ADVANCED SCIENTIFIC LIBRARY ASL C INTERFACE User's Guide <Basic Functions Vol.5>

PROPRIETARY NOTICE

The information disclosed in this document is the property of NEC Corporation (NEC) and/or its licensors. NEC and/or its licensors, as appropriate, reserve all patent, copyright and other proprietary rights to this document, including all design, manufacturing, reproduction, use and sales rights thereto, except to extent said rights are expressly granted to others.

The information in this document is subject to change at any time, without notice.

PREFACE

This manual describes general concepts, functions, and specifications for use of the Advanced Scientific Library (ASL) C interface.

The manuals corresponding to this product consist of seven volumes, which are divided into the chapters shown below. This manual describes the basic functions, volume 5.

Basic Functions Volume 1

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Storage Mode Conversion	Explanation of algorithms, method of using, and usage example of function related to storage mode conversion of array data.
3	Basic Matrix Algebra	Explanation of algorithms, method of using, and usage example of function related to basic calculations involving matrices.
4	Eigenvalues and Eigenvectors	Explanation of algorithms, method of using, and usage example of function related to the standard eigenvalue problem for real matrices, complex matrices, real symmetric matrices, Hermitian matrices, real sym- metric band matrices, real symmetric tridiagonal matrices, real symmetric random sparse matrices, Hermitian random sparse matrices and the generalized eigenvalue problem for real matrices, real symmetric matrices, Hermitian matrices, real symmetric band matrices.

Basic Functions Volume 2

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Simultaneous Linear Equations (Direct Method)	Explanation of algorithms, method of using, and usage example of function related to simultaneous linear equations correspond- ing to real matrices, complex matrices, positive symmetric ma- trices, real symmetric matrices, Hermitian matrices, real band matrices, positive symmetric band matrices, real tridiagonal ma- trices, real upper triangular matrices, and real lower triangular matrices.

Basic Functions Volume 3

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Fourier Transforms and their applications	Explanation of algorithms, method of using, and usage ex- ample of function related to one-, two- and three-dimensional complex Fourier transforms and real Fourier transforms, one-, two- and three-dimensional convolutions, correlations, and power spectrum analysis, wavelet transforms, and inverse Laplace transforms.

Basic Functions Volume 4

Chapter	Title	Contents
1	Introduction	Differential Equations and Their Applications item, and usage limitations.
2	Explanation of algorithms, method of using, and usage example of function related to ordinary differential equations initial value problems for high-order simultaneous ordinary differential equations, implicit simultaneous ordinary differential equations, matrix type ordi-	
nary differential equations, stiff problem high-order simultane-		
ous ordinary differential equations, simultaneous ordinary dif-		
ferential equations, first-order simultaneous ordinary differential		
equations, and high-order ordinary differential equations, and		
ordinary differential equations boundary value problems		
for high-order simultaneous ordinary differential equations, first-		
order simultaneous ordinary differential equations, high-order or-		
dinary differential equations, high-order linear ordinary differen-		
tial equations, and second-order linear ordinary differential equa-		
tions, and		
integral equations for Fredholm's integral equations of second		
kind and Volterra's integral equations of first kind, and		
partial differential equations for two- and three-dimensional		
inhomogeneous Helmholtz equation.		

Basic Functions Volume 5

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Special Functions	Explanation of algorithms, method of using, and usage example of function related to Bessel functions, modified Bessel functions, spherical Bessel functions, functions related to Bessel functions, Gamma functions, functions related to Gamma functions, elliptic functions, indefinite integrals of elementary functions, associated Legendre functions, orthogonal polynomials, and other special functions.
3	Sorting and Ranking	Explanation and usage examples of function related to sorting and ranking.
4	Roots of Equations	Explanation of algorithms, method of using, and usage exam- ple of function related to roots of algebraic equations, nonlinear equations, and simultaneous nonlinear equations.
5	Extremal Problems and Optimization	Explanation of algorithms, method of using, and usage example of function related to minimization of functions with no con- straints, minimization of the sum of the squares of functions with no constraints, minimization of one-variable functions with constraints, minimization of multi-variable functions with con-
straints, and shortest path problem.		

Basic Functions Volume 6

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Random Number Tests	Explanation and usage examples of function related to uniform random number tests, and distribution random number tests.
3	Probability Distributions	Explanation and usage examples of function related to continu- ous distributions and discrete distributions.
4	Basic Statistics	Explanation and usage examples of function related to basic statistics, variance-covariance and correlation.
5	Tests and Estimates	Explanation and usage examples of function related to interval estimates and tests.
7	Andysis of Variance Design of Experiments	Explanation and usage examples of function related to one-way layout, two-way layout, multiple-way layout, randomized block design, Greco-Latin square method, cumulative Method.
8	Nonparametric Tests	Explanation and usage examples of function related to tests using χ^{2} distribution and tests using other distributions.
9	Time Series Analysis	Explanation and usage examples of function related to principal component analysis, factor analysis, canonical correlation analy- sis, discriminant analysis, cluster analysis.
Explanation and usage examples of function related to auto- correlation, cross correlation, autocovariance, cross covariance, smoothing and demand forecasting.		
10	Regression analysis	Explanation and usage examples of function related to linear Regression and nonlinear Regression.

