{fk€2 YW frgre TV }]
k=0

k=0
[fne—%\ﬁ%‘ = fol

In this manual, unless specifically stated otherwise, the term “Fourier transform” indicates a “discrete Fourier
transform.” A discrete Fourier transform can be efficiently calculated by using a Fast Fourier Transform
(FFT) algorithm. If the required number of multiplications of complex numbers in a discrete Fourier transform
calculation for n data values is considered to be according to the definition, this number will be on the order of
n2. However, with a Fast Fourier Transform, when n can be factored as n = ri7g - - - 7, the number of complex
multiplications is on the order of n(r; + ro + -+ + 7). In particular, if n = 2™, the number of multiplications
is 2nlog,n. Therefore, even if n normally does not get larger than this, the calculation efficiency when the
calculation is performed using a Fast Fourier Transform algorithm is significantly different than when a Fast
Fourier Transform algorithm is not used.

With a continuous Fourier transform, if the original waveform has a point of discontinuity, the partial sums of
the Fourier series will not converge uniformly to the original waveform, and oscillations known as the Gibbs
phenomenon will occur. However, no Gibbs phenomenon occurs with a discrete Fourier transform. (If the inverse
transform is applied after a transform by a discrete Fourier transform, a series that matches the original series is
obtained.) However, if a finite number of terms extracted from the high-order terms among the (infinite) Fourier
coefficients corresponding to a continuous Fourier transform are given, the Gibbs phenomenon can be reproduced
by performing harmonic synthesis. Also, for the inverse transform equation to exist for a continuous Fourier
transform, the function value at a point of discontinuity must be defined as the average of the values on both sides
(in the neighborhood of) that point. However, with a discrete Fourier transform, the data need not necessarily
be selected in this way. (Normally, it is not practical to make the sampling interval sufficiently smaller to treat it

as a neighborhood in the mathematical sense.)

2.1.2.2 Multidimensional (Continuous) Fourier Transforms

A Fourier transform can be expanded to a multidimensional case. For example, for a four-dimensional time
space, it is defined as follows as a quadruple integral by using the position vector » = (z,y, z), wave vector

k = (ky, ky, k.), time ¢, and angular frequency w.
flk,w) = a/ Fr, t)eV 1R r—ot) grgy
The inverse transform f(k,w) is represented by:
flr,t) = #/00 f(k w)ef‘/f_l(k'rf“’t)dkdw
’ (2m)ta J_ o ’

Here, a is a constant, and according to the Reference Bibliography, a = 1 is sometimes taken and a = ﬁ
is sometimes taken. Note that the definitions sometimes also reverses the signs of the power of the exponential
functions. In a similar manner as described for the one-dimensional case, corresponding discrete Fourier transforms

can be extended to multiple dimensions.

16

Algorithms Used

2.1.2.3 One-Dimensional Fourier Transform

The complex Fourier forward transform C; for one period ¢, (k = 0,---,n — 1) of complex periodic data é

satisfying ¢, = ¢4, for an arbitrary integer k is defined by the following equation.

n—1

C-:l cpe”2TVTIR j=0,---,n—1
i kZ:O k (j)
« is an arbitrary constant for which 1 or n normally is selected. At this time, the complex data after the transform
C; (j =0,---,n—1) also corresponds to one period of complex periodic data C’j satisfying C’j = C'j+n for an
arbitrary integer j. The corresponding backward transform is as follows:
n—1

1 ik
:_E CHhe> V1% (k=0,---.n—1
Ck nj:O(a J)e () y)

The following shows that this expression is the backward transform.

1 n—1 1 n—1 n—1
/—1ik — /1L =1k
§ (aCj)BQﬂ' 15 :§ (§ cle 2m 1n)627r 15
n - n <
7=0 7=0 1=0

1 n—1 n—1 o)
—p2iE=0)
I E o E e271'\/ 1=
n -
=0 7=0

1 n—1
= E Z (&) {nék,l}
=0

Here, the term

n—1 o)

pyAG D)
E e271'\/ 1== — n(sk,l
=0

which is known as the orthogonal relationship for finite sums at selected points, can easily be proved by considering
. /=g (k=)
the sum of a geometric series for which the first term is 1, the common ratio is r» = €27V ~1! “ and the number

of terms is n. d; ;, which is called the Kronecker delta, is defined as follows.

5ij={ L =) :

’ 0 (otherwise)

The discrete Fourier transform always exists if the discrete function takes values. Also, the result of applying a
backward transform immediately after a forward transform will match the values of the original discrete function
(excluding error in the numerical calculations). The orthogonal relationship for finite sums at selected points
corresponds to the square approximation (or approximation by using the trapezoidal formula) of the following

orthogonal relationship of the well known system of complex trigonometric functions {e\/jlkt} (k: integer).

1 2m
6\/71kt6\/71ltdt _ 5k,l
27T 0
The functions in this manual obtain aC; and ncy, except for a constant factor, from the normal Fourier transform
definition.
To correspond to the property that the domain of a function normally is symmetric to the left and right of the
origin for a continuous Fourier transform, a half period of data should be considered as follows, shifted one period

(two-sided spectrum):

{ék}k:—(n—m—2),---,—1,0,1,-~~,m ={Cm+1,Cms2, -, Cn-1,C0,C1,---,Cn }

17

Algorithms Used

(Here, m = |%] and |z] represents the maximum integer not exceeding x.) At this time, Cp is the element
corresponding to zero frequency. Also, when a time function is specifically considered, to eliminate negative

frequencies, this may also be considered as follows (one-sided spectrum):

{Cv,2C4,-+,2C—1,Cr} n:Even number

Cr Vom0 1 oo =
{Cibe=on,e { {Co,2C), -+, 20} 1:0dd number

(1) One-dimensional complex Fourier transforms and multiple one-dimensional complex Fourier
transforms
In this manual, complex Fourier transforms are divided into one-dimensional complex Fourier trans-
forms and multiple one-dimensional complex Fourier transforms according to differences in the
storage methods of the data for which the Fourier transform is calculated. For one-dimensional complex
Fourier transforms, the data c; and C; are stored consecutively, and for multiple one-dimensional complex
Fourier transforms, they are stored in fixed intervals. Multiple Fourier transforms can be used when cal-
culating a normal multidimensional Fourier transform or a combination of Fourier transforms and other

transforms.

(2) One-dimensional real Fourier transforms and multiple one-dimensional real Fourier transforms
When the data for which the Fourier forward transform is to be calculated is real, the following relationship

is satisfied.

Tn—ik J)k
OZC;_J» — § * 271'\/
n— 1
_ —qik — —
_ § ce 2my/ =122 [e 2wk —1 :1]
k=0
= aCj

Here, z* represents the conjugate complex number of the complex number z. In particular, Cy is real and
when n is even, then C% is also real.

Also, the backward transform is as follows.

n—1 .
ncg = Z(aCj)e%\/jl%
j=0
. [51-1 N n_1 B
= a(Cy+ (—1)760%) + Z (aCj)e%“/jle + Z (aCj)e%T‘/leT
jzl j=l%]+1
(51— v y
oGt (V) ¢ 3 (0O TE e, e T
j=1
[3]1-1)
T A/ —T1ik
j=1
r31-1

— a(Co + (~1)*C) + 2 R{(aC))e> T}

>
4‘”M
| =
—_

—
VIS <.

= a(Cy+ (fl)kég) +2 |:(05§R{Cj}) cos(27r%) — (aS{C;}) Sin(Qﬂ'%)]

1

<.
Il

Here, | 2| represents the maximum integer that does not exceed x, and [z] represents the minimum integer
greater than or equal to z. Also, when n is odd, C’n = 0, and when n is even, C 2 = Cyz. Therefore, the

18

Algorithms Used

calculations for a Fourier transform can be executed using half the data for the case of general complex data
(for ¢k, only the real part, and for C;, half of its period).

For example, when a complex Fourier transform is calculated for the real data r; shown in Figure 2—1, the
results will be as shown in Figure 2—2. However, with a real Fourier transform, the half periods of the real
and imaginary parts, respectively, are calculated as shown in Figure 2—3. (Note that with a real Fourier

transform, the real and imaginary parts of the transform results are stored in the array alternately.)
T

0.5 [

[)
....
%
%
...
...

0.0 [~

| | | | | | | L
05 4 8 12 16 20 24 28 32 t

rp=e"/320 06 (i=1,2,--,32)

Figure 2—1 Data Before Fourier Transform

R{F{r:}} S{F{ri}}

°
° °
. 1.5 [°
[]
..
05 — R N OO @
°
®00ceccccccccccccccccccee®® °
15 ®
| | | | | | | il : | | | | | | |) .
0.0 4 8 12 16 20 24 28 32 t -3.0 4 8 12 16 20 24 28 32 t

Figure 2—2 Data After Fourier Transform (For a Complex Fourier Transform)

19

Algorithms Used

7%‘ T
[]
° 1.5 [~
05 . 00 ®ooooooo
®eeccecccccccocce L4
-1.5 [*
| | | | | | | | . L | | | | | | | .
00774 8 12 16 20 24 28 32 © 30 T 5 15 16 20 24 28 32 °

7:21',1 = 3?{]—"{7’1}}, ?221' = S{./—"{’I’l}}, (’L = 1,2, ey].7)

Figure 2—3 Data After Fourier Transform (For a Real Fourier Transform)

Note that when n is even, the area required for the calculations may be conserved by defining (Co, Czn) as
a new complex number Cy. Also, In a similar manner as described for multiple one-dimensional complex
Fourier transforms, data is stored in an array in fixed intervals for multiple one-dimensional real Fourier

transforms.

2.1.2.4 Multidimensional Fourier Transforms

(1)

Two-dimensional complex Fourier transforms
The complex Fourier forward transform Cj, ;, for one period cx, r, (kz =0,---,np —1; ky =0,---,n, — 1)
of complex multiperiodic data ¢, x, satisfying ¢k, x, = Ck,+n, k,+n, for arbitrary integers k, and k, is

defined by the following equation.

Ng—1ny—1) -
Ciyy == —2mVEI(de 2
Jra]y - a Ckmvkye * v
ko=0 ky—=0
(]m =0,-,n, — 1; ijO,-",ny—l)

o is an arbitrary constant for which 1 or nyn, normally is selected. At this time, the complex data
after the transform Cj, ;, (j. = 0,---,nz —1; j, = 0,---,ny — 1) also corresponds to one period of

complex multiperiodic data C'jz j, satisfying C'jz gy = Cjoing.,j,+n, for an arbitrary integers j, and j,. The

corresponding backward transform is as follows:

e 1ny 1 2 Joka | Jyuky
5% 00 e
Je=0 jy=0

(ky =0,---,ny—1; ky=0,---,ny — 1)

1

Ng Ny

Ckyky —

The functions in this manual obtain aCj, ;, and ngnyck, r, except for a constant factor, from the normal

Fourier transform definition.

Two-dimensional real Fourier transforms
When the data for which the two-dimensional Fourier forward transform is to be calculated is real, the

20

Algorithms Used

following relationship is satisfied.

ng—1ny—1

/—1f J)’C (ny —dy)ky
aC* = E g k 27r s "y 4

Ng —Jz,My —Jy
kz=0 ky,=0

Np—1ny—1

Z Z _on /_{Jzkz+7yky}

ke=0 ky=0
= aCj, j,

Here, z* represents the conjugate complex number of the complex number z. In particular, Cyp ¢ is real and
when n, and n, are even, then an ny 18 also real.
Similarly, the following relatlonshlp is satlsﬁed

ng—1ny—1 /T =))k Jyky
27.(x —Jx a:_;’_ Y
aCr = E E Chiy iy € {)

Mg —Jx,Jy
ke =0 ky=0
ng—1ny—1

kzv y

ke =0 ky=0

= aCy, n,—j,

Therefore, the calculations for a Fourier transform can be executed using half the data for the case of general

complex data (for ¢, k,, only the real part, and for C; half of its period for either j, or j,).

y? xyJy)

Three-dimensional complex Fourier transforms

The complex Fourier forward transform Cj, ;, ;. for one period cx, x, k. (ke =0, ,ng—1; ky =0,---,ny—
1; k. =0,--+,n, — 1) of complex multiperiodic data Chy by k. SALISTYING Ch, by ke = Chytng,kytny kotn, 10T
arbitrary integers k;, ky and k. is defined by the following equation.

nx—l ny—1mn,—1

. ,271-\/,_1(1'2% +J'Zky +j2kz)
Cloydz = = E > > kb ke = T nw T
ko =0 ky=0 k=0
(Jm*ov"'v :Ef]-a .]y:()v?nyi]-a jZ:O,"',lef]_)

o is an arbitrary constant for which 1 or nznyn, normally is selected. At this time, the complex data after
the transform Cj, j, ;. (Jo = 0,---,ns — 1; j, = 0,---,ny — 1; j. = 0,---,n, — 1) also corresponds to

one period of complex multiperiodic data Cj, j, ;. satisfying C} = Cj,+ng.jy+ny.j.+n. for an arbitrary

rajyvjz
integers j., jy and j,. The corresponding backward transform is as follows:

Ng—1 Ny — 1nzfl

k Jjyk k
c . — 627‘-\/7(‘1/1';1‘1‘—"_ Z’Vllyy—i_‘]flzz)
ke ky,j= n n]sz»]z
TV =0 jy=0 Jz—O

(szov"'a I_17 ky_oavny_lv kzzoa"'vnz_l)

The functions in this manual obtain aCj, ;, ;. and ngnyn.ck, k, k. except for a constant factor, from the

normal Fourier transform definition.

Three-dimensional real Fourier transforms

When the data for which the three-dimensional Fourier forward transform is to be calculated is real, the

21

Algorithms Used

following relationship is satisfied.

ny—1ny—1n,—1
aC*

Z Z Z 6277\/7{("1‘ Jr)kr_;'_("y Jy)ky_,’_(nz Jz)kz}
Mg —Ja My —Jy,Mz—Jz kxakyvk
2=0 ky=0 k.=0

n,—l ny—1n,—1

Sy ~ony/T{iske 4 ke y ke
Clky,ky k. € * v ®

»=0 ky=0 k. =0

= CJI JJysdz

Here, z* represents the conjugate complex number of the complex number z. In particular, Cp g, is real
and when n,, n, and n, are all even, then an y ne is also real.
Similarly, the following kinds of relationships are satlsﬁed

* e . . .
C’”’I —JaxsJysJz CJ’I?”y—Jy»nz_Jz

That is, the complex number after substitutions are made in the subscripts using the following correspon-
dence relationships for all of j;, j, and j. is mutually related as a complex conjugate to the complex number
before the substitutions are made.

Je & Nz —Jz

Jy & Ny —Jy

Jz & ny— 7,
Therefore, the calculations for a Fourier transform can be executed using half the data for the case of general

complex data (for ¢k, k, k., only the real part, and for C; half of its period for either j,, jy, or j.).

Y zyJysJz?

2.1.2.5 Fast Fourier transform

(1) Fast Fourier transform algorithm
The Temperton algorithm, which is fast Fourier transform algorithm for arbitrary radices, is explained
here.

The complex Fourier transform is represented by the following equation

N
Cp = ZCjW(j—l)(k—l) (k=1,---,N)

=1

where W = e~ 2™/N j = /=1 (N is the number of data).

This equation can be represented in the matrix form below.
X =W,C, [W,](j, k) = wU=DE=D = exp(—27i/N)
If N =nq ng ngng --- ng then
Wp=Tk Tk_1 Tx_o-- To T.
If we let

ll = 1,li+1 :nllz,ml = N/li+1 (’L = 1,2,]{3)

22

Algorithms Used

then
T; = (P Dy x In,) (Wa, X Inym,)

therefore,

X = wC

= (P D* x I},)(W,, X I]\;/,L,C)---(P]’\ﬁn1 D’]i;/nl X I1) Wy, X Injp,)C.

Example: the case of N = 24

N=2x3x4
Ty = (P4 D3, x) (Wa x Ir)
T, = (P{D} x I»)

Ty = (P}Dy x I)(Wy x Ig)

X = Wyl
= T3T,ThC
= (PD} x Is)(Wy x Is)(P} D} x I1)(W3 x Ig)(Pj D3y x 1) (Wa x I12)C
(Notes)

(a) x means Kronecker matrix product. Suppose,

e f
g h

a b
d

A: B:

then Kronecker matrix product is defined as follows:

a b] f'[a[;ﬁ] b[;{l]]
c d 9 h_

Ax B=

b) P" is a permutation matrix of order n;, m;.
my)
(c) Dy is a diagonal matrix of order n;, m;.

(d) I, is a identity matrix of order r.

This transform is following flow. (C: input data, A: output data)

23

Algorithms Used

(2)

LA=1
[I= 1, number of factors
IFAC + Radix(2, 3, 4, 5, 6, 7, 8 or others)
‘ compute FFTs (Radix:IFAC) ‘

M = N/IFAC
I=1
J=1

JUMP = (IFAC — 1) x LA
K=0M-LA LA

L=1,LA
| A(J) = Q(K) x (W(IFAC) x C(I))|
I=1+1
J=J+1

J=J+JUMP
(Notes) 1. W(IFAC): DFT(Discrete Fourier Transform) matrix order 1FAC
2. Q(K):diag(trigs(1),trigs(K + 1), trigs(2 x K +1),-- -,
trigs(IFAC — 1) x K + 1))
3. trigs(K +1) = exp(2iKn/N),0< K < N — 1,i =+/—1
LA =LA x IFAC, exchange A and C

Enhancing speed for multiple one-dimensional complex Fourier transform

The processing speed is enhanced as follows for a multiple one-dimensional complex Fourier transform that
executes a one-dimensional complex Fourier transform for each of M data sequence of length N. Since the
M data sequence are independent of one another, the ordinary one-dimensional complex Fourier transform
loop can be replaced by a loop for executing M one-dimensional complex Fourier transforms. This enables
you to achieve fast performance by easily avoiding the various types of problems that occur in ordinary
one-dimensional complex fast Fourier transforms such as bank conflicts at definition time, input data, and
rotational factor memory references. The extended function multiple one-dimensional complex Fourier
transform program uses an algorithm that automatically applies the one-dimensional scan method so that

the highest performance can be achieved even if the number of data sequence M is small.

Enhancing speed for real Fourier transforms

You can obtain a real Fourier transform by treating the real input data values {ry} to which the transform
is to be applied as complex input data values having zero as the imaginary part and computing a complex
Fourier transform for those values. The result of the complex Fourier transform has the following conjugate

symmetry relationship:
CN—j+2 :CJ*]:27 Ty N

where, * indicates the complex conjugate. In addition, the following equations indicate the relationship
between the results {a;} and {b;} of the real Fourier transform and the results {C;} obtained from the

complex Fourier transform.

N
S|
2

aj = (Cjy1 +Cn—jt1) j=1, -+,

. : N
bj:z(cj-‘rl_CN—j-i-l)]:17 R 7_1

24

Algorithms Used

Therefore, if you compute a real Fourier transform by using a complex Fourier transform, you can obtain
{a;} and {b;} by obtaining only C;(j =1, ---, £ +1).
These functions take advantage of this to compute the optimum fast complex Fourier transform for the

Vector Engine and obtain real Fourier coefficients.

2.1.2.6 One-Dimensional (Continuous) Convolutions and One-Dimensional (Continuous) Corre-

lations

The integral p(z) defined by the following equation is called the convolution integral of f(z) and g(x).

o) = [T H Ol — o)

The convolution integral of f(x) and g(x) is represented by (f x g)(x) or f(z) x g(z). The convolution integral is
often called simply the “convolution.” If we let the Fourier transforms of f(x) and g(x) be F{f(z)} and F{g(x)},
respectively, then (f x g)(x) and F{f(z)}F{g(x)} form a Fourier transform pair. That is, the following equations
are satisfied.

[A st - e} e
A ste - 90 pge T

- {_/OOO; f(_;())e\/_lnxd:v} {/Z g(w)e\/_h’xd:v}

This relationship is called the convolution theorem. The convolution integral of F{f(z)} and F{g(x)} and
f(z)g(x) also form a Fourier transform pair (frequency convolution theorem). Normally, the convolu-
tion integral is obtained by calculating the Fourier transforms of the two functions for which the
convolution is applied and taking the inverse Fourier transform of the product of the two Fourier
transforms. In particular, when a computer is used for the calculations, this method is extremely
effective since efficient fast Fourier transform algorithms can be used. Note that the convolution integral

may be defined as a finite-interval integral as follows.
plx) = [f&)g(z—&)dE
In particular, to associate it with the Laplace transform, it is defined as follows.

o) = [a(©h(o - g
0
The convolution has the following properties.

(1) It satisfies the commutative law.
f@) x g(x) = g(x) x f(x)
(2) It satisfies the associative law.
fx) x (g(x) x h(z)) = (f(z) x g(z)) x h(z)
(3) It satisfies the distributive law.
f(@) x (g(x) + h(x)) = f(z) x g(x) + f(x) x h(z)

One more important integral both theoretically and from the standpoint of actual applications is the correlation

integral, which is defined by the following equation.

o) = [T H©)g(a +)de

25

Algorithms Used

If f(x) is a real function and we let the Fourier transforms of f(z) and g(x) be F{f(x)} and F{g(x)}, respectively,
then the correlation integral of f(z) and g(x) and F{f(x)}*F{g(x)} form a Fourier transform pair (correlation
theorem). That is, the following equations are satisfied.

/{/ Ut $+£)d§}e—ﬁmdx
-/

{/ glz +&e \/_1n(r+§)dx} f(g)eﬂnﬁdg

- {/OOOO f(gc)*e_‘/jlmd:v}* {/_O:o g(:v)e_‘/jlwd:v}
([mma { [s an)

Here, z* represents the conjugate complex number of the complex number z. Note that the correlation
integral does not satisfy the commutative law. If f(z) is an even function, the correlation integral matches

the convolution integral.

/ F(©)g(a + €)de
/ f=mg(z —n)(—dn)

/ £ g —n)dn

Also, when f(x) and g(z) are the same function, the correlation integral is called the autocorrelation function,

and when they are different, it is called the cross correlation function.

2.1.2.7 Omne-Dimensional Discrete Convolution and One-Dimensional Discrete Correlation

We can consider discrete convolution and discrete correlation corresponding to convolution and correlation, re-
spectively, in a similar manner as we considered discrete Fourier transforms corresponding to continuous Fourier
transforms. Discrete convolution is defined by the following equation as the approximation of continuous

convolution by a square integral.

p(k)ZACL'Zf(Z)g(k—Z) (k:O""vm_l)

Here, Az is the sampling interval. Also, f(i), g(j) and p(k) are discrete functions having values defined only for
integer values 7, j and k. Since a computer is to be used for the calculations, the original function f(x) or g(x) of
the real number z corresponding to f (i) or g(j) must be a function that is nonzero only on a specific finite interval
or must be a periodic function. Also, the discrete function f(i) or g(j) is assumed to be a periodic function of

period m satisfying the following relationship for an arbitrary integer k.

f@)=fli+km),g(i)=f@i+km) (i=0,---,m—1)

More specifically, the following distinction may be made. Discrete convolution for which the periodicity described
above is not assumed is called linear convolution, and convolution for which the periodicity is assumed is
called circular convolution. In the following, unless specifically stated otherwise, circular convolution will be
considered as discrete convolution. Also, for the sake of explanation, the values that may become nonzero will be

called “effective values”. Now, if we assume the following:

f@)=0(=n1,---,m—1); g(j)=0(=n2,---,m—1)

26

Algorithms Used

that is, only ny f(i) (¢ =0,---,ny — 1) within one period of f(i) and only na g(j) (j =1,---,n2 — 1) within one
period of g(j) are effective values, then if m > ny +ng—1, the ny +na—1 p(k) (k= 0,---,n1 +ng —2) within one
period of p(k) will be effective values. Therefore, if we take m > n1 4+ ng — 1, the convolution can be calculated
in relation to f(i) and g(j) without overlapping the data of the next period. That is, if only one period can be
seen, the linear convolution and circular convolution results will match. If we consider circular convolution in
particular, the square approximation of the integral matches the approximation by using the trapezoidal formula
due to the periodicity, in a similar manner as described for the discrete Fourier transform.

For example, if we assume that the effective values of f(i) are the three values {f(0), f(1), f(2)} and the effective
values of ¢g(j) are the two values {g(0),g(1)}, the corresponding effective values of p(k) will be the following
342 —1=4 values:

p(0) = Az(f(0)g(0))
p(1) = Az(f(0)g(1)+ f(1)g(0))
p(2) = Ax(fMg(M)+ f(2)9(0))
p(3) = Aux(f2)g(1))

However, to consider the correspondence with continuous convolution, rather than letting m = n; +no — 1, we
should consider m = n; 4+ n2 as the function values p(ny + na — 1) = 0 added at the end. If we do this, then if
we assume, for example, that the f(¢) are sample values that were sampled by dividing the interval [0, a] into n;
equal parts and the g(j) are sample values that were sampled by dividing the interval [0, b] into ne equal parts, the
p(k) can be considered to correspond to the convolution sample values when the interval [0, a + b] is divided into
ny + n2 equal parts, and the sampling intervals will all match for f(4), g(j) and p(k). If the numbers of effective
values of f(i) and ¢g(j) are uneven or too large, sectioning is performed, and a technique is used in which the
interval is subdivided into several sections on which convolutions are obtained and then added together. There
are two sectioning methods, which are called the overlap-save method and the overlap-add method. The
functions in this manual provide functions that calculate the convolution by using the overlap-add method.

In a similar manner as described earlier for continuous functions, the following discrete convolution theorem

between Fourier transforms and convolution holds for discrete functions.

If we let the discrete Fourier transforms of f(i) (¢ =0,---,m) and g(j) (j =0,---,m) be F(i) (i =0,---,m) and

G(j) (j =0,---,m), respectively, then the discrete convolution of f(i) and g(j) and the product F(j)G() (=

0,---,m) form a Fourier transform pair (except for a constant factor). That is, the following relationship holds:
m—1

m—1 m—1
1 271'\/_7 1 Qﬂ\/f_l—l(kfi)
m Z: {m ZI (aGi)e g
—1
_ (6] 27T\/_lk 271_\/—(1 b
= Av—s Z (aF;G))e (Z)

(aF;Gy)e*™ =1 (m6, 1)

3
L
3

(OéFj Gj)@Qﬂ\/jl%
7=0

Here, §; ;, which is called the Kronecker delta, is defined as follows.
s =0
,] — .
0 (otherwise)

27

Algorithms Used

Discrete correlation, which is an approximation of continuous correlation by using square integration, is defined
by the following equation.

m—1

a(k) = Az Yy f(i)glk+i) (k=0,---,m—1)
i=0
Here, Az is the sampling interval. Also, f(i), g(j) and g(k) are discrete functions having values defined only for
integer values ¢, j and k.
Note that when handling time series, a definition of correlation that differs in appearance may be used. For

example, if the two time series z; (i = 1,2,---,n) and y; (¢ = 1,2,---,n) are given for which the number
of samples is n, the cross correlation coefficients rxy(l) and ryz(l) are defined as functions of lag | (I =
0,1,---,m—1; m < n) as follows.
T R Cﬂﬂy(l)
Ty -
gy Do, O
n—l

_ i=1

n—I n—I
(zi — ,uz(l))2 (Yir1 — Vy(l))2

i=1 =1
@

Py = Sz
ve gy Dy

n—l

Here, .V, v, @, uy(l) and uy(l), which are defined by the following equations, represent the means of the first

n — [data and last n — [data for ; and y; (i =1,2,---,n), respectively.
n—I
S
/’Lx(l): =1 (1:07177m71)

(n—1)

n—I
E Tit1
=1

-

(1=0,1,--,m—1)
My(l):% (1=0,1,---,m—1)

Vy(l):L (1=0,1,---,m—1)

28

Algorithms Used

ny(l) and ny(l) which are defined by the following equations, respectively, represent the cross covariance.

n—l
> @i =) (yirs — v, V)
(OR—— I1=0.1.---.m—1
Cmy (?’L IR l) (y 4y 7m)
n—l

(i — 1y) (i — v)

(0 — =t 1=0.1.---.m—1
Cym (n—l) (07) , M)

TMOMTMON uy(l) and vy(l), which are defined by the following equations, represent the variance of the first n —1{

data and last n — [data for z;, y; (i =1,2,---,n), respectively.

n—I
Z(wi - Mw(l))2
u, D = FI(TZ) (1=0,1,---,m—1)
n—I
(Tip1 — Vx(l))2
Um(l) - =l (TL o l) (l = 07 1’ am - 1)
n—I
Z(yi - Ny(l))2
uy(l): — (n_l) (l:0717 7m71)
n—I
(Yir1 — Vy(l))2
v, = = (1=0,1,---,m—1)

(n—1)

If we now define the standardized quantities f(2), g(¢), f(¢ +1), and G(i +1), for the first n — data and last n — !

data for x; and y; (i =1,2,---,n), respectively, as follows:

Tit1 — Mm(l)
Uy

fi) =
0

A, Ti4l+1 — Vz
+)= ——
fi+1) —
I)
N Yit1 — My
9(i) = BNl
) —u @
Al Yiti+1 — Vy
=" J
g+l 00

then the following relationships hold:

n—{—1

ray = D f(D)gli+1)
=0
n—Il—1

rye = " g(i)f(i+1)
i=0

Therefore, the definitions of r,,) and r,,() match the definition of the discrete correlation q(k) (except for a
constant factor). If x; and y; are the same time series, then re»® is called the autocorrelation coefficient,

29

Algorithms Used

and ¢, is called the autocovariance coefficient.
When considering the statistical processing of time series, the following terms are used to distinguish between

quantities and statistical estimators for samples.

Mean Sample mean

Variance Sample variance

Autocovariance

N
_>

Autocorrelation coefficient ~ — Sample autocorrelation coefficient
— Sample autocovariance
N

Cross correlation coefficient Sample cross correlation coefficient

Cross covariance — Sample cross covariance

Since a computer is to be used to calculate the discrete correlation ¢(k), the original function f(x) or g(x) of the
real number z corresponding to f(i) or g(j) must be a function that is nonzero only on a specific finite interval
or must be a periodic function. Also, the discrete function f(i) or g(j) is assumed to be a periodic function of

period m satisfying the following relationship for an arbitrary integer k.
f@)=fli+km),g(i)=gli+km) (i=0,---,m—1)

In a similar manner as described for discrete convolution, if we take m > nj 4+ no — 1, the correlation can be
calculated in relation to f(i) and ¢(j) without overlapping the data of the next period. For example, if we assume
that the effective values of f(i) are the three values {f(0), f(1), f(2)} and the effective values of g(j) are the two
values {g(0),g(1)}, the corresponding effective values of ¢(k) will be the following 3 + 2 — 1 = 4 values:

q(=2)(=q(m = 2)) = Aux(f(2)9(0))
q(=D)(=q(m—-1)) = Ax(fMg(0)+ f(2)9(1))
q(0) = Azx(f(0)g(0)+ f(1)g(1))
q(1) = Az(f(0)g(1))

However, to consider the correspondence with continuous correlation, rather than letting m = ni1 + ny — 1, we
should consider m = nj; + ny as the function values ¢(—n1) = 0 added first. If we do this, then if we assume,
for example, that the f(i) are sample values that were sampled by dividing the interval [0, a] into n; equal parts
and the g(j) are sample values that were sampled by dividing the interval [0, b] into ny equal parts, the g(k) can
be considered to correspond to the correlation sample values when the interval [—a, b] is divided into n; + ng
equal parts, and the sampling intervals will all match for f(¢), g(j) and ¢(k). If the numbers of effective values of
f(@) and ¢(j) are uneven or too large, the discrete correlation can be calculated in a similar manner as described
for discrete convolution, by performing sectioning and using the overlap-add method. In a similar manner as
described earlier for continuous functions, the following discrete correlation theorem between Fourier transforms
and correlation also holds for discrete functions.

If we let f(i) be a real discrete function, and let the discrete Fourier transforms of f(i) and g(j) be F(i) (i =
0,---,m) and G(j) (j = 0,---,m), respectively, then the discrete correlation of f(i) and g(j) and the product

F(j)*G(j) (j = 0,---,m) form a Fourier transform pair (except for a constant factor). That is, the following

30

Algorithms Used

relationship holds:

qk) = Az Y fi)glk+i)
i=0

(aF () e

(aF ()" G ™ T
j=0

*

i

=0

1
m

(aF (j)*G(1)e*™ =1 (mdj)

m—1

1=
g D)
> (aG(1))e*™V =17

=0

m—1
-\ T/ —1 /=1 =)
(aF () G()e™ T (Y ™V

Here, d; ;, which is called the Kronecker delta, is defined as follows.

L (=)
0 (otherwise)

(Si,j = {

ji 1 1(k+i)
£\ —ZWlef—n - 27r\/le
(aF ()" + {m > (@G }

}

The effective values of g(k) are given by q(k) (k = 0,---,n2 — 1) and ¢(—k) = gim — k) (k = 1,---,n1 — 1).
However, since it is inconvenient to perform sectioning and other calculations directly in this form, the values

4(k), which are shifted by ny — 1, should be calculated as defined by the following equation.

q(k) =q(k —(n1 = 1)) (k=0,---,n1 +ny—2)

To calculate G(k), we will shift g(k) instead of shifting ¢(k). Now, §(k) is as follows:

and, G(j) is as follows:

GU) = Gj)e >V T

m—1)
_ 1 g(k)672ﬂ_\/7_1.1(k+(::1’1*1))
=0
1 m—1 .
J
== glk=(m —1))e V1w
a

>
Il
o

Therefore, if g(j) is shifted in advance so that g(j) is defined as follows, then (k) can be obtained directly.

9 +m —1)=g@) G=0,---,n2—1)

31

Algorithms Used

2.1.2.8 Multidimensional (Continuous) Convolution and Multidimensional (Continuous) Correla-

tion

The convolution integral and correlation integral can be extended to multiple dimensions. For example, in three
dimensions, the convolution and correlation of f(x,y, z) and g(z,y, 2) are defined as follows as triple integrals.

Convolution:

o) = [6nQgle — €.y .z - Odeanic
Correlation:

o) = [FEmQate+ &yt n.z+ Qdsndc

In a similar manner as described for one-dimension, the following convolution theorem and correlation theorem

hold.
Fp(z,y,2)} = F{f(2,y,2)} F{g(z,y,2)}
Fla(z,y,2)} = F{f(z,y,2)} " Flg(x,y,2)} (f(z,9,2) € R)

Here, F{f} represents the Fourier transform of f. If f(x,y, 2) is a complex function in the correlation integral,

then the negative frequency Fourier transform of f(z,y, z) should be used instead of F{f(z,y,2)}*.

2.1.2.9 Power Spectrum

The quantity defined by P(£) = |F(&)|? for the Fourier integral F(€) of f(z), which is shown below,
F) = a/ fla)e V8% dy

is called the power spectrum (density function) of f(z). Normally, the power spectrum is normalized so that

Parseval’s Theorem, which is shown below, holds.

/ T f@Pdr = [P

oo 2ma J_

As a quantity corresponding to the power spectrum of the continuous function f(z), we consider the raw
periodogram p(j) for the discrete function ¢(k) (k = 0,1,---,n — 1) having period n. The discrete Fourier

transform C(j) of ¢(), which is shown below:

SEES

n—1)
Cli) ==Y ek)e 15 (j=0,---,n—1)
k=0

is used to define the periodogram p(j) as follows:

p(j) = BIC ()

[is a suitable constant determined by the method of selecting the system of units. In the functions of this

manual, « =1 and § = # usually are selected. At this time, according to Parseval’s Theorem, the total power

Do Loy

corresponding to the time (or space) domain will be -

. When ¢(k) is a time series, a two-sided power
spectrum and a one-sided power spectrum can be considered in a similar manner as described for a discrete

Fourier transform (which is also called a Fourier spectrum). With a two-sided power spectrum, to correspond

32

Algorithms Used

to the property that the domain of a function normally is symmetric to the left and right of the origin for a

continuous Fourier transform, a half period of data is considered as follows, shifted one period:

{]5<j)}jzf(n7m72),~~~,71,0,1,---,m = {p(m + 1),p(m + 2)’ T ,p(n - 1),]9(0)7]9(1)’ T ,p(m)}

(Here, m = | %] and |x] represents the maximum integer not exceeding z.) At this time, p(0) is the element
corresponding to zero frequency. The frequency corresponding to each periodogram p(j) is nj—T G =-n-
m—2),---,—1,0,1,---,m). Here, T is the sampling interval. With a one-sided spectrum, to eliminate negative

frequencies, this may also be considered as follows:

{p(0),2p(1),---,2p(m — 1),p(m)} n:Even number

{p()} =01, m = { {p(0),2p(1),---,2p(m)} n:0dd number

The frequency corresponding to each periodogram p(j) is nJ—T (j = 0,1,---,m). The frequency interval —= of
sample points in the frequency domain of the discrete Fourier transform is also called the resolution.

Since the discrete Fourier transform is a square approximation (an approximation by using the trapezoidal formula
may also be used) for the Fourier series, to raise the approximation precision, a larger number of data n must be
taken. On the other hand, as described earlier, since the value of the Fourier series of a periodic function matches
the continuous Fourier transform of a periodic function truncated at one of its periods, except for a constant factor,
a periodogram can be expected to give a good approximation of the power spectrum for this kind of continuous
function if the number of data n is sufficiently large. However, the original function reflected by the series used
for the power spectrum estimate usually is not a periodic function, and even if it is periodic, it is not truncated
exactly at one of its periods. A raw periodogram is treated as a discrete Fourier transform approximation of an
autocorrelation function, from its definition. Figure 2—4 shows the calculation results of a raw periodogram and
the discrete Fourier transform of the autocorrelation function for the discrete data u; = cos(0.627%) + cos(0.14 i)
(i=0,1,---,n —1; n = 50). Here, when calculating the autocorrelation function, the period is assumed to be
2n, and Upqq1 = -+ = ugp—1 = 0 is assumed. For reference, the figure also shows the value of the resolution A f
when the sampling interval T = At = 0.5[sec| is assumed. In this case, we can see that the power is concentrated
at the portions corresponding to the frequency 0.14[Hz| and the frequency 0.62[H z], and the expected results are
given. Now, since the resolution is smaller for the discrete Fourier transform of the autocorrelation function than
for the periodogram, it is assumed to be a more desirable form. However, note that the corresponding number
of calculation points is double. Also, note that the discrete Fourier transform of the autocorrelation function is a
real number. (The discrete Fourier transform of the more general cross correlation function is usually a complex

number.)

33

Algorithms Used

U
201 °* . . . *
1.0 [LI YO ..oo 0.0...
0.0 ...o'. oo © %o, °
-1.0 d o o
® ol le | ® o | L, -
-2.0 - 1
10 20 30 40 50
Sample data: u; = cos(0.627¢) + cos(0.147%)
(i=0,1,---,n—1; n=>50; At = 0.5[sec])
.
2Pj
6.0

n—1 B

_ — 14
E w;e 27/ =1
=0

Raw Periodogram : p; =

2
(G=0,1,---,[2]; n=50; Af =0.04[Hz])

Qk

0.0 k

10 20 30 40 50
Discrete Fogrie{ tzranlsform of Correlation :
1 n— n— I
@=3, ZO { z; Uiujyiye V15
j= —
(k=0,1,---,n; Upt1 =+ =uzp—1 =0; n=50; Af =0.02[Hz])

Figure 2—4 Periodogram and Fourier Transform of the Autocorrelation Function
Since the effective data length of the autocorrelation function of a discrete function having effective number of
data n is 2n — 1, approximating the power spectrum of a general function by a raw periodogram corresponds to

truncating the function by a square truncation function w(k) for which one period is given as follows.

1 £k=0,1,---,n—1
w(k) = Lo
0 Otherwise

When the frequency is f for the Fourier transform of the square function, a Si;f type function form is assumed

having a sidelobe that is not small around the central frequency. Therefore, when a periodic function is sampled,
for example, by simply truncating it using a width that is not an integer multiple of one period, since the
raw periodogram will be the convolution of the Fourier transform of the periodic function for which the power
spectrum is to be obtained and the % type function in the frequency domain, an excess frequency component
called leakage occurs. To suppress this kind of leakage, simple truncation is not performed, and a truncation

function having a small sidelobe in the frequency domain is used. Along with this, the modified periodogram p,

34

Algorithms Used

which modifies the periodogram definition as follows, usually is used.
p(7) = BICG)I

Here, C(j), which is a discrete Fourier transform having as values the original series ¢(k) multiplied by the
truncation function w(k), is defined by the following equation.

A 1'&= i
C@y)=— w(k)e(k)e 2™V -T% j=0,---,n—1
)=~ l;] (k)c(k) (J)

w(k) is also called the data window. The modified periodogram may also be defined as the convolution of the
frequency domain using the Fourier transform W (j) of w(k). In this case, W(j) may also be called the spectral
window. The w(k) corresponding to this is also called the lag window. Although the data window was originally
proposed for sidelobe suppression in the frequency domain due to truncation, mathematically, the effect of the
data window is the same as that of a smoothing expression in the frequency domain. Therefore, if the data window
is selected appropriately, smoothing of the power spectrum can also be performed. In addition, when a time-series
spectrum analysis is performed, time series data having a mean value of 0 often is considered. Since the mean
value corresponds to the zero-frequency component of the Fourier transform, if the zero-frequency component
after the transformation is cut, a similar effect can be expected. However, when the modified periodogram is
used, since the mean value varies due to the multiplication by the data window, it is meaningless to set the mean
value to zero in advance. Now, a difference of a constant factor occurs in the periodogram definition due to the
multiplication by the truncation function w(k). Originally, the total power was to be calculated in the time (or
space) domain and this was to be corrected (according to Parseval’s theorem) so that it matched the total power
in the frequency domain. However, the computational cost for this kind of correction is not small. Also, it may
be difficult to estimate the total power in the time (or space) domain. p(j), which is defined by the following
equation, may be used to correct the power according to a truncation function.

o) = =2
n > {w(k))?
k=0

In this case, since the sum of the squares can be calculated analytically according to the truncation function used,
the computz}tional cost required to correct the power will not be as large. For the total power of the corresponding
series, M be the generalization when a square truncation is used.

Now, since the more the sidelobe of the spectral window W (j) is suppressed, the more the spectral width of W (j)
increases, the estimated waveform of the power spectrum also will be blurred. Therefore, when estimating the
power spectrum, you must select a suitable truncation function according to your objectives, that is, according
to whether the spectral width or the central frequency is to be the problem, for example. Some representative

truncation functions are shown below.

sin?(mu;) (Hanning window)
1—|2u; — 1] (Bartlett window)
1—(2u; —1)? (Welch window)
w; = 16u;® 0<u; <%
b= Ouy(u; — 17 15U <3 (Parzen window)
1—6u;(up—jy1—1)* §<u; <3
16un_j+13 % <wu; <1

Here, u; = % If u; is selected in this way, wy = 0. Therefore, since the component corresponding to ¢y will be
invalid, the data windows may also be defined in a slightly modified form. The data windows are represented as

35

Algorithms Used

follows as time domain functions that are nonzero only for |¢| < 1.

w = cos? %t (Hanning window)
1— |t (Bartlett window)
w(t) =49 1-—2 (Welch window)
{ =602+ 6l [t] < 5 } (Parzen window)
20—l Ll <1

Figure 2—5 shows graphs of these data windows (w;) and the amplitudes (|W;|) of their discrete Fourier transforms

(W;). To raise the resolution % of the discrete Fourier transform, you should increase the number of sample

Wi W]

1.0 0000000000000000 200
0.5 [10.0
L1 | | 4ecedecséeccidecel .
007"y 8 12 16 20 24 28 32 0.0 J
Rectangular Window
W]
0070 8 12 16 20 24 28 32 J
Hanning Window
W]
20.0
10.0
0070 8 12 16 20 24 28 32 0.0 J
Bartlett Window
W]
20.0
10.0 Te
0070 8 12 16 20 24 28 32 0.0 J
Welch Window
W]
20.0
10.0
00™4 s 12 16 20 24 28 32 ° 0:0 77778 12 16 20 24 28 32 J

Parzen Window

Figure 2—5 Data Windows and Absolute Values of Their Discrete Fourier Transforms
data n or increase the sampling interval T. However, to raise the precision of the power spectrum estimate while

36

Algorithms Used

holding the sampling interval and resolution fixed, a technique is often used of taking m groups of samples for
which the number of data is n, obtaining the modified periodogram for each of those m groups, and then taking
the average of those values. In this case, a technique is also proposed in which the m groups of sample data are
taken from the original series so that they overlap. For details, refer to the Reference Bibliography. Also, when
obtaining the power spectrum, the property related to the frequency transition of the Fourier transform, that is,
the multiplication by e2™V=Lfot in the time (or space) domain, is associated with the shifting of the frequency by
fo in the frequency domain, and a technique is often used of reducing the number of data points required for the
calculation in which the central frequency of the power spectrum is shifted in advance, using the property that

the function shape does not change. This kind of operation is known as modulation.

2.1.2.10 Laplace Transform

(1) Laplace Transform

Given the function f(¢), the Laplace transforms consist of the regular transform defined by:

F(s) = / ft)e stat (2.1)
0
and the inverse transform, which is the following Bromwich integral:

1 y+ioco
ft) = — F(s)e®tds
0 / (5)

27TZ —ico
where, v > 79,70 : Abscissa of convergence,i = v/—1

f(t), which is called the original function, and F'(s), which is called the image function, can be written

as follows:
Regular transform F(s) = L{f(¢)} (2.3)
Inverse transform f(t) = L~H{F(s)} (2.4)

(a) The case when the following conditions hold for the image function F'(s)
(I) When R(s) > 0, F(s) is regular
(IT) When R(s) > 0, Sl;ngo F(s)=0
(IIT) When R(s) > 0, F(s*) = F*(s)

*

(R(s) is real part of s; * is the complex conjugate symbol)

(i) Exponential function approximation
If the exponential function e® can be approximated by a rational function having poles only for
R(s) > 0, equation (2.2) can be reduced to an integral around this pole. Therefore, consider the

following function expression as the exponential function approximation method.
e(l
FEec(s,a) = ———— >0 2.5
(s,a) 2 cosh(a — s) (a>0) (2:5)
This expression can be rewritten in the following two ways.
P~ (—=1)m™
Eec(s,a) = — , 2.6
(s,a) 2 Z s—{a+i(n—0.5)r} (2:6)

n=—oo

Fee(s,a) = e® — e 20635 4 e749e% — ... (2.7)

From equation (2.7), we know that F..(s,a) is a good approximation of the exponential function

when a > R(s), and from equation (2.6), we know that the poles of E..(s,a), which are all of
order 1, are equally spaced on straight line s = a, and the residue is %

37

Algorithms Used

Let’s define the function f..(t,a) as follows by assigning E..(st) in place of e*! in the Bromwich

integral:
1 Y+ico
Foolta) = —— / F(s)Eeol(st,a)ds (0<~ < a) (2.8)
27 Sy oo
We can rewrite this by using equation (2.6) and (2.7) as follows:
fee(t,a) = f(t) — e " f(3t) + e **f(5t) — -~ (2.9)
7ioo e a .(n—05)m
Jeclt,a) = = ;(D"{F (5 +i—)} (2.10)

(3(s) is imaginary part of s)

Euler’s transformation

To numerically calculate the sum of an infinite series like the one in equation (2.10), the series must
be truncated at some appropriate number of terms N. This section explains how to use Euler’s
transformation to calculate the sum efficiently. Euler’s transformation is a method of transforming

the series on the left hand side of the following equation to the series on the right hand side:

Z Ay = Z 2_(p+1)Apa0
n=0 p=0 (211)

where, Aag = ag + a1, A%a0 = Aag + Aaq, -+, Aag = A" Lag + A" Ly
A"ay, is, which is the n-th difference, is defined by the following equation.

" n n n
A"ap, = a, — ak+1 + k42 — -+ £ Ak4n (2.12)
1 2 n

It is known that when the following conditions are satisfied for a series that has be en transformed

by Euler’s transformation, it converges faster than the original series.
o0

(A) Z an is alternating series, sequence of numbers {|a,|} monotonically approaches 0.
n=0
1
(B) 5 <= <1
n

an
a

equation (2.11) are normally calculated, and if Euler’s transformation is performed for terms k+ 1

Since the effect of Euler’s transformation is larger as |*2t| is closer to 1, the first k terms of

and later, we have:

p—1 D
SERCLICHEPE) P
n=0 qg=1

(2.13)
1
where, A,, = 1,4, g1 = Apg + (Pt)
q
Therefore, the approximate value of f(t) is calculated from the following equations:
a [k-1 p—1
k € -

fet = 7 (Z F, +2 pZquFk+q>

n=0 q=0 (214)

By = (e 4 00T,

In the actual calculation, the right hand site of equation (2.11) is truncated at term p. The

truncation error at this time is given by:
1
Rp = 2—p[Apa0+Apa1 +Apa1 +] (2]‘5)
However, if the following additional condition also holds:

e a, = f(n) can be written, and f()(z), which is the differential coefficient of order po of f(z),

decreases monotonically as x increased with a fixed sign for positive values of x.

38

Algorithms Used

then the following relationship is confirmed:
1
|R,(0)] < 2—p|Apv0| (2.16)
[Notes]

When F(s) has a factor like e, since F,, does not satisfy condition (1(a)iiA), precision may

drop. In this time, the image function has characteristics described below.
° f(t):Oatt<t0
e When ¢ = ¢y, f(t)or its derivative becomes discontinuous.

When it is known that f(¢) = 0 at t < tg, the ¢ axis should be shifted by ¢y and the image function

of:

g(t")y = f(t' +to) (2.17)
which is given by:

G(s) = exp(tos) - F(s) (2.18)

should be handled.
(b) When F(s) has singular point for R(s) > 0
When the abscissa of convergence « of F(s) is known, if we let G(s) be defined as:
G(s) = F(s+b),b >« (2.19)

then G(s) is regular for R(s) > 0. In addition, if we let the original functions of F'(s) and G(s) be f(t)
and g¢(t), we have the following relationship:

f(t) = eg(t) (2.20)
Therefore, when R(s) > 0, we can perform the calculations using the following equations.
FEr(ta) = (F) Y Fa
F, = (1)"S<F{%+b+z‘MD (2.21)

[Determining the abscissa of convergence]

e When F(s) is a rational function
Express F(s) as follows using the real coefficient polynomials Q(s) and P(s):
bis™ b m—1 . bm
Fs) = U8 _ 01" & bas o (2.22)
P(s) a18™ + ags™ M+ -+ apy
If we let the roots of the denominator polynomial P(s) = 0 be $1, 82, -, Sy, then the abscissa of

convergence is given by the maximum value of the real part of the roots as follows:

a = max R[s] (2.23)
If the real part of all roots of P(s) = 0 are negative, then the abscissa of convergence o will satisfy
a < 0, and F(s) will be regular for R(s) > 0. Therefore, the following theorem is used to determine
the sign of the abscissa of convergence. A necessary and sufficient condition for all roots of the
polynomial P(s) to be negative is that when the ratio of the sum of the odd terms and the sum of

the even terms is expanded in a continued fraction as follows:

n n—2 . 1
ali_lJr+a33 n_:+ = hys + . (2.24)
ass 4S8 h2$ +
h -
35 + h43 + e
the coefficients hi, ho,---, are all positive numbers. A polynomial that satisfies this theorem is
called a Hurwitz polynomial. The coeflicients of the continued fraction hq, hs, - -, are calculated

by using the Euclidean algorithm. If F'(s) has singular point for R(s) > 0, create the polynomial

39

Algorithms Used

P(s + b) for an appropriate positive number b and use the decision method described above to
decide whether or not it is a Hurwitz polynomial. Repeat this decision process while increasing b,
and obtain the abscissa of convergence for b so that F'(s + b) becomes regular.

When F(s) is a general function

When F(s) is a general function, such as irrational function or distribution, since there is no
effective method for determining whether or not F'(s) is regular for (s) > 0, the user must specify

the abscissa of convergence.

(¢) When F(s*) # F*(s)
Let x be real number, and let F}(s) and F5(s) be defined as follows:

Fi(z) =0.5[F(z) + F* ()] (2.25)
Fy(x) = 0.5i[F(x) — F*(x)] (2.26)

Next, rewrite z as s. Fi(s) and Fa(s) satisfy conditions (1(a)i)-(1(a)iii). Therefore, if we obtain fi(t)

and fa(t) as inverse transforms, then f(¢), which is defined as:

f(t) = fi(t) —ifa(t) (2.27)

becomes L1 F(s).

(d) Determining parameter values

(1)

Truncation term count k + p of the sum of a series
For Euler’s transformation to be effective and the truncation error evaluation expression (2.16) to

a . (n40.5)mw
T

be usable, at least | F},| must monotonically decrease. In general, |F,,| = |[S(F[]) varies

in a complicated manner along with n. If we represent the maximum value of the imaginary part of

M > W, |Fy| monotonically decreases. Therefore,

a singular point of F(s) by wy,, then when
the number of terms k in the normal sum in equation (2.16) must be increased in proportion to ¢

so that k£ > 0.52=¢. Actually, since k also is related to the value of a, let:
k= k1 + kot (2.28)
and determine ky and kg so that the truncation error (2.16) become the desired value. When you
want to obtain f(¢) in the range t; < t < t9, one method of determining k1 and ks is to first set
t = t; and determine k(¢;) for which the truncation error can be ignored, and then, in a similar
manner, set ¢ = ¢t and determine k(t2) for which the truncation error can be ignored. k; and ks
are determined from:
k1 + katy = E(ty)
k1 + katy = E(t2)

Degree p of Euler’s transformation tend to nearly proportionate to exponent of calculation preci-

(2.29)

sion. Therefore, if required calculation precision is 10~¢, you should input d to parameter p.

Value of parameter a for approximating the exponential function using E(s, a)

Since we can obtain:

() = fee(t,a)| = e f(3t) — e f(5t) + -] (2.30)
if we calculate fe.(3t,a) and f..(5t,a) together with f..(t,a), we can evaluate:
() = fee(t,a)| = e f(3t) — e f(5t) + -] (2.31)

—2a

Actually, if we assume f(t) and f(3t) are of the same order, e”?® is considered to be the relative

error, and then exponent of the relative error is nearly equal to a shown in the table below.
a 3 4 5 6
e720 | 24x1073 | 34x107% | 45x107° | 6.2x 1076

40

Algorithms Used

2.1.2.11 Wavelet transform

(1) Haar functions
Let the domain of the input data that is to be subject to the Wavelet transform be [0,a]. Let the Haar
functions Hog(z) and Hoi(z) be defined as follows:

Ho(z)=1/va, 0<z<a

) 1/ if x <a/2
Ho(z) = { —1/va ifx>a/2

For Hyi(z), create H,,(x) as follows. Divide the interval [0, a] into 2™ intervals of equal length. Number
the divided subintervals beginning with 1, starting at lowest values, and let the number of a subinterval be

represented by n. If the subinterval is [b1, b2], then bl and b2 are as follows.

b1:21m><(n_1)

b2:i><n
2’m

Let the Haar function in subinterval [b1,b2] be defined as follows.

o VA e < (b1402)/2
S WYy R SR R

Function values are selected so that the interval [0, a] is normalized. That is, they are selected so that the

following equation is satisfied.

/0 " Hoon(2) % oy (2)dar = 1

Also, note that the following must also be satisfied for different m and m’ and n and n’.
/ Hppn(2) X Hyprpydz =0
0

In other words, these Hmn are made into a system of orthonormal functions. Also , as you can see from the

creation method described above, the numbers that can be specified as n for a given m are n =1,...,2™.
HOO H01 2m/a
L/\/a L/\a
Hmn
a a a
0 0 0 /
bl b2
—1/Va
—v/2m/a

41

Algorithms Used

(2) Wavelet transform according to Haar functions
To perform a wavelet transform according to Haar functions means to integrate th e product of given input
data and each Haar function over the existence range of the input data. If we suppose that the input data
is a continuous function y = f(z), the wavelet transform is defined as follows.

Crn :/0 f(z) X Hypn(x)dz

To perform this calculation, we need the following information for the Haar function Hmn: (1) value yy,

(2) position xg of the rising point, (3) position x; of the positive/negative reversal point, and (4) position

29 of the point where the value returns to zero. To create this information for the Haar function H,,,(x)
ASL_dfwthl

when the indexes (m,n) are given, this library provides the functions 2.18.1 . When the
ASL _rfwthl

input data is a continuous function, the wavelet transform can be computed by numerical integration by

using the results of these functions.
T T2
Crn :/ f(z) X ypdx —/ f(z) X ypdx
xo xr1

When the input data is discrete, the wavelet transform is computed as follows. Assume that the range of the
discrete input data values is “fixed within the range half way to the positions of the adjacent data.” That is,
if the data (x;, ;) is given, assume that the input data has y; in the range [(z;—1+;), 5 (@; 4+ ®i41)] for this
data. Perform the integration described above for the input data that has become partially continuous in this
way. If the sampling is performed with equal spacing dx and the sampling count is 2¥ (where, k is a natural
number), then for the [b1,b2] of H;_1),, input data can be made to exist at either z = bl + (b2 — b1)/4 or
x =b2 — (b2 — bl)/4. The Haar functions for this kind of input data are a complete system, and the input
data can be completely represented by a linear combination of Hy,p,,m = 0,1,---,(k—1),n =1,2,--- 2k 1,

For example, when there are 2= 2! data (x1,y1) and (x2,y2), Coo, which is shown as follows,

2+ (z2—21)/2

Coo = / Hopo(z + (22 — x1)/2) x ydx
—(z2—21)/2

is the mean value of the two data. However, since the Haar function is outside of the transform data

existence range at both ends, the integration range is widened at both sides by (b2 — b1)/2. Furthermore,

Co1, which is shown as follows,

2+ (z2—21)/2

Co1 = / Hopi(x + (22 — 21)/2) x ydx
—(z2—2x1)/2

represents the discrepancy from the mean value of the two data. Since there are positive and negative dif-

ferences having the same absolute value, this discrepancy can be completely represented by Hy;. Therefore,

the input data itself can be represented by using
y = Coo x Hoo(z) + Co1 x Ho

If the sampling is performed with equal spacing dz and the sampling count is 2* (where, k is a natural num-
ber), the integration calculation becomes simpler since it can be completed without having to be concerned

with the spacing at which individual input data exist. To enable this integration calculation to be completed
ASL_dfwth2

v, this lib ides the f ti 2.18.4
easily, this library provides the functions {ASL_rfwth2

}, which output array Ir, which indicates the

42

Algorithms Used

positive, negative or zero values of H,,, in the interval [0, 1], in an array of size na = 2¥, which is the same
as the number of input data. When the existence range of the input data is assumed to be [b1,b2], the
integration range of the above calculation becomes [b1 — dx/2,b2 4 dx /2], and with a = (b2 —b1) + dz, Cp,
is as follows.

om
mn — - Iri—1 i
C \/a E rfi—1] xy

Inverse wavelet transform according to Haar functions
The inverse transform for a Haar function wavelet transform reconstructs the original data for C,,,. If we

let the original data be f(z), the reconstruction of f(x) is represented as follows.

f(x) = Zcmn X Hunn ()
mn
When the original data does not consist of continuous values or when the sampling spacing is not equally
spaced, the fact that f/(z) does not match f(z) can be seen from the fact that this sum does not create
frequency values of at most 1/2 of the range having values when the Haar function is the maximum value m.
When the sampling spacing is equally spaced and the sampling count is 2¥ (where, k is a natural number),
the original data can be regenerated by letting (maximum value m)=k.

Mexican hat function

The Mexican hat function arm(x), which is used for a continuous Wavelet transform, is given as follows.
prrn (@) = (1= 22%)e ™"

This function has values in the range [—oco, +00]. Let the parameter corresponding to the frequency be a,

let there be a shift of b in the x-axis direction, and let the base of the Wavelet transform be given as follows.

(z —b)

)

¢y (z;a,b) = (10) o

Here, let C' be the normalization factor so that the following equation is satisfied.

—+oo
/ dnm(zya,b)’de =1

— 00

From the following equations

o0 5
/ e der =7

+oo
/ 22e= dx = \/—7?
oo 2
+oo
3 X
/ zte= dx = 4ﬁ

the normalization factor C' is as follows.
a? 3a* T

—a(1 =L 2yt
C = af 2-1-4)2

For an arbitrary function f(z), the Wavelet transform according to this function is given as follows.
+oo

+oo
/ o (.0, b) f(2)de (W, £) (b, 0) = / oarr (30, b) f(2)de

— 00 — 00

43

Algorithms Used

(5) French hat function
The French hat function g (z) is defined as follows.

1 if |[2] <1
(pFH(.’,E): —% if 1< |.T| <3
0 otherwise

In a similar manner as described for the Mexican hat function, let the parameter corresponding to the
frequency be a, let there be a shift of b in the x-axis direction, and let the base of the Wavelet transform be
given as follows.

1 (x —b)

¢ru(r;a,b) = (C)<PFH(

)

Here, let C' be the normalization factor so that the following equation is satisfied.

+oo
/ b (x;a,b)’de =1

— 00

C =3a

For an arbitrary function f(x), the Wavelet transform according to this function is given as follows.
—+o0

(W) (b 0) = / b (x;a,b) f(z)de

— 00

44

Reference Bibliography

2.1.3 Reference Bibliography

(12)

(13)

(14)

(15)

(16)

Brigham, E. Oran, “The Fast Fourier Transform”, Prentice-Hall Inc. , (1974).
Cochran, W. T. et al. , IEEE Trans. Audio and Electroacoustics, Vol.15. pp.45-55 (1967).

Gentleman, W. M. and Sande, G. , AFIPS Conf. Proc. , Fall Joint Comput. Conf. , Vol. 29, pp. 563-578
(1966).

Glassman, J. A. , IEEE Trans. Comput. , Vol. 19, pp. 105-116 (1970).
Swarztrauber, P. N. | STAM Rev. , Vol. 19, pp. 490-501 (1977).

Temperton, C. , “Implementation of a Self-Sorting In-Place Prime-Factor FFT Algorithm”, J. Comp. Phys.,
58, 283 (1985).

Temperton, C. , “Self-Sorting Mixed-Radix Fast Fourier Transforms”, J. Comp. Phys. , 52, 1 (1983).
Temperton, C. , “Fast Mixed-Radix Real Fourier Transforms”, J. Comp. Phys. , 52, 340 (1983).
Hosono, T. , “Numerical inversion of Laplace transform and some applications to wave optics”, Radio

Science, vol. 16, pp. 1015 (1981).

Welch, P. D. ; “The Use of the FFT for Estimation of Power Spectra: A Method Based on Averaging Over
Short, Modified Periodograms”, IEEE Trans. on Audio and Electroacoustics, Vol. AU-15, No. 2, pp. 70-73
(1967).

Rader, C. M. , “An Improved Algorithm for High Speed Autocorrelation with Applications to Spectral
Estimation”, IEEE Trans. on Audio and Electroacoustics, Vol. AU-18, No. 4, pp. 439-442 (1970).

Childers, D. G. (Ed.), “Modern Spectrum Analysis”, IEEE Press (1978).

Pease, M. C, An Adaption of the Fast Fourier Transform for Parallel Processing J. Assn. Comput. Mach.,
15, 252 (1968); Stockham, T. G. , High Speed Convolution and Correlation AFIPS Conf. Proc. , 28, 229
(1966).

Swarztrauber, P. N. | Vectorizing the FFTs Parallel Computations, 51 (1982).

Singleton, R. C. ; An Algorithm for Computing the Mixed Radix Fast Fourier Transform IEEE Trans.
Audio and Electroacoust. , AU-17, 93 (1969); Singleton, R. C. , ALGOL Procedures for the Fast Fourier
Transform Commun. ACM, 11, 773 (1968).

Petersen, W. P. | Vector Fortran for Numerical Problems on CRAY-1 Commun. ACM, 26, 1008 (1983).

45

2.2 ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM
(REAL ARGUMENT TYPE)

2.2.1 [DEPRECATED]ASL_dfclfb, ASL _rfclfb
One-Dimensional Complex Fourier Transforms (Including Initialization)

(1) Function
Forward transform
ASL_dfclfb or ASL_rfclfb computes the complex Fourier forward transform (arbitrary radix) for the complex
data cx(k=0,---,n—1).
n—1

d; = che”“\/*_l% (j=0,---,n—1)
k=0

Backward transform
ASL_dfclfb or ASL_rfclfb computes the complex Fourier backward transform (arbitrary radix) for the
complex data cx(k =0,---,n —1).

n—1
d; = che%\/j% (j=0,---,n—1)
k=0
(2) Usage
Double precision:
ierr = ASL_dfclfb (n, cr, ci, Id, isw, ifax, trigs, wk);
Single precision:
ierr = ASL_rfclfb (n, cr, ci, Id, isw, ifax, trigs, wk);

46

[DEPRECATED|ASL_dfc1fb, ASL_rfclfb
One-Dimensional Complex Fourier Transforms (Including Initialization)

(3) Arguments and Return Value

R:Single precision real C:Single precision complex

D:Double precision real Z:Double precision complex I int as for 32bit Integer
’ long as for 64bit Integer

No. Argument and Type Size fnput/ Contents
Return Value ’ Output
n I 1 Input | Number of input data values n (See Note (a))
2 cr Dx 1d Input | Real part of input data cj (See Note (b))
{R*} Output | Real part of output results d; (See Notes (b)
and (c))
3 ci D+ 1d Input | Imaginary part of input data c; (See Note
{R*} (b))
Output | Real part of output results d; (See Notes (b)
and (c))
4 Id I 1 Input | Size of array cr, ci
isw I 1 Input | Processing switch(See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform
6 ifax I* 20 Output | Factorization results and number of factors
(See Note (d))
7 trigs Dx 2xn Output | Work area. Trigonometric function table
{R*} (See Note (d))
8 wk D+ 2xn Work | Work area
()
9 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a) n>0
(b) n < 1d
(c) isw € {0,1, -1}

47

[DEPRECATED|ASL_dfc1fb, ASL_rfc1fb
One-Dimensional Complex Fourier Transforms (Including Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
1000 n was equal to 1. Input-time contents are output un-
changed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

(6) Notes

(a)

When the number of data n can be adjusted, the calculations can be performed more efficiently by
setting a number for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3,
5, etc.). For example, rather than setting n = 289(=17?), it is usually more efficient to set n =
300(=22 x 3 x 52), n = 320(=2% x 5), n = 384(=2" x 3) or the like.

If we let the real and imaginary parts of the complex data ¢, (k=0,---,n —1) be R{cx} and S{cs},

respectively, the ¢, and elements of arrays cr and ci are associated as follows.

R{co} < cr[0] , S{eo} < ci0]

R{c1} « cll] , S} < ci[l]

R{ch—1} + cn-1], -1} & cin—1]
Similarly, for the complex data d;(j =0,---,n — 1).

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data ci(k = 0,---,n— 1) be represented by éx(k =0,---,n—1),
then the following relationship holds.

ép=nc; (k=0,---,n—1)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

To repeatedly compute the transform for the same number of data n, you should call this function once,

and then use the after-initialization transform 2.2.2 ASL.dfelbf , thereafter. This enables processing
ASL_rfclbf

to be performed more efficiently since initialization (factorization or the creation of trigonometric

tables) is performed only once. However, in this case, you must retain the contents of arrays ifax and

ASL_dfc1bf

ASL_rfclbf [

To perform initialization only by setting isw=0, you need not set input data for arrays cr and ci.

trigs so they can be used as input to the function 2.2.2

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number

of samples or sampling interval must be set with this taken into account when sampling to approximate

48

[DEPRECATED|ASL_dfc1fb, ASL_rfclfb
One-Dimensional Complex Fourier Transforms (Including Initialization)

the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that
is bandwidth limited by the frequency f., if the sampling interval is taken as T = #, then h(t) can

be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.

hy=TY h(z’T)—Smig AZ;;T)

i=—00

(f) This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(g) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

(7) Example
See the example in Section 2.2.2 (7).

49

[DEPRECATED]ASL_dfc1bf, ASL_rfc1bf
One-Dimensional Complex Fourier Transforms (After Initialization)

2.2.2 [DEPRECATED]ASL_dfclbf, ASL_rfclbf
One-Dimensional Complex Fourier Transforms (After Initialization)

(1) Function
Forward transform
ASL_dfclbf or ASL_rfc1bf computes the complex Fourier forward transform (arbitrary radix) for the complex
data cx(k=0,---,n—1).
n—1

d] = ch6_2ﬂ-\/?1% (-] = 07"'7717 1)
k=0

Backward transform
ASL _dfclbf or ASL_rfclbf computes the complex Fourier backward transform (arbitrary radix) for the
complex data cx(k =0,---,n —1).

n—1
d; = che%\/j% (j=0,---,n—1)
k=0
(2) Usage
Double precision:
ierr = ASL_dfclbf (n, cr, ci, 1d, isw, ifax, trigs, wk);
Single precision:
ierr = ASL_rfclbf (n, cr, ci, 1d, isw, ifax, trigs, wk);

50

[DEPRECATED]ASL_dfc1bf, ASL_rfc1bf
One-Dimensional Complex Fourier Transforms (After Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
n I 1 Input | Number of input data values n (See Note (a))
2 cr Dx 1d Input | Real part of input data ¢ (See Note (b))
{R*} Output | Real part of output results d; (See Notes (b)
and (c))
3 ci D+ Id Input | Imaginary part of input data c; (See Note
{R*} (b))
Output | Imaginary part of output results d; (See
Notes (b) and (c))
Id I 1 Input | Size of array cr, ci
5 isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform
6 ifax I* 20 Input | Factorization results and number of factors
(See Note (a))
7 trigs Dx 2 xn Input | Trigonometric function table (See Note (a))
)
8 wk Dx 2xn Work | Work area
v}
9 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a) n>0
(b) n<1d
(c) isw e {1,—-1}

o1

[DEPRECATED]ASL_dfc1bf, ASL_rfc1bf
One-Dimensional Complex Fourier Transforms (After Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
1000 n was equal to 1. Input-time contents are output un-
changed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes
(a) This function can be used to repeatedly compute the transform for the same number of data n after
ASL_dfclfb
the including-initialization function 2.2.1 ¢ has been used. In this case, you must retain
ASL_rfclfb

the contents of arrays ifax and trigs so they can be used as input in this function.

If we let the real and imaginary parts of the complex data ¢, (k=0,---,n —1) be R{c;} and S{cx},

respectively, the ¢, and elements of arrays cr and ci are associated as follows.

R{co} < 0], S{eo} < ci[0]

R{c1} < cfl] , S{a} < ci[l]

R{cn—1} <+ cn—-1], o1} < cin—1]
Similarly, for the complex data d;(j =0,---,n — 1).

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data ci(k = 0,---,n— 1) be represented by éx(k =0, -+, n—1),
then the following relationship holds.

ér=nc; (k=0,---,n—1)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries
a normalized result is defined.

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number
of samples or sampling interval must be set with this taken into account when sampling to approximate
the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that
is bandwidth limited by the frequency f., if the sampling interval is taken as T = ﬁ, then h(t) can
be reconstructed from knowledge of only a sequence of sample values {h(iT")} as follows.

sin 2w f.(t —iT)

w(t —iT)

ht)=T i h(iT)

1=—00

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

52

[DEPRECATED]ASL_dfc1bf, ASL_rfc1bf
One-Dimensional Complex Fourier Transforms (After Initialization)

(f) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the
higher performance alternative implementation instead.

593

[DEPRECATED]ASL_dfc1bf, ASL_rfc1bf
One-Dimensional Complex Fourier Transforms (After Initialization)

(7) Example

(a) Problem
Compute the complex Fourier forward and backward transform using the following sequence of numbers
as input data.

er[0] = 3.000 ci[0] = 0.000
cr[1] =2.786 «ci[1] = 0.725
cr[2] =2.300 ci] 2] =1.173
cr[3] = 1.792 «ci[3] = 1.327
cr[4] = 1.381 ci] 4] = 1.302
cr[5] = 1.080 ci[5] = 1.197
cr[6] = 0.865 ci[6] = 1.065
cr[7] =0.711 «¢i[7] = 0.930
cr[8] = 0.600 ci[8] = 0.800
cr[9] = 0.519 «ci[9] = 0.679
cr[10] = 0.459 ci[10] = 0.566
cr[11] = 0.415 ci[11] = 0.461

[

[

[

[

(b) Input data
Arrays cr and ci, n=16, 1d=16, isw=1(Forward transform) and isw=—1(Backward transform).