Shared Memory Parallel Functions

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Basic Matrix Algebra	Explanation of algorithms, method of using, and usage example of function related to obtain the product of real matrices and complex matrices.
3	Simultaneous Linear Equations (Direct Method)	Explanation of algorithms, method of using, and usage example of function related to simultaneous linear equations correspond- ing to real matrices, complex matrices, real symmetric matrices, and Hermitian matrices.
4	Simultaneous Linear Equations (Iteration Method)	Explanation of algorithms, method of using, and usage example of function related to simultaneous linear equations correspond- ing to real positive definite symmetric sparse matrices, real sym- metric sparse matrices and real asymmetric sparse matrices.
5	Eigenvalues and Eigenvectors	Explanation of algorithms, method of using, and usage example of function related to the eigenvalue problem for real symmetric matrices and Hermitian matrices.
6	Fourier Transforms and their applications	Explanation of algorithms, method of using, and usage exam- ple of function related to one-, two- and three-dimensional com- plex Fourier transforms and real Fourier transforms, two- and
7	Sorting	three-dimensional convolutions, correlations, and power spec- trum analysis.

Document Version 3.0.0-230301 for ASL, March 2023

Remarks

(1) This manual corresponds to ASL 1.1. All functions described in this manual are program products.
(2) Proper nouns such as product names are registered trademarks or trademarks of individual manufacturers.
(3) This library was developed by incorporating the latest numerical computational techniques. Therefore, to keep up with the latest techniques, if a newly added or improved function includes the function of an existing function may be removed.

Contents

1 INTRODUCTION 1
1.1 OVERVIEW 1
1.1.1 Introduction to The Advanced Scientific Library ASL C interface 1
1.1.2 Distinctive Characteristics of ASL C interface 1
1.2 KINDS OF LIBRARIES 2
1.3 ORGANIZATION 3
1.3.1 Introduction 3
1.3.2 Organization of Function Description 3
1.3.3 Contents of Each Item 3
1.4 FUNCTION NAMES 7
1.5 NOTES 9
2 SPECIAL FUNCTIONS 11
2.1 INTRODUCTION 11
2.1.1 Notes 12
2.1.2 Algorithms Used 13
2.1.2.1 Bessel Functions 13
2.1.2.2 Modified Bessel Functions 19
2.1.2.3 Spherical Bessel Functions 27
2.1.2.4 Functions Related To Bessel Functions 30
2.1.2.5 Gamma Functions 34
2.1.2.6 Functions Related To The Gamma Function 37
2.1.2.7 Elliptic Functions And Elliptic Integrals 38
2.1.2.8 Indefinite Integrals Of Elementary Functions 46
2.1.2.9 Associated Legendre Functions 50
2.1.2.10 Orthogonal Polynomials 53
2.1.2.11 Mathieu functions of integer orders 53
2.1.2.12 Langevin function 55
2.1.2.13 Gauss=Legendre integration formula 55
2.1.2.14 Zero points of Bessel Functions 57
2.1.2.15 Positive zero points of the second kind Bessel function 60
2.1.2.16 Zeta function of Positive definite quadratic form $x^{2}+a y^{2}$ 60
2.1.2.17 Di-log function 61
2.1.2.18 Debye function 61
2.1.2.19 Normalized Spherical Harmonics 62
2.1.2.20 Hurwitz Zeta function for a real variable 63
2.1.2.21 The functions related to the error function 66
2.1.2.22 Coefficient Calculation Method 68
2.1.2.23 Method of Calculating Related Special Functions 68
2.1.3 Reference Bibliography 71
2.2 BESSEL FUNCTIONS 72
2.2.1 ASL_wibj0x, ASL_vibj0x Bessel Function of the 1st Kind (Order 0) 72
2.2.2 ASL_wiby0x, ASL_viby0x
Bessel Function of the 2nd Kind (Order 0) 75
2.2.3 ASL_wibj1x, ASL_vibj1x Bessel Function of the 1st Kind (Order 1) 78
2.2.4 ASL_wiby1x, ASL_viby1x Bessel Function of the 2nd Kind (Order 1) 81
2.2.5 ASL_dibjnx, ASL_ribjnx Bessel Function of the 1st Kind (Integer Order) 84
2.2.6 ASL_dibynx, ASL_ribynx Bessel Function of the 2nd Kind (Integer Order) 87
2.2.7 ASL_dibjmx, ASL_ribjmx
Bessel Function of the 1st Kind (Real Number Order) 90
2.2.8 ASL_dibymx, ASL_ribymx Bessel Function of the 2nd Kind (Real Number Order) 93
2.2.9 ASL_zibjnz, ASL_cibjnz Bessel Function of the 1st Kind with Complex Variable (Integer Order) 96
2.2.10 ASL_zibynz, ASL_cibynz Bessel Function of the 2nd Kind with Complex Variable (Integer Order) 99
2.3 ZERO POINTS OF THE BESSEL FUNCTIONS 102
2.3.1 ASL_dizbs0, ASL_rizbs0 Positive Zero Points of the Bessel Function of the 1st Kind (Order 0) 102
2.3.2 ASL_dizbs1, ASL_rizbs1 Positive Zero Points of the Bessel Function of the 1st Kind (Order 1) 105
2.3.3 ASL_dizbsn, ASL_rizbsn Positive Zero Points of Bessel Function of the 1st Kind (Integer Order) 108
2.3.4 ASL_dizbyn, ASL_rizbyn Positive Zero Points of the Second Kind Bessel Function 111
2.3.5 ASL_dizbsl, ASL_rizbsl Positive Zero Points of the Function $a J_{0}(\alpha)+\alpha J_{1}(\alpha)$ 114
2.4 MODIFIED BESSEL FUNCTIONS 117
2.4.1 ASL_wibi0x, ASL_vibi0x Modified Bessel Function of the 1st Kind (Order 0) 117
2.4.2 ASL_wibk0x, ASL_vibk0x Modified Bessel Function of the 2nd Kind (Order 0) 120
2.4.3 ASL_wibi1x, ASL_vibi1x Modified Bessel Function of the 1st Kind (Order 1) 123
2.4.4 ASL_wibk1x, ASL_vibk1x Modified Bessel Function of the 2nd Kind (Order 1) 126
2.4.5 ASL_dibinx, ASL_ribinx Modified Bessel Function of the 1st Kind (Integer Order) 129
2.4.6 ASL_dibknx, ASL_ribknx Modified Bessel Function of the 2nd Kind (Integer Order) 132
2.4.7 ASL_dibimx, ASL_ribimx Modified Bessel Function of the 1st Kind (Real Number Order) 135
2.4.8 ASL_dibkmx, ASL_ribkmx Modified Bessel Function of the 2nd Kind (Real Number Order) 138
2.4.9 ASL_zibinz, ASL_cibinz Modified Bessel Function of the 1st Kind with Complex Variable (Integer Order) 141
2.4.10 ASL_zibknz, ASL_cibknz Modified Bessel Function of the 2nd Kind with Complex Variable (Integer Order) 144
2.5 SPHERICAL BESSEL FUNCTIONS 147
2.5.1 ASL_dibsjn, ASL_ribsjn Spherical Bessel Function of the 1st Kind (Integer Order) 147