(¢) Main program

/* C interface example for ASL_dfcifb , ASL_dfclbf */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()
{

int 1d=16;

int n;

double *cr; double *ci;

int isw;

int ifax[20]; double *trigs;
double *wk;

int ierr;

int i;

FILE *fp;

fp = fopen("dfcibf.dat", "r");
if (fp == NULL)

printf("file open error\n");

return -1;
printf(" *x*%x ASL_dfcifb , ASL_dfclbf **x\n");
printf("\n ** Input **\n\n");

cr = (double *)malloc((size_t)(sizeof (double) * 1d));
if(cr == NULL)

printf("no enough memory for array cr\n");

return -1;
ci = (double *)malloc((size_t)(sizeof(double) * 1d));
if (c¢i == NULL)

printf("no enough memory for array ciln");

return -1;

trigs = (double *)malloc((size_t) (sizeof(double) * (2*1d)));
if(trigs == NULL)

54

[DEPRECATED]ASL_dfc1bf, ASL_rfc1bf
One-Dimensional Complex Fourier Transforms (After Initialization)

printf("no enough memory for array trigs\n");
return -1;

wk = (double *)malloc((size_t) (sizeof (double) * (2x1d)));
if (wk == NULL)
printf("no enough memory for array wk\n");
return -1;
fscanf(fp, "%d", &n);
for(i=0 ; i<n ; i++)

fscanf(fp, "%lf,%lf", &crl[il, &cili]);

printf("\t Real Part Imaginary Part\n");
for(i=0 ; i<n ; i++)

printf("\t cr[%3d] = %8.3g ci[%3d] = %8.3g\n", i, crlil, i, cili]);

fclose(fp);

printf("\n *x Output **\n");

isw = 1;

ierr = ASL_dfcifb(n, cr, ci, 1ld, isw, ifax, trigs, wk);
for(i=0 ; i<n ; i++)

crli

n;
cili

n;

1 /=
1 /=

printf("\n\t< Forward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\n\tSolution\n\n");
printf("\t Real Part Imaginary Part\n");
for(i=0 ; i<n ; i++)

printf("\t cr[%3d] = %8.3g ci[%3d] = %8.3g\n", i, crlil, i, cil[i]);

isw = -1;
ierr = ASL_dfcibf(n, cr, ci, 1ld, isw, ifax, trigs, wk);

printf("\n\t< Backward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\n\tSolution\n\n");
printf("\t Real Part Imaginary Part\n");
for(i=0 ; i<n ; i++)
printf("\t cr[%3d] = %8.3g ci[%3d] = %8.3g\n", i, crlil, i, cilil);
free(cr);
free(ci);
free(trigs);
free(wk);

return O;

}
(d) Output results

*xx ASL_dfclfb , ASL_dfclbf x**x

*k Input *%

Real Part Imaginary Part

cr[0] = 3 ci[0] =

er[1] = 2.79 ci[1] = 0.725
cr[2] = 2.3 ci[2] = 1.17
cr[3] = 1.79 ci[3] = 1.33
cr[4] = 1.38 ci[4] = 1.3
cr[5] = 1.08 ci[5] = 1.2
cr[6] = 0.865 ci[6] = 1.06
cr[7] = 0.711 ci[7] = 0.93
cr[8] = 0.6 ci[8] = 0.8
cr[9] = 0.519 ci[9] = 0.679
cr[10] = 0.459 ci[10] = 0.566
cr[11] = 0.415 ci[11] = 0.461
cr[12] = 0.383 ci[12] = 0.361
cr[13] = 0.36 ci[13] = 0.267

95

[DEPRECATED]ASL_dfc1bf, ASL_rfc1bf
One-Dimensional Complex Fourier Transforms (After Initialization)

cr[14] = 0.345 ci[14] = 0.176
cr[15] = 0.336 ci[15] = 0.087
** Qutput **

< Forward Transform >

ierr = 0

Solution
Real Part Imaginary Part
cr[0] = 1.08 ci[0] = 0.695
cr[1] = 0.583 ci[1] = -0.461
cr[2] = 0.208 cif 2] = -0.321
cr[3] = 0.115 ci[3] = -0.197
cr[4] = 0.0911 ci[4] = -0.126
cr[5] = 0.0854 ci[5] = -0.0826
cr[6] = 0.0839 ci[6] = -0.0541
cr[7] = 0.0835 ci[7] = -0.0325
cr[8] = 0.0834 ci[8] = -0.0144
cr[9] = 0.0834 ci[9] = 0.00265
cr[10] = 0.0833 ci[10] = 0.0197
cr[11] = 0.0832 ci[11] = 0.0383
cr[12] = 0.0833 ci[12] = 0.0609
cr[13] = 0.0833 ci[13] = 0.0915
cr[14] = 0.0834 ci[14] = 0.14
cr[16] = 0.0834 ci[18] = 0.241

< Backward Transform >

ierr = 0

Solution
Real Part Imaginary Part
cr[0] = 3 ci[0] = 1.11e-16
cr[1] = 2.79 ci[1] = 0.725
cr[2] = 2.3 ci[2] = 1.17
cr[3] = 1.79 ci[3] = 1.33
cr[4] = 1.38 ci[4] = 1.3
cr[5] = 1.08 ci[5] = 1.2
cr[6] = 0.865 ci[6] = 1.06
cr[7] = 0.711 ci[7] = 0.93
cr[8] = 0.6 ci[8] = 0.8
cr[9] = 0.519 ci[9] = 0.679
cr[10] = 0.459 ci[10] = 0.566
cr[11] = 0.415 ci[11] = 0.461
cr[12] = 0.383 ci[12] = 0.361
cr[13] = 0.36 ci[13] = 0.267
cr[14] = 0.345 ci[14] = 0.176
cr[15] = 0.336 ci[18] = 0.087

56

2.3 ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM
(COMPLEX ARGUMENT TYPE)

2.3.1 [DEPRECATED]ASL zfclfb, ASL_cfclfb
One-Dimensional Complex Fourier Transforms (Including Initialization)

(1) Function
Forward transform
ASL zfclfb or ASL_cfclfb computes the complex Fourier forward transform (arbitrary radix) for the complex
data cx(k=0,---,n—1).

n—1
d; = che_%\/jl% (j=0,---,n—1)
k=0

Backward transform
ASL_zfclfb or ASL_cfclfb computes the complex Fourier backward transform (arbitrary radix) for the
complex data cp(k=0,---,n —1).

n—1
d; = che%\/j% (j=0,---,n—1)
k=0
(2) Usage
Double precision:
ierr = ASL_zfelfb (n, ¢, 1d, isw, ifax, trigs, wk);
Single precision:
ierr = ASL_cfelfb (n, ¢, 1d, isw, ifax, trigs, wk);

o7

[DEPRECATED]ASL zfc1tb, ASL_cfclfb
One-Dimensional Complex Fourier Transforms (Including Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
A t and Input
No. FEUIMCIE an Type Size nput/ Contents
Return Value Output
n I 1 Input | Number of input data values n (See Note (a))
2 c 7% 1d Input | Input data ¢ (See Note (b))
Cx Output | Output results d; (See Notes (b) and (c))
3 Id I 1 Input | Size of array c
4 isw I 1 Input | Processing switch (See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform
5 ifax I* 20 Output | Factorization results and number of factors
(See Note (d))
6 trigs Dx 2Xxn Output | Trigonometric function table (See Note (d))
Rx
7 wk Tk n Work | Work area
Cx
8 ierr I 1 Output | Error indicator (Return Value)
(4) Restrictions
(a) n>0
(b) n<1d
(c) isw € {0,1, -1}
(5) Error indicator (Return Value)
ierr value Meaning Processing
0 Normal termination.
1000 n was equal to 1. Input-time contents are output un-
changed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.

58

[DEPRECATED]ASL_zfc1fb, ASL_cfclfb
One-Dimensional Complex Fourier Transforms (Including Initialization)

(6) Notes

(a)

When the number of data n can be adjusted, the calculations can be performed more efficiently by
setting a number for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3,
5, etc.). For example, rather than setting n = 289(=172), it is usually more efficient to set n =
300(=22 x 3 x 52), n = 320(=2% x 5), n = 384(=2" x 3) or the like.

The complex data ci(k =0,---,n — 1) and elements of array c are associated as follows.
Co Ad C[O}
c1 < c[1]

Cn-1 < cn—1]
Similarly, for the complex data d;(j =0,---,n — 1).

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data ci(k = 0,---,n—1) be represented by é,(k =0,---,n—1),
then the following relationship holds.

ér=nc; (k=0,---,n—1)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

To repeatedly compute the transform for the same number of data n, you should call this function once,

and then use the after-initialization transform 2.3.2 ASL.zfelbf , thereafter. This enables processing
ASL _cfclbf

to be performed more efficiently since initialization (factorization or the creation of trigonometric

tables) is performed only once. However, in this case, you must retain the contents of arrays ifax and

ASL _zfc1bf

ASL_cfclbf |

To perform initialization only by setting isw=0, you need not set input data for array c.

trigs so they can be used as input to the function 2.3.2

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number
of samples or sampling interval must be set with this taken into account when sampling to approximate
the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that
is bandwidth limited by the frequency f., if the sampling interval is taken as T = ﬁ, then h(t) can
be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.

hy=TY h(z’T)—Sm?(Tg C_(ZT)iT)

i=—00

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

99

[DEPRECATED]ASL zfc1tb, ASL_cfclfb
One-Dimensional Complex Fourier Transforms (Including Initialization)

(7) Example
See the example in Section 2.3.2 (7).

60

[DEPRECATED]ASL_zfc1bf, ASL_cfclbf
One-Dimensional Complex Fourier Transforms (After Initialization)

2.3.2 [DEPRECATED]ASL zfclbf, ASL_cfclbf

(1)

One-Dimensional Complex Fourier Transforms (After Initialization)

Function

Forward transform

ASL _zfc1bf or ASL_cfclbf computes the complex Fourier forward transform (arbitrary radix) for the complex
data ¢ (k=0,---,n—1).

n—1
d] = ch6_2ﬂ—\/?1% (.] :O,,TL*].)
k=0

Backward transform
ASL zfc1bf or ASL_cfclbf computes the complex Fourier backward transform (arbitrary radix) for the
complex data cx(k=0,---,n —1).

n—1
d; = che%\/j% (j=0,---,n—1)
k=0

Usage
Double precision:

ierr = ASL_zfclbf (n, ¢, 1d, isw, ifax, trigs, wk);
Single precision:

ierr = ASL _cfelbf (n, c, 1d, isw, ifax, trigs, wk);

61

[DEPRECATED|ASL _zfc1bf, ASL_cfclbf
One-Dimensional Complex Fourier Transforms (After Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
A t and Input
No. FEUIMCIE an Type Size nput/ Contents
Return Value Output
n I 1 Input | Number of input data values n (See Note (a))
2 c 7% 1d Input | Input data ¢ (See Note (b))
Cx Output | Output results d; (See Notes (b) and (c))
3 Id I 1 Input | Size of array c
4 isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform
5 ifax I* 20 Input | Factorization results and number of factors
(See Note (a))
6 trigs D+ 2xn Input | Trigonometric function table (See Note (a))
Rx
7 wk 7% n Work | Work area
Cx
8 ierr I 1 Output | Error indicator (Return Value)
(4) Restrictions
(a) n>0
(b) n<1d
(c) isw e {1,-1}
(5) Error indicator (Return Value)
ierr value Meaning Processing
0 Normal termination.
1000 n was equal to 1. Input-time contents are output un-
changed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes

(a) This function can be used to repeatedly compute the transform for the same number of data n after
ASL_zfclfb
ASL _cfclfb
the contents of arrays ifax and trigs so they can be used as input in this function.

the including-initialization function 2.3.1 } has been used. In this case, you must retain

62

[DEPRECATED]ASL_zfc1bf, ASL_cfclbf
One-Dimensional Complex Fourier Transforms (After Initialization)

(b) The complex data cx(k =0,---,n — 1) and elements of array c are associated as follows.
o < c[0]
c1 < c[1]

Cn—1 < cn—1]
Similarly, for the complex data d;(j =0,---,n — 1).

(¢c) When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data cg(k = 0,---,n—1) be represented by é,(k =0,---,n—1),
then the following relationship holds.

ér=nc; (k=0,---,n—1)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

(d) Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number
of samples or sampling interval must be set with this taken into account when sampling to approximate
the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that

i, then h(t) can

be reconstructed from knowledge of only a sequence of sample values {h(:T)} as follows.

sin 2 f.(t — iT)

w(t —iT)

is bandwidth limited by the frequency f., if the sampling interval is taken as T =

ht)=T i h(iT)

i=—00

(e) This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(f) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.
(7) Example

(a) Problem
Compute the complex Fourier forward and backward transform using the following sequence of numbers

as input data.
¢[0] = 3.000 + /—1 x 0.000

[1]
c[2] =2.300 + /1 x 1.173
[3] =1.792 + /=1 x 1.327
c[4] = 1.381 + /—1 x 1.302
c[5] = 1.080 + /=1 x 1.197
c[6] = 0.865 ++/—1 x 1.065
c[7] = 0.711 + /=1 x 0.930
c[8] = 0.600 + v/—1 x 0.800
c[9] = 0.519 + /=1 x 0.679

63

[DEPRECATED|ASL _zfc1bf, ASL_cfclbf
One-Dimensional Complex Fourier Transforms (After Initialization)

[10] = 0.459 + /=1 x 0.566
[11] = 0.415 + /=1 x 0.461
[12] = 0.383 + /=1 x 0.361
[13] = 0.360 + v/—1 x 0.267
[14] = 0.345 + /=1 x 0.176
[15] = 0.336 + /—1 x 0.087

(b) Input data
Arrays cr and ci, n=16, 1d=16, isw=1(Forward transform) and isw=—1(Backward transform).

C
C
C
C
C
C

(¢) Main program
/* C interface example for ASL_zfclfb , ASL_zfclbf */

#include <stdio.h>
#include <stdlib.h>
#include <complex.h>
#include <asl.h>

int main()

int 1d=16;

int n;

double _Complex *c;

int isw;

int ifax[20]; double *trigs;
double _Complex *wk;

int ierr;

int i;

FILE *fp;

fp = fopen("zfclbf.dat", "r");
if(fp == NULL)

printf("file open error\n");

return -1;
printf(" #x% ASL_zfclfb , ASL_zfclbf *xx\n");
printf("\n ** Input **\n\n");

¢ = (double _Complex *)malloc((size_t)(sizeof(double _Complex) * 1d));
if (¢ == NULL)

printf("no enough memory for array c\n");

return -1;

trigs = (double *)malloc((size_t) (sizeof(double) * (2*1d)));
if (trigs == NULL)
printf("no enough memory for array trigs\n");

return -1;

wk = (double _Complex *)malloc((size_t)(sizeof (double _Complex) * 1d));
if (wk == NULL)

printf("no enough memory for array wk\n");
return -1;

fscanf(fp, "%d", &n);

for(i=0 ; i<n ; i++)

double tmp_re, tmp_im;
fscanf(fp, "Y1lf,%1f", &tmp_re, &tmp_im);
c[i] = tmp_re + tmp_im * _Complex_I;

}
printf("\t Real Part Imaginary Part\n");
for(i=0 ; i<n ; i++)

printf("\t creal(c[%3d]) = %8.3g cimag(c[%3d]) = %8.3g\n", i, creal(clil), i, cimag(c[i]));

fclose(fp);

printf("\n ** Qutput **\n");

isw = 1;
ierr = ASL_zfclfb(n, ¢, 1ld, isw, ifax, trigs, wk);

64

[DEPRECATED]ASL_zfc1bf, ASL_cfclbf

One-Dimensional Complex Fourier Transforms (After Initialization)

for(i=0 ; i<n ; i++)

clil /=

n;

printf("\n\t< Forward Transform >\n");
%6d\n", ierr);

printf("\tierr
printf("\n\tSolution\n\n");

printf("\t Real Part
for(i=0 ; i<n ; i++)

printf("\t

isw = -1;

Imaginary Part\n");

creal(c[%3d]) = %8.3g

cimag(c[%3d]) = %8.3g\n", i, creal(clil), i, cimag(cl[il));

jerr = ASL_zfcibf(n, c, 1d, isw, ifax, trigs, wk);

printf("\n\t< Backward Transform >\n");
%6d\n", ierr);

printf("\tierr

printf("\n\tSolution\n\n");

printf("\t Real Part
for(i=0 ; i<n ; i++)

creal(c[%3d]) = %8.3g

printf("\t

free(c);
free(trigs
free(wk);

return O;

}
(d) Output results

*x*x ASL_zfc
** Input *

Real Part
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[

** Qutput

);

1fb

*

ol
11)
21)
3D
41)
51)
61)
71
81)
9l
101)
111)
12]1)
131)
141)
151)

*x

s

Imaginary Part\n");

ASL_zfclbf s*x*x

< Forward Transform >
i 0

ierr =
Solution

Real Part
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[

< Backward

ol
11)
21)
3D
41)
51)
61)
7
81)
9l
101)
111)
12])
131)
141)
151)

[eNeNeNeNeoNeoNe oo Ne NoNe)

2.79

1.79
1.38
1.08
865
.711

[eNe)

.519
459
.415
.383

0.36
0.345
0.336

[eNeNeNeol

1.08
0.583
0.208
0.115
.0911
.0854
.0839
.0835
.0834
.0834
.0833
.0832
.0833
.0833
.0834
.0834

Transform >

Imaginary Part
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl

Imaginary Part
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl

65

cimag(c[%3d]) = %8.3g\n", i, creal(c[il), i, cimag(c[il));

ol
11)
21)
3
41)
51)
61)
71)
81)
9l
101)
111)
12]1)
131)
141)
15]1)

11)
21)
3
41)
51)
61)
7
81)
9l
101)
111)
12])
131)
141)
15]1)

[eNeoNoNeoNoNoNe]
w
[0}
—-

0.695
-0.461
-0.321
-0.197
-0.126

-0.0826
-0.0541
-0.0325
-0.0144
0.00265
0.0197
0.0383
0.0609
0.0915
0.14
0.241

[DEPRECATED]ASL zfc1bf, ASL_cfclbf

One-Dimensional Complex Fourier Transforms (After Initialization)

ierr =

Solution

Real Part

creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[
creal(c[

ol)
11)
21)
3D
al
51)
61)
7
81)
91)
101)
111)
12])
131)
141)
151)

2.79

1.79
1.38
1.08
0.865
0.711

0.519
0.459
0.415
0.383

0.36
0.345
0.336

Imaginary Part
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl

66

11)
21)
3D
a1
51)
61)
7
8l
91)
101)
111)
121)
13]1)
141)
151)

1.11

[eNeoNeoNeNoNoNe}

e-16

2.4 ONE-DIMENSIONAL REAL FOURIER TRANSFORM

2.4.1 [DEPRECATED]ASL_dfr1fb, ASL_rfrlfb

One-Dimensional Real Fourier Transforms (Including Initialization)

(1) Function

Forward transform
ASL_dfr1fb or ASL_rfrlfb obtains a half period of the Fourier forward transform (arbitrary radix) for the
real data rip(k=0,---,n—1).

n—1
Loy oTiE . n
CJZZTW VoIS (JZO,'%LED

k=0

Here, |x] represents the maximum integer that does not exceed z. The remaining half period is obtained

from the following relationship.

Here, z* represents the conjugate complex number of the complex number z.
Backward transform

Given the half period ¢;(j = 0,---,|5]) for n complex data c;(j = 0,---,n — 1) satisfying ¢;,_; = ¢;,
ASL_dfr1fb or ASL_rfr1fb obtains the Fourier backward transform (arbitrary radix) defined as follows.

n—1
/—1ik
Tk :E cje’™
=0
[21-1

\
&
+

(*1)’“6% +2 Z [%{cj}cos@w%) - ¥{c¢)} Sil’l(2ﬂ'%)

(k:0,7n—]_)

Here, [2] represents the minimum integer greater than or equal to x, and R{z} and I{z} represent the real
and imaginary parts of the complex number z, respectively. Also, when n is odd, ¢z =0, and when n is

even, o = Cz.
2 2

Usage
Double precision:

ierr = ASL_dfrlfb (n, r, 1d, isw, ifax, trigs, wk);
Single precision:

ierr = ASL.rfrlfb (n, r, Id, isw, ifax, trigs, wk);

67

[DEPRECATED]ASL_dfr1fb, ASL rfr1fb
One-Dimensional Real Fourier Transforms (Including Initialization)

(3) Arguments and Return Value

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

I { int as for 32bit Integer}

long as for 64bit Integer

No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 n I 1 Input | Number of data values n (See Note (a))
2 r D+ 1d Input | Input data r, (Forward transform) or c;
{R*} (Backward transform) (See Note (b))
Output | Output results ¢; (Forward transform), or
r, (Backward transform) (See Notes (b) and
(©).
3 1d I 1 Input | Size of array r
4 isw I 1 Input | Processing switch(See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform
5 ifax I* 20 Output | Factorization results and number of factors
(See Note (d))
6 trigs Dx n Output | Trigonometric function table (See Note (d))
()
7 wk Dx See Work | Work area
{R* } Contents Size:
n+1, where n is an odd, or
n+2, where n is an even.
8 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a) n>0

(b) n+4 1 <1d, where n is an odd, or

(c) isw € {0,1, -1}

n + 2 < ld, where n is an even.

68

[DEPRECATED]ASL_dfr1fb, ASL_rfr1fb
One-Dimensional Real Fourier Transforms (Including Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
1000 n was equal to 1. Input-time contents are output un-
changed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

(6) Notes

(a) When the number of data n can be adjusted, the calculations can be performed more efficiently by

setting a number for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3,
5, etc.). For example, rather than setting n = 289(=17?), it is usually more efficient to set n =
300(=22 x 3 x 52), n = 320(=2% x 5), n = 384(=2" x 3) or the like.

The real data r,(k = 0,---,n — 1) and elements of array r are associated as follows.
o < 1[0]
r1 < 1l

Tno1 <+ rn—1]

When computing the backward transform, if n(=n) is odd, then r[n] = 0, and when n is even, then
r[n] = r[n+1] = 0. Also, when entering the real data r(k = 0,---,n—1) into array r, the corresponding
zeros need not be specifically stored in elements r[n] and following.

If we let the real and imaginary parts of the complex data ¢; (j = 0,---,[5]) be R{c;} and I{c¢;},
respectively, the ¢; and elements of array r are associated as follows. Here, |z | represents the maximum
integer that does not exceed .

R{co} < r[0]

(\}{Co} <~ I‘[l]
R{c1} < r[2]
< 13

S{er}
Riciz)} < 1[m-—2]
%{CL%} < rm—1] (m=n+1[n:0dd] or n+2[n:Even])
However, when n is odd, m=n+1 is assumed, and when n is even, m=n+2 is assumed. From the
properties of a real Fourier transform, when n is odd, S{cp} = 0, and when n is even, ${co} =
S{cz} = 0. Therefore, even if nonzero values are set for the corresponding elements of array r, they
are considered to be zero when processing is performed. Since the elements ¢; (j = |5]+1,---,n—1)
can be obtained according to the following relationship from the symmetry of the real Fourier transform,
they need not be assigned as input when computing the backward transform. Also, they are not output

when computing the forward transform.

_ *
Cpn—j = Cj

Here, z* represents the conjugate complex number of the complex number z.

69

[DEPRECATED]ASL_dfr1fb, ASL rfr1fb
One-Dimensional Real Fourier Transforms (Including Initialization)

()

(g)

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the real data ri(k = 0,---,n — 1) be represented by #x(k = 0,---,n — 1),
then the following relationship holds.

TR = NTE (k:()?’n_l)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

To repeatedly compute the transform for the same number of data n, you should call this function once,

and then use the after-initialization transform 2.4.2 ASL.dfr1bf , thereafter. This enables processing
ASL _rfr1bf

to be performed more efficiently since initialization (factorization or the creation of trigonometric

tables) is performed only once. However, in this case, you must retain the contents of arrays ifax and

ASL_dfr1bf

ASL_rfribf |

To perform initialization only by setting isw=0, you need not set input data for array r.

trigs so they can be used as input to the function 2.4.2

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number
of samples or sampling interval must be set with this taken into account when sampling to approximate
the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that
is bandwidth limited by the frequency f., if the sampling interval is taken as T = ﬁ, then h(t) can

be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.

sin 2w f.(t —iT)

h(ty=T > h(iT) T

i=—00

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

(7) Example

See the example in Section 2.4.2 (7).

70

[DEPRECATED]ASL_dfr1bf, ASL_rfr1bf
One-Dimensional Real Fourier Transforms (After Initialization)

2.4.2 [DEPRECATED]ASL dfr1bf, ASL _rfr1bf

(1)

One-Dimensional Real Fourier Transforms (After Initialization)

Function

Forward transform

ASL_dfr1bf or ASL_rfrlbf obtains a half period of the Fourier forward transform (arbitrary radix) for the
real data rip(k=0,---,n—1).

n—1
omy—TiE . n
cjzzrke2ﬁn (JZO»"ngJ)

k=0

Here, |x] represents the maximum integer that does not exceed z. The remaining half period is obtained

from the following relationship.

Here, z* represents the conjugate complex number of the complex number z.
Backward transform

Given the half period ¢;(j = 0,---,|5]) for n complex data c;(j = 0,---,n — 1) satisfying c;,_;
ASL_dfr1bf or ASL_rfr1bf obtains the Fourier backward transform (arbitrary radix) defined as follows.

= Cj7

n—1
ry = Z cje%\/j%
j=0
[51-1 .
=co+ (—DFeg +2 Y R{ce?V IR}
=1

j=
r¢1-1

=Cot (*l)ké% +2 Z [m{cj}cos(mr%) — 3{¢} SiH(QW%)
(k=0,---,n—1) ”

Here, [2] represents the minimum integer greater than or equal to x, and R{z} and I{z} represent the real
and imaginary parts of the complex number z, respectively. Also, when n is odd, ¢z =0, and when n is

even, o = Cz.
2 2

Usage
Double precision:

ierr = ASL_dfrlbf (n, r, 1d, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_rfrlbf (n, r, Id, isw, ifax, trigs, wk);

71

[DEPRECATED]ASL_dfr1bf, ASL_rfr1bf
One-Dimensional Real Fourier Transforms (After Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
n I 1 Input | Number of data values n (See Note (a))
2 r D+ 1d Input | Input data r, (Forward transform) or c;
{R*} (Backward transform) (See Note (b)).
Output | Output results ¢; (Forward transform), or
r, (Backward transform) (See Notes (b) and
(©)).
3 1d I 1 Input | Size of array r
4 isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform
5 ifax I* 20 Input | Factorization results and number of factors
(See Note (a))
6 trigs D+ n Input | Trigonometric function table (See Note (a))
()
7 wk D+ See Work | Work area
{R* } Contents Size:
n + 1, where n is an odd, or
n + 2, where n is an even.
8 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a) n>0

(b) n+ 1 <1d, where n is an odd, or

n + 2 < ld, where n is an even.
(c) isw € {1,—1}

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
1000 n was equal to 1. Input-time contents are output un-
changed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.

72

[DEPRECATED]ASL_dfr1bf, ASL_rfr1bf
One-Dimensional Real Fourier Transforms (After Initialization)

(6) Notes

()

This function can be used to repeatedly compute the transform for the same number of data n after

ASL _dfrlfb

the including-initialization function 2.4.1 } has been used. In this case, you must retain

ASL_rfrlfb
the contents of arrays ifax and trigs so they can be used as input in this function.
The real data r;(k = 0,---,n — 1) and elements of array r are associated as follows.
o < 1[0]
71 4 I‘[l]
Tno1 <+ rn—1]

When computing the backward transform, if n(=n) is odd, then r[n] = 0, and when n is even, then
r[n] = r[n+1] = 0. Also, when entering the real data r;(k = 0,---,n—1) into array r, the corresponding
zeros need not be specifically stored in elements r[n] and following,.

If we let the real and imaginary parts of the complex data ¢; (j = 0,---,[5]) be R{c;} and I{c;},
respectively, the ¢; and elements of array r are associated as follows. Here, |z | represents the maximum

integer that does not exceed .

R{co} < 1]0]

S{eo} < r[l]

R{c1} < r[2]

{er} < 1[3]

%{CL%J} Ad r[mf 2]

S{epz)} < rm—1] (m=n+1n:0dd] or n+2[n:Even])

However, when n is odd, m=n+1 is assumed, and when n is even, m=n+2 is assumed. From the
properties of a real Fourier transform, when n is odd, S{cp} = 0, and when n is even, ${co} =
S{cz} = 0. Therefore, even if nonzero values are set for the corresponding elements of array r, they
are considered to be zero when processing is performed. Since the elements ¢; (j = |3]+1,---,n—1)
can be obtained according to the following relationship from the symmetry of the real Fourier transform,
they need not be assigned as input when computing the backward transform. Also, they are not output

when computing the forward transform.

_ *
Cpn—j = Cj

Here, z* represents the conjugate complex number of the complex number z.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the real data ri(k = 0,---,n — 1) be represented by #x(k = 0,---,n — 1),

then the following relationship holds.
T = Nry (k:O,,TL—l)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

73

[DEPRECATED]ASL_dfr1bf, ASL_rfr1bf
One-Dimensional Real Fourier Transforms (After Initialization)

(d)

(f)

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number
of samples or sampling interval must be set with this taken into account when sampling to approximate
the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that
i, then h(t) can
be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.

hey=T " h(iT)—Sini?tf Jti;)iT)

is bandwidth limited by the frequency f., if the sampling interval is taken as T =

i=—00

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

(7) Example

(a)

(b)

Problem
Compute the one-dimensional real Fourier forward and backward transforms using the following se-

quence of numbers as input data.

r[0] = 2.000
r[l] = 1.503
r[2] = 1.000
r[3] = 0.665
r[4] = 0.500
r[5] = 0.452
r[6] = 0.478
r[7] = 0.553
r[8] = 0.667
r[9] = 0.815
r[10] = 1.000
r[11] = 1.227
r[12] = 1.500
r[13] = 1.808
r[14] = 2.094
r[15] = 2.214
Input data

Array r, n=16, 1d=18, isw=1(Forward transform) and isw=—1 (Backward transform).

74

[DEPRECATED]ASL_dfr1bf, ASL_rfr1bf
One-Dimensional Real Fourier Transforms (After Initialization)

(¢) Main program

/* C interface example for ASL_dfrifb , ASL_dfribf x/

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()
{

int 1d=18;

int n;

double *r;

int ifax[20];
double *trigs;
double *wk;
int isw;

int ierr;

int i;

FILE *fp;

fp = fopen("dfribf.dat", "r");
if(fp == NULL)

printf("file open error\n");

return -1;
printf(" ***x ASL_dfrifb , ASL_dfribf #*x*x\n");
printf("\n *x Input **\n\n");

r = (double *)malloc((size_t)(sizeof(double) * 1d));
if(r == NULL)

printf("no enough memory for array r\n");
return -1;

trigs = (double *)malloc((size_t)(sizeof(double) * 1d));
if (trigs == NULL)

printf("no enough memory for array trigs\n");
return -1;
wk = (double *)malloc((size_t)(sizeof(double) * 1d));
if (wk == NULL)
printf("no enough memory for array wk\n");

return -1;

fscanf(fp, "%d", &n);
for(i=0 ; i<n ; i++)

fscanf(fp, "4Lf", &rlil);
}

printf("\t Real Part\n");
for(i=0 ; i<n ; i++)

printf("\t r[%3d] = %8.3g\n", i, r[i]);

fclose(fp);
printf("\n *x Output **\n");
isw = 1;
ierr = ASL_dfrifb(n, r, 1ld, isw, ifax, trigs, wk);
for(i=0 ; i<n+2 ; i++)
r[i]l /= n;
printf("\n\t< Forward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\n\tSolution\n");
printf("\t Real Part Imaginary Part\n");
for(i=0 ; i<n+2 ; i = i+2)

printf("\t «r[%3d] = %8.3g\t\t «r[%3d] = ¥8.3g\n", i, rl[i], i+1, rl[i+1]);
isw = -1;
ierr = ASL_dfribf(n, r, 1d, isw, ifax, trigs, wk);

printf("\n\t< Backward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\n\tSolution\n");

5

[DEPRECATED]ASL_dfr1bf, ASL_rfr1bf
One-Dimensional Real Fourier Transforms (After Initialization)

printf("\t Real Part\n");
for(i=0 ; i<n+2 ; i++)

printf("\t r[/%3d] = %8.3g\n", i, rl[i]);
free(r);
free(trigs);
free(wk);

return O;

}
(d) Output results

k% ASL_dfrifb , ASL_dfribf sxx*

*k Input *%

Real Part

r[0] = 2
r[1] = 1.5
r[2] = 1
r[3] = 0.665
r[4] = 0.5
r[5] = 0.452
r[6] = 0.478
r[7] = 0.553
r[8] = 0.667
r[9] = 0.815
r[10] = 1
r[11] = 1.23
r[12] = 1.5
r[13] = 1.81
r[14] = 2.09
r[15] = 2.21

*% Qutput *x*

< Forward Transform >
i 0

ierr =
Solution
Real Part Imaginary Part
r[0] = 1.15 r[1] =
r[2] = 0.309 r[3] = 0.268
r[4] = 0.0829 r[5] = 0.0719
r[6] = 0.0222 r[7] = 0.0192
r[8] = 0.00594 r[9] = 0.00506
r[10] = 0.00156 r[11] = 0.00139
r[12] = 0.000454 r[13] = 0.000357
r[14] = 0.000103 r[15] = 0.000104
r[16] = 0.000125 r[17] = 0
< Backward Transform >
ierr = 0
Solution
Real Part
r[0] = 2
r[1] = 1.5
r[2] = 1
r[3] = 0.665
r[4] = 0.5
r[5] = 0.452
r[6] = 0.478
r[7] = 0.553
r[8] = 0.667
r[9] = 0.815
r[10] = 1
r[11] = 1.23
r[12] = 1.5
r[13] = 1.81
r[14] = 2.09
r[15] = 2.21
r[16] = 0
r[17] = 0

76

2.5 MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER
TRANSFORM (REAL ARGUMENT TYPE)

2.5.1 [DEPRECATED]ASL dfcmfb, ASL rfcmfb
Multiple One-Dimensional Complex Fourier Transforms (Include Initializa-
tion)

(1) Function
Forward transform
ASL_dfcmfb or ASL_rfemfb computes the m-fold one-dimensional complex Fourier forward transform (ar-
bitrary radix) for the complex data c;;(k=0,---,n—1; I =1,---,m).

n—1
dj; = Z%ze‘%ﬁ% (G=0,---,n—1;1=1,---,m)
k=0

Backward transform
ASL_dfemfb or ASL_rfemfb computes the m-fold one-dimensional complex Fourier backward transform
(arbitrary radix) for the complex data c;;(k=0,---,n—1; I =1,---,m).

n—1
dj; = Z%le%\/—l% (j=0,---,n—1;1=1,---,m)
k=0

(2) Usage
Double precision:
ierr = ASL_dfemfb (n, m, cr, ci, incn, incm, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_rfemfb (n, m, cr, ci, incn, incm, isw, ifax, trigs, wk);

(s

[DEPRECATED]ASL _dfemtb, ASL_rfcmfb

Multiple One-Dimensional Complex Fourier Transforms (Include Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 n I 1 Input | Number of transformed data values n (See
Note (a))
2 m I 1 Input | Multiplicity m
cr D+ See Input | Real part of input data ¢ (See Note (b))
{R*} Contents Size: incn x (n— 1) +incm x (m—1) +1
Output | Real part of output data d;; (See Notes (b)
and (c))
4 ci D+ See Input | Imaginary part of input data c,; (See Note
{R*} Contents (b))
Size: incn X (n—1) 4+ incm X (m — 1)+ 1
Output | Imaginary part of output data d;; (See Notes
(b) and (c))
5 incn I 1 Input | The stride between each transformed datum
in storage (See Note (b))
6 incm I 1 Input | The stride between the first elements of each
transformed data in storage (See Note (b))
7 isw I 1 Input | Processing switch (See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform
8 ifax I* 20 Output | Factorization results and number of factors
(See Note (d))
9 trigs Dx 2 Xn Output | Trigonometric function table (See Note (d))
)
10 wk D 2xmxn| Work | Work area
1)
11 ierr I 1 Output | Error indicator (Return Value)

78

[DEPRECATED]ASL_dfemfb, ASL_rfemfb
Multiple One-Dimensional Complex Fourier Transforms (Include Initialization)

(4) Restrictions

(a) n>0

(b)

m >0

incn > 0

incm > 0

(¢) incn > m x gem(inen, inem) or

(d)

incm > n x gem(inen, incm)

(Where, gem(i, §) is the greatest common measure between ¢ and j.)

isw € {0,1, -1}

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.

1000 n was equal to 1. Input data is output unchanged.
3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

3030 Restriction (d) was not satisfied.

(6) Notes

(a)

When the number of transformed data n can be adjusted, the calculations can be performed more
efficiently by setting a number for which the mixed radix FFT algorithm operates effectively (multiples
of 2, 3, 5, etc.). For example, rather than setting n = 289(=172), it is usually more efficient to set n =
300(=22 x 3 x 52), n = 320(=2% x 5), n = 384(=2" x 3) or the like.

If we let the real and imaginary parts of the complex data c¢x; (k =0,---,n—1; I = 1,---,m) be

R{ck,} and {ck,}, respectively, the ci; and elements of arrays cr and ci are associated as follows.

R{ck.} <« crfinen xk + incm * (1—1)]
ek} < cifinen xk + incm * (1 —1)]

For example, if we let incn=1 and incm=n, then the associations are as follows:
\SR{C]CJ} < crfk4+nx(1-1)], %{Chl} < cik+nx(1-1)]

and the data is stored so that it is packed consecutively for subscript k. If we let incn=m and incm=1,
then the associations are as follows:

R{cr:} < cll-1)+mxk], e} < ci[l—1)+m=*k]

and the data is stored so that it is packed consecutively for subscript [. Similarly, for the complex data
dji(j=0,---,n—1; I =1,---,m). Values in areas where the data of arrays cr and ci is not stored do
not change when this function is called.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of

transformed data. For example, if we let the data obtained by computing the backward transform

79

[DEPRECATED]ASL _dfemtb, ASL_rfcmfb
Multiple One-Dimensional Complex Fourier Transforms (Include Initialization)

(g)

immediately following the forward transform for the complex data c; (k=0,---,n—1; I =1,---,m)

be represented by ¢, (k =0,---,n —1; [=1,---,m), then the following relationship holds.
tra=mncpy (k=0,---,n—1; 1 =1,---,m)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

To repeatedly compute the transform for the same number of data n, you should call this function once,

and then use the after-initialization transform 2.5.2 ASL.dfembf , thereafter. This enables processing
ASL_rfembf
to be performed more efficiently since initialization (factorization or the creation of trigonometric
tables) is performed only once. However, in this case, you must retain the contents of arrays ifax and
ASL_dfembf

ASL _rfembf |
To perform initialization only by setting isw=0, you need not set input data for arrays cr and ci.

trigs so they can be used as input to the function 2.5.2

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number
of samples or sampling interval must be set with this taken into account when sampling to approximate
the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that
i, then h(t) can
be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.

ht)=T p(ir) 22T 1) ?(Tf C_(tiT)iT)

is bandwidth limited by the frequency f., if the sampling interval is taken as T =

1=—0Q

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the
higher performance alternative implementation instead.

(7) Example

See the example in Section 2.5.2 (7).

80

[DEPRECATED]ASL_dfcmbf, ASL_rfcmbf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

2.5.2 [DEPRECATED]ASL _dfcmbf, ASL_rfcmbf

(1)

Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

Function
Forward transform
ASL_dfcmbf or ASL_rfcmbf computes the m-fold one-dimensional complex Fourier forward transform (arbi-

trary radix) for the complex data ¢ (k=0,---,n—1; I =1,---,m).

n—1
dj; = Zchlefzm/—_l% (Gj=0,---,n—1;1=1,---,m)
k=0

Backward transform
ASL_dfembf or ASL_rfembf computes the m-fold one-dimensional complex Fourier backward transform

(arbitrary radix) for the complex data ¢ (k=0,---,n—1; I =1,---,m).

n—1
dji :ch’lezﬂﬁ% (G=0,--n—1;1=1,---,m)
k=0

Usage
Double precision:

ierr = ASL_dfcmbf (n, m, cr, ci, incn, incm, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_rfembf (n, m, cr, ci, incn, incm, isw, ifax, trigs, wk);

81

[DEPRECATED]ASL _dfcmbf, ASL_rfembf

Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 n I 1 Input | Number of transformed data values n (See
Note (a))
2 m I 1 Input | Multiplicity m
cr D+ See Input | Real part of input data ¢ (See Note (b))
{R*} Contents Size: incn x (n— 1) +incm x (m—1) +1
Output | Real part of output data d;; (See Notes (b)
and (c))
4 ci D+ See Input | Imaginary part of input data c,; (See Note
{R* } Contents (b))
Size: incn X (n—1) 4+ incm X (m — 1)+ 1
Output | Imaginary part of output data d;; (See Notes
(b) and (c))
5 incn I 1 Input | The stride between each transformed datum
in storage (See Note (b))
6 incm I 1 Input | The stride between the first elements of each
transformed data in storage (See Note (b))
7 isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform
8 ifax I* 20 Input | Factorization results and number of factors
(See Note (a))
9 trigs D+ 2 xn Input | Trigonometric function table (See Note (a))
()
10 wk D+ 2xmxn Work | Work area
1
11 ierr I 1 Output | Error indicator (Return Value)

82

[DEPRECATED]ASL_dfcmbf, ASL_rfcmbf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

(4) Restrictions

(a)

(b)

()

(d)

n>0
m >0
incn >0
incm > 0
incn > m x gem(inen, inem) or
incm > n x gem(inen, incm)
(Where, gem(%, §) is the greatest common measure between ¢ and j.)

isw e {1,-1}

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
1000 n was equal to 1. Input data is output unchanged.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
3030 Restriction (d) was not satisfied.
(6) Notes
(a) This function can be used to repeatedly compute the transform for the same number of transformed
ASL_dfemfb
data n after the including-initialization function 2.5.1 o has been used. In this case, you
ASL_rfcmfb

()

must retain the contents of arrays ifax and trigs so they can be used as input in this function.
If we let the real and imaginary parts of the complex data c¢x; (k = 0,---,n—1; [= 1,---,m) be
R{ck,} and I{ck,}, respectively, the ¢, ; and elements of arrays cr and ci are associated as follows.
R{ck,} <« crfinen xk +incm * (1—1)]
ek} ¢ cifinen x k 4 incm * (1 — 1))
For example, if we let incn=1 and incm=n, then the associations are as follows:
Ri{cka} < ck+nx(1-1)], ey} < cik+n*(l—1)]

and the data is stored so that it is packed consecutively for subscript k. If we let incn=m and incm=1,

then the associations are as follows:
Ri{ck,} < cr[1-1)+m=k], exyt < ci[l—1)+m=xk]

and the data is stored so that it is packed consecutively for subscript I. Similarly, for the complex data
dji(j=0,---,n—1; I =1,---,m). Values in areas where the data of arrays cr and ci is not stored do

not change when this function is called.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of
transformed data. For example, if we let the data obtained by computing the backward transform
immediately following the forward transform for the complex data cx (k=0,---,n—1; I =1,---,m)

be represented by é(k=0,---,n—1; I =1,---,m), then the following relationship holds.

ék,l:nck,l (k:(),...,n—l; 1:17...,m)

83

[DEPRECATED]ASL _dfcmbf, ASL_rfembf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

(e)

(f)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries
a normalized result is defined.

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number
of samples or sampling interval must be set with this taken into account when sampling to approximate
the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that
is bandwidth limited by the frequency f., if the sampling interval is taken as T = ﬁ, then h(t) can

be reconstructed from knowledge of only a sequence of sample values {h(iT")} as follows.

ht)=T i h(iT)

i=—00

sin 2w f.(t —iT)
w(t —iT)

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the
higher performance alternative implementation instead.

(7) Example

(a)

Problem

Compute the multiple one-dimensional complex Fourier transform using the following sequence of
numbers as input data.

cr[0= 1.000 ci[0]=4.000

84

[DEPRECATED]ASL _dfcmbf, ASL_rfembf

Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

cr[25]=2.000 ci[25]=1.000
cr[27]=1.000 ¢i[27]=1.000
cr[28]= 1.000 ¢i[28]=1.000
cr[29]= 1.000 ¢i[29]=1.000
cr[30]= 1.000 ¢i[30]=1.000
cr[31]=1.000 ci[31]=1.000
cr[32]= 1.000 ¢i[32]=1.000
cr[33]= 1.000 c¢i[33]=1.000
cr[34]=1.000 ci[34]=1.000
Input data

Array cr and ci, n=8, m=4, incn=1, incm=9, isw=1 (forward transform) and isw=—1 (backward

transform).

Main program
/*
#include <stdio.h>

#include <stdlib.h>
#include <asl.h>

C interface example for ASL_dfcmfb , ASL_dfcmbf */

int main()

int 1d=35;
int n;
double *cr;
int incn;
int isw;
int ifax[20];
double *wk;
int ierr;

int m;
double *ci;
int incm;

double *trigs;
int i,j;
FILE *fp;

fp = fopen("dfcmbf.dat",
if(£p == NULL)

yn);

printf("file open error\n");
return -1;

**x ASL_dfcmfb , ASL_dfcmbf **x\n");
*x Input **\n\n");

printf("
printf("\n

cr = (double *)malloc((size_t)(sizeof(double) * 1d));
if (cr == NULL)

printf("no enough memory for array cr\n");
return -1;
ci = (double *)malloc((size_t)(sizeof(double) * 1d));
if (c¢i == NULL)
printf("no enough memory for array ci\n");
return -1;
trigs =
if(trigs == NULL)
printf("no enough memory for array trigs\n");
return -1;
wk = (double *)malloc((size_t)(sizeof(double) * (2%1d)
if (wk == NULL)
printf("no enough memory for array wk\n");
return -1;
fscanf(fp, "%d,%d,%d,%d", &n, &m, &incn, &incm);
for(j=0 ; j<m ; j++)
{

for(i=0 ; i<n ; i++)

(double *)malloc((size_t)(sizeof(double) * (2%1d)));

));

fscanf(fp, "Y1lf,%1f", &crl[i*incn+j*incm], &cil[i*incn+j*incm]);

85

[DEPRECATED]ASL _dfcmbf, ASL_rfembf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

}
printf("\t =n % \n", n);
printf("\t m %d \n", m);

%d \n", incn);
%d \n\n", incm);

printf("\t incn
printf("\t incm

printf("\t Real Part Imaginary Part\n");
for(j=0 ; j<m ; j++)
for(i=0 ; i<n ; i++)

printf("\t cr[%3d] = %8.3g ci[%3d] = %8.3g\n",
i*incn+j*incm, cr[i*incn+j*incm],
i*incn+j*incm, cili*incn+j*incm]);

}
fclose(fp);
printf("\n ** Qutput **\n");
isw = 1;
ierr = ASL_dfcmfb(n, m, cr, ci, incn, incm, isw, ifax, trigs, wk);
for(j=0 ; j<m ; j++)
¢ for(i=0 ; i<n ; i++)

{ cr[i*incn+j*incm] /= n ;

ci[i*incn+j*incm] /= n ;

}

printf("\n\t< Forward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\n\tSolution\n\n");
printf("\t Real Part Imaginary Part\n");
for(j=0 ; j<m ; j++)
for(i=0 ; i<n ; i++)
printf("\t cr[%3d] = %8.3g ci[%3d] = %8.3g\n",

i*incn+j*incm, cr[i*incn+j*incm],
i*incn+j*incm, cili*incn+j*incm]);

}

isw = -1;
ierr = ASL_dfcmbf(n, m, cr, ci, incn, incm, isw, ifax, trigs, wk);

printf("\n\t< Backward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\n\tSolution\n\n");
printf("\t Real Part Imaginary Part\n");
for(j=0 ; j<m ; j++)
{
for(i=0 ; i<n ; i++)
printf("\t cr[%3d] = %8.3g ci[%3d] = %8.3g\n",

i*incn+j*incm, cr[i*incn+j*incm],
i*incn+j*incm, cili*incn+j*incm]);

free(cr);
free(ci);
free(trigs);
free(wk);

return O;

}
(d) Output results

*xx ASL_dfcmfb , ASL_dfcmbf *x*

*k Input *%

n =8

m =4

incn = 1

incm = 9
Real Part Imaginary Part

86

[DEPRECATED]ASL _dfcmbf, ASL_rfembf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

cr[0] = 1 ci[0] = 4
cr[1] = 2 ci[1] = 3
cr[2] = 3 ci[2] = 2
cr[3] = 4 ci[3] = 1
cr[4] = 4 ci[4] = 1
cr[5] = 3 ci[5] = 2
cr[6] = 2 ci[6] = 3
cr[7] = 1 ci[7] = 4
cr[9] = 1 ci[9] = 2
cr[10] = 1 ci[10] = 2
cr[11] = 2 ci[11] = 1
cr[12] = 2 ci[12] = 1
cr[13] = 2 ci[13] = 1
cr[14] = 2 ci[14] = 1
cr[15] = 1 ci[15] = 2
cr[16] = 1 ci[16] = 2
cr[18] = 1 ci[18] = 2
cr[19] = 1 ci[19] = 2
cr[20] = 1 ci[20] = 2
cr[21] = 1 ci[21] = 2
cr[22] = 2 ci[22] = 1
cr[23] = 2 ci[23] = 1
cr[24] = 2 ci[24] = 1
cr[25] = 2 ci[25] = 1
cr[27] = 1 ci[27] = 1
cr[28] = 1 ci[28] = 1
cr[29] = 1 ci[29] = 1
cr[30] = 1 ci[30] = 1
cr[31] = 1 ci[31] = 1
cr[32] = 1 ci[32] = 1
cr[33] = 1 ci[33] = 1
cr[34] = 1 ci[34] = 1

** Qutput *x*

< Forward Transform >

ierr = 0

Solution
Real Part Imaginary Part
cr[0] = .5 ci[0] = 2.5
cr[1] = -1.03 ci[1] = 0.427
cr[2] = 0 ci[2] =
cr[3] = -0.0732 ci[3] = -0.0303
cr[4] = 0 ci[4] =
cr[5] = 0.0303 ci[5] = 0.0732
cr[6] = 0 ci[6] = 0
cr[7] = -0.427 ci[7] = 1.03
cr[9] = 1.5 ci[9] = 1.5
cr[10] = -0.427 ci[10] = 0.177
cr[11] = 0 ci[11] = 0
cr[12] = 0.177 ci[12] = 0.0732
cr[13] = 0 ci[13] = 0
cr[14] = -0.0732 ci[14] = -0.177
cr[15] = 0 ci[15] = 0
cr[16] = -0.177 ci[16] = 0.427
cr[18] = 1.5 ci[18] = 1.5
cr[19] = 0.177 ci[19] = 0.427
cr[20] = 0 ci[20] = 0
cr[21] = -0.0732 ci[21] = 0.177
cr[22] = 0 ci[22] = 0
cr[23] = -0.177 ci[23] = 0.0732
cr[24] = ci[24] =
cr[25] = -0.427 ci[25] = -0.177
cr[27] = 1 cil 27] = 1
cr[28] = 0 ci[28] = 0
cr[29] = 0 ci[29] = 0
cr[30] = 0 ci[30] = 0
cr[31] = 0 ci[31] = 0
cr[32] = 0 ci[32] = 0
cr[33] = 0 ci[33] = 0
cr[34] = 0 ci[34] = 0

< Backward Transform >

ierr = 0

Solution
Real Part Imaginary Part
cr[0] = 1 ci[0] = 4
cr[1] = 2 ci[1] = 3
cr[2] = 3 ci[2] = 2
cr[3] = 4 ci[3] = 1
cr[4] = 4 ci[4] = 1
cr[5] = 3 ci[5] = 2
cr[6] = 2 ci[6] = 3
cr[7] = 1 ci[7] = 4
cr[9] = 1 ci[9] = 2
cr[10] = 1 ci[10] = 2
cr[11] = 2 ci[11] = 1
cr[12] = 2 ci[12] = 1
cr[13] = 2 ci[13] = 1
cr[14] = 2 ci[14] = 1

87

[DEPRECATED]ASL_dfcmbf, ASL_rfcmbf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

cr[15] = 1 ci[15] = 2
cr[16] = 1 ci[16] = 2
cr[18] = 1 ci[18] = 2
cr[19] = 1 ci[19] = 2
cr[20] = 1 ci[20] = 2
cr[21] = 1 ci[21] = 2
cr[22] = 2 ci[22] = 1
cr[23] = 2 ci[23] = 1
cr[24] = 2 ci[24] = 1
cr[25] = 2 ci[25] = 1
cr[27] = 1 ci[27] = 1
cr[28] = 1 ci[28] = 1
cr[29] = 1 ci[29] = 1
cr[30] = 1 ci[30] = 1
cr[31] = 1 ci[31] = 1
cr[32] = 1 ci[32] = 1
cr[33] = 1 ci[33] = 1
cr[34] = 1 ci[34] = 1

88

2.6 MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER
TRANSFORM (COMPLEX ARGUMENT TYPE)

2.6.1 [DEPRECATED]ASL zfcmfb, ASL_cfcmfb
Multiple One-Dimensional Complex Fourier Transforms (Include Initializa-
tion)

(1) Function
Forward transform
ASL _zfcmfb or ASL_cfemfb computes the m-fold one-dimensional complex Fourier forward transform (arbi-
trary radix) for the complex data ¢, (k=0,---,n—1; I =1,---,m).

n—1
dj; = Z%ze‘%ﬁ% (G=0,---,n—1;1=1,---,m)
k=0

Backward transform
ASL_zfemfb or ASL_cfcmfb computes the m-fold one-dimensional complex Fourier backward transform
(arbitrary radix) for the complex data ¢;;(k=0,---,n—1; I =1,---,m).

n—1
dj; = Z%le%\/—l% (j=0,---,n—1;1=1,---,m)
k=0

(2) Usage
Double precision:
ierr = ASL zfemfb (n, m, ¢, incn, incm, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_cfemfb (n, m, ¢, incn, incm, isw, ifax, trigs, wk);

89

[DEPRECATED]ASL zfcmtb, ASL_cfemfb
Multiple One-Dimensional Complex Fourier Transforms (Include Initialization)

(3) Arguments and Return Value

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

I { int as for 32bit Integer}

long as for 64bit Integer

No. Argument and Type Size fnput/ Contents
Return Value ’ Output

1 n I 1 Input | Number of transformed data values n (See
Note (a))

2 m I 1 Input | Multiplicity m

3 c 7% See Input | Input data c; (See Note (b))

{C*} Contents Size: incn x (n — 1) +incm x (m—1) +1
Output | Output data d;; (See Notes (b) and (c))

4 incn I 1 Input | The stride between each transformed datum
in storage (See Note (b))

5 incm I 1 Input | The stride between the first elements of each
transformed data in storage (See Note (b)

6 isw I 1 Input | Processing switch (See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform

7 ifax I* 20 Output | Factorization results and number of factors
(See Note (d))

8 trigs D+ 2Xxn Output | Trigonometric function table (See Note (d))

Rx
9 wk Tk mxn Work | Work area
4
10 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a)

(b)

()

n>0
m>0

incn > 0
incm > 0
incn > m x gem(inen, inem) or

incm > n x gem(inen, incm)

(Where, gem(i, j) is the greatest common measure between ¢ and j.)

isw € {0,1, -1}

90

[DEPRECATED]ASL zfcmtb, ASL_cfemfb
Multiple One-Dimensional Complex Fourier Transforms (Include Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.

1000 n was equal to 1. Input data is output unchanged.
3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

3030 Restriction (d) was not satisfied.

(6) Notes

(a)

When the number of transformed data n can be adjusted, the calculations can be performed more
efficiently by setting a number for which the mixed radix FFT algorithm operates effectively (multiples
of 2, 3, 5, etc.). For example, rather than setting n = 289(=172), it is usually more efficient to set n =
300(=22 x 3 x 52), n = 320(=2% x 5), n = 384(=2" x 3) or the like.
The complex data ci; (k=0,---,n—1; I =1,---,m) and elements of array c are associated as follows.
k1 <> c[inen * k + incm # (1 — 1)]
For example, if we let incn=1 and incm=n, then the associations are as follows:
Ck,l <> C[k+ n * (1 — 1)]

and the data is stored so that it is packed consecutively for subscript k. If we let incn=m and incm=1,

then the associations are as follows:
ek <> c[(l—1) + m*K]

and the data is stored so that it is packed consecutively for subscript [. Similarly, for the complex data
dji(j =0,---,m—1; Il =1,---,m). Values in areas where the data of array c¢ is not stored do not

change when this function is called.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of
transformed data. For example, if we let the data obtained by computing the backward transform
immediately following the forward transform for the complex data ¢x (k=0,---,n—1; I =1,---,m)

be represented by ¢, ;(k =0,---,n —1; [= 1,---,m), then the following relationship holds.
éri=mncpy (k=0,---,n—1; 1=1,---,m)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries
a normalized result is defined.

To repeatedly compute the transform for the same number of data n, you should call this function once,

and then use the after-initialization transform 2.6.2 ASL.zfembf , thereafter. This enables processing
ASL_cfcmbf

to be performed more efficiently since initialization (factorization or the creation of trigonometric

tables) is performed only once. However, in this case, you must retain the contents of arrays ifax and

ASL _zfcmbf

ASL _cfembf [

To perform initialization only by setting isw=0, you need not set input data for array c.

trigs so they can be used as input to the function 2.6.2

91

[DEPRECATED]ASL zfcmtb, ASL_cfemfb
Multiple One-Dimensional Complex Fourier Transforms (Include Initialization)

()

(2)

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number
of samples or sampling interval must be set with this taken into account when sampling to approximate
the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that
is bandwidth limited by the frequency f., if the sampling interval is taken as T = i, then h(t) can
be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.
= sin27fo(t —iT)
h(t)=T) h(zT)W

i=—00

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

(7) Example

See the example in Section 2.6.2 (7).

92

[DEPRECATED]ASL zfembf, ASL_cfembf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

2.6.2 [DEPRECATED]ASL_zfcmbf, ASL_cfcmbf

(1)

Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

Function
Forward transform
ASL _zfembf or ASL_cfembf computes the m-fold one-dimensional complex Fourier forward transform (arbi-

trary radix) for the complex data ¢, (k=0,---,n—1; I =1,---,m).

n—1
dj; = Zchlefzm/—_l% (Gj=0,---,n—1;1=1,---,m)
k=0

Backward transform
ASL _zfembf or ASL_cfembf computes the m-fold one-dimensional complex Fourier backward transform (ar-

bitrary radix) for the complex data ci (k=0,---,n—1; I =1,---,m).

n—1
dji :ch’lezﬂﬁ% (G=0,--n—1;1=1,---,m)
k=0

Usage
Double precision:

ierr = ASL_zfembf (n, m, ¢, incn, incm, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_cfembf (n, m, ¢, incn, incm, isw, ifax, trigs, wk);

93

[DEPRECATED]ASL zfcmbf, ASL_cfembf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

(3) Arguments and Return Value

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

I { int as for 32bit Integer}

long as for 64bit Integer

No. Argument and Type Size fnput/ Contents
Return Value ’ Output

1 n I 1 Input | Number of transformed data values n (See
Note (a))

2 m I 1 Input | Multiplicity m

3 c 7% See Input | Input data c; (See Note (b))

{C*} Contents Size: incn x (n — 1) +incm x (m—1) +1
Output | Output data d;; (See Notes (b) and (c))

4 incn I 1 Input | The stride between each transformed datum
in storage (See Note (b))

5 incm I 1 Input | The stride between the first elements of each
transformed data in storage (See Note (b))

6 isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform

7 ifax I* 20 Input | Factorization results and number of factors
(See Note (a))

8 trigs Dx 2Xxn Input | Trigonometric function table (See Note (a))

Rx
9 wk Tk mxn Work | Work area
1)
10 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a)

(b)

()

n>0
m >0

incn > 0
incm > 0
incn > m x gem(inen, inem) or

incm > n x gem(inen, inem)

(Where, gem(i, j) is the greatest common measure between ¢ and j.)

isw e {1,—1}

94

[DEPRECATED]ASL zfembf, ASL_cfembf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

(5) Error indicator (Return Value)
ierr value Meaning Processing
0 Normal termination.
1000 n was equal to 1. Input data is output unchanged.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
3030 Restriction (d) was not satisfied.
(6) Notes
(a) This function can be used to repeatedly compute the transform for the same number of transformed
ASL_zfcmfb
data n after the including-initialization function 2.6.1 e has been used. In this case, you
ASL_cfcmfb

must retain the contents of arrays ifax and trigs so they can be used as input in this function.

The complex data cg; (k=0,---,n—1; [=1,---,m) and elements of array c are associated as follows.
k1 > clinen * k + incm * (1 — 1))

For example, if we let incn=1 and incm=n, then the associations are as follows:
ek ¢ clk+nx(1-1)]

and the data is stored so that it is packed consecutively for subscript k. If we let incn=m and incm=1,

then the associations are as follows:
ekt <> c[(l—1) + m*K]

and the data is stored so that it is packed consecutively for subscript I. Similarly, for the complex data
dji(j =0,---,m—1; I =1,---,m). Values in areas where the data of array c is not stored do not

change when this function is called.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of
transformed data. For example, if we let the data obtained by computing the backward transform
immediately following the forward transform for the complex data ¢x (k=0,---,n—1; I =1,---,m)
be represented by é,(k=0,---,n—1; [=1,---,m), then the following relationship holds.

éri=mncpy (k=0,---,n—1; 1=1,---,m)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number
of samples or sampling interval must be set with this taken into account when sampling to approximate
the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that
is bandwidth limited by the frequency f., if the sampling interval is taken as T = ﬁ, then h(t) can
be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.

bln 2w fo(t —iT)
=T Z w(t —iT)

1=—00

95

[DEPRECATED]ASL zfembf, ASL_cfecmbf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

(e) This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(f) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the
higher performance alternative implementation instead.

(7) Example

(a) Problem
Compute the multiple one-dimensional complex Fourier transform using the following sequence of
numbers as input data.
c[0]= (1.000, 4.000)

c[1]= (2.000, 3.000)
c[2= (3.000, 2.000)
c[3]= (4.000, 1.000)
c[4]= (4.000, 1.000)
c[5]= (3.000, 2.000)
c[6]= (2.000, 3.000)
c[7)= (1.000, 4.000)
c[9]= (1.000, 2.000)
c[10]= (1.000, 2.000)
c[11]= (2.000, 1.000)
c[12]= (2.000, 1.000)
c[13]= (2.000, 1.000)
c[14]= (2.000, 1.000)
c[15]= (1.000, 2.000)
c[16]= (1.000, 2.000)
c[18]= (1.000, 2.000)
c[19]= (1.000, 2.000)
¢[20]= (1.000, 2.000)
c[21]= (1.000, 2.000)
c[22]= (2.000, 1.000)
c[23]= (2.000, 1.000)
c[24]= (2.000, 1.000)
c[25]= (2.000, 1.000)
c[27]= (1.000, 1.000)
c[28]= (1.000, 1.000)
c[29]= (1.000, 1.000)
¢[30]= (1.000, 1.000)
c[31]= (1.000, 1.000)
c[32]= (1.000, 1.000)
c[33]= (1.000, 1.000)
c[34]= (1.000, 1.000)

(b) Input data
Array ¢, n=8, m=4, incn=1, incm=9, isw=1 (forward transform) and isw=—1 (backward transform).

(¢) Main program

/* C interface example for ASL_zfcmfb , ASL_zfcmbf */

96

[DEPRECATED]ASL zfembf, ASL_cfembf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

<stdio.h>
<stdlib.h>
<complex.h>
<asl.h>

#include
#include
#include
#include

int main()

int 1d=35;

int n; int m;
double _Complex *c;
int incn; int incm;
int isw;

int ifax[20];
double _Complex

double *trigs;
*wk;

int ierr;
int i,j;
FILE *fp;
fp = fopen("zfcmbf.dat", "r");
if (fp == NULL)

printf("file open error\n");
return -1;

*x*x ASL_zfcmfb , ASL_zfcmbf *x*\n");
*x Input **\n\n");

printf("
printf("\n

c = (double _Complex *)malloc((size_t)(sizeof(double _Complex) * 1d));
if (¢ == NULL)

printf("no enough memory for array c\n");
return -1;
trigs = (double *)malloc((size_t)(sizeof(double) * (2*1d)));
if(trigs == NULL)
printf("no enough memory for array trigs\n");
return -1;
wk = (double _Complex *)malloc((size_t)(sizeof(double _Complex) * 1d));
if (wk == NULL)
printf("no enough memory for array wk\n");
return -1;
fscanf(fp, "%d,%d,%d,%d", &n, &m, &incn, &incm);
for(j=0 ; j<m ; j++)
{
for(i=0 ; i<n ; i++)

double tmp_re, tmp_im;
fscanf(fp, "%1f,%1lf", &tmp_re, &tmp_im);
cli*incn+j*incm] = tmp_re + tmp_im * _Complex_I;

}
}
printf("\t =n =% \n", n);
printf("\t m =% \n", m);
printf ("\t incn = %d \n", incn);
printf("\t incm = %d \n\n", incm);
printf("\t Real Part Imaginary Part\n");

for(j=0 ; j<m ; j++)
for(i=0 ; i<n ; i++)

printf("\t creal(c[%3d]) = %8.3g
i*incn+j*incm, creal(c[i*incn+j*incm]),
i*incn+j*incm, cimag(c[i*incn+j*incm]));

cimag(c[%3d]) = %8.3g\n",

}
fclose(fp);

printf("\n ** Output **\n");
isw = 1;
ierr = ASL_zfcmfb(n, m, c, incn, incm, isw, ifax, trigs, wk);

for(j=0 ; j<m ; j++)
{

for(i=0 ; i<n ; i++)

97

[DEPRECATED]ASL zfembf, ASL_cfecmbf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

c[i*incn+j*incm] /= n ;
}
}

printf("\n\t< Forward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\n\tSolution\n\n");

printf("\t Real Part Imaginary Part\n");
for(j=0 ; j<m ; j++)
{

for(i=0 ; i<n ; i++)

printf("\t creal(c[%3d]) = %8.3g cimag(c[%3d]) = %8.3g\n",
i*incn+j*incm, creal(c[i*incn+j*incm]),
i*incn+j*incm, cimag(c[i*incn+j*incm]));
}
}

isw = -1;

ierr = AéL_zfcmbf(n, m, c, incn, incm, isw, ifax, trigs, wk);
printf("\n\t< Backward Transform >\n");

printf("\tierr = %6d\n", ierr);

printf("\n\tSolution\n\n");
printf("\t Real Part Imaginary Part\n");
for(j=0 ; j<m ; j++)

for(i=0 ; i<n ; i++)

printf("\t creal(c[%3d]) = %8.3g cimag(c[%3d]) = %8.3g\n",
i*incn+j*incm, creal(c[i*incn+j*incm]),
ixincn+j*incm, cimag(c[i*incn+j*incm]));
}
}

free(c);
free(trigs);
free(wk);

return O;

}
(d) Output results

*xx ASL_zfcmfb , ASL_zfcmbf *xx*

*k Input *%

n =8

m =4

incn = 1

incm = 9
Real Part Imaginary Part

creal(c[01)
creal(c[11)
creal(c[21)
creal(c[31)
creal(c[41)
creal(c[51)
creal(c[6])
creal(c[71)
creal(c[91)
creal(c[10])
creal(c[11])
creal(c[12])
creal(c[13])
creal(c[14])
creal(c[15])
creal(c[16])
creal(c[18])
creal(c[19])
creal(c[20])
creal(c[21])
creal(c[22])
creal(c[23])
creal(c[24])
creal(c[25])
creal(c[27])
creal(c[28])
creal(c[29])
creal(c[30])

cimag(c[0])
cimag(c[11)
cimag(c[21)
cimag(c[31)
cimag(c[41)
cimag(c[5])
cimag(c[61)
cimag(c[71)
cimag(c[91)
cimag(c[101)
cimag(c[111)
cimag(c[121)
cimag(c[131)
cimag(c[141)
cimag(c[151)
cimag(c[161)
cimag(c[181)
cimag(c[191)
cimag(c[20])
cimag(c[211)
cimag(c[22])
cimag(c[231)
cimag(c[24]1)
cimag(c[251)
cimag(c[271)
cimag(c[281)
cimag(c[291)
cimag(c[301)

L | (| | [| | (| (| (| | (| | {1 (I I | Y I 1}
PRPEPRNONNMNNRPEPRRERRRNNOMNNNRRRNOSDWON R
L | (| | [| | (| (| ([| (| | (I I | Y 1}
PR PP PEPPEPPRPPRPONMNNOMNMNNRRRRNONNNDAONRERND®WD

98

[DEPRECATED]ASL zfembf, ASL_cfembf

Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

creal(c[31]) = 1
creal(c[32]) = 1
creal(c[33]) = 1
creal(c[34]) = 1
*% Qutput *x*

< Forward Transform >

ierr = 0

Solution
Real Part
creal(c[0]) = 2.5
creal(c[1]) = -1.03
creal(c[2]) = 0
creal(c[3]) = -0.0732
creal(c[4]) = 0
creal(c[5]) = 0.0303
creal(c[6]) = 0
creal(c[7]) = -0.427
creal(c[9]) = 1.5
creal(c[10]) = -0.427
creal(c[11]) = 0
creal(c[12]) = 0.177
creal(c[13]) = 0
creal(c[14]) = -0.0732
creal(c[15]) = 0
creal(c[16]) = -0.177
creal(c[18]) = 1.5
creal(c[19]) = 0.177
creal(c[20]) = 0
creal(c[21]) = -0.0732
creal(c[22]) = 0
creal(c[23]) = -0.177
creal(c[24]) = 0
creal(c[25]) = -0.427
creal(c[27]) = 1
creal(c[28]) = 0
creal(c[29]) = 0
creal(c[30]) = 0
creal(c[31]) = 0
creal(c[32]) = 0
creal(c[33]) = 0
creal(c[34]) = 0

< Backward Transform >
ierr = 0

Solution

Real Part

creal(c[0])
creal(c[11)
creal(c[21)
creal(c[3])
creal(c[41)
creal(c[5])
creal(c[6])
creal(c[71)
creal(c[9]1)
creal(c[10])
creal(c[11]1)
creal(c[12])
creal(c[131)
creal(c[14])
creal(c[15])
creal(c[16])
creal(c[18])
creal(c[191)
creal(c[20])
creal(c[211)
creal(c[22])
creal(c[231)
creal(c[241)
creal(c[25])
creal(c[271)
creal(c[28])
creal(c[291)
creal(c[30])
creal(c[31])

PR RERRRBRONNNNRRRERRREBONNNNRERRERENDOSDWON -

cimag(cl
cimag(cl
cimag(cl
cimag(cl

Imaginary Part
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl

Imaginary Part
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl
cimag(cl

99

31])
321)
33])
341)

ol

11D

21)

3D

al

51)

61)

7

9l
101)
111)
12])
131)
141)
151)
161)
181)
191)
201)
21])
221)
23])
241)
251)
27])
281)
29])
301)
31])
32])
33])
34])

11)

21)

3D

al

51)

61)

7

9l)
101)
111)
12]1)
131)
141)
151)
161)
181)
191)
201)
21])
221)
23])
24])
251)
27])
281)
29])
30])
311

e

2.5
0.427

-0.0303
0.0732
1.03
0.1%7
0.0732
-0.177
0.427
0.4é7
0.177
0.0732

-0.177

[eNeoNeNeNoNeoNoN

RPRRPRPRRPRPPEPEFNNNMNMNNMNNODNNNRPRPRPERRNONDRONDREERND®OD

[DEPRECATED]ASL zfembf, ASL_cfecmbf
Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

creal(c[32]) = 1 cimag(c[32]) = 1
creal(c[33]) = 1 cimag(c[33]) = 1
creal(c[34]) = 1 cimag(c[34]) = 1

100

2.7 MULTIPLE ONE-DIMENSIONAL REAL FOURIER TRANS-

FORM

2.7.1 [DEPRECATED]ASL dfrmfb, ASL _rfrmfb

Multiple One-Dimensional Real Fourier Transforms (Including Initialization)

(1) Function

Forward transform
ASL_dfrmfb or ASL_rfrmfb obtains a half period of the m-fold one-dimensional Fourier forward transform
(arbitrary radix) for the real data r;(k=0,---,n—1; I =1,---,m).

n—1

—omy/—T12E . n
Cj,l:ZTk,IQZ\/_l" (j:0’7L§J’l:177m)
k=0

Here, |x] represents the maximum integer that does not exceed z. The remaining half period is obtained

from the following relationship.

szj,l =Gyl
Here, z* represents the conjugate complex number of the complex number z.
Backward transform
Given the half period ¢;;(j =0,---,[%]; { = 1,---,m) for n complex data groups ¢;;(j =0,---,n—1; [=
1,---,m) satisfying c;,_,, = ¢;;, ASL_dfrmfb or ASL rfrmfb obtains the m-fold one-dimensional Fourier
backward transform (arbitrary radix) defined as follows.

n—1
rey = Z CjJezm/f_l%
j=0
r21-1 .
~ —1i%
=co,1 + (71)]60%_’1 + 2 Z %{cj,le%\/_l n }

[51-1 . .
k k
— coq+ (—1)Fen 42 {m{cj,l} cos(2ﬂ"%) — S{eju} sin(2ﬂ"%)
(k=0,---,n—1; 1=1,---,m)

Here, [2] represents the minimum integer greater than or equal to x, and R{z} and I{z} represent the real
and imaginary parts of the complex number z, respectively. Also, when n is odd, ¢z =0, and when n is

even, 072_1,1 = Cg—l,l-

Usage
Double precision:

ierr = ASL_dfrmfb (n, m, r, incn, incm, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_rfrmfb (n, m, r, incn, incm, isw, ifax, trigs, wk);

101

[DEPRECATED]ASL _dfrmfb, ASL_rfrmfb

Multiple One-Dimensional Real Fourier Transforms (Including Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 n I 1 Input | Number of transformed data values n (See
Note (a))
2 m I 1 Input | Multiplicity m
r D+ See Input | Input data ry; (Forward transform) or ¢;,
{R*} Contents (Backward transform) (See Note (b)).
Size:
incn X (n) + incm x (m — 1) 4+ 1,
where n is an odd, or
incn X (n+ 1) +incm X (m — 1) + 1,
where n is an even.
Output | Output results ¢;; (Forward transform), or
r,1 (Backward transform) (See Notes (b) and
(©)
4 incn I 1 Input | The stride between each transformed datum
in storage (See Note (b))
5 incm I 1 Input | The stride between the first elements of each
transformed data in storage (See Note (b))
6 isw I 1 Input | Processing switch (See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform
7 ifax I* 20 Output | Factorization results and number of factors
(See Note (d))
8 trigs Dx n Output | Trigonometric function table (See Note (d))
()
9 wk D+ See Work | Work area
{R*} Contents Size:
(n+1)xm, where n is an odd, or
(n+2)xm, where n is an even.
10 ierr I 1 Output | Error indicator (Return Value)

102

[DEPRECATED]ASL _dfrmfb, ASL_rfrmfb
Multiple One-Dimensional Real Fourier Transforms (Including Initialization)

(4) Restrictions

(a) n>0

m >0

(b) incn >0

incm > 0

(¢) incn > m x gem(inen, incm) or:

In the case where n is an odd:

incm > (n+ 1) x gem(inen, inem)
or if n is an even:

incm > (n + 2) x gem(inen, inem)

(where gem(i, j) is the greatest common measure between 7 and j.)

(d) isw € {0,1,—1}

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
1000 n was equal to 1. Input-time contents are output un-
changed.
3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

Py Py Py ey

3030 Restriction (d) was not satisfied.

(6) Notes

(a) When the number of data n can be adjusted, the calculations can be performed more efficiently by

setting a number for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3,
5, etc.). For example, rather than setting n = 289(=172), it is usually more efficient to set n =
300(=22 x 3 x 52), n = 320(=2% x 5), n = 384(=2" x 3) or the like.

The real data ri(k=0,---,n—1; I =1,---,m) and elements of array r are associated as follows.
T <> rfinen # k + incm (1 — 1)]

For example, if we let incn=1 and incm=n, then the associations are as follows:
ri ¢ rk+nx(1—1)]

and the data is stored so that it is packed consecutively for subscript k. If we let incn=m and incm=1,
then the associations are as follows:

Tkl < r[(l— 1) —I—m*k]

and the data is stored so that it is packed consecutively for subscript I. When computing the backward
transform, if n(=n) is odd, then r[incn * n + incm * (1 — 1)] = 0, and when n is even, then r[incn *
n + incm * (1 — 1)] = rfincn * (n 4+ 1) 4 incm * (1 — 1)] = 0. If we let the real and imaginary parts of
the complex data c;; (j = 0,---,[5]; 1 = 1,---,m) be R{c;;} and I{c;,}, respectively, the c;; and

103

[DEPRECATED]ASL _dfrmfb, ASL_rfrmfb
Multiple One-Dimensional Real Fourier Transforms (Including Initialization)

elements of array r are associated as follows. Here, |z| represents the maximum integer that does not
exceed x.

R{c;i} <« rlinen * (2j) + incm * (1 — 1)]

eyt ¢ rlinen* (2§ 4+ 1) + incm * (1 — 1)]
From the properties of a real Fourier transform, when n is odd, S{co;} = 0, and when n is even,
S{coi} = S{cz} = 0. Therefore, even if nonzero values are set for the corresponding elements of
array r, they are considered to be zero when processing is performed. Since the elements ¢;; (j =
L%J +1,---,n—1; I = 1,---,m) can be obtained according to the following relationship from the
symmetry of the real Fourier transform, they need not be assigned as input when computing the

backward transform. Also, they are not output when computing the forward transform.

_ *
Cn—j,l = Cj 1

Here, z* represents the conjugate complex number of the complex number z.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of
transformed data. For example, if we let the data obtained by computing the backward transform
immediately following the forward transform for the real data ry;(k =0,---,n—1; [=1,---,m) be
represented by 7 ;(k =0,---,n—1; [=1,---,m), then the following relationship holds.

fra=nry (k=0,---;n—1,1=1,---,m)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

To repeatedly compute the transform for the same number of data n, you should call this function once,

and then use the after-initialization transform 2.7.2 ASL.dfrmbf , thereafter. This enables processing
ASL _rfrmbf

to be performed more efficiently since initialization (factorization or the creation of trigonometric

tables) is performed only once. However, in this case, you must retain the contents of arrays ifax and

ASL_dfrmbf

ASL_rfrmbf [

To perform initialization only by setting isw=0, you need not set input data for array r.

trigs so they can be used as input to the function 2.7.2 {

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number
of samples or sampling interval must be set with this taken into account when sampling to approximate
the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that
is bandwidth limited by the frequency f., if the sampling interval is taken as T = i, then h(t) can
be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.

sin 2w f.(t —iT)

h(t):le h(iT) T

1=—00

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

104

[DEPRECATED]ASL _dfrmfb, ASL_rfrmfb
Multiple One-Dimensional Real Fourier Transforms (Including Initialization)

(7) Example
See the example in Section 2.7.2 (7).

105

[DEPRECATED]ASL_dfrmbf, ASL_rfrmbf
Multiple One-Dimensional Real Fourier Transforms (After Initialization)

2.7.2 [DEPRECATED]ASL_dfrmbf, ASL_rfrmbf

(1)

Multiple One-Dimensional Real Fourier Transforms (After Initialization)

Function
Forward transform
ASL_dfrmbf or ASL_rfrmbf obtains a half period of the m-fold one-dimensional Fourier forward transform

(arbitrary radix) for the real data r;(k=0,---,n—1; I =1,---,m).

n—1

. '
cjl = E ’r‘k7167271'\/71]7 <]:0’7|_ J; l:L’m)
k=0

Here, |x] represents the maximum integer that does not exceed z. The remaining half period is obtained

from the following relationship.
Cilfj,z = Gl

Here, z* represents the conjugate complex number of the complex number z.

Backward transform

Given the half period ¢;;(j = 0,---,[5]; [= 1,---,m) for n complex data groups ¢;;(j =0,---,n—1; [=
1,---,m) satisfying ¢ _ il = Gl ASL_dfrmbf or ASL_rfrmbf obtains the m-fold one-dimensional Fourier

backward transform (arbitrary radix) defined as follows.

Thi = Z ¢jue¥™ I
=0

311)

=cou+ (—1)* ¢z, +2 Z R{c; 2™V

=1

o))

=co, + (—1)’“63,1 +2 [%{CN} cos(27r%) - 3{¢ja} sin(27r%)
=1

(k=0,---n—1;1=1,---,m)

Here, [2] represents the minimum integer greater than or equal to x, and R{z} and I{z} represent the real
and imaginary parts of the complex number z, respectively. Also, when n is odd, ¢z ; = 0, and when n is

even, Cg_l,l = C%,l-

Usage
Double precision:

ierr = ASL_dfrmbf (n, m, r, incn, incm, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_rfrmbf (n, m, r, incn, incm, isw, ifax, trigs, wk);

106

[DEPRECATED]ASL_dfrmbf, ASL_rfrmbf
Multiple One-Dimensional Real Fourier Transforms (After Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 n I 1 Input | Number of transformed data values n (See
Note (a))
2 m I 1 Input | Multiplicity m
r D+ See Input | Input data ry; (Forward transform) or ¢;,
{R*} Contents (Backward transform) (See Note (b)).
Size:
incn X (n) + incm x (m — 1) 4+ 1,
where n is an odd, or
incn X (n+ 1) +incm X (m — 1) + 1,
where n is an even.
Output | Output results c¢;; (Forward transform), or
r1 (Backward transform) (See Notes (b) and
(©)
4 incn I 1 Input | The stride between each transformed datum
in storage (See Note (b))
5 incm I 1 Input | The stride between the first elements of each
transformed data in storage (See Note (b))
6 isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform
7 ifax I* 20 Input | Factorization results and number of factors
(See Note (a))
8 trigs D+ n Input | Trigonometric function table (See Note (a))
v}
9 wk D+ See Work | Work area
{R*} Contents Size:
(n+1)xm, where n is an odd, or
(n+2)xm, where n is an even.
10 ierr I 1 Output | Error indicator (Return Value)

107

[DEPRECATED]ASL _dfrmbf, ASL_rfrmbf
Multiple One-Dimensional Real Fourier Transforms (After Initialization)

(4) Restrictions

(a)

(b)

()

(d)

n>0
m>0

incn > 0

incm > 0

incn > m x gem(inen, incm) or:
In the case where n is an odd:

incm > (n 4 1) x gem(inen, inem)
or if n is an even:

incm > (n 4 2) x gem(inen, inem)

(where gem(i, j) is the greatest common measure between ¢ and j.)

isw e {1,—-1}

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
1000 n was equal to 1. Input-time contents are output un-
changed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
3030 Restriction (d) was not satisfied.
(6) Notes
(a) This function can be used to repeatedly compute the transform for the same number of transformed
ASL _dfrmfb
data n after the including-initialization function 2.7.1 rm has been used. In this case, you
ASL _rfrmfb

must retain the contents of arrays ifax and trigs so they can be used as input in this function.

The real data r;(k =0,---,n—1; Il =1,---,m) and elements of array r are associated as follows.
T > r[incn x k + incm * (1 — 1)]

For example, if we let incn=1 and incm=n, then the associations are as follows:
TEy <>tk +n* (1 —1)]

and the data is stored so that it is packed consecutively for subscript k. If we let incn=m and incm=1,

then the associations are as follows:
TR r[(l — 1) + m * k]

and the data is stored so that it is packed consecutively for subscript I. When computing the backward
transform, if n(=n) is odd, then r[incn * n + incm x (1 — 1)] = 0, and when n is even, then r[incn *
n + incm * (1 — 1)] = rfincn * (n 4+ 1) + incm * (1 — 1)] = 0. If we let the real and imaginary parts of
the complex data c;; (j = 0,---,[5]; I = 1,---,m) be R{c;;} and I{c;,}, respectively, the c;; and

108

[DEPRECATED]ASL_dfrmbf, ASL_rfrmbf
Multiple One-Dimensional Real Fourier Transforms (After Initialization)

elements of array r are associated as follows. Here, || represents the maximum integer that does not
exceed x.

R{c;i} <« rlinen* (2j) + incm * (1 — 1)]

et ¢ rlinen = (2j 4+ 1) + incm * (1 — 1)]
From the properties of a real Fourier transform, when n is odd, ${co;} = 0, and when n is even,
S{co} = S{cz, i} = 0. Therefore, even if nonzero values are set for the corresponding elements of
array r, they are considered to be zero when processing is performed. Since the elements ¢;; (j =
|3]+1,---,n—1; I = 1,---,m) can be obtained according to the following relationship from the
symmetry of the real Fourier transform, they need not be assigned as input when computing the

backward transform. Also, they are not output when computing the forward transform.
Cn—j,1 = C;,l
Here, z* represents the conjugate complex number of the complex number z.

(¢) When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of
transformed data. For example, if we let the data obtained by computing the backward transform
immediately following the forward transform for the real data ry;(k =0,---,n—1; [=1,---,m) be
represented by 75 ;(k=0,---,n—1; [=1,---,m), then the following relationship holds.

fk,l:n?"k,l (k:(),...7n71; lil,'“,m)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

(d) Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n) as the period, the number
of samples or sampling interval must be set with this taken into account when sampling to approximate
the continuous Fourier transform. According to the sampling theorem, for a time function h(t) that

i, then h(t) can

be reconstructed from knowledge of only a sequence of sample values {h(:T)} as follows.

ht) =T 3 (i) 22nSelt —) 72T7(th ‘:_(ZT)iT)

is bandwidth limited by the frequency f., if the sampling interval is taken as T =

1=—0Q

(e) This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(f) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.
(7) Example

(a) Problem
Compute the multiple one-dimensional real Fourier forward and backward transforms using the follow-
ing sequence of numbers as input data.

[0]= 1.000 r[1]= 2.000 r[2]= 3.000 r[3]= 4.000

[4]= 5.000 r[5]= 6.000 r[6]= 7.000 r[7]= 8.000

r[12]= 1.000 r[13]= 1.000 r[14]= 2.000 r[15]= 2.000

T
T

109

[DEPRECATED]ASL_dfrmbf, ASL_rfrmbf
Multiple One-Dimensional Real Fourier Transforms (After Initialization)

(b) Input data
Array r, n=8, m=4, incn=1, incm=12, isw=1(Forward transform) and isw=—1 (Backward transform).

(¢) Main program

/* C interface example for ASL_dfrmfb , ASL_dfrmbf */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()
{

int 1d=46;

int n; int m;

double *r;

int incn; int incm;

int isw;

int ifax[20]; double *trigs;
double *wk;

int ierr;

int i,j;

FILE *fp;

fp = fopen("dfrmbf.dat", "r");
if(fp == NULL)

printf("file open error\n");

return -1;
printf(" #x% ASL_dfrmfb , ASL_dfrmbf sx*x\n");
printf("\n ** Input **\n\n");

r = (double *)malloc((size_t)(sizeof(double) * 1d));
if(r == NULL)

printf("no enough memory for array r\n");
return -1;

trigs = (double *)malloc((size_t)(sizeof(double) * 1d));
if (trigs == NULL)

printf("no enough memory for array trigs\n");
return -1;

wk = (double *)malloc((size_t) (sizeof(double) * 1d));
if (wk == NULL)

printf("no enough memory for array wk\n");
return -1;

fscanf(fp, "%d,%d,%d,%d", &n, &m, &incn, &incm);
for(j=0 ; j<m ; j++)
for(i=0 ; i<n ; i++)

fscanf (fp, "%1f", &rl[i*incn+j*incm]);

}
}
printf("\t n % \n", n);
printf("\t m %d \n", m);

%d \n", incn);
%d \n\n", incm);

printf("\t incn
printf("\t incm

printf("\t Real Part\n");
for(j=0 ; j<m ; j++)
{

printf("\t");

for(i=0 ; i<n ; i++)

printf(" r[%3d] =%4.1f",
i*incn+j*incm, r[i*incn+j*incm]);
if ((i+1)%4==0) printf("\n\t");

110

[DEPRECATED]ASL_dfrmbf, ASL_rfrmbf
Multiple One-Dimensional Real Fourier Transforms (After Initialization)

}
printf("\n");

fclose(fp);
printf("\n ** OQutput **\n");
isw = 1;
ierr = ASL_dfrmfb(n, m, r, incn, incm, isw, ifax, trigs, wk);
for(j=0 ; j<m ; j++)

for(i=0 ; i<n+2 ; i++)

rli*incn+j*incm] /= n ;

}

printf("\n\t< Forward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\n\tSolution\n\n");
printf("\t Real Part Imaginary Part\n");
for(j=0 ; j<m ; j++)

for(i=0 ; i<n+2 ; i=i+2)

printf("\t «r[%3d] = %8.3g r[%3d] = %8.3g\n",
ikincn+j*incm, r[i*incn+j*incm],
(i+1)*incn+j*incm, r[(i+1)*incn+j*incm]);

}
printf("\n");
isw = -1;
ierr = ASL_dfrmbf(n, m, r, incn, incm, isw, ifax, trigs, wk);

printf("\n\t< Backward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\n\tSolution\n\n");
printf("\t Real Part\n");
for(j=0 ; j<m ; j++)

{
printf("\t");
for(i=0 ; i<n+2 ; i++)
printf(" r[%3d] =/4.1f",
ixincn+j*incm, r[ixincn+j*incm]);
if ((i+1)%4==0) printf("\n\t");
}
printf("\n");
}
free(r);
free(trigs);
free(wk);
return O;

}
(d) Output results

*xx ASL_dfrmfb , ASL_dfrmbf x**x

*k Input *k

n =8
m =4
incn = 1
incm = 12

Real Part
r[0]

=1.0 r[1] = 2.0 r[2] = 3.0 r[3] = 4.0
r[4] = 5.0 r[5] = 6.0 r[6] =7.0 r[7] = 8.0
r[12] = 1.0 r[13] = 1.0 r[14] = 2.0 r[15] = 2.0
r[16] = 3.0 r[17] = 3.0 r[18] = 4.0 r[19] = 4.0
r[24] = 1.0 r[25] = 1.0 r[26] = 1.0 r[27] = 1.0
r[28] = 2.0 r[29] = 2.0 r[30] = 2.0 r[31] = 2.0
r[36] = 1.0 r[37] = 1.0 r[38] = 1.0 r[39] = 1.0
r[40] = 1.0 r[41] = 1.0 r[42] = 1.0 r[43] = 1.0

*% Qutput *x*

111

[DEPRECATED]ASL _dfrmbf, ASL_rfrmbf

Multiple One-Dimensional Real Fourier Transforms (After Initialization)

< Forward Transform >
i 0

lerr

Solution

Rga

HRHRHRR HRRERRKR

LG IG]

HHRHHR

1

Part

< Backward

ierr

Solution

Rea

HRERHHRRHRRRRRRHR

1

Part

Transform
0

LT T (1 T 1 O 1 1}
ORrFRPRONRFROWRHOUIX
[elelololololololofololo)

[eleloXa) oy

HRRRRRRRRRRHR

Imaginary Part
r[1] = 0
r[3] = 1.21
r[5] = 0.5
r[7] = 0.207
r[9] = 0
r[13] = 0
r[15] = 0.604
r[17] = 0.25
r[19] = 0.104
r[21] = 0
r[25] = 0
r[27] = 0.302
r[29] =
r[31] = 0.0518
r[33] =
r[37] = 0
r[39] = 0
r[41] = 0
r[43] = 0
r[45] = 0
2.0 r[2] = 3.
6.0 r[6] =7.
0.0
1.0 r[14] = 2.
3.0 r[18] = 4.
0.0
1.0 r[26] = 1.
2.0 r[30] = 2.
0.0
1.0 r[38] = 1.
1.0 r[42] = 1.
0.0

112

OO OO OO oo

r[3]
r[7]

r[15]
r[19]

r[27]
r[31]

r[39]
r[43]

PENRE BN 0
oo ©o oo oo

2.8 TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM

(REAL ARGUMENT TYPE)

2.8.1 [DEPRECATED]ASL dfc2fb, ASL rfc2fb

(1)

Two-Dimensional Complex Fourier Transform (Including Initialization)

Function
Forward transform
ASL_dfc2fb or ASL_rfc2fb computes the two-dimensional complex Fourier forward transform (arbitrary

radix) for the two-dimensional complex data cy, k, (kz = 0, ,ny — 1; ky = 0,---,ny — 1).

Np—1ny—1

_Qﬂ.\/jl(mkx +Jy y) . .
djzjy = E E Ckz,kye e v (]I :0,,7'Lx*1,]y:(),,’ﬂy*].)
ky=0 ky=0

Backward transform
ASL_dfc2fb or ASL_rfc2fb computes the two-dimensional complex Fourier backward transform (arbitrary

radix) for the two-dimensional complex data cy, k, (kz = 0, ,ny — 1; ky = 0,---,ny — 1).

ng—1ny—1

j jy b
Qﬂ.\/jl(mkx 4y v . .
djzjy = E E Ckz,kye e "y (]z :0,,7'Lx*1, Jy:()aanyfl)
ko=0 ky=0

Usage
Double precision:

ierr = ASL_dfc2fb (nx, ny, cr, ci, Ix, ly, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_rfc2fb (nx, ny, cr, ci, Ix, ly, isw, ifax, trigs, wk);

113

[DEPRECATED]ASL_dfc2fb, ASL_rfc2fb

Two-Dimensional Complex Fourier Transform (Including Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))
2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))
3 cr Dx Ixxly Input | Real part of input data cy, x, (See Note (b))
{R*} Output | Real part of output data d;, ;, (See Notes (b)
and (c))
4 ci D+ Ixxly Input | Imaginary part of input data cy, &, (See Note
{R* } (b))
Output | Imaginary part of output results dj, ;, (See
Notes (b) and (c))
5 Ix I 1 Input | Adjustable dimension of array cr and ci (See
Note (b))
6 ly I 1 Input | Second dimension of array cr and ci (See Note
(b))
7 isw I 1 Input | Processing switch (See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform
8 ifax I* 40 Output | Factorization results and number of factors
(See Note (d))
9 trigs D+ 2 x (nx +| Output | Trigonometric function table (See Note (d))
{R*} ny)
10 wk D+ 2 xIx x1ly| Work | Work area
1
11 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions
(a) nx > 1
ny >1

(b) nx < Ix
ny <ly

(c) isw € {0,1, -1}

114

[DEPRECATED|ASL_dfc2tb, ASL_rfc2fb
Two-Dimensional Complex Fourier Transform (Including Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes

(a)

When the number of data nx or ny can be adjusted, the calculations can be performed more efficiently
by setting a number for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3,
5, etc.). For example, rather than setting nx = 289(=172), it is usually more efficient to set nx = 300
(=22 x 3 x 5?), nx = 320(=2% x 5), nx = 384(=2" x 3) or the like.

If we let the real and imaginary parts of the complex data cy, &, (kz =0,---,n,—1; ky =0,---,ny —1)

be {ck, r,} and I{cx, k, }, respectively, the cg, r, and elements of arrays cr and ci are associated as
follows.

Rlck, kb < crlky +Ixxky]
%{Ckz,ky} — Ci[kx + Ix * ky]

Similarly, for the complex data dj, j, (jo =0, ,nz — 1; jy, = 0,---,ny — 1).

The adjustable dimensions Ix and ly of arrays cr and ci should be set to odd numbers to
avoid bank conflict of main memory. Usually, when nx, for example, is even, lx=nx+1 is
set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data cy, &, (ky =0,---,ny—1; k, =0,---,n,—1) be represented
by ¢k, k, (kz =0,---,n, —1; ky =0,---,n, — 1), then the following relationship holds.

Cha by = NayChy ey (b =0, mg — 15 ky =0, ,my — 1)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

To repeatedly compute the transform for the same number of data (nx, ny), you should call this
function once, and then use the after-initialization transform 2.8.2 ASL.dfe2bf , thereafter. This
ASL _rfc2bf
enables processing to be performed more efficiently since initialization (factorization or the creation of
trigonometric tables) is performed only once. However, in this case, you must retain the contents of
ASL_dfc2bf

ASL _rfe2bf |
To perform initialization only by setting isw=0, you need not set input data for arrays cr and ci.

arrays ifax and trigs so they can be used as input to the function 2.8.2

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n, or n,) as the period,

the number of samples or sampling interval must be set with this taken into account when sampling

115

[DEPRECATED|ASL_dfc2fb, ASL_rfc2fb
Two-Dimensional Complex Fourier Transform (Including Initialization)

to approximate the continuous Fourier transform. According to the sampling theorem, for a time
function h(t) that is bandwidth limited by the frequency f,, if the sampling interval is taken as T' = #,

then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.

= sin27fo(t —iT)
h(t)=T h(il) ——F———
0=T 3 =T
(f) This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(g) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

(7) Example
See the example in Section 2.8.2 (7).

116

[DEPRECATED]ASL_dfc2bf, ASL_rfc2bf
Two-Dimensional Complex Fourier Transform (After Initialization)

2.8.2 [DEPRECATED]ASL dfc2bf, ASL_rfc2bf

(1)

Two-Dimensional Complex Fourier Transform (After Initialization)

Function
Forward transform
ASL_dfc2bf or ASL_rfc2bf computes the two-dimensional complex Fourier forward transform (arbitrary

radix) for the two-dimensional complex data cy, k,(kz = 0, ,ny — 1; ky = 0,---,ny — 1).

ng—1ny—1

_Qﬂ\/fl(jzkz +jyky) . .
djwajy: E : E Chy ky € e " (Jo =0, ,np = 15]yzov""ny_l)
ko=0 ky—=0

Backward transform
ASL_dfc2bf or ASL_rfc2bf computes the two-dimensional complex Fourier backward transform (arbitrary

radix) for the two-dimensional complex data cx, r, (ke =0, -+, ny — 15 by =0,---,n, — 1).

ng—1ny—1

Z Z 2my/—I(dzke Tyt) ,
d],,]y - Ckm,kye e v (]wzovanm_17]yzovany_l)
ke=0 k,=0

Usage
Double precision:

ierr = ASL_dfe2bf (nx, ny, cr, ci, Ix, ly, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_rfc2bf (nx, ny, cr, ci, Ix, ly, isw, ifax, trigs, wk);

117

[DEPRECATED]ASL_dfc2bf, ASL_rfc2bf
Two-Dimensional Complex Fourier Transform (After Initialization)

(3) Arguments and Return Value

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

I { int as for 32bit Integer}

long as for 64bit Integer

No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))
2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))
3 cr Dx Ixxly Input | Real part of input data cy, x, (See Note (b))
{R*} Output | Real part of output data d;, ;, (See Notes (b)
and (c))
4 ci D+ Ixxly Input | Imaginary part of input data cy, &, (See Note
{R* } (b))
Output | Imaginary part of output results dj, ;, (See
Notes (b) and (c))
5 Ix I 1 Input | Adjustable dimension of array cr and ci (See
Note (b))
6 ly I 1 Input | Second dimension of array cr and ci (See Note
(b))
7 isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform
8 ifax I* 40 Input | Factorization results and number of factors
(See Note (a))
9 trigs D+ 2 X (nx +| Input | Trigonometric function table (See Note (a))
{R* } ny)
10 wk Dx 2 xIx xly] Work | Work area
()
11 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a)

(b)

()

nx > 1
ny >1

nx < Ix

ny <ly
isw e {1,—-1}

118

[DEPRECATED]ASL_dfc2bf, ASL_rfc2bf
Two-Dimensional Complex Fourier Transform (After Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes

(a)

This function can be used to repeatedly compute the transform for the same number of data (nx, ny)

ASL_dfc2fb
after the including-initialization function 2.8.1 ¢ has been used. In this case, you must
ASL_rfc2fb

retain the contents of arrays ifax and trigs so they can be used as input in this function.

If we let the real and imaginary parts of the complex data cx, , (ky =0,---,ny—1; ky=0,---,n,—1)
be R{ck, k,} and I{ck, r,}, respectively, the cx, r, and elements of arrays cr and ci are associated as
follows.

R{crok,} ¢ crfke + xxky]
S{cro b, b ¢ cilky + Ixxky]

Similarly, for the complex data dj, ;, (jo =0, -+, nz — 15 j, = 0,---,n, — 1).

The adjustable dimensions Ix and ly of arrays cr and ci should be set to odd numbers to
avoid bank conflict of main memory. Usually, when nx, for example, is even, Ix=nx—+1 is
set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data cy, &, (ke = 0,--,n;—1; ky = 0,---,n, —1) be represented

by ¢k, k, (kz =0,---,n, —1; ky =0,---,n, — 1), then the following relationship holds.
Chyky = NaMyChyk, (ke =0,---,np —1; ky =0,--- 0y — 1)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries
a normalized result is defined.

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n, or n,) as the period,
the number of samples or sampling interval must be set with this taken into account when sampling
to approximate the continuous Fourier transform. According to the sampling theorem, for a time
function h(t) that is bandwidth limited by the frequency f,, if the sampling interval is taken as T' = i,
then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT")} as follows.

=T 3 iy e CU R ?(T{ c_(tl.;)m

1=—0Q

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

119

[DEPRECATED]ASL_dfc2bf, ASL_rfc2bf
Two-Dimensional Complex Fourier Transform (After Initialization)

(f) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.
(7) Example

(a) Problem
Compute the two-dimensional complex Fourier forward and backward transforms using
ky +1)(k, +1
Chohry = (ko + 1) + (ky +1) + gtk £ D(ky +1)
Mgy
(ke =0, ng —1; ky =0, ,n, — 1)

as input data.

(b) Input data
Array cr and ci, nx=>5, ny=4, Ix=>5, ly=>5, isw=1 (forward transform) and isw=—1 (backward trans-
form).
(¢) Main program
/* C Interface example for ASL_dfc2fb , ASL_dfc2bf */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <asl.h>

int main()
{

int nx = 5; int ny = 4;

int 1x = 5; int ly = 5;

double *cr; double *ci;

int isw;

int ifax[40];

double *trigs;

double *wk;

int ierr;

int 1,j;

printf(" *%x ASL_dfc2bf , ASL_dfc2bf ***\n");
printf("\n ** Input **\n");

cr = (double *)malloc((size_t)(sizeof(double) * (1lxxly)));
if(cr == NULL)

printf("no enough memory for array cr\n");

return -1;

ci = (double *)malloc((size_t)(sizeof(double) * (1lxxly)));
if(ci == NULL)

printf("no enough memory for array ci\n");

return -1;
trigs = (double *)malloc((size_t)(sizeof(double) * (2*%(nx+ny))));
if(trigs == NULL)

printf("no enough memory for array trigs\n");

return -1;

wk = (double *)malloc((size_t)(sizeof (double) * (2xlx*ly)));
if (wk == NULL)

printf("no enough memory for array wk\n");

return -1;

%6d\n", nx);
%6d\n", ny);

printf("\tnx
printf("\tny

for(j=1 ; j<=ny ; j++)
{
for(i=1 ; i<=nx ; i++)

cr[(i-1)+1x*(j-1)I1=(double) (i+j) ;
ci[(i-1)+1x*(j-1)1=(double) (i*j)/(double) (nx*ny) ;

120

[DEPRECATED]ASL_dfc2bf, ASL_rfc2bf
Two-Dimensional Complex Fourier Transform (After Initialization)

printf("\t(crlix] [iy], cilix][iyl)\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<my ; j++)
printf("\t(%8.3g,%8.3g)", crli+lxx*j], cili+lxx*j]);

printf("\n");

isw = 1;
ierr = ASL_dfc2fb(nx, ny, cr, ci, 1lx, ly, isw, ifax, trigs, wk);

for(i=0 ; i<lx*ly ; i++)

cr[i]l /= (double) (nx*ny);
ci[i] /= (double) (nx*ny) ;
}

printf("\n *x Output **\n");

printf("\t< Forward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\t(crlix] [iy],cilix] [iy])\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<mny ; j++)
printf("\t(%8.3g,%8.3g)", crli+lx*jl, cili+lx*j]l);
}
printf("\n");
}
isw = -1;
ierr = ASL_dfc2bf(nx, ny, cr, ci, 1lx, ly, isw, ifax, trigs, wk);

printf("\t< Backward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\t(crlix] [iy],cilix] [iy])\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", crli+lx*jl, cili+lx*j]l);

}
printf("\n");

free(cr);
free(ci);
free(trigs);
free(wk);

return O;

}
(d) Output results

sk% ASL_dfc2bf , ASL_dfc2bf *xx*

** Input *x*
5

nx =

ny = 4

(cr[ix] [iyl, cilix][iyl)

(2, 0.05) (3, 0.1) (4, 0.15) (5, 0.2)
3, 0.1) ¢ 4, 0.2) ¢ 5. 0.3) (6. 0.4)

(a, 0.15) (5, 0.3) ¢ 6. 0.45) (7. 0.6)

(5, 0.2) (6, 0.4) (7, 0.6) (8, 0.8)

(6. 0.25) (7. 0.5) (8. 0.75) (9, 1)

*% Output *x*
< Forward Transform >

ierr = 0
(cr[ix] [iy],cilix] [iy])

(5.5, 0.375) (-0.575, 0.425) (-0.5, -0.075) (-0.425, -0.575)
(-0.586, 0.626) (0.0297, -0.0047) (0.0172, 0.0125) (0.0047, 0.0297)
(-0.52, 0.1) (0.0166, 0.00844) (0.00406, 0.0125) (-0.00844, 0.0166)
(-0.48, -0.225) (0.00844, 0.0166) (-0.00406, 0.0125) (-0.0166, 0.00844)
(-0.414, -0.751) (-0.0047, 0.0297) (-0.0172, 0.0125) (-0.0297, -0.0047)
< Backward Transform >
ierr =
(erlix] [iy]l,cilix] [iy])
2, 0.05) (3, 0.1) (4, 0.15) (5, 0.2)
s 0.1) (4, 0.2) (5, 0.3) (6, 0.4)
(4, 0.15) (5, 0.3) (6, 0.45) (7, 0.6)
(5, 0.2) (6, 0.4) (7, 0.6) (8, 0.8)

121

[DEPRECATED]ASL_dfc2bf, ASL_rfc2bf
Two-Dimensional Complex Fourier Transform (After Initialization)

(6, 0.25) (7, 0.5) (8, 0.75) (

122

D)

2.9 TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM

(COMPLEX ARGUMENT TYPE)

2.9.1 [DEPRECATED]ASL zfc2fb, ASL _cfc2fb

(1)

Two-Dimensional Complex Fourier Transform (Including Initialization)

Function
Forward transform
ASL_zfc2fb or ASL_cfc2fb computes the two-dimensional complex Fourier forward transform (arbitrary

radix) for the two-dimensional complex data cy, k, (kz = 0, ,ny — 1; ky = 0,---,ny — 1).

Np—1ny—1

_Qﬂ.\/jl(mkx +Jy y) . .
djzjy = E E Ckz,kye e v (]I :0,,7'Lx*1,]y:(),,’ﬂy*].)
ky=0 ky=0

Backward transform
ASL_zfc2fb or ASL_cfc2fb computes the two-dimensional complex Fourier backward transform (arbitrary

radix) for the two-dimensional complex data cy, k, (kz = 0, , 0y — 1; ky = 0,---,ny — 1).

ng—1ny—1

j jy b
Qﬂ.\/jl(mkx 4y v . .
djzjy = E E Ckz,kye e "y (]z :0,,7'Lx*1, Jy:()aanyfl)
ko=0 ky=0

Usage
Double precision:

ierr = ASL_zfc2fb (nx, ny, ¢, Ix, ly, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_cfe2fb (nx, ny, c, Ix, ly, isw, ifax, trigs, wk);

123

[DEPRECATED]ASL zfc2fb, ASL_cfc2fb
Two-Dimensional Complex Fourier Transform (Including Initialization)

(3) Arguments and Return Value

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

I { int as for 32bit Integer}

long as for 64bit Integer

No. Argument and Type Size fnput/ Contents
Return Value ’ Output

1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))

2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))

3 c 7% Ixxly Input | Input data cg, , (See Note (b))

{C*} Output | Output results d;, ;, (See Notes (b) and (c))

4 Ix I 1 Input | Adjustable dimension of array ¢ (See Note
(b))

5 ly I 1 Input | Second dimension of array ¢ (See Note (b))

6 isw I 1 Input | Processing switch (See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform

7 ifax I* 40 Output | Factorization results and number of factors
(See Note (d))

8 trigs D+ 2 x (nx +| Output | Trigonometric function table (See Note (d))

R« ny)
9 wk 7% Ix x ly Work | Work area
1)
10 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a)

(b)

()

nx > 1
ny >1

nx < Ix

ny <ly
isw € {0,1, -1}

124

[DEPRECATED]ASL_zfc2fb, ASL_cfc2fb
Two-Dimensional Complex Fourier Transform (Including Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes

(a)

When the number of data nx or ny can be adjusted, the calculations can be performed more efficiently
by setting a number for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3,
5, etc.). For example, rather than setting nx = 289(=172), it is usually more efficient to set nx = 300
(=22 x 3 x 5?), nx = 320(=2% x 5), nx = 384(=2" x 3) or the like.

The complex data cx, r, (kz =0,---,n,—1; ky = 0,---,n, —1) and elements of array c are associated

as follows.
Chy by 7 C[kx + Ix * ky]

Similarly, for the complex data dj, j, (jo = 0,---,nz — 15 j, = 0,---,n, — 1).
The adjustable dimensions Ix and ly of array c should be set to odd numbers to avoid

bank conflict of main memory. Usually, when nx, for example, is even, Ix=nx+1 is set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data cy, &, (ky =0,---,ny—1; k, =0,---,n,—1) be represented
by ¢k, k, (kz =0,---,n, —1; ky =0,---,n, — 1), then the following relationship holds.

Cha by = NaNyChy ey (b =0, mg — 15 ky =0, ,my — 1)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

To repeatedly compute the transform for the same number of data (nx, ny), you should call this
function once, and then use the after-initialization transform 2.9.2 ASL.zfc2bt , thereafter. This
ASL_cfc2bf
enables processing to be performed more efficiently since initialization (factorization or the creation of
trigonometric tables) is performed only once. However, in this case, you must retain the contents of
ASL_zfc2bf

ASL _cfc2bf |
To perform initialization only by setting isw=0, you need not set input data for array c.

arrays ifax and trigs so they can be used as input to the function 2.9.2

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n, or n,) as the period,
the number of samples or sampling interval must be set with this taken into account when sampling

to approximate the continuous Fourier transform. According to the sampling theorem, for a time

125

[DEPRECATED]ASL zfc2fb, ASL_cfc2fb
Two-Dimensional Complex Fourier Transform (Including Initialization)

function h(t) that is bandwidth limited by the frequency f,, if the sampling interval is taken as T' = #,
then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT")} as follows.
sin 2w f.(t —iT)

h(t)=T > h(iT) T

i=—00

(f) This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(g) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the
higher performance alternative implementation instead.

(7) Example
See the example in Section 2.9.2 (7).

126

[DEPRECATED]ASL_zfc2bf, ASL_cfc2bf
Two-Dimensional Complex Fourier Transform (After Initialization)

2.9.2 [DEPRECATED]ASL _zfc2bf, ASL_cfc2bf

(1)

Two-Dimensional Complex Fourier Transform (After Initialization)

Function
Forward transform
ASL_zfc2bf or ASL_cfc2bf computes the two-dimensional complex Fourier forward transform (arbitrary

radix) for the two-dimensional complex data cy, k, (kz = 0, ,ny — 1; ky = 0,---,ny — 1).

ng—1ny—1

_Qﬂ\/fl(jzkz +jyky) . .
djwajy: E : E Chy ky € e " (Jo =0, ,np = 15]yzov""ny_l)
ko=0 ky—=0

Backward transform
ASL _zfc2bf or ASL_cfc2bf computes the two-dimensional complex Fourier backward transform (arbitrary

radix) for the two-dimensional complex data cx, r, (ke =0, -+, ny — 15 ky = 0,---,n, — 1).

ng—1ny—1

Z Z 2my/—I(dzke Tyt) ,
d],,]y - Ckm,kye e v (]wzovanm_17]yzovany_l)
ke=0 k,=0

Usage
Double precision:

ierr = ASL _zfe2bf (nx, ny, ¢, Ix, ly, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_cfe2bf (nx, ny, ¢, Ix, ly, isw, ifax, trigs, wk);

127

[DEPRECATED]ASL _zfc2bf, ASL_cfc2bf
Two-Dimensional Complex Fourier Transform (After Initialization)

(3) Arguments and Return Value

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

I { int as for 32bit Integer}

long as for 64bit Integer

No. Argument and Type Size fnput/ Contents
Return Value ’ Output

1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))

2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))

3 c 7% Ixxly Input | Input data cg, , (See Note (b))

{C*} Output | Output results d;, ;, (See Notes (b) and (c))

4 Ix I 1 Input | Adjustable dimension of array ¢ (See Note
(b))

5 ly I 1 Input | Second dimension of array ¢ (See Note (b))

6 isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform

7 ifax I* 40 Input | Factorization results and number of factors
(See Note (a))

8 trigs D+ 2 X (nx +| Input | Trigonometric function table (See Note (a))

R« ny)
9 wk 7k Ix x ly Work | Work area
1)
10 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a)

(b)

()

nx > 1
ny >1

nx < Ix

ny <ly
isw e {1,—-1}

128

[DEPRECATED]ASL_zfc2bf, ASL_cfc2bf
Two-Dimensional Complex Fourier Transform (After Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes

(a)

This function can be used to repeatedly compute the transform for the same number of data (nx, ny)

ASL_zfc2fb
after the including-initialization function 2.9.1 e has been used. In this case, you must
ASL_cfc2fb

retain the contents of arrays ifax and trigs so they can be used as input in this function.

The complex data cy, , (ky =0,---,ny—1; ky, =0,---,n,—1) and elements of array c are associated
as follows.

ckm7k7y A C[kx + 1X * ky]

Similarly, for the complex data dj, j, (jo =0, -+, nz — 15 j, = 0,---,n, — 1).
The adjustable dimensions Ix and ly of array c¢ should be set to odd numbers to avoid

bank conflict of main memory. Usually, when nx, for example, is even, Ix=nx+1 is set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data cy, &, (ke = 0,--,n;—1; ky = 0,---,n, —1) be represented

by ¢k, k, (kz =0,---,n, —1; ky =0,---,n, — 1), then the following relationship holds.
Chyky = NaMyChyk, (ke =0,---,np —1; ky =0,--- 0y — 1)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries
a normalized result is defined.

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n, or n,) as the period,
the number of samples or sampling interval must be set with this taken into account when sampling
to approximate the continuous Fourier transform. According to the sampling theorem, for a time
function h(t) that is bandwidth limited by the frequency f,, if the sampling interval is taken as T' = i,
then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT")} as follows.
o0 . .
wsin2mf.(t —iT)
h(t) =T h(iT)—————=
(=T 3 hl) =

1=—0Q

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

129

[DEPRECATED]ASL _zfc2bf, ASL_cfc2bf
Two-Dimensional Complex Fourier Transform (After Initialization)

(7) Example

(a)

Problem
Compute the two-dimensional complex Fourier forward and backward transforms using
kr +1)(k, +1
Chotey = (ko + 1) + (ky +1) + gtk £ D(ky +1)
Mgy
(ke =0, g —1; ky =0, ,n, — 1)

as input data.

Input data
Array ¢, nx=>5, ny=4, Ix=>5, ly=>5, isw=1(Forward transform) and isw=—1 (Backward transform).

Main program

/* C Interface example for ASL_zfc2fb , ASL_zfc2bf */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>
#include <asl.h>

int main()
{

int nx = 5; int ny = 4;

int 1x = 5; int 1y = 5;

double _Complex *c;

int isw;

int ifax[40];

double *trigs;

double _Complex *wk;

int ierr;

int i,j;

printf(" sxk ASL_zfc2fb , ASL_zfc2bf *¥x\n");
printf("\n ** Input **\n");

c = (double _Complex *)malloc((size_t)(sizeof (double _Complex) * (lx*ly)));
if(¢ == NULL)

printf("no enough memory for array c\n");
return -1;
trigs = (double *)malloc((size_t)(sizeof(double) * (2*nx+2*ny)));
if(trigs == NULL)
printf("no enough memory for array trigs\n");
return -1;
wk = (double _Complex *)malloc((size_t)(sizeof(double _Complex) * (lx*ly)));
if (wk == NULL)

printf("no enough memory for array wk\n");

return -1;
printf("\tnx = %6d\n", nx);
printf("\tny = %6d\n", ny);

for(j=1 ; j<=ny ; j++)
{
for(i=1 ; i<=nx ; i++)
c[(i-1)+1x*(j-1)]=(double) (i+j)+(double) (i*j)/(double) (nx*ny)*_Complex_I;
}

printf("\tc[ix] [iyI\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", creal(cli+lx*jl), cimag(cl[i+lx*jl));

}
printf("\n");

isw = 1;
ierr = AéL_zfc2fb(nx, ny, c, lx, ly, isw, ifax, trigs, wk);

130

[DEPRECATED]ASL_zfc2bf, ASL_cfc2bf
Two-Dimensional Complex Fourier Transform (After Initialization)

for(i=0 ; i<lx*ly ; i++)

c[i] /= (double) (nx * ny);

printf("\n *x Output **\n");

printf("\t< Forward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\tc[ix] [iy]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<mny ; j++)
printf("\t(%8.3g,%8.3g)", creal(cl[i+lx*j]l), cimag(c[i+lx*jl));

}
printf("\n");
}

isw = -1;
ierr = AéL_zfc2bf(nx, ny, c, lx, ly, isw, ifax, trigs, wk);

printf("\t< Backward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\tc[ix] [iyI\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)

printf("\t(%8.3g,%8.3g)", creal(cli+lx*jl), cimag(cli+lx*jl));
}
printf("\n");

free(c);
free(trigs);
free(wk);

return O;

}
(d) Output results

*xx ASL_zfc2fb , ASL_zfc2bf **x

** Input *x*
nx = 5
ny = 4

clix] [iy]

(2, 0.05) (3, 0.1) (4, 0.15) (5, 0.2)
(3, 0.1) (4, 0.2) (5, 0.3) (6, 0.4)
(4, 0.15) (5, 0.3) (6, 0.45) (7, 0.6)
(5, 0.2) (6, 0.4) (7, 0.6) (8, 0.8)
(6, 0.25) (7, 0.5) (8, 0.75) (9, 1)

** Output *x*
< Forward Transform >

ierr =
clix] [iy]

(5.5, 0.375) (-0.575, 0.425) (
(-0.586, 0.626) (0.0297, -0.0047) (
(-0.52, 0.1) (0.0166, 0.00844) (
E -0.48, -0.225) E 0.00844, 0.0166) E—

-0.414, -0.751) 0.0047, 0.0297)
< Backward Transform >
0

-0.5, -0.075) (-0.425, -0.575)
0.0172, 0.0125) (0.0047, 0.0297)
00406, 0.0125) (-0.00844, 0.0166)
00406, 0.0125) (-0.0166, 0.00844)
0.0172, 0.0125) (-0

0
0
- .0297, -0.0047)

ierr =
clix] [iy]

2, 0.05) (3, 0.1) (4, 0.15) (5, 0.2)
(3, 0.1) (4, 0.2) (5, 0.3) (6, 0.4)
(4, 0.15) (5, 0.3) (6, 0.45) (7, 0.6)
(5, 0.2) (6, 0.4) (7, 0.6) (8, 0.8)
(6, 0.25) (7, 0.5) (8, 0.75) (9, 1)

131

2.10 TWO-DIMENSIONAL REAL FOURIER TRANSFORM

2.10.1 [DEPRECATED]ASL_dfr2fb, ASL_rfr2fb

(1)

Two-Dimensional Real Fourier Transform (Including Initialization)

Function
Forward transform
ASL_dfr2fb or ASL _rfr2fb obtains a half period of the two-dimensional Fourier forward transform (arbitrary

radix) for the two-dimensional real data 7y, x, (kz = 0, -, 0y — 1; ky = 0,---,ny — 1).

Ng—1ny—1

—omy/—T(dzke 4 Jubyy Ny .
Clz,jy = E : E Tk ky € me Uy (e = 0,000, 5] Jy = 0,000 ,my — 1)
ke=0 ky=0

Here, |x] represents the maximum integer that does not exceed z. The remaining half period is obtained
from the following relationships.

:fojx,nyij = cja:ajy

:Lﬂiszajy = Cjz’/n/yij
Here, z* represents the conjugate complex number of the complex number z.

Backward transform

Given the half period ¢;, j, (j= = 0,---,|[%]; j, = 0,---,ny — 1) for nyn, complex data c;, j, (jo =
0,---,ng —1; jy =0,---,n,y — 1) satisfying Cro—jumy—jy = Ciogy a0 € 5 o= ¢j, n,—j,, ASL_dfr2fb or

ASL_rfr2fb obtains the two-dimensional Fourier backward transform (arbitrary radix) defined as follows.

Np—1ny—1

i oy
2W\/T1(Jzkz+7y y)
E E Ciia iy € teo

Je=0 jy,=0

ny—1 Sy ny—1[%E]-1 e
= Z {CO,jy + (71)16:&%,]&}6277\/?1 ny 492 Z Z %{Cjz,jye%r\/jl(v—‘rv)}

Jy=0 Gy=0 jo=1

(km:O’...7nm—1; ky:(),...’ny_l)

Ty ky

Here, [z] represents the minimum integer greater than or equal to x, and R{z} represents the real part of

the complex number z. Also, when n, is odd, é% ,, = 0, and when n; is even, énTa: o=

5] sJy Cnvajy'

Usage
Double precision:

ierr = ASL_dfr2fb (nx, ny, 1, Ix, ly, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_rfr2fb (nx, ny, 1, Ix, ly, isw, ifax, trigs, wk);

132

[DEPRECATED]ASL_dfr2fb, ASL_rfr2fb
Two-Dimensional Real Fourier Transform (Including Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))
2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))
3 r D+ Ixxly Input | Input data 7y, x, (Forward transform), or
{R*} Cj,.j, (Backward transform) (See Note (b))
Output | Output results c;, j, (Forward transform),
or 7k, k, (Backward transform) (See Notes
(b) and (c))
4 Ix I 1 Input | Adjustable dimension of array r (See Note
(b))
5 ly I 1 Input | Second dimension of array r (See Note (b))
isw I 1 Input | Processing switch (See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform
7 ifax I* 40 Output | Factorization results and number of factors
(See Note (d))
8 trigs D+ nx+2 xny| Output | Trigonometric function table (See Note (d))
()
9 wk D+ Ix x ly Work | Work area
()
10 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions
(a) nx > 1
ny > 1

(b) nx + 1 < Ix, where nx is an odd, or

nx + 2 < Ix, where nx is an even.

(c) ny <ly
(d) isw € {0,1,—1}

133

[DEPRECATED]ASL_dfr2b, ASL_rfr2fb
Two-Dimensional Real Fourier Transform (Including Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) or (c) was not satisfied.
3020 Restriction (d) was not satisfied.
(6) Notes

(a)

()

When the number of data nx or ny can be adjusted, the calculations can be performed more efficiently
by setting a number for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3,
5, etc.). For example, rather than setting nx = 289(=172), it is usually more efficient to set nx = 300
(=22 x 3 x 5?), nx = 320(=2% x 5), nx = 384(=2" x 3) or the like.

The real data 74, x, (kz =0,---,n, —1; ky =0,---,n, — 1) and elements of array r are associated as

follows.
Thyk, < rlky + Ix * ky |

When computing the backward transform, if nx(=n,) is odd, then r[nx + Ix * ky] = 0, and when nx
is even, then r[nx + Ix * ky] = r[nx + 1 + Ix * ky] = 0. Also, when entering the real data ry, r, (ks =
0,---,ny —1; k, =0,---,n, — 1) into array r, the corresponding zeros mentioned above need not be
specifically stored.

If we let the real and imaginary parts of the complex data c;, j, (jz = 0,---, [%]; jy = 0,---,ny — 1)
be R{c;, j,} and I{c;, j, }, respectively, the c;, ;, and elements of array r are associated as follows.

Here, | 2| represents the maximum integer that does not exceed x.

R{cj,5, b & r[2xjc +1xx]y]
S{cj, 5,1 & r2%)x + 1+ Ixxjy]
From the properties of a real Fourier transform, ${cpo} = 0, and when nx and ny are both even,
%{wTI’ ny } = 0. Therefore, even if nonzero values are set for the corresponding elements of array
r, they are considered to be zero when processing is performed. Since the elements c;, ;, (o =
|%=]+1,---,n,—1; j, =0,---,n, — 1) can be obtained according to the following relationships from
the symmetry of the real Fourier transform, they need not be assigned as input when computing the
backward transform. Also, they are not output when computing the forward transform.
ne—jeiny—gy = Ciasdy
ne—ds.dy = Cjony—iy
Here, z* represents the conjugate complex number of the complex number z. The adjustable dimen-
sions of array r should be set so that 1x/2 and ly are odd numbers to avoid bank conflict

of main memory. Usually, when nx, for example, is (a multiple of 4)42, Ix=nx+4 is set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the real data rx, x,(kz = 0,---,n, — 1; ky, = 0,---,n, — 1) be represented

by 7k, .k, (ke = 0,---,ny — 1; ky =0,---,ny — 1), then the following relationship holds.

Pharky = NalyThy ky, (ke =0, ng —1; ky =0,---,ny — 1)

134

[DEPRECATED]ASL_dfr2fb, ASL_rfr2fb
Two-Dimensional Real Fourier Transform (Including Initialization)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries
a normalized result is defined.

(d) To repeatedly compute the transform for the same number of data (nx, ny), you should call this

ASL_dfr2bf

function once, and then use the after-initialization transform 2.10.2 , thereafter. This
ASL _rfr2bf

enables processing to be performed more efficiently since initialization (factorization or the creation of

trigonometric tables) is performed only once. However, in this case, you must retain the contents of

ASL _dfr2bf
arrays ifax and trigs so they can be used as input to the function 2.10.2 ' .
ASL_rfr2bf

To perform initialization only by setting isw=0, you need not set input data for array r.

(e) Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n, or n,) as the period,
the number of samples or sampling interval must be set with this taken into account when sampling
to approximate the continuous Fourier transform. According to the sampling theorem, for a time
function h(t) that is bandwidth limited by the frequency f,, if the sampling interval is taken as T' = ﬁ,

then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT")} as follows.

hy=TY h(iT)—Sin?(Tg ‘:_(ZT)iT)

1=—00

(f) This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(g) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

(7) Example
See the example in Section 2.10.2 (7).

135

[DEPRECATED]ASL_dfr2bf, ASL_rfr2bf
Two-Dimensional Real Fourier Transform (After Initialization)

2.10.2 [DEPRECATED]ASL dfr2bf, ASL _rfr2bf

(1)

Two-Dimensional Real Fourier Transform (After Initialization)

Function
Forward transform
ASL_dfr2bf or ASL _rfr2bf obtains a half period of the two-dimensional Fourier forward transform (arbitrary

radix) for the two-dimensional real data 7y, x, (kz = 0, -,y — 1; ky = 0,---,ny — 1).

Ng—1ny—1

% —omy/ =TI p) Na |
Cliz,jy = Tk ky © me Uyl (e = 0,000, 5] Jy = 0,000,y — 1)
k2=0 ky=0

Here, |x] represents the maximum integer that does not exceed z. The remaining half period is obtained
from the following relationships.

*) =i
Ng—Jo,Ny—Jy ~ Jx:Jy
* — . .
Mo —judy ClasMy—dy

C

Here, z* represents the conjugate complex number of the complex number z.

Backward transform

Given the half period ¢;, j, (j= = 0,---,|[%]; jy, = 0,---,ny — 1) for nyn, complex data c;, j, (jo =
e —ja Ty —] ASL_dfr2bf or
z—Jz Ny —Jy

0,---,ng —1; jy =0,---,m, — 1) satisfying c = ¢j,,5, and ¢
ASL_rfr2bf obtains the two-dimensional Fourier backward transform (arbitrary radix) defined as follows.

* — ¢ .
Ne—Jz,Jy — JzTMy~Jy?

Np—1ny—1

i oy
2W\/T1(Jzkz+7y y)
E E Ciia iy © teo

Thoky =
Jz=0 ijO
ny—1 N ny—1[51-1 =T dike | B2
ku A T — T/ —1 (e 4 VY
=D A{cog, +(=1)féng ; e w2 Y Rieg e ey
Jy=0 Jy=0 Jjz=1

(kp =0, ng —1; ky=0,---,n, — 1)

Here, [z] represents the minimum integer greater than or equal to x, and R{z} represents the real part of

the complex number z. Also, when n, is odd, é% ;

j, =0, and when n; is even, ¢ne ; =
JY 2

ne o
sJy CTI»]y

Usage
Double precision:

ierr = ASL_dfr2bf (nx, ny, 1, Ix, ly, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_rfr2bf (nx, ny, 1, Ix, ly, isw, ifax, trigs, wk);

136

[DEPRECATED]ASL_dfr2bf, ASL_rfr2bf
Two-Dimensional Real Fourier Transform (After Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))
2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))
3 r D+ Ixxly Input | Input data 7y, x, (Forward transform), or
{R*} Cj,.j, (Backward transform) (See Note (b))
Output | Output results c;, j, (Forward transform),
or 7k, k, (Backward transform) (See Notes
(b) and (c))
4 Ix I 1 Input | Adjustable dimension of array r (See Note
(b))
5 ly I 1 Input | Second dimension of array r (See Note (b))
isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform
7 ifax I* 40 Input | Factorization results and number of factors
(See Note (a))
8 trigs Dx nx+2xny| Input | Trigonometric function table (See Note (a))
()
9 wk Dx Ix x 1y Work | Work area
()
10 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions
(a) nx > 1
ny > 1

(b) nx + 1 < Ix, where nx is an odd, or

nx + 2 < Ix, where nx is an even.

(c) ny <ly
(d) isw e {1, -1}

137

[DEPRECATED]ASL_dfr2bf, ASL_rfr2bf
Two-Dimensional Real Fourier Transform (After Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) or (c) was not satisfied.
3020 Restriction (d) was not satisfied.
(6) Notes

(a)

This function can be used to repeatedly compute the transform for the same number of data (nx, ny)

ASL_dfr2fb
after the including-initialization function 2.10.1 g has been used. In this case, you must
ASL_rfr2fb

retain the contents of arrays ifax and trigs so they can be used as input in this function.

The real data ry, , (ky =0,---,ny —1; k, =0,---,n, — 1) and elements of array r are associated as
follows.

Tk ky — r[kx—l—lx*ky]

When computing the backward transform, if nx(=n,) is odd, then r[nx + Ix * ky] = 0, and when nx
is even, then r[nx + Ix * ky] = r[nx 4+ 1 + Ix x ky| = 0. Also, when entering the real data ry, , (k. =
0,---,ny —1; k, =0,---,n, — 1) into array r, the corresponding zeros mentioned above need not be
specifically stored.

If we let the real and imaginary parts of the complex data c;, j, (jz = 0,---, [%]; jy = 0,---,ny — 1)
be R{c;, ;,} and I{cj, j,}, respectively, the c;, ;, and elements of array r are associated as follows.

Here, |x] represents the maximum integer that does not exceed z.

R{cj,5, b & r[2xjc +Lxox]y]

(‘}{Cjwjy} — I‘[2 *jx +1+1x *Jy]
From the properties of a real Fourier transform, S{co o} = 0, and when nx and ny are both even,
%{c%x’ ny } = 0. Therefore, even if nonzero values are set for the corresponding elements of array
r, they are considered to be zero when processing is performed. Since the elements c¢;, ;, (jz =
| %] +1,---,np—1; j, =0,---,n, — 1) can be obtained according to the following relationships from
the symmetry of the real Fourier transform, they need not be assigned as input when computing the
backward transform. Also, they are not output when computing the forward transform.

ne—jeiny—gy = Ciady

Mo =iy = Cioiny—Jy
Here, z* represents the conjugate complex number of the complex number z. The adjustable dimen-
sions of array r should be set so that 1x/2 and ly are odd numbers to avoid bank conflict

of main memory. Usually, when nx, for example, is (a multiple of 4)42, Ix=nx-+4 is set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the real data ry, ,(kz = 0,---,n, —1; ky, = 0,---,n, — 1) be represented

by 7k, .k, (ke = 0,---,ny —1; ky =0,---,ny — 1), then the following relationship holds.

Pharky = NalyThy ky (ke =0, np =15 ky =0,---,ny — 1)

138

[DEPRECATED]ASL_dfr2bf, ASL_rfr2bf
Two-Dimensional Real Fourier Transform (After Initialization)

(e)

(f)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n, or n,) as the period,
the number of samples or sampling interval must be set with this taken into account when sampling
to approximate the continuous Fourier transform. According to the sampling theorem, for a time
function h(t) that is bandwidth limited by the frequency f,, if the sampling interval is taken as T' = i,

then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.

ht)=T h(iT)%

i=—00

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

(7) Example

(a)

Problem

Compute the two-dimensional real Fourier forward and backward transforms using
. Ny + Ny

2P (ke + 1) + (ky + 1)

(ky =0,---,ny —1; ky=0,---,ny — 1)

Tk

as input data.

Input data
Array r, nx=6, ny=4, 1x=10, ly=5, isw=1(Forward transform) and isw=—1 (Backward transform).

Main program

/* C Interface example for ASL_dfr2fb , ASL_dfr2bf */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()

int nx = 6; int ny
int 1x = 10; int ly
double *r;

int isw;

int ifax[40];

double *trigs;

double *wk;

int ierr;

int i,j;

printf(" **%x ASL_dfr2fb , ASL_dfr2bf **x\n");
printf("\n *x Input **\n");

r = (double *)malloc((size_t)(sizeof(double) * (lx*ly)));
if(r == NULL)

printf("no enough memory for array r\n");
return -1;

trigs = (double *)malloc((size_t) (sizeof (double) * (nx+2*ny)));
if(trigs == NULL)

printf("no enough memory for array trigs\n");
return -1;

139

[DEPRECATED]ASL_dfr2bf, ASL_rfr2bf
Two-Dimensional Real Fourier Transform (After Initialization)

}

wk = (double *)malloc((size_t)(sizeof (double) * (1x*ly)));
if (wk == NULL)

printf("no enough memory for array wk\n");
return -1;

%6d\n", nx);

%6d\n", ny);

for(j=1 ; j<=ny ; j++)

printf("\tnx
printf("\tny

for(i=1 ; i<=nx ; i++)
r[(i-1)+1x*(j-1)]=(double) (nx+ny)/(double) (i+j);
}

printf("\tr[ix] [iy]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t%8.3g", rli+lx*j]l);

}
printf("\n");

isw = 1;
ierr = ASL_dfr2fb(nx, ny, r, lx, ly, isw, ifax, trigs, wk);

for(i=0 ; i<lx*ly ; i++)

r[i] /= (double) (nx*ny) ;

printf("\n ** Qutput **\n");

printf("\t< Forward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\tr[ix] [iyI\n");
for(i=0 ; i<nx+2 ; i++)

for(j=0 ; j<ny ; j++)
printf("\t%8.3g", rli+lx*jl);
}
printf("\n");
isw = -1;
ierr = ASL_dfr2bf(nx, ny, r, lx, ly, isw, ifax, trigs, wk);

printf("\t< Backward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\tr[ix] [iy]\n");
{or(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t%8.3g", rli+lx*jl);

}
printf("\n");

free(r);
free(trigs);
free(wk);

return O;

}
(d) Output results

*xx ASL_dfr2fb , ASL_dfr2bf x**x

*k Input *%
nx = 6

ny 4
r[ix] [iy]
5 3.33 2.5 2
3.33 2.5 2 1.67
2.5 2 1.67 1.43

140

[DEPRECATED]ASL_dfr2bf, ASL_rfr2bf
Two-Dimensional Real Fourier Transform (After Initialization)

2 1.67
1.67 1.43
1.43 1.25

** Qutput **
< Forward Transform >
ierr = 0

r[ix] [iy]
1.94 0.249
0 -0.155
0.296 0.0585
-0.247 -0.0939
0.229 0.0557
-0.0928 -0.0535
0.219 0.0637
0 -0.0301

< Backward Transform >
ierr = 0
r[ix][ig]

3.33

3.3 2.5
2.5 2
2 1.67
1.67 1.43
1.43 1.25

1.43
1.25
1.11

0.219

0
0.0761
-0.0447
0.058
-0.0186
0.0547
0

2.5

1.67
1.43
1.25
1.11

0.249
0.155
0.119
-0.00945
0.0794
0.0102
0.0637
0.0301

1.67
1.43
1.25
1.11

141

2.11 THREE-DIMENSIONAL COMPLEX FOURIER TRANS-

FORM (REAL ARGUMENT TYPE)

2.11.1 |[DEPRECATED]ASL dfc3fb, ASL rfc3fb

(1)

Three-Dimensional Complex Fourier Transform (Including Initialization)

Function

Forward transform

ASL_dfc3fb or ASL_rfe3fb computes the three-dimensional complex Fourier forward transform (arbitrary
radix) for the three-dimensional complex data Ck,,ky,kz(kz =0,---,n,—1; ky =0,---,mny — 1; k, =
0,-+-,n, —1).

ng—1ny—1ln,—1

Yy ony (gt 2 5k
dj, jyje = Cha ky ks € = Lty s
kp=0 k=0 k,=0

Backward transform

ASL_dfc3fb or ASL_rfe3fb computes the three-dimensional complex Fourier backward transform (arbitrary
radix) for the three-dimensional complex data cg, g, k. (ke = 0,---, 0y — 15 ky = 0,---,ny — 1; k., =
0,-+-,n, —1).

neg—1ny—1ln,—1 e ik -
Ty Y 2y T(lgke 4 a0y 2k
iy jyiz = Chy ky k= € =
ko=0 ky=0 k.—0
(]wzoavnw_lv]y:()avny_lv]ZZO,,’I’LZ—l)

Usage
Double precision:

ierr = ASL_dfe3fb (ux, ny, nz, cr, ci, Ix, ly, 1z, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_rfe3fb (nx, ny, nz, cr, ci, Ix, ly, lz, isw, ifax, trigs, wk);

142

[DEPRECATED|ASL_dfc3tb, ASL_rfc3fb
Three-Dimensional Complex Fourier Transform (Including Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))
2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))
3 nz I 1 Input | Number of data values in the third dimen-
sion, n, (See Note (a))
4 cr D+ Ixxlyxlz | Input | Real part of input data ck, r,.x. (See Note
{R* } (b))
Output | Real part of output data dj, ;, ;. (See Notes
(b) and (c))
5 cl D+ Ixxly x1z Input Imaginary part of input data Chy ky ks (See
{R*} Note (b))
Output | Imaginary part of output results d;, ;, ;. (See
Notes (b) and (c))
6 Ix I 1 Input | Adjustable dimension of array cr and ci (See
Note (b))
7 ly I 1 Input | Second dimension of array cr and ci (See Note
(b))
8 lz I 1 Input | Third dimension of array cr and ci (See Note
(b))
9 isw I 1 Input | Processing switch (See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform
10 ifax I* 60 Output | Factorization results and number of factors
(See Note (d))
11 trigs Dx 2 x (nx +| Output | Trigonometric function table (See Note (d))
RIFS
12 wk Dx 2xIxxlyx| Work | Work area
{R* } Iz
13 ierr I 1 Output | Error indicator (Return Value)

143

[DEPRECATED|ASL_dfc3fb, ASL_rfc3fb
Three-Dimensional Complex Fourier Transform (Including Initialization)

(4) Restrictions

(a)

(b)

()

nx > 1
ny > 1
nz > 1
nx < Ix
ny <ly
nz <lz

isw € {0,1, -1}

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes

(a)

When the number of data nx, ny or nz can be adjusted, the calculations can be performed more
efficiently by setting a number for which the mixed radix FFT algorithm operates effectively (multiples
of 2, 3, 5, etc.). For example, rather than setting nx = 289(=172), it is usually more efficient to set nx
= 300(=22 x 3 x 52), nx = 320(=25 x 5), nx = 384(=27 x 3) or the like.
If we let the real and imaginary parts of the complex data cx, k, k. (ke =0, ,nz—1; ky =0, ,ny—
1, k. =0,---,n,—1) be R{ck, r, k. } and S{cx, &, k. }, respectively, the cy, r, 1. and elements of arrays
cr and ci are associated as follows.

R{cr, kb b < corfke +1xx (ky +1y * k)]

S{Chyky kb cilke +1xx (ky +1y * k)]
Similarly, for the complex data dj, j, j.(jo =0, -+, nz — 15 jy, =0,---,ny —1; j. =0,---,n, —1).
The adjustable dimensions Ix, ly, and 1z of arrays cr and ci should be set to odd numbers
to avoid bank conflict of main memory. Also, to increase speed, calculations are executed
even for elements outside areas where data is set within arrays cr and ci. Usually, when

nx, for example, is even, Ix=nx+1 is set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data ck, k, r, (ke = 0,---,nz — 15 ky = 0,---,ny — 1; k. =
0,---,n. — 1) be represented by ¢x, x, k. (kz = 0,---,np —1; ky =0,---,ny —1; k; =0,---,n, — 1),
then the following relationship holds.
Chiy ky b = Ny NzChy ky k.
(ky =0,---,npy—1; ky=0,---,n, —1; k, =0,---,n, — 1)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of

the forward and backward transforms are reversed from those in this book, and in some of the entries
a normalized result is defined.

144

[DEPRECATED|ASL_dfc3tb, ASL_rfc3fb
Three-Dimensional Complex Fourier Transform (Including Initialization)

(d) To repeatedly compute the transform for the same number of data (nx, ny, nz), you should call this
function once, and then use the after-initialization transform 2.11.2 ASL.dfe3bf , thereafter. This
ASL _rfe3bf
enables processing to be performed more efficiently since initialization (factorization or the creation of
trigonometric tables) is performed only once. However, in this case, you must retain the contents of
ASL _dfc3bf
ASL_rfe3bf |

To perform initialization only by setting isw=0, you need not set input data for arrays cr and ci.

arrays ifax and trigs so they can be used as input to the function 2.11.2

(e) Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n, or n, or n,) as the period,
the number of samples or sampling interval must be set with this taken into account when sampling

to approximate the continuous Fourier transform. According to the sampling theorem, for a time
1

m)

then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.

function h(t) that is bandwidth limited by the frequency f,, if the sampling interval is taken as T' =

sin 2 fo(t — iT)

h(t)=T > h(iT) p

i=—00

(f) This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(g) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

(7) Example
See the example in Section 2.11.2 (7).

145

[DEPRECATED]ASL_dfc3bf, ASL_rfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

2.11.2 [DEPRECATED]ASL _dfc3bf, ASL_rfc3bf

(1)

Three-Dimensional Complex Fourier Transform (After Initialization)

Function

Forward transform

ASL_dfe3bf or ASL_rfe3bf computes the three-dimensional complex Fourier forward transform (arbitrary
radix) for the three-dimensional complex data c, , k. (kg = 0,---,ny —1; ky = 0,---,my — 15 k, =
0,---,n. —1).

ng—1ny—1n,—1

k Jyk k
J 2Jysd Z Z Z Cky ky k2 6_277\/7(]2;0-’_ 1:lyy—wflzz)
,JysJz

ke=0 ky=0 k.=0
(I—O, , Ny]-a _]y:O,,lef]_, .]2:077712*1)

Backward transform

ASL_dfe3bf or ASL_rfe3bf computes the three-dimensional complex Fourier backward transform (arbitrary
radlx) for the three-dimensional complex data ci, &, k. (kg = 0,---,ny —1; ky = 0,---,my — 15 k, =
07 Ny —]-)

ng—1ny—1n,—1

ﬂ\/,_l(jxkz+jyky +jzkz)
Ajo jyis E E E Chy iy, k€ teo v

ke=0 ky=0 k.=0
(.]Ifov , Ny]-a _]y:O,,lef]_, .]2:077712*1)

Usage
Double precision:

ierr = ASL_dfe3bf (nx, ny, nz, cr, ci, Ix, ly, 1z, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_rfe3bf (nx, ny, nz, cr, ci, Ix, ly, 1z, isw, ifax, trigs, wk);

146

[DEPRECATED]ASL_dfc3bf, ASL_rfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output

1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))

2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))

3 nz I 1 Input | Number of data values in the third dimen-

sion, n, (See Note (a))
4 cr {D*} Ixxlyxlz | Input | Real part of input data ck, r,.x. (See Note

Rx (b))
Output | Real part of output data dj, ;, ;. (See Notes

(b) and (c))

5 ci D+ Ixxly x1z Input | Imaginary part of input data cy, x, . (See
{R*} Note (b))
Output | Imaginary part of output results d;, ;, ;. (See
Notes (b) and (c))
6 Ix I 1 Input | Adjustable dimension of array cr and ci (See
Note (b))
7 ly I 1 Input | Second dimension of array cr and ci (See Note
(b))
8 lz I 1 Input | Third dimension of array cr and ci (See Note
(b))
9 isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform
10 ifax I* 60 Input | Factorization results and number of factors
(See Note (d))
11 trigs D« 2 X (nx +| Input | Trigonometric function table (See Note (d))
{R*} ny + nz)
12 wk Dx 2xIxxlyx| Work | Work area
{R* } 1z
13 ierr I 1 Output | Error indicator (Return Value)

147

[DEPRECATED]ASL_dfc3bf, ASL_rfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

(4) Restrictions

(a)

(b)

()

nx > 1
ny >1
nz > 1
nx < Ix
ny <ly
nz <lz

isw e {1,—-1}

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes
(a) This function can be used to repeatedly compute the transform for the same number of data (nx, ny,
ASL_dfe3fb
nz) after the including-initialization function 2.11.1 has been used. In this case, you
ASL _rfc3tb
must retain the contents of arrays ifax and trigs so they can be used as input in this function.
(b) If we let the real and imaginary parts of the complex data cx, &, k. (kz =0, -+, ne—1; ky =0,---,ny—
1, k. =0,---,n,—1) be R{ck, r, k. } and S{cx, &, k. }, respectively, the cy, r, 1. and elements of arrays

cr and ci are associated as follows.

%{Ckm,ky,kz} — Cr[kx + Ix % (ky + 1y * kz)]

%{Ckm,ky,kz} > Ci[kx + Ix * (ky + ly kz)]
Similarly, for the complex data dj, j, j.(jo =0, --,nz — 15 jy, =0,---,ny —1; j. =0,---,n, —1).
The adjustable dimensions Ix, ly, and 1z of arrays cr and ci should be set to odd numbers
to avoid bank conflict of main memory. Also, to increase speed, calculations are executed
even for elements outside areas where data is set within arrays cr and ci. Usually, when

nx, for example, is even, Ix=nx+1 is set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data ck, k, k. (ke = 0,---,nz — 15 ky = 0,---,ny — 1; k. =
0,---,n. — 1) be represented by ¢x, x, k. (kz = 0,---,np —1; ky =0,---,ny —1; k; =0,---,n, — 1),
then the following relationship holds.
Chig kiy ks = NaNyNzChy by ks
(ky =0,---,ny—1; ky=0,---,ny —1; k, =0,---,n, — 1)

Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of

the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

148

[DEPRECATED]ASL_dfc3bf, ASL_rfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

(d)

(f)

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (ng or n, or n.) as the period,
the number of samples or sampling interval must be set with this taken into account when sampling
to approximate the continuous Fourier transform. According to the sampling theorem, for a time
function h(t) that is bandwidth limited by the frequency f., if the sampling interval is taken as 7' = 5 f ,
then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT")} as follows.
_7 Z sm 2rf.(t —iT)
= w(t —iT)

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

(7) Example

(a)

Problem
Compute the three-dimensional complex Fourier forward and backward transforms using
Ng + Ny + Ny ke +1)(k, +1)(k, +1
cop = . ke + Dy + (k. + 1)
(ke + 1)+ (ky+1)+ (k. +1) NgMNyN

(kx:O’,nzfl, ky:o,’rn]yf]_7 kZ:()”nzf]_)
as input data.

Input data
Array cr and ci, nx=>5, ny=4, nz=3, Ix=>5, ly=>5, 12z=3, isw=1 (Forward transform) and isw=—1 (Back-
ward transform).