2.5.2 ASL_dibsyn, ASL_ribsyn Spherical Bessel Function of the 2nd Kind (Integer Order) 150
2.5.3 ASL_dibsin, ASL_ribsin Modified Spherical Bessel Function of the 1st Kind (Integer Order) 153
2.5.4 ASL_dibskn, ASL_ribskn Modified Spherical Bessel Function of the 2nd Kind (Integer Order) 156
2.6 FUNCTIONS RELATED TO BESSEL FUNCTIONS 159
2.6.1 ASL_zibh1n, ASL_cibh1n Hankel Function of the 1st Kind 159
2.6.2 ASL_zibh2n, ASL_cibh2n Hankel Function of the 2nd Kind 162
2.6.3 ASL_dibber, ASL_ribber Kelvin Function $\operatorname{ber}_{n}(x)$ 165
2.6.4 ASL_dibbei, ASL_ribbei Kelvin Function bei $_{n}(x)$ 167
2.6.5 ASL_dibker, ASL_ribker Kelvin Function $\operatorname{ker}_{n}(x)$ 169
2.6.6 ASL_dibkei, ASL_ribkei Kelvin Function $\operatorname{kei}_{n}(x)$ 171
2.6.7 ASL_wibh0x, ASL_vibh0x Struve Function (Order 0) 173
2.6.8 ASL_wibh1x, ASL_vibh1x Struve Function (Order 1) 176
2.6.9 ASL_wibhy0, ASL_vibhy0 Difference of Struve Function (Order 0) and Bessel Function of the 2nd Kind (Order 0) 179
2.6.10 ASL_wibhy1, ASL_vibhy1 Difference of Struve Function (Order 1) and Bessel Function of the 2nd Kind (Order 1) 182
2.6.11 ASL_dibaix, ASL_ribaix Airy Function $\operatorname{Ai}(x)$ 185
2.6.12 ASL_dibbix, ASL_ribbix Airy Function $\operatorname{Bi}(x)$ 187
2.6.13 ASL_dibaid, ASL_ribaid Derived Airy Function $\operatorname{Ai}^{\prime}(x)$ 189
2.6.14 ASL_dibbid, ASL_ribbid Derived Airy Function $\mathrm{Bi}^{\prime}(x)$ 191
2.7 GAMMA FUNCTIONS 193
2.7.1 ASL_wigamx, ASL_vigamx Gamma Function with Real Variable 193
2.7.2 ASL_wiglgx, ASL_viglgx Logarithmic Gamma Function with Real Variable 196
2.7.3 ASL_digig1, ASL_rigig1 Incomplete Gamma Function of the 1st Kind 199
2.7.4 ASL_digig2, ASL_rigig2 Incomplete Gamma Function of the 2nd Kind 202
2.7.5 ASL_zigamz, ASL_cigamz Gamma Function with Complex Variable 205
2.7.6 ASL_ziglgz, ASL_ciglgz Logarithmic Gamma Function with Complex Variable 207
2.8 FUNCTIONS RELATED TO THE GAMMA FUNCTION 209
2.8.1 ASL_wigdig, ASL_vigdig Digamma Function 209
2.8.2 ASL_wigbet, ASL_vigbet Beta Function 212
2.9 ELLIPTIC FUNCTIONS AND ELLIPTIC INTEGRALS 215
2.9.1 ASL_wieci1, ASL_vieci1 Complete Elliptic Integral of the 1st Kind 215
2.9.2 ASL_wieci2, ASL_vieci2 Complete Elliptic Integral of the 2nd Kind 218
2.9.3 ASL_dieii1, ASL_rieii1 Incomplete Elliptic Integral of the 1st Kind 221
2.9.4 ASL_dieii2, ASL_rieii2
Incomplete Elliptic Integral of the 2nd Kind 223
2.9.5 ASL_dieii3, ASL_rieii3
Incomplete Modified Elliptic Integral 226
2.9.6 ASL_dieii4, ASL_rieii4
Incomplete Elliptic Integral of The Weierstrass Type 228
2.9.7 ASL_wiejac, ASL_viejac Elliptic Functions of Jacobi 230
2.9.8 ASL_wienmq, ASL_vienmq Nome q and Complete Elliptic Integrals 234
2.9.9 ASL_wiethe, ASL_viethe Elliptic Theta Function 238
2.9.10 ASL_wiejzt, ASL_viejzt Zeta Function of Jacobi 241
2.9.11 ASL_wiejep, ASL_viejep Epsilon Function of Jacobi 244
2.9.12 ASL_wiejte, ASL_viejte Theta Function of Jacobi 247
2.9.13 ASL_wiepai, ASL_viepai Pi Function 250
2.10 INDEFINITE INTEGRALS OF ELEMENTARY FUNCTIONS 253
2.10.1 ASL_wiiexp, ASL_viiexp Exponential Integral 253
2.10.2 ASL_wiilog, ASL_viilog Logarithmic Integral 256
2.10.3 ASL_diisin, ASL_riisin Sine Integral 259
2.10.4 ASL_diicos, ASL_riicos Cosine Integral 261
2.10.5 ASL_wiifsi, ASL_viifsi Fresnel Sine Integral 263
2.10.6 ASL_wiifco, ASL_viifco Fresnel Cosine Integral 265
2.10.7 ASL_wiidaw, ASL_viidaw Dawson Integral 268
2.10.8 ASL_wiicnd, ASL_viicnd Normal Distribution Function 270
2.10.9 ASL_wiicnc, ASL_viicnc Complementary Normal Distribution Function 272
2.11 THE FUNCTIONS RELATED TO THE ERROR FUNCTIONS 275
2.11.1 ASL_wierrf, ASL_vierrf Error Function 275
2.11.2 ASL_wierfc, ASL_vierfc Co-Error Function 278
2.11.3 ASL_diierf, ASL_riierf Inverse of Co-Error Function 281
2.11.4 ASL_jiierf, ASL_iierf Error Function for Complex Arguments 283
2.12 ASSOCIATED LEGENDRE FUNCTIONS 285
2.12.1 ASL_dileg1, ASL_rileg1 Associated Legendre Function of the 1st Kind 285