Main program

/* C Interface example for ASL_dfc3fb , ASL_dfc3bf */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <asl.h>

int main()

int nx = 5; int ny = 4; int nz = 3;
int 1x = 5; int ly = 5; int 1z = 3;
double *cr; double *cij;

int isw;

int ifax[60];

double *trigs;

double *wk;

int 1err,

int 1i,j,

printf(" ***x ASL_dfc3fb , ASL_dfc3bf *x*x\n");
printf("\n *#x Input **\n");

= (double *)malloc((size_t)(sizeof (double) * (lx*1ly*1lz)));
if(cr == NULL)

printf("no enough memory for array cr\n");
return -1;

= (double *)malloc((size_t)(sizeof (double) * (lx*1ly*1lz)));
if (ci == NULL)

printf("no enough memory for array ci\n");

return -1;

trigs = (double *)malloc((size_t)(sizeof (double) * (2*(nx+ny+nz))));
if(trigs == NULL)
{

149

[DEPRECATED]ASL_dfc3bf, ASL_rfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

printf("no enough memory for array trigs\n");
return -1;

wk = (double *)malloc((size_t)(sizeof (double) * (2xlx*ly*lz)));
if (wk == NULL)

printf("no enough memory for array wk\n");
return -1;

printf("\tnx = %6d\n", nx);
printf("\tny = %6d\n", ny);
printf("\tnz = %6d\n", nz);

{or(k=1 ; k<=nz ; k++)
for(j=1 ; j<=ny ; j++)
for(i=1 ; i<=nx ; i++)

cr[(i-1)+1x*(j-1)+1x*1y* (k-1)]=(double) (nx+ny+nz)/ (double) (i+j+k)
ci[(i-1)+1x*(j-1)+1x*1y*(k-1)]=(double) (i*j*k)/(double) (nx*ny*nz) ;

}

printf("\tcr[ix] [iy] [1] cilix] [iy][1]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", crli+lx*j 1, cili+lxxj 1);

}
printf("\n");
}

printf("\tcr[ix] [iy] [2] cilix][iy][2]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", crli+lx*j+lx*1ly*1], cil[i+lx*j+lx*ly*1]);
%rintf("\n");
printf("\tcr[ix] [iy] [3] cilix][iy][3]\n");
for(i=0 ; i<nx ; i++)
for(j=0 ; j<mny ; j++)
printf("\t(%8.3g,%8.3g)", crli+lx*j+lx*1y*2], cil[i+lx*j+lx*ly*2]);

printf("\n");

isw = 1;
ierr = ASL_dfc3fb(nx, ny, nz, cr, ci, lx, ly, lz, isw, ifax, trigs, wk);

for(i=0 ; i<lx*ly*lz ; i++)

cr[i] /= (double) (nx*ny*nz);
ci[i] /= (double) (nx*ny*nz) ;
}

printf("\n ** Qutput **\n");

printf("\t< Forward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\tcr[ix] [iy][1] cilix][iy]l[11\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", crli+lxxj 1, cili+lx*j 1)

}
printf("\n");
}

printf("\tcr[ix] [iy][2] cilix][iy]l[2]1\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", crli+lx*j+lx*ly*1], cili+lx*j+lx*ly*1]);

150

[DEPRECATED]ASL_dfc3bf, ASL_rfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

printf("\n");
printf("\tcr[ix] [iy][3] cilix][iyl[3]1\n");
for(i=0 ; i<nx ; i++)
for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", crli+lx*j+1lx*1ly*2], cili+lx*j+lxxly*2]);
}
printf("\n");
isw = -1;
ierr = ASL_dfc3bf(nx, ny, nz, cr, ci, lx, ly, lz, isw, ifax, trigs, wk);

printf("\t< Backward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\tcr[ix] [iy] [1] cilix] [iy][1]\n");
{or(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", crli+lx*j 1, cili+lxxj 1)

}
printf("\n");
}

printf("\tcr([ix] [iy] [2] cilix][iy][2]\n");
%or(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", crli+lx*j+lx*1ly*1], cil[i+lx*j+lx*ly*1]);
%rintf("\n");
printf("\tcr[ix] [iy] [3] cilix][iy]l[3]\n");
for(i=0 ; i<nx ; i++)
for(j=0 ; j<mny ; j++)
printf("\t(%8.3g,%8.3g)", crli+lx*j+lx*1y*2], cil[i+lx*xj+lx*ly*2]);

}
printf("\n");

free(cr);
free(ci);
free(trigs);
free(wk);

return O;

}
(d) Output results

*k% ASL_dfc3fb , ASL_dfc3bf *xx*

** Input *x*
5

nx =
ny = 4
nz = 3
crix] [iy]l [1] cilix] [iy][1]

4, 0.0167) (3, 0.0333) (2.4, 0.05) (2, 0.0667)
(3, 0.0333) (2.4, 0.0667) (2, 0.1) (1.71, 0.133)
(2.4, 0.05) (2, 0.1) (1.71, 0.15) (1.5, 0.2)
(2, 0.0667) (1.71, 0.133) (1.5, 0.2) (1.33, 0.267)
(1.71, 0.0833) (1.5, 0.167) (1.33, 0.25) (1.2, 0.333)
crix] [iy] [2] cilix] [iy][2]
(3, 0.0333) (2.4, 0.0667) (2 0.1) (1.71, 0.133)
(2.4, 0.0667) (2, 0.133) (1.71. 0.2) (1.5, 0.267)
(2, 0.1) ¢ 1.71, 0.2) (1.5, 0.3) (1.33, 0.4)
(1.71, 0.133) (1.5, 0.267) (1.33, 0.4) (1.2, 0.533)
(1.5, 0.167) (_ 1.33, 0.333) (i.2, 0.5) (1.09., 0.667)
cr[ix] [iy] [3] cilix] [iy] [3]
(2.4, 0.05) (2, 0.1) (1.71, 0.15) (1.5, 0.2)
(2, 0.1) ¢ 1.71, 0.2) (1.5, 0.3) (1.33, 0.4)
(1.71, 0.15) (1.5, 0.3) (1.33, 0.45) (1.2, 0.6)
(1.5, 0.2) (1.33] 0.4) (2, 0.6) (1.09, 0.8)
(1.33, 0.25) (1.2, 0.5) (1.09, 0.75) (1, 1)
** Qutput *x*
< Forward Transform >
ierr = 0
crix] [iy]l [1] cilix] [iy][1]
(1.74, 0.28) (0.102, ~-0.16) (0.137, -0.05) (0.202, 0.06)

151

[DEPRECATED]ASL_dfc3bf, ASL_rfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

0.108,
0.125, -0.

0.223,
r[ix] [iy] [2]
0.1086,
0.0419, -0.

0.0297, O.
0.0318, O.
r[ix] [iy] [3]
0.178,
0.0484.
0.0244,
0.0129,

0.
0.

~AAAA O AAAAA O AAAA

~
o
o
o
s
[

~

< Backward

ierr =
cr[ix] [iy][1]

-0.189)
0.152,-0.00492) (

-0.127) (
0.0317,-0.00698)

0.00231) (
0.00885)

0.036)
Transform >

0.0379,
0.034,
0.0366.
.106) (0.0462,
cilix] [iyl[2]

0.0407, -0.0223)
(-0.00167,-0.00877)
(0.00134,-0.00743)
0084) (0.00473,-0.00711)
0285) (0.0112,-0.00921)
cilix] [iy]l[3]

0.0403,
{ 0.00516.

-0.0469)
-0.0168)
0.00116)

0.0236)

~

0784)

0317)

0.014)
-0.0104)
0.00692, -0.0061)
0.00961, -0.0029)

0.0163,0.000768)

0163) (
0239) E

cilix] [iyl[1]

4, 0.0167) (3, 0.0333)
(Y 0.0333) (2.4, 0.0667)
(2.4, 0.05) (2, 0.1)
(> 0.0667) (1.71, 0.133)
(1.71, 0.0833) (1.5, 0.167)
crix] [iy] [2] cilix] [iy][2]
(3, 0.0333) (2.4, 0.0667)
(2.4, 0.0667) (2, 0.133)
(2, 0.1) (1.71, 0.2)
(1.71, 0.133) (1.5, 0.267)
{ i.5. 0.167) (1.33. 0.333)
cr[ix] [iy] [3] cilix] [iy][3]
(2.4, 0.05) (2, 0.1)
(2, 0.1) (1.71, 0.2)
(1.71, 0.15) (1.5, 0.3)
(.5, 0.2) (1.33, 0.4)
(1.33, 0.25) (1.2, 0.5)

AAAAA A AAAAAA

152

0

0.
,-0.
-0.
,-0.
-0.

1-0.
-0.

0.0125)
.00288)
0.0138)
0.0292)

00295)
00799)
00524)
00336)
00179)

0.022)
00569)
00159)
.00185)
.00714)

AAAAA A AAAAAA

0.

016)

0.0209)

0.

028)

0.0406)

0.0255)

,=0.00976)

-0.00424)
0.0001)

. 0.00627)

0.0329)

. -0.0016)

0.00322)
0.0078)
0.0161)

0.0667)

O OO oo O

.133)

0.2)

.267)
.333)

2.12 THREE-DIMENSIONAL COMPLEX FOURIER TRANS-

FORM (COMPLEX ARGUMENT TYPE)

2.12.1 [DEPRECATED]ASL zfc3fb, ASL cfc3fb

(1)

Three-Dimensional Complex Fourier Transform (Including Initialization)

Function

Forward transform

ASL _zfe3fb or ASL_cfe3fb computes the three-dimensional complex Fourier forward transform (arbitrary
radix) for the three-dimensional complex data Ck,,ky,kz(kz =0,---,n, —1; ky =0,---,ny — 1; k, =
0,-+-,n,—1).

ng—1ny—1ln,—1

. ,Qﬂ\/,_l(jikz +jiky+jikz)
Qi = D D D Chakyka® T
k=0 ky=0 k,=0

Backward transform

ASL _zfe3fb or ASL_cfe3fb computes the three-dimensional complex Fourier backward transform (arbitrary
radix) for the three-dimensional complex data cg, g, k. (ke = 0,---,nz — 15 ky = 0,---,ny — 1; k. =
0,-+-,n,—1).

neg—1ny—1ln,—1 . ok -
Yy Zry/=T(lake + 0 4 dake)
iy jyie = Chy ky k= € =
k=0 ky=0 k.—0
(]wzoavnw_lv]y:()avny_lv]Z:()avnz_l)

Usage
Double precision:

ierr = ASL_zfc3fb (nx, ny, nz, ¢, Ix, ly, 1z, isw, ifax, trigs, wk);
Single precision:

ierr = ASL _cfe3fb (nx, ny, nz, ¢, Ix, ly, lz, isw, ifax, trigs, wk);

153

[DEPRECATED]ASL _zfc3fb, ASL_cfe3fb

Three-Dimensional Complex Fourier Transform (Including Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))
2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))
3 nz I 1 Input | Number of data values in the third dimen-
sion, 1, (See Note (a))
4 ¢ 7% Ixxlyxlz | Input | Input data cg,x, r. (See Note (b))
{C*} Output | Output results dj, ;, ;. (See Notes (b) and
(©)
5 Ix I 1 Input | Adjustable dimension of array ¢ (See Note
(b))
6 ly I 1 Input | Second dimension of array ¢ (See Note (b))
7 Iz I 1 Input | Third dimension of array c (See Note (b))
8 isw I 1 Input | Processing switch (See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform
9 ifax I* 60 Output | Factorization results and number of factors
(See Note (d))
10 trigs D+ 2 X (nx +| Output | Trigonometric function table (See Note (d))
Re [| ny+nz)
11 wk Tk Ix x 1y x1z| Work | Work area
)
12 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a) nx > 1
ny > 1
nz > 1

(b) nx <Ix
ny <ly

nz <lz

(c) isw € {0,1, -1}

154

[DEPRECATED]ASL_zfc3fb, ASL_cfc3tb
Three-Dimensional Complex Fourier Transform (Including Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes

(a)

When the number of data nx, ny or nz can be adjusted, the calculations can be performed more
efficiently by setting a number for which the mixed radix FFT algorithm operates effectively (multiples
of 2, 3, 5, etc.). For example, rather than setting nx = 289(=172), it is usually more efficient to set nx
= 300(=22 x 3 x 5?), nx = 320(=2% x 5), nx = 384(=2" x 3) or the like.

The complex data ck, k, k. (ke =0,---,n, —1; ky =0,---,ny —1; k; =0,---,n. — 1) and elements

of array c are associated as follows.
Chiy kiy ki — C[kx + Ix % (ky + ly * kz)]

Similarly, for the complex data dj, j, j.(joe = 0,--,ne —1; jy =0,---,ny —1; 5. =0,---,n, —1).
The adjustable dimensions lx, ly, and 1z of array c should be set to odd numbers to avoid
bank conflict of main memory. Also, to increase speed, calculations are executed even for
elements outside areas where data is set within array c. Usually, when nx, for example,
is even, Ix=nx+1 is set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data cx, x, k. (ke = 0,---,nz — 15 ky = 0,---,ny — 15 k. =
0,---,n. — 1) be represented by ¢, &, k. (kz = 0,---,n, —1; ky =0,---,ny = 1; k; =0,---,n, — 1),
then the following relationship holds.

ékkay7kz = nmnynzckm7ky7kz
(kx :O’,nzf]_, ky:o,’rnyfl7 kz :07’771271)
Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

To repeatedly compute the transform for the same number of data (nx, ny, nz), you should call this
ASL _zfc3bf

function once, and then use the after-initialization transform 2.12.2 , thereafter. This
ASL _cfc3bf

enables processing to be performed more efficiently since initialization (factorization or the creation of

trigonometric tables) is performed only once. However, in this case, you must retain the contents of

ASL _zfc3bf
arrays ifax and trigs so they can be used as input to the function 2.12.2 zie }

ASL _cfe3bf
To perform initialization only by setting isw=0, you need not set input data for array c.

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n, or n, or n,) as the period,

155

[DEPRECATED]ASL zfc3th, ASL_cfc3fb
Three-Dimensional Complex Fourier Transform (Including Initialization)

the number of samples or sampling interval must be set with this taken into account when sampling
to approximate the continuous Fourier transform. According to the sampling theorem, for a time
function h(t) that is bandwidth limited by the frequency f., if the sampling interval is taken as T' = i,
then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT")} as follows.

= sin27fu(t —iT)
h(t)=T h(il)——F———
0=T 3 Hen)HE
(f) This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(g) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the
higher performance alternative implementation instead.

(7) Example
See the example in Section 2.12.2 (7).

156

[DEPRECATED]ASL_zfc3bf, ASL_cfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

2.12.2 [DEPRECATED]ASL zfc3bf, ASL_cfc3bf

(1)

Three-Dimensional Complex Fourier Transform (After Initialization)

Function

Forward transform

ASL _zfe3bf or ASL_cfe3bf computes the three-dimensional complex Fourier forward transform (arbitrary
radix) for the three-dimensional complex data c, &, k. (ky = 0,---,ny —1; ky = 0,---,my — 15 k, =
0, ,n.—1).

ng—1ny—1n,—1

k Jyk k
J 2Jysd Z Z Z Chy ky k- 6_2W\/7(]f‘rx+ ?lyy—pflzz)
,JysJz

2=0 ky=0 k.=0
(I—O, , Ny]-a _]y:O,,lef]_, .]Z:()vvnz*]-)

Backward transform

ASL _zfe3bf or ASL_cfe3bf computes the three-dimensional complex Fourier backward transform (arbitrary
radix) for the three-dimensional complex data c, , k. (ky = 0,---,ny —1; ky = 0,---,my — 15 k, =
0,-+-,n,—1).

ng—1ny—1n,—1

ﬂ\/,_l(jxkx +jyky+jzkz)
Ajo jyis E E E Chy ky k- € teo v

2=0 ky=0 k.=0
(.]Ifov , Ny]-a _]y:O,,lef]_, .]Z:()vvnz*]-)

Usage
Double precision:

ierr = ASL _zfe3bf (nx, ny, nz, ¢, Ix, ly, lz, isw, ifax, trigs, wk);
Single precision:

ierr = ASL_cfe3bf (nx, ny, nz, ¢, Ix, ly, 1z, isw, ifax, trigs, wk);

157

[DEPRECATED]ASL zfc3bf, ASL_cfe3bf

Three-Dimensional Complex Fourier Transform (After Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))
2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))
3 nz I 1 Input | Number of data values in the third dimen-
sion, 1, (See Note (a))
4 ¢ 7% Ixxlyxlz | Input | Input data cg,x, r. (See Note (b))
{C*} Output | Output results dj, ;, ;. (See Notes (b) and
(©)
5 Ix I 1 Input | Adjustable dimension of array ¢ (See Note
(b))
6 ly I 1 Input | Second dimension of array ¢ (See Note (b))
7 Iz I 1 Input | Third dimension of array c (See Note (b))
8 isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform
9 ifax I* 60 Input | Factorization results and number of factors
(See Note (a))
10 trigs Dx 2 X (nx +| Input | Trigonometric function table (See Note (a))
R« ny + nz)
11 wk 7ok Ix xly x1z| Work | Work area
e
12 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a) nx > 1
ny > 1
nz > 1

(b) nx <lIx
ny <ly

nz <lz

(c) isw e {1,—-1}

158

[DEPRECATED]ASL_zfc3bf, ASL_cfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes
(a) This function can be used to repeatedly compute the transform for the same number of data (nx, ny,
ASL _zfc3fb
nz) after the including-initialization function 2.12.1 e has been used. In this case, you
ASL _cfe3fb

must retain the contents of arrays ifax and trigs so they can be used as input in this function.

The complex data ck, k, k., (ke =0,---,ny —1; ky =0,---,ny —1; k; =0,---,n, — 1) and elements

of array c are associated as follows.
Chiyky, ke € C[kx + Ix * (ky + ly kz)]

Similarly, for the complex data dj, j, j.(jo =0, --,nz — 15 jy, =0,---,ny —1; j. =0,---,n, — 1).

The adjustable dimensions Ix, ly, and 1z of array c should be set to odd numbers to avoid
bank conflict of main memory. Also, to increase speed, calculations are executed even for
elements outside areas where data is set within array c. Usually, when nx, for example,

is even, Ix=nx+1 is set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of data.
For example, if we let the data obtained by computing the backward transform immediately following
the forward transform for the complex data ck, k, k. (ke = 0,---,nz — 15 ky = 0,---,ny — 1; k. =
0,---,n. — 1) be represented by ¢, &, k. (ke =0, -, ng —1; ky =0,---,ny, —1; k. =0,---,n, — 1),
then the following relationship holds.

ékkay7kz = nmnynzckm7ky7kz
(ky=0,---,npy—1; ky=0,---,n, —1; k, =0,---,n, — 1)
Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n, or n, or n,) as the period,
the number of samples or sampling interval must be set with this taken into account when sampling

to approximate the continuous Fourier transform. According to the sampling theorem, for a time
1

2f.

then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT")} as follows.

hy=TY h(iT)—Sin?(Tf C_(Z.T)ZT)

function h(t) that is bandwidth limited by the frequency f,, if the sampling interval is taken as T' =

1=—00

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

159

[DEPRECATED]ASL _zfc3bf, ASL_cfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

(f) DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.
(7) Example
(a) Problem

Compute the three-dimensional complex Fourier forward and backward transforms using

1 1 1
Ny + Ny + 1. N Tl(km-f')(ky + 1) (k= +1)
ke +1)+ (ky +1)+ (k. +1) NNy,
(kx:O’,nzfl, ky:o,’nyf]_, kzzo,7nzfl)

Ckw7k7y7kz = (

as input data.

(b) Input data
Array cr and ci, nx=5, ny=4, nz=3, Ix=>5, ly=>5, 1z=3, isw=1 (Forward transform) and isw=—1 (Back-
ward transform).

(¢) Main program

/* C Interface example for ASL_zfc3fb , ASL_zfc3bf */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>
#include <asl.h>

int main()
{

4; int nz
5; int 1z

int nx
int 1x
double _Complex *c;
int isw;

int ifax[60];

double *trigs;
double _Complex *wk;
int ierr;

int i,j,k;

printf(" #x% ASL_zfc3fb , ASL_zfc3bf *¥*x\n");
printf("\n ** Input **\n");

5; int ny

c = (double _Complex *)malloc((size_t)(sizeof (double _Complex) * (lx*ly*lz)));
if(¢ == NULL)

printf("no enough memory for array c\n");
return -1;
trigs = (double *)malloc((size_t) (sizeof(double) * (2*(nx+ny+nz))));
if (trigs == NULL)
printf("no enough memory for array trigs\n");
return -1;
wk = (double _Complex *)malloc((size_t)(sizeof(double _Complex) * (1lx*1ly*lz)));
%f(wk == NULL)

printf("no enough memory for array wk\n");

return -1;
printf("\tnx = %6d\n", nx);
printf("\tny = %6d\n", ny);
printf("\tnz = %6d\n", nz);

for(k=1 ; k<=nz ; k++)
¢ for(j=1 ; j<=ny ; j++)
¢ for(i=1 ; i<=nx ; i++)
c[(1-1)+1x*(j-1)+1x*1ly* (k-1)]1=(double) (nx+ny+nz)/(double) (i+j+k)
+(double) (i*j*k)/(double) (nx*ny*nz) * _Complex_I;

}

printf("\tc[ix] [iy] [1]\n");
for(i=0 ; i<nx ; i++)

160

[DEPRECATED]ASL_zfc3bf, ASL_cfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

for(j=0 ; j<mny ; j++)
printf("\t(%8.3g,%8.3g)", creal(c[i+lx*j 1), cimag(cli+lx*j IDIDH
%rintf("\n");
printf("\tc[ix] [iy] [2]\n");
for(i=0 ; i<nx ; i++)
for(j=0 ; j<mny ; j++)
printf("\t(%8.3g,%8.3g)", creal(cli+lx*j+lx*1y*1]), cimag(c[i+lx*j+lx*ly*1]1));

}
printf("\n");
}

printf("\tc[ix] [iy] [3]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<mny ; j++)
printf("\t(%8.3g,%8.3g)", creal(cli+lx*j+lx*1y*2]), cimag(c[i+lx*j+lx*1ly*2]));

}
printf("\n");

isw = 1;
ierr = ASL_zchfb(nx, ny, nz, ¢, 1lx, ly, lz, isw, ifax, trigs, wk);

for(i=0 ; i<lx*ly*lz ; i++)

c[i] /= (double) (nx*ny*nz) ;

printf("\n ** Output **\n");

printf("\t< Forward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\tc[ix] [iy] [1]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<my ; j++)
printf("\t(%8.3g,%8.3g)", creal(c[it+lx*j 1), cimag(c[i+lx*j 1))

}
printf("\n");
}

printf("\tc[ix] [iy] [2]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<mny ; j++)
printf("\t(%8.3g,%8.3g)", creal(c[i+lx*j+lx*1ly*1]), cimag(c[i+lx*j+lxx1ly*1]));
%rintf("\n");
printf("\tc[ix] [iy] [3]\n");
for(i=0 ; i<nx ; i++)
for(j=0 ; j<mny ; j++)
printf("\t(%8.3g,%8.3g)", creal(c[i+lx*j+lx*1ly*2]), cimag(c[i+lx*j+lxx1y*2]));
printf("\n");
isw = -1;
ierr = ASL_zfc3bf(nx, ny, nz, c, lx, ly, lz, isw, ifax, trigs, wk);

printf ("\t< Backward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\tcl[ix] [iy] [1]\n");
{or(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", creal(c[i+lx*] 1), cimag(cli+lx*j IDIDH

}
printf("\n");

161

[DEPRECATED]ASL _zfc3bf, ASL_cfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

printf("\tc[ix] [iy] [2]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", creal(c[i+lx*j+lx*1ly*1]), cimag(c[i+lx*j+lxx1ly*1]));
printf("\n");
printf("\tc[ix] [iy] [3]\n");
for(i=0 ; i<nx ; i++)
¢ for(j=0 ; j<ny ; j++)
printf("\t(%8.3g,%8.3g)", creal(c[i+lx*j+lx*1ly*2]), cimag(c[i+lx*j+lxx1y*2]));

}
printf("\n");

free(c);
free(trigs);
free(wk);

return O;

}
(d) Output results

*xx ASL_zfc3fb , ASL_zfc3bf **x

*k Input *k
5

nx =

ny = 4

nz = 3

c[ix] [iy] [1]

(4, 0.0167) (3, 0.0333) (2.4, 0.05) (2, 0.0667)
(3, 0.0333) (2.4, 0.0667) (0.1) ¢ 1.71, 0.133)
(2.4, 0.05) (2, 0.1) (1.71, 0.15) (1.5, 0.2)
(, 0.0667) (1.71, 0.133) (.5, 0.2) (1.33, 0.267)
(1.71, 0.0833) ¢ 1.5, 0.167) (1.33, 0.25) (1.2, 0.333)
clix] Liyl {21

(3, 0.0333) (2.4, 0.0667) (2, 0.1) (1.71, 0.133)
(2.4, 0.0667) (2, 0.133) (1.71, 0.2) (1.5, 0.267)
(2, 0.1) (1.71, 0.2) (1.5, 0.3) (1.33, 0.4)
(1.71, 0.133) ¢ 1.5, 0.267) (1.33, 0.4) (1.2, 0.533)
(1.5, 0.167) (1.33, 0.333) (1.2, 0.5) (1.09, 0.667)
c[ix] [iy] [3]

(2.4, 0.05) (2, 0.1) (1.71, 0.15) (1.5, 0.2)
(2, 0.1) (1.71, 0.2) (1.5, 0.3) (1.33, 0.4)
(1.71, 0.15) ¢ 1.5, 0.3) (1.33, 0.45) (1.2, 0.6)
(1.5, 0.2) (1.33, 0.4) (1.2, 0 (1.09, 0.8)
(1.33) 0.25) ¢ i.2, 0.58) (1.09, 0.75) (1, 1)

** Qutput **
< Forward Transform >

ierr =
c[ix] [iy] [1]

(1.74, 0.25) (0.102, -0.16) (0.137, -0.05) (0.202, 0.06)
(0.108, -0.189) (0.0379, -0.0469) (0.0406, -0.0125) (0.0525, 0.016)
(0.125, -0.0784) (0.034, -0.0168) (0.0261, 0.00288) (0.0254, 0.0209)
(0.152,-0.00492) (0.0366, 0.00116) (0.0207, 0.0138) (0.012, 0.028)
(0.223 0.106) (0.0462, 0.0236) (0.0177, 0.0292) (-0.00166, 0.0406)
clix] [iyl[2]

(0.106, -0.127) (0.0407, -0.0223) (0.0315, 0.00295) (0.0297, 0.0255)
(0.0419, -0.0317) (-0.00167,-0.00877) (0.0025,-0.00799) (0.00901,-0.00976)
(0.0317,-0.00698) (0.00134,-0.00743) (0.00423,-0.00524) (0.00924,-0.00424)
(0.0297, 0.0084) (0.00473,-0.00711) (0.00655,-0.00336) (0.0108, 0.0001)
(0.0318, 0.0285) (0.0112,-0.00921) (0.0118,-0.00179) (0.016, 0.00627)
c[ix] [iy] [3]

(0.178, 0.00231) (0.0403, 0.014) (0.017, 0.022) (0.00125, 0.0329)
(0.0484, 0.00885) (0.00516, -0.0104) (0.00849,-0.00569) (0.0153, -0.0016)
(0.0244, 0.0163) (0.00692, -0.0061) (0.0076,-0.00159) (0.0107, 0.00322)
(0.0129, 0.0239) (0.00961, -0.0029) (0.00799, 0.00185) (0.00849, 0.0078)
(0.00117, 0.036) (0.0163,0.000768) (0.0106, 0.00714) (0.00733, 0.0161)

< Backward Transform >

ierr = 0
c[ix] [iy] [1]

(4, 0.0167) (3, 0.0333) (2.4, 0.05) (2, 0.0667)
(3, 0.0333) (2.4, 0.0667) (0.1) (1.71, 0.133)
(2.4, 0.05) (2, 0.1) (1.71, 0.15) (1.5, 0.2)
(, 0.0667) (1.71, 0.133) (1.5, 0 (1.33, 0.267)
(1.71, 0.0833) (1.5, 0.167) (1.33, 0.25) (1.2, 0.333)
clix] [iy] {21

(3, 0.0333) (2.4, 0.0667) (2, 0.1) (1.71, 0.133)
(2.4, 0.0667) (2, 0.133) (1.71, 0.2) (1.5, 0.267)
(2, 0.1) (1.71, 0.2) (1.5, 0.3) (1.33, 0.4)
(1.71, 0.133) (1.5, 0.267) (1.33, 0.4) (1.2, 0.533)
(1.5, 0.167) (1.33, 0.333) (1.2, 0.5) (1.09, 0.667)
c[ix] [iy] [3]

162

[DEPRECATED]ASL_zfc3bf, ASL_cfc3bf
Three-Dimensional Complex Fourier Transform (After Initialization)

AAAAA

2.4,

2,
1.71,
1.5,
1.33,

AAAAA

0.1) (1.71, 0.15) (1.5, 0.2)
0.2) ¢ 1.5, 0.3) (1.33, 0.4)
0.3) (1.33, 0.45) (1.2, 0.6)
0.4) (1.2, 0.6) (.09, 0.8)
0.5) (1.09, 0.75) (1, 1)

163

2.13 THREE-DIMENSIONAL REAL FOURIER TRANSFORM

2.13.1 [DEPRECATED]ASL_dfr3fb, ASL_rfr3fb
Three-Dimensional Real Fourier Transform (Including Initialization)

(1) Function
Forward transform
ASL_dfr3fb or ASL_rfr3fb obtains a half period of the three-dimensional Fourier forward transform (arbitrary
radix) for the three-dimensional real data ry, x, .k, (kz = 0,---,ng—1; ky = 0,---,ny—1; k. =0,---,n.—1).

ng—1ny—1n,—1

. ik -
j : _27-(\/_71(7152 +Jy Y 4 Jz z)
ijvjyyjz E E Tka:7k?y,k e Ny ny n

+=0 ky=0 k.=0
(m_ov 7|_7xJ7]y:()a?ny_lv jz:O,"',’l’Lz—l)

Here, |x] represents the maximum integer that does not exceed z. The remaining half period is obtained
from the following relationships.
Na—jasny—ysma—is = Closdusds
Crra iy de = Clomy—dymz—is

c;kzm—jm,ny—jy,jz = Cujy,n=—3=
Here, z* represents the conjugate complex number of the complex number z.
Backward transform
Given the half period cj, j, j. (jo = 0,---, [%]; jy =0,---,ny —1; j. =0,--- — 1) for nynyn, complex
data ¢j, j,j.(Je = 0,---,nz —1; jy = 0,---,ny — 1; j. = 0,---,n, — 1) satlsfymg Cra oy —ysma—js =
Clariyder Cno—juriysie = Ciamy—jyma—jzs DA €500 00 = €, 5, m.—j., ASLdfr3fb or ASL.rfr3fb obtains

the three-dimensional Fourier backward transform (arbitrary radix) defined as follows.

ng—1ny—1n,—1

k
, . o QWr(J:fLEI_;’_Jy y+]zkz)
ka,ky,kz = JarJyd=€

Ja=0 Jy—o Jj==0
n,—1ny—

e
Z Z{Co,gy,az -)k’é%,jy,jz}€2ﬂm(%+%)
J==0 jy=0
ne—1ny 11 2 jzke | Jyky | gk
255 S e e)
J==0 jy=0 jz=1
(ky =0,---,ny—1; ky=0,---,n, —1; k, =0,---,n, — 1)

Here, [z] represents the minimum integer greater than or equal to x, and R{z} represents the real part of

the complex number z. Also, when n, is odd, CnI = 0, and when n, is even, CnI

Jyodz Jyidz = CBE Gy.de

(2) Usage
Double precision:
ierr = ASL_dfr3fb (nx, ny, nz, r, Ix, ly, 1z, isw, ifax, trigs, wk);
Single precision:
ierr = ASL_rfr3fb (nx, ny, nz, r, Ix, ly, lz, isw, ifax, trigs, wk);

164

[DEPRECATED]ASL_dfr3fb, ASL_rfr3fb
Three-Dimensional Real Fourier Transform (Including Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))
2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))
3 nz I 1 Input | Number of data values in the third dimen-
sion, n, (See Note (a))
4 r D« Ixxlyxlz | Input | Input data rg, x,x (Forward transform), or
{R*} Cju.jy.j. (Backward transform) (See Note (b))
Output | Output results ¢;, ;, ;. (Forward transform),
OT Tk, k,.k. (Backward transform) (See Notes
(b) and (c))
5 Ix I 1 Input | Adjustable dimension of array r (See Note
(b))
6 ly I 1 Input | Second dimension of array r (See Note (b))
lz I 1 Input | Third dimension of array r (See Note (b))
isw I 1 Input | Processing switch (See Note (d))
isw= 0:Initialization only
isw= 1:Forward transform
isw=—1:Backward transform
9 ifax I* 60 Output | Factorization results and number of factors
(See Note (d))
10 trigs Dx nx + 2 x| Output | Trigonometric function table (See Note (d))
RFE
11 wk Dx Ix xly x1zl Work | Work area
()
12 ierr I 1 Output | Error indicator (Return Value)

165

[DEPRECATED]ASL_dfr3fb, ASL_rfr3fb
Three-Dimensional Real Fourier Transform (Including Initialization)

(4) Restrictions

(a)

nx > 1
ny >1
nz > 1

nx + 1 < Ix, where nx is an odd, or

nx + 2 < Ix, where nx is an even.
ny <ly
nz <lz

Ix should be even number.

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b), (¢) or (d) was not
satisfied.
3020 Restriction (e) was not satisfied.
3030 Restriction (f) was not satisfied.
(6) Notes

(a)

When the number of data nx, ny or nz can be adjusted, the calculations can be performed more
efficiently by setting a number for which the mixed radix FFT algorithm operates effectively (multiples
of 2, 3, 5, etc.). For example, rather than setting nx = 289(=172), it is usually more efficient to set nx
= 300(=22 x 3 x 5?), nx = 320(=2% x 5), nx = 384(=2" x 3) or the like.

The real data ry, g, &, (ko = 0,---,np —1; k, =0,---,n, —1; k. = 0,---,n, — 1) and elements of
array r are associated as follows.

Thoky ke < Tl +1x0k (ky +1y x k)]

When computing the backward transform, if nx(=ng) is odd, then rjnx + Ix * (ky, + 1y *k,)] = 0, and
when nx is even, then rjnx +Ix* (ky + 1y *k,)] = r[nx+ 1+ Ix* (ky +1ly *k,)] = 0. Also, when entering
the real data Tk,,ky,kz(kz =0,---,ny —1; ky =0,---,ny —1; k, = 0,---,n, — 1) into array r, the
corresponding zeros mentioned above need not be specifically stored.

If we let the real and imaginary parts of the complex data c;, j, j. (jz = 0, [%=]; 4y = 0,---,ny —
1; . =0,---,n, — 1) be R{cj, j,.;. } and I{cj, j,.j. }, respectively, the ¢;, ; ;. and elements of array

r are associated as follows. Here, |z] represents the maximum integer that does not exceed z.

Rlejogpa.t @ T2 +1xx (jy +1y *j2)]

(\}{cjmvjydz} & I'[2*jx + 1 +1X* (JV +1Y*JZ)]
From the properties of a real Fourier transform, ${cp 0,0} = 0, and when nx, ny and nz are all even,
%{c%z ny nTz} = 0. Therefore, even if nonzero values are set for the corresponding elements of array
r, they are considered to be zero when processing is performed. Since the elements c;, j, ;. (jo =

%=+ 1,y —1; §y, =0,---,n, —1; j. =0,---,n, — 1) can be obtained according to the following

166

[DEPRECATED]ASL_dfr3fb, ASL_rfr3fb
Three-Dimensional Real Fourier Transform (Including Initialization)

relationships from the symmetry of the real Fourier transform, they need not be assigned as input when
computing the backward transform. Also, they are not output when computing the forward transform.

*

nm_jm7ny_jy7nz—jz = ijvjy,jz

* — ¢))

n'l?_j177jy7jz T YNy —JysNz—Jz

* — . . .
ansz’nyijajz - C]z7jy,nz_]z

Here, z* represents the conjugate complex number of the complex number z. The adjustable di-
mensions of array r should be set so that 1x/2, ly, and 1z are odd numbers to avoid bank
conflict of main memory. Also, to increase speed, calculations are executed even for ele-
ments outside areas where data is set within array r. Usually, when nx, for example, is
(a multiple of 4)+2, Ix=nx+4 is set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of
data. For example, if we let the data obtained by computing the backward transform immediately
following the forward transform for the real data 74, k, x. (kz =0, -+, ng —1; ky =0,---,ny —1; k. =
0,---,n. — 1) be represented by 7, &, k. (ke =0, -, np —1; ky =0,---,ny —1; k. =0,---,n, — 1),
then the following relationship holds.

/f‘ka:akyvkz = nmnynz/rkmvkyakz
(kLE :Oavnw_lv ky :0,,’1’Ly—1, kz :0,"',’1’LZ—1)
Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

To repeatedly compute the transform for the same number of data (nx, ny, nz), you should call this
ASL_dfr3bf

function once, and then use the after-initialization transform 2.13.2 , thereafter. This
ASL _rfr3bf

enables processing to be performed more efficiently since initialization (factorization or the creation of

trigonometric tables) is performed only once. However, in this case, you must retain the contents of
ASL_dfr3bf

arrays ifax and trigs so they can be used as input to the function 2.13.2 g .

ASL_rfr3bf

To perform initialization only by setting isw=0, you need not set input data for array r.

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n, or n, or n,) as the period,
the number of samples or sampling interval must be set with this taken into account when sampling

to approximate the continuous Fourier transform. According to the sampling theorem, for a time
1

m)

then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT")} as follows.

function h(t) that is bandwidth limited by the frequency f,, if the sampling interval is taken as T' =

sin 2 f.(t — iT)

h(t) =T > h(iT) T

1=—00

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

167

[DEPRECATED]ASL_dfr3fb, ASL_rfr3fb
Three-Dimensional Real Fourier Transform (Including Initialization)

(7) Example
See the example in Section 2.13.2 (7).

168

[DEPRECATED]ASL_dfr3bf, ASL_rfr3bf
Three-Dimensional Real Fourier Transform (After Initialization)

2.13.2 [DEPRECATED]ASL dfr3bf, ASL _rfr3bf

(1)

Three-Dimensional Real Fourier Transform (After Initialization)

Function
Forward transform
ASL_dfr3bf or ASL_rfr3bf obtains a half period of the three-dimensional Fourier forward transform (arbitrary

radix) for the three-dimensional real data ry, x, &, (kz = 0,- -+, ng—1; ky = 0,---,ny—1; k, =0,---,n.—1).

ng—1ny—1n,—1

. iuky ik
—or /7_1(Jaskz+Jy Yy dzkz)
Clardyrd = E E E Tk ky ko= € teo e
ke=0 ky=0 k.=0

(]wzoval_nQ_xJ7]y:()a?ny_lv]Z:()a?nz_l)

Here, |x] represents the maximum integer that does not exceed z. The remaining half period is obtained

from the following relationships.

Ny —Jz My —Jy,Nz—Jz CJ:»Jy,Jz
Na—Jardyrde . ClusMy—Jy,Mz—jz
Ng—Jo Ny —Jy,Jz ~ Jz:JyNz"J=

C

C

Here, z* represents the conjugate complex number of the complex number z.
Backward transform

Given the half period ¢;, j, j. (jz = 0,---, %]; j, =0,---,ny —1; j. = 0,---,n, — 1) for nyn,n. complex
data cj, j,.j.(Jz = 0,---,ng — 1; jy = 0,---,ny — 1; j. = 0,---,n. — 1) satisfying c, =

n'l?_j'lHny _jyvnz —J=

Clasiyder Cno—jusiysie = Clasmy—iysmz—iss and oo smy—iysje = Ciasiysma—iz> ASL_dfr3bf or ASL_rfr3bf obtains

the three-dimensional Fourier backward transform (arbitrary radix) defined as follows.

ng—1ny—1ln,—1

S dzk Jyky | g2k
Tky ky, k. = E E E ij,jy,jze% ST)
J==0 jy=0 j.=0

nz—lny—l o~ Qﬂm(jyky+jzkz)

d > Aoy (D) Fene 5 Ye A

j==0 ijO

— —1[5&71-1

n,—1ny |—2“ 2wm(jmk’+jyky+jzkz)

+23) Y ®epg,a.e T
J==0 jy=0 jz=1

(ky =0, np—1; ky=0,---,n, —1; ky =0,---,n, — 1)

Here, [z] represents the minimum integer greater than or equal to x, and R{z} represents the real part of

the complex number z. Also, when n, is odd, é¢nz

jnj. = 0, and when n, is even, ¢ng
5 JysJz 2

S ysde = Oy ade
Usage
Double precision:
ierr = ASL_dfr3bf (nx, ny, nz, r, Ix, ly, lz, isw, ifax, trigs, wk);
Single precision:
ierr = ASL_rfr3bf (nx, ny, nz, r, Ix, ly, lz, isw, ifax, trigs, wk);

169

[DEPRECATED]ASL _dfr3bf, ASL_rfr3bf

Three-Dimensional Real Fourier Transform (After Initialization)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 nx I 1 Input | Number of data values in the first dimension,
ng (See Note (a))
2 ny I 1 Input | Number of data values in the second dimen-
sion, n, (See Note (a))
3 nz I 1 Input | Number of data values in the third dimen-
sion, 1, (See Note (a))
4 r Dx Ixxlyxlz | Input | Input data ry, x,x (Forward transform), or
{R* } Clariysds
(Backward transform) (See Note (b))
Output | Output results ¢;, ;, ;. (Forward transform),
OT Thy ky ks
(Backward transform) (See Notes (b) and
(<)
5 Ix I 1 Input | Adjustable dimension of array r (See Note
(b))
6 ly I 1 Input | Second dimension of array r (See Note (b))
7 1z I 1 Input | Third dimension of array r (See Note (b))
8 isw I 1 Input | Processing switch
isw= 1:Forward transform
isw=—1:Backward transform
9 ifax I* 60 Input | Factorization results and number of factors
(See Note (a))
10 trigs D+ nx + 2 x| Input | Trigonometric function table (See Note (a))
RFe
11 wk Dx Ix x 1y x1z| Work | Work area
()
12 ierr I 1 Output | Error indicator (Return Value)

170

[DEPRECATED]ASL_dfr3bf, ASL_rfr3bf
Three-Dimensional Real Fourier Transform (After Initialization)

(4) Restrictions

()

nx > 1
ny >1
nz > 1

nx + 1 < 1x, where nx is an odd, or

nx + 2 < Ix, where nx is an even.
ny <ly
nz <lz

Ix should be even number.

(5) Error indicator (Return Value)
ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b), (¢) or (d) was not
satisfied.
3020 Restriction (e) was not satisfied.
3030 Restriction (f) was not satisfied.
(6) Notes

(a)

This function can be used to repeatedly compute the transform for the same number of data (nx, ny,

ASL_dfr3fb
nz) after the including-initialization function 2.13.1 S I3 has been used. In this case, you
ASL_rfr3fb

must retain the contents of arrays ifax and trigs so they can be used as input in this function.

The real data 7, g, k. (ky =0,---,ny —1; ky =0,---,ny —1; k; =0,---,n, — 1) and elements of
array r are associated as follows.

Thoky ke 0 Tk + 10k (ky +1y % k)]

When computing the backward transform, if nx(=n,) is odd, then rnx + Ix * (ky + 1y *k,)] = 0, and
when nx is even, then rjnx +Ix* (ky + 1y *k,)] = r[nx+ 1 +Ix* (ky +1ly *k,)] = 0. Also, when entering
the real data 74, p, k. (kz = 0,---,np — 15 ky = 0,---,ny —1; k. = 0,---,n, — 1) into array 1, the
corresponding zeros mentioned above need not be specifically stored.
If we let the real and imaginary parts of the complex data c;, j, j. (Jo = 0,--+, [%=]; jy = 0,---,ny —
1; j. =0,---,n, — 1) be R{cj, j,.5.} and I{cj, j,.j. }, respectively, the c;, ;, ;. and elements of array
r are associated as follows. Here, |x] represents the maximum integer that does not exceed .
R{cj,j,4.1 © T2%]x +1xx(y +1y *j,)]
Syt & T2%3x+ 14 I (jy 1y # o))
From the properties of a real Fourier transform, ${cg 0,0} = 0, and when nx, ny and nz are all even,
e ng my nTz} = 0. Therefore, even if nonzero values are set for the corresponding elements of array

r, they are considered to be zero when processing is performed. Since the elements c;, j, ;. (Jo =

%] +1,---,ne —1; jy =0,---,ny —1; j. = 0,---,n, — 1) can be obtained according to the following

171

[DEPRECATED]ASL_dfr3bf, ASL_rfr3bf
Three-Dimensional Real Fourier Transform (After Initialization)

(f)

relationships from the symmetry of the real Fourier transform, they need not be assigned as input when

computing the backward transform. Also, they are not output when computing the forward transform.

*

nm_jm7ny_jy7nz—jz = ijvjy,jz

* — ¢)]

nw_jwvijz T YNy —JysNz—Jz

* — . . .
ansz,nyij,jz - CJway»nz—]z

Here, z* represents the conjugate complex number of the complex number z. The adjustable di-
mensions of array r should be set so that 1x/2, ly, and 1z are odd numbers to avoid bank
conflict of main memory. Also, to increase speed, calculations are executed even for ele-
ments outside areas where data is set within array r. Usually, when nx, for example, is
(a multiple of 4)+2, Ix=nx+4 is set.

When this function is used to compute the backward transform immediately following the forward
transform, the values of the data obtained will be the original data multiplied by the number of
data. For example, if we let the data obtained by computing the backward transform immediately
following the forward transform for the real data 74, k, x.(kz =0, --,nge —1; ky =0,---,ny, —1; k, =
0,---,n. — 1) be represented by 7, &, k. (ke =0, -, np —1; ky =0,---,ny —1; k. =0,---,n, — 1),
then the following relationship holds.

TAkkay»kz = nmnynz/rkmvkyakz
(kLE :Oavnw_lv ky :Ovany_lv kz :07"'7nz_1)
Therefore, normalization must be performed for the result of either the forward transform or the
backward transform. Note that in some of the entries in the Reference Bibliography, the definitions of
the forward and backward transforms are reversed from those in this book, and in some of the entries

a normalized result is defined.

Since a discrete Fourier transform is assumed to be a periodic function for which the data sequences
before and after the transform are assumed to have the number of data (n, or n, or n,) as the period,
the number of samples or sampling interval must be set with this taken into account when sampling
to approximate the continuous Fourier transform. According to the sampling theorem, for a time
function h(t) that is bandwidth limited by the frequency f,, if the sampling interval is taken as T' = ﬁ,

then h(t) can be reconstructed from knowledge of only a sequence of sample values {h(iT)} as follows.

W =1 3) 2D

i=—00

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

DEPRECATED This function will be removed in the future. Use ASL Unified Interface, the

higher performance alternative implementation instead.

(7) Example

(a)

Problem
Compute the three-dimensional real Fourier forward and backward transforms using
(ky + 1)(ky +1)(k, + 1)

NgNyN,

(ky =0,---,ny—1; ky=0,---,ny —1; k, =0,---,n, — 1)

The kyk: =

as input data.

172

[DEPRECATED]ASL _dfr3bf, ASL_rfr3bf

Three-Dimensional Real Fourier Transform (After Initialization)

(b) Input data
Array r, nx=6, ny=4, nz=3, 1x=10, ly=>5, 1z=3, isw=1 (Forward transform) and isw=—1 (Backward

()

transform).

Main program

/*

C Interface example for ASL_dfr3fb ,

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()

4; int nz

int nx = 6; int ny
5; int 1z

int 1x = 10; int ly
double *r;

int isw;

int ifax[60];

double *trigs;

double *wk;

int ierr;

int i,j,k;

printf(" *k% ASL_dfr3fb , ASL_dfr3bf
printf("\n *x Input **\n");

ASL_dfr3bf */

**xx\n");

r = (double *)malloc((size_t)(sizeof(double) * (lx*ly*lz)));

if (r == NULL)

printf("no enough memory for array r\n");

return -1;

trigs = (double *)malloc((size_t)(sizeof(double) * (nx+2*(ny+nz))));

if(trigs == NULL)

printf("no enough memory for array trigs\n");

return -1;

wk = (double *)malloc((size_t)(sizeof(double) * (lxxly*1z)));

if (wk == NULL)

printf("no enough memory for array wk\n");

return -1;

%6d\n", nx)
%6d\n", ny)
%6d\n", nz)

{or(k=1 ; k<=nz ; k++)

printf("\tnx
printf("\tny
printf("\tnz

for(j=1 ; j<=ny ; j++)
{

for(i=1 ; i<=nx ; i++)

r[(i-1)+1x*(j-1)+1x*1ly* (k-1)1=(double) (i*j*k)/(double) (nx*ny*nz) ;

}

printf("\tr[ix] [iy] [1]\n");
{or(i=0 ; i<nx ; i++)

for(j=0 ; j<mny ; j++)
printf("\t%8.3g", rli+lxx*j
¥
printf("\n");
printf("\tr[ix] [iy] [2]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)

1);

printf("\t%8.3g", rli+lx*j+lxxly*1]);

}
printf("\n");

printf("\tr[ix] [iy] [3]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
{

173

[DEPRECATED]ASL_dfr3bf, ASL_rfr3bf
Three-Dimensional Real Fourier Transform (After Initialization)

printf("\t%8.3g", rli+lx*j+lx*ly*2]);

}
printf("\n");

isw = 1;
ierr = ASL_dfr3fb(nx, ny, nz, r, lx, ly, lz, isw, ifax, trigs, wk);

for(i=0 ; i<lx*ly¥lz ; i++)

r[i] /= (double) (nx*ny*nz) ;

printf("\n ** Qutput **\n");

printf("\t< Forward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf ("\tr[ix] [iy] [1]\n");
for(i=0 ; i<nx+2 ; i++)

for(j=0 ; j<ny ; j++)
printf("\t%8.3g", rli+lx*j 19

}
printf("\n");
}

printf("\tr[ix] [iy] [2]\n");
%or(i=0 ; i<nx+2 ; i++)

for(j=0 ; j<ny ; j++)
printf("\t%8.3g", rli+lx*j+lx*ly*1]);
%rintf("\n");
printf("\tr[ix] [iy] [3]\n");
for(i=0 ; i<nx+2 ; i++)
for(j=0 ; j<ny ; j++)
printf("\t%8.3g", rli+lx*j+lx*ly*2]);
%rintf("\n");
isw = -1;
ierr = ASL_dfr3bf(nx, ny, nz, r, lx, ly, lz, isw, ifax, trigs, wk);

printf("\t< Backward Transform >\n");
printf("\tierr = %6d\n", ierr);

printf("\tr[ix] [iy] [1]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t%8.3g", rli+lx*j 1);

}
printf("\n");
}

printf("\tr[ix] [iy] [2]\n");
for(i=0 ; i<nx ; i++)

for(j=0 ; j<ny ; j++)
printf("\t%8.3g", rli+lx*j+lx*ly*1]);
%rintf("\n");
printf("\tr[ix] [iy] [3]\n");
for(i=0 ; i<nx ; i++)
for(j=0 ; j<ny ; j++)
printf("\t%8.3g", rli+lx*j+lx*ly*2]);

}
printf("\n");

free(r);
free(trigs);

174

[DEPRECATED]ASL_dfr3bf, ASL_rfr3bf
Three-Dimensional Real Fourier Transform (After Initialization)

free(wk);

return O;

175

[DEPRECATED]ASL_dfr3bf, ASL_rfr3bf
Three-Dimensional Real Fourier Transform (After Initialization)

(d) Output results

k% ASL_dfr3fb , ASL_dfr3bf *xx*

** Input *x*
6

nx =
ny = 4
ng = 3
r[ix] [iy] [1]
0.0139 0.0278 0.0417 0.0556
0.0278 0.0556 0.0833 0.111
0.0417 0.0833 0.125 0.167
0.0556 0.111 0.167 0.222
0.0694 0.139 0.208 0.278
0.0833 0.167 0.25 0.333
r[ix] [iy] [2]
0.0278 0.0556 0.0833 0.111
0.0556 0.111 0.167 0.222
0.0833 0.167 0.25 0.333
0.111 0.222 0.333 0.444
0.139 0.278 0.417 0.556
0.167 0.333 0.5 0.667
r[ix][ig][S]
0.041 0.0833 0.125 0.167
0.0833 0.167 0.25 0.333
0.125 0.25 0.375 0.5
0.167 0.333 0.5 0.667
0.208 0.417 0.625 0.833
0.25 0.5 0.75 1

** Qutput **
< Forward Transform >

ierr = 0
r[ix] [iy] [1]
0.243

-0.0486 -0.0486 -0.0486

0 0.0486 0 -0.0486
-0.0347 -0.00508 0.00694 0.019
0.0601 -0.019 -0.012 -0.00508
-0.0347 0.00294 0.00694 0.011
0.02 -0.011 -0.00401 0.00294
-0.0347 0.00694 0.00694 0.00694
0 -0.00694 0 0.00694

r[ix] [iy] [2]
-0.0608 0.00514 0.0122 0.0192
0.0351 -0.0192 -0.00702 0.00514
4.63e-18 0.00401 -1.54e-18 -0.00401
-0.02 0.00401 0.00401 0.00401
0.00579 0.000847 -0.00116 -0.00316
-0.01 0.00316 0.002 0.000847
0.00868 -0.000734 -0.00174 -0.00274
-0.00501 0.00274 0.001 -0.000734
rlix] [iy] [3]

-0.0608 0.0192 0.0122 0.00514
-0.0351 -0.00514 0.00702 0.0192
0.0174 -0.00147 -0.00347 -0.00548
-0.01 0.00548 0.002 -0.00147
0.0116 -0.00231 -0.00231 -0.00231

0 0.00231 0 -0.00231
0.00868 -0.00274 -0.00174 -0.000734
0.00501 0.000734 -0.001 -0.00274

< Backward Transform >

ierr =
r[ix] [iy] [1]
.0139

0 0.0278 0.0417 0.0556
0.0278 0.0556 0.0833 0.111
0.0417 0.0833 0.125 0.167
0.0556 0.111 0.167 0.222
0.0694 0.139 0.208 0.278
0.0833 0.167 0.25 0.333
r[ix] [iy] [2]
0.0278 0.0556 0.0833 0.111
0.0556 0.111 0.167 0.222
0.0833 0.167 0.25 0.333
0.111 0.222 0.333 0.444
0.139 0.278 0.417 0.556
0.167 0.333 0.5 0.667
r[ix][i¥][3]

0.041 0.0833 0.125 0.167
0.0833 0.167 0.25 0.333
0.125 0.25 0.375 0.5
0.167 0.333 0.5 0.667
0.208 0.417 0.625 0.833

0.25 0.5 0.75 1

176

2.14 CONVOLUTIONS

2.14.1 ASL_dfcnld, ASL_rfcnld
One-Dimensional Convolutions

(1) Function

Given the two discrete functions f(i) and g(j) of period m satisfying:
f@)=f(i+km),gt@) =gl +km) (i=0,---,m—1)

for an arbitrary integer k, where:
f(@)=0(@G=mn1,---,m=1); g(j)=0(=n2, - ,m—1)

ASL_dfenld or ASL_rfenld calculates the discrete convolution p(k) (k= 0,---,m — 1) defined as follows:

P = 3 F@glk —)= Y gk —i) (=0, m 1)

Here, m = min(n; +n2 — 1, M) and M is an arbitrary integer satisfying M > max(n1, n2). The real Fourier
transform of p(k) can also be obtained.

(2) Usage
Double precision:
ierr = ASL_dfenld (nl, n2, rl, 1d1, r2, 1d2, m, isw, iwk, wk);
Single precision:
ierr = ASL.rfenld (nl, n2, r1, 1d1, r2, 1d2, m, isw, iwk, wk);

177

ASL_dfenld, ASL_rfenld
One-Dimensional Convolutions

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output

1 nl I 1 Input | Number of effective data n; for discrete func-
tion f(7)

2 n2 I 1 Input | Number of effective data no for discrete func-
tion g(j)

3 rl Dx 1d1 Input | Values of discrete function f(i) (See Notes

{R*} (a) and (b))
Output | When isw > 1, result of real Fourier trans-
form of discrete function f(i) (period M)
1d1 I 1 Input | Size of array rl
5 r2 D+ 1d2 Input | Values of discrete function ¢(j) (See Notes
{R*} (a) and (b))
Output | Value of discrete function p(k) or its real
Fourier transform (See Notes (a) and (c))

6 1d2 I 1 Input | Size of array r2

7 m I 1 Input | Parameter M corresponding to the period m
of discrete functions f(3), g(j), and p(k) (See
Note (d))

8 isw I 1 Input | Processing switch (See Notes (a) and (e))
isw= 0: Calculate the convolution according
to the definition.
isw= 1: Calculate the convolution according
to the FFT method.
isw= 2: Calculate the real Fourier transform
of the convolution.
isw= 3: Calculate the convolution according
to the sectioning FFT method.

9 iwk I* See Work | Work area

Contents Size:
0 (When isw= 0)
20 (When isw > 1)

178

ASL_dfenld, ASL_rfenld
One-Dimensional Convolutions

A t and I t
No. FEUmEnt atl Type Size nput/ Contents
Return Value Output
10 wk Dx See Work | Work area
R+ Contents Size:
n2 (When isw= 0)
2xm+ 1 (When isw= 1 or 2 and m is odd)
2 xm+ 2 (When isw= 1 or 2 and m is even)
2 x m+nl (When isw= 3 and m is odd)
2xm+nl+1 (When isw= 3 and m is even)
11 ierr I 1 Output | Error indicator (Return Value)
(4) Restrictions
(a) isw € {0,1,2,3}
(b) n1 >1
(¢c) n2>1
(d) m > max(nl,n2)
(e) When isw =0 :
1d1 > nl
When isw > 0 and m is odd:
dil>m+1
When isw > 0 and m is even:
ldl>m+2
(f) When isw =0
1d2 > m
When isw > 0 and m is odd:
d2>m+1
When isw > 0 and m is even:
d2>m+2

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
1000 m<nl+n2-—1. Overlapping occurred during the convolu-
tion calculation.

3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

3030 Restriction (d) was not satisfied.

3040 Restriction (e) was not satisfied.

3050 Restriction (f) was not satisfied.

(6) Notes

(a) If the number of effective data for one of the functions for which the convolution is to be calculated is

extremely large compared to the number of effective data for the other, then sectioning should be used

179

ASL_dfenld, ASL_rfenld
One-Dimensional Convolutions

to divide the larger number of data into equal parts (by adding zeros at the end if necessary) and this
function should be applied repeatedly to calculate the discrete convolution efficiently. In addition, the
required amount of memory will be smaller.

For example, to calculate the discrete convolution of the two series {u1, ug, -, ur} (number of effective
data k) and {vi,---,vpe} (number of effective data pg (pg > k)), first set isw=1, nl=k, n2=¢, m >
nl +n2—1, rl={uy, ug,---,ux}, and r2={v1, ve, - - -, vy} and apply this function. As a result, the first
q values of the convolution to be calculated are obtained as the first ¢ elements at the beginning of
array r2.

Next, change isw and r2 to isw=3 and r2={vg11, -+, v24} and apply this function with the contents of
the other arguments unchanged. As a result, the next g values of the convolution to be calculated are
obtained as the first ¢ elements at the beginning of array r2. Then, continue to perform the calculations
in a similar manner while sequentially shifting the values set in r2. The convolution calculated for the
last repetition, that is, the convolution calculated when r2={v(,_1)q+1,"**,Vpq} is set, gives the last
2¢ — 1 elements of the convolution to be calculated. (However, when the series {v;} is not a finite

waveform, the last ¢ — 1 elements are indeterminate).

The values of the discrete functions f(i) and g(j) are stored in arrays rl and r2, respectively, as follows.
However, when isw = 3 is set, values are only stored in r2, and the contents of r1 are used directly (See
Note (a)).

f(0)
f()

d

r1[0]
rl[1]

1

fni=1) — rlnl—1]

1
—
)
=

9(0)
g(1)

1
~
[\
=

glng—1) — 1r2n2—1]

No values need be entered in elements r1[nl] and after of array rl and in elements r2[n2] and after of
array r2. Also, in particular, when isw = 3 is set, the elements in r2[n2] and after must not be changed

because they are used in the calculation.

The values of the discrete convolution p(k) are obtained in array r2 as follows.

p(0) = 12[0]
p(1) — 12[1]

p(M—-1) — 12[m-—1]
When m is odd, r2[m] is 0.0, and when m is even, r2[m] and r2[m+1] are each 0.0. Also, when sectioning
is performed, the first n2 data usually are meaningful as convolution data (See Note (a)).
When isw=2 is set to obtain the real Fourier transform P(j) of the discrete convolution p(k), which is

defined as follows (| x| represents the maximum integer that does not exceed x):

M—-1

P() = o2 3 p(ke VT (=0, 1))
k=0

180

ASL_dfenld, ASL_rfenld
One-Dimensional Convolutions

the following associations are made:

R{P(O)} 120

]
I{PO) o 21
RIPA)} 122
I{PA)} o 123

RP(LFD} < r2l-2]
HP(ADE + r21-1] (I1=m+1m: Odd] or m+2[m: Even])

In this case, note that the Fourier transform that is obtained is normalized. The remaining half period

of the Fourier transform can be obtained from the symmetry of the real Fourier transform as follows:
P(M —j) = P(j)"
(Here, z* represents the conjugate complex number of the complex number z.)

If m > nl +n2 —1 is set, the convolution can be calculated without causing an overlap with the
convolution of the next period. When m > nl 4+ n2 — 1, values that match 0.0 within the error range
are stored in element nl + n2 and following. When isw=0, m = nl + n2 — 1 should be set. When
isw > 1, the calculations can be performed more efficiently by setting a value for m for which the mixed
radix FFT algorithm operates effectively (multiples of 2, 3, 5, etc., which are the mixed radix values of
FFT). For example, if n1=n2=145, then when isw=0, m = 289(=172) should be set. However, when
isw > 1, it is usually more efficient to set m = 300(=22 x 3 x 52), m = 320(=2% x 5), m = 384(=2" x 3)
or the like.

Usually, the calculations can be performed more efficiently by setting isw=1 to calculate
the FFT convolution. However, to conserve work area or if there is a restriction on the method of

selecting the parameter m, the calculations should be performed by setting isw=0.

To calculate the convolution of discrete functions for which the starting position of the nonzero portions
are separated from the origin, first perform the calculations by shifting the functions so that the starting
positions are at the origin, and then shift the calculation results again to obtain the final results more
efficiently. For example, when the nonzero portions of the discrete functions f(i) and g¢(j) are the

intervals [io,io + n1 — 1] and [jo, jo + n2 — 1], respectively, let f(i) and §(j) be defined as follows:
@) = f(i—iv), §(3) = 9(j — jo)

and apply this function to f(i) and §(j). Let p(k) represent the result that was obtained, and the

convolution p(k) of the original functions f(i) and g(j) is given as follows:
p(k) = p(k + (io + jo))

That is, the desired results are obtained if you shift f(i) and g(j) in the negative direction by iy and
Jo, respectively, before calculating the discrete convolution, and then shift the calculated value of the

convolution after applying this function by ¢ + jo in the positive direction.

The sampling interval multiplied by the discrete convolution calculated by this function is the square
approximation (or approximation by using the trapezoidal formula) of the continuous convolution
integral of a bandwidth-limited function. Therefore, to raise the approximation precision, you must
take a smaller sampling interval and a larger number of sample data. To associate these results
with a continuous convolution, it is easiest to let p(ny +n2 — 1) = 0 and consider n; + ny data of
p(k) (k=0,1,---,n1 +ny — 1). In this case, the coordinate 0 element usually is associated with p(0).
However,

181

ASL_dfenld, ASL_rfenld
One-Dimensional Convolutions

(h)

When isw=0, then ld1=nl, 1d2=m and nwk=n2

When isw=1 or 2, if m is odd, then lId1=1d2=m+1 and nwk =2 x m + 1,
and if m is even, then 1d1=1d2=m+2 and nwk = 2 x m + 2.

When isw=3, if m is odd, then ld1=1d2=m+1 and nwk = 2 X m 4 nl,
and if m is even, then ld1=1d2=m+2 and nwk = 2 x m + nl + 1.

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(7) Example

(a)

Problem
Use the sampling interval Ax to discretize the two finite waveforms defined by the following equations
and calculate the discrete convolution.

z 0<z<a
f) = { 0 Otherwise

(2) b—x 0<zx<b
xTr) =
g 0 Otherwise

Remarks:

The continuous convolution p(z) = (f x g)(z) of f(z) and g(z) is as follows:

G(0,z,x) 0<z<a
e G(0,a,x) a<z<b
= — d —
e = [r@ee-gae=q LO00 NS
0 Otherwise

Here, G(a, §,) is as follows:

Glws.e) = [Sia0-a) 20|

£2 :

S 600129 - S00-0+20)

¢=p —a

When ¢ = 2 and b = 3 are set, the values f(iAz), g(iAx) and p(iAx) obtained by sampling f(x),
g(x), and p(z) = (f x g)(x) with Az = 0.1 are graphed as follows. The values p(i)Ax, which are the
discrete convolution calculated by this function multiplied by Ax are also shown for reference. They

match the continuous convolution pretty well for a small number of samples.

182

ASL_dfenld, ASL_rfenld
One-Dimensional Convolutions

f(iAx)

g(iAzx)

3.0 1 3.0 %
....
...
20 [~ & 2.0 [~ .o.
.. ..
[J [)
... ...
1.0 [~ J:’ 1.0 [~ ﬁ=5
.. ..
....
10 20 30 40 50 10 20 30 40 50
Figure 2—6
p(iAz) p(i)Ax
[)
[)
.... ...
4.0 [° A 4.0 [o %
° o. ° .0.
[}
3.0 [. % 3.0 [N %
[} o [}
.. .. ° ..
20 e % 20 8 '-
[] [)
° ° ° .
: o. ° '.
L0 |7 o “ 10 [o Y
() [) :P []
@
00 o | | | \L, i 0.0 | | | |.°’g|
’ 10 20 30 40 50 ' 10 20 30 40 50
Figure 2—-7

The program also calculates the continuous convolution for reference.

Input data

Sampling data

rifi— 1] =f((Gi—-1)Ax) i=1,2,---,
12 — 1] = g((— DAX) (= 1,2,--,n2).
Here, Ax = 0.1.

a
Az’
Main program

b
n2 =—, m and isw.

Az

nl =

/*

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

#ifdef
double
#else

double
double
%endif

__STDC__
f(double tau, double t, double b)

f(tau, t, b)
tau, t, b;

return tauxtaux(0.5*(b-t)+tau/3.0);

C interface example for ASL_dfcnld */

nl) and

183

ASL_dfenld, ASL_rfenld
One-Dimensional Convolutions

int main()
{

int ni;

int n2;
double *ri;
int m0=100;
int 1d1=m0+2;
double *r2;
int 1d2=m0+2;
int niwk=20;
int m;

int isw;

int *iwk;
double *wk;
int ierr;

int i;

double *cr,t,dt;
double a,b;

printf(" *x* ASL_dfcnld ***\n");
printf("\n ** Input **\n\n");

rl = (double *)malloc((size_t)(
if(r1 == NULL)

printf("no enough memory for
return -1;

}
r2 = (double *)malloc((size_t)(
if(r2 == NULL)

printf("no enough memory for
return -1;

wk = (double *)malloc((size_t) (
if (wk == NULL)

printf("no enough memory for
return -1;

}
cr = (double *)malloc((size_t)(
if (cr == NULL)

printf("no enough memory for
return -1;

iwk = (int *)malloc((size_t) (sizeof(int) * niwk

if (iwk == NULL)

printf("no enough memory for array iwk\n");

return -1;

isw=1;

dt=0.1;

a=2.0;

b=3.0;

ni=(int) ((a+0.5*dt)/dt);
n2=(int) ((b+0.5%dt)/dt);
m=50;

sizeof (double)
array ri\n");
sizeof (double)
array r2\n");
sizeof (double)
array wk\n");
sizeof (double)

array cr\n");

1d1));

1d2));

(2%m0+2)));

1d2));

printf("\t isw = %6d\n\t nl = %6d\n\t n2 = %6d\n\t m

isw, nl, n2, m);
for(i=0 ; i<nl ; i++)

t=ix*dt;
ri[il=t;

for(i=0 ; i<n2 ; i++)
t=ix*dt;
r2[i]=b-t;

printf("\tData(ri,r2)\n");

printf("\t i ri[il] r2[il\n");

/* ASSUME n2>n1 */
for(i=0 ; i<nl ; i++)

printf("\t%3d %8.3g %8.3g\n", i, ri[i], r2[i]);

for(i=n1 ; i<n2 ; i++)

printf("\t%3d %#8.3g\n", i, r2[i]);

%6d\n\n",

ierr = ASL_dfcnid(nl, n2, r1, 141, r2, 142, m, isw, iwk, wk);

printf("\n ** Output **\n\n"
printf("\tierr = %6d\n", ierr);

);

184

ASL_dfenld, ASL_rfenld
One-Dimensional Convolutions

for(i=0 ; i<nl ; i++)

t=i
cr[l] f(t t,b);

for(i=nl ; i<n2 ; i++)

t=ixd
cr[il] f(a t,b);

for(i=n2 ; i<nl+n2 ; i++)

t=ix*d
crli] f(a t,b)-f(t-b,t,b);

printf("\tConvolution\n");
printf("\t i r2[i] r2[ilxdt cr[il\n");
for(i=0 ; i<ni+n2 ; i++)

printf("\t%3d %9.41f %9.41f %9.41f\n",
} i, r2[i], r2[il*dt, crl[i]);
free(iwk);
free(cr);
free(wk);
free(r2);
free(rl);

return O;

}
(d) Output results

***x ASL_dfcnld ***

*k Input *k

isw = 1
nl = 20
n2 = 30
m = 50

Data(ri,r2)

i rl [1] r2[i]
0 3
1 0.1 2.9
2 0.2 2.8
3 0.3 2.7
4 0.4 2.6
5 0.5 2.5
6 0.6 2.4
7 0.7 2.3
8 0.8 2.2
9 0.9 2.1
10 1 2
11 1.1 1.9
12 1.2 1.8
13 1.3 1.7
14 1.4 1.6
15 1.5 1.5
16 1.6 1.4
17 1.7 1.3
18 1.8 1.2
19 1.9 1.1
20 1
21 0.9
22 0.8
23 0.7
24 0.6
25 0.5
26 0.4
27 0.3
28 0.2
29 0.1

** Qutput **

ierr = 0
Convolution
i r2[i] r2[il*dt crli]
0 0.0000 0.0000 0.0000
1 0.3000 0.0300 0.0148
2 0.8900 0.0890 0.0587
3 1.7600 0.1760 0.1305
4 2.9000 0.2900 0.2293
5 4.3000 0.4300 0.3542
6 5.9500 0.5950 0.5040
7 7.8400 0.7840 0.6778
8 9.9600 0.9960 0.8747
9 12.3000 1.2300 1.0935
10 14.8500 1.4850 1.3333
11 17.6000 1.7600 1.5932

185

ASL_dfenld, ASL_rfenld

One-Dimensional Convolutions

QOO KFENWPON

.5400
.6600
.9500
.4000
.0000
.7400
.6100
.6000
.7000
.8000
.9000
.0000
.1000
.2000
.3000
.4000
.5000
.6000
.7000
.8000
.9100
.0400
.2000
.4000
.6500
.9600
.3400
.8000
.3500
.0000
.7600
.6400
.6500
.8000
.1000
.5600
.1900
.0000

QOO OCO0OO0OO0OOOOORRREEFEENNNNNWWWWWWHERRBRPRWWWNNN

.0540
.3660
.6950
.0400
.4000
L7740
.1610
.5600
.3700
.1800
.9900
.8000
.6100
.4200
.2300
.0400
.8500
.6600
.4700
.2800
.0910
.9040
.7200
.5400
.3650
.1960
.0340
.8800
.7350
.6000
.4760
.3640
.2650
.1800
.1100
.0560
.0190
.0000

OCOO0OO0O0OO0OO0OOOOORRREPERENNNNNWWWWWARBRBRDRPWWWNNN -

.8720
.1688
.4827
.8125
.1573
.5162
.8880
.2718
.6667
.4667
.2667
.0667
.8667
.6667
.4667
.2667
.0667
.8667
.6667
.4668
.2680
.0712
.8773
.6875
.5027
.3238
.1520
.9882
.8333
.6885
.5547
.4328
.3240
.2292
.1493
.0855
.0387
.0098

186

ASL_dfen2d, ASL_rfen2d
Two-Dimensional Convolutions

2.14.2 ASL_dfcn2d, ASL_rfcn2d

(1)

3)

Two-Dimensional Convolutions

Function
Assume that the two multiperiodic discrete functions f(iz,,) and ¢(ja, jy) of period (mg,m,) satisfying:

fliz,iy) = f(iz + Loma, iy + Lymy),
9(Jz,Jy) = 9(Jz + Lama, jy + Lymy),
(Zam]m :Ovamw - 17 Zya]y :Oavmy _1)

for arbitrary integers L, and L, take nonzero values within their basic periods only for (is,4,) € [0, ngf) _
1] %[0, nz(,f) —1] and (jz, jy) € [0, n{ — 1] %[0, nz(,g) —1]. Here, [0,a] x [0, b] is the direct product region (region
contained in the square for which the point (0, 0) and the point (a,b) are diagonal points) on the plane
in which the plane coordinates (i,7) lie. At this time, ASL_dfcn2d or ASL._rfen2d calculates the discrete

convolution p(ks, ky) defined as follows:

mey—1my—1
p(kxaky) = Z Z f(lxaly)g(kz - ikay - Zy)
ig=0 iy=0
My —1my—1
Z Z g(]m»]y)f(km — Ja, Ky _]y)
J==0 ijO
(kw =0,---,my —1; Ky =O,---,my—1)

Here, m, = min(n{) + n{¥ —1,M,) and m, = min(n{” + n{? — 1, M,) and M, and M, are arbitrary
integers satisfying M, > max(n:(gf), ng(vg)) and M, > max(nz(,f), ng(,g)), respectively. The two-dimensional real

Fourier transform of p(k,, k,) can also be obtained.

Usage
Double precision:

ierr = ASL_dfecn2d (nx1, nyl, nx2, ny2, r1, Ix1, lyl, r2, 1x2, ly2, mx, my, isw, iwk, wk);
Single precision:

ierr = ASL.rfen2d (nx1, nyl, nx2, ny2, rl, Ix1, ly1, r2, 1x2, ly2, mx, my, isw, iwk, wk);

Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value Output
1 nx1 I 1 Input | Number of effective data in i, direction nif)
for discrete function f(iz, iy)
2 nyl I 1 Input | Number of effective data in 4, direction ngf)
for discrete function f(iz, iy)
3 nx2 I 1 Input | Number of effective data in j, direction n;g)
for discrete function g(jg, jy)

187

ASL_dfen2d, ASL_rfcn2d
Two-Dimensional Convolutions

A t and I t
No. FEHIMELE an Type Size nput/ Contents
Return Value Output
4 ny?2 I 1 Input | Number of effective data in j, direction nz(f)

for discrete function g(jgz, jy)

5 rl Dx Ix1xlyl Input | Values of discrete function f(is,4,) (See Note
R (a))

Output | When isw > 1, result of two-dimensional

real Fourier transform of discrete function
f(’wvzy) (period (Mw»My))

6 Ix1 I 1 Input | Adjustable dimension of array rl
7 lyl I 1 Input | Second dimension of array rl
8 r2 D+ Ix2x1y2 Input | Values of discrete function g(jg, j,) (See Note
{R*} (a))
Output | Value of discrete function p(k,, k) or its two-
dimensional real Fourier transform (See Note
(b))
9 1x2 I 1 Input | Adjustable dimension of array r2
10 ly2 I 1 Input | Second dimension of array r2
11 mx I 1 Input | Parameter M, corresponding to the pe-
riod (mg, my) of discrete functions f(i,y),
9(jas y), and p(kz, ky) (See Note (c))
12 my I 1 Input | Parameter M, corresponding to the pe-

riod (mg, my) of discrete functions f(i,y),
g(]%a]y)v a’nd p(kzaky) (See NOte (C))

13 isw I 1 Input | Processing switch (See Note (d))

isw= 0: Calculate the convolution according
to the definition.

isw= 1: Calculate the convolution according
to the FFT method.

isw= 2: Calculate the real Fourier transform
of the convolution.

14 iwk I* See Work | Work area
Contents Size:

0 (When isw= 0)
40 (When isw > 1)

188

ASL_dfen2d, ASL_rfen2d
Two-Dimensional Convolutions

No. Argument and Type Size fnput/ Contents
Return Value Output
15 wk Dx See Work | Work area
{R*} Contents Size:

nx2 X ny2 ((When isw= 0 and nx2 is odd)
(nx2 + 1) x ny2 (When isw= 0 and nx2 is
even)
mx+ 2 x my +max(Ix1 xly1,1x2 x ly2) (When
isw > 1)

16 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a)
(b)

isw € {0, 1, 2}

nxl > 1
nyl >1

nx2>1
ny2 > 1

mx > max(nx1, nx2)

my > max(nyl,ny2)

When isw =0 :
Ix1 > nx1
lyl > nyl

When isw > 0 and mx is odd:
Ix1 >mx+1
lyl > my

When isw > 0 and mx is even:
Ix1 > mx + 2
lyl > my

When isw =0 :
1x2 > mx
ly2 > my

When isw > 0 and mx is odd:
x2>mx+1
ly2 > my

When isw > 0 and mx is even:
Ix2 > mx + 2
ly2 > my

189

ASL_dfen
Two-Dim

2d, ASL_rfcn2d

ensional Convolutions

(5) Error indicator (Return Value)
ierr value Meaning Processing
0 Normal termination.
1000 mx < nxl +nx2 —1 or Overlapping occurred during the convolu-
my < nyl +ny2 —1 tion calculation.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

~| ===

3030 Restriction (d) was not satisfied.

3040 Restriction (e) was not satisfied.

3050 Restriction (f) was not satisfied.
(6) Notes

(a)

The values of the discrete functions f(iz,i,) and g(jz,jy) and the elements of arrays rl and r2 are
associated as follows.

Flinyiy) < rllic +Ix1 %]

9(ja, Jy) > 12[x + 1x2 % jy]

(f)

Here, i, =0,---,ny " —1; z'y:0,---,nz(,f)

—1and j, = 0,---,nc(gg) —-1; §y = O,---,nz(,g) — 1, and no
values need be entered in other elements. The adjustable dimensions of arrays rl and r2 should
be set so that 1x1/2, lyl, 1x2/2, and ly2 are odd numbers to avoid bank conflict of main

memory. Usually, when mx, for example, is a multiple of 4, Ix1=mx+3 is set.

The values of the discrete convolution p(ks, ky) and the elements of array r2 are associated as follows.
plka,ky) < 12[ke +1x2 % ky]

Here, k, = 0,---, M, —1; k, = 0,---, M, — 1. When isw=2 is set to obtain the two-dimensional
real Fourier transform P(j,j,) of the discrete convolution p(ks, k), which is defined as follows (|z|

represents the maximum integer that does not exceed x):

1 M1 My —1 2 \/_1(jzkz+jyky)
P jzs J = kmvk B
() = 5730 kz_:o ;_:0 plko, kye
xr Yy
. . My

the following associations are made:
R{P(Jz.Jy)} < 12[2%jx + 1x2 % jy]
S{P(JzrJy)} < 12[2%jc + 14 1x2 % jy]
In this case, note that the Fourier transform that is obtained is normalized. The remaining half period

of the Fourier transform can be obtained from the symmetry of the real Fourier transform as follows:
P(Mac *jzvj\/[y - Jy)* = P(]xa]y)
P(Mm_]ma]y)* :P(]vay_]y)

(Here, z* represents the conjugate complex number of the complex number z.)

If mx > nx1+4+nx2—1 and my > nyl+ny2—1 are set, the convolution can be calculated without causing
an overlap with the convolution of the next period. When mx > nx1+nx2 —1 or my > nyl +ny2 — 1,

the following correspondences are made:

plke,ky) ¢ 12[ke +1x2 % ky]

190

ASL_dfen2d, ASL_rfen2d
Two-Dimensional Convolutions

(g)

and values that match 0.0 within the error range are stored in elements corresponding to k, =
nxl+nx2—-1,--- mx—-1; k, =0,--- my—1lork,=0,---,mx—1; ky =nyl +ny2—1,---,my — 1.
When isw=0, mx = nx1 + nx2 — 1 and my = nyl 4+ ny2 — 1 should be set. When isw > 1, the calcula-
tions can be performed more efficiently by setting a value for mx or my for which the mixed radix FFT
algorithm operates effectively (multiples of 2, 3, 5, etc., which are the mixed radix values of FFT). For
example, if nx1=nx2=145, then when isw=0, mx = 289(=17?) should be set. However, when isw > 1,
it is usually more efficient to set mx = 300(=22 x 3 x 5?), mx = 320(=2° x 5), mx = 384(=2" x 3) or
the like.

Usually, the calculations can be performed more efficiently by setting isw=1 to calculate
the FFT convolution. However, to conserve work area or if there is a restriction on the method of

selecting the parameter mx or my, the calculations should be performed by setting isw=0.

To calculate the convolution of discrete functions for which the starting position of the nonzero portions
are separated from the origin, first perform the calculations by shifting the functions so that the starting
positions are at the origin, and then shift the calculation results again to obtain the final results more
efficiently. For example, when the nonzero portions of the discrete functions f(iz,%,) and g(jz, jy) are

(9)71

the intervals [ig, 7o +ni) — 1] and [jo, jo + na | for i, and j., respectively, let f(zz, iy) and §(Jjz, Jy)

be defined as follows:

f(lwvzy) = f(Z$ - iOviy)v g(]ma]y) = g(]w _jOajy)
and apply this function to f(zz, iy) and §(jz, jy). Let p(ky, ky) represent the result that was obtained,

and the convolution p(kg, k) of the original functions f(is,%,) and g(jz,jy) is given as follows:
p(ka, ky) = p(ks + (io + Jjo), ky)-

That is, the desired results are obtained if you shift f(is,i,) and g(jz,jy) in the negative directions
of i, and j, by ig and jo, respectively, before calculating the discrete convolution, and then shift the
calculated value of the convolution after applying this function by ig + jo in the positive direction of
k.

This procedure is available for i,, j,, and k, as well.

The sampling interval squared multiplied by the discrete convolution calculated by this function is the
square approximation (or approximation by using the trapezoidal formula) of the continuous convolu-
tion integral of a bandwidth-limited function. Therefore, to raise the approximation precision, you must
take a smaller sampling interval and a larger number of sample data. To associate these results with a
continuous convolution, it is easiest to let p(néf) +nl9 — 1,ky) = 0 and p(ks, néf) +n7(j7) —1) = 0 and con-
sider (ngf)+n§5‘7))(n§,f)+n§‘7)) dataof p(kg, ky) (kg =0,1,---, ni+nl9 -1, ky=0,1,--, ng(,f)anz(Jg)fl).
In this case, the coordinate (0, 0) element is usually associated with p(0,0), and:

e when isw=0,
then 1x1 = nx1,lyl = nyl, 1x2 = mx, ly2 = my, and
nwk = nx2 x ny2 (when nx2 is odd) or
nwk = (nx2 + 1) x ny2 (when nx2 is even)

e when isw > 1,
then Ix1=1x2=mx+1 (when mx is odd) or
Ix1=Ix2=mx+2 (when mx is even),

lyl=ly2=my, and nwk = mx + (Ix1 + 2) x my.

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

191

ASL_dfen2d, ASL_rfcn2d
Two-Dimensional Convolutions

(7) Example

(a) Problem
Use the sampling interval A to discretize the two finite waveforms defined by the following equations

and calculate the discrete convolution.

z ((z,y) €[0,25] x [0, y])

f@y) = 0 (Otherwise)

zg =z ((2,) €[0,24] x [0,y,])

9(@.y) = 0 (Otherwise)

(b) Input data
Sampling data
rlfiy + Ix1 *iy] = f(ixA, iy A) (ix =0,1,---,nx1 —1; iy =0,1,---,nyl — 1) and
r2[jx + Ix2 % jy| = g(ixA,jyA) (x =0,1,---,nx2 —1; j, =0,1,---,ny2 — 1)
Here, A = 0.5.
nx1, nyl, nx2, ny2, mx, my and isw.

(¢) Main program

/* C interface example for ASL_dfcn2d */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()

int nx1;

int nyl;

int nx2;

int ny2;
double *ri;
int m0=8;

int 1x1;

int 1lyil;
double *r2;
int 1x2;

int 1y2;

int mx;

int my;

int isw;

int *iwk;

int niwk=40;
double *wk;
int nwk;

int ierr;

int i,j;
double t;
double dt=0.5;
double xf=2.0,yf
double xg=2.0,yg:

printf(" *x% ASL_dfcn2d **x\n");
printf("\n ** Input **\n\n");

isw=1;

nx1=(int) xf/dt;
nyl=(int) yf/dt;
nx2=(int) xg/dt;
ny2=(int) yg/dt;
mx=my=mO0 ;
1x1=1x2=m0+2;
lyl=1y2=mO;
nwk=mx+2*my+1x2*my ;

rl = (double *)malloc((size_t)(sizeof(double) * (lxixlyl)));
if (r1 == NULL)

printf("no enough memory for array ri\n");
return -1;

}
r2 = (double *)malloc((size_t)(sizeof (double) * (1x2*1ly2)));
if(r2 == NULL)

printf("no enough memory for array r2\n");
return -1;

192

ASL_dfen2d, ASL_rfen2d
Two-Dimensional Convolutions

}
wk = (double *)malloc((size_t)(sizeof (double) * nwk));
if(wk == NULL)

printf("no enough memory for array wk\n");
return -1;

iwk = (int *)malloc((size_t) (sizeof(int) * niwk));
if (iwk == NULL)

printf("no enough memory for array iwk\n");
return -1;

printf("\t isw = %6d\n\t (nx1, ny1) = (%3d,%3d)\n",
isw, nx1, nyl);
printf("\t (nx2, ny2)

(%3d,%3d)\n",

nx2, ny2);
printf("\t (mx , my) = (%3d,%3d)\n\n",
mx, my);

for(j=0 ; j<myl ; j++)
for(i=0 ; i<nxl ; i++)

t=ix*dt;
ri[i+lx1*xjl=t;

}
for(j=0 ; j<ny2 ; j++)
for(i=0 ; i<nx2 ; i++)

t=ix*dt;
r2[i+1x2*jl=xg-t;

prin%f("\tData ri[i+}3d*jI\n", 1x1);

printf("\ti/j 0 1 2 3\n");
printf("\t -— \n");
for(i=0 ; i<nxl ; i++)

printf("\t%3d", i);
for(j=0 ; j<nyl ; j++)

printf("%8.3g", ril[i+lx1*j]);
printf("\n");

%rintf("\n");

printf("\tData r2[i+%3d*jl\n", 1x2);

printf("\ti/j 0 1 2 3\n");
printf("\t -— \n");
for(i=0 ; i<nx2 ; i++)

printf("\t%3d", i);
for(j=0 ; j<ny2 ; j++)

printf("%8.3g", r2[i+lx2x*j]);
printf("\n");

ierr = ASL_dfcn2d(nx1, nyl, nx2, ny2, rl, 1lx1, 1lyi,
r2, 1x2, ly2, mx, my, isw, iwk, wk);

printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);

printf("\tConvolution r2[i+%3d*jl\n", 1x2);

printf("\ti/j 0 1 2 3 4")
printf(" 5 6 7\n");
printf("\t -—= ")
printf(" \n");

for(i=0 ; i<mx ; i++)

printf("\t%2d", i);
for(j=0 ; j<my ; j++)
printf("%7.21f", r2[i+lx2*j]);
printf("\n");
free(iwk);
free(wk);
free(r2);
free(rl1);

return O;

193

ASL_dfen2d, ASL_rfcn2d
Two-Dimensional Convolutions

(d) Output results

%*k ASL_dfcn2d *

** Input *x*

isw =
(nx1, nyl)

1
=(4, 4
(nx2, ny2) = (4, 4)
(mx , my) = (8, 8)
Data ri[i+ 10%j]
i/j 0 1 2 3
0 0 0 0 0
1 0.5 0.5 0.5 0.5
2 1 1 1 1
3 1.5 1.5 1.5 1.5
Data r2[i+ 10%j]
i/j 0 1 2 3
0 2 2 2 2
1 1.5 1.5 1.5 1.5
2 1 1 1 1
3 0.5 0.5 0.5 0.5
*% Output *x*
ierr = 0
Convolution r2[i+ 10%j]
i/j 0 1 2 3 4 5
0 0.00 0.00 0.00 0.00 0.00 0.00 -0.
1 1.00 2.00 3.00 4.00 3.00 2.00 1.
2 2.75 5.50 8.25 11.00 8.25 5.50 2.
3 5.00 10.00 15.00 20.00 15.00 10.00 5.
4 3.50 7.00 10.50 14.00 10.50 7.00 3.
5 2.00 4.00 6.00 8.00 6.00 4.00 2.
6 0.75 1.50 2.25 3.00 2.25 1.50 0.
7 -0.00 0.00 0.00 0.00 -0.00 -0.00 -O.

194

ASL_dfen3d, ASL_rfen3d
Three-Dimensional Convolutions

2.14.3 ASL_dfcn3d, ASL_rfcn3d

(1)

Three-Dimensional Convolutions

Function
Assume that the two multiperiodic discrete functions f(iz,y,4,) and g(jz, jy,j-) of period (mg,my, m;)

satisfying:

f(ixviyviZ) = f(loc + Lxmxviy + Lymyviz + Lsz)v
9(zs JyrJ=) = 9(Jz + Lama, jy + Lymy, j. + L.m.),
(zmvjw :Oaamw_lv Zyv]yzovamy_lv Zzajzzoavmz_l)

for arbitrary integers L,, L,, and L, take nonzero values within their basic periods only for (iy,iy,%,) €
0,7 — 1] x [0,n5” — 1] x [0,nY) — 1] and (ja, jy, 42) € [0,n5 — 1] x [0,n$? — 1] x [0,n? — 1]. Here,
[0,a] x [0,b] x [0, ¢] is the direct product region (region contained in the cube for which the point (0, 0, 0)
and the point (a, b, ¢) are diagonal points) in the space in which the space coordinates (i, j, k) lie. At this
time, ASL_dfen3d or ASL . rfecn3d calculates the discrete convolution p(ky, ky, k) defined as follows:

Mme—1My—1m, —1

plka by kz) = Z Z Z fliasiy,i2)g(ke — o, ky — iy, ke — i)

iz=0 1iy,=0 i,=0
Mmg—1My—1m, —1
= Z Z Z g(jzvjyvjz)f(kx7jx7ky7jy7kz*jz)
Je=0 jy=0 7-=0
(ky=0,---,mg—1; ky=0,---,my —1; k, =0,---,m, — 1)

Here, m, = min(ngf) +nl — 1, M), my = min(nz(,f) + nz(,g) —-1,M,), and m, = min(n(zf) +nl — 1,M,)
and M,, M,, and M, are arbitrary integers satisfying M, > max(ngf),ngcg)), M, > max(ng(,f),nég)), and
M, > max(ngf)

be obtained.

,ngg)), respectively. The three-dimensional real Fourier transform of p(kg, ky, k.) can also

Usage
Double precision:
ierr = ASL_dfen3d (nx1, nyl, nzl, nx2, ny2, nz2, rl, Ix1, lyl, lz1, r2, Ix2, ly2, 122, mx, my, mz,
isw, iwk, wk);
Single precision:
ierr = ASL.rfen3d (nx1, nyl, nzl, nx2, ny2, nz2, r1, Ix1, ly1, 1z1, r2, 1Ix2, ly2, 122, mx, my, mz,

isw, iwk, wk);

195

ASL_dfen3d, ASL_rfcn3d
Three-Dimensional Convolutions

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 nx1 I 1 Input Number of effective data in i, direction n:(Ef)
for discrete function f(iz,%y,1z)
2 nyl I 1 Input | Number of effective data in ¢, direction nz(,f)
for discrete function f(is,%y,1z)
3 nzl I 1 Input Number of effective data in 7, direction ngf)
for discrete function f(is, iy,%.)
4 nx2 I 1 Input | Number of effective data in j, direction ng])
for discrete function g(jg, jy,J2)
5 ny2 I 1 Input | Number of effective data in j, direction nz(,g)
for discrete function g(jg, jy,J2)
6 nz2 I 1 Input | Number of effective data in j, direction n&”
for discrete function ¢(jz, jy, j-)
7 rl Dx Ix1xlylx | Input | Values of discrete function f(iy,iy,i,) (See
{R*} 1z1 Note (a))
Output | When isw > 1, result of three-dimensional
real Fourier transform of discrete function
fiz,iy,i.) (period (M, My, M,))
8 Ix1 I 1 Input | Adjustable dimension of array rl
9 lyl I 1 Input | Second dimension of array rl
10 lz1 I 1 Input | Third dimension of array rl
11 r2 D+ Ix2xly2x | Input | Values of discrete function g(jz,Jjy,7.) (See
{R*} 122 Note (a))
Output | Value of discrete function p(ks, ky, k.) or its
three-dimensional real Fourier transform (See
Note (b))
12 1x2 I 1 Input | Adjustable dimension of array r2
13 ly2 I 1 Input | Second dimension of array r2
14 122 I 1 Input | Third dimension of array r2

196

ASL_dfen3d, ASL_rfen3d
Three-Dimensional Convolutions

No. Argument and Type Size fnput/ Contents
Return Value Output

15 mx I 1 Input | Parameter M, corresponding to the pe-
riod (mg,my,m,) of discrete functions
flizyiy,iz), (e y, =), and p(ks, ky, k)
(See Note (c))

16 my I 1 Input | Parameter M, corresponding to the pe-
riod (mg,my,m,) of discrete functions
f(imiyaiz)a g(jz;jyajz)a and p(kmkyakz)
(See Note (c))

17 mz I 1 Input | Parameter M, corresponding to the pe-

riod (mg,my,m;) of discrete functions
flizyiy,iz), 9(Jus Jyr J=), and p(ke, ky, k)
(See Note (c))

18 isw I 1 Input | Processing switch (See Note (d))

isw= 0: Calculate the convolution according
to the definition.

isw= 1: Calculate the convolution according
to the FFT method.

isw= 2: Calculate the real Fourier transform

of the convolution.
19 iwk I* See Work | Work area
Contents Size:

0 (When isw= 0)
60 (When isw > 1)
20 wk {D*} See Work | Work area

Rx Contents Size:

(nx2 + 1) x (ny2 4+ 1) x nz2 (When isw= 0,
nx2 is even and ny2 is even)

nx2 x (ny2 + 1) x nz2 (When isw= 0, nx2 is
odd and ny?2 is even)

(nx2 + 1) X ny2 x nz2 (When isw= 0, nx2 is
even and ny2 is odd)

nx2 X ny2 x nz2 (When isw= 0, nx2 is odd
and ny?2 is odd)

mx+2 X (my+mz)+max(lx1 x 1yl x1z1, 1x2 x
ly2 x 122) (When isw > 1)

21 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a) isw € {0,1,2}

(b) nx1>1
nyl >1
nzl > 1

(c) nx2>1

197

ASL_dfen3d, ASL_rfcn3d
Three-Dimensional Convolutions

ny2 > 1
nz2 > 1

(d) mx > max(nx1,nx2)
my > max(nyl, ny2)

mz > max(nzl, nz2)

(e) When isw =0 :

Ix1 > nx1
lyl > nyl
1z1 > nzl

When isw > 0 and mx is odd:
Ix1 > mx + 1 and 1x1 is even
lyl > my
1z1 > mz

When isw > 0 and mx is even:
Ix1 > mx + 2 and 1x1 is even
lyl > my
1z1 > mz

(f) When isw =0 :

1x2 > mx
ly2 > ny2
122 > nz2

When isw > 0 and mx is odd :
Ix2 > mx + 1 and 1x2 is even
ly2 > my
122 > mz

When isw > 0 and mx is even :
Ix2 > mx + 2 and 1x2 is even
ly2 > my
122 > mz

(5) Error indicator (Return Value)

my < nyl +ny2—1 or
mz < nzl +nz2 -1

ierr value Meaning Processing
0 Normal termination.
1000 mx < nx1l 4+ nx2 — 1, Overlapping occurred during the convolu-

tion calculation.

3000 Restriction (a) was not satisfied.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
3030 Restriction (d) was not satisfied.
3040 Restriction (e) was not satisfied.
3050 Restriction (f) was not satisfied.

Processing is aborted.

198

ASL_dfen3d, ASL_rfen3d
Three-Dimensional Convolutions

(6) Notes

(a)

The values of the discrete functions f(iy,%y,¢,) and g(jz, jy,j-) and the elements of arrays rl and r2
are associated as follows.

flizsiy,iz) ¢ rlfix +Ix1 % (iy + 1yl *i,)]

9(ar Jyr =) & 20k +1x2 % (jy +1y2 %)]
Here, iy = 0,---,n% — 1; iy = 0,'~',n7(4f) —1; 0. =0,---,n) —1and j, = 0,---,n — 1; Jy =

0,--- ,ng(,g) —1;7.=0,---, n&’” — 1, and no values need be entered in other elements. The adjustable
dimensions of arrays rl and r2 should be set so that 1x1/2, lyl, 1z1, 1x2/2, ly2, and 122 are
odd numbers to avoid bank conflict of main memory. Also, to increase speed, calculations
are executed even for elements outside areas where data is set within arrays r1 and r2.

Usually, when mx, for example, is (a multiple of 4)+2, Ix]=mx+4 is set.

The values of the discrete convolution p(ky,ky,k,) and the elements of array r2 are associated as

follows.
plkz, ky, k) < 12k +1x2 % (ky +1y2 x k,)]
Here, ky, =0,--- My - 1; ky, =0,---,M, —1; k, =0,---,M, — 1. When isw=2 is set to obtain the

three-dimensional real Fourier transform P(j, jy, j.) of the discrete convolution p(k,, ky, k), which is
defined as follows (|z| represents the maximum integer that does not exceed x):

My—1My—1M,—1

. _27r “q(lzka 4 Juby | jzke
P(]wa]y»]z) M M M Z Z Z kw7ky7k \/7(My My M)
? ky=0 ky=0 k,=0

(]I:()a 7|_1\ng7 y:07 7|_%J7]Z:Oav|_]\gzj)
the following associations are made:
R{P(z,Jy,32)} < 12[2%jx + 1x2* (jy + 1y2 % j,)]
Pz Jyr d=)} © 12[2%jx + 1+ 1x2% (jy + 1y2 % j,)]

In this case, note that the Fourier transform that is obtained is normalized. The remaining half period

of the Fourier transform can be obtained from the symmetry of the real Fourier transform as follows:
P<Mw_jwaMy_jyaMz_jz)* :P(jmajyvjz)
P(Mac*jzvjyvjz)* :P(jz,Myij,szjz)
P(Mac*jzaMyijvjz)* :P(jzajvazsz)

(Here, z* represents the conjugate complex number of the complex number z.)

If mx > nx1+nx2—1 and my > nyl +ny2 — 1 and mz > nzl + nz2 — 1 are set, the convolution can be
calculated without causing an overlap with the convolution of the next period. When mx > nx1+4+nx2—1

or my > nyl +ny2 — 1 or mz > nzl 4+ nz2 — 1, the following correspondences are made:
plka, ky k) < 120k +1x2 % (ky +1y2 % k)]

and values that match 0.0 within the error range are stored in elements corresponding to k,
nxl+nx2-1,--- mx-1; k, =0,--- my—-1; k, =0,--- mz—1or k, =0,---,mx—-1;, k, =
nyl+ny2 -1,---,my—-1; k, =0,---, mz—1lork, =0,---,mx—1; ky, =0,---,my -1, k, =
nzl +nz2—1, .-, mz—1. When isw=0, mx = nx1+nx2—1, my = nyl+ny2—1, and mz = nzl+nz2—1
should be set. When isw > 1, the calculations can be performed more efficiently by setting a value
for mx, my or mz for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3,
5, etc., which are the mixed radix values of FFT). For example, if nx1=nx2=145, then when isw=0,
mx = 289(=172) should be set. However, when isw > 1, it is usually more efficient to set mx =
300(=22 x 3 x 52), mx = 320(=2° x 5), mx = 384(=2" x 3) or the like.

199

ASL_dfen3d, ASL_rfcn3d
Three-Dimensional Convolutions

(d)

()

(2)

Usually, the calculations can be performed more efficiently by setting isw=1 to calculate
the FFT convolution. However, to conserve work area or if there is a restriction on the method of

selecting the parameter mx, my or mz, the calculations should be performed by setting isw=0.

To calculate the convolution of discrete functions for which the starting position of the nonzero portions
are separated from the origin, first perform the calculations by shifting the functions so that the starting
positions are at the origin, and then shift the calculation results again to obtain the final results more
efficiently. For example, when the nonzero portions of the discrete functions f(is, iy,) and g(jz, jy, jz)
are the intervals [ig, io + n$ — 1] and [jo, jo + n'® — 1] for i, and j,, respectively, let f(zz, iy, i) and
§(Jz, Jy, J=) be defined as follows:

f(iwaiyviZ) = f(lw - iO’iyviZ)» g(]ma]y»h) = g(]m _jO»jyajz)
and apply this function to f(zx, ty,1z) and §(Jz, Jy, jz). Let p(kg, ky, k) represent the result that was
obtained, and the convolution p(k,, ky, k.) of the original functions f(iz,%y,7.) and g(jz, jy, j-) is given

as follows:
p(kwv ky» kz) = ﬁ(kw + (iO + jO)a kya kz)

That is, the desired results are obtained if you shift f(i,,%y,¢,) and ¢(jz, jy, j-) in the negative directions
of i, and j, by ig and jo, respectively, before calculating the discrete convolution, and then shift the
calculated value of the convolution after applying this function by ig + jo in the positive direction of
k.

This procedure is available for iy, j,, and k, and i., j., and &, as well.

The sampling interval cubed multiplied by the discrete convolution calculated by this function is the
square approximation (or approximation by using the trapezoidal formula) of the continuous convolu-
tion integral of a bandwidth-limited function. Therefore, to raise the approximation precision, you must
take a smaller sampling interval and a larger number of sample data. To associate these results with a

continuous convolution, it is easiest to let p(ngf) +nggg) —1,ky, k) =0, p(ky, nz(,f) +nz(,g) —1,k,) =0, and

p(ka, ky,nif)—i—nig) —1) = 0 and consider (néf)+n§;’))(n§f>+n§9>)(n£f)+nig)) data of p(ky, ky, kz) (ky =
0,1, -0t + 08 =15 ky =0,1,- .07 40 —1; k. =0,1,---) + 0¥ — 1), In this case, the

coordinate (0, 0, 0) element usually is associated with p(0,0,0), and

e when isw=0,
then 1x1 = nx1,1lyl = nyl,1z1 = nzl, Ix2 = mx, ly2 = my, 122 = mz, and
nwk = (nx2 + 1) x (ny2 + 1) x nz2 (when nx2 is even and ny2 is even) or
nwk = nx2 x (ny2 + 1) x nz2 (when nx2 is odd and ny2 is even) or
nwk = (nx2 + 1) X ny2 x nz2 (when nx2 is even and ny?2 is odd) or
nwk = nx2 x ny2 X nz2 (when nx2 is odd and ny2 is odd)
e when isw > 1
Ix1=Ix2=mx+1 (when mx is odd) or
Ix1=Ix2=mx+2 (when mx is even),

lyl=ly2=my, lz1=1z2=mz, and nwk = mx + 2 x (my + mz) + Ix1 X my x mz.

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

200

ASL_dfen3d, ASL_rfen3d
Three-Dimensional Convolutions

(7) Example

()

Problem

Use the sampling interval A to discretize the two finite waveforms defined by the following equations

and calculate the discrete convolution.

_) or ((@y,2) € [0,25] < [0,y5] < [0, 2¢])
f@y,2) = { 0 (Otherwise)

Ty — T z,y,z) € |0,24] X [0,y,] X [0, 2
ooy,) = { .- (2,9, 2) [<Otﬁlm£se) o] % [0, 2])
Input data
Sampling data
rlfix + Ix1 = (iy + Iyl *1,)] = {(ixA, iy A, L,A) (ix = 0,1,---,nx1 — 1; i, = 0,1,--
0,1,---,nzl — 1) and
2jx + 1x2 * (jy + ly2 * j,)] = g(ixA,jyA,jzA) (x = 0,1,---,nx2 — 1; j, = 0,1,---

0,1,---,nz2 —1).
Here, A = 0.5.
nxl, nyl, nzl, nx2, ny2, nz2, mx, my, mz and isw.

Main program

/* C interface example for ASL_dfcn3d */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()
{

int nx1;

int nyil;

int nzl;

int nx2;

int ny2;

int nz2;
double *ri;
int m0=8;

int 1x1;

int 1lyi1;

int 1z1;
double *r2;
int 1x2;

int 1ly2;

int 1z2;

int mx;

int my;

int mz;

int isw;

int *iwk;

int niwk=60;
double *wk;
int nwk;

int ierr;

int i,j,k;
double t;
double dt=0.5;
double xf=2.0,yf=2.0,zf=2.0;
double xg=2.0,yg=2.0,2g=2.0;

***x ASL_dfcn3d ***\n");
** Input **\n\n");

printf("
printf("\n

isw=1;

<,nyl —1; i, =

,ny2 —1; j, =

nx1=(int)
nyl=(int)
nzl=(int)
nx2=(int)
ny2=(int)
nz2=(int)

xf/dt;
yf/dt;
zf/dt;
xg/dt;
yg/dt;
zg/dt;

mx=my=mz=mO0 ;
1x1=1x2=(m0+2) /2%2;
lyl=1y2=my;

1z1=1z2=mz;
nwk=mx+2* (my+mz) +1x2*my*mz ;

201

ASL_dfen3d, ASL_rfcn3d
Three-Dimensional Convolutions

rl = (double *)malloc((size_t)(sizeof (double) * (lx1*lyl*lzl)));
if(r1 == NULL)

printf("no enough memory for array ri\n");
return -1;

r2 = (double *)malloc((size_t)(sizeof(double) * (1x2x1ly2*1z2)));
if (r2 == NULL)

printf("no enough memory for array r2\n");
return -1;

}
wk = (double *)malloc((size_t)(sizeof (double) * nwk));
if(wk == NULL)

printf("no enough memory for array wk\n");
return -1;

iwk = (int *)malloc((size_t) (sizeof(int) * niwk));
if (iwk == NULL)

printf("no enough memory for array iwk\n");
return -1;

printf("\t isw = %6d\n\t (nx1, nyl, nzl) = (%3d,%3d,%3d)\n",
isw, nxl1, nyl, nzl);

printf("\t (nx2, ny2, nz2)
nx2, ny2, nz2);

printf("\t (mx , my , mz)
mx, my, mz);

(%3d,%3d,%3d)\n",

(%3d,%3d,%3d) \n\n",

for(k=0 ; k<nzl ; k++)
for(j=0 ; j<nyl ; j++)
for(i=0 ; i<nxl ; i++)

t=ix*dt;
ri[i+lx1*(j+lylxk)]=t;

}
for(k=0 ; k<nz2 ; k++)
for(j=0 ; j<ny2 ; j++)
for(i=0 ; i<nx2 ; i++)

t=ix*dt;
r2[i+1x2* (j+ly2%k)]=xg-t;
}
{or(k=0 ; k<nzl ; k++)

printf("\tData ri[i+%43d*(j+%3d*}3d)I\n", 1x1, 1lyl, k);
printf("\ti/j 0 1 2 3\n");
printf("\t \n");
for(i=0 ; i<nx1 ; i++)

printf("\t%3d", i);
for(j=0 ; j<nyl ; j++)

printf("%8.3g", ril[i+lx1x(j+lylxk)]);
printf("\n");

}
printf("\n");
}
{or(k=0 ; k<nz2 ; k++)

printf("\tData r2[i+%3d*(j+%3d*}3d)I\n", 1x2, 1ly2, k);
printf("\ti/j 0 1 2 3\n");
printf("\t \n");
for(i=0 ; i<nx2 ; i++)

printf("\t%3d", i);
for(j=0 ; j<ny2 ; j++)

printf("%8.3g", r2[i+lx2*(j+ly2*k)]);
printf("\n");

}
printf("\n");
}

ierr = ASL_dfcn3d(nx1, nyl, nzl, nx2, ny2, nz2,
rl, 1x1, 1ly1, 1zi, r2, 1x2, ly2, 1z2,
mx, my, mz, isw, iwk, wk);

printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);

for(k=0 ; k<mz ; k++)

printf("\tConvolution r2[i+%3d*(j+%3d*%3d)]1\n", 1x2, 1y2, k);
printf("\ti/j 0 1 2 3 4")
printf(" 5 6 7\n");

202

ASL_dfen3d, ASL_rfen3d
Three-Dimensional Convolutions

}

free
free
free
free

retu

}
(d) Output

printf("\t

\n"

printf("

for(i=0 ; i<mx ; i++)

printf("\t%2d", i);

for(j=0 ; j<my ; j++)
printf("%7.21f", r2[i+lx2*(j+ly2%k)]);

printf("\n");

}

printf("\n")
(iwk);

(wk);
(r2);
(r1);

rn O;

results

H

%*k ASL_dfcn3d *

*%
isw
(nx

(nx
(mx

Input *x*

1
1, nyl, nzl)
2, ny2, nz2)
, my , mz)

Data ri[i+ 10*(j+

i/j

8%

=IO | O

0.
1.

Data ri[i+ 10*(j+

0.
1.

N—OO | =

8%

o
RO |l w

G fe N e]

0.
1.

Data ri[i+ 10*(j+

0.
1.

RO |~

8%

o
RO |l w

G Feol N e]

0.
1.

Data ri[i+ 10*(j+

0.
1.

RO |~

8%

o
RO |l w

0
1

=IO | ©

0.
1.

Data r2[i+ 10*(j+

N=OO | =

8%

o
Lo | w

N=OIN | O

1.
0.

Data r2[i+ 10*(j+

1.
0.

R OIN | -

8%

e
RN T w

RO | O

1.
0.

Data r2[i+ 10*(j+

1.
0.

AR OIN | -

8%

e
RO W

RO | O

1.
0.

Data r2[i+ 10*(j+

1.
0.

AR OIN |-

8%

RN N

ey
AR, I w

0
2
1.5

aN e

[S20 SN)

o w

203

___u);

ASL_dfen3d, ASL_rfcn3d
Three-Dimensional Convolutions

** Qutput **

ierr =

0
Convolution r2[i+

10%(j+ 8% 0)]
i/j 0 1 2 3 4 5 6
0 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00
1 1.00 2.00 3.00 4.00 3.00 2.00 1.00
2 2.75 5.50 8.25 11.00 8.25 5.50 2.75
3 5.00 10.00 15.00 20.00 15.00 10.00 5.00
4 3.50 7.00 10.50 14.00 10.50 7.00 3.50
5 2.00 4.00 6.00 8.00 6.00 4.00 2.00
6 0.75 1.50 2.25 3.00 2.25 1.50 0.75 -
7 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00
Convolution r2[i+ 10x(j+ 8x 1)]
i/j o0 1 2 3 4 5 6
0 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -0.
1 2.00 4.00 6.00 8.00 6.00 4.00 2.00 -O0.
2 5.50 11.00 16.50 22.00 16.50 11.00 5.50 -0.
3 10.00 20.00 30.00 40.00 30.00 20.00 10.00 -0.
4 7.00 14.00 21.00 28.00 21.00 14.00 7.00 -0.
5 4.00 8.00 12.00 16.00 12.00 8.00 4.00 -0.
6 1.50 3.00 4.50 6.00 4.50 3.00 1.50 -0.
7 0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.
Convolution r2[i+ 10*%(j+ 8* 2)]
i/j o0 1 2 3 4 5 6
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.
1 3.00 6.00 9.00 12.00 9.00 6.00 3.00 -0.
2 8.25 16.50 24.75 33.00 24.75 16.50 8.25 -0.
3 15.00 30.00 45.00 60.00 45.00 30.00 15.00 -0.
4 10.50 21.00 31.50 42.00 31.50 21.00 10.50 -0.
5 6.00 12.00 18.00 24.00 18.00 12.00 6.00 -O0.
6 2.25 4.50 6.75 9.00 6.75 4.50 2.25 -0.
7 0.00 -0.00 0.00 -0.00 0.00 0.00 -0.00 -0.
Convolution r2[i+ 10*%(j+ 8% 3)]
i/j o0 1 2 3 4 5 6
0 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0
1 4.00 8.00 12.00 16.00 12.00 8.00 4.00 0
2 11.00 22.00 33.00 44.00 33.00 22.00 11.00 -O.
3 20.00 40.00 60.00 80.00 60.00 40.00 20.00 -0.
4 14.00 28.00 42.00 56.00 42.00 28.00 14.00 -0.
5 8.00 16.00 24.00 32.00 24.00 16.00 8.00 -O0.
6 3.00 6.00 9.00 12.00 9.00 6.00 3.00 -O0.
7 -0.00 -0.00 0.00 -0.00 -0.00 0.00 -0.00 0
Convolution r2[i+ 10*%(j+ 8% 4)]
i/j 0 1 2 3 4 5 6
0 0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 -0.
1 3.00 6.00 9.00 12.00 9.00 6.00 3.00 -0.
2 8.25 16.50 24.75 33.00 24.75 16.50 8.25 -0.
3 15.00 30.00 45.00 60.00 45.00 30.00 15.00 -O.
4 10.50 21.00 31.50 42.00 31.50 21.00 10.50
5 6.00 12.00 18.00 24.00 18.00 12.00 6.00
6 2.25 4.50 6.75 9.00 6.75 4.50 2.25 -0.
7 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 -O.
Convolution r2[i+ 10*x(j+ 8% 5)]
i/j 0 1 2 3 4 5 6
0 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0
1 2.00 4.00 6.00 8.00 6.00 4.00 2.00 0
2 5.50 11.00 16.50 22.00 16.50 11.00 5.50 -0.
3 10.00 20.00 30.00 40.00 30.00 20.00 10.00 -O.
4 7.00 14.00 21.00 28.00 21.00 14.00 7.00 -0.
5 4.00 8.00 12.00 16.00 12.00 8.00 4.00 -0.
6 1.50 3.00 4.50 6.00 4.50 3.00 1.50 -0.
7 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 0
Convolution r2[i+ 10*x(j+ 8% 6)]
i/j 0 1 2 3 4 5 6
0 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.
1 1.00 2.00 3.00 4.00 3.00 2.00 1.00 -0.
2 2.75 5.50 8.25 11.00 8.25 5.50 2.75 -0.
3 5.00 10.00 15.00 20.00 15.00 10.00 5.00 -O0.
4 3.50 7.00 10.50 14.00 10.50 7.00 3.50 -0.
5 2.00 4.00 6.00 8.00 6.00 4.00 2.00 -0.
6 0.75 1.50 2.25 3.00 2.25 1.50 0.75 -0.
7 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -O.
Convolution r2[i+ 10x(j+ 8x 7)]
i/j 0 1 2 3 4 5 6

204

[elelolololelele]

ASL_dfen3d, ASL_rfen3d
Three-Dimensional Convolutions

205

2.15 CORRELATIONS

2.15.1 ASL_dfcrld, ASL_rfcrld

One-Dimensional Correlations

(1) Function
Given the two discrete functions f(i) and g(j) of period m satisfying:

f@)=fli+km),g(i)=gli+km) (i=0,---,m—1)
for an arbitrary integer k, where:

ASL_dferld or ASL rferld calculates the quantity (k) (kK =0,---,m — 1) obtained by shifting the discrete
correlation g(k) (k=0,---,m — 1), which is defined as follows:

i

m—

q(k) = > f(i)g(k+1i) (k=0,---,m—1)

=0

by ny — 1 in the positive direction. ¢(k) is defined as follows:
q(k) = q(k = (n1 = 1)) (k=0,---,m—1)

Here, m = min(ny +no — 1, M) and M is an arbitrary integer satisfying M > max(n1, ng). The real Fourier

transform of the discrete correlation ¢(k) can also be obtained.

(2) Usage
Double precision:
ierr = ASL_dferld (nl, n2, rl, 1d1, r2, 1d2, m, isw, iwk, wk);
Single precision:
ierr = ASL_rferld (nl, n2, rl, 1d1, r2, 1d2, m, isw, iwk, wk);

206

ASL_dferld, ASL_rferld
One-Dimensional Correlations

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output

1 nl I 1 Input Number of effective data n; for discrete func-
tion f(7)

2 n2 I 1 Input | Number of effective data no for discrete func-
tion g(j)

3 rl D« 1d1 Input | Values of discrete function f(i) (See Notes

el
Output | When isw > 1, result of real Fourier trans-
form of discrete function f(i) (period M)
1d1 I 1 Input | Size of array rl
5 r2 D+ 1d2 Input | Values of discrete function ¢(j) (See Notes
{R*} () and (b))
Output | Value of discrete function ¢(k) or its real
Fourier transform (See Notes (a) and (c))
1d2 I 1 Input | Size of array r2
m I 1 Input | Parameter M corresponding to the period m
of discrete functions f(3), g(j), and G(k) (See
Note (d))

8 isw I 1 Input | Processing switch (See Notes (a) and (e))
isw= 0: Calculate the correlation according
to the definition.
isw= 1: Calculate the correlation according
to the FFT method.
isw= 2: Calculate the real Fourier transform
of the correlation.
isw= 3: Calculate the correlation according
to the sectioning FFT method.

9 iwk I* See Work | Work area

Contents Size:
0 (When isw= 0)
20 (When isw > 1)

207

ASL_dferld, ASL_rferld
One-Dimensional Correlations

A t and I t
No. FEtment ai Type Size nput/ Contents
Return Value Output
10 wk Dx See Work | Work area
R+ Contents Size:
n2 (When isw= 0)
2xm+ 1 (When isw= 1 or 2 and m is odd)
2 xm+ 2 (When isw= 1 or 2 and m is even)
2 x m+nl (When isw= 3 and m is odd)
2xm+nl+1 (When isw= 3 and m is even)
11 ierr I 1 Output | Error indicator (Return Value)
(4) Restrictions
(a) isw € {0,1,2,3}
(b) n1 >1
(¢) n2>1
(d) m > max(nl,n2)
(e) When isw =0 :
1d1 > nl
When isw > 0 and m is odd:
dl>m+1
When isw > 0 and m is even:
ldl >m+2
(f) When isw =0
1d2 > m
When isw > 0 and m is odd:
d2>m+1
When isw > 0 and m is even:
d2>m+2
(5) Error indicator (Return Value)
ierr value Meaning Processing
0 Normal termination.
1000 m<nl+n2—1. Overlapping occurred during the convolu-
tion calculation.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

~|]|

3030 Restriction (d) was not satisfied.

3040 Restriction (e) was not satisfied.

3050 Restriction (f) was not satisfied.
(6) Notes

(a) If the number of effective data for one of the functions for which the correlation is to be calculated is

extremely large compared to the number of effective data for the other, then sectioning should be used

208

ASL_dferld, ASL_rferld
One-Dimensional Correlations

to divide the larger number of data into equal parts (by adding zeros at the end if necessary) and this
function should be applied repeatedly to calculate the discrete correlation efficiently. In addition, the
required amount of memory will be smaller.

For example, to calculate the discrete correlation of the two series {u1,ug, -+, ug} (number of effective
data k) and {v1,---,vpe} (number of effective data pg (pg > k)), first set isw=1, nl=k, n2=¢, m >
nl +n2—1, rl1={uy, ug,---,us}, and r2={v1, ve, - - -, vy} and apply this function. As a result, the first
q values of the correlation to be calculated are obtained as the first ¢ elements at the beginning of
array r2.

Next, change isw and r2 to isw=3 and r2={vg11, -+, v2¢} and apply this function with the contents of
the other arguments unchanged. As a result, the next ¢ values of the correlation to be calculated are
obtained as the first g elements at the beginning of array r2. Then, continue to perform the calculations
in a similar manner while sequentially shifting the values set in r2. The correlation calculated for the
last repetition, that is, the correlation calculated when r2={v(,_1)g11, -, Vpe} is set, gives the last
2¢ — 1 elements of the correlation to be calculated. (However, when the series {v;} is not a finite

waveform, the last ¢ — 1 elements are indeterminate).

The values of the discrete functions f(i) and g(j) are stored in arrays rl and r2, respectively, as follows.
However, when isw = 3 is set, values are only stored in r2, and the contents of r1 are used directly (See
Note (a)).

f(0)
f()

d

r1[0]
rl[1]

1

fni=1) — rlnl-—1]

J

r2[0]
r2[1]

9(0)
g(1)

i

glng—1) — 1r2n2—1]

No values need be entered in elements r1[nl] and after of array rl and in elements r2[n2] and after of
array r2. Also, in particular, when isw = 3 is set, the elements in r2[n2] and after must not be changed

because they are used in the calculation.

The values of the discrete correlation G(k) are obtained in array r2 as follows.

q(0) = 12[0]
q(1) — 12[1]

GgM—-1) — r2[m-—1]
When m is odd, r2[m] is 0.0, and when m is even, r2[m] and r2[m+1] are each 0.0. Also, when sectioning
is performed, the first n2 data usually are meaningful as correlation data (See Note (a)).
When isw=2 is set to obtain the real Fourier transform Q(j) of the discrete correlation ¢(k), which is

defined as follows (|z| represents the maximum integer that does not exceed x):

M—1 N
QU= 37 X BT (=0, [5))
k=0

209

ASL_dferld, ASL_rferld
One-Dimensional Correlations

the following associations are made:

RQO)} o 20
Q) & 2
RQL)Y o 202
QW) o 20

o)} < r2l-2]
S{QUEDH} « r21-1] (I1=m+1[m: Odd] or m+2[m: Even])
In this case, note that the Fourier transform that is obtained is normalized. The remaining half period

of the Fourier transform can be obtained from the symmetry of the real Fourier transform as follows:
QM —j) =Q3)"

(Here, z* represents the conjugate complex number of the complex number z.) Now, @Q(j) can be

thought of as the estimate of the cross spectrum of the original two functions for which the correlation

is to be calculated. In this case, M should be thought of as M = nj + nq. In particular, if the original

two functions for which the correlation is to be calculated are the same function, Q(j) corresponds to

the raw Fourier periodogram (estimate of the power spectrum), and Q(j) is a real number.

If m > nl +n2 — 1 is set, the correlation can be calculated without causing an overlap with the
correlation of the next period. When m > nl+n2— 1, values that match 0.0 within the error range are
stored in element nl + n2 and following. When isw=0, m = nl 4+ n2 — 1 should be set. When isw > 1,
the calculations can be performed more efficiently by setting a value for m for which the mixed radix
FFT algorithm operates effectively (multiples of 2, 3, 5, etc., which are the mixed radix values of FFT).
For example, if n1=n2=145, then when isw=0, m = 289(=172) should be set. However, when isw > 1,
it is usually more efficient to set m = 300(=22 x 3 x 52), m = 320(=2° x 5), m = 384(=2" x 3) or the
like.

Usually, the calculations can be performed more efficiently by setting isw=1 to calculate
the FFT correlation. However, to conserve work area or if there is a restriction on the method of

selecting the parameter m, the calculations should be performed by setting isw=0.

To calculate the correlation of discrete functions for which the starting position of the nonzero portions
are separated from the origin, first perform the calculations by shifting the functions so that the starting
positions are at the origin, and then shift the calculation results again to obtain the final results more
efficiently. For example, when the nonzero portions of the discrete functions f(i) and g¢(j) are the

intervals [ig, 10 + n1 — 1] and [jo, jo + na — 1], respectively, let f(z) and G(j) be defined as follows:

F(i) = f(i—io), 4() = 9(j — o)
and apply this function to f (1) and g(j). Let ¢(k) represent the result that was obtained, and the

correlation (k) of the original functions f(i) and g(j) is given as follows:
q(k) = q(k — (jo — i0) + (n1 — 1))

Therefore, even when ig = jo = 0, to consider the correlation ¢(k) that conforms to the normal
definition, you must consider shifting the result by n; — 1 in the negative direction after applying
this function, or if you shift f(i) and g(j) in the negative direction by i¢ and jo, respectively, before
calculating the discrete correlation, you must then shift the calculation result again by jo — i in the

positive direction.

210

ASL_dferld, ASL_rferld
One-Dimensional Correlations

(g) The sampling interval multiplied by the discrete correlation calculated by this function is the square
approximation (or approximation by using the trapezoidal formula) of the continuous correlation in-
tegral of a bandwidth-limited function. Therefore, to raise the approximation precision, you must
take a smaller sampling interval and a larger number of sample data. To associate these results
with a continuous correlation, it is easiest to let ¢(—ni) = ¢(—1) = 0 and consider ny + ng data of
q(k) (k= —-nq1,---,—1,0,1,--- ,ng — 1). Of course, this is the same as letting g(n1 + na2) = §(n2) =0
and considering ¢(k) (k = —(n1—1),---,—1,0,1,---,n3). In this case, the coordinate 0 element usually

is associated with ¢(0) and

e when isw=0, ld1=nl, 1d2=m and nwk=n2

e when isw=1 or 2,
ld1=1d2=m+1 and nwk = 2 x m + 1 (when m is odd), or
ld1=1d2=m+2 and nwk = 2 x m + 2 (when m is even).

e when isw=3,
ld1=ld2=m+1 and nwk = 2 x m + nl (when m is odd), or
ld1=1d2=m+2 and nwk = 2 x m + nl 4+ 1 (when m is even).

(h) This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(7) Example

(a) Problem
Use the sampling interval Az to discretize the two finite waveforms defined by the following equations
and calculate the discrete correlation.

r 0<zx<a
f@) = { 0 Otherwise

b—x 0<z<b
g(z) = .
0 Otherwise

Remarks:

The continuous correlation ¢(z) of f(x) and g(x) is as follows:

G(-z,a,x) —a<z<0
Y) G(0,a,x) 0<zx<b—a
o) = [f@rga= conn ==
0 Otherwise
Here, G(a, §,) is as follows:
52 B
Glag.0) = |§00-0)-2)]
£ e
- Seo-0-20| - Se0-09-2
525 =«

When a = 2 and b = 3 are set, the values f(iAz), g(iAzx) and ¢(iAx) obtained by sampling f(z), g(x)
and ¢(x) with Az = 0.1 are graphed as follows. The values ¢(i)Axz which are the discrete correlation
calculated by this function multiplied by Az are also shown for reference. They match the continuous
correlation pretty well for a small number of samples. The program also calculates the continuous
correlation for reference.

211

ASL_dferld, ASL_rferld
One-Dimensional Correlations

(b)

f(iAx)

3.0 1 3.0 %o,
....
o..
20 [~ & 2.0 [~ .o.
.. ..
... ...
() [)
1.0 [~ J:’ 1.0 [ﬂ=5
® (Y
....
0.0 gg————L————innuui--J--J+- y 0.0 | | q%--ﬂ--J+
10 20 30 40 50 v 0. 10 20 30 40 50
Figure 2—8
q(iAzx) q(i)Azx
.A._ALO .A 4.0
[) [] “
(] * ° [
®
S 30 e ® 3.0 [e
o °
° ° °
° L4 °
* 90 % * 20 %
° ¢ ° “
[] []
° .0 ° .'
1.0 [~ % 1.0 [~ %
° ® ° (}
| | | ‘.\4, ; | | | \.g,
20 -10 0 10 20 30 =20 -10 O 10 20 30
Figure 2—9

Input data
Sampling data

rlfi— 1] = f((i— 1)Ax) (i=1,2,---,nl) and

r2j —1]=g((- 1Ax) (j=1,2,---,n2).
Here, Ax = 0.1.

b
&, n2 =AL m and isw.
Main program

nl =

/* C interface example for ASL_dfcrid */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

#ifdef __STDC__

double f(double tau, double t, double b)
#else

double f(tau, t, b)

double tau, t, b;

?endif

return tauxtaux(0.5*(b-t)-tau/3.0);

212

ASL_dferld, ASL_rferld
One-Dimensional Correlations

int main()
{

int ni;

int n2;
double *ri;
int m0=100;
int 1d1=m0+2;
double *r2;
int 1d2=m0+2;
int niwk=20;
int m;

int isw;

int *iwk;
double *wk;
int ierr;

int i;

double *cr,t,dt;
double a,b;

printf(" *#x* ASL_dfcrild ***\n");
printf("\n ** Input **\n\n");

rl = (double *)malloc((size_t) (sizeof (double)
if (r1 == NULL

printf("no enough memory for array ri\n");
return -1;

}
r2 = (double *)malloc((size_t)(sizeof (double)
if(r2 == NULL)

printf("no enough memory for array r2\n");
return -1;

wk = (double *)malloc((size_t) (sizeof (double)
if (wk == NULL)

printf("no enough memory for array wk\n");
return -1;

}
cr = (double *)malloc((size_t)(sizeof (double)
if (cr == NULL)

printf("no enough memory for array cr\n");
return -1;

*

*

*

*

iwk = (int *)malloc((size_t) (sizeof(int) * niwk

if (iwk == NULL)

printf("no enough memory for array iwk\n");
return -1;

isw=1;

dt=0.1;

a=2.0;

b=3.0;

ni=(int) ((a+0.5*dt)/dt);
n2=(int) ((b+0.5%dt)/dt);
m=50;

printf("\t isw = %6d\n\t nil = %6d\n\t n2 = %6d\n\t m = %6d\n\n",

isw, nl, n2, m);
for(i=0 ; i<nl ; i++)

t=ix*dt;
ri[il=t;

for(i=0 ; i<n2 ; i++)

t=ix*dt;
r2[i]=b-t;

printf("\tData(ri,r2)\n");

printf("\t i ri[il] r2[il\n");
/* ASSUME n2>nl */

for(i=0 ; i<nl ; i++)

141));

1d2));

(2*m0+2)));

1d2));

));

printf("\t%3d %8.3g %8.3g\n", i, ri[i], r2[i]);

for(i=n1 ; i<n2 ; i++)

printf("\t%3d %8.3g\n", i, r2[i]);

ierr = ASL_dfcrid(nl, n2, r1, 141, r2, 142, m, isw, iwk, wk);

printf("\n *x Output **\n\n");
printf("\tierr = %6d\n", ierr);

213

ASL_dferld, ASL_rferld
One-Dimensional Correlations

for(i=0 ; i<nl ; i++)

t=(i-n1+1)*dt;
cr[i]l=f(a,t,b)-f(-t,t,b);

for(i=n1 ; i<n2 ; i++)

t=(i-n1+1)*dt;
cr[il=f(a,t,b);

for(i=n2 ; i<nl+n2 ; i++)

t=(i-n1+1)*dt;
cr[i]l=f (b-t,t,b);

printf("\tCorrelation\n");
printf("\ti-ni+1 r2[i] r2[il*dt cr[il\n");
for(i=0 ; i<ni+n2 ; i++)

printf("\t%3d %9.41f %9.41f %9.41f\n",
) i-ni+1, r2[i], r2[il*dt, crlil);
free(iwk);
free(cr);
free(wk);
free(r2);
free(rl);

return O;

}
(d) Output results

***x ASL_dfcrld ***

*k Input *k

isw = 1
nl = 20
n2 = 30
m = 50

Data(ril,r2)
i r1[i] r2[i]
0 3

0
1 0.1 2.9
2 0.2 2.8
3 0.3 2.7
4 0.4 2.6
5 0.5 2.5
6 0.6 2.4
7 0.7 2.3
8 0.8 2.2
9 0.9 2.1
10 1 2
11 1.1 1.9
12 1.2 1.8
13 1.3 1.7
14 1.4 1.6
15 1.5 1.5
16 1.6 1.4
17 1.7 1.3
18 1.8 1.2
19 1.9 1.1
20 1
21 0.9
22 0.8
23 0.7
24 0.6
25 0.5
26 0.4
27 0.3
28 0.2
29 0.1

** Qutput *x*

ierr = 0

Correlation

i-n1+1 r2[i] r2[ilx*dt crli]
-19 5.7000 0.5700 0.5752
-18 10.9100 1.0910 1.1013
-17 15.6400 1.5640 1.5795
-16 19.9000 1.9900 2.0107
-15 23.7000 2.3700 2.3958
-14 27.0500 2.7050 2.7360
-13 29.9600 2.9960 3.0322
-12 32.4400 3.2440 3.2853
-11 34.5000 3.4500 3.4965
-10 36.1500 3.6150 3.6667
-9 37.4000 3.7400 3.7968
-8 38.2600 3.8260 3.8880

214

ASL_dferld, ASL_rferld
One-Dimensional Correlations

QOOOOOOOORFENNWHKUIO WO

.7400
.8500
.6000
.0000
.0600
.7900
.2000
.3000
.4000
.5000
.6000
.7000
.8000
.9000
.0000
.1000
.2000
.3000
.4000
.6900
.1600
.8000
.6000
.5500
.6400
.8600
.2000
.6500
.2000
.8400
.5600
.3500
.2000
.1000
.0400
.0100
.0000
.0000

QOO0 O0OO0OO0OO0OO0OO0OOCOO0OOOCOOORRERFEFEFENNNNNWWWWWWWWW

.8740
.8850
.8600
.8000
.7060
.5790
.4200
.2300
.0400
.8500
.6600
.4700
.2800
.0900
.9000
.7100
.5200
.3300
.1400
.9690
.8160
.6800
.5600
.4550
.3640
.2860
.2200
.1650
.1200
.0840
.0560
.0350
.0200
.0100
.0040
.0010
.0000
.0000

QOO0 O0OO0OO0OO0OO0O0OO0OOCOO0OOOCOOORRERFEFEFENNNNNWWWWWWWWW

.9412
.9573
.9375
.8827
.7938
.6720
.5182
.3333
.1333
.9333
.7333
.56333
.3333
.1333
.9333
.7333
.56333
.3333
.1432
.9720
.8188
.6827
.5625
.4573
.3662
.2880
.2218
.1667
.1215
.0853
.0572
.0360
.0208
.0107
.0045
.0013
.0002
.0000

215

ASL_dfer2d, ASL_rfer2d

Two-Dimensional Correlations

2.15.2 ASL_dfcr2d, ASL_rfcr2d

(1)

(3)

Two-Dimensional Correlations

Function
Assume that the two multiperiodic discrete functions f(ig,iy) and g(jz, jy) of period (mg,m,) satisfying:

flizyiy) = f(iz + Lama, iy + Lymy),
9(zsJy) = 9(Jz + Lama, jy + Lymy),
(imajm =0,--,mz — 1; Z'yajy :Oa"'vmy _1>

for arbitrary integers L, and L, take nonzero values within their basic periods only for (is,4,) € [0, ngf) _
1] %o, nz(,f) —1] and (jz, jy) € [0, n{ — 1] % [0, nz(,g) —1]. Here, [0,a] x [0, b] is the direct product region (region
contained in the square for which the point (0, 0) and the point (a,b) are diagonal points) on the plane
in which the plane coordinates (i,7) lie. At this time, ASL_dfcr2d or ASL_rfcr2d calculates the quantity
G(kz, ky) obtained by shifting the discrete correlation g(ks, k), which is defined as follows:

mg—1my—1

Q(kkay) = Z Z f(izviy)g(karixakeriy)

ip=0 iy=0

(ke =0, ,mg —1; ky =0,---,my — 1)
by (néf) -1, ngf) — 1) in the positive direction for (kg, k), respectively. G(ks, ky) is defined as follows:

Qkssky) = qlks — (n” = 1)k, — (n) — 1))
(kx :O7~..7mzf].; ky:07...7my71)

Here, m, = min(ngf) +nl — 1,M;) and m, = min(nz(,f) + nz(,g) —1,M,) and M, and M, are arbitrary

integers satisfying M, > max(ng), ni‘q)) and My > max(néf), ny(f])), respectively. The two-dimensional real

Fourier transform of g(k,, k) can also be obtained.

Usage
Double precision:

ierr = ASL_dfer2d (nx1, nyl, nx2, ny2, rl, Ix1, ly1, r2, 1x2, ly2, mx, my, isw, iwk, wk);
Single precision:

ierr = ASL._rfer2d (nx1, nyl, nx2, ny2, rl, Ix1, lyl, r2, Ix2, ly2, mx, my, isw, iwk, wk);

Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value Output
1 nxl1 I 1 Input Number of effective data in i, direction néf)
for discrete function f (i, iy)
2 nyl I 1 Input | Number of effective data in ¢, direction nz(,f)
for discrete function f (i, iy)

216

ASL_dfer2d, ASL_rfer2d
Two-Dimensional Correlations

No. Argument and Type Size fnput/ Contents
Return Value Output
3 nx2 I 1 Input | Number of effective data in j, direction n&”
for discrete function g(jz, jy)
4 ny2 I 1 Input | Number of effective data in j, direction nz(f)
for discrete function ¢(jz, jy)
5 rl D« Ix1xlyl Input | Values of discrete function f(i,,) (See Note
{ R*} (a))
Output | When isw > 1, result of two-dimensional
real Fourier transform of discrete function
f iz, iy) (period (M, My))
Ix1 I 1 Input | Adjustable dimension of array rl
lyl I 1 Input | Second dimension of array rl
r2 D« Ix2x1y2 Input | Values of discrete function ¢(jz, jy) (See Note
{R*} (a))
Output | Value of discrete function G(ks,k,) or the
two-dimensional real Fourier transform of
q(kz, ky) (See Note (b))
9 1x2 I 1 Input | Adjustable dimension of array r2
10 ly2 I 1 Input | Second dimension of array r2
11 mx I 1 Input | Parameter M, corresponding to the pe-
riod (mg, my) of discrete functions f(iz,%,),
9(Jz, Jy), and ¢(kz, ky) (See Note (c))
12 my I 1 Input | Parameter M, corresponding to the pe-
riod (mg, my) of discrete functions f(iz,%,),
9(Jz, Jy), and §(ks, ky) (See Note (c))
13 isw I 1 Input | Processing switch (See Note (d))
isw= 0: Calculate the correlation according
to the definition.
isw= 1: Calculate the correlation according
to the FFT method.
isw= 2: Calculate the real Fourier transform
of the correlation.
14 iwk I* See Work | Work area
Contents Size:

0 (When isw= 0)
40 (When isw > 1)

217

ASL_dfer2d, ASL_rfer2d

Two-Dimensional Correlations

No. Argument and Type Size fnput/ Contents
Return Value Output
15 wk Dx See Work | Work area
{R*} Contents Size:

nx2 X ny2 ((When isw= 0 and nx2 is odd)
(nx2 4+ 1) x ny2 (When isw= 0 and nx2 is
even)
mx+2 x my+max(lx1 x ly1,1x2 x ly2) (When
isw > 1)

16 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a)
(b)

isw € {0, 1, 2}

nxl > 1
nyl >1

nx2>1
ny2 > 1

mx > max(nxl, nx2)

my > max(nyl,ny2)

When isw =0 :
Ix1 > nx1
lyl > nyl

When isw > 0 and mx is odd:
Ix1 >mx+1
lyl > my

When isw > 0 and mx is even:
Ix1 > mx + 2
lyl > my

When isw =0 :
1x2 > mx
ly2 > my

When isw > 0 and mx is odd:
x2>mx+1
ly2 > my

When isw > 0 and mx is even:
Ix2 > mx + 2
ly2 > my

218

ASL_dfer2d, ASL_rfer2d
Two-Dimensional Correlations

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
1000 mx < nxl +nx2 —1 or Overlapping occurred during the correla-
my < nyl +ny2—1 tion calculation.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

3030 Restriction (d) was not satisfied.

3040 Restriction (e) was not satisfied.

3050 Restriction (f) was not satisfied.

(6) Notes

(a)

The values of the discrete functions f(iy,%,) and g(jz,jy) and the elements of arrays rl and r2 are
associated as follows.

flig,iy) < rllix +Ix1 *iy]

9Un,Jy) € 120 +1x2 5y]

Here, iy = 0,---,n8” — 1; iy = 0,'~,n§f) —land j, =0, --,nt —1; Jy = O,~~~,n7(j]) — 1, and no
values need be entered in other elements. The adjustable dimensions of arrays r1 and r2 should
be set so that Ix1/2, lyl, 1x2/2, and ly2 are odd numbers to avoid bank conflict of main

memory. Usually, when mx, for example, is a multiple of 4, Ix1=mx+3 is set.

The values of the discrete correlation §(kz, k) and the elements of array r2 are associated as follows.
Gk, ky) ¢ 12[ke +1x2 % ky]
Here, k; = 0,---, M, —1; ky, = 0,---, M, — 1. When isw=2 is set to obtain the two-dimensional

real Fourier transform Q(j,j,) of the discrete correlation g(k,, k,), which is defined as follows (|z]
represents the maximum integer that does not exceed x):

1 My —1My—1 JoT(ek Jyk)
.. o —2m/—1(L& : + Y
QU Jy) = M, 1, Z Z q(kz, ky)e fr+
kz=0 ky=0
.) M

the following associations are made:

R{QUz,Jy)} < 12[2%j +1x2 % jy]

SH{QUazrJy)} < 12[2%j + 14+ 1x2 % jy

In this case, note that the Fourier transform that is obtained is normalized. The remaining half period

of the Fourier transform can be obtained from the symmetry of the real Fourier transform as follows:

Q(]V[z — Jas]V[y - jy)* = Q(]’z,jy)

QM — ju, jy)” = Q(jz, My — jy)
(Here, z* represents the conjugate complex number of the complex number z.) Now, Q(jz,jy) can be
thought of as an estimate of the cross spectrum of the original two functions for which the correlation is
to be calculated. In this case, M, and M, should be thought of as M, = ngf)Jrn;(Eg) and M, = nz(,f)Jrnz(,g).
In particular, if the original two functions for which the correlation is to be calculated are the same
function, Q(jz, jy) corresponds to the raw Fourier periodogram (estimate of the power spectrum), and

Q(jz, jy) is a real number.

219

ASL_dfer2d, ASL_rfer2d
Two-Dimensional Correlations

()

If mx > nx1+nx2—1 and my > nyl+ny2—1 are set, the correlation can be calculated without causing
an overlap with the correlation of the next period. When mx > nx1 +nx2 — 1 or my > nyl 4+ ny2 — 1,

the following correspondences are made:
Gk, ky) & 12[ke +1x2 % ky]

and values that match 0.0 within the error range are stored in elements corresponding to k, =
nxl+nx2—-1,---,mx—1; k, =0,---,my—1lork, =0,---,mx—1; by =nyl +ny2—1,---,my — 1.
When isw=0, mx = nx1 + nx2 — 1 and my = nyl + ny2 — 1 should be set. When isw > 1, the calcula-
tions can be performed more efficiently by setting a value for mx or my for which the mixed radix FFT
algorithm operates effectively (multiples of 2, 3, 5, etc., which are the mixed radix values of FFT). For
example, if nx1=nx2=145, then when isw=0, mx = 289(=172) should be set. However, when isw > 1,
it is usually more efficient to set mx = 300(=22 x 3 x 52), mx = 320(=2° x 5), mx = 384(=27 x 3) or
the like.

Usually, the calculations can be performed more efficiently by setting isw=1 to calculate
the FFT correlation. However, to conserve work area or if there is a restriction on the method of

selecting the parameter mx or my, the calculations should be performed by setting isw=0.

To calculate the correlation of discrete functions for which the starting position of the nonzero portions
are separated from the origin, first perform the calculations by shifting the functions so that the starting
positions are at the origin, and then shift the calculation results again to obtain the final results more
efficiently. For example, when the nonzero portions of the discrete functions f(iy,4,) and g(jz, jy) are
the intervals [ig, 1o +ni) - 1] and [jo, jo 1l - 1] for i, and j,, respectively, let f(iz, iy) and §(Jz, Jy)

be defined as follows:

fliwsiy) = fiz —d0,0y), §(Jusdy) = 9(Jz — Jo, Jy)
and apply this function to f(zx, iy) and §(jz, jy). Let G(ksz, ky) represent the result that was obtained,

and the correlation q(k, ky) of the original functions f(iy,,) and ¢(ju, jy) is given as follows:
q(kasky) = d(ke = (o — d0) + (i) — 1), k)

Therefore, even when iy = jo = 0, to consider the correlation ¢(k,, k,) that conforms to the normal
definition, you must consider shifting the result by n(zf) —1in the negative direction of k, after applying
this function or if you shift f(is,%,) and g(jz,jy) in the negative directions of i, and j, by iy and jo,
respectively, before calculating the discrete correlation, you must then shift the calculation result again
by jo — i in the positive direction of k.

This procedure is available for iy, j,, and k, as well.

The sampling interval squared multiplied by the discrete correlation calculated by this function is the
square approximation (or approximation by using the trapezoidal formula) of the continuous correlation
integral of a bandwidth-limited function. Therefore, to raise the approximation precision, you must

take a smaller sampling interval and a larger number of sample data. To associate these results
(f) (f

with a continuous correlation, it is easiest to let ¢(—ni'’, ky) = G(—1,k,) = 0 and q(ky, —ny'’) =
G(kz, —1) = 0 and consider (n(zf)an&Q))(néf)an?s‘J)) data of q(ky, ky) (ks = —n$, . -1,0,1, -, 09—
1; ky = fnéf), -, —1,0, 1,'~',n7(j]) —1). Of course, this is the same as letting q(néf) + ng),ky) =
cj(nég),ky) = 0 and q(km,ngf) + ng(,g)) = (j(km,nég)) = 0 and considering q(ky, ky) (kb = —(néﬂ -
1),---,-1,0,1,-- -,nég); k, = —(nz(,f) -1),---,-1,0,1,-- -,nz(,g)). In this case, the coordinate (0, 0)

element usually is associated with ¢(0,0), and

e when isw=0,

Ix1 = nx1,1lyl = nyl, 1x2 = mx, ly2 = my, and

220

ASL_dfer2d, ASL_rfer2d
Two-Dimensional Correlations

nwk = nx2 x ny2 (when nx2 is odd) or
nwk = (nx2 + 1) x ny2 (when nx2 is even)
e when isw > 1,
Ix1=Ix2=mx+1 (when mx is odd) or
Ix1=1x2=mx+2 (when mx is even),
lyl=ly2=my, and nwk = mx + (Ix1 + 2) x my.

(g) This function is not thread-safe in the sequential version and the MPI version of the libraries without

OpenMP.

(7) Example

(a)

Problem

Use the sampling interval A to discretize the two finite waveforms defined by the following equations

and calculate the discrete correlation.

_) ((wy) €[0,24] < [0,y4])
fey) = { 0 (Otherwise)

((z,y) € [0, 2] < [0,54])
(Otherwise)

Tg — T

9(w,y) :{ 0

Input data
Sampling data

r1[ix + Ix1 # iy] = f(ix A, iy A) (ix = 0,1,---,nx1 — 1; i

=0,1,---,nyl — 1) and

r2jx + Ix2 jy | = g(jxA,jyA) (x =0,1,---,nx2 —1; j, =0,1,--- ,ny2 — 1).

Here, A = 0.5.
nxl, nyl, nx2, ny2, mx, my and isw.

Main program

/* C interface example for ASL_dfcr2d */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()

int nx1;

int nyl;

int nx2;

int ny2;
double *ri;
int m0=8;

int 1x1;

int 1lyil;
double *r2;
int 1x2;

int 1y2;

int mx;

int my;

int isw;

int *iwk;

int niwk=40;
double *wk;
int nwk;

int ierr;

int i,j;
double t;
double dt=0.5;
double xf=2.0,yf=2.0;
double xg=2.0,yg=2.0;

***x ASL_dfcr2d ***\n");
** Input **\n\n");

printf("
printf("\n

isw=1;

1
nx1=(int) xf/dt;
nyl=(int) yf/dt;

221

ASL_dfer2d, ASL_rfer2d
Two-Dimensional Correlations

nx2=(int) xg/dt;
ny2=(int) yg/dt;

mx=my=mO0 ;
1x1=1x2=m0+2;
lyl=1y2=mO;

nwk=mx+2*my+1x2*my ;

rl = (double *)malloc((size_t)(sizeof(double) * (1lx1x1yl)
if (r1 == NULL)

printf("no enough memory for array ri\n");
return -1;

}
r2 = (double *)malloc((size_t)(sizeof (double) * (1x2*1ly2)
if(r2 == NULL)

printf("no enough memory for array r2\n");
return -1;

}
wk = (double *)malloc((size_t) (sizeof(double) * nwk));
if (wk == NULL)

printf("no enough memory for array wk\n");
return -1;

iwk = (int *)malloc((size_t) (sizeof(int) * niwk));
if (iwk == NULL)

printf("no enough memory for array iwk\n");
return -1;

printf("\t isw = %6d\n\t (nx1, ny1) = (%3d,%3d)\n",
isw, nx1, nyl);
printf("\t (nx2, ny2)

(%3d,%3d)\n",

nx2, ny2);
printf("\t (mx , my) = (%3d,%3d)\n\n",
mx, my);

for(j=0 ; j<mnyl ; j++)
for(i=0 ; i<nxl ; i++)

t=ix*dt;
rifi+lxi*xjl=t;

}
for(j=0 ; j<ny2 ; j++)
for(i=0 ; i<nx2 ; i++)

t=ix*dt;
r2[i+1x2*j]=xg-t;

}
printf("\tData ri1[i+%3d*jl\n", 1x1);
printf("\ti/j 0 1 2 3\n");
Pprintf("\t--mmmmm oo \n");
for(i=0 ; i<nx1 ; i++)

printf("\t%3d", i);
for(j=0 ; j<nyl ; j++)

printf("%8.3g", rili+lx1*j]);
printf("\n");

%rintf("\n");

printf("\tData r2[i+},3d*jl\n", 1x2);

printf("\ti/j 0 1 2 3\n");
Printf("\t-———-mmm \n");
for(i=0 ; i<nx2 ; i++)

printf("\t%3d", i);
for(j=0 ; j<ny2 ; j++)

printf("%8.3g", r2[i+lx2*j]);
printf("\n");

ierr = ASL_dfcr2d(nx1, nyl, nx2, ny2, rl, 1lx1, 1lyi,
r2, 1x2, ly2, mx, my, isw, iwk, wk);

printf("\n ** Qutput **\n\n");
printf("\tierr = %6d\n", ierr);

printf("\tCorrelation r2[i+}3d*jl\n", 1x2);

printf("\ti/j 0 1 2 3 4");
printf(" 5 6 7\n");
Printf("\to-mmmmm oo "y,
printf(" \n");

for(i=0 ; i<mx ; i++)

printf("\t%2d", i);

222

ASL_dfer2d, ASL_rfer2d
Two-Dimensional Correlations

for(j=0 ; j<my ; j++)
printf("%7.21f", r2[i+lx2*j]);
printf("\n");
}
free(iwk);
free(wk);
free(r2);
free(rl1);

return O;

}
(d) Output results

***x ASL_dfcr2d ***

*k Input *%

isw = 1
(nx1, nyl) = (4, 4)
(nx2, ny2) = (4, 4)
(mx , my) = (8, 8)
Data ri[i+ 10%j]
i/j 0 1 2 3
0 0 0 0 0
1 0.5 0.5 0.5 0.5
2 1 1 1 1
3 1.5 1.5 1.5 1.5
Data r2[i+ 10%j]
i/j 0 1 2 3
0 2 2 2 2
1 1.5 1.5 1.5 1.5
2 1 1 1 1
3 0.5 0.5 0.5 0.5
** Qutput *x*

ierr = 0

Correlation r2[i+ 10%j]

i/j o 1 2 3 4 5 6 7
0 3.00 6.00 9.00 12.00 9.00 6.00 3.00 -0.00
1 4.25 8.50 12.75 17.00 12.75 8.50 4.25 -0.00
2 4.00 8.00 12.00 16.00 12.00 8.00 4.00 -0.00
3 2.50 5.00 7.50 10.00 7.50 5.00 2.50 -0.00
4 1.00 2.00 3.00 4.00 3.00 2.00 1.00 -0.00
5 0.25 0.50 0.75 1.00 0.75 0.50 0.25 0.00
6 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00

223

ASL_dfer3d, ASL_rfer3d
Three-Dimensional Correlations

2.15.3 ASL_dfcr3d, ASL_rfcr3d

Three-Dimensional Correlations

(1) Function

Assume that the two multiperiodic discrete functions f(iz,y,%.) and g(jz,jy,j-) of period (mg, my, m.)

satisfying:

f(ixviyviZ) = f(loc + Lxmrviy + Lymyviz + Lsz)v
9(zs JyrJz) = 9(Jz + Lama, jy + Lymy, j. + L.m.),
(Zam]m :Ovamw_lv Zya]y :Ovamy_17 izajz :Ovamz_l)

for arbitrary integers L,, L,, and L, take nonzero values within their basic periods only for (iy,iy,%,) €
0,7 — 1] x [0,n5” — 1] x [0,nY) — 1] and (ja, jy, j2) € [0,08 — 1] x [0,n” — 1] x [0,n? — 1]. Here,
[0,a] x [0,b] x [0,¢] is the direct product region (region contained in the cube for which the point (0, 0,
0) and the point (a,b,c) are diagonal points) in the space in which the space coordinates (i, j, k) lie. At
this time, ASL_dfcr3d or ASL_rfcr3d calculates the quantity ¢(ks, ky, k.) obtained by shifting the discrete
correlation g(ky, ky, k-), which is defined as follows:

Mme—1my—1m,—1

Qo by k) = > > Y fliar iy i) gk + ia, by + iy, ke +i2)

ip=0 iy=0 i,=0

(szovamw_lv kyzovamy_lv kzzovamz_l)

by (nc(pf) -1, nz(,f) -1, n(zf) — 1) in the positive direction for (k., ky, k), respectively. §(ks,ky, k.) is defined
as follows:

Glha, by k) = gl — (08 = 1),y — (07 = 1),k — () = 1))
(ks =0,---,mg—1; ky=0,---,my —1; k, =0,---,m, — 1)
Here, m, = min(n$”) + n{¥ — 1, M,), m, = min(n{") + n{¥ — 1, M,), and m. = min(n) + n'¥ — 1, M)
and M,, M,, and M, are arbitrary integers satisfying M, > max(ngf),nc(pg)), M, > max(nz(,f),nz(,g)), and
M, > max(ng),n§9>), respectively. The three-dimensional real Fourier transform of ¢(k,, ky, k,) can also
be obtained.