2.12.2 ASL_dileg2, ASL_rileg2
Associated Legendre Function of the 2nd Kind 288
2.13 ORTHOGONAL POLYNOMIALS 291
2.13.1 ASL_diople, ASL_riople Legendre Polynomial 291
2.13.2 ASL_dizglw, ASL_rizglw
Gauss=Legendre Formula 293
2.13.3 ASL_diopla, ASL_riopla
Laguerre Polynomial 296
2.13.4 ASL_diophe, ASL_riophe Hermite Polynomial 298
2.13.5 ASL_diopch, ASL_riopch Chebyshev Polynomial 300
2.13.6 ASL_diopc2, ASL_riopc2
Chebyshev Function of the 2nd Kind 302
2.13.7 ASL_diopgl, ASL_riopgl Generalized Laguerre Polynomial 304
2.14 MATHIEU FUNCTIONS 306
2.14.1 ASL_dimtce, ASL_rimtce
Mathieu Functions of Integer Orders $c e_{n}(x, q)$ 306
2.14.2 ASL_dimtse, ASL_rimtse Mathieu Functions of Integer Orders $s e_{n}(x, q)$ 309
2.15 OTHER SPECIAL FUNCTIONS 312
2.15.1 ASL_wixsps, ASL_vixsps Di-Log Function 312
2.15.2 ASL_widbey, ASL_vidbey Debye Function 314
2.15.3 ASL_winplg, ASL_vinplg Spherical Harmonic Function 316
2.15.4 ASL_wixsla, ASL_vixsla Langevin Function 319
2.15.5 ASL_wixzta, ASL_vixzta Hurwitz Zeta Function 321
2.15.6 ASL_dixeps, ASL_rixeps
Zeta Function of the Positive Definite Quadratic Form $x^{2}+a y^{2}$ 324
3 SORTING AND RANKING 327
3.1 INTRODUCTION 327
3.1.1 Algorithms Used 328
3.1.1.1 Sorting 328
3.1.1.2 Ranking of a list of data 329
3.1.1.3 Top-N extraction 329
3.1.1.4 Merging two sorted lists of data 329
3.1.1.5 Merging two sorted list of pairwise data 329
3.1.2 Reference Bibliography 330
3.2 SORTING 331
3.2.1 ASL_dssta1, ASL_rssta1 Sorting a List of Data 331
3.2.2 ASL_dssta2, ASL_rssta2
Sorting a List of Pairwise Data 335
3.3 RANKING 340
3.3.1 ASL_dsstra, ASL_rsstra Ranking of a List of Data 340
3.3.2 ASL_dsstpt, ASL_rsstpt Top-N Extraction 344
3.4 MERGING 348
3.4.1 ASL_dsmgon, ASL_rsmgon Merging Two Sorted Lists of Data 348
3.4.2 ASL_dsmgpa, ASL_rsmgpa Merging Two Sorted Lists of Pairwise Data 352
4 ROOTS OF EQUATIONS 358
4.1 INTRODUCTION 358
4.1.1 Notes 359
4.1.2 Algorithms Used 362
4.1.2.1 Roots of a real coefficient algebraic equation 362
4.1.2.2 The roots of complex coefficient algebraic equations 372
4.1.2.3 The roots of real functions (initial value specified; derivative definition required) 374
4.1.2.4 The roots of real functions (initial value specified; derivative definition not required d) 376
4.1.2.5 The roots of real functions (interval specification; derivative definition not required) 379
4.1.2.6 All the roots of real functions (interval specification; derivative definition not required) 380
4.1.2.7 The roots of complex functions (initial value specified; derivative definition not required) 380
4.1.2.8 The roots of a set of simultaneous nonlinear equations (Jacobian matrix definition optional) 381
4.1.2.9 The roots of a set of simultaneous nonlinear equations (Jacobian matrix definition not required) 382
4.1.3 Reference Bibliography 387
4.2 ALGEBRAIC EQUATIONS 388
4.2.1 ASL_dlarha, ASL_rlarha
The Roots of Real Coefficient Algebraic Equations 388
4.2.2 ASL_zlacha, ASL_clacha The Roots of Complex Coefficient Algebraic Equations 392
4.3 NONLINEAR EQUATIONS 396
4.3.1 ASL_dlnrds, ASL_rlnrds
A Root of a Real Function (Initial Value Specified; Derivative Definition Required) 396
4.3.2 ASL_dlnris, ASL_rlnris
A Root of a Real Function (Initial Value Specified; Derivative Definition Not Required) 400
4.3.3 ASL_dlnrss, ASL_rlnrss
A Root of a Real Function (Interval Specified; Derivative Definition Not Required) 403
4.3.4 ASL_dlnrsa, ASL_rlnrsa
All Roots of a Real Function (Interval Specified; Derivative Definition Not Required) 406
4.3.5 ASL_zlncis, ASL_clncis
A Root of a Complex Function (Initial Value Specified; Derivative Definition Not Required) 410
4.4 SETS OF SIMULTANEOUS NONLINEAR EQUATIONS 414
4.4.1 ASL_dlsrds, ASL_rlsrds A Root of a Set of Simultaneous Nonlinear Functions (Jacobian Matrix Optional) 414
4.4.2 ASL_dlsris, ASL_rlsris
A Root of a Set of Simultaneous Nonlinear Functions (Jacobian Matrix Definition Not Required) 421
5 EXTREMUM PROBLEMS AND OPTIMIZATION 425
5.1 INTRODUCTION 425
5.1.1 Notes 427
5.1.2 Algorithms Used 428
5.1.2.1 Minimization of a function of one variable 428
5.1.2.2 Minimization of a function of many variables 429
5.1.2.3 Nonlinear least square method 430
5.1.2.4 Minimization of a constrained linear function of several variables (linear constraints) 433
5.1.2.5 Minimization of a constrained linear function of several variables including 0-1 variables 440
5.1.2.6 Minimization of cost for flow in a network 444
5.1.2.7 Minimization of cost for project scheduling 446
5.1.2.8 Minimization of cost for transportation from supply place to demand place 448
5.1.2.9 Minimization of a constrained quadratic function of several variables (linear con- straints) 449
5.1.2.10 Minimization of a generalized convex quadratic function of several variables (linear constraints) 451
5.1.2.11 Minimization of an unconstrained 0-1 quadratic function of several variables 453
5.1.2.12 Minimization of a constrained function of several variables 457
5.1.2.13 Minimization of the distance between two nodes in a network 459
5.1.3 Reference Bibliography 461
5.2 MINIMIZATION OF A FUNCTION OF ONE VARIABLE WITHOUT CONSTRAINTS 462
5.2.1 ASL_dmuusn, ASL_rmuusn Minimization of a Function of One Variable 462
5.3 MINIMIZATION OF A FUNCTION OF MANY VARIABLES WITHOUT CONSTRAINTS 465
5.3.1 ASL_dmumqn, ASL_rmumqn Minimization of a Function of Many Variables (Derivative Definition Unnecessary) 465
5.3.2 ASL_dmumqg, ASL_rmumqg
Minimization of a Function of Many Variables (Derivative Definition Required) 469
5.4 MINIMIZATION OF THE SUM OF THE SQUARES OF A FUNCTION WITHOUT CON- STRAINTS 474
5.4.1 ASL_dmussn, ASL_rmussn Nonlinear Least Squares Method (Derivative Definition Unnecessary) 474
5.5 MINIMIZATION OF A FUNCTION OF ONE VARIABLE WITH CONSTRAINTS 479
5.5.1 ASL_dmcusn, ASL_rmcusn Minimization of a Function of One Variable (Interval Specified) 479
5.6 MINIMIZATION OF A CONSTRAINED LINEAR FUNCTION OF SEVERAL VARIABLES (LINEAR PROGRAMMING) 483
5.6.1 ASL_dmclsn, ASL_rmclsn Minimization of a Linear Function of Several Variables (Linear Constraints) 483
5.6.2 ASL_dmclaf, ASL_rmclaf Minimization of a Function of Many Variables (Linear Constraint Given by a Real Irregular Sparse Matrix) 490
5.6.3 ASL_dmclmz, ASL_rmclmz Minimization of a Constrained Linear Function of Several Variables Including 0-1 Variables (Mixed 0-1 Programming) 502
5.6.4 ASL_dmclmc, ASL_rmclmc Minimization of Cost for Flow in a Network (Minimal-Cost Flow Problem) 511
5.6.5 ASL_dmclcp, ASL_rmclcp Minimization of Cost for Project Scheduling (Project Scheduling Problem) 517
5.6.6 ASL_dmcltp, ASL_rmcltp Minimization of Cost for Transportation from Supply Place to Demand Place (Transporta- tion Problem) 524
5.7 MINIMIZATION OF A QUADRATIC FUNCTION OF SEVERAL VARIABLES (QUADRATIC PROGRAMMING) 531
5.7.1 ASL_dmcqsn, ASL_rmcqsn Minimization of a Constrained Convex Quadratic Function of Several Variables (Linear Constraints) 531
5.7.2 ASL_dmcqlm, ASL_rmcqlm Minimization of a Generalized Convex Quadratic Function of Several Variables (Linear Constraints) 538
5.7.3 ASL_dmcqaz, ASL_rmcqaz Minimization of an Unconstrained 0-1 Quadratic Function of Several Variables (Uncon- strained 0-1 Quadratic Programming Problem) 544
5.8 MINIMIZATION OF A CONSTRAINED FUNCTION OF SEVERAL VARIABLES (NONLIN- EAR PROGRAMMING) 551
5.8.1 ASL_dmsqpm, ASL_rmsqpm Minimization of a Constrained Function of Several Variables (Nonlinear Constraints) 551
5.9 DISTANCE MINIMIZATION ON A GRAPH (SHORTEST PATH PROBLEM) 558
5.9.1 ASL_dmsp1m, ASL_rmsp1mDistance Minimization for a Given Node to the Other Node on a Graph 558
5.9.2 ASL_dmspmm, ASL_rmspmm Distance Minimization for All Sets of Two Nodes on a Graph 563
5.9.3 ASL_dmsp11, ASL_rmsp11
Distance Minimization for Two Nodes on a Graph 567
A GLOSSARY 572
B MACHINE CONSTANTS USED IN ASL C INTERFACE 574
B. 1 Units for Determining Error 574
B. 2 Maximum and Minimum Values of Floating Point Data 574