Usage
Double precision:
ierr = ASL_dfer3d (nx1, nyl, nzl, nx2, ny2, nz2, r1, Ix1, ly1, 121, r2, 1x2, ly2, 122, mx, my, mz,
isw, iwk, wk);
Single precision:
ierr = ASL._rfer3dd (nx1, nyl, nzl, nx2, ny2, nz2, rl, Ix1, lyl, lz1, r2; 1x2, ly2, 122, mx, my, mz,

isw, iwk, wk);

224

ASL_dfer3d, ASL_rfer3d
Three-Dimensional Correlations

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 nx1 I 1 Input Number of effective data in i, direction n&f)
for discrete function f(iy,%y,1)
2 nyl I 1 Input | Number of effective data in ¢, direction ng(,f)
for discrete function f(iy,%y,17)
3 nzl I 1 Input Number of effective data in ¢, direction ngf)
for discrete function f(iz, iy,%.)
4 nx2 I 1 Input | Number of effective data in j, direction ng])
for discrete function g(jg, jy,jz)
5 ny2 I 1 Input | Number of effective data in j, direction nz(,g)
for discrete function g(jg, jy,jz)
6 nz2 I 1 Input | Number of effective data in j, direction n&”
for discrete function ¢(jz, jy, j-)
7 rl D« IxIxlylx | Input | Values of discrete function f(is,dy,%.) (See
{R*} 1z1 Note (a))
Output | When isw > 1, result of three-dimensional
real Fourier transform of discrete function
f iz, iy,i2) (period (Mg, My, M.))
8 Ix1 I 1 Input | Adjustable dimension of array rl
9 lyl I 1 Input | Second dimension of array rl
10 1z1 I 1 Input | Third dimension of array rl
11 r2 D« Ix2x1ly2x | Input | Values of discrete function ¢(js,jy,7.) (See
{R*} 122 Note (a))
Output | Value of discrete function §(ky, ky, k) or the
three-dimensional real Fourier transform of
q(ks, ky, k) (See Note (b))
12 1x2 I 1 Input | Adjustable dimension of array r2
13 ly2 I 1 Input | Second dimension of array r2
14 122 I 1 Input | Third dimension of array r2

225

ASL_dfer3d, ASL_rfer3d
Three-Dimensional Correlations

No. Argument and Type Size fnput/ Contents
Return Value Output

15 mx I 1 Input | Parameter M, corresponding to the pe-
riod (mg,my,m,) of discrete functions
flizyiy,iz), 9(JasJys J=), and G(ks, ky, k)
(See Note (c))

16 my I 1 Input | Parameter M, corresponding to the pe-
riod (mg,my,m,) of discrete functions
f(l.z; iyyiz)a g(jz,jyajz)a and ‘j(kz; ky; kz)
(See Note (c))

17 mz I 1 Input | Parameter M, corresponding to the pe-
riod (mg,my,m;) of discrete functions
flizsiy,iz), 9(u, Jy,J=), and G(ke, ky, k)
(See Note (c))

18 isw I 1 Input | Processing switch (See Note (d))
isw= 0: Calculate the correlation according
to the definition.
isw= 1: Calculate the correlation according
to the FFT method.
isw= 2: Calculate the real Fourier transform
of the correlation.

19 iwk I* See Work | Work area

Contents Size:

0 (When isw= 0)
60 (When isw > 1)

20 wk Dx See Work | Work area

{R*} Contents Size:

(nx2 4+ 1) X (ny2 + 1) x nz2 (When isw= 0,
nx2 is even and ny?2 is even)
nx2 x (ny2 + 1) x nz2 (When isw= 0, nx2 is
odd and ny?2 is even)
(nx2 + 1) X ny2 x nz2 (When isw= 0, nx2 is
even and ny2 is odd)
nx2 X ny2 x nz2 (When isw= 0, nx2 is odd
and ny?2 is odd)
mx+2 X (my+mz)+max(lx1 x 1yl x1z1, Ix2 x
ly2 x 1z2) (When isw > 1)

21 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a)
(b)

()

isw € {0, 1, 2}

nxl >1
nyl >1
nzl > 1

nx2>1

226

ASL_dfer3d, ASL_rfer3d
Three-Dimensional Correlations

ny2 > 1
nz2 > 1

mx > max(nx1, nx2)
my > max(nyl, ny2)

mz > max(nzl, nz2)

When isw =0 :
Ix1 > nx1
lyl > nyl
1z1 > nzl

When isw > 0 and mx is odd:
Ix1 > mx + 1, Ix1 is even
lyl > my
1z1 > mz

When isw > 0 and mx is even:
Ix1 > mx + 2, Ix1 is even
lyl > my
1z1 > mz

When isw = 0)
1x2 > mx
ly2 > ny2
122 > nz2

When isw > 0 and mx is odd)
Ix2 > mx + 1, Ix2 is even
ly2 > my
122 > mz

When isw > 0 and mx is even:
Ix2 > mx + 2, Ix2 is even
ly2 > my
122 > mz

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.

1000 mx < nx1 + nx2 — 1, Overlapping occurred during the correla-
my < nyl +ny2 —1 or tion calculation.
mz < nzl +nz2 -1

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

3030 Restriction (d) was not satisfied.

3040 Restriction (e) was not satisfied.

3050 Restriction (f) was not satisfied.

227

ASL_dfer3d, ASL_rfer3d
Three-Dimensional Correlations

(6) Notes

(a)

The values of the discrete functions f(iz,%y,%,) and g(jz,jy,j-) and the elements of arrays rl and r2
are associated as follows.

fliz, iy, i) ¢ rlfix +1x1* (iy + 1yl *i,)]

9(Jzs JysJ=) < 120k +1x2 % (jy +1y2 * j,)]

Here, i, = 0,---,n%) — 1 iy = 0’...?n§!f) 1,0, =00 —1and j, = 0,---, 0 — 1; Jy =
0,--- ,ng(,g) —1; 7. =0,---, n&’” — 1, and no values need be entered in other elements. The adjustable

dimensions of arrays rl and r2 should be set so that 1x1/2, lyl, lz1, 1x2/2, ly2, and 122 are
odd numbers to avoid bank conflict of main memory. Also, to increase speed, calculations
are executed even for elements outside areas where data is set within arrays r1 and r2.

Usually, when mx, for example, is (a multiple of 4)+2, Ix1=mx+4 is set.

The values of the discrete convolution G(ks,k,,k.) and the elements of array r2 are associated as

follows.
Gkz, by, k) & 12k +1x2 % (ky + ly2 x k)]

Here, k; =0,---, My —1; ky =0,---, My, —1; k., =0,---,M, — 1. When isw=2 is set to obtain the
three-dimensional real Fourier transform Q(jz, jy,j-) of the discrete correlation ¢(k,, ky, k), which is

defined as follows (|2 | represents the maximum integer that does not exceed x):

My—1My—1M,—1

. . . 1 —92 —1 jzkz+jyky+jzkz
Qs Jys J=) = VML Z Z Z (ks ky, k2)e =TS+ 3+)
TYTE =0 ky=0 k.=0

y y My P — z
(.795 :Oval_%Jv Jy :Oa"'7|_ 2 Jv]z _07’|-]\/2[J)
the following associations are made:
$H{QUzr gy, J=)} < 1202 jx + 14 1x2% (jy + Iy2 %)]

In this case, note that the Fourier transform that is obtained is normalized. The remaining half period

of the Fourier transform can be obtained from the symmetry of the real Fourier transform as follows:

Q(Mac = Jo, My — jy, M —]z)>k = Q(]ma]yv]z)

Q(Mm_jw»jy’jz)* :Q(jmaMy_jy»Mz_jz)

QMz = jus My — jy, j2)" = QUa:Jy, M= — jz)
(Here, z* represents the conjugate complex number of the complex number z.) Now, Q(jz,jy,Jjz)
can be thought of as an estimate of the cross spectrum of the original two functions for which the
correlation is to be calculated. In this case, M, M,, and M, should be thought of as M, = n(zf) +n&q),
M, = ng(,f t nz(,g), and M. = nt) + 0. In particular, if the original two functions for which the
correlation is to be calculated are the same function, Q(jz,jy,j-.) corresponds to the raw Fourier

periodogram (estimate of the power spectrum), and Q(jz, jy, j-) is a real number.

If mx > nxl+nx2 —1 and my > nyl +ny2 — 1 and mz > nzl 4+ nz2 — 1 are set, the correlation can be
calculated without causing an overlap with the correlation of the next period. When mx > nx14+nx2—1

or my > nyl +ny2 — 1 or mz > nzl + nz2 — 1, the following correspondences are made:
Gk, ky) < 12[ke +1x2 % (ky +1y2 x k)]

and values that match 0.0 within the error range are stored in elements corresponding to k, =

nxl+nx2—-1,--- mx—-1; k, =0,---my—-1; k, =0,---,mz—1or k;, =0,---,mx —1; k,

228

ASL_dfer3d, ASL_rfer3d
Three-Dimensional Correlations

nyl+ny2—-1,---my—-1; k., =0,---,mz—1ork, =0,---,mx—1; ky =0,---,my—-1; k, =
nzl +nz2—1,---,mz—1. When isw=0, mx = nxl+nx2—1, my = nyl4+ny2—1, and mz = nzl+nz2—1
should be set. When isw > 1, the calculations can be performed more efficiently by setting a value
for mx, my or mz for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3,
5, etc., which are the mixed radix values of FFT). For example, if nx1=nx2=145, then when isw=0,
mx = 289(=17%) should be set. However, when isw > 1, it is usually more efficient to set mx =
300(=2% x 3 x 52), mx = 320(=2% x 5), mx = 384(=2" x 3) or the like.

Usually, the calculations can be performed more efficiently by setting isw=1 to calculate
the FFT correlation. However, to conserve work area or if there is a restriction on the method of

selecting the parameter mx, my or mz, the calculations should be performed by setting isw=0.

o calculate the correlation of discrete functions the starting position of the nonzero portions are sep-
arated from the origin, first perform the calculations by shifting the functions so that the starting
positions are at the origin, and then shift the calculation results again to obtain the final results more
efficiently. For example, when the nonzero portions of the discrete functions f(is, iy, %.) and g(jz, jy, J=)
are the intervals [ig, io + n$ — 1] and [jo, jo + ntd — 1] for i, and j,, respectively, let f(iz,iy,iz) and

§(jz, 3y, J=) be defined as follows:

f(iw»iyviZ) = f(lw - iOviyviZ)a g(]wa]y»h) = g(]m - jO»jyajZ)
and apply this function to f(zx, ty,1z) and §(Jz, Jy, jz). Let G(kz, ky, k) represent the result that was
obtained, and the correlation ¢(k, ky, k) of the original functions f(is, iy,%.) and ¢(jz, jy, j-) is given

as follows:

Q(kwakyvkz) = (,7<k$ - (]0 - io) + (n;f) - 1)’ky’kz)

Therefore, even when i9 = jo = 0, to consider the correlation g(k,, ky, k.) that conforms to the normal
definition, you must consider shifting the result by néf) _1in the negative direction of k, after applying
this function or if you shift f(iy, iy,%.) and g(jz, jy, j-) in the negative directions of i, and j, by i and
jo, respectively, before calculating the discrete correlation, you must then shift the calculation result
again by jo — ¢o in the positive direction of k.

This procedure is available for iy, j,, and ky, and ., j., and &, as well.

The sampling interval cubed multiplied by the discrete correlation calculated by this function is the
square approximation (or approximation by using the trapezoidal formula) of the continuous correlation
integral of a bandwidth-limited function. Therefore, to raise the approximation precision, you must
take a smaller sampling interval and a larger number of sample data. To associate these results with

a continuous correlation it is easiest to let
(=) ky k) = a1 ky k) =0
q(ke, —nif) k:) = Glka,~1 k) =0
q(kz by, —ntD) = G(ka,ky, 1) =0

and consider (n§” +n$) (n{ 40 (0 +n'9) data of q(ks, ky, k2) (ke = 0, -+, =1,0,1,- - n{? —
L oky=-—ni" 1,01, n{ —1; k. =0 o —1,0,1,--- 0 — 1),

Of course, this is the same as letting

q(n;(vf) + n;!])’ kya kz) q(n;g)v ky» kz) =
g(ke,nl) + 0 k) = Glhka,ni? k) =0

229

ASL_dfer3d, ASL_rfer3d
Three-Dimensional Correlations

(2)

and considering q(kz, ky, k2) (ks = f(néf) -1),---,-1,0,1,- cond ky = f(nz(,f) —1),---,-1,0,1,
...7nz(f); k, = —(n(zf) _ 1)’...7_170’17...771(29)).

In this case, the coordinate (0, 0, 0) element is usually associated with ¢(0,0,0), and

e when isw=0,
Ix1 = nx1,lyl = nyl, Izl = nzl, 1x2 = mx, ly2 = my, 1z2 = mz, and
nwk = (nx2 + 1) X (ny2 4 1) x nz2 (when nx2 is even and ny?2 is even) or
nwk = nx2 x (ny2 + 1) x nz2 (when nx2 is odd and ny2 is even) or
nwk = (nx2 + 1) x ny2 x nz2 (when nx2 is even and ny?2 is odd) or
nwk = nx2 x ny2 x nz2 (when nx2 is odd and ny2 is odd)
e when isw > 1
Ix1=Ix2=mx+1 (when mx is odd) or
Ix1=Ix2=mx+2 (when mx is even),
lyl=ly2=my, lz1=1z2=mz, and nwk = mx + 2 x (my + mz) + Ix1 X my x mz.

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(7) Example

()

Problem
Use the sampling interval A to discretize the two finite waveforms defined by the following equations

and calculate the discrete correlation.

_) ((®9,2) €[0,25] x [0, y5] x [0, 27])
fey,2) = { 0 (Otherwise)

_ Tg — X ((‘T’yvz) € [va!]] X [O’yg] X [Ovz!]])
9(@.y.2) = { 0 (Otherwise)

Input data
Sampling data
r1fix + Ix1# (iy + 1yl)] = £(ixA, iy A, i,A)

(i =0,1,---,nx1 —1; ¢, =0,1,---,nyl — 1; i, =0,1,---,nzl — 1) and
r2[jx + Ix2 % (jy +1Iy2 % j,)] = 8(xA, iy A, jzA)

(jo=0,1,---,nx2 —1; j, =0,1,---,ny2 = 1; 5, = 0,1,---,nz2 — 1).
Here, A = 0.5.
nx1, nyl, nzl, nx2, ny2, nz2, mx, my, mz and isw.

Main program

/* C interface example for ASL_dfcr3d */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()

int nx1;
int nyl;
int nzi;
int nx2;
int ny2;
int nz2;
double *ri;
int m0=8;
int 1x1;
int 1yi1;
int 1z1;
double *r2;
int 1x2;

230

ASL_dfer3d, ASL_rfer3d
Three-Dimensional Correlations

int
int
int
int
int
int
int
int

double t

1ly2
IZQ
mx;
my;
mz;

H

B

isw;
*iwk;
niwk=60;
double *wk;
int nwk;

int ierr;
int i,j,k;

double
double
double

dt=0.5;
xf=2.0,yf=2.0,z

£=2.0;
xg=2.0,yg=2.0,2zg=2.0;

printf(" *x*x ASL_dfcr3d ***\n");
printf("\n *#x Input **\n\n");

isw=1;
nx1=(int) xf/dt;

nyl=(int) yf/dt;

nzl=(int) zf/dt;

nx2=(int) xg/dt;

ny2=(int) yg/dt;

nz2=(int) zg/dt;
mx=my=mz=mO0 ;
1x1=1x2=(m0+2) /2*2;
lyl=1y2=my;

1z1=1z2=mz;
nwk=mx+2* (my+mz) +1x2*my*mz ;

r1 = (double *)malloc((size_t)(sizeof (double) * (lx1xlylxlzl)));
if(r1 == NULL)

pri
ret

ntf("no enough memory for array ri\n");
urn -1;

}
r2 = (double *)malloc((size_t) (sizeof (double) * (1x2%1y2%1z2)));
if (r2 == NULL)

printf("no enough memory for array r2\n");
return -1;

}
wk = (double *)malloc((size_t)(sizeof (double) * nwk));
if(wk == NULL)

printf("no enough memory for array wk\n");
return -1;

iwk = (int *)malloc((size_t) (sizeof(int) * niwk));
if (iw ULL)

printf("no enough memory for array iwk\n");
return -1;

printf("\t isw = %6d\n\t (nx1, nyl, nzl) = (%3d,%3d,%3d)\n",
isw, nx1, nyl, nzl);

printf("\t (nx2, ny2, nz2)

(%3d,%3d,%3d) \n",

nx2, ny2, nz2);
printf("\t (mx , my , mz) = (%3d,%3d,%3d)\n\n",

mx,

my, mz);

for(k=0 ; k<nzl ; k++)

for(

J=0 ; j<ayl ; j++)
for(i=0 ; i<nxl ; i++)

t=ix*dt;
r1[i+lx1*(j+lylxk)]=t;

}
for(k=0 ; k<nz2 ; k++)
for(j=0 ; j<ny2 ; j++)

for(i=0 ; i<nx2 ; i++)

t=ix*dt;
r2[i+1x2* (j+1y2+k)]=xg-t;

}
for(k=0 ; k<nzl ; k++)

printf("\tData ri[i+%3d*(j+%3d*%3d)I1\n", 1x1, 1lyl, k);
printf("\ti/j 0 1 2 3\n");
printf("\t _— ——\n");
for(i=0 ; i<nxl ; i++)

printf("\t%3d", i);
for(j=0 ; j<myl ; j++)
printf("%8.3g", ril[i+lx1x(j+lylxk)]);

231

ASL_dfer3d, ASL_rfer3d
Three-Dimensional Correlations

printf("\n");
}
printf("\n");
}
for(k=0 ; k<nz2 ; k++)

printf("\tData r2[i+%3d*(j+%3d*%3d)I\n", 1x2, 1ly2, k);
printf("\ti/j 0 1 2 3\n");
printf("\t —_— \n");
for(i=0 ; i<nx2 ; i++)

printf("\t%3d", i);
for(j=0 ; j<ny2 ; j++)

printf("%8.3g", r2[i+lx2*(j+ly2*k)]);
printf("\n");

}
printf("\n");
}
ierr = ASL_dfcr3d(nx1, nyl, nzl, nx2, ny2, nz2,
ri, 1x1, 1lyi, 1z1, r2, 1x2, 1ly2, 1z2,
mx, my, mz, isw, iwk, wk);

printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);

for(k=0 ; k<mz ; k++)
printf("\tCorrelation r2[i+3d*(j+%3d*%3d)]1\n", 1x2, 1y2, k);
"),

printf("\ti/j 0 1 2 3 4
printf(" 5 6 7\n");

printf("\t -— ")
printf(" \n");

for(i=0 ; i<mx ; i++)
printf("\t%2d", i);
for(j=0 ; j<my ; j++)
printf("%7.21f", r2[i+lx2*x(j+ly2*k)]);
printf("\n");
}
printf("\n");
free(iwk);
free(wk);
free(r2);
free(rl);

return O;

}
(d) Output results

***x ASL_dfcr3d ***

** Input *x*

isw = 1
(nx1, nyl, nzl)

=(4, 4, 4
(nx2, ny2, nz2) = (4, 4, 4)
(mx , my , mz)=(8, 8, 8
Data ri[i+ 10*(j+ 8% 0)]
i/j 0 1 2 3
0 0 0 0 0
1 0.5 0.5 0.5 0.5
2 1 1 1 1
3 1.5 1.5 1.5 1.5
Data ri[i+ 10x(j+ 8% 1)]
i/j 0 1 2 3
0 0 0 0 0
1 0.5 0.5 0.5 0.5
2 1 1 1 1
3 1.5 1.5 1.5 1.5
Data ri[i+ 10*(j+ 8% 2)]
i/j 0 1 2 3
0 0 0 0 0
1 0.5 0.5 0.5 0.5
2 1 1 1 1
3 1.5 1.5 1.5 1.5
Data ri[i+ 10*(j+ 8% 3)]
i/j 0 1 2 3
0 0 0 0 0

232

ASL_dfer3d, ASL_rfer3d
Three-Dimensional Correlations

1 0.5 0.5 0.5 0.5
2 1 1 1 1
3 1.5 1.5 1.5 1.5
Data r2[i+ 10*(j+ 8% 0)]
i/3 0 1 2 3
0 2 2 2 2
1 1.5 1.5 1.5 1.5
2 1 1 1 1
3 0.5 0.5 0.5 0.5
Data r2[i+ 10*x(j+ 8x 1)]
i/j 0 1 2 3
0 2 2 2 2
1 1.5 1.5 1.5 1.5
2 1 1 1 1
3 0.5 0.5 0.5 0.5
Data r2[i+ 10x(j+ 8x 2)]
i/j 0 1 2 3
0 2 2 2 2
1 1.5 1.5 1.5 1.5
2 1 1 1 1
3 0.5 0.5 0.5 0.5
Data r2[i+ 10*(j+ 8% 3)]
i/3 0 1 2 3
0 2 2 2 2
1 1.5 1.5 1.5 1.5
2 1 1 1 1
3 0.5 0.5 0.5 0.5
*% Qutput *x*

ierr =

Corr

0
elation r2[i+

10x(j+ 8% 0)]

i/j 0 1 2 3 4 5 6 7

0 3.00 6.00 9.00 12.00 9.00 6.00 3.00 -0.00
1 4.25 8.50 12.75 17.00 12.75 8.560 4.25 -0.00
2 4.00 8.00 12.00 16.00 12.00 8.00 4.00 -0.00
3 2,60 5.00 7.50 10.00 7.50 5.00 2.50 -0.00
4 1.00 2.00 3.00 4.00 3.00 2.00 1.00 -0.00
5 0.25 0.50 0.75 1.00 0.75 0.50 0.25 0.00
6 0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00
Correlation r2[i+ 10%(j+ 8x 1)]

i/j 0 1 2 3 4 5 6 7

0 6.00 12.00 18.00 24.00 18.00 12.00 6.00 -0.00
1 8.50 17.00 25.50 34.00 25.50 17.00 8.50 -0.00
2 8.00 16.00 24.00 32.00 24.00 16.00 8.00 -0.00
3 5.00 10.00 15.00 20.00 15.00 10.00 5.00 -0.00
4 2.00 4.00 6.00 8.00 6.00 4.00 2.00 -0.00
5 0.50 1.00 1.50 2.00 1.50 1.00 0.50 -0.00
6 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00
Correlation r2[i+ 10x(j+ 8% 2)]

i/j 0 1 2 3 4 5 6 7

0 9.00 18.00 27.00 36.00 27.00 18.00 9.00 -0.00
1 12.75 25.50 38.25 51.00 38.25 25.50 12.75 -0.00
2 12.00 24.00 36.00 48.00 36.00 24.00 12.00 -0.00
3 7.50 15.00 22.50 30.00 22.50 15.00 7.50 -0.00
4 3.00 6.00 9.00 12.00 9.00 6.00 3.00 -0.00
5 0.75 1.50 2.25 3.00 2.25 1.50 0.75 -0.00
6 0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
7 0.00 -0.00 0.00 -0.00 0.00 0.00 -0.00 0.00
Correlation r2[i+ 10%x(j+ 8% 3)]

i/j o 1 2 3 4 5 6 7

0 12.00 24.00 36.00 48.00 36.00 24.00 12.00 -0.00
1 17.00 34.00 51.00 68.00 51.00 34.00 17.00 -0.00
2 16.00 32.00 48.00 64.00 48.00 32.00 16.00 -0.00
3 10.00 20.00 30.00 40.00 30.00 20.00 10.00 -0.00
4 4.00 8.00 12.00 16.00 12.00 8.00 4.00 0.00
5 1.00 2.00 3.00 4.00 3.00 2.00 1.00 0.00
6 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00
7 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
Correlation r2[i+ 10*%(j+ 8* 4)]

i/j o 1 2 3 4 5 6 7

0 9.00 18.00 27.00 36.00 27.00 18.00 9.00 -0.00
1 12.75 25.50 38.25 51.00 38.25 25.50 12.75 -0.00

233

ASL_dfer3d, ASL_rfer3d
Three-Dimensional Correlations

2 12.00 24.00 36.00 48.00 36.00 24.00 12.00 -O.
3 7.50 15.00 22.50 30.00 22.50 15.00 7.50 -O.
4 3.00 6.00 9.00 12.00 9.00 6.00 3.00 -0.
5 0.75 1.50 2.256 3.00 2.25 1.50 0.75

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 -0.00 0.00 -0.00 0.00
Correlation r2[i+ 10%x(j+ 8x 5)]

i/j o 1 2 4 5

0 6.00 12.00 18.00 24.00 18.00 12.00 6.00 -0.
1 8.50 17.00 25.50 34.00 25.50 17.00 8.50 -0.
2 8.00 16.00 24.00 32.00 24.00 16.00 8.00 -0.
3 5.00 10.00 15.00 20.00 15.00 10.00 5.00 -O0.
4 2.00 4.00 6.00 8.00 6.00 4.00 2.00 -0.
5 0.50 1.00 1.50 2.00 1.50 1.00 0.50

6 0.00 0.00 0.00 -0.00 0.00 0.00 0.00

7 0.00 0.00 -0.00 -0.00 0.00 0.00 0.00
Correlation r2[i+ 10x(j+ 8% 6)]

i/j o0 1 2 4 5

0 3.00 6.00 9.00 12.00 9.00 6.00 3.00

1 4.25 8.50 12.75 17.00 12.75 8.50 4.25 -0.
2 4.00 8.00 12.00 16.00 12.00 8.00 4.00 -O.
3 2.50 5.00 7.50 10.00 7.50 5.00 2.50 -0.
4 1.00 2.00 3.00 4.00 3.00 2.00 1.00

5 0.25 0.50 0.75 1.00 0.75 0.50 0.25

6 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00

7 0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00
Correlation r2[i+ 10*%(j+ 8* 7)]

i/j 0 1 2 4 5

0 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00

1 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -O.
2 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -O.
3 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -O.
4 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -O.
5 -0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 -O.
6 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00 O
7 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00 O

234

2.16 POWER SPECTRUM ANALYSIS

2.16.1 ASL_dfpsld, ASL rfpsld

(1)

One-Dimensional Fourier Periodograms

Function
ASL _dfpsld or ASL_rfpsld obtains the (modified) Fourier periodogram of the series u; (j = 0,---,n —1).
The Fourier periodogram py, is defined by the following equation.

2
n—1 .
—_ 11
E wjuje 2my/ =157
j=0

Pk = 3

Here, |z] represents the maximum integer that does not exceed z. w; is the truncation function (data
window). For a raw Fourier periodogram, w; =1 (j =0,---,n — 1) and 8 = n are set, and for a modified
periodogram S is set as follows:

n—1

Z w;* (when a power modification expression according to a data window is used)
7=0

n (Otherwise)

The periodogram pj, corresponds to a half period (period n) of a two-sided power spectrum, and the
remainder is obtained from the relationship p_j = pg. Also, the total power of the corresponding series is
as follows.

i{ua‘}z
=0

Usage
Double precision:

ierr = ASL_dfpsld (n, r, 1d, isw, iwk, wk);
Single precision:

ierr = ASL_rfpsld (n, 1, 1d, isw, iwk, wk);

235

ASL_dfpsid, ASL_rfpsld
One-Dimensional Fourier Periodograms

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex

) int as for 32bit Integer
’ long as for 64bit Integer

No. Argument and Type
Return Value

Input/
Output

Size

Contents

n I 1 Input

Length n of series u; (See Note (d))

Input

Values of series u; (See Note (a))

1
2 r Dx 1d
R«

Output

Values of Fourier periodogram py, of series u;
(See Notes (b) and (c))

Input

Size of array r

4 isw I 1 Input

Processing switch (See Note (e))
isw= 0: Calculate the raw Fourier peri-
odogram

isw==1: Calculate the periodogram using a
user-defined data window

isw==22: Calculate the periodogram using
the Hanning window

isw==43: Calculate the periodogram using
the Bartlett window

isw==44: Calculate the periodogram using
the Welch window

isw==45: Calculate the periodogram using
the Parzen window

To use a power modification expression ac-
cording to a data window, set isw > 0; oth-

erwise, set isw < 0.

5 iwk I* 20 Work

Work area

n+ld Work

Work area
When isw==1, enter the values of the user-
defined data window. (See Note (e))

7 ierr I 1 Output

Error indicator (Return Value)

(4) Restrictions

(a) isw € {0, +1,+2, £3, £4, +5)
(b) n>1

(¢) When n is an odd:
Id>n+1

When n is an even:
ld>n+2

236

ASL_dfpsld, ASL_rfpsld

One-Dimensional Fourier Periodograms

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3030 Restriction (c) was not satisfied.
4000 When isw = 1, the user-defined data win-
dow was w; =0 (j=0,---,n—1).

(6) Notes

(a) The values of the series u; are stored in array r as follows.

Ug — 1[0]

Up—1 — rn—1]
No values need be entered in elements r[n] and after of array r.
The values of the Fourier periodogram py, are obtained in array r as follows.

Po - 1[0]
p1 - 1]

Plngryy = r[[23] - 1]
|] represents the maximum integer that does not exceed z.

The Fourier periodogram py, that is obtained corresponds to a half period of a two-sided power spectrum
(when the negative frequencies are considered), and the corresponding frequencies & are given by
& = nﬁﬂ (where Axis the sampling interval). At this time, the components corresponding to —&
will be pi. The Fourier periodogram py corresponding to a one-sided power spectrum is obtained by
setting po = po; Pr = 2px (K = 1,2,---,m — 1). However, when n is even, m = % and p,, = p,, are
set, and when n is odd, m = ”T“ is set.

The calculations can be performed more efficiently by setting the length n of the series u; to a value
for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3, 5, etc., which are
the mixed radix values of FFT). For example, rather than setting n = 289(=172), it is usually more
efficient to set n = 300(=2% x 3 x 52), n = 320(=2% x 5), n = 384(=27 x 3) or the like. When the
number of data cannot be increased, adjust n by supplying the required number of zeros at the end of
the data to perform the calculations.

The truncation function (data window) can be changed as follows according to the value of the pro-
cessing switch isw.

sin? (1v;) isw= £2 (Hanning window)
1—|2v; —1] isw= £3 (Bartlett window)
1—(20; —1)? isw= +4 (Welch window)
w; = 16v;° 0<wv; <1
L= Ouj(v; = 1)% PSU <3 isw= £5 (Parzen window)
1—6v;(vp—jp1—1)? 2<v; <3
16vn,j+13 % <v; <1

237

ASL_dfpsld, ASL_rfpsld
One-Dimensional Fourier Periodograms

1

Here, v; =

.. Therefore, when the data windows shown above are used, the first element ug of the

series u; does not affect the calculation of the modified periodogram. To avoid this situation, you

should specify a value for n that is larger by 1 than the length of the series for which you actually want

to calculate the periodogram and set the effective data so that it starts at u;. The data windows are

represented as follows as time (or space) domai

14 cosmx o TT
2 Ty
1 —|z]
w(z) =4 1-22
1—62? + 6z |z <3
2(1 — =) 7 <lal <

n functions that are nonzero only for |z| < 1.

Hanning window

Bartlett window
Welch window

1 } Parzen window

Also, to use user-defined data window values wj, set isw = *1, set the values in work array wk as

follows:

Wk[J]:WJ (jiov"'vnfl)

and then call this function.

transform of the autocorrelation function. Since

From its definition, the raw periodogram should be regarded as an approximation of a discrete Fourier

the effective data length of the autocorrelation function

of a discrete function having effective number of data n is 2n — 1, approximating the power spectrum

of a general function by a raw periodogram corresponds to truncating the function by using a square

truncation function w(k) for which one period is given as follows.

1 k=0,1,---,n—1
0 Otherwise

w(k)

{

When the frequency is f for the Fourier transform of the square function, a

sin

ff type function form is

assumed having a sidelobe that is not small around the central frequency. Therefore, when a periodic

function is sampled, for example, by simply truncating it using a width that is not an integer multiple of

one period, since the raw periodogram will be t

he convolution of the Fourier transform of the periodic

function for which the power spectrum is to be obtained and the % type function in the frequency

domain, an excess frequency component called leakage occurs. To suppress this kind of leakage, simple

truncation is not performed, and a truncation function having a small sidelobe in the frequency domain,

such as the Hanning window, is used. However, in general, the more the leakage is suppressed, the

more the result of the discrete Fourier transform widens and blurs. Therefore, when estimating the

power spectrum, you must select a suitable truncation function according to your objectives, that is,

according to whether the spectral width or the

you should increase the number of sample dat

central frequency is to be the problem, for example.

To raise the resolution (sampling interval in the frequency domain) % of the discrete Fourier transform,

a n or increase the sampling interval T'. However, to

raise the precision of the power spectrum estimate while holding the sampling interval and resolution

fixed, a technique is often used of taking m groups of samples for which the number of samples is n,

obtaining the modified periodogram for each of those m groups, and then taking the average of those

values. In this case, a technique is also proposed in which the m groups of sample data are taken from

the series so that they overlap. For details, refer to the Reference Bibliography.

When obtaining the power spectrum, the prop

erty related to the frequency transition of the Fourier

transform, that is, the multiplication by ¢*™V~1/o? in the time (or space) domain, is associated with

the shifting of the frequency by fy in the frequency domain, and a technique is often used of reducing

238

ASL_dfpsld, ASL_rfpsld
One-Dimensional Fourier Periodograms

the number of data points required for the calculation in which the central frequency of the power
spectrum is shifted in advance, using the property that the function shape does not change. This kind

of operation is known as modulation. However, when n is odd Id=n+1, and when n is even, ld=n+2.

(i) This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(7) Example

(a) Problem
Use the sampling interval Ax to discretize the waveform defined by the following equation and estimate

the power spectrum by calculating the Fourier periodogram.
f(z) = cos 27 fix + cos 27 fox

Remarks:

If f1 = 0.62 and fo = 0.14 are set and f(z) is sampled on the interval [0,25) with Az = 0.5, the
values are graphed as follows. Although, according the to sampling theorem, sampling should be done
in more detail depending on the objective, even this degree of sampling enables you to see tendencies

concerning differences due to the selection of the data window.

/(@)

3.0 [

15 [- N

0.0 [7® * o... ° ...o .. ° .° ® 0o o o. * .o

A5 0% . . .« ¢

3.0 | | | | | T
5.0 10.0 15.0 20.0 25.0

Also, the corresponding Fourier periodogram is graphed as follows (the upward pointing arrows are
the signal frequency). Since a frequency for which the discontinuity increases due to truncation is

deliberately used as the signal frequency, the leakage increases in the raw periodogram.

p(a:) (Raw Periodogram)

0.3
0.2
0.1

X

0 02 04 06 08 1.0
p(SU) (Use Hanning Window) p(x) (Use Bartlett Window)

0 0.2 04 0.6 0.8 1.0 0 0.2 04 0.6 0.8 1.0
(b) Input data

Sampling data
ij =1 =10 -1Ax) G=12,---,n).

239

ASL_dfpsld, ASL_rfpsld
One-Dimensional Fourier Periodograms

p(x) (Use Welch Window) p(x)

(Use Parzen Window)

0.3 [o o 0.3

0.2 I I 0.2 T I

0.1 I J l | J | T 0.1 ‘et | ¢ J * 1l %l |
0 02 04 06 0.8 1.0 0 02 04 06 0.8 1.0

Here, Az = 0.5.

n and isw.

(¢) Main program

/* C interface example for ASL_dfpsid */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <asl.h>

int main()

int n0=50,isw0=4;
int n;

double *r;

int 1d=n0+2;

int isw;

int *iwk;

int niwk=20;
double *wk;

int ierr;

int i,m,nd2,is;
double *p,t,dt,f0,f1,f2;

printf("
printf("\n

*x%x ASL_dfpsld **x\n");
** Input **\n\n");

r = (double *)malloc((size_t)(sizeof(double) * (1d*(isw0+2))));

if (r == NULL)

printf("no enough memory for array r\n");
return -1;

}
wk = (double *)malloc((size_t) (sizeof(double) * (n0+1ld)));

if (wk == NULL)

printf("no enough memory for array wk\n");

) return -1;

p = (double *)malloc((size_t)(sizeof(double) * (isw0+2)));
if(p == NULL)

{

printf("no enough memory for array p\n");
return -1;

iwk = (int *)malloc((size_t) (sizeof(int) * niwk));
if (iwk == NULL)

printf("no enough memory for array iwk\n");
return -1;

n=n0;
printf("\t isw=0, 2 to %6d\n", iswO+1);
printf("\t n=%6d\n\n", n);

dt=0.5;

£0=1.0/(2.0%dt) ;

£1=0.62%£0;

£2=0.14%£0;

nd2=(int) (n+1)/2;

plisw0+1]1=0.0;

for(i=0 ; i<n ; i++)
t=(double) ix*dt;
t=cos(2.0*M_PI*fi1*t)+cos(2.0*M_PI*f2x*t);

r[i+ld*(isw0+1)]=t;
pliswO+1] += (txt);

;[isw0+1] /= (double) n;

printf("\tTime series data\n");
printf("\t i time r[il\n");
for(i=0 ; i<n ; i++)

printf("\t%3d %9.41f %9.41f\n", i, i*dt, r[i+ld*(isw0+1)]);

}
printf("\tTime domain power =%9.41f\n", pliswO+1]);

240

X

ASL_dfpsld, ASL_rfpsld
One-Dimensional Fourier Periodograms

printf("\tSignal frequency =%9.41f, %9.41f\n", f1, £2);

1s=0
for(
{

}

B

isw=0 ; isw<=iswO ; isw++)

for(i=0 ; i<n ; i++)
r[i+ld*isw]=r[i+1d*(isw0+1)];
if (isw !'= 0)
is=isw+l;

ierr = ASL_dfpsid(n, &r[ld*iswl], 1d, is, iwk, wk);

/* For one-sided power spectral densities */
if (n%2==0)
m=nd2-1;
else
m=nd2;
for(i=1 ; i<m ; i++)
r[i+ld*isw] *=2.0;
plisw]=0.0;
for(i=0 ; i<nd2 ; i++)
plisw] += r[i+ld*isw];

printf("\n ** Output **\n\n");

printf("\tierr = %6d\n", ierr);

printf("\t(Modified) periodogram/");

printf("one-sided power spectrum estimation\n");

printf("\t i Freq. Raw Hanning Bartlett");
printf(" Welch Parzen\n");
for(i=0 ; i<nd2 ; i++)

printf("\t%3d %9.41f", i, (double) i/(dt*n));
for(isw=0 ; isw<=iswO ; isw++)

printf("¥%9.41£", rli+ld+isw]);
printf("\n");

printf("\n\tFrequency domain power\n");
n .

printf("\t ;

printf(" Raw Hanning Bartlett Welch Parzen\n");
printf("\t ")

for(isw=0 ; isw<=iswO ; isw++)

printf("%9.41f", plisw]);

printf("\n");

free(iwk);

free(p);

free(wk);

free(r);

return O;

}
(d) Output results

#x ASL_dfpsld **x

** Input *x*

isw=0, 2 to 5

n= 50

Time series data
i time r[il
0 0.0000 2.0000
1 0.5000 0.5367
2 1.0000 -0.0915
3 1.5000 1.1535
4 2.0000 -0.1246
5 2.5000 -1.5388
6 3.0000 -0.2389
7 3.5000 -0.5163
8 4.0000 -1.9219
9 4.5000 -0.4359
10 5.0000 0.5000
11 5.5000 -0.7190
12 6.0000 0.3484
13 6.5000 1.8266
14 7.0000 0.4563
15 7.5000 0.3633
16 8.0000 1.6976
17 8.5000 0.2428
18 9.0000 -0.9391
19 9.5000 0.2888
20 10.0000 -0.5000
21 10.5000 -1.9803
22 11.0000 -0.5428
23 11.5000 -0.0860
24 12.0000 -1.3556
25 12.5000 0.0000

241

ASL_dfpsld, ASL_rfpsld

One-Dimensional Fourier Periodograms

26 13.0000 1.3556
27 13.5000 0.0860
28 14.0000 0.5428
29 14.5000 1.9803
30 15.0000 0.5000
31 15.5000 -0.2888
32 16.0000 0.9391
33 16.5000 -0.2428
34 17.0000 -1.6976
35 17.5000 -0.3633
36 18.0000 -0.4563
37 18.5000 -1.8266
38 19.0000 -0.3484
39 19.5000 0.7190
40 20.0000 -0.5000
41 20.5000 0.4359
42 21.0000 1.9219
43 21.5000 0.5163
44 22.0000 0.2389
45 22.5000 1.5388
46 23.0000 0.1246
47 23.5000 -1.1535
48 24.0000 0.0915
49 24.5000 -0.5367
Time domain power = 1.0000
Signal frequency = 0.6200,

*% Qutput *x*

ierr =

O H-

0.00 0

1 0.0400

2 0.0800

3 0.1200

4 0.1600

5 0.2000

6 0.2400

7 0.2800

8 0.3200

9 0.3600

10 0.4000
11 0.4400
12 0.4800
13 0.5200
14 0.5600
15 0.6000
16 0.6400
17 0.6800
18 0.7200
19 0.7600
20 0.8000
21 0.8400
22 0.8800
23 0.9200
24 0.9600

(Modlfled) per10do§ram/on

0.0016
.0051
.0166
.1841
L2211
.0286
.0117
.0068
.0047
.0036
.0032
.0033
.0042
.0072
.0197
.1906
L2177
.0285
.0122
.0075
.0054
.0044
.0038
.0034
.0016

[eXelelelololololololofolololelololololololo ot o)

Frequency domain power

Raw
0.9968

0.1400

e-sided power spectrum estimation
Welch
0.0000

.0001
.0094
.2408
.2398
.0096
.0002
.0000
.0000
.0000
.0000
.0000
.0000
.0002
.0096
.2403
.2401
.0096
.0002
.0000
.0000
.0000
.0000
.0000
.0000

[elelo ool o

Hanning Bartlett
0.

1.0000

[elelo ool o

Hanning Bartlett
0000 0000
.0002
.0026
.2437
.2446
.0029
.0004
.0001
.0000
.0000
.0000
.0001
.0001
.0004
.0031
.2463
.2462
.0030
.0004
.0001
.0000
.0000
.0000
.0000
.0000

9943

[eXelelelololololololofolololelololololololofot o)

.0000
.0003
.2494
.2498
.0003
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0003
.2496
.2497
.0003
.0000
.0000
.0000
.0000
.0000
.0000
.0000

Welch

0.

242

9999

Parzen
0.0000
.0006
.0369
.2116
.2121
.0373
.0006
.0000
.0000
.0000
.0000
.0000
.0000
.0006
.0373
.2121
.2121
.0373
.0006
.0000
.0000
.0000
.0000
.0000
.0000

[eXelelelololololololofolololelololololololoot o]

Parzen
0.9991

ASL_dfps2d, ASL_rfps2d
Two-Dimensional Fourier Periodograms

2.16.2 ASL_dfps2d, ASL_rfps2d

(1)

Two-Dimensional Fourier Periodograms

Function
ASL_dfps2d or ASL_rfps2d obtains the (modified) Fourier periodogram of the series w;, j, (jo =0, -+, Nz —
1; jy =0,---,ny — 1). The Fourier periodogram py, r, is defined by the following equation.

2
Np—1ny—1

S~ jzk Jyk
g g w®wWy, VTG
Ja Jy T JxsJy

J==0 jy=0 Ny

kI:Oalv"'v
(1

|5 ky=0,1,---,n, — 1)

Pky ky, =
ey NgNy B

Here, | z] represents the maximum integer that does not exceed z. wg)

(data windows). For a raw Fourier periodogram, w§f) = wg) =10s=0,---,ny—1; 4, =0,---,ny — 1)

and 8 = n;n, are set, and for a modified periodogram 3 is set as follows:

and wg) are the truncation functions

Ng—1 Ny —1

(Z (wj(:))Q)(Z (wj(i’))Q) (when a power modification expression according
B= J==0 Jy=0 to a data window is used)
Ng My (Otherwise)

The periodogram pg, x, corresponds to a half period (period (ns,n,)) and the remainder is obtained from

the relationship as follows.
Prg—keny—ky, = Pky.ky
Prg—ke ky = Pkyyny—ky

Also, the total power of the corresponding series is as follows.
ng—1ny—1

S0 ¥

Jz=0 jy=0

NgNy

Usage
Double precision:

ierr = ASL_dfps2d (nx, ny, r, Ix, ly, isw, iwk, wk);
Single precision:

ierr = ASL.rfps2d (nx, ny, 1, Ix, ly, isw, iwk, wk);

243

ASL_dfps2d, ASL_rfps2d
Two-Dimensional Fourier Periodograms

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

long as for 64bit Integer

R:Single precision real C:Single precision complex
Argument and

Input
No. Type Size nput/
Return Value Output

Contents

1 nx I 1 Input

Length n, in the j, direction of series u;, j,
(See Note (d))

2 ny I 1 Input

Length n, in the j, direction of series u;, j,
(See Note (d))

Values of series u;, j, (See Note (a))

3 T D+ Ixxly Input
Output

Values of Fourier periodogram py,, k, of series
uj,.j, (See Notes (b) and (c))

Ix I 1 Input

Adjustable dimension of array r

5 ly I 1 Input

Second dimension of array r

6 isw I 1 Input

Processing switch (See Note (e))

isw= 0: Calculate the raw Fourier peri-
odogram

isw==1: Calculate the periodogram using a
user-defined data window

isw==42: Calculate the periodogram using
the Hanning window

isw==23: Calculate the periodogram using
the Bartlett window

isw==44: Calculate the periodogram using
the Welch window

isw==5: Calculate the periodogram using
the Parzen window

To use a power modification expression ac-
cording to a data window, set isw > 0; oth-

erwise, set isw < 0.

7 iwk I* 40 Work

Work area

8 wk Dx See Work
Contents

Work area

When isw==1, enter the values of the user-
defined data window. (See Note (e))

Size: nx + 2 X ny + Ix x ly

9 ierr I 1 Output

Error indicator (Return Value)

244

ASL_dfps2d, ASL_rfps2d

Two-Dimensional Fourier Periodograms

(4) Restrictions

isw € {0, 41, +2, £3, +4, +5}

nx > 1
ny > 1

When nx is an odd:
Ix>nx+1
ly > ny

When nx is an even:
Ix > nx + 2
ly > ny

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3030 Restriction (c) was not satisfied.
4000 When isw = 1, the user-defined data win-
dow was wg) =0 (Ju=0,---,n,—1).
4010 When isw = 1, the user-defined data win-
dow was wg) =0 (Jy=0,---,my —1).
(6) Notes

(a) The elements of array r and the values of the series u;, ;, are associated as follows.

Here, j. = 0,---,n, — 1; jyzoa"'v

Ujy,jy 7 r[jx + Ix * Jy]

ny — 1, and no values need be entered in other elements. The

adjustable dimensions of array r should be set so that Ix/2 and ly are odd numbers to

avoid bank conflict of main memory. Usually, when nx, for example, is (a multiple of
4)+2, Ix=nx+4 is set.

(b) The values of the Fourier periodogram p, r, are associated as follows with the elements of array r.

p(kzvky) e r[kX+1X*ky] (kX:O7~.~,an—XJ;ky:O’.u,nyf]_)
|| represents the maximum integer that does not exceed x.
(c) The frequencies (&, ,nk,) corresponding to obtained Fourier periodogram py, r, (ks =0,1,---,n; —
1; ky,=0,1,---,n, — 1) are given as follows:
ks Ny
= ky=0,1,---,| =
=y K3
Y k.o =0.1.--- Ny
- nyA (Y P ’ L 2 J)
v ky —ny Ny
ky=|-2|+1,---,n, —1
ny A (ky = |) J+1my)

where A is the sampling interval.

245

ASL_dfps2d, ASL_rfps2d
Two-Dimensional Fourier Periodograms

(d) The calculations can be performed more efficiently by setting the length nx and ny of the series w;, j,

to a value for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3, 5, etc.,
which are the mixed radix values of FFT). For example, rather than setting nx = 289(=172), it is
usually more efficient to set nx = 300(=22 x 3 x 52), nx = 320(=2°¢ x 5), nx = 384(=27 x 3) or the
like. When the number of data cannot be increased, adjust nx by supplying the required number of
zeros at the end of the data to perform the calculations.

The truncation function (data window) can be changed as follows according to the value of the pro-
cessing switch isw.

sin?(7v;) isw= £2 (Hanning window)
1—|2v; —1] isw= £3 (Bartlett window)
1—(2u; —1)? isw= £4 (Welch window)
w; = 16v;° 0<wv; <1
L= Ou;(v; —1)% PSSy isw= £5 (Parzen window)
1—6vj(vn—jp1 —1)? $<v; <3
16v,—j41° 3 <<l

—

j:) and j = j, and n = n, are set for w](i’) Therefore,

when the data windows shown above are used, the elements ug j, and uj, o of the series u;, ;, do not
affect the calculation of the modified periodogram. To avoid this situation, you should specify values
for nx and ny that are larger by 1 than the lengths of the series for which you actually want to calculate

the periodogram and set the effective data in elements corresponding to 1 and after for j, and j,. The

Here, v; = £, and j = j, and n = n, are set for w

data windows are represented as follows as time (or space) domain functions that are nonzero only for
|z] < 1.

1
w = cos? 7;—;6 Hanning window
1— |z Bartlett window
w(x) =19 122 Welch window
1 — 6% 4 6|z <1
* +3 2] |1x <3 Parzen window
A1-fa) <l <1
Also, to use user-defined data window values wx) and wg), set isw = +£1, set the values in work array

wk as follows:

wkli] = wi (e =0, g — 1), wking +jy] = wi¥ Gy =0,--+,ny — 1)
and then call this function.

From its definition, the raw periodogram should be regarded as an approximation of a discrete Fourier
transform of the autocorrelation function. Since the effective data length of the autocorrelation function
of a discrete function having effective number of data n is 2n — 1, approximating the power spectrum
of a general function by a raw periodogram corresponds to truncating the function by using a square
truncation function w(k) for which one period is given as follows.

1 k=0,1,---,n—1
w(k) = Ol
0 Otherwise

When the frequency is f for the Fourier transform of the square function, a Si?f type function form is
assumed having a sidelobe that is not small around the central frequency. Therefore, when a periodic
function is sampled, for example, by simply truncating it using a width that is not an integer multiple of

one period, since the raw periodogram will be the convolution of the Fourier transform of the periodic

246

ASL_dfps2d, ASL_rfps2d
Two-Dimensional Fourier Periodograms

(i)

function for which the power spectrum is to be obtained and the % type function in the frequency

domain, an excess frequency component called leakage occurs. To suppress this kind of leakage, simple
truncation is not performed, and a truncation function having a small sidelobe in the frequency domain,
such as the Hanning window, is used. However, in general, the more the leakage is suppressed, the
more the result of the discrete Fourier transform widens and blurs. Therefore, when estimating the
power spectrum, you must select a suitable truncation function according to your objectives, that is,

according to whether the spectral width or the central frequency is to be the problem, for example.

To raise the resolution (sampling interval in the frequency domain) % of the discrete Fourier transform,
you should increase the number of sample data n or increase the sampling interval T. However, to
raise the precision of the power spectrum estimate while holding the sampling interval and resolution
fixed, a technique is often used of taking m groups of samples for which the number of samples is n,
obtaining the modified periodogram for each of those m groups, and then taking the average of those
values. In this case, a technique is also proposed in which the m groups of sample data are taken from

the series so that they overlap. For details, refer to the Reference Bibliography.

When obtaining the power spectrum, the property related to the frequency transition of the Fourier
transform, that is, the multiplication by e2™V=1fot in the time (or space) domain, is associated with
the shifting of the frequency by fy in the frequency domain, and a technique is often used of reducing
the number of data points required for the calculation in which the central frequency of the power
spectrum is shifted in advance, using the property that the function shape does not change. This kind
of operation is known as modulation. However, Ix=nx+1 (when nx is odd) or

Ix=nx+2 (when nx is even)

and ly=ny.

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(7) Example

(a)

Problem
Use the sampling interval A to discretize the waveform defined by the following equation and estimate

the power spectrum by calculating the Fourier periodogram.

f(z,y) = cos 2w frx + cos 27 fay

Input data

Sampling data

rfjx + Ix * jy] = f(jxA,jyA) (jx =0,1,---,nx—1; j, =0,1,---,ny — 1).
Here, A = 0.5.

nx, ny and isw.

Main program

/* C interface example for ASL_dfps2d */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <asl.h>

int main()
{

int n0=8,isw0=4;
int nx;

int ny;

double *r;

int 1x;

int ly;

int isw;

247

ASL_dfps2d, ASL_rfps2d
Two-Dimensional Fourier Periodograms

int *iwk;

int niwk=40;

double *wk;

int nwk;

int ierr;

int i,j,m,nd2,is;

double *p,t,tx,ty,dt,dfx,dfy,f0,f1,£2;

printf(" *x%x ASL_dfps2d ***\n");
printf("\n ** Input **\n\n");

nx=n0;

ny=n0;

1x=n0+2;

ly=ny;
nwk=nx+2*ny+1x*ly;

R

= (double *)malloc((size_t)(sizeof (double) * (1lx*1ly*(isw0+2))));
if (r == NULL)

N

printf("no enough memory for array r\n");
return -1;

wk = (double *)malloc((size_t)(sizeof (double) * nwk));
if(wk == NULL)

printf("no enough memory for array wk\n");

) return -1;

p = (double *)malloc((size_t)(sizeof(double) * (isw0+2)));
if(p == NULL)

{

printf("no enough memory for array p\n");
return -1;

iwk = (int *)malloc((size_t) (sizeof(int) * niwk));
if (iwk == NULL)

printf("no enough memory for array iwk\n");
return -1;

printf("\t isw=0, 2 to %6d\n", iswO+1);
printf("\t nx=%6d\n\t ny=%6d\n\n", nx,ny);
dt=0.5;

£0=1.0/(2.0%dt) ;

£1=0.62%£0;

£2=0.14%£0;

nd2=(int) (nx+1)/2;

dfx=1.0/(dt*nx) ;

dfy=1.0/(dt*ny) ;

plisw0+1]1=0.0;

for(j=0 ; j<ny ; j++)

{

ty=(double) j*dt;
for(i=0 ; i<nx ; i++)

tx=(double) ix*dt;
t=cos(2.0*xM_PIxflxtx)+cos(2.0¥M_PI*f2*ty);
r[i+lx* (j+ly*(isw0+1))]=t;
pliswO+1] += (txt);

}

;[isw0+1] /= (double) (nx*ny);
printf("\tTime series data r[i+%3d*jl\n", 1x);
printf(" i/j");
for(j=0 ; j<ny ; j++)

printf("%9d", j);
printf("\n");
printf(" ——mmmm "y,
Printf(Mommmm oo \n");
for(i=0 ; i<nx ; i++)

printf("}%5d", i);
for(j=0 ; j<ny ; j++)

printf("%9.41f", rli+lx*(j+ly*(isw0+1))]);
printf("\n");

}
printf("\n");
printf("\tTime domain power =%9.41f\n", p[isw0+1]);

printf("\tSignal frequency =(%9.41f, %9.41f)\n", f1, £2);
1s=0;
for(,isw=0 ; isw<=iswO ; isw++)

for(j=0 ; j<ny ; j++)
for(i=0 ; i<nx ; i++)
ri+lx*(j+ly*isw)]=r[i+lx*(j+ly*(isw0+1))];
if (isw != 0)
is=isw+1;

248

ASL_dfps2d, ASL_rfps2d

Two-Dimensional Fourier Periodograms

ierr = ASL_dfps2d(nx, ny, &r[lxxly*isw], 1lx, ly, is, iwk, wk);

plisw]=0.0;
%f (nx%2==0)
m=nd2-1;
for(j=0 ; j<my ; j++)
for(i=1 ; i<m ;

i++)
p[iswj+=2.0*r[i+1x*(j+1y*isw)];
for(j=0 ; j<ny ; j++)
plisw]+=r[1x*(j+ly*isw)]+r [m+lx*(j+ly*isw)];

}
else
{
m=nd2;
for(j=0 ; j<ny ; j++)
for(i=1 ; i<m ; i++)
p[iswj+=2.0*r[i+1x*(j+1y*isw)];
for(j=0 ; j<ny ; j++)
plisw]+=r[1x*(j+ly*isw)];
}
}
printf("\n *x Output **\n\n");

printf("\tierr = %6d\n", ierr);

isw=0;
printf("\t(Modified) periodogram (Raw)\n");
printf("\tFrequency domain power=%9.41f\n", plisw]);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(ny+1)/2 ; j++)

printf ("%8.21f", j*dfy);
printf("\n");
printf(" ")
printf(" -—= \n");
for(i=0 ; i<nd2 ; i++)

printf(" %8.21f", i*dfx);
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.41f", rli+lx*x(j+ly*isw)]);
for(j=0 ; j<(my+1)/2 ; j++)

printf("%8.41f", rli+lx*x(j+ly*isw)]);
printf("\n");

}
printf("\n");

isw=1;
printf("\t(Modified) periodogram (Hanning)\n");
printf ("\tFrequency domain power=%9.41f\n", plisw]);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(ny+1)/2 ; j++)

printf("%8.21f", jxdfy);
printf("\n");
printf(" ")
printf(" -—= \n");
for(i=0 ; i<nd2 ; i++)

printf(" Y%8.21f", i*dfx);
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.41f", r[i+lx*x(j+ly*isw)]);
for(j=0 ; j<(ny+1)/2 ; j++)

printf("%8.41f", rli+lx*(j+ly*isw)]);
printf("\n");

}
printf("\n");

isw=2;
printf("\t(Modified) periodogram (Bartlett)\n");
printf("\tFrequency domain power=%9.41f\n", plisw]);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(ny+1)/2 ; j++)

printf("Y%8.21f", jxdfy);
printf("\n");
printf(" "y,
printf(" _— \n");
for(i=0 ; i<nd2 ; i++)

249

ASL_dfps2d, ASL_rfps2d

Two-Dimensional Fourier Periodograms

printf("

printf("%8.41f",
for(j=0 ; j<(ny+1)/2 ; j++)

%8.21£", ixdfx);
for(j=(ny+1)/2 ; j<my ; j++)

rli+lx*x(j+ly*isw)]);

printf("%8.41f", rli+lx*(j+ly*isw)]);
printf("\n");

}
printf("\n")

isw=3;

s

printf("\t(Modified) periodogram (Welch)\n");
printf("\tFrequency domain power=%9.41f\n", plisw]);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(uy+1)/2 ; j++)

printf("%8.21f", jxdfy);

printf("\n")

’

printf("

printf("

for(i=0 ; i<nd2 ; i++)

printf("

printf("%8.41f",
for(j=0 ; j<(ny+1)/2 ; j++)

%8.21£", ixdfx);
for(j=(ny+1)/2 ; j<ny ; j++)

____\nn);

rli+lx*x(j+ly*isw)]);

printf("%8.41f", rli+lx*(j+lyxisw)]);
printf("\n");

}
printf("\n")

H

isw=4;
printf("\t(Modified) periodogram (Parzen)\n");
printf("\tFrequency domain power=%9.41f\n", plisw]);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(uy+1)/2 ; j++)
j*dfy);

printf("%8.21f",

printf("\n")

’

Printf(" o "y
printf(" ———\n");
for(i=0 ; i<nd2 ; i++)
printf(" Y%8.21f", i*dfx);
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.41f", rli+lxx(j+ly*isw)]);
for(j=0 ; j<(ny+1)/2 ; j++)
printf("%8.41f", rli+lx*(j+lyxisw)]);
printf("\n");
}
free(iwk);
free(p);
free(wk);
free(r);
return O;
}
(d) Output results
***x ASL_dfps2d ***
*% Input *%
isw=0, 2 to 5
nx= 8
ny= 8
Time series data r[i+ 10%j]
i/j 0 1 2 3 4 5 6
0 2.0000 1.9048 1.6374 1.2487 0.8126 0.4122 0.1237 0
1 0.6319 0.5367 0.2693 -0.1194 -0.5555 -0.9559 -1.2444 -1.
2 0.2710 0.1759 -0.0915 -0.4803 -0.9163 -1.3168 -1.6053 -1.
3 1.9048 1.8097 1.5423 1.1535 0.7174 0.3170 0.0285 -0.
4 1.0628 0.9676 0.7002 0.3115 -0.1246 -0.5250 -0.8135 -0.
5 0.0489 -0.0462 -0.3136 -0.7024 -1.1384 -1.5388 -1.8274 -1.
6 1.6374 1.5423 1.2748 0.8861 0.4500 0.0496 -0.2389 -0.
7 1.4818 1.3866 1.1192 0.7304 0.2944 -0.1060 -0.3946 -0.
Time domain power = 1.0626
Signal frequency =(0.6200, 0.1400)

*% Output *x*

250

7

.0020

3662
7270
0932
9352
9491
3606
5163

ASL_dfps2d, ASL_rfps2d

Two-Dimensional Fourier Periodograms

ierr 0
(Modified) periodogram (Raw)

Frequency domain power= 0.9717
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0158 0.0188 0.0350 0.2150 0.0218 0.2150 0.0350
0.25 0.0000 0.0000 0.0000 0.0000 0.0239 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.1352 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0781 0.0000 0.0000
(Modified) periodogram (Hannln%)
Frequency domain power=
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0001 0.0054 0.0632 0.0105 0.0632 0.0054
0.25 0.0000 0.0000 0.0013 0.0095 0.0056 0.0236 0.0013
0.50 0.0000 0.0000 0.0000 0.0204 0.0814 0.0204 0.0000
0.75 0.0000 0.0000 0.0000 0.0205 0.0820 0.0205 0.0000
(Modified) periodogram (Bartlett)
Frequency domain power= 0.5835
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0000 0.0009 0.0820 0.0109 0.0820 0.0009
0.25 0.0000 0.0000 0.0002 0.0122 0.0025 0.0178 0.0002
0.50 0.0000 0.0005 0.0000 0.0156 0.0855 0.0156 0.0000
0.75 0.0000 0.0004 0.0000 0.0095 0.0762 0.0191 0.0000
(Modified) periodogram (Welch)
Frequency domain power= 0.7072
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0000 0.0001 0.1263 0.0124 0.1263 0.0001
0.25 0.0000 0.0000 0.0000 0.0140 0.0014 0.0127 0.0000
0.50 0.0002 0.0003 0.0010 0.0195 0.1065 0.0054 0.0009
0.75 0.0002 0.0003 0.0008 0.0064 0.0941 0.0142 0.0009
(Modified) periodogram (Parzen)
Frequency domain power= 0.4909
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0002 0.0093 0.0253 0.0070 0.0253 0.0093
0.25 0.0000 0.0001 0.0022 0.0022 0.0127 0.0279 0.0064
0.50 0.0000 0.0000 0.0006 0.0171 0.0558 0.0323 0.0030
0.75 0.0000 0.0000 0.0013 0.0206 0.0485 0.0214 0.0014

251

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

2.16.3 ASL_dfps3d, ASL_rfps3d

(1)

Three-Dimensional Fourier Periodograms

Function
ASL_dfps3d or ASL_rfps3d obtains the (modified) Fourier periodogram of the series u;, j, j. (jo = 0, -, Ny —
L; jy =0,---,ny —1; j. = 0,---,n, — 1). The Fourier periodogram p, x, . is defined by the following

equation.
2
nzilnyilnzil Jzk Jyky izk
(=), (), (2) —2my/—I(H e+t I20s)
Z Z: E:wjz Wy "W " Ujg 5,5 € me My ons
Jz=0 ijO 72=0
Ply ky k. =

NgNyN [
(kz =0,1,--- [%]; ky =0,1,---,ny — L;k, =0,1,---,n, — 1)

Here, |x] represents the maximum integer that does not exceed z. wg), w](i’) and w](j

(@) _) = () = 1

) are the truncation

functions (data windows). For a raw Fourier periodogram, w (Jo=0,---,np—1; j, =

Ja Jy
0,---,ny—1; 4, =0,---,n,—1) and 8 = nynyn, are set, and for a modified periodogram [is set as follows:
ng—1 Mgy —1 n,—1
B (Z (w§f))2)(Z (wj(z))2)(Z (w](f))2) (when a power modification expression according
B = Jo=0 Jy=0 J==0 to a data window is used)
NgNyN (Otherwise)

The periodogram py, &, k. corresponds to a half period (period (ns,ny,7n.)) and the remainder is obtained

from the relationship as follows.

p’ﬂx_km»ny_ky»nz_kz = pkm,ky7kz
Prg—ke ky ks = Pkyyny—ky,n.—k.
Prg—keny—ky k. = Pka,ky,n:—ks

Also, the total power of the corresponding series is as follows.

Ng—1ny—1n,—1

ST gy s ¥

Jz=0 jy=0 j>=0

NNy,

Usage
Double precision:

ierr = ASL_dfps3d (nx, ny, nz, r, Ix, ly, 1z, isw, iwk, wk);
Single precision:

ierr = ASL_rfps3d (nx, ny, nz, 1, Ix, ly, lz, isw, iwk, wk);

252

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I int as for 32bit Integer
long as for 64bit Integer

R:Single precision real C:Single precision complex
Argument and

Input
No. Type Size nput/
Return Value Output

Contents

1 nx I 1 Input | Length n, in the j, direction of series u;, j, ;.

(See Note (d))

2 ny I 1 Input | Length n, in the j, direction of series u;, j, ;.

(See Note (d))

3 nz I 1 Input | Length n, in the j, direction of series u;, j, ;.

(See Note (d))

4 r D+ Ixxlyx lz | Input | Values of series uj, ;, ;. (See Note (a))
{R*} Output | Values of Fourier periodogram py, , k. of se-

ries u;, j, j. (See Notes (b) and (c))

Input | Adjustable dimension of array r

Ix

Input | Second dimension of array r

1z Input | Third dimension of array r

||| ot
| bt | [
=== =

isw Input | Processing switch (See Note (e))

isw= 0: Calculate the raw Fourier peri-
odogram

isw==1: Calculate the periodogram using a
user-defined data window

isw==42: Calculate the periodogram using
the Hanning window

isw=43: Calculate the periodogram using
the Bartlett window

isw==44: Calculate the periodogram using
the Welch window

isw==45: Calculate the periodogram using
the Parzen window

To use a power modification expression ac-
cording to a data window, set isw > 0; oth-
erwise, set isw < 0.

9 iwk I* 60 Work | Work area

10 wk {D*} See Work | Work area

Rx Contents When isw==1, enter the values of the user-
defined data window. (See Note (e))
Size: nx + 2 X (ny + nz) + Ix x ly x 1z

11 ierr I 1 Output | Error indicator (Return Value)

253

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

(4) Restrictions

(a) isw € {0, +1,+2, +3, +4, £5}

(b) nx > 1
ny > 1
nz > 1
(¢) When nx is an odd:
Ix > nx+1, Ix is even
ly > ny
1z > nz
When nx is an even:
Ix > nx + 2, Ix is even
ly > ny
1z > nz

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3030 Restriction (c) was not satisfied.
4000 When isw = 1, the user-defined data win-
dow was w§f) =0 (j=0,---,n, —1).
4010 When isw = 1, the user-defined data win-
dow was wg) =0 (jy=0,---,ny—1).
4020 When isw = 1, the user-defined data win-
dow was w§-j) =0 (j.=0,---,n,—1).
(6) Notes

(a) The elements of array r and the values of the series u;, ;, ;. are associated as follows.
Wjggyg < Tl 10k (Jy + 1y % o)

Here, jo =0,---,nz—1; j, =0,---,ny —1; 7, =0,---,n,—1 and no values need be entered in other
elements. The adjustable dimensions of array r should be set so that 1x/2, ly, and 1z are odd
numbers to avoid bank conflict of main memory. Also, to increase speed, calculations are
executed even for elements outside areas where data is set within array r. Usually, when

nx, for example, is (a multiple of 4)+2, Ix=nx+4 is set.

(b) The values of the Fourier periodogram py, x, . are associated as follows with the elements of array r.

plha, ky k) < rlke +1x% (ky + 1y x k)]
(szoval_%J7ky:077ny_17 kZZO,"',’l’LZ—l)

|] represents the maximum integer that does not exceed z.

254

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

(c) The frequencies (&, , Mk, ,Ck.) corresponding to obtained Fourier periodogram pg, k., .
(ky =0,1,---, %]; k,=0,1,---,ny — 1 k, =0,---,n, — 1) are given as follows:
ks

fk,znzA (kx =0,1,- ’LTJ)
"’ ky=0,1 My

Nk, = Zgény (y vn’ aL2J)
nyA (ky = L%J +1,--,ny — 1)
k. N

G, = %énz %Z%i””tfp
nA (k- L7J+1,- cns— 1)

where A is the sampling interval.

(d) The calculations can be performed more efficiently by setting the length nx, ny and nz of the series
uj, i, .. to a value for which the mixed radix FFT algorithm operates effectively (multiples of 2, 3, 5,
etc., which are the mixed radix values of FFT). For example, rather than setting nx = 289(=172), it
is usually more efficient to set nx = 300(=22 x 3 x 52), nx = 320(=25 x 5), nx = 384(=2" x 3) or the
like. When the number of data cannot be increased, adjust nx by supplying the required number of
zeros at the end of the data to perform the calculations.

(e) The truncation function (data window) can be changed as follows according to the value of the pro-
cessing switch isw.

sin’(7v;) isw= £2 (Hanning window)
1—|2v; —1] isw= £3 (Bartlett window)
1—(20; —1)? isw= +4 (Welch window)
w; = 16v;° 0<wvj<1i
1—6v;(v; — 1)2 Loy, <t
vi(v; = 1) s 1 v 3 isw= +5 (Parzen window)
1-— 6vj(vn,j+1 -].) 5 S Uj S 1
16V, j11° 3 <<

()

jCL‘

(v)
Jy
n = n, are set for wg). Therefore, when the data windows shown above are used, the elements uo j, ;. ,

Here, v; = %, and j = j, and n = n, areset forw; ’, j = j, and n = n, are set for w;”’, and j = j, and
uj, 0,5, and uj, ; o of the series u;, ;, ;. do not affect the calculation of the modified periodogram. To
avoid this situation, you should specify values for nx, ny and nz that are larger by 1 than the lengths
of the series for which you actually want to calculate the periodogram and set the effective data in
elements corresponding to 1 and after for j;, j, and j,. The data windows are represented as follows
as time (or space) domain functions that are nonzero only for |z| < 1.

w = cos? % Hanning window
1— |z Bartlett window
w(z) = 1—a? Welch window
{ L= 62+ 6lzf Jaf < % } Parzen window
20-fe)* L<el <t

Also, to use user-defined data window values w](-:), w](i’) and wﬁ-j), set isw = %1, set the values in work
array wk as follows:

Wk[JX] :WJ(::) (JX :0,---,le— 1)7Wk[nx +Jy] :W_](j/) (JV = 0,---,Dy - 1)7

wk[nerny +Jz] :WJ(ZZ) (JZ = Ov"'an -]‘)
and then call this function.