Chapter 1

INTRODUCTION

1.1 OVERVIEW

1.1.1 Introduction to The Advanced Scientific Library ASL C interface

Table 1-1 lists correspondences among product categories, functions of ASL and supported hardware platforms. Interfaces of those functions that have the same name and that belong to the same version of ASL are common among hardware platforms.

Table 1-1 Classification of functions included in ASL

Classification of Functions	Volume
Basic functions	Vol. 1-6
Shared memory parallel functions	Vol. 7

1.1.2 Distinctive Characteristics of ASL C interface

ASL C interface has the following distinctive characteristics.
(1) Functions are optimized using compiler optimization to take advantage of corresponding system hardware features.
(2) Special-purpose functions for handling matrices are provided so that the optimum processing can be performed according to the type of matrix (symmetric matrix, Hermitian matrix, or the like). Generally, processing performance can be increased and the amount of required memory can be conserved by using the special-purpose functions.
(3) Functions are modularized according to processing procedures to improve reliability of each component function as well as the reliability and efficiency of the entire system.
(4) Error information is easy to access after a function has been used since error indicator numbers have been systematically determined.

1.2 KINDS OF LIBRARIES

Numeric storage units of ASL C interface is 4-byte.
Table 1-2 Kinds of libraries providing ASL C interface

Size of variable(byte)		Declaration of arguments	Kind	Kind of library
integer	real			
4	8	int double	32bit integer Double-precision function	
4	4	int float	32bit integer Single-precision function	
8	8	long double	64bit integer Double-precision function	
8	4	long float	64bit integer Single-precision function	

(*1) Functions that appear in this documentation do not always support all of the four kinds of functions listed above. For those functions that do not support some of those function kinds, relevant notes will appear in the corresponding subsections.
$(* \mathbf{2})$ For compiling the program with functions in the 64 -bit integer library, the option "-DASL_LIB_INT64" must be specified (See the Note (2) in 1.5).

1.3 ORGANIZATION

This section describes the organization of Chapters 2 and later.

1.3.1 Introduction

The first section of each chapter is a general introduction describing such information as the effective ways of using the functions, techniques employed, algorithms on which the functions are based, and notes.

1.3.2 Organization of Function Description

The second section of each chapter sequentially describes the following topics for each function.
(1) Function
(2) Usage
(3) Arguments and return value
(4) Restrictions
(5) Error indicator (Return Value)
(6) Notes
(7) Example

Each item is described according to the following principles.

1.3.3 Contents of Each Item

(1) Function

Function briefly describes the purpose of the ASL C interface function.
(2) Usage

Usage describes the function name and the order of its arguments. In general, arguments are arranged as follows. When an argument is an address-passing variable, $\&$ is appended in front of the argument name.
ierr $=$ function-name (input-arguments, input/output-arguments, output-arguments, isw, work);
isw is an input argument for specifying the processing procedure. ierr is a return value. In some cases, input/output arguments precede input arguments. The following general principles also apply.

- Array are placed as far to the left as possible according to their importance.
- The dimension of an array immediately follows the array name. If multiple arrays have the same dimension, the dimension is assigned as an argument of only the first array name. It is not assigned as an argument of subsequent array names.

(3) Arguments and return value

Arguments and return value are explained in the order described above in paragraph (2). The explanation format is as follows.
Arguments and return value Type
Size Input/Output
Contents
(a)
(b)
(c) (d)
(e)
(a) Arguments and return value

Arguments and return value are explained in the order they are designated in the Usage paragraph.
(b) Type

Type indicates the data type of the argument. Any of the following codes may appear as the type.
I : Integer type
D : Double precision real
R : Real
Z : Double precision complex
C : Complex
There are 64 -bit integer and 32 -bit integer for integer type arguments. In a 32 -bit (64-bit) integer type function, all the integer type arguments are 32-bit (64-bit) integer. In other words, kinds of libraries determine the sizes of integer type arguments (Refer to 1.4). In the user program, a 32 -bit/64-bit integer type argument must be declared by int/ long, respectively.
(c) Size

Size indicates the required size of the specified argument. If the size is greater than 1 , the required area must be reserved in the program calling this function.
1 : Indicates that argument is a variable.
n : Indicates that the argument is a vector (one-dimensional array) having n elements. The argument n indicating the size of this vector is defined immediately after the specified vector. However, if the size of a vector or array defined earlier, it is omitted following subsequently defined vectors or arrays. The size may be specified by only a numeric value or in the form of a product or sum such as $3 \times n$ or $n+m$.
(d) Input/Output

Input/Output indicates whether the explanation of argument contents applies to input time or output time.
i. When only "Input" appears

When the control returns to the program using this function, information when the argument is input is preserved. The user must assign input-time information unless specifically instructed otherwise. When the argument is a variable, the variable value must be passed.
ii. When only "Output" appears

Results calculated within the function are output to the argument. No data is entered at input time. When the argument is a variable, the variable address must be passed.
iii. When both "Input" and "Output" appear

Argument contents change between the time control passes to the function and the time control returns from the function. The user must assign input-time information unless specifically instructed otherwise. When the argument is a variable, the variable address must be passed.
iv. When "Work" appears

Work indicates that the argument is an area used when performing calculations within the function. A work area having the specified size must be reserved in the program calling this function. The contents of the work area may have to be maintained so they can be passed along to the next calculation.
(e) Contents

Contents describes information held by the argument at input time or output time.