255

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

(f)

(1)

From its definition, the raw periodogram should be regarded as an approximation of a discrete Fourier
transform of the autocorrelation function. Since the effective data length of the autocorrelation function
of a discrete function having effective number of data n is 2n — 1, approximating the power spectrum
of a general function by a raw periodogram corresponds to truncating the function by using a square

truncation function w(k) for which one period is given as follows.
1 k=0,1,---,n—1
w(k) = oL
0 Otherwise

When the frequency is f for the Fourier transform of the square function, a Sir}f type function form is

assumed having a sidelobe that is not small around the central frequency. Therefore, when a periodic
function is sampled, for example, by simply truncating it using a width that is not an integer multiple of
one period, since the raw periodogram will be the convolution of the Fourier transform of the periodic
function for which the power spectrum is to be obtained and the % type function in the frequency
domain, an excess frequency component called leakage occurs. To suppress this kind of leakage, simple
truncation is not performed, and a truncation function having a small sidelobe in the frequency domain,
such as the Hanning window, is used. However, in general, the more the leakage is suppressed, the
more the result of the discrete Fourier transform widens and blurs. Therefore, when estimating the
power spectrum, you must select a suitable truncation function according to your objectives, that is,

according to whether the spectral width or the central frequency is to be the problem, for example.

To raise the resolution (sampling interval in the frequency domain) % of the discrete Fourier transform,
you should increase the number of sample data n or increase the sampling interval 7. However, to
raise the precision of the power spectrum estimate while holding the sampling interval and resolution
fixed, a technique is often used of taking m groups of samples for which the number of samples is n,
obtaining the modified periodogram for each of those m groups, and then taking the average of those
values. In this case, a technique is also proposed in which the m groups of sample data are taken from

the series so that they overlap. For details, refer to the Reference Bibliography.

When obtaining the power spectrum, the property related to the frequency transition of the Fourier
transform, that is, the multiplication by e2™V=1fot in the time (or space) domain, is associated with
the shifting of the frequency by fo in the frequency domain, and a technique is often used of reducing
the number of data points required for the calculation in which the central frequency of the power
spectrum is shifted in advance, using the property that the function shape does not change. This kind
of operation is known as modulation. However, Ix=nx+1 (when nx is odd) or

Ix=nx+2 (when nx is even)

ly=ny and lz=nz.

This function is not thread-safe in the sequential version and the MPI version of the libraries without
OpenMP.

(7) Example

(a)

(b)

Problem
Use the sampling interval A to discretize the waveform defined by the following equation and estimate

the power spectrum by calculating the Fourier periodogram.
f(z,y, z) = cos 27 fix + cos 27 foy + cos 27 f3z

Input data
Sampling data

256

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

r[jx +Ix* (Jy +ly *Jz)] = f(ijvijhjZA)

(]m =0,1,---,nx-1; 5,=0,1,---,ny — 1; j, :0,1,---,nz—1).
Here, A = 0.5.

nx, ny, nz and isw.

Main program

/* C interface example for ASL_dfps3d */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <asl.h>

int main()
{

int n0=8,isw0=4;
int nx;

int ny;

int nz;

double *r;

int 1x;

int ly;

int 1z;

int isw;

int *iwk;

int niwk=60;

double *wk;

int nwk;

int ierr;

int i,j,k,m,nd2,is;
double *p,t,tx,ty,tz,dt,dfx,dfy,dfz,f0,f1,f2,£3;

printf(" #%% ASL_dfps3d **x\n");
printf("\n *#x Input **\n\n");

nx=n0;

ny=n0;

nz=n0;

1x=(n0+2) /2*2;

ly=ny;

1z=nz;

nwk=nx+2* (ny+nz)+1x*x1ly*lz;

= (double *)malloc((size_t)(sizeof(double) * (lx*ly*lz*(isw0+2))));
if(r == NULL)

printf("no enough memory for array r\n");
return -1;

(double * Jmalloc((size_t) (sizeof (double) * nwk));
1f(wk == NULL)

printf("no enough memory for array wk\n");
return -1;

= (double *)malloc((size_t) (sizeof (double) * (isw0+2)));
£(p == NULL)

Y

printf("no enough memory for array p\n");
return -1;

iwk = (1nt * Jmalloc((size_t) (sizeof(int) * niwk));
if (iwk == NULL)

printf("no enough memory for array iwk\n");
return -1;

printf("\t isw=0, 2 to %6d\n", iswO+1);
prlgtf("\t nx—76d\n\t ny= 76d\n\t nz=Y%6d\n\n", nx,ny,nz);
dt=0.5

f0=1. 0/(2 0*dt) ;

£1=0.62%£0;

£2=0.14*£0;

£3=0.55%f0;

nd2=(int) (nx+1)/2

dfx=1.0/(dt*nx) ;

afy=1.0/(dt*ny) ;

dfz=1.0/(dt*nz);

plisw0+1]1=0.0;

{or(k=0 ; k<nz ; k++)

tz=(double) kxdt;
for(j=0 ; j<ny ; j++)

ty=(double) j*dt;
for(i=0 ; i<nx ; i++)

257

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

tx=(double) ix*dt;

t=cos(2.0*M_PIxfixtx)+cos(2.0xM_PI*f2*ty)
+cos(2.0%M_PI*f3*tz);

r[i+lx* (j+1ly* (k+1lz*(isw0+1)))]=t;

pliswO+1] += (txt);

}

}

plisw0+1] /= (double) (nx*ny*nz);
printf("\tTime series data\n");
{or(k=0 ; k<nz ; k++)

printf("\t r[i+}3d*(j+%3d*%3d)]\n", 1x,ly,k);
printf(" i/j");
for(j=0 ; j<ny ; j++)

printf("%94", j);
printf("\n");
printf(" -—= ");
printf(" —_— \n");
for(i=0 ; i<nx ; i++)

printf("%56d", i);
for(j=0 ; j<mny ; j++)

printf("%9.41f", rli+lx*(j+ly*(k+lz*(isw0+1)))]);
printf("\n");

}
printf("\n");

}

printf("\n");

printf("\tTime domain power =%9.41f\n", p[isw0+1]);

printf("\tSignal frequency =(%9.41f, %9.41f, %9.41f)\n", f1, 2, £3);
is=0;

for(isw=0 ; isw<=iswO ; isw++)

for(k=0 ; k<nz ; k++)
for(j=0 ; j<ny ; j++)
for(i=0 ; i<nx ; i++)
r[i+lx*x (j+ly*(k+lz*isw))]=
T [i+1x* (j+ly* (k+1lz*(isw0+1)))];
if (isw != 0)
is=isw+l;

ierr = ASL_dfps3d(nx, ny, nz, &r[lxxlyxlzxisw],
1x, ly, 1z, is, iwk, wk);

plisw]=0.0;

%f (nx%2==0)

m=nd2-1;
for(k=0 ; k<nz ; k++)
for(j=0 ; j<ny ; j++)
for(i=1 ; i<m ; i++)
plisw]+=2.0
r [1+1xx (J+1ly (k+lz*isw))];
for(k=0 ; k<nz ; k++)
for(j=0 ; j<ny ; j++)
pliswl+=r[1x* (j+1ly* (k+lz*isw))]
+r [m+1x* (j+1y* (k+lzxisw))];

}
else
{
m=nd2;
for(k=0 ; k<nz ; k++)
for(j=0 ; j<ny ; j++)
for(i=1 ; i<m ; i++)
plisw]+=2.0
r [i+1xx (J+ly (k+lzxisw))];
for(k=0 ; k<nz ; k++)
for(j=0 ; j<ny ; j++)
pliswl+=r[1lx*(j+1ly*(k+lz*isw))];
}
}
printf("\n ** Output **\n\n");

printf("\tierr = %6d\n", ierr);

isw=0;

printf("\t(Modified) periodogram (Raw)\n");

printf("\tFrequency domain power=%9.41f\n", plisw]);
for(k=(nz+1)/2 ; k<nz ; k++)

printf("\tz-frq=%8.21f\n", (k-nz)*dfz);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(ny+1)/2 ; j++)

258

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

printf("%8.21f", jxdfy);
printf("\n");
printf(" -=");
printf(" -— \n");
for(i=0 ; i<nd2 ; i++)

printf(" %8.21f", ixdfx);
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.41f", rli+lx*(j+ly*(k+lz*isw))]);
for(j=0 ; j<(uy+1)/2 ; j++)

printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]);
printf("\n");

}
printf("\n");
}
%or(k=0 ; k<(nz+1)/2 ; k++)

printf("\tz-frq=%8.21f\n", k*dfz);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(ny+1)/2 ; j++)
printf("%8.21f", jxdfy);
printf("\n");
printf(" -=");
printf(" —_— \n");
for(i=0 ; i<nd2 ; i++)

printf(" Y%8.21f", ixdfx);
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.41f", rli+lx*(j+ly*(k+lz*isw))]);
for(j=0 ; j<(ny+1)/2 ; j++)

printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]);
printf("\n");

}
printf("\n");

}
printf("\n");

isw=1;

printf("\t(Modified) periodogram (Hanning)\n");
printf("\tFrequency domain power=%9.41f\n", plisw]);
%or(k=(nz+1)/2 ; k<nz ; k++)

printf("\tz-frq=%8.21f\n", (k-nz)*dfz);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(ny+1)/2 ; j++)
printf("%8.21f", j*dfy);
printf("\n");
printf(" ")
printf(" -—= \n");
for(i=0 ; i<nd2 ; i++)

printf(" Y%8.21f", ixdfx);
for(j=(ny+1)/2 ; j<any ; j++)

printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]);
for(j=0 ; j<(ny+1)/2 ; j++)

printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]);
printf("\n");

}
printf("\n");
}
%or(k=0 ; k<(nz+1)/2 ; k++)

printf("\tz-frq=%8.21f\n", k*dfz);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(ny+1)/2 ; j++)
printf ("%8.21f", j*dfy);
printf("\n");
printf(" -=");
printf(" -—= \n");
for(i=0 ; i<nd2 ; i++)

printf(" %8.21f", i*dfx);
for(j=(ny+1)/2 ; j<mny ; j++)

printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]);
for(j=0 ; j<(ny+1)/2 ; j++)

printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]);

259

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

printf("\n");
%rintf("\n");
%rintf("\n") ;
;E?;gé("\t(Modified) periodogram (Bartlett)\n");

printf("\tFrequency domain power=%9.41f\n", plisw]);
for(k=(nz+1)/2 ; k<nz ; k++)

printf("\tz-frq=%8.21f\n", (k-nz)*dfz);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(ny+1)/2 ; j++)
printf("%8.21f", j*dfy);
printf("\n");
printf(" — "y,
printf(" —— \n");
for(i=0 ; i<nd2 ; i++)

printf(" %8.21f", ixdfx);
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.41f", r[i+lx*x(j+ly*(k+lz*isw))]
for(j=0 ; j<(ny+1)/2 ; j++)

printf("%8.41f", rli+lx*(j+ly*(k+lzxisw))]
printf("\n");

}
printf("\n");
}
for(k=0 ; k<(nz+1)/2 ; k++)

printf("\tz-frq=/8.21f\n", kxdfz);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(uy+1)/2 ; j++)
printf("%8.21f", j*dfy);
printf("\n");
printf(" —_— "y,
printf(" —— \n");
for(i=0 ; i<nd2 ; i++)

printf(" %8.21f", ixdfx);
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]
for(j=0 ; j<(ny+1)/2 ; j++)

printf("%8.41f", rli+lx*(j+ly*(k+lzxisw))]
printf("\n");

}
printf("\n");
}
printf("\n");
isw=3;
printf("\t(Modified) periodogram (Welch)\n");

printf("\tFrequency domain power=%9.41f\n", plisw]);
for(k=(nz+1)/2 ; k<nz ; k++)

printf("\tz-frq=%8.21f\n", (k-nz)*dfz);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(my+1)/2 ; j++)
printf("%8.21f", j*dfy);
printf("\n");
printf(" —_— "y,
printf(" —_— \n");
for(i=0 ; i<nd2 ; i++)

printf(" %8.21f", ixdfx);
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]
for(j=0 ; j<(ny+1)/2 ; j++)
printf("%8.41f", rli+lx*(j+ly*(k+lzxisw))]
printf("\n");
}
printf("\n");
}
for(k=0 ; k<(nz+1)/2 ; k++)
printf("\tz-frq=/8.21f\n", kxdfz);

260

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(ny+1)/2 ; j++)
printf("%8.21f", j*dfy);
printf("\n");
printf(" -=");
printf(" -—= \n");
for(i=0 ; i<nd2 ; i++)

printf(" %8.21f", ixdfx);
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]);
for(j=0 ; j<(ny+1)/2 ; j++)

printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]);
printf("\n");

}
printf("\n");
}
printf("\n");
isw=4;
printf("\t(Modified) periodogram (Parzen)\n");

printf("\tFrequency domain power=%9.41f\n", plisw]);
%or(k=(nz+1)/2 ; k<nz ; k++)

printf("\tz-frq=%8.21f\n", (k-nz)*dfz);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(ny+1)/2 ; j++)
printf("%8.21f", j*dfy);
printf("\n");
printf(" "),
printf(" - \n");
for(i=0 ; i<nd2 ; i++)

printf(" %8.21f", ixdfx);
for(j=(ny+1)/2 ; j<ny ; j++)

printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]);
for(j=0 ; j<(ny+1)/2 ; j++)

printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]);
printf("\n");

¥
printf("\n");
}
f:or(k=0 ; k<(nz+1)/2 ; k++)

printf("\tz-frq=%8.21f\n", kxdfz);
printf(" x/y-freq");
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.21f", (j-ny)*dfy);
for(j=0 ; j<(ny+1)/2 ; j++)
printf("%8.21f", j*dfy);
printf("\n");
printf(" ——");
printf(" - \n");
for(i=0 ; i<nd2 ; i++)

printf(" %8.21f", ixdfx);
for(j=(ny+1)/2 ; j<ny ; j++)
printf("%8.41f", r[i+lx*(j+ly*(k+lz*isw))]);
for(j=0 ; j<(ny+1)/2 ; j++)
printf("%8.41f", r[i+lx*(j+ly*(k+lz*xisw))]);
printf("\n");
¥
printf("\n");
}
printf("\n");
free(iwk);
free(p);

free(wk);
free(r);

return O;

}
(d) Output results

***x ASL_dfps3d ***

*k Input *%

261

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

isw=0, 2 to 5
nx= 8
ny= 8
nz= 8
Time series data
rli+ 10%(j+ 8% 0)]
i/j 0 1 2 3 4 5 6
0 3.0000 2.9048 2.6374 2.2487 1.8126 1.4122 1.1237 1
1 1.6319 1.5367 1.2693 0.8806 0.4445 0.0441 -0.2444 -0
2 1.2710 1.1759 0.9085 0.5197 0.0837 -0.3168 -0.6053 -0
3 2.9048 2.8097 2.5423 2.1535 1.7174 1.3170 1.0285 O
4 2.0628 1.9676 1.7002 1.3115 0.8754 0.4750 0.1865 O
5 1.0489 0.9538 0.6864 0.2976 -0.1384 -0.5388 -0.8274 -0
6 2.6374 2.5423 2.2748 1.8861 1.4500 1.0496 0.7611 0
7 2.4818 2.3866 2.1192 1.7304 1.2944 0.8940 0.6054 O
rli+ 10%(j+ 8% 1)]
i/j 0 1 2 3 4 5 6
0 1.8436 1.7484 1.4810 1.0923 0.6562 0.2568 -0.0327 -O0.
1 0.4754 0.3803 0.1129 -0.2759 -0.7119 -1.1123 -1.4009 -1.
2 0.1146 0.0194 -0.2480 -0.6367 -1.0728 -1.4732 -1.7617 -1.
3 1.7484 1.6532 1.3858 0.9971 0.5610 0.1606 -0.1279 -0.
4 0.9064 0.8112 0.5438 0.1550 -0.2810 -0.6814 -0.9700 -1.
5 -0.1075 -0.2027 -0.4701 -0.8588 -1.2949 -1.6953 -1.9838 -2.
6 1.4810 1.3858 1.1184 0.7297 0.2936 -0.1068 -0.3953 -0.
7 1.3253 1.2301 0.9627 0.5740 0.1379 -0.2625 -0.5510 -0.
rli+ 10x(j+ 8% 2)]
i/j 0 1 2 3 4 5 6
0 1.0489 0.9538 0.6864 0.2976 -0.1384 -0.5388 -0.8274 -0.
1 -0.3192 -0.4144 -0.6818 -1.0705 -1.5066 -1.9070 -2.1955 ~-2.
2 -0.6800 -0.7752 -1.0426 -1.4313 -1.8674 -2.2678 -2.5563 -2.
3 0.9538 0.8586 0.5912 0.2025 -0.2336 -0.6340 -0.9225 ~-1.
4 0.1117 0.0166 -0.2508 -0.6396 -1.0756 -1.4761 -1.7646 -1.
5 -0.9021 -0.9973 -1.2647 -1.6534 -2.0895 -2.4899 -2.7784 -2.
6 0.6864 0.5912 0.3238 -0.0649 -0.5010 -0.9014 -1.1899 -1.
7 0.5307 0.4355 0.1681 -0.2206 -0.6567 -1.0571 -1.3456 -1.
r[i+ 10x(j+ 8% 3)]
i/j 0 1 2 3 4 5 6
0 2.4540 2.3588 2.0914 1.7027 1.2666 0.8662 0.5777 O
1 1.0859 0.9907 0.7233 0.3346 -0.1015 -0.5019 -0.7904 -O.
2 0.7250 0.6298 0.3624 -0.0263 -0.4624 -0.8628 -1.1513 ~-1.
3 2.3588 2.2636 1.9962 1.6075 1.1714 0.7710 0.4825 O
4 1.5168 1.4216 1.1542 0.7655 0.3294 -0.0710 -0.3595 -0.
5 0.5029 0.4078 0.1404 -0.2484 -0.6844 -1.0849 -1.3734 -1.
6 2.0914 1.9962 1.7288 1.3401 0.9040 0.5036 0.2151 0
7 1.9357 1.8406 1.5732 1.1844 0.7484 0.3480 0.0594 -0.
rli+ 10x(j+ 8% 4)]
i/j 0 1 2 3 4 5 6
0 2.8090 2.7138 2.4464 2.0577 1.6216 1.2212 0.9327 O
1 1.4409 1.3457 1.0783 0.6896 0.2535 -0.1469 -0.4354 -0.
2 1.0800 0.9849 0.7175 0.3287 -0.1073 -0.5077 -0.7963 -0.
3 2.7138 2.6187 2.3513 1.9625 1.5265 1.1261 0.8375 0
4 1.8718 1.7766 1.5092 1.1205 0.6844 0.2840 -0.0045 -O.
5 0.8580 0.7628 0.4954 0.1067 -0.3294 -0.7298 -1.0183 -1.
6 2.4464 2.3513 2.0839 1.6951 1.2591 0.8587 0.5701 0
7 2.2908 2.1956 1.9282 1.5395 1.1034 0.7030 0.4145 O
r[i+ 10%(j+ 8% 5)]
i/j 0 1 2 3 4 5 6
0 1.2929 1.1977 0.9303 0.5416 0.1055 -0.2949 -0.5834 -0.
1 -0.0752 -0.1704 -0.4378 -0.8265 -1.2626 -1.6630 -1.9515 -2.
2 -0.4361 -0.5312 -0.7987 -1.1874 -1.6235 -2.0239 -2.3124 -2.
3 1.1977 1.1025 0.8351 0.4464 0.0103 -0.3901 -0.6786 -0.
4 0.3557 0.2605 -0.0069 -0.3956 -0.8317 -1.2321 -1.5206 ~-1.
5 -0.6582 -0.7533 -1.0207 -1.4095 -1.8455 -2.2459 -2.5345 -2.
6 0.9303 0.8351 0.5677 0.1790 -0.2571 -0.6575 -0.9460 -1.
7 0.7746 0.6795 0.4121 0.0233 -0.4127 -0.8131 -1.1017 -1.
rli+ 10%(j+ 8% 6)]
i/j 0 1 2 3 4 5 6
0 1.4122 1.3170 1.0496 0.6609 0.2248 -0.1756 -0.4641 -O0.
1 0.0441 -0.0511 -0.3185 -0.7072 -1.1433 -1.5437 -1.8322 -1.
2 -0.3168 -0.4119 -0.6793 -1.0681 -1.5041 -1.9045 -2.1931 -2.
3 1.3170 1.2219 0.9545 0.5657 0.1297 -0.2707 -0.5593 -0.
4 0.4750 0.3798 0.1124 -0.2763 -0.7124 -1.1128 -1.4013 -1.
5 -0.5388 -0.6340 -0.9014 -1.2902 -1.7262 -2.1266 -2.4151 -2.
6 1.0496 0.9545 0.6871 0.2983 -0.1377 -0.5381 -0.8267 -0.
7 0.8940 0.7988 0.5314 0.1427 -0.2934 -0.6938 -0.9823 -1.
rli+ 10%(j+ 8% 7)]
i/j 0 1 2 3 4 5 6

262

7

.0020
.3662
L7270
.9068
.0648
.9491
.6394
.4837

1545
5226
8834
2496
0917
1055
5170
6727

9491
3172
6781
0443
8863
9001
3117
4673

.4560

9122
2730

.3608

4812
4951

.0934

0623

.8110

5571
9180

.7158

1262
1401

.4484
.2927

7051
0733
4341
8003
6423
6562
0677
2234

5858
9539
3148
6810
5230
5369
9484
1041

ASL_dfps3d, ASL_rfps3d

Three-Dimensional Fourier Periodograms

0 2.8910 2.7958 2.5284 2.1397 1.7036 1.3032 1.0147
1 1.5229 1.4277 1.1603 0.7716 0.3355 -0.0649 -0.3534
2 1.1620 1.0669 0.7995 0.4107 -0.0253 -0.4257 -0.7143
3 2.7958 2.7007 2.4333 2.0445 1.6085 1.2080 0.9195
4 1.9538 1.8586 1.5912 1.2025 0.7664 0.3660 0.0775
5 0.9400 0.8448 0.5774 0.1886 -0.2474 -0.6478 -0.9364
6 2.5284 2.4333 2.1659 1.7771 1.3410 0.9406 0.6521
7 2.3728 2.2776 2.0102 1.6215 1.1854 0.7850 0.4965
Time domain power = 1.6439
Signal frequency =(0.6200, 0.1400, 0.5500)
** Qutput **
ierr =
(Modified) perlodogram (Raw)
Frequency domain power= 1.55631
z-frg= -1.00
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frqg= -0.75
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0000 0.0000 0.0000 0.0071 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frq= -0.50
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0000 0.0000 0.0000 0.2513 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frq= -0.25
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0000 0.0000 0.0000 0.0136 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frqg= 0.00
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0158 0.0188 0.0350 0.2150 0.0583 0.2150 0.0350
0.25 0.0000 0.0000 0.0000 0.0000 0.0239 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.1352 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0781 0.0000 0.0000
z-frqg= 0.25
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0000 0.0000 0.0000 0.0136 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frq= 0.50
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0000 0.0000 0.0000 0.2513 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frq= 0.75
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0000 0.0000 0.0000 0.0071 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(Modified) periodogram (Hann1 %
Frequency domaln power= .0699
z-frq= .00
x/y-freq -1.00 -0.76 -0.50 -0.25 0.00 0.25 0.50
0.00 0.0000 0.0000 0.0000 0.0001 0.0004 0.0001 0.0000
0.25 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

263

0.8930
-0.4751
-0.8360

0.7978
-0.0442
-1.05681

0.5304

0.3747

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

z-frq= -0.75
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0000 0.0078 0.0310 0.0078 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0019 0.0078 0.0019 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frq= -0.50
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0000 0.0176 0.0704 0.0176 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0044 0.0176 0.0044 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frqg= -0.25
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0009 0.0164 0.0045 0.0053 0.0009 0.0000
0.25 0.0000 0.0000 0.0002 0.0027 0.0004 0.0023 0.0002 0.0000
0.50 0.0000 0.0000 0.0000 0.0034 0.0136 0.0034 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0034 0.0137 0.0034 0.0000 0.0000
z-frq= 0.00
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0001 0.0036 0.0427 0.0087 0.0427 0.0036 0.0001
0.25 0.0000 0.0000 0.0009 0.0064 0.0041 0.0158 0.0009 0.0000
0.50 0.0000 0.0000 0.0000 0.0136 0.0543 0.0136 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0137 0.0547 0.0137 0.0000 0.0000
z-frq= 0.25
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0009 0.0053 0.0045 0.0164 0.0009 0.0000
0.25 0.0000 0.0000 0.0002 0.0006 0.0031 0.0058 0.0002 0.0000
0.50 0.0000 0.0000 0.0000 0.0034 0.0136 0.0034 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0034 0.0137 0.0034 0.0000 0.0000
z-frq= 0.50
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0000 0.0176 0.0704 0.0176 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0044 0.0176 0.0044 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frqg= 0.75
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0000 0.0078 0.0310 0.0078 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0019 0.0078 0.0019 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(Modified) periodogram (Bartlett)
Frequency domain power= 1.0593
z-frq= -1.00
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frq= -0.75
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0002 0.0000 0.0079 0.0346 0.0050 0.0000 0.0002
0.25 0.0000 0.0000 0.0000 0.0014 0.0062 0.0009 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0001 0.0003 0.0001 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000 0.0000
z-frqg= -0.50
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0005 0.0000 0.0165 0.0907 0.0165 0.0000 0.0005
0.25 0.0000 0.0001 0.0000 0.0030 0.0165 0.0030 0.0000 0.0001
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0001 0.0005 0.0001 0.0000 0.0000
z-frqg= -0.25
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0001 0.0141 0.0037 0.0074 0.0001 0.0000
0.25 0.0000 0.0000 0.0000 0.0022 0.0005 0.0017 0.0000 0.0000
0.50 0.0000 0.0001 0.0000 0.0021 0.0113 0.0021 0.0000 0.0001
0.75 0.0000 0.0001 0.0000 0.0012 0.0096 0.0024 0.0000 0.0001
z-frq= 0.00

264

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

0.00 0.0000 0.0000 0.0007 0.0594 0.0070 0.0594 0.0007 0.0000
0.25 0.0000 0.0000 0.0001 0.0089 0.0017 0.0129 0.0001 0.0000
0.50 0.0000 0.0003 0.0000 0.0113 0.0622 0.0113 0.0000 0.0003
0.75 0.0000 0.0003 0.0000 0.0069 0.0554 0.0139 0.0000 0.0003
z-frq= 0.25
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0001 0.0074 0.0037 0.0141 0.0001 0.0000
0.25 0.0000 0.0000 0.0000 0.0011 0.0011 0.0030 0.0000 0.0000
0.50 0.0000 0.0001 0.0000 0.0021 0.0113 0.0021 0.0000 0.0001
0.75 0.0000 0.0001 0.0000 0.0014 0.0108 0.0027 0.0000 0.0001
z-frq= 0.50
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0005 0.0000 0.0165 0.0907 0.0165 0.0000 0.0005
0.25 0.0000 0.0001 0.0000 0.0030 0.0165 0.0030 0.0000 0.0001
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0001 0.0005 0.0001 0.0000 0.0000
z-frqg= 0.75
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0002 0.0000 0.0050 0.0346 0.0079 0.0000 0.0002
0.25 0.0000 0.0000 0.0000 0.0009 0.0065 0.0015 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0001 0.0003 0.0001 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0001 0.0008 0.0002 0.0000 0.0000
(Modified) periodogram (Welch)
Frequency domain power= 1.2154
z-frq= -1.00
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0000 0.0005 0.0030 0.0005 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0001 0.0003 0.0001 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000
z-frq= -0.75
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0001 0.0001 0.0004 0.0051 0.0357 0.0028 0.0003 0.0001
0.25 0.0000 0.0000 0.0000 0.0005 0.0038 0.0003 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0001 0.0009 0.0001 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000
z-frq= -0.50
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0003 0.0004 0.0011 0.0103 0.1247 0.0186 0.0011 0.0004
0.25 0.0000 0.0000 0.0001 0.0011 0.0131 0.0020 0.0001 0.0000
0.50 0.0000 0.0000 0.0000 0.0001 0.0009 0.0001 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0001 0.0017 0.0002 0.0000 0.0000
z-frqg= -0.25
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0001 0.0122 0.0012 0.0090 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0013 0.0002 0.0009 0.0000 0.0000
0.50 0.0000 0.0000 0.0001 0.0017 0.0095 0.0005 0.0001 0.0000
0.75 0.0000 0.0000 0.0001 0.0005 0.0078 0.0012 0.0001 0.0000
z-frq= 0.00
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0000 0.1034 0.0186 0.1034 0.0000 0.0000
0.25 0.0000 0.0000 0.0000 0.0115 0.0021 0.0104 0.0000 0.0000
0.50 0.0002 0.0003 0.0008 0.01568 0.0862 0.0044 0.0007 0.0003
0.75 0.0002 0.0002 0.0007 0.0052 0.0760 0.0115 0.0007 0.0002
z-frq= 0.25
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0000 0.0090 0.0012 0.0122 0.0001 0.0000
0.25 0.0000 0.0000 0.0000 0.0010 0.0001 0.0012 0.0000 0.0000
0.50 0.0000 0.0000 0.0001 0.0016 0.0086 0.0004 0.0001 0.0000
0.75 0.0000 0.0000 0.0001 0.0006 0.0083 0.0012 0.0001 0.0000
z-frq= 0.50
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0003 0.0004 0.0011 0.0186 0.1247 0.0103 0.0011 0.0004
0.25 0.0000 0.0000 0.0001 0.0020 0.0133 0.0011 0.0001 0.0000
0.50 0.0000 0.0000 0.0000 0.0004 0.0031 0.0003 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0004 0.0001 0.0000 0.0000

z-frqg= 0.75
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

265

ASL_dfps3d, ASL_rfps3d
Three-Dimensional Fourier Periodograms

.0001

0.00 0.0001 0.0001 0.0003 0.0028 0.0357 0.0051 0.0004 O
0.25 0.0000 0.0000 0.0000 0.0003 0.0037 0.0005 0.0000 0.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0005 0.0001 0.0000 0.0000
(Modified) periodogram (Parzen)
Frequency domain power= 0.9132
z-frqg= -1.00
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0001 0.0023 0.0053 0.0023 0.0001 0.0000
0.25 0.0000 0.0000 0.0001 0.0010 0.0023 0.0010 0.0001 0.0000
0.50 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frq= -0.75
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0006 0.0092 0.0209 0.0089 0.0006 0.0000
0.25 0.0000 0.0000 0.0003 0.0039 0.0090 0.0038 0.0002 0.0000
0.50 0.0000 0.0000 0.0000 0.0002 0.0005 0.0002 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
z-frq= -0.50
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0014 0.0162 0.0313 0.0112 0.0005 0.0000
0.25 0.0000 0.0000 0.0005 0.0062 0.0120 0.0044 0.0002 0.0000
0.50 0.0000 0.0000 0.0000 0.0003 0.0007 0.0004 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0003 0.0007 0.0003 0.0000 0.0000
z-frqg= -0.25
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0001 0.0030 0.0125 0.0054 0.0016 0.0012 0.0000
0.25 0.0000 0.0000 0.0008 0.0019 0.0010 0.0030 0.0010 0.0000
0.50 0.0000 0.0000 0.0001 0.0032 0.0106 0.0063 0.0006 0.0000
0.75 0.0000 0.0000 0.0003 0.0046 0.0108 0.0048 0.0003 0.0000
z-frqg= 0.00
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0001 0.0047 0.0117 0.0007 0.0117 0.0047 0.0001
0.25 0.0000 0.0000 0.0011 0.0006 0.0055 0.0140 0.0033 0.0001
0.50 0.0000 0.0000 0.0003 0.0089 0.0291 0.0168 0.0016 0.0000
0.75 0.0000 0.0000 0.0007 0.0107 0.0253 0.0111 0.0007 0.0000
z-frq= 0.25
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0012 0.0016 0.0054 0.0125 0.0030 0.0001
0.25 0.0000 0.0000 0.0002 0.0005 0.0086 0.0110 0.0019 0.0000
0.50 0.0000 0.0000 0.0002 0.0048 0.0151 0.0085 0.0008 0.0000
0.75 0.0000 0.0000 0.0003 0.0047 0.0110 0.0049 0.0003 0.0000
z-frq= 0.50
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0005 0.0112 0.0313 0.0162 0.0014 0.0000
0.25 0.0000 0.0000 0.0003 0.0055 0.0155 0.0081 0.0007 0.0000
0.50 0.0000 0.0000 0.0001 0.0010 0.0028 0.0014 0.0001 0.0000
0.75 0.0000 0.0000 0.0000 0.0003 0.0008 0.0003 0.0000 0.0000
z-frq= 0.75
x/y-freq -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.00 0.0000 0.0000 0.0006 0.0089 0.0209 0.0092 0.0006 0.0000
0.25 0.0000 0.0000 0.0002 0.0039 0.0091 0.0040 0.0003 0.0000
0.50 0.0000 0.0000 0.0000 0.0003 0.0006 0.0003 0.0000 0.0000
0.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

266

2.17 LAPLACE TRANSFORM

2.17.1 ASL_dflara, ASL_rflara
Inverse Laplace Transform (Rational Function)

(1) Function

ASL_dflara or ASL_rflara obtains the inverse Laplace transform:

y+ioco
f@®) = L/ F(s)e*tds (0 <t < 0)

21t S ieo

of the rational function:

Q(S) o Q1™ + Q2S”q_1 + -+ QngS t Qng+1

F(s) = =
() P(S) p1s"P +P25"p71 + -+ PnpS + Prp+1
(np < NG P, Prptrq 41y dng+1 - real number)
(2) Usage

Double precision:
ierr = ASL_dflara (p, np, q, nq, t, n, a, ip, k1, k2, &r, {, er, isw, wl);
Single precision:

ierr = ASL_rflara (p, np, q, nq, t, n, a, ip, k1, k2, &r, {, er, isw, wl);

267

ASL_dflara, ASL_rflara
Inverse Laplace Transform (Rational Function)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
A t and Input
No. FEUIMCIE an Type Size nput/ Contents
Return Value Output
1 p D+ np+1 Input | Coefficients of denominator polynomial P(s)
Rx
2 np I 1 Input | Degree of denominator polynomial P(s)
q Dx nq+1 Input | Coefficients of numerator polynomial Q(s)
R«
4 nq I 1 Input | Degree of numerator polynomial Q(s)
5 t D+ n Input Calculation points of original function f(t)
R«
6 n I 1 Input | Dimension of array t
7 a D 1 Input | Value of a for determining approximation er-
R ror (See 2.1.2(1) (d))
8 ip I 1 Input | Degree p of Euler’s transformation (See
2.1.2(1) (d))
9 k1 D 1 Input Parameter k; for determining truncation
R term count (See 2.1.2(1) (d))
10 k2 D 1 Input | Parameter ko for determining truncation
R term count (See 2.1.2(1) (d))
11 r Dx 1 Input | isw=1: 0.0 is output to r.
Rx Output | isw=2: Input Abscissa of convergence which
is known.
isw=3: Output Abscissa of convergence
which is calculated.
(See Note (b))
12 f Dx n Output | Value of original functionf(¢) for each tli]
R (i=0, ---, n—1)
13 er D n Output | Truncation errors calculating each f[i] (i=0,
Rx T Il*].)

268

ASL_dflara, ASL_rflara

Inverse Laplace Transform (Rational Function)

A t and Input
No. FEUmEnt atl Type Size nput/ Contents
Return Value Output
14 isw I 1 Input | isw=1: When function F(s) is regular for
R(s) > 0.
isw=2: Input abscissa of convergence to r.
(when F(s) is irregular for R(s) > 0 and ab-
scissa of convergence is known.)
isw=3: Output Abscissa of convergence to r.
(when Abscissa of convergence is unknown.)
15 wl D« 2 x (ip +| Work | Work area
Rx np + 1)
16 ierr I 1 Output | Error indicator (Return Value)
(4) Restrictions
(a) n>
(b) tfi] >00 (i=0,---,n—1)
(c) p[0] > 0.0
(d) 0 <ngq<np
(e) a>0.0
(f) ip>0
(g) k1 >0.0
k2 > 0.0
(h) 1> 0.0
(i) isw € {1,2,3}
(5) Error indicator (Return Value)
ierr value Meaning Processing
0 Normal termination.
1000 t[i] was equal to 0.0. See Notes (a) and (b).
(t=0,---,n—1)
1100 t[i] was less than 0.0. Processing of t[i] is aborted and process-
(t=0,---,n—1) ing continues of t[i + 1] and later.
2000 r was less than 0.0. Set 0.0 to r and processing continues.
(If isw = 2.)
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (c) was not satisfied.
3020 Restriction (d) was not satisfied.
3030 Restriction (e) was not satisfied.
3040 Restriction (f) was not satisfied.
3050 Restriction (g) was not satisfied.
3060 Restriction (i) was not satisfied.

269

ASL_dflara, ASL_rflara
Inverse Laplace Transform (Rational Function)

(6) Notes

(a) You can easily control error by changing the values of a, ip, k1 and k2.

(b) If isw is equal to 1, r<0.0 is performed.
If isw is equal to 2, when F'(s) is regular for R(s) > «, input 7 to r, where v is greater than or equal
to a. If r is less than or equal to 0.0, then 0.0 is used as the value of r.

If isw is equal to 3, abscissa of convergence - is calculated and is used as the value of r.

(¢c) When np is equal to nq, F'(s) can be decomposed as follows:

Q(s) q1
F(s) = ==+ G(s
(s) P(s) m (5)
np—1 np—2 4 ..
where, G(s) = 02° + 05 ot onpn

p1s"P +p25"p_1 + - +pnp+1
If we let g(t) represent the inverse transform of G(s), then:
q1
ft)===6(t) +g(t)
P

Here, §(t) is the Dirac o-function.
Therefore,

) Maximum value (¢ = 0)
f”‘{g(t) (t>0)

(d) When t[i—1]=0.0 is assigned, the value of f(0) is calculated from the formula f(0) = [sF(s)]s=oo-

Maximum value (np = nq)

f0)=9 & (np=ng+1)
0 (np>ng+1)

(7) Example

(a) Problem
Obtain the Laplace transform f(t) of the following rational function that is regular for R(s) > 0:
1
F =
() s+1
for t =1.0, 2.0, 3.0, 4.0 and 5.0.

(b) Input data
p={1, 1}, np=1, q=1, ng=0, n=>5, t={1.0, 2.0, 3.0, 4.0, 5.0}, k1=10.0, k2=0.0, ip=10, a=10.0 and
isw=1.

(¢) Main program

/* C interface example for ASL_dflara */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()
{

double *q;
int nq;
double *p;
int np;
double *t;
int n;
double a;
int ip;
double ki;
double k2;

270

ASL_dflara, ASL_rflara

Inverse Laplace Transform (Rational Function)

double r;
double *ff;
double x*e;
int isw;
double *wl;
int ierr;
int i;

FILE *fp;

fp = fopen("dflara.dat", "r");
if(fp == NULL)

printf("file open error\n");

return -1;
printf(" *x*x ASL_dflara ***\n");
printf("\n *x Input **\n\n");

fscanf(fp, "%d", &np);
fscanf(fp, "%d", &nq);
fscanf(fp, "%d", &n);

fscanf(fp, "%lf", &a);
fscanf(fp, "%d", &ip);
fscanf(fp, "%lf", &kl);
fscanf(fp, "%lf", &k2);
fscanf(fp, "%d", &isw);

p = (double *)malloc((size_t)(sizeof(double) * (np+1)));
if(p == NULL)

printf("no enough memory for array p\n");
return -1;

q = (double *)malloc((size_t)(sizeof (double) * (nq+1l)));
if(q == NULL)

printf("no enough memory for array q\n");

return -1;
}
t = (double *)malloc((size_t)(sizeof(double) * n));
%f(t == NULL)

printf("no enough memory for array t\n");
return -1;

ff = (double *)malloc((size_t)(sizeof(double) * n));
if (ff == NULL)

printf("no enough memory for array ff\n");
return -1;

(-]

e = (double *)malloc((size_t) (sizeof(double) * n));
%f(e == NULL)

printf("no enough memory for array e\n");
return -1;

wl = (double *)malloc((size_t)(sizeof (double) * 2 * (np+ip+1)));
if(wl == NULL)

printf("no enough memory for array wi\n");
return -1;

printf("\tnp= %6d\n", np);
for(i=0 ; i<mp+1l ; i++)

fscanf(fp, "4Llf", &plil);
printf("\tp[%2d]= ¥%8.3g\n", i, pli]l);

printf("\n\tng= %6d\n", nq);
for(i=0 ; i<ng+l ; i++)

fscanf(fp, "4Llf", &qlil);
N printf("\tql %2d]1= ¥%8.3g\n", i, qlil);

printf("\n\tn= %6d\n", n);
for(i=0 ; i<n ; i++)

fscanf(fp, "4Lf", &t[il);
printf("\tt[%2d 1= %8.3g\n", i, t[il);

271

ASL_dflara, ASL_rflara
Inverse Laplace Transform (Rational Function)

}

printf("\n\ta = %8.3g\n", a);
printf("\tip = %6d\n", ip);
printf("\tkl = 8.3g\n", ki1);
printf("\tk2 %8.3g\n", k2);
printf("\tisw= %6d\n", isw);

fclose(fp);

ierr = ASL_dflara(p, np, 9, nq, t, n, a, ip, ki1, k2, &r, ff, e, isw, wl);

printf("\n ** Qutput **\n\n");
printf("\tierr = %6d\n\n", ierr);

printf("\tSolution \n");
printf("\t i t[i] £f[i] e[i]l \n");
for(i=0 ; i<n ; i++)

printf("\t%6d %12.5g %12.5g %12.5g\n", i, t[il, ff[il, el[il);

free(
free(
free(
free(
free(
free(

N N
e e e

£ O +Fhct,QT
ot
e

return O;

}
(d) Output results

%k ASL_dflara ¥

*k Input *%

np= 1

pl 0 1= 1

pl 1 1= 1

nqg= 0

ql 0 1= 1

n= 5

t[0 1= 1

t[1]= 2

t[2]= 3

t[3 1= 4

t[4 1= 5

a = 10

ip = 10

k1l = 10

k2 = 0

isw= 1

** Qutput **

ierr = 0

Solution
i t[i] ff[i] elil]
0 1 0.36788 -1.5402e-06
1 2 0.13534 -1.637e-06
2 3 0.049788 -1.6359e-06
3 4 0.018317 -1.5501e-06
4 5 0.0067389 -1.397e-06

272

ASL_dflage, ASL_rflage
Inverse Laplace Transform (General Function)

2.17.2 ASL_dflage, ASL _rflage

Inverse Laplace Transform (General Function)

(1) Function

ASL _dflage or ASL_rflage obtains the inverse Laplace transform:

(0 <t <o)

1 y+ioco
)= — F(s)e*td
0 / (s)e*tds

of the general function F(s).

(2) Usage
Double precision:
ierr = ASL_dflage (fi, t, n, a, ip, k1, k2, 1, {, er, wl);
Single precision:
ierr = ASL_rflage (fi, t, n, a, ip, k1, k2, r, {, er, wl);

(3) Arguments and Return Value

D:Double precision real = Z:Double precision complex

R:Single precision real C:Single precision complex

as for 32bit Integer}

) nt
" | long as for 64bit Integer

A t and I t
No. FEHIMEnt atl Type Size nput/ Contents
Return Value Output

1 fi D — Input | Name of function that calculates the imagi-
R nary part of image function F(s)

2 t Dx n Input | Calculation points of original function f(t)
Rx

3 n I 1 Input | Dimension of array t

4 a D 1 Input | Value of a for determining approximation er-
R ror (See 2.1.2(1)(d))

5 ip I 1 Input | Degree p of Euler’s transformation (See

2.1.2(1)(d))

6 k1 D 1 Input Parameter k; for determining truncation
R term count (See 2.1.2(1)(d))

7 k2 D 1 Input | Parameter ko for determining truncation
R term count (See 2.1.2(1)(d))

8 r D 1 Input | Abscissa of convergence
R

9 f Dx n Output | Value of original functionf(¢) for each tli]
R (i=0, - -, n—1)

273

ASL_dflage, ASL_rflage
Inverse Laplace Transform (General Function)

A t and I t
No. retment at Type Size nput/ Contents
Return Value Output
10 er D+ n Output | Truncation errors calculating each f[i] (i=0,
R* Y .7 n—l)
11 wl Dx 2x(ip+2) | Work | Work area
R
12 ierr I 1 Output | Error indicator (Return Value)
(4) Restrictions
(a) n>0
(b) tlij>00 (¢=0,---,n—1)
(c) a>0.0
(d) ip>0
(e) k1 > 0.0
k2> 0.0
(f) r>0.0
(5) Error indicator (Return Value)
ierr value Meaning Processing
0 Normal termination.
1000 t[i] was less than or equal to 0.0. Processing of t[i] is aborted and process-
(t=0,---,n—1) ing continues of t[i + 1] and later.
2000 r was less than 0.0. Set 0.0 to r and processing continues.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (c) was not satisfied.
3020 Restriction (d) was not satisfied.
3030 Restriction (e) was not satisfied.
(6) Notes

(a) The functions fi is created as follows.

double FORTRAN fi(Complex_d x*s)
{

return (fi(xs));
}
In addition, this function evaluates the value of imaginary part of function F'(s) in the range:
R(s) > 0.0,3(s) > 0.0

When F(s) is a many valued function, care is required so that the correct branch is calculated within

the function fi.

(b) You can easily control error by changing the values of a, ip, k1 and k2.

(¢c) When F(s) is regular for (s) > «, input « to r, where v is greater than or equal toa. If r is less than

of equal to 0.0, then 0.0 is used as the value of r.

274

ASL_dflage, ASL_rflage
Inverse Laplace Transform (General Function)

(7) Example

(a)

Problem

Obtain the Laplace transform f(t) of the following function that is regular for R(s) > 0:

F(s)=eV*

for ¢t =1.0, 2.0, 3.0, 4.0 and 5.0.

Input data

function name: fi.
t={1.0, 2.0, 3.0, 4.0, 5.0}, n=>5, k1=10.0, k2=0.0, ip=10, a=10 and r=0.0.

Main program

/% C interface example for ASL_dflage */

#include <stdio.h>
#include <stdlib.h>
#include <complex.h>

#include <asl.h>

#ifdef __cplusplus

extern "C"
{

#endif
#ifdef __STD

double fi(double _Complex *s)

#else
double fi(s)

C

double _Complex *s;

#endif
{

double _Complex y,z;
double xij;
y = csqrt(*s);
if(creal(y) > 0.0)
{

y =

z = cexp(y);

A

xi = cimag(z);
return xij;

}
#ifdef __cplusplus

¥

#endif
int main()
{

double *
int n;

t;

double a;

int ip;

double ki;
double k2;

double r
double *
double *
double *
int ierr
int i;

FILE *fp

5
ff;
e;
wl;

H

s

fp = fopen("dflage.dat",
if(£p == NULL)

printf("file open error\n");

**kx ASL_dflage *x*\n");
** Input **\n\n");

return -1;
printf("
printf("\n
fscanf(fp, "%d", &n);
fscanf(fp, "%lf", &a);
fscanf(fp, "%d", &ip);
fscanf(fp, "%Llf", &ki1);
fscanf(fp, "%lf", &k2);
fscanf(fp, "%lf", &r);

t = (double *)malloc((size_t)(sizeof (double)
NULL)

if(t ==

printf("no enough memory for array t\n");

275

*n));

ASL_dflage, ASL_rflage
Inverse Laplace Transform (General Function)

return -1;

ff = (double *)malloc((size_t)(sizeof(double) * n));
if (ff == NULL)

printf("no enough memory for array ff\n");

return -1;
}
e = (double *)malloc((size_t) (sizeof(double) * n));
%f(e == NULL)

printf("no enough memory for array e\n");
return -1;

wl = (double *)malloc((size_t)(sizeof(double) * 2 x (ip+2)));
if(wl == NULL)

printf("no enough memory for array wiln");
return -1;

printf("\tn= %6d\n", n);
for(i=0 ; i<n ; i++)

fscanf(fp, "%1f", &t[i]);
printf("\tt[%2d 1= %8.3g\n", i, t[il);

printf("\n\ta = %8.3g\n", a);
printf("\tip = %6d\n", ip);
printf("\tkil %8.3g\n", ki1);
printf("\tk2 = %8.3g\n", k2);
printf("\tr %8.3g\n", r);

fclose(fp);
ierr = ASL_dflage(fi, t, n, a, ip, ki, k2, r, ff, e, wl);

printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);

printf("\tSolution \n");
printf("\t i t[i] £f[i] e[i]l \n");
for(i=0 ; i<n ; i++)
printf("\t%6d %12.5g %12.5g %12.5g\n", i, t[i], ££f[i], e[il);
free(t);
free(ff);
free(e);
free(wi);

return O;

}
(d) Output results

*xx ASL_dflage *x*

*k Input *%

n= 5

t[0 1= 1
t[1]= 2
t[2]= 3
t[3 1= 4
t[4 1= 5
a = 10

ip = 10

k? = 10

k2 = 0

r = 0

** Qutput **

ierr = 0

Solution
i t[i] f£f[i] eli]
0 1 0.2197 -4.0346e-06
1 2 0.088017 -1.5425e-06
2 3 0.049949 -7.5899e-07
3 4 0.033126 -4.5184e-07
4 5 0.024001 -3.0216e-07

276

2.18 WAVELET TRANSFORM

2.18.1 ASL_dfwthl, ASL_rfwthl
Haar Function Generation

(1) Function
The ASL_dfwthl or ASL_rfwth1 generates the following Haar function, which is required for a one-dimensional

Wavelet transform, on the interval [0, a](a > 0.0).

2 gw(n—1) <z < 55 (n—1/2)
Hypn () = f,/QTm gm(n—1/2) <z < 5hn
0 Otherwise

(2) Usage
Double precision:
ierr = ASL_dfwthl (a, m, n, &c, &bl, &bm, &br);
Single precision:
ierr = ASL_rfwthl (a, m, n, &c, &bl, &bm, &br);
(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
A t and Input
No. FEtment aiy Type Size nput/ Contents
Return Value Output
1 a D 1 Input | Upper bound a of interval [0,a] on which
R Haar function H,,,(x) is to be generated.
2 m I 1 Input | Generation m of Haar function H,,, ().
n I 1 Input | Index n of Haar function H,,,(z) (See Note
(a))-
4 c D 1 Output | Absolute value /2~ of Haar function
R Hipppn () on interval [557(n — 1), 550
5 bl D+ 1 Output | Smaller position 5% (n — 1) at which Haar
R+ function H,,y () rises.
6 bm D« 1 Output | Position 5% (n — 1/2) at which value of Haar
R function H,,,(z) changes from positive to
negative.
7 br D+ 1 Output | Larger position 55n at which Haar function
Rx H,,p () rises.
8 ierr I 1 Output | Error indicator (Return Value)

277

ASL_dfwthl, ASL_rfwthl
Haar Function Generation

(4) Restrictions
(a) a>0
(b) m>0

(¢c) n<2m

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes

(a) This function does not assign a constant term. The fixed value 1/1/a required on the interval [0, a] in
addition to the values assigned by this function for the Haar function used as the base. If the input
data is continuous or the sampled intervals are irregular, this function is used in a Wavelet transform.
If the spacing with which the transformed data was sampled is fixed and there are 2¥ sampled data

(where k is a natural number), the Haar function for the Wavelet transform can be generated by using

the simpler function 2.18.4 {

(7) Example

(a) Problem

When a = 2, compute the Haar function Hsq(z).

ASL_dfwth2
ASL rfwth2

(b) Input data

a =

2,m = 3andn = 4.

(¢) Main program

/* C interface example for ASL_dfwthl */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()

double
int m;
int n;
double
double
double
double

int ierr;
FILE *fp;

fp = fopen("dfwthl.dat", "r");

if (fp

== NULL)

printf("file open error\n");
return -1;

printf
printf

fscanf
fscanf
fscanf

" *k% ASL_dfwthl ***\n");
("\n ** Input **\n\n");
(fp, "Y1f", &a);

(fp, "%d", &m);
(fp, "%d", &n);

ASL_dfwthl, ASL_rfwthl
Haar Function Generation

printf("\ta = %8.3g m = %6d n = %6d\n", a, m, n);
fclose(fp);
ierr = ASL_dfwthi(a, m, n, &c, &bl, &bm, &br);

printf("\n *x Output **\n\n");
printf("\tierr = %6d\n\n", ierr);
printf("\t c = %8.3g\n", c);
printf("\t bl = %8.3g\n", bl);
printf("\t bm = %8.3g\n", bm);
printf("\t br = %8.3g\n", br);

return O;

}
(d) Output results

sk ASL_dfwthl sk

*k Input *%

[
N

a = 1m-= 2 n

*% Qutput *x*

ierr = 0
c = 2
bl = 0.25
bm = 0.375
br = 0.5

279

ASL_dfwthr, ASL_rfwthr
Wavelet Transform According to Haar Functions

2.18.2 ASL_dfwthr, ASL_rfwthr

Wavelet Transform According to Haar Functions

(1) Function

When the spacing at which the input data {(z;, f(x;))} is sampled is not equally spaced or when the

number of sampled data is not 2* (where k is a natural number), the ASL_dfwthr or ASL_rfwthr computes

the following Wavelet transform according to Haar functions.

(2) Usage
Double precision:
ierr = ASL_dfwthr (xd, yd, nd, mr, nr, dr, imr, inr);
Single precision:

ierr = ASL _rfwthr (xd, yd, nd, mr, nr, dr, imr, inr);
(3) Arguments and Return Value

D:Double precision real Z:Double precision complex

I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value Output
1 xd D+ nd Input | Set of input data z-coordinates {x;}.
()
2 yd Dx nd Input | Set of input data function values {f(z;)}.
1
3 nd I 1 Input | Number of input data V.
4 mr I 1 Input | Maximum value of index m of Haar functions
H,n (2) used for Wavelet transform
5 nr I 1 Input | Maximum value of index n of Haar functions
H,n(2) used for Wavelet transform. Haar
functions up to index n in generation m are
used for Wavelet transform.
6 dr Dx 2™ + nr | Output | Wavelet transform Cp,,,. (See Notes (a) and
{R* } (b))
7 imr I* 2™+ nr—1| Output | Index m information of Wavelet transform
Cynn, which is stored in dr (See Note (b))
8 inr I* 2™+ nr—1| Output | Index n information of Wavelet transform
Cymn, which is stored in dr. (See Note (b))
9 ierr I 1 Output | Error indicator (Return Value)

280

ASL_dfwthr, ASL_rfwthr
Wavelet Transform According to Haar Functions

(4) Restrictions

(a) mr>0

(b) nr < 2mr
(¢) nd < 100000

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes

(a) The mean value of the input data {f(z;)} is stored in dr[0].

(b) The Wavelet transform C,, values are stored in dr[é](i = 1,2,---,2™ 4 nr — 1). The corresponding

index m values are stored in imr[i — 1] and the corresponding index n values are stored in inr[i — 1.

(7) Example

(a) Problem

Compute the Wavelet transform up to m = 4 and n = 2 using the input data which is obtained by the
equally spaced sampling in the interval [0, 1] for the function

f(z) =sin(27z) + %Sin(Gmc) + l

2

Input data

Input data {(x;, f(x;))},nd = 10, mr = 4andnr = 2.

Main program

/*

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()

double *xd;
double *yd;

int nd;

int mr;

int nr;

double *dr;

int *imr;

int *inr;

int ierr;

int i,numresult;

FIL

nr
num

E

*fp;
10;

’

result = (1<<mr) - 1 + nr;
fp = fopen("dfwthr.dat", "r");
if(fp == NULL)

printf("file open error\n");

return -1;

printf(" *#x* ASL_dfwthr **x\n");
printf("\n ** Input **\n\n");

C interface example for ASL_dfwthr */

281

ASL_dfwthr, ASL_rfwthr
Wavelet Transform According to Haar Functions

xd = (double *)malloc((size_t) (sizeof(double) * nd));
if (xd == NULL

printf("no enough memory for array xd\n");
return -1;

yd = (double *)malloc((size_t)(sizeof(double) * nd));
if(yd == NULL)

printf("no enough memory for array yd\n");

return -1;
dr = (double *)malloc((size_t)(sizeof(double) * (numresult+1)
if (dr == NULL)

printf("no enough memory for array dr\n");

return -1;
imr = (int *)malloc((size_t) (sizeof(int) * numresult));
if (imr == NULL)

printf("no enough memory for array imr\n");

return -1;
inr = (int *)malloc((size_t) (sizeof(int) * numresult));
if (inr == NULL)

printf("no enough memory for array inr\n");

return -1;
printf("\tnd = %6d mr = %6d nr = %6d\n\n", nd, mr, nr);

printf("\t i xd yd\n\n");
for(i=0 ; i<nd ; i++)

fscanf(fp, "%1f %1f", &xd[il, &yd[i]);
printf("\t%6d %8.3g %8.3g\n", i, xd[il, yd[i]);
}

fclose(fp);
ierr = ASL_dfwthr(xd, yd, nd, mr, nr, dr, imr, inr);

printf("\n ** Output **\n\n");
printf("\tierr = %6d\n\n", ierr);

printf("\t dr imr inr\n\n");
for(i=0 ; i<numresult ; i++)

printf("\t%8.3g %6d %6d\n", dr[i+1], imr[i], inr[i]);

free(xd);
free(yd);
free(dr);
free(imr);
free(inr);

return O;

}
(d) Output results
xxx ASL_dfwthr **x*
** Input *x*

nd = 10 mr = 3 nr = 8

£
o

i yd
1.28
1.33
1.33
1.28

-0.278
-0.334
-0.334
-0.278

0.5

QCONONPRWNRO
[elelololololoXo o]
HOONOOIPWN -

*% Qutput *x*
ierr = 0

dr imr inr

282

ASL_dfwthr, ASL_rfwthr
Wavelet Transform According to Haar Functions

0.638 0 1
0.128 1 1
-0.0621 1 2
-0.00585 2 1
0.167 2 2
0.0117 2 3
-0.0908 2 4
-0.00827 3 1
4.14e-17 3 2
0.00414 3 3
0.029 3 4
0.00207 3 5
0 3 6
-0.00621 3 7
-0.116 3 8

283

ASL_dfwths, ASL_rfwths
Inverse Wavelet Transform According to Haar Functions

2.18.3 ASL_dfwths, ASL rfwths
Inverse Wavelet Transform According to Haar Functions

(1) Function
When the spacing at which the input data {(z;, f(x;))} is sampled is not equally spaced or when the
number of sampled data is not 2* (where k is a natural number), the ASL_dfwths or ASL_rfwths computes
the approximation of f(z) according to the following inverse Wavelet transform for the Wavelet transform
Cinn according to Haar functions.

(2) Usage
Double precision:
ierr = ASL_dfwths (a, dr, mr, nr, mr2, nr2, imr, inr, fr, xr);
Single precision:

ierr = ASL_rfwths (a, dr, mr, nr, mr2, nr2, imr, inr, fr, xr);

284

ASL_dfwths, ASL_rfwths
Inverse Wavelet Transform According to Haar Functions

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 a D 1 Input | Difference of maximum and minimum values
{R} of input data xz-coordinates. Data is regener-
ated on interval [0, al.
2 dr D« 2™ +nr Input | Wavelet transform Cl,,. (See Note (a))
1

3 mr I 1 Input | Maximum value of m of Haar func-
tions Hppn(z) that were used for Wavelet
transform.

4 nr I 1 Input | Maximum value of n of Haar func-
tions Hp,n(x) that were used for Wavelet
transform.

5 mr2 I 1 Input | Maximum value of index m of Haar func-
tions Hy,p(z) to be used for inverse Wavelet
transform.

6 nr2 I 1 Input | Maximum value of index n of Haar func-
tions Hy,p(z) to be used for inverse Wavelet
transform.

7 imr I* 2™ +nr—1| Input | Index m information of Wavelet transform
Cinn- (See Note (a))

8 inr I* 2™ +nr—1| Input | Index n information of Wavelet transform
Cinn- (See Note (a))

9 fr Dx gmr2+1 Output | Values of f(x) that were regenerated from

{ R*} Wavelet transform Cy,,. (See Note (b))
10 Xr D gmr2+l Output | Values of z-coordinates of f(x) that were re-
{R*} generated from Wavelet transform Cy,,,. (See
Note (b))
11 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

285

ASL_dfwths, ASL_rfwths
Inverse Wavelet Transform According to Haar Functions

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
3030 Restriction (d) was not satisfied.
(6) Notes
(a) The Wavelet transform C,,, values are stored in dr[i](i = 1,2,---,2™ 4+ nr — 1). The corresponding

(b) The values stored in fr are approximations of the original data, and the corresponding z-coordinate

index m values are stored in imr[¢ — 1] and the corresponding index n values are stored in inr[i — 1].

values, which are stored in xr, are equally spaced.

(7) Example

(a) Problem

Compute the inverse Wavelet transform up to m = 4 and n = 2 using the Wavelet transform computed

in the Example of 2.18.2 {

ASL_dfwthr
ASL _rfwthr

Input data

} as the input data.

Wavelet transform {Cy,,,},a =1, mr = 3, nr = 8§, mr2 = 3andur2 = 8.

Main program

/%

C interface example for ASL_dfwths */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int

main()

double a;
double *dr;
int mr;

int nr;

int mr2;
int nr2;
int *imr;
int *inr;
double *fr;
double *xr;
int ierr;
int i,numdata,numresult;
FILE *fp;

3;
8;
mr2 = 3;

= 8:

numdata = (1<<mr) - 1 + nr;
numresult = 1<<(mr2+1);

fp = fopen("dfwths.dat", "r");
if(fp == NULL)

printf("file open error\n");

return -1;

printf(" **x* ASL_dfwths ***\n");
printf("\n ** Input **\n\n");

fscanf(fp, "%Llf", &a);

dr = (double *)malloc((size_t) (sizeof(double) * (numdata+1l)));

%f(dr == NULL)

286

ASL_dfwths, ASL_rfwths

Inverse Wavelet Transform According to Haar Functions

}

printf("no enough memory for array dr\n");
return -1;

imr = (int *)malloc((size_t) (sizeof(int) * numdata));
if (imr == NULL)
printf("no enough memory for array imr\n");
return -1;
inr = (int *)malloc((size_t) (sizeof(int) * numdata));
if (inr == NULL)
printf("no enough memory for array inr\n");
return -1;
f¥(=f(douﬁ%ﬁL*))malloc((size_t)(sizeof (double) * numresult));
i r ==
printf("no enough memory for array fr\n");
return -1;
g§(= (douE%EL*))malloc((size_t)(sizeof (double) * numresult));
if (xr ==

printf("no enough memory for array xr\n");

return -1;
printf("\ta = %8.3g\n", a);
printf("\tmr = %6d nr = %6d\n", mr, nr);
printf("\tmr2 = %6d nr2 = %6d\n\n", mr2, nr2);

dr[0] = 0.0;
printf ("\tdr[0]

%8.3g\n\n", dr[0]);

printf("\t dr imr inr\n\n");
for(i=0 ; i<numdata ; i++)

fscanf(fp, "%lf %d %d", &drl[i+1], &imr[i], &inr[i]);
printf("\t%8.3g %6d %6d\n", dr[i+1], imr[i], inr[i]);
}

fclose(fp);
ierr = ASL_dfwths(a, dr, mr, nr, mr2, nr2, imr, inr, fr, xr);

printf("\n ** Output **\n\n");
printf("\tierr = %6d\n\n", ierr);

printf("\t Xr fr\n\n");
for(i=0 ; i<numresult ; i++)

printf("\t%8.3g %8.3g\n", xr[il, fr[i]);

free(dr);
free(imr);
free(inr);
free(fr);
free(xr);

return O;

(d) Output results

%*k ASL_dfwths *

** Input *x*

a = 1
mr = 3 nr = 8
mr2 = 3 nr2 = 8
dr [0] = 0
dr imr inr
0.638 0 1
0.128 1 1
-0.0621 1 2
-0.00585 2 1
0.167 2 2
0.0117 2 3
-0.0908 2 4
-0.00827 3 1
4.14e-17 3 2
0.00414 3 3
0.029 3 4

287

ASL_dfwths, ASL_rfwths

Inverse Wavelet Transform According to Haar Functions

0.00207

0
-0.00621

-0.

116

*% Output *x*

ierr

Xr

0.0313
0.0938

[eleofolololololololololo ool

.156
.219
.281
.344
.406
.469
.5631
.594
.656
.719
.781
.844
.906
.969

0
fr

.785
.832
.832
.832
.802
LT79
.205
.041
-0.697
-0.709

-0.75

-0.75

-0.75
-0.715
-0.697
-0.041

[eleleolololololo)

WWwww

o~

288

ASL_dfwth2, ASL_rfwth2
Haar Function Generation (Equally Spaced Sampling Data)

2.18.4 ASL_dfwth2, ASL_rfwth2
Haar Function Generation (Equally Spaced Sampling Data)

(1) Function
When the spacing with which the data to be subject to the Wavelet transform was sampled is fixed and
there are N = 2% sampled data (where k is a natural number), the ASL_dfwth2 or ASL_rfwth2 function
generates the following Haar function, which is required for a one-dimensional Wavelet transform, on the
interval [0, 1].

. S m-1)<z<ga(n—1/2)

a 2m 2m
Hpn () = —,/27"1 gw(n—1/2) <z < 55n
0 Otherwise
(2) Usage

Double precision:

ierr = ASL_dfwth2 (na, m, n, &c, lr);
Single precision:

ierr = ASL_rfwth2 (na, m, n, &c, Ir);

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value Output
na I 1 Input | Number of input data N.
2 m I 1 Input | Generation m of Haar function H,,y(z).
n I 1 Input | Index n of Haar function Hy,,(z). (See Note
(a)
4 c Dx 1 Output | Value of Haar function Hp,y, ().
18
5 Ir I* na Output | Sign of value of Haar function H,,,(z).
When the Haar function is positive, 1 is
stored as the value. When the Haar function
is negative, —1 is stored as the value. When
the Haar function is zero, 0 is stored as the
value.
6 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a) na=2% (k must be a natural number less than or equal to 20.)
(b) 0<m<k

(¢) n<2m

289

ASL_dfwth2, ASL_rfwth2
Haar Function Generation (Equally Spaced Sampling Data)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes

(a) This function does not assign a constant term. The fixed value 1 is required on the interval [0,1] in

addition to the values assigned by this function for the Haar function used as the base.

(b) If the data to be transformed is continuous or the sampled intervals are irregular, the function 2.18.1
{ASL_dfwthl

must be used to generate the Haar functions.
ASL_rfwthl

(7) Example

(a) Problem
For 16 z-coordinates that are equally spaced in the interval [0, 1], compute the Haar function Hsy(z).

(b) Input data

na = 16, m = 3andn = 4.
(¢) Main program

/* C interface example for ASL_dfwth2 */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()

int na;
int m;
int n;
double c;
int *1r;
int ierr;
int i;
FILE *fp;
na 16;

fp = fopen("dfwth2.dat", "r");
if(fp == NULL)

printf("file open error\n");

return -1;
printf(" **x* ASL_dfwth2 ***\n");
printf("\n ** Input **\n\n");

fscanf(fp, "%d", &m);
fscanf(fp, "%d", &n);

1r = (int *)malloc((size_t)(sizeof(int) * na));
if(1r == NULL)

printf("no enough memory for array lr\n");
return -1;
printf("\tna = %6d m = %6d n = %6d\n", na, m, n);
fclose(fp);
ierr = ASL_dfwth2(na, m, n, &c, 1r);

printf("\n ** Qutput **\n\n");
printf("\tierr = %6d\n\n", ierr);

290

ASL_dfwth2, ASL_rfwth2
Haar Function Generation (Equally Spaced Sampling Data)

printf("\t c = %8.3g\n\n", c);

printf("\t i 1r\n\n");
for(i=0 ; i<na ; i++)

printf("\t%6d %6d\n", i, 1lr[i]);

free(1r);
return O;
(d) Output results

sk ASL_dfwth2 sk

*k Input *%

]
)

na = 16 m = 3n
** Qutput *x*
ierr = 0

c = 2.83

-
=
o]

OCONONPBWNRO
RPRPOOOOOOO0OO0OOOOOOO

e
(9]
|

291

ASL_dfwtht, ASL_rfwtht
Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)

2.18.5 ASL_dfwtht, ASL_rfwtht
Wavelet Transform According to Haar Functions (Equally Spaced Sampling
Data)

(1) Function
When the spacing at which the input data {(x;, f(x;))} is sampled is equally spaced and the number of
sampled data is 2¥ (where k is a natural number), the ASL_dfwtht or ASL_rfwtht computes the following

Wavelet transform according to Haar functions.
Con = / f(@)Hpp (z)dx
0

(2) Usage
Double precision:
ierr = ASL_dfwtht (xd, yd, nd, mr, nr, &a, dr, imr, inr, iwk);
Single precision:
ierr = ASL_rfwtht (xd, yd, nd, mr, nr, &a, dr, imr, inr, iwk);

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
A t and I t
No. FEHIMELE an Type Size nput/ Contents
Return Value Output
1 xd Dx nd Input | Set of input data z-coordinates {x;}.
R
2 yd D« nd Input | Set of input data function values {f(z;)}.
Rx
3 nd I 1 Input | Number of input data V.
4 mr I 1 Input | Maximum value of index m of Haar functions
H,,.. used for Wavelet transform.
5 nr I 1 Input | Maximum value of index n of Haar functions

H,,.. used for Wavelet transform.
6 a {D*} 1 Output | Upper bound a of integration interval [0, a]

used for Wavelet transform.

Rx
7 dr Dx 2™ + nr | Output | Wavelet transform Cp,,,. (See Notes (a) and
Rx (b))
8 imr I* 2™+ nr—1| Output | Index m information of Wavelet transform
Cinn, which is stored in dr. (See Note (b))
9 inr I* 2™+ nr—1| Output | Index n information of Wavelet transform
Cymn, which is stored in dr. (See Note (b))
10 iwk I* nd Work | Work area
11 ierr I 1 Output | Error indicator (Return Value)

292

ASL_dfwtht, ASL_rfwtht
Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)

(4) Restrictions

(a) nd = 2% (k must be a natural number less than or equal to 20.)
(b) 0<mr<k-1

(¢c) nr < 2mr

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
(6) Notes

(a) The mean value of the input data {f(z;)} is stored in dr[0].

(b) The Wavelet transform C,, values are stored in dr[é](i = 1,2,---,2™" 4+ nr — 1). The corresponding

index m values are stored in imr[¢i — 1] and the corresponding index n values are stored in inr[i — 1].
(7) Example

(a) Problem

Compute the Wavelet transform up to m = 4 and n = 2 using the input data which is obtained by the
equally spaced sampling for the function

f(z) =sin(2mz) + ésin(ﬁﬂ':r) + %

(b) Input data

Input data {(x;, f(x;))},nd = 16, mr = 3andnr = 8.
(¢) Main program

/* C interface example for ASL_dhwtht */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()

double *xd;
double *yd;
int nd;

int mr;

int nr;
double a;
double *dr;
int *imr;
int *inr;
int *iwk;
int ierr;
int i,numresult;
FILE *fp;

16;
5
8;
numresult = (1<<mr) - 1 + nr;
fp = fopen("dfwtht.dat", "r");
if(fp == NULL)

g
R
"

printf("file open error\n");
return -1;

printf(" *#x* ASL_dfwtht ***\n");

293

ASL_dfwtht, ASL_rfwtht
Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)

printf("\n ** Input **\n\n");

xd = (double *)malloc((size_t) (sizeof(double) * nd));
if (xd == NULL)

printf("no enough memory for array xd\n");
return -1;

yd = (double *)malloc((size_t)(sizeof(double) * nd));
if(yd == NULL)

printf("no enough memory for array yd\n");

return -1;
q¥(=d(douﬁ%ﬁL*))malloc((size_t)(sizeof (double) * (numresult+1)));
i r ==

printf("no enough memory for array dr\n");

return -1;
imr = (int *)malloc((size_t) (sizeof(int) * numresult));
if (imr == NULL)

printf("no enough memory for array imr\n");

return -1;
inr = (int *)malloc((size_t)(sizeof(int) * numresult));
if (inr == NULL)

printf("no enough memory for array inr\n");

return -1;
iwk = (int *)malloc((size_t)(sizeof(int) * nd));
if (iwk == NULL)

printf("no enough memory for array iwk\n");

return -1;
printf("\tnd = %6d mr = %6d nr = %6d\n\n", nd, mr, nr);

printf("\t xd yd\n\n");
for(i=0 ; i<nd ; i++)

fscanf(fp, "JLlf %1f", &xd[i], &yd[i]);
printf("\t%8.3g %8.3g\n", xd[i], yd[i]);

fclose(fp);
ierr = ASL_dfwtht(xd, yd, nd, mr, nr, &a, dr, imr, inr, iwk);

printf("\n ** Qutput **\n\n");
printf("\tierr = %6d\n\n", ierr);
printf("\t a = %8.3g\n\n", a);

printf("\t dr imr inr\n\n");
for(i=0 ; i<numresult ; i++)

printf("\t%8.3g %6d %6d\n", dr[i+1], imr[i], inr[i]);

free(xd);
free(yd);
free(dr);
free(imr);
free(inr);
free(iwk);

return O;

}
(d) Output results

***x ASL_dfwtht sk

*k Input *%

nd = 16 mr = 3 nr = 8
xd yd
0.0625 1.07
0.125 1.35
0.188 1.35
0.25 1.3
0.313 1.35

294

ASL_dfwtht, ASL_rfwtht
Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)

0.375 1.35
0.438 1.07
0.5 0.5

0.563 -0.0675
0.625 -0.349
0.688 -0.347

0.75 -0.3
0.813 0
0.875 0
0.938 0

1 0.5

*% Output *x*

ierr = 0
a = 1
dr imr inr
0.618 0 1
0.0707 1 1
-0.138 1 2
-0.0289 2 1
0.141 2 2
0.0289 2 3
-0.0625 2 4
-0.0497 3 1
0.00837 3 2
-0.00021 3 3
0.1 3 4
0.0497 3 5
-0.00837 3 6
3 7
-0.0884 3 8

295

ASL_dfwthi, ASL_rfwthi
Inverse Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)

2.18.6 ASL_dfwthi, ASL_rfwthi
Inverse Wavelet Transform According to Haar Functions (Equally Spaced
Sampling Data)
(1) Function
When the spacing at which the input data {(x;, f(x;))} is sampled is equally spaced and the number of
sampled data is 2% (where k is a natural number), the ASL_dfwthi or ASL_rfwthi computes f(z) according

to the following inverse Wavelet transform for the Wavelet transform C,,,, according to Haar functions.

(2) Usage
Double precision:
ierr = ASL_dfwthi (a, dr, mr, nr, mr2, nr2, imr, inr, fr, xr, iwk);
Single precision:

ierr = ASL_rfwthi (a, dr, mr, nr, mr2, nr2, imr, inr, fr, xr, iwk);

296

ASL_dfwthi, ASL_rfwthi
Inverse Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)

(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. Argument and Type Size fnput/ Contents
Return Value ’ Output
1 a D 1 Input | Value obtained when data sampling spac-
{R} ing is added to difference of maximum and
minimum values of input data z-coordinates.
Data is regenerated on interval [0, al.
2 dr D« 2™ 4+ nr Input | Wavelet transform Cl,,. (See Note (a))
e

3 mr I 1 Input Maximum value of m of Haar functions H,,,,
that were used for Wavelet transform

4 nr I 1 Input Maximum value of n of Haar functions H,,,,
that were used for Wavelet transform

5 mr2 I 1 Input | Maximum value of index m of Haar func-
tions Hyyp(x) to be used for inverse Wavelet
transform.

6 nr2 I 1 Input | Maximum value of index n of Haar func-
tions Hyp(x) to be used for inverse Wavelet
transform.

7 imr I* 2™ +nr—1| Input | Index m information of Wavelet transform
Cinn- (See Note (a))

8 inr I* 2™ 4+nr—1| Input | Index m information of Wavelet transform
Cinn- (See Note (a))

9 fr D+ gmr2+1 Output | Values of f(x) that were regenerated from

{ R*} Wavelet transform C,,,. (See Note (b))
10 Xr Dx gmr2+1 Output | Values of z-coordinates of f(z) that were re-
{R*} generated from Wavelet transform Cy,,,. (See
Note (b))
11 iwk I* gmr2+1 Work | Work area.
12 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

297

ASL_dfwthi, ASL_rfwthi
Inverse Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
3030 Restriction (d) was not satisfied.
(6) Notes
(a) The Wavelet transform C,,, values are stored in dr[i](i = 1,2,---,2™ 4+ nr — 1). The corresponding

index m values are stored in imr[¢ — 1] and the corresponding index n values are stored in inr[i — 1].

(b) The values stored in fr are approximations of the original data, and the corresponding z-coordinate

values, which are stored in xr, are equally spaced.
(7) Example

(a) Problem

Compute the inverse Wavelet transform up to m = 4 and n = 2 using the Wavelet transform computed
ASL_dfwtht

in the Example of 2.18.5
ASL _rfwtht

} as the input data.

(b) Input data

Wavelet transform {Cy,,},a =1, mr = 3, nr = 8, mr2 = 3andnr2 = 8.
(¢) Main program

/* C interface example for ASL_dfwthi */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()
{

double a;
double *dr;
int mr;

int nr;

int mr2;
int nr2;
int *imr;
int *inr;
double *fr;
double *xr;
int *iwk;
int ierr;
int i,numdata,numresult;
FILE *fp;

mr 3;
nr 8;
mr2 = 3;
nr2 = 8
numdata = (1<<mr)-1+nr;
numresult = 1<<(mr2+1);

fp = fopen("dfwthi.dat", "r");
if (fp == NULL)

printf("file open error\n");
return -1;

printf(" *x% ASL_dfwthi **x\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%1lf", &a);

dr = (double *)malloc((size_t)(sizeof(double) * (numdata + 1)));
if(dr == NULL)

298

ASL_dfwthi, ASL_rfwthi
Inverse Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)

printf("no enough memory for array dr\n");
return -1;

imr = (int *)malloc((size_t) (sizeof(int) * numdata));
if(imr == NULL)

printf("no enough memory for array imr\n");

return -1;
inr = (int *)malloc((size_t) (sizeof(int) * numdata));
if (inr == NULL)

printf("no enough memory for array inr\n");

return -1;
f§(=f(douﬁ%ﬁL*))malloc((size_t)(sizeof (double) * numresult));
i r ==

printf("no enough memory for array fr\n");

return -1;
g¥(= (douﬁ%ﬁL*))malloc((size_t)(sizeof (double) * numresult));
if (xr ==

printf("no enough memory for array xr\n");

return -1;

iwk = (int *)m§110c((size_t)(sizeof (int) * numresult));
ULL

if (iwk ==
printf("no enough memory for array iwk\n");
return -1;

printf("\ta = %8.3g\n", a);

%6d\n", mr, nr);
%6d\n\n", mr2, nr2);

%6d nr
%6d nr2

printf("\tmr
printf("\tmr2

dr[0] = 0.0;
printf("\tdr[0] = %8.3g\n\n", dr[0]);

e

printf("\t dr imr inr\n\n");
for(i=0 ; i<numdata ; i++)

fscanf(fp, "%lf %d %d", &dr[i+1], &imr[i], &inr([i]);
printf("\t%8.3g %6d %6d\n", dr[i+1], imr[i], inr[i]);

fclose(fp);
ierr = ASL_dfwthi(a, dr, mr, nr, mr2, nr2, imr, inr, fr, xr, iwk);

printf("\n ** Output **\n\n");
printf("\tierr = %6d\n\n", ierr);

printf("\t =xr fr\n\n");
for(i=0 ; i<numresult ; i++)

printf("\t%8.3g %8.3g\n", xr[i], fr[i]);

free(dr);
free(imr);
free(inr);
free(fr);
free(xr);
free(iwk);

return O;

}
(d) Output results

sk ASL_dfwthi sk

*k Input *%

a = 1
mr = 3 nr = 8
mr2 = 3 nr2 = 8
dr[0] = 0
dr imr inr
58.6 0 1
0.0707 1 1

299

ASL_dfwthi, ASL_rfwthi
Inverse Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)

81.9 1 2
-0.0289 2 1
0.141 2 2
0.0289 2 3
-38.2 2 4
-0.0497 3 1
0.00837 3 2
-0.00021 3 3
0.1 3 4
0.0497 3 5
-0.00837 3 6
-1.22 3 7
-55.2 3 8

*% Qutput *x*

ierr = 0
Xr fr
0.0313 58.6
0.0938 58.8
0.156 58.8
0.219 58.8
0.281 58.8
0.344 58.8
0.406 58.6
0.469 58
0.531 57.4
0.594 57.1
0.656 57.1
0.719 57.2
0.781 -254
0.844 -247
0.906 -254
0.969 58

300

ASL_dfwtmf, ASL_rfwtmf
Mexican Hut Function Computation

2.18.7 ASL_dfwtmf, ASL_rfwtmf

Mexican Hut Function Computation

(1) Function

The ASL_dfwtmf or ASL_rfwtmf uses the following Mexican hat function to compute the Wavelet transform

base shown below.

onr () = (1 —22%)e "
(=)

a®> 3at T
C=al1-L 4+22) /T
a(2+4> 2

¢y (Tia,b) =

3~

Here,

is the normalization factor.

(2) Usage
Double precision:
ierr = ASL_dfwtmf (a, b, x, &v);
Single precision:
ierr = ASL_rfwtmf (a, b, x, &v);

(3) Arguments and Return Value

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

as for 32bit Integer}

) nt
’ long as for 64bit Integer

A t and Input
No. FEtment aiy Type Size nput/ Contents
Return Value Output
1 a D 1 Input | Frequency parameter a of base ¢np(z;a,b)
R for Wavelet transform according to Mexican
hat function.
2 b D 1 Input | Shift parameter b of base ¢ p(x;a,b) for
R Wavelet transform according to Mexican hat
function.
3 X D 1 Input | Variable value z.
R
4 v D+ 1 Output | Value of base ¢rrm(x; a,b) for Wavelet trans-
Rx form according to Mexican hat function
5 ierr I 1 Output | Error indicator (Return Value)

301

ASL_dfwtmf, ASL_rfwtmf
Mexican Hut Function Computation

(4) Restrictions
(a) a>0

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes
None

(7) Example

(a) Problem

Compute the base ¢prm(4;2,3) for a Wavelet transform according to a Mexican hat function.

(b) Input data
a=4.0,b = 2.0andx = 3.0.
(¢) Main program

/* C interface example for ASL_dfwtmf */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()

double a;
double b;
double x;
double v;
int ierr;
FILE *fp;

fp = fopen("dfwtmf.dat", "r");
if(fp == NULL)

printf("file open error\n");

return -1;
printf(" *x% ASL_dfwtmf **x\n");
printf("\n ** Input **\n\n");

fscanf(fp, "Jlf", &a);
fscanf(fp, "%1f", &b);
fscanf(fp, "J%Llf", &x);

printf("\ta = %8.3g b = %8.3g ¢ = %8.3g\n", a, b, x);
fclose(fp);
ierr = ASL_dfwtmf(a, b, x, &v);

printf("\n ** Qutput **\n\n");
printf("\tierr = %6d\n\n", ierr);
printf("\t v = %8.3g\n", v);
return O;
}
(d) Output results
%k ASL_dfwtmf **x*
*% Input *%
a = 4 b= 2c= 3

** Qutput **
ierr = 0

v = 28.6

302

ASL_dfwtmt, ASL_rfwtmt
Wavelet Transform According to Mexican Hut Functions

2.18.8 ASL_dfwtmt, ASL rfwtmt
Wavelet Transform According to Mexican Hut Functions

(1) Function
For the set {(x;, f(x;))} (i =1,2,---,n) of n x-coordinates and function values f(z) that were given as input
data, the ASL_dfwtmt or ASL_rfwtmt computes the following Wavelet transform according to a Mexican

hat function.
(Wti’MHf)(ba a) = [¢]\/[H($;a,b)f(l')dl'

(2) Usage
Double precision:
ierr = ASL_dfwtmt (xd, yd, nd, a, b, &c);
Single precision:
ierr = ASL_rfwtmt (xd, yd, nd, a, b, &c);
(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
No. ;:Zilieg;lir;d Type Size ICr)li)tli:é . Contents

1 xd Dx nd Input | Set of input data x-coordinates {z;}.
)

2 yd D+ nd Input | Set of input data function values {f(x;)}.
{n}

3 nd D 1 Input | Number of input data n.
it

4 a D 1 Input | Wavelet transform frequency parameter a
it

5 b D 1 Input | Wavelet transform shift parameter b
it

6 c D+ 1 Output | Wavelet transform value (Wy,,,, f)(b,a).
v}

7 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a) a>0

303

ASL_dfwtmt, ASL_rfwtmt
Wavelet Transform According to Mexican Hut Functions

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes
None

(7) Example

(a) Problem
Compute the Wavelet transform according to a Mexican hat function (Wy,,,, f)(2,3) using the input
data which is obtained by the equally spaced sampling for the function

f(z) =sin(27z) + ésin(ﬁﬂ':r) + %

(b) Input data

Input data {(x;, f(x;))},a = 3andb = 2.
(¢) Main program

/* C interface example for ASL_dfwtmt */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()
{

double *xd;
double *yd;
int nd;
double a;
double b;
double c;
int ierr;
int i;

FILE *fp;

nd 10;
f fopen("dfwtmt.dat", "r");

P
if(fp == NULL)

printf("file open error\n");

return -1;
printf(" %+ ASL_dfwtmt ***\n");
printf("\n ** Input **\n\n");

fscanf(fp, "Jlf", &a);
fscanf(fp, "%1lf", &b);

xd = (double *)malloc((size_t) (sizeof(double) * nd));
if (xd == NULL)

printf("no enough memory for array xd\n");

return -1;
yd = (double *)malloc((size_t)(sizeof(double) * nd));
if(yd == NULL)

printf("no enough memory for array yd\n");

return -1;
printf("\tnd = /6d a = %8.3g b = %8.3g\n", nd, a, b);

printf("\t xd yd\n");
for(i=0 ; i<nd ; i++)

fscanf(fp, "JLlf J1f", &xd[i], &yd[i]);
printf("%8.3g %8.3g\n", xd[il, yd[i]);

304

ASL_dfwtmt, ASL_rfwtmt
Wavelet Transform According to Mexican Hut Functions

fclose(fp);
ierr = ASL_dfwtmt(xd, yd, nd, a, b, &c);

printf("\n *x Output **\n\n");
printf("\tierr = %6d\n\n", ierr);
printf("\t c = %8.3g\n", c);
free(xd);

free(yd);

return O;

}
(d) Output results

*kk ASL_dfwtmt ***
*k Input *%

nd = 10 a = 3b
xd yd
0. 1.28
1.33
1.33
1.28
0.5
-0.278
-0.334
-0.334
-0.278
0.5

]
N

QOO0 OOO
HOONOUIPWN -

** Qutput **
ierr = 0

c = 4.21

305

ASL_dfwtff, ASL_rfwtff
French Hut Function Computation

2.18.9 ASL_dfwtff, ASL _rfwtff
French Hut Function Computation

(1) Function
The ASL_dfwtff or ASL_rfwtff uses the following French hat function to compute the Wavelet transform

base shown below.

1 -1<x<1
prg(r) = —%—3§x<—10r1§x<3
0 Otherwise

sentaiat) = < (220

(2) Usage
Double precision:
ierr = ASL_dfwtff (a, b, x, &v);
Single precision:
ierr = ASL_rfwtff (a, b, x, &v);
(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
Argument and Input
No. SHIMENY all Type Size nput/ Contents
Return Value Output
1 a D 1 Input | Frequency parameter a of base ¢pp(z;a,b)
R for Wavelet transform according to French
hat function.
2 b D 1 Input | Shift parameter b of base ¢py(z;a,b) for
R Wavelet transform according to French hat
function.
3 X D 1 Input | Variable value z
R
4 v Dx 1 Output | Value of base ¢ppu(x;a,b) for Wavelet trans-
R+ form according to French hat function.
5 ierr I 1 Output | Error indicator (Return Value)

(4) Restrictions

(a) a>0

306

ASL_dfwtff, ASL_rfwtff
French Hut Function Computation

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes
None

(7) Example

(a) Problem

Compute the base ¢pp(1.5;2,1) for a Wavelet transform according to a French hat function.

(b) Input dat

X =

a

1.5,a = 2andb = 1.

(¢) Main program

/* C interface example for ASL_dfwtff */

#include <
#include <
#include <
int main()
{

double

double b

double
double
int ie
FILE =*
fp = £
if (fp

pr

stdio.h>
stdlib.h>
asl.h>

a;
;
X;
v;
Irr;
fp;

open("dfwtff.dat", "r");
== NULL)

intf("file open error\n");

return -1;

printf
printf

fscanf
fscanf
fscanf

printf
fclose
ierr =

printf
printf
printf

return

}

" *%% ASL_dfwtff **x\n");
("\n ** Input **\n\n");

(fp, "WLlf", &a);

(fp, "%1f", &b);

(fp, "WLf", &x);

("\ta = 48.3g b = %8.3g x = %8.3g\n", a, b, x);
(fp);

ASL_dfwtff(a, b, x, &v);

("\n *% Qutput **\n\n");
("\tierr = %6d\n\n", ierr);
("™t v =19%8.3g\n", v);

0;

(d) Output results

sokk ASL_dfwtff sokx

** Input *x*

a =

2 b= 1x

1.5

** Qutput **

ierr =

v =

0

307

ASL_dfwtft, ASL_rfwtft
Wavelet Transform According to French Hut Function

2.18.10 ASL_dfwtft, ASL rfwtft
Wavelet Transform According to French Hut Function

(1) Function
For the set {(z;, f(z:))} (i =1,2,---,n) of n z-coordinates and function values f(x) that were given as
input data, the ASL_dfwtft or ASL_rfwtft computes the following Wavelet transform according to a French
hat function.

Wor b0) = [" (a0 0)f(2)de

(2) Usage
Double precision:
ierr = ASL_dfwtft (xd, yd, nd, a, b, &c);
Single precision:
ierr = ASL_rfwtft (xd, yd, nd, a, b, &c);
(3) Arguments and Return Value

D:Double precision real Z:Double precision complex I { int as for 32bit Integer}

R:Single precision real C:Single precision complex long as for 64bit Integer
Argument and Input
No. & Type Size put/ Contents
Return Value Output
1 xd D+ nd Input | Set of input data z-coordinates {x;}.
Rx
2 yd D+ nd Input | Set of input data function values {f(z;)}.
Rx
3 nd 1 Input | Number of input data n

Input | Wavelet transform frequency parameter a

1 Input | Wavelet transform shift parameter a

D o| = ol ® o
—— | Y~ | Y—~| ~ .

W
2
—| | —/—

Output | Wavelet transform value (Wy,.,, f)(b,a).

D
o
——
= g
* *
—
—_

—
—

7 ierr

Output | Error indicator (Return Value)

(4) Restrictions
(a) a>0

(5) Error indicator (Return Value)

ierr value Meaning Processing
0 Normal termination.
3000 Restriction (a) was not satisfied. Processing is aborted.

308

ASL_dfwtft, ASL_rfwtft
Wavelet Transform According to French Hut Function

(6) Notes
None

(7) Example

(a) Problem
Compute the Wavelet transform according to a French hat function (W4, f)(2,3) using the input
data which is obtained by the equally spaced sampling for the function
1 1
f(z) =sin(2mz) + £ sin(6mx) + 3
(b) Input data

Input data {(x;, f(2;))},a = 2andb = 1.
(¢) Main program

/* C interface example for ASL_dfwtft */

#include <stdio.h>
#include <stdlib.h>
#include <asl.h>

int main()

double *xd;
double *yd;
int nd;
double a;
double b;
double c;
int ierr;
int i;

FILE *fp;

fp = fopen("dfwtft.dat", "r");
if(fp == NULL)

printf("file open error\n");

return -1;
printf(" *x*% ASL_dfwtft ***\n");
printf("\n ** Input **\n\n");

fscanf(fp, "%d", &nd);
fscanf(fp, "%lf", &a);
fscanf(fp, "%lf", &b);

xd = (double *)malloc((size_t) (sizeof(double) * nd));
if (xd == NULL)

printf("no enough memory for array xd\n");
return -1;

yd = (double *)malloc((size_t)(sizeof(double) * nd));
if(yd == NULL)

printf("no enough memory for array yd\n");
return -1;

printf("\t nd
printf("\t a
printf("\t b

%6d\n", nd);
%8.3g\n", a);
%8.3g\n\n", b);

printf("\t d yd\n\n");
for(i=0 ; i<nd ; i++)

"

fscanf(fp, "%lf %1f", &xd[il, &yd[i]);
printf("\t%8.3g %8.3g\n", xd[i], yd[i]l);

fclose(fp);

ierr = ASL_dfwtft(xd, yd, nd, a, b, &c);

printf("\n *x Output **\n\n");
printf("\tierr %6d\n\n", ierr);
printf("\t ¢ = %8.3g\n\n", c);

309

ASL_dfwtft, ASL_rfwtft
Wavelet Transform According to French Hut Function

free(xd);
free(yd);

return O;

(d) Output results

skk ASL_dfwtft sk
** Input *x*
nd
a
b

10
2
1

£
o

yd

1.28
1.33
1.33
1.28
0.5
-0.278
-0.334
-0.334
-0.278
0.5

[eXelolololole ol
HOONOUTPRWN -

** Qutput **
ierr = 0

c = -0.0125

310

Appendix A

MACHINE CONSTANTS USED IN ASL C
INTERFACE

A.1 Units for Determining Error

The table below shows values in ASL C interface as units for determining error in floating point calculations. The
units shown in the table are numeric values determined by the internal representation of floating point data. ASL

C interface uses these units for determining convergence and zeros.

Table A—1 Units for Determining Error

Single-precision Double-precision
2723(~ 1.19 x 1077) 2752(~2.22 x 107 16)

Remark: The unit for determining error ¢, which is also called the machine ¢, is usually defined as the smallest positive
constant for which the calculation result of 1+ ¢ differs from 1 in the corresponding floating point mode. Therefore, seeing
the unit for determining error enables you to know the maximum number of significant digits of an operation (on the

mantissa) in that floating point mode.

A.2 Maximum and Minimum Values of Floating Point Data

The table below shows maximum and minimum values of floating point data defined within ASL C interface.
Note that the maximum and minimum values shown below may differ from the maximum and minimum values

that are actually used by the hardware for each floating point mode.

Table A—2 Maximum and Minimum Values of Floating Point Data

Single-precision Double-precision

Maximum value 2127(2 — 2723) (=~ 3.40 x 10%8) 21023(2 — 2752) (~ 1.80 x 1030%)
Positive 27126 (~ 1.17 x 10-%8) 91022 (~ 9,93 x 10~308)
minimum value
Negati

CBALIVE —97126 (~ 117 x 10739) — 971022 (~ 993 x 10-308)
maximum value
Minimum value —2127(2 — 2723) (~ —3.40 x 1038) —21023(9 _ 9752y (~ —1.80 x 1030%)

311

Index

ASL_camlhh :
ASL_camlhm :
ASL_camimh :
ASL_camlimm :
ASL_canihh :
ASL_canihm :
ASL _canimh :
ASL_canlimm :
ASL_canvjl :
ASL_cargjm :
ASL_carsjd :
ASL_cbgmdi :

ASL_cbgmlc
ASL_cbgmls

ASL_cbgmlu :
ASL_cbgmlx :
ASL_cbgmms :

ASL_cbgmsl

ASL_cbgmsm :

ASL_cbgndi
ASL_cbgnlc
ASL_cbgnls

ASL_cbgnlu :
ASL_cbgnlx :

ASL_cbgnms
ASL_cbgnsl

ASL_cbgnsm :

ASL _cbhedi
ASL _cbhels

ASL_cbhelx :

ASL_cbhems
ASL _cbhesl
ASL_cbheuc

ASL_cbheud :

ASL_cbhfdi
ASL _cbhfls

ASL_cbhflx :

ASL_cbhfms
ASL_cbhfsl
ASL_cbhfuc

ASL_cbhfud :

ASL_cbhpdi
ASL_cbhpls

ASL_cbhplx :

ASL_cbhpms

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.

NNNNNDNNDNDNMNMNNNNONMNDMNNNDNMNNMNNNMNONNDMNDMNDMNMNNMNONMNNMNONMNDMNNMNMNOMNOMNNMNNNNR,R,RP,PRP,RRPRRRR R P

106
101
96
91
123
119
115
111
155
44
38
80
72
74
70
82
76
64
59
102
94
96
92
104
98
88
84
239
233
241
235
224
231
229
220
214
222
216
205
212
210
182
176
184
178

ASL_cbhpsl :

ASL_cbhpuc

ASL_cbhpud :

ASL _cbhrdi
ASL _cbhrls

ASL_cbhrlx :

ASL_cbhrms
ASL _cbhrsl
ASL_cbhruc

ASL_cbhrud :
ASL_ccgeaa :
ASL_ccgean :
ASL_ccghaa :
ASL_ccghan :
ASL_ccgjaa :
ASL_ccgjan :
ASL_ccgkaa :
ASL_ccgkan :
ASL_ccgnaa :
ASL_ccgnan :
ASL_ccgraa :
ASL_ccgran :
ASL_ccheaa :
ASL_cchean :

ASL _ccheee

ASL _ccheen :
ASL _cchesn :

ASL _cchess
ASL_cchjss

ASL _cchraa :
ASL _cchran :

ASL _cchree

ASL _cchren :
ASL _cchrsn :

ASL _cchrss
ASL _cfcibf

ASL _cfcl1fb :

ASL _cfc2bf

ASL_cfc2fb :

ASL_cfc3bf

ASL_cfc3fb :

ASL _cfcmbf

ASL _cfcmfb :
ASL _cibhiln :
ASL_cibh2n :

Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.

Lo ¥ ¥ v ™ ™

-

Lo Vv v ™ v

OO WWWWWWWWErRrRrRRPRPRPRRPRPRPRPRPRPPRPRRPPRPRRPRPEPPRPEPPEPRPRERPEPEREPNNNMNDNDDNDNDNDDNDDNDN

-

167
174
172
201
195
203
197
186
193
191
191
196
379
384
386
391
393
398
198
202
372
377
244
248
257
262
255
250
320
224
228
237
242
235
230
61

57

127
123
157
163
93

89

159
162

II

ASL_cibinz :
ASL_cibjnz :
ASL_cibknz :
ASL_cibynz :
ASL_cigamz :
ASL_ciglgz :
ASL_clacha :

ASL _clncis

ASL_dlcdbn :

ASL_d1icdbt
ASL _dilcdcc

ASL_dlcdch :
ASL_dlcdex :
ASL_d1lcdfb :
ASL_dlcdgm :
ASL_dlcdgu :
ASL_dlcdib :

ASL_dlcdic
ASL_dlcdif

ASL dlcdig :
ASL _dlcdin :

ASL _dlcdis
ASL_dlcdit

ASL_dlcdix :
ASL_dlcdld :
ASL_dlcdlg :
ASL dicdln :

ASL _dilcdnc
ASL _dlcdno
ASL_dlcdnt

ASL_dlcdpa :
ASL_dlcdtb :
ASL _dlcdtr :

ASL_dlcduf
ASL_dlcdwe

ASL_d1ddbp :

ASL_d1lddgo

ASL_diddhg :
ASL_diddhn :

ASL_dilddpo
ASL_d2bailt
ASL _d2ba2s

ASL_d2bagm :
ASL_d2bahm :

ASL_d2bamo
ASL_d2bams

ASL _d2basm :
ASL_d2ccma :

ASL_d2ccmt

ASL_d2ccpr :
ASL_d2vcgr :

ASL _d2vcmt

ASL _d3iecd :

ASL _d3ieme

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.

(o> Ie>Ne>)R> NN o) RN e) NN e) Nie) Nie) N e) e)NEe)NEe)REe) BN e)INe) B> Nie) B o) Nie)Bie) NN e)R e) RN)N o)l e) I o) o) B o) N o) o) BN)R o) N> o) o) o) I o) o) B o) B) I) N o) B) NG G B2 B G B 62 B & BN BN O) |

141
96

144
99

205
207
392
410
79

123
160
83

145
109
116
148
127
86

113
120
76

106
99

93

151
157
154
89

73

102
137
96

134
131
141
164
168
174
177
171
188
195
210
219
215
204
223
249
243
256
233
227
337
322

ASL _d3iera :
ASL _d3iesr :
ASL_d3iesu :

ASL_d3ietc

ASL _d3ieva :
ASL_d3tscd :

ASL _d3tsme

ASL_d3tsra :
ASL _d3tsrd :
ASL_d3tssr :
ASL_d3tssu :

ASL _d3tstc

ASL _d3tsva :

ASL_d41wrl
ASL _d42wr1l

ASL_d42wrm :
ASL_d42wrn :

ASL_d4biO1l
ASL_d4gl01
ASL_d4mu01
ASL _d4mwrf

ASL_d4mwrm :

ASL_d4rb01
ASL_db5chef

ASL_d5chmd :
ASL_d5chmn :

ASL_dbchtt

ASL_d5temh :
ASL_db5tesg :
ASL_db5tesp :

ASL _d5tewl

ASL _d6clan :
ASIL _d6clda :

ASL_d6clds
ASL_d6cpcc
ASL_d6cpsc

ASL _d6cvan :

ASIL _d6cvsc

ASL_d6dafn :

ASIL _d6dasc

ASL_d6fald :
ASL _d6favr :

ASL _dabmcs
ASL _dabmel

ASL_damlad :
ASL damimm :

ASL _damims
ASL _damimt

ASL damimu :
ASL _damlsb :
ASL damltm :
ASL_damltp :

ASL_damltt

ASL _damlivm :

Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.

Lol ol ol e el I R i o) B o) Wi @) i o) lie) Wi e) i @) i o) B o) B @) i o) i @) B o) i) i o) i ©) i) Bl 0) B ©) Wi @) Bl) B 0) B 0) B) i 0) B ©) B @) i) Bl 0) B) B @) i o) i @) Wi ©) Bl) B o) B @) Wi) B 0) B 0)l @) i @)}

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

319
342
326
333
330
380
357
348
352
383
362
373
369
397
417
409
403
477
472
452
426
439
468
486
497
493
490
509
501
513
505
571
576
565
526
528
543
546
553
557
535
537
13

17

55

75

65

79

61

58

83

136
87

127

INDEX

INDEX

ASL_dam3tp :
ASL_dam3vm :
ASL_dam4vm :
ASL_damtim :
ASL_damvj1l :
ASL_damvj3 :
ASL_damvj4 :
ASL_dargjm :
ASL_darsjd :

ASIL _dasbcs
ASIL _dasbel

ASL datmim :

ASL_dbbddi
ASL_dbbdlc
ASL_dbbdls

ASL_dbbdlu :
ASL_dbbdlx :

ASL_dbbdsl
ASL_dbbpdi
ASL_dbbpls

ASL_dbbplx :

ASL_dbbpsl
ASL_dbbpuc

ASL_dbbpuu :

ASL_dbgmdi
ASL_dbgmlc
ASL_dbgmls

ASL_dbgmlu :
ASL_dbgmlx :

ASL_dbgmms
ASL_dbgms1l

ASL_dbgmsm :
ASL_dbpddi :

ASL_dbpdls

ASL_dbpdlx :

ASL_dbpdsl
ASL_dbpduc

ASL_dbpduu :

ASL_dbsmdi
ASL _dbsmls

ASL_dbsmlx :

ASL_dbsmms
ASL _dbsmsl
ASL _dbsmuc

ASL_dbsmud :

ASL _dbsnls
ASL _dbsnsl

ASL _dbsnud :

ASL_dbspdi
ASL_dbspls

ASL_dbsplx :

ASL_dbspms

ASL_dbspsl :

ASL_dbspuc

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.

NNNNDNONNDNNDNDNDNMNNMNNNONNONNDNNDNDNMNMNNMNONNNMNNODNNDMNDNDMNMNNMNNMNNMNONNONMNNNMNNDMNDMNMNMNMNMNNMNNNNNR,RR, R, R, PR RPRRR R P

139
130
133
69

143
147
151
32

26

20

23

72

255
250
253
248
257
243
272
270
274
262
268
266
52

44

46

42

54

48

37

32

116
114
118
106
112
110
154
148
156
150
139
146
144
165
1568
163
135
129
137
131
120
127

ASL_dbspud :

ASL_dbtdsl
ASL_dbtlco
ASL_dbtldi
ASL_dbtlsl
ASL_dbtosl
ASL _dbtpsl
ASL_dbtssl
ASL_dbtuco
ASL_dbtudi
ASL_dbtusl
ASL_dbvmsl
ASL dcgbff

ASL_dcgeaa :
ASL_dcgean :
ASL_dcggaa :
ASL_dcggan :
ASL_dcgjaa :
ASL_dcgjan :
ASL_dcgkaa :
ASL_dcgkan :
ASL_dcgnaa :
ASL_dcgnan :
ASL_dcgsaa :
ASL_dcgsan :

ASL_dcgsee

ASL_dcgsen :
ASL_dcgssn :

ASL_dcgsss

ASIL _dcsbaa :
ASL _dcsban :

ASL _dcsbff

ASL _dcsbsn :

ASL _dcsbss
ASL_dcsjss

ASL _dcsmaa :
ASL _dcsman :

ASL _dcsmee

ASL _dcsmen :
ASL _dcsmsn :

ASL _dcsmss
ASL _dcsrss

ASL _dcstaa :
ASL _dcstan :

ASL _dcstee

ASL _dcsten :
ASL _dcstsn :

ASL _dcstss

ASL _dfasma :

ASL_dfcilbf

ASL_dfcilfb :

ASL_dfc2bf

ASL_dfc2fb :

ASL_dfc3bf

Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.

L " VY

-

Lo Vv v ¥ ™

WWWwworerrkPrEPrRPFRPFEPREPEFPRPREPEPEPRPPRRPPRPPEPERPRPRPPRPREPEREPERPREPEPERPREPEEPENDNDNNNDDNDDNDMNDNDNDDNDDNDN

-

125
276
324
326
321
302
280
306
317
319
314
310
400
177
183
328
335
360
364
366
370
185
189
337
342
352
358
350
344
264
268
277
275
270
311
204
208
217
222
215
210
303
283
287
296
301
294
289
285
50

46

117
113
146

I11

v

ASL_dfc3fb :

ASL_dfcmbf

ASL_dfcmfb :
ASL_dfcnid :
ASL_dfcn2d :
ASL_dfcn3d :
ASL dfcrid :
ASL _dfcr2d :
ASL _dfcr3d :

ASL _dfcrcs

ASL _dfcrcz :

ASL _dfcrsc
ASL _dfcvcs
ASL _dfcvsc

ASL_dfdped :

ASL_dfdpes
ASL_dfdpet
ASL_dflage

ASL_dflara :
ASL_dfpsid :
ASL_dfps2d :
ASL_dfps3d :

ASL_dfribf

ASL_dfrifb :

ASL_dfr2bf

ASL_dfr2fb :

ASL_dfr3bf

ASL_dfr3fb :

ASL_dfrmbf

ASL_dfrmfb :

ASL_dfwtff
ASL_dfwtft
ASL_dfwthl

ASL_dfwth2 :

ASL_dfwthi

ASL_dfwthr :

ASL_dfwths
ASL_dfwtht
ASL_dfwtmf
ASL _dfwtmt

ASL_dgicbp :

ASL_dgicbs

ASL_dgiccm :
ASL_dgiccn :

ASL_dgicco

ASL_dgiccp :
ASL_dgiccq :
ASL_dgiccr :

ASL_dgiccs
ASL_dgicct

ASL_dgidby :
ASL_dgidcy :
ASL_dgidmc :

ASL_dgidpc

Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.

DD DR WWWWWWWWWWWWWWWWWWwWwwWwwWwwWwwWwoooo oo oo WWwWwwwwwwow

142
81

77

177
187
195
206
216
224
283
281
279
274
269
291
289
294
273
267
235
243
252
71

67

136
132
169
164
106
101
306
308
277
289
296
280
284
292
301
303
513
537
483
486
478
469
471
473
475
480
517
492
445
432

ASL_dgidsc

ASL_dgidyb :
ASL_dgiibz :
ASL_ dgiicz :
ASL_dgiimc :

ASL_dgiipc
ASL_dgiisc

ASL_dgiizb :
ASL_dgisbx :
ASL_dgiscx :

ASL_dgisil

ASL_dgisi2 :
ASL_ dgisi3 :

ASL_dgismc

ASL_dgispc :

ASL_dgispo

ASL_dgispr :

ASL_dgissl

ASL_dgiss2 :
ASL_dgiss3 :

ASL_dgissc
ASL_dgisso

ASL_dgissr :
ASL_dgisxb :

ASL_dh2int
ASL_dhbdfs
ASL _dhbsfc

ASL_dhemnh :

ASL_dhemni
ASL_dhemnl
ASL_dhnanl
ASL_dhnefl

ASL _dhnenh :

ASL _dhnenl
ASL_dhnfml

ASL_dhnfnm :

ASL_dhnifl

ASL _dhninh :

ASL_dhnini
ASL_dhninl

ASL_dhnofh :

ASL_dhnofi
ASL_dhnofl
ASL_dhnpnl
ASL_dhnrml

ASL_dhnrnm :

ASL _dhnsnl

ASL_dibaid :
ASL _dibaix :

ASL_dibbei

ASL _dibber :
ASL_dibbid :
ASL _dibbix :
ASL dibimx :

: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.

L ™ ™ ¥ v ™ v

-

LoV V™ ™ v

PN IS, I IS WS IS BGR G O G U N U NG O Y U N SO NN QY O N OO O ORI Y OO O O G O N O O Y O SO O SO N O N SR SO OO OV O

-

438
503
519
495
463
452
457
509
515
490
540
545
554
426
416
521
525
561
566
574
420
529
533
497
299
264
267
270
287
223
259
235
279
250
317
307
240
283
295
255
274
291
230
245
312
302
227
189
185
167
165
191
187
135

INDEX

INDEX

ASL _dibinx :
ASL dibjmx :
ASL dibjnx :

ASL_dibkei

ASL_dibker :
ASL_dibkmx :
ASL _dibknx :
ASL dibsin :
ASL dibsjn :
ASL_dibskn :
ASL_dibsyn :
ASL_dibymx :
ASL_dibynx :

ASL_dieiil

ASL dieii2 :
ASL dieii3 :
ASL dieii4d :

ASL digigl

ASL digig?2 :

ASL diicos
ASL diierf

ASL diisin :

ASL_dilegl

ASL_dileg2 :

ASL _dimtce
ASL _dimtse

ASL_diopc2 :
ASL_diopch :

ASL_diopgl
ASL_diophe

ASL_diopla :

ASL_diople

ASL_dixeps :
ASL_dizbsO :

ASL_dizbs1
ASL_dizbsl

ASL_dizbsn :
ASL_dizbyn :
ASL dizglw :

ASL_djtecc

ASL_djteex :
ASL_djtegm :
ASL_djtegu :
ASL_djtelg :

ASL_djteno

ASL_djteun :

ASL_djtewe
ASL_dkfncs
ASL_dkhncs
ASL _dkinct

ASL _dkmncn :
ASL _dksnca :

ASL _dksncs

ASL _dkssca :

Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.

DD PP OO0 OO0 O O1TOTOTOTOTOTOTOTO1TOTOTOT OO OO OO0 OO OO0 01O O

129
90
84
171
169
138
132
163
147
156
150
93
87
221
223
226
228
199
202
261
281
259
285
288
306
309
302
300
304
298
296
291
324
102
105
114
108
111
293
33
29
45
37
49
25
20
41
72
78
55
84
49
43
65

ASL _dlarha :

ASL _dlnrds
ASL dlnris

ASL _dlnrsa :

ASL_dlnrss
ASL_dlsrds
ASL dlsris
ASL_dmclaf

ASL_dmclcp :

ASL _dmclmc

ASL_dmclmz :
ASL_dmclsn :
ASL_dmcltp :
ASL_dmcqaz :
ASL_dmcqlm :
ASL_dmcgsn :
ASL_dmcusn :

ASL_dmspl1

ASL_dmspim :
ASL_dmspmm :
ASL_dmsqpm :
ASL_dmumqg :
ASL_dmumqgn :
ASL_dmussn :
ASL_dmuusn :

ASL_dncbpo
ASL_dndaao
ASL_dndanl
ASL_dndapo
ASL_dngapl

ASL _dnlnma :
ASL_dnlnrg :
ASL dnlnrr :

ASL_dnnlgf
ASL_dnnlpo
ASL_dnrapl
ASL_dofnnf

ASL _dofnnv :
ASL_dohnlv :

ASL _dohnnf

ASL_dohnnv :
ASL _doief2 :

ASL _doievl

ASL dolnlv :
ASL_dopdh2 :
ASL _dopdh3 :

ASL _dosnnf

ASL _dosnnv :
ASL_dpdapn :

ASL_dpdopl
ASL_dpgopl
ASL_dplopl

ASL_dqgfodx :
ASL_dgmogx :

Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.

L v Vv Vv Vv P v P V™

-

L V¥ ¥ ™ ™)

B A DS DR AE DS AENMDMAEDNSMDMAEDNMDAENOOOOOODOOOOR DDA DMNOOOOCOOOOOOOCOCOOOOOOOOooo oo oo

-

388
396
400
406
403
414
421
490
517
511
502
483
524
544
538
531
479
567
558
563
551
469
465
474
462
392
362
372
367
386
605
592
598
617
611
379
115
108
136
129
122
149
163
143
157
165
100
91

347
343
358
351
182
186

VI

ASL_dgmohx

ASL_dgmojx :
ASL_dsmgon :
ASL_dsmgpa :

ASL _dsstal

ASIL _dssta2 :

ASL_dsstpt

ASL_dsstra

ASL_dxa005

ASL_gamihh :
ASL_gamlhm :
ASL_gamlmh :
ASL_gamlmm :
ASL_ganihh :
ASL_ganihm :
ASL_ganimh :
ASL_ganlimm :
ASL_gbhesl :
ASL_gbheud :
ASL_gbhfsl :
ASL_gbhfud :
ASL_gbhpsl :
ASL_gbhpud :
ASL_gbhrsl :
ASL_gbhrud :
ASL_gcgjaa :
ASL_gcgjan :
ASL_gcgkaa :
ASL_gcgkan :
ASL_gcgraa :
ASL_gcgran :
ASL_gcheaa :
ASL_gchean :
ASL_gchesn :
ASL_gchess :
ASL_gchraa :
ASL_gchran :
ASL_gchrsn :
ASL_gchrss :
ASL_gfc2bf :
ASL_gfc2fb :
ASL_gfc3bf :
ASL_gfc3fb :
ASL_gfcmbf :
ASL_gfcmfb :
ASL hamihh :
ASL_hamlhm :
ASL hamimh :
ASL_hamlmm :
ASL hanihh :
ASL_hanlhm :

(*) SMP Functions = Shared Memory Parallel

Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.

SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP

Processing Functions

190
194
348
352
331
335
344
340
, 47

= 01 oo o OO

Functions® |

Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,

44
39
34
66
62
58
54
156
161
149
154
133
139
141
147
302
307
309
314
294
299
249
253
261
255
233
238
246
240
371
367
401
397
338
334
49
44
39
34
66
62

ASL hanimh :
ASL hanimm :
ASL hbgmlc :
ASL _hbgmlu :
ASL hbgmsl :
ASL_hbgmsm :
ASL hbgnlc :
ASL hbgnlu :
ASL_hbgnsl :
ASL hbgnsm :
ASL hbhesl :
ASL _hbheud :
ASL _hbhfsl :
ASL _hbhfud :
ASL_hbhpsl :
ASL_hbhpud :
ASL hbhrsl :
ASL _hbhrud :
ASL hcgjaa :
ASL hcgjan :
ASL hcgkaa :
ASL hcgkan :
ASL hcgraa :
ASL hcgran :
ASL hcheaa :
ASL hchean :
ASL hchesn :
ASL hchess :
ASL hchraa :
ASL hchran :
ASL hchrsn :
ASL hchrss :
ASL hfc2bf :
ASL _hfc2fb :
ASL _hfc3bf :
ASL _hfc3fb :
ASL hfcmbf :
ASL hfcmfb :
: Vol.
: Vol.

ASL_ijierf
ASL_jiierf

ASL_pamlmm :
ASL_pamimt :
ASL_pamlmu :
ASL_pamltm :
ASL_pamltt :
ASL_pbsnsl :
ASL_pbsnud :
ASL_pbspsl :
ASL_pbspud :
ASL_pcgjaa :
ASL_pcgjan :
ASL_pcgkaa :
ASL_pcgkan :
ASL_pcgsaa :

SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP

SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP

Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
5, 283

5, 283

Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,

INDEX

58

54

105
103
98

92

117
115
111
107
156
161
149
154
133
139
141
147
302
307
309
314
294
299
249
253
261
255
233
238
246
240
371
367
401
397
338
334

18
22

26

30

126
131
119
124
282
286
288
292
264

INDEX

ASL_pcgsan :
ASL_pcgssn :
ASL_pcgsss :
ASL_pcsmaa :
ASL_pcsman :
ASL_pcsmsn :
ASL_pcsmss :
ASL_pfc2bf :
ASL pfc2fb :
ASL_pfc3bf :
ASL_pfc3fb :
ASL_pfcmbf :
ASL_pfcmfb :
ASL_pfcn2d :
ASL_pfcn3d :
ASL_pfcr2d :
ASL_pfcr3d :
ASL_pfps2d :
ASL_pfps3d :
ASL pfr2bf :
ASL_pfr2fb :
ASL_pfr3bf :
ASL pfr3fb :
ASL_pfrmbf :
ASL_pfrmfb :
ASL_psstal :
ASL_pssta2 :
ASL_pxe010 :
ASL_pxe020 :
ASL_pxe030 :
ASL_pxe040 :
ASL_gamlmm :
ASL_gamimt

ASL_gamlmu :
ASL_gamltm :
ASL_gamltt

ASL_gbgmlc :
ASL_gbgmlu :
ASL_gbgmsl :
ASL_gbgmsm :
ASL_gbsnsl :
ASL_gbsnud

ASL_gbspsl :
ASL_gbspud :
ASL_gcgjaa :
ASL_gcgjan :
ASL_gcgkaa

ASL_gcgkan :
ASL_gcgsaa

ASL_gcgsan :
ASL_gcgssn

ASL_qgcgsss

ASL_gcsmaa :
ASL_gcsman :

SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP

Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,

270
279
272
220
224
231
226
362
358
390
386
326
322
419
427
437
445
456
465
380
376
412
408
350
346
484
488
174
183
192
202
18

22

14

26

30

90

88

83

78

126
131
119
124
282
286
288
292
264
270
279
272
220
224

ASL_gcsmsn :
ASL_gcsmss :
ASL_gfc2bf :
ASL_gfc2fb :
ASL_gfc3bf :
ASL_gfc3fb :
ASL_gfcmbf :
ASL_gfcmfb :
ASL_gfcn2d

ASL_gfcn3d

ASL_gfcr2d :
ASL_gfcr3d :
ASL_gfps2d

ASL_gfps3d

ASL_qfr2bf :
ASL_qfr2fb :
ASL_qfr3bf :
ASL_gfr3fb :
ASL_gfrmbf

ASL_gfrmfb

ASL_gsstal :
ASL_gssta2 :
ASL_gxe010 :
ASL_gxe020 :
ASL_gxe030 :
ASL_gxe040 :
ASL_ricdbn

ASL ricdbt
ASL ricdcc

ASL rlcdch
ASL_rilcdex
ASL _rlcdfb
ASL_rlcdgm :
ASL_rlcdgu
ASL _rlcdib

ASL rilcdic
ASL ricdif

ASL_rilcdig
ASL_rlcdin

ASL rilcdis
ASL ricdit

ASL rilcdix
ASL _rilcdld
ASL_rilcdlg
ASL ricdln

ASL _ricdnc
ASL ricdno
ASL ricdnt

ASL_rilcdpa
ASL_rlcdtb
ASL_rlcdtr

ASL_ricduf
ASL _ricdwe

ASL_riddbp

SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP

Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.

Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
6, 79

6, 123

160

83

145

109

116

148

127

86

113

120

76

106

99

93

151

157

154

89

73

102

137

96

134

131

141

164

WL e e e e e e e

-

e w L e e e e e e e .

()N >Ne)INe)Iie)Ne)NNe)Me)NNe) N o) INe) Mie) N e) I o) o) NNe) N e) o) Nie) RN e) N o) BN o) B o) B o) B o) BNe)}

-

231
226
362
358
390
386
326
322
419
427
437
445
456
465
380
376
412
408
350
346
484
488
174
183
192
202

VII

VIII

ASL_riddgo

ASL_riddhg :
ASL_riddhn :

ASL_riddpo
ASL _r2balt
ASL _r2ba2s

ASL_r2bagm :
ASL_r2bahm :

ASL_r2bamo
ASL _r2bams

ASL _r2basm :
ASL _r2ccma :

ASL _r2ccmt

ASL_r2ccpr :
ASL_r2vcgr :

ASL _r2vcmt

ASL r3iecd :

ASL _r3ieme

ASL r3iera :
ASL r3iesr :
ASL r3iesu :

ASL r3ietc

ASL r3ieva :
ASL _r3tscd :

ASL _r3tsme

ASL _r3tsra :
ASL _r3tsrd :
ASL _r3tssr :
ASL r3tssu :

ASL r3tstc

ASL r3tsva :

ASL r4ilwrl
ASL r42wrl

ASL r42wrm :
ASL _r42wrn :

ASL _r4bi01
ASL_r4gl01
ASL_r4mu01
ASL _r4mwrf

ASL _r4mwrm :

ASL_r4rb01
ASL _r5chef

ASL _r5chmd :
ASL _r5chmn :

ASL _r5chtt

ASL_r5temh :
ASL_rb5tesg :
ASL_rb5tesp :

ASL r5tewl

ASL r6clan :
ASL r6clda :

ASL _r6clds

ASL_r6cpcc :

ASL_r6cpsc

: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.

(o) 3e>Ie>)Ne>) N e)Nie)NEe) RN o) BN o) N e Mo)N e) Be)NEe)NEe) RN o) BN o) RN e) BN Nie) B o) I e)Nie) NN o) NN e) NN o)) e) I o) o) Mo)N o) N o) BN)N) i o) Mo o) B o) B o) i o) i) i) B) i o) B 0> B o) i o) B e) i 0> i 0> i) B @) BN @)

168
174
177
171
188
195
210
219
215
204
223
249
243
256
233
227
337
322
319
342
326
333
330
380
357
348
352
383
362
373
369
397
417
409
403
477
472
452
426
439
468
486
497
493
490
509
501
513
505
571
576
565
526
528

ASL _r6¢cvan :

ASL _r6cvsc

ASL _r6dafn :

ASL _r6dasc

ASL r6fald :
ASL r6favr :

ASL _rabmcs
ASL _rabmel

ASL _ramlad :
ASL ramimm :

ASL _ramims
ASL ramimt

ASL ramimu :
ASL_ramlsb :
ASL_ramltm :
ASL_ramltp :

ASL ramlitt

ASL ramlvm :
ASL_ram3tp :
ASL_ram3vm :
ASL_ram4vm :
ASL_ramtim :

ASL_ramvjl

ASL_ramvj3 :
ASL_ramvj4 :
ASL_rargjm :
ASL_rarsjd :

ASL _rasbcs
ASL _rasbel

ASL ratmim :

ASL_rbbddi
ASL _rbbdlc
ASL _rbbdls

ASL_rbbdlu :
ASL_rbbdlx :

ASL_rbbdsl
ASL_rbbpdi

ASL_rbbpls :
ASL_rbbplx :

ASL_rbbpsl
ASL_rbbpuc

ASL_rbbpuu :
ASL_rbgmdi :

ASL_rbgmlc
ASL_rbgmls

ASL_rbgmlu :
ASL_rbgmlx :
ASL_rbgmms :

ASL_rbgmsl

ASL_rbgmsm :

ASL_rbpddi
ASL_rbpdls

ASL_rbpdlx :

ASL_rbpdsl

Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.

NN NNDNNDNNDNNDNNDNDNDNDMDNDNDNDNDNDNNDNDNDDNDNDNDNDNDNDNMNNNMNNAA,AR,P R, RrPPRPRrPRPRrPRPrPRPRrPPR,rRP,rPRPrPRPRPRPRPRPRPRPRPRPRRPRRRPRRRPRRFRROOODODODOSDO

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

543
546
553
557
535
537
13
17
55
75
65
79
61
58
83
136
87
127
139
130
133
69
143
147
151
32
26
20
23
72
255
250
253
248
257
243
272
270
274
262
268
266
52
44
46
42
54
48
37
32
116
114
118
106

INDEX

INDEX

ASL_rbpduc

ASL_rbpduu :

ASL _rbsmdi
ASL _rbsmls

ASL _rbsmlx :

ASL_rbsmms
ASL _rbsmsl
ASL _rbsmuc

ASL _rbsmud :

ASL _rbsnls
ASL _rbsnsl

ASL _rbsnud :

ASL_rbspdi
ASL_rbspls

ASL_rbsplx :

ASL_rbspms
ASL_rbspsl
ASL_rbspuc

ASL_rbspud :

ASL _rbtdsl
ASL_rbtlco
ASL_rbtldi
ASL _rbtlsl
ASL_rbtosl
ASL_rbtpsl
ASL_rbtssl
ASL_rbtuco
ASL_rbtudi
ASL_rbtusl
ASL_rbvmsl
ASL_rcgbff

ASL_rcgeaa :
ASL_rcgean :
ASL_rcggaa :
ASL_rcggan :
ASL_rcgjaa :
ASL_rcgjan :
ASL_rcgkaa :
ASL_rcgkan :
ASL_rcgnaa :
ASL_rcgnan :
ASL_rcgsaa :
ASL_rcgsan :

ASL_rcgsee

ASL_rcgsen :
ASL_rcgssn :

ASL_rcgsss

ASL _rcsbaa :
ASL _rcsban :

ASL _rcsbff

ASL _rcsbsn :

ASL _rcsbss

ASL_rcsjss :
ASL _rcsmaa :

: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.

B R R R, R, R R, R, RERR,RER,RR,RRERERR PR RPRPRPRPRRPRNDDNDMNDNDNDNNDNNDNNDNNDNDNDNDNNDDNDNDNDNNDNDNDNDNODNDNDNNDNDNDNDNDDNDN

112
110
154
148
156
150
139
146
144
165
1568
163
135
129
137
131
120
127
125
276
324
326
321
302
280
306
317
319
314
310
400
177
183
328
335
360
364
366
370
185
189
337
342
352
358
350
344
264
268
277
275
270
311
204

ASL _rcsman :

ASL _rcsmee

ASL _rcsmen :
ASL _rcsmsn :

ASL _rcsmss
ASL _rcsrss

ASL _rcstaa :
ASL _rcstan :

ASL _rcstee

ASL _rcsten :
ASL _rcstsn :

ASL _rcstss

ASL rfasma :

ASL_rfclbf

ASL rfci1fb :

ASL _rfc2bf

ASL rfc2fb :

ASL_rfc3bf

ASL_rfc3fb :

ASL _rfcmbf

ASL _rfcmfb :
ASL rfcnid :
ASL rfcn2d :
ASL rfcn3d :
ASL rfcrid :
ASL rfcr2d :
ASL rfcr3dd :

ASL rfcrcs

ASL rfcrcz :

ASL rfcrsc
ASL rfcvcs
ASL rfcvsc

ASL_rfdped :

ASL_rfdpes
ASL_rfdpet
ASL_rflage

ASL_rflara :
ASL_rfpsid :
ASL_rfps2d :
ASL_rfps3d :

ASL rfribf

ASL rfrifb :

ASL rfr2bf

ASL rfr2fb :

ASL_rfr3bf

ASL_rfr3fb :

ASL _rfrmbf

ASL rfrmfb :

ASL rfwtff
ASL rfwtft
ASL_rfwthl

ASL_rfwth2 :

ASL rfwthi

ASL rfwthr :

Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.

LoV Vv V¥ Vv v)

-

e B L E W e e e e e e e e e e e e e e e e .

W WWwwWwwwowowwwwwwwowowowwwo oo o oo OO WWWWwWwwWwWwWwWWwwwwowo Rk Rk P B B B B B P2

-

208
217
222
215
210
303
283
287
296
301
294
289
285
50

46

117
113
146
142
81

77

177
187
195
206
216
224
283
281
279
274
269
291
289
294
273
267
235
243
252
71

67

136
132
169
164
106
101
306
308
277
289
296
280

X

X

ASL _rfwths
ASL _rfwtht
ASL rfwtmf
ASL rfwtmt

ASL_rgicbp :

ASL_rgicbs

ASL_rgiccm :
ASL_rgiccen :

ASL_rgicco

ASL_rgiccp :
ASL_rgiccq :
ASL_rgiccr :

ASL_rgiccs
ASL_rgicct

ASL_rgidby :
ASL_rgidcy :

ASL_rgidmc
ASL_rgidpc
ASL_rgidsc

ASL_rgidyb :
ASL_rgiibz :
ASL_rgiicz :

ASL_rgiimc
ASL_rgiipc
ASL_rgiisc

ASL_rgiizb :
ASL_rgisbx :
ASL_rgiscx :

ASL rgisil

ASL rgisi2 :
ASL rgisi3 :

ASL_rgismc

ASL_rgispc :

ASL_rgispo

ASL_rgispr :

ASL rgissl

ASL_rgiss2 :
ASL_rgiss3 :

ASL_rgissc
ASL_rgisso

ASL_rgissr :
ASL_rgisxb :

ASL _rh2int
ASL _rhbdfs
ASL _rhbsfc

ASL _rhemnh :

ASL_rhemni
ASL_rhemnl
ASL_rhnanl
ASL_rhnefl

ASL _rhnenh :

ASL _rhnenl
ASL _rhnfml

ASL rhnfnm :

: Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.

N SO SN NN NG N G O O OO G N NG N N G NN G O O O N QY O NG NG O NGV O N O N NG O NG O N SN O N O N O N N N N N N N O R

284
292
301
303
513
537
483
486
478
469
471
473
475
480
517
492
445
432
438
503
519
495
463
452
457
509
515
490
540
545
554
426
416
521
525
561
566
574
420
529
533
497
299
264
267
270
287
223
259
235
279
250
317
307

ASL rhnifl

ASL _rhninh :

ASL rhnini
ASL rhninl

ASL _rhnofh :

ASL_rhnofi
ASL_rhnofl
ASL_rhnpnl
ASL _rhnrml

ASL _rhnrnm :

ASL _rhnsnl

ASL _ribaid :
ASL_ribaix :

ASL_ribbei

ASL_ribber :
ASL _ribbid :
ASL _ribbix :
ASL ribimx :
ASL ribinx :
ASL ribjmx :
ASL_ribjnx :

ASL _ribkei

ASL_ribker :
ASL_ribkmx :
ASL_ribknx :
ASL_ribsin :
ASL_ribsjn :
ASL_ribskn :
ASL_ribsyn :
ASL_ribymx :
ASL_ribynx :

ASL rieiil

ASL rieii2 :
ASL rieii3 :
ASL rieii4d :

ASL rigigl

ASL rigig2 :

ASL riicos
ASL rijerf

ASL riisin :

ASL_rilegl

ASL_rileg2 :

ASL rimtce
ASL rimtse

ASL_riopc2 :
ASL_riopch :

ASL_riopgl

ASL_riophe :
ASL_riopla :

ASL_riople
ASL_rixeps

ASL_rizbsO :

ASL rizbs1
ASL rizbsl

: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.

L V™ v Vv Vv ™ v

-

LoV Vv v Vv P Vv P v vV

oo OO OO OO OO OO OO0 OO OO OO OO0 OO0 OO0 OO0 OO0 OO OO OO D DD DD D D e

-

240
283
295
255
274
291
230
245
312
302
227
189
185
167
165
191
187
135
129
90

84

171
169
138
132
163
147
156
150
93

87

221
223
226
228
199
202
261
281
259
285
288
306
309
302
300
304
298
296
291
324
102
105
114

INDEX

INDEX

ASL_rizbsn :
ASL_rizbyn :
ASL rizglw :

ASL_rjtebi

ASL_rjtecc :
ASL_rjteex :
ASL_rjtegm :
ASL_rjtegu :
ASL.rjtelg :
ASL_rjteng :

ASL_rjteno
ASL_rjtepo

ASL_rjteun :

ASL_rjtewe
ASL _rkfncs
ASL_rkhncs
ASL_rkinct

ASL _rkmncn :
ASL _rksnca :

ASL _rksncs

ASL _rkssca :
ASL rlarha :

ASL rlnrds
ASL rlnris

ASL rlnrsa :

ASL_rlnrss
ASL_rlsrds
ASL rlsris
ASL_rmclaf

ASL_rmclcp :

ASL _rmclmc

ASL_rmclmz :
ASL_rmclsn :
ASL_rmcltp :
ASL_rmcqaz :
ASL_rmcqlm :
ASL_rmcqgsn :
ASL_rmcusn :

ASL_rmspl1l

ASL_rmspim :
ASL_rmspmm :
ASL_rmsqpm :
ASL_rmumqg :
ASL_rmumqn :
ASL_rmussn :
ASL_rmuusn :

ASL_rncbpo
ASL_rndaao
ASL_rndanl
ASL_rndapo
ASL_rngapl

ASL _rnlnma :
ASL_rnlnrg :
ASL rnlnrr :

Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.

[0 B e > T e) B e . AN 2 @ 2 @2 B B2 B 62 B &2 B &2 B @2 @2 NG 2 B @ 2 BN G 2 I 2 B @2 B &2 N &2 B & B@ 2 B @ 2 @ 2 @ 2 B @ B & B S St St St S S S e) B @ B @ B @) N @) @ I e) I e M e) Bl @) N © NN & B @) B) |

108
111
293
53
33
29
45
37
49
57
25
61
20
41
72
78
55
84
49
43
65
388
396
400
406
403
414
421
490
517
511
502
483
524
544
538
531
479
567
558
563
551
469
465
474
462
392
362
372
367
386
605
592
598

ASL_rnnlgf
ASL_rnrapl
ASL_rofnnf

ASL rofnnv :
ASL _rohnlv :

ASL _rohnnf

ASL _rohnnv :
ASL roief2 :

ASL roievl

ASL_rolnlv :
ASL_ropdh2 :
ASL_ropdh3 :

ASL _rosnnf

ASL_rosnnv :
ASL_rpdapn :

ASL_rpdopl
ASL_rpgopl
ASL_rplopl

ASL_rqfodx :
ASL_rgmogx :
ASL_rgmohx :
ASL_rgmojx :
ASL_rsmgon :
ASL_rsmgpa :

ASL _rsstal

ASL _rssta?2 :

ASL_rsstpt

ASL rsstra :
ASL_rxa005 :
ASL _vibhOx :
ASL _vibhilx :
ASL_vibhyO :
ASL_vibhyl :
ASL vibiOx :
ASL vibilx :
ASL_vibjOx :
ASL_vibjlx :
ASL _vibkOx :
ASL vibklx :
ASL_vibyOx :
ASL_vibylx :
ASL_vidbey :

ASL viecil

ASL vieci2 :

ASL_viejac

ASL_viejep :

ASL_viejte

ASL_viejzt :
ASL_vienmq :

ASL_viepai
ASL_vierfc
ASL_vierrf
ASL_viethe

ASL_vigamx :

: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.

L ™ ™ ™ ™ ™

-

G E L W e

IS IR I S S S WS WS WS WS B s B s B s B s B s BN IS e 1 B e s B o IS 1 S 1 G A TS MRSRSRS, RS, WS WS - B 2 TS » BV QY QU G Y Y NG N N N S NG NG NG NG NG NG NS O SO SO OO N

-

617
379
115
108
136
129
122
149
163
143
157
165
100
91

347
343
358
351
182
186
190
194
348
352
331
335
344
340
47

173
176
179
182
117
123
72

78

120
126
75

81

314
215
218
230
244
247
241
234
250
278
275
238
193

XI

XII

ASL_vigbet

ASL_vigdig :
ASL_viglgx :

ASL _viicnc

ASL viicnd :
ASL viidaw :
ASL_viiexp :

ASL_viifco
ASL_viifsi

ASL_viilog :
ASL_vinplg :
ASL_vixsla :

ASL_vixsps

ASL vixzta :

ASL_wbtcls
ASL_wbtcsl
ASL_wbtdls
ASL _wbtdsl

ASL _wibhOx :
ASL _wibhlx :
ASL_wibhyO :

ASL_wibhy1l

ASL_wibiOx :
ASL_wibilx :
ASL_wibjOx :
ASL_wibjlx :
ASL_wibkOx :
ASL_wibklx :
ASL_wibyOx :
ASL_wibylx :
ASL_widbey :

ASL wiecil

ASL wieci2 :

ASL_wiejac

ASL_wiejep :

ASL_wiejte
ASL wiejzt

ASL_wienmq :

ASL_wiepai
ASL wierfc
ASL wierrf
ASL _wiethe

ASL_wigamx :

ASL_wigbet

ASL wigdig :
ASL_wiglgx :

ASL wiicnc

ASL wiicnd :
ASL wiidaw :
ASL_wiiexp :

ASL_wiifco
ASL wiifsi

ASL_wiilog :
ASL_winplg :

: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.

O oo oo OO OO OO OO OO OO OO OO OO OO 01O OO OTNDNNDN OO OO oo o101 OO

212
209
196
272
270
268
253
265
263
256
316
319
312
321
297
292
288
284
173
176
179
182
117
123
72

78

120
126
75

81

314
215
218
230
244
247
241
234
250
278
275
238
193
212
209
196
272
270
268
253
265
263
256
316

ASL wixsla :

ASL_wixsps

ASL wixzta :
ASL_zam1hh :
ASL_zamlhm :
ASL _zamimh :
ASL zamlimm :
ASL_zan1lhh :
ASL_zanlhm :
ASL _zanlimh :
ASL _zanlimm :

ASL_zanvjl

ASL_zargjm :
ASL_zarsjd :
ASL_zbgmdi :

ASL_zbgmlc
ASL_zbgmls

ASL_zbgmlu :
ASL_zbgmlx :

ASL_zbgmms
ASL_zbgms1l

ASL_zbgmsm :

ASL_zbgndi
ASL_zbgnlc
ASL_zbgnls

ASL_zbgnlu :
ASL_zbgnlx :

ASL_zbgnms
ASL_zbgnsl

ASL_zbgnsm :

ASL _zbhedi
ASL _zbhels

ASL _zbhelx :

ASL_zbhems
ASL_zbhesl
ASL_zbheuc

ASL_zbheud :

ASL_zbhfdi
ASL_zbhfls

ASL _zbhflx :

ASL_zbhfms
ASL _zbhfsl
ASL _zbhfuc

ASL_zbhfud :

ASL_zbhpdi
ASL_zbhpls

ASL_zbhplx :
ASL_zbhpms :

ASL_zbhpsl
ASL_zbhpuc

ASL_zbhpud :

ASL_zbhrdi
ASL _zbhrls

ASL_zbhrlx :

Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
: Vol.
Vol.

L ™ Vv ¥ v T T

-

Lo ¥ " T " VW

NDNDNNNODDNDNPNDNDNDNDNDNDNNDNDNNDNDNDNNDNDNDNDNDNDNDNODNNDMNDNNMNNODNNDNNNNMNNDMNDMNNMNNOMNMNNMNNRER,ER,RP,RRRPR R RRRP 200 o

-

319
312
321
106
101
96
91
123
119
115
111
155
44
38
80
72
74
70
82
76
64
59
102
94
96
92
104
98
88
84
239
233
241
235
224
231
229
220
214
222
216
205
212
210
182
176
184
178
167
174
172
201
195
203

INDEX

INDEX

ASL _zbhrms
ASL_zbhrsl
ASL_zbhruc

ASL_zbhrud :
ASL_zcgeaa :
ASL_zcgean :
ASL_zcghaa :
ASL_zcghan :
ASL_zcgjaa :
ASL_zcgjan :
ASL_zcgkaa :
ASL_zcgkan :
ASL_zcgnaa :
ASL_zcgnan :
ASL_zcgraa :
ASL_zcgran :
ASL_zcheaa :
ASL_zchean :

ASL _zcheee

ASL_zcheen :
ASL _zchesn :

ASL _zchess
ASL_zchjss

ASL _zchraa :
ASL _zchran :

ASL _zchree

ASL _zchren :
ASL_zchrsn :

ASL _zchrss
ASL_zfclbf

ASL zfc1fb :

ASL _zfc2bf

ASL zfc2fb :

ASL_zfc3bf

ASL_zfc3fb :

ASL_zfcmbf

ASL zfcmfb :
ASL_zibhiln :
ASL_zibh2n :
ASL zibinz :
ASL_zibjnz :
ASL_zibknz :
ASL_zibynz :
ASL_zigamz :
ASL ziglgz :
ASL _zlacha :

ASL _zlncis

: Vol.
: Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.

GO OO OO oo wWwwwwwwwwerrrPrPrPPrPPPPRPPRPPRPRPRPRPRPRPRPRPRPRPRPRPRPRPRPRPRRPRRPR,PNDMNDNODND

197
186
193
191
191
196
379
384
386
391
393
398
198
202
372
377
244
248
257
262
255
250
320
224
228
237
242
235
230
61

57

127
123
157
163
93

89

159
162
141
96

144
99

205
207
392
410

XIII

	PROPRIETARY NOTICE
	PREFACE
	Contents
	INTRODUCTION
	OVERVIEW
	KINDS OF LIBRARIES
	ORGANIZATION
	FUNCTION NAMES
	NOTES

	FOURIER TRANSFORMS AND THEIR APPLICATIONS
	INTRODUCTION
	Notes
	Algorithms Used
	Reference Bibliography

	ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
	[DEPRECATED] ASL_dfc1fb,ASL_rfc1fb One-Dimensional Complex Fourier Transforms (Including Initialization)
	[DEPRECATED] ASL_dfc1bf,ASL_rfc1bf One-Dimensional Complex Fourier Transforms (After Initialization)

	ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
	[DEPRECATED] ASL_zfc1fb,ASL_cfc1fb One-Dimensional Complex Fourier Transforms (Including Initialization)
	[DEPRECATED] ASL_zfc1bf,ASL_cfc1bf One-Dimensional Complex Fourier Transforms (After Initialization)

	ONE-DIMENSIONAL REAL FOURIER TRANSFORM
	[DEPRECATED] ASL_dfr1fb,ASL_rfr1fb One-Dimensional Real Fourier Transforms (Including Initialization)
	[DEPRECATED] ASL_dfr1bf,ASL_rfr1bf One-Dimensional Real Fourier Transforms (After Initialization)

	MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
	[DEPRECATED] ASL_dfcmfb,ASL_rfcmfb Multiple One-Dimensional Complex Fourier Transforms (Include Initialization)
	[DEPRECATED] ASL_dfcmbf,ASL_rfcmbf Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

	MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
	[DEPRECATED] ASL_zfcmfb,ASL_cfcmfb Multiple One-Dimensional Complex Fourier Transforms (Include Initialization)
	[DEPRECATED] ASL_zfcmbf,ASL_cfcmbf Multiple One-Dimensional Complex Fourier Transforms (After Initialization)

	MULTIPLE ONE-DIMENSIONAL REAL FOURIER TRANSFORM
	[DEPRECATED] ASL_dfrmfb,ASL_rfrmfb Multiple One-Dimensional Real Fourier Transforms (Including Initialization)
	[DEPRECATED] ASL_dfrmbf,ASL_rfrmbf Multiple One-Dimensional Real Fourier Transforms (After Initialization)

	TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
	[DEPRECATED] ASL_dfc2fb,ASL_rfc2fb Two-Dimensional Complex Fourier Transform (Including Initialization)
	[DEPRECATED] ASL_dfc2bf,ASL_rfc2bf Two-Dimensional Complex Fourier Transform (After Initialization)

	TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
	[DEPRECATED] ASL_zfc2fb,ASL_cfc2fb Two-Dimensional Complex Fourier Transform (Including Initialization)
	[DEPRECATED] ASL_zfc2bf,ASL_cfc2bf Two-Dimensional Complex Fourier Transform (After Initialization)

	TWO-DIMENSIONAL REAL FOURIER TRANSFORM
	[DEPRECATED] ASL_dfr2fb,ASL_rfr2fb Two-Dimensional Real Fourier Transform (Including Initialization)
	[DEPRECATED] ASL_dfr2bf,ASL_rfr2bf Two-Dimensional Real Fourier Transform (After Initialization)

	THREE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
	[DEPRECATED] ASL_dfc3fb,ASL_rfc3fb Three-Dimensional Complex Fourier Transform (Including Initialization)
	[DEPRECATED] ASL_dfc3bf,ASL_rfc3bf Three-Dimensional Complex Fourier Transform (After Initialization)

	THREE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
	[DEPRECATED] ASL_zfc3fb,ASL_cfc3fb Three-Dimensional Complex Fourier Transform (Including Initialization)
	[DEPRECATED] ASL_zfc3bf,ASL_cfc3bf Three-Dimensional Complex Fourier Transform (After Initialization)

	THREE-DIMENSIONAL REAL FOURIER TRANSFORM
	[DEPRECATED] ASL_dfr3fb,ASL_rfr3fb Three-Dimensional Real Fourier Transform (Including Initialization)
	[DEPRECATED] ASL_dfr3bf,ASL_rfr3bf Three-Dimensional Real Fourier Transform (After Initialization)

	CONVOLUTIONS
	ASL_dfcn1d,ASL_rfcn1d One-Dimensional Convolutions
	ASL_dfcn2d,ASL_rfcn2d Two-Dimensional Convolutions
	ASL_dfcn3d,ASL_rfcn3d Three-Dimensional Convolutions

	CORRELATIONS
	ASL_dfcr1d,ASL_rfcr1d One-Dimensional Correlations
	ASL_dfcr2d,ASL_rfcr2d Two-Dimensional Correlations
	ASL_dfcr3d,ASL_rfcr3d Three-Dimensional Correlations

	POWER SPECTRUM ANALYSIS
	ASL_dfps1d,ASL_rfps1d One-Dimensional Fourier Periodograms
	ASL_dfps2d,ASL_rfps2d Two-Dimensional Fourier Periodograms
	ASL_dfps3d,ASL_rfps3d Three-Dimensional Fourier Periodograms

	LAPLACE TRANSFORM
	ASL_dflara,ASL_rflara Inverse Laplace Transform (Rational Function)
	ASL_dflage,ASL_rflage Inverse Laplace Transform (General Function)

	WAVELET TRANSFORM
	ASL_dfwth1,ASL_rfwth1 Haar Function Generation
	ASL_dfwthr,ASL_rfwthr Wavelet Transform According to Haar Functions
	ASL_dfwths,ASL_rfwths Inverse Wavelet Transform According to Haar Functions
	ASL_dfwth2,ASL_rfwth2 Haar Function Generation (Equally Spaced Sampling Data)
	ASL_dfwtht,ASL_rfwtht Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)
	ASL_dfwthi,ASL_rfwthi Inverse Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)
	ASL_dfwtmf,ASL_rfwtmf Mexican Hut Function Computation
	ASL_dfwtmt,ASL_rfwtmt Wavelet Transform According to Mexican Hut Functions
	ASL_dfwtff,ASL_rfwtff French Hut Function Computation
	ASL_dfwtft,ASL_rfwtft Wavelet Transform According to French Hut Function

	Appendix A: MACHINE CONSTANTS USED IN ASL C INTERFACE
	INDEX
	Functions included in this Volume
	ASL_dfcn1d
	ASL_dfcn2d
	ASL_dfcn3d
	ASL_dfcr1d
	ASL_dfcr2d
	ASL_dfcr3d
	ASL_dflage
	ASL_dflara
	ASL_dfps1d
	ASL_dfps2d
	ASL_dfps3d
	ASL_dfwtff
	ASL_dfwtft
	ASL_dfwth1
	ASL_dfwth2
	ASL_dfwthi
	ASL_dfwthr
	ASL_dfwths
	ASL_dfwtht
	ASL_dfwtmf
	ASL_dfwtmt
	ASL_rfcn1d
	ASL_rfcn2d
	ASL_rfcn3d
	ASL_rfcr1d
	ASL_rfcr2d
	ASL_rfcr3d
	ASL_rflage
	ASL_rflara
	ASL_rfps1d
	ASL_rfps2d
	ASL_rfps3d
	ASL_rfwtff
	ASL_rfwtft
	ASL_rfwth1
	ASL_rfwth2
	ASL_rfwthi
	ASL_rfwthr
	ASL_rfwths
	ASL_rfwtht
	ASL_rfwtmf
	ASL_rfwtmt

	Link to Other Volumes
	Volume 1
	Volume 2
	Volume 4
	Volume 5
	Volume 6
	Shared Memory Parallel Functions