- A sample Argument description follows.

Example

The statement of the function (ASL_dbgmlc, ASL_rbgmlc) that obtains the LU decomposition and the condition number of a real matrix is as follows.

Double precision:

$$
\text { ierr }=\text { ASL_dbgmlc }(\mathrm{a}, \operatorname{lna}, \mathrm{n}, \text { ipvt, \&cond, w1); }
$$

Single precision:

$$
\text { ierr }=\text { ASL_rbgmlc }(\mathrm{a}, \operatorname{lna}, \mathrm{n}, \mathrm{ipvt}, \& c o n d, \mathrm{w} 1) ;
$$

The explanation of the arguments and return value is as follows.
Table 1-3 Sample Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	a	Note	$\ln a \times n$	Input	Real matrix A (two-dimensional array)
		$\left\{\begin{array}{l} \mathrm{D} * \\ \mathrm{R} * \end{array}\right\}$		Output	The matrix A decomposed into the matrix $L U$ where U is a unit upper triangular matrix and L is a lower triangular matrix.
2	lna	I	1	Input	Adjustable dimension size of array a
3	n	I	1	Input	Order n of matrix A
4	ipvt	I*	n	Output	Pivoting information ipvt[i-1]: Number of the row exchanged with row i in the i-th step.
5	cond	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Reciprocal of the condition number
6	w1	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	n	Work	Work area
7	ierr	I	1	Output	Error indicator (Return Value)

To use this function, arrays a, ipvt and w1 must first be allocated in the calling program so they can be used as arguments. a is a $\left\{\begin{array}{c}\text { double-precision } \\ \text { single-precision }\end{array}\right\}$ Note real array of size $[\ln a \times n]$, ipvt is an integer array of size n and w1 is a $\left\{\begin{array}{c}\text { double-precision } \\ \text { single-precision }\end{array}\right\}$ real array of size n.
When the 64 -bit integer version is used, all integer-type arguments (lna, n, ipvt and ierr) must be declared by using long, not int.

Note The entries enclosed in brace \{ \} mean that the array should be declared double precision type when using function ASL_dbgmlc and real type when using function ASL_rbgmlc. Braces are used in this manner throughout the remainder of the text unless specifically stated otherwise.

Data must be stored in a, lna and n before this function is called. The LU decomposition and condition number of the assigned matrix are calculated with in the function, and the results are stored in array a and variable cond. In addition, pivoting information is stored in ipvt for use by subsequent functions.
ierr is a return value used to notify the user of invalid input data or an error that may occur during processing. If processing terminates normally, ierr is set to zero.

Since w1 is a work area used only within the function, its contents at input and output time have no special meaning.

(4) Restrictions

Restrictions indicate limiting ranges for function arguments.
(5) Error indicator (Return Value)

Each function has been given an error indicator as a return value. This error indicator, which has uniformly been given the variable name ierr, is placed at the end of the arguments. If an error is detected within the function, a corresponding value is output to ierr. Error indicator values are divided into five levels.

Table 1-4 Classification of Return Values

Level	Return value	Meaning	Processing result
Normal	0	Processing is terminated normally.	Results are guaranteed.
Warning	$1000 \sim 2999$	Processing is terminated under cer- tain conditions.	Results are conditionally guaranteed.
Fatal	$3000 \sim 3499$	Processing is aborted since an argu- ment violated its restrictions.	Results are not guaranteed.
	$3500 \sim 3999$	Obtained results did not satisfy a cer- tain condition.	Obtained results are returned (the results are not guaranteed).
	4000 or more	A fatal error was detected during processing. Usually, processing is aborted.	Results are not guaranteed.

(6) Notes

Notes describes ambiguous items and points requiring special attention when using the function.

(7) Example

Here gives an example of how to use the function. Note that in some cases, multiple functions are combined in a single example. The output results are given in the 32 -bit integer version, and may differ within the range of rounding error if the compiler or intrinsic functions are different.

In addition, when the 64 -bit integer version library is used, the long-type conversion specification to be given to printf or scanf must be \%ld. The source codes of examples in this document are included in User's Guide. Input data, if required, is also included in it. To build up an executable files by compiling these example source codes, they should be linked with this product library.

1.4 FUNCTION NAMES

The functions name of ASL C interface basic functions consists of ten characters with a prefix "ASL_" and 〈six alphanumeric characters \rangle.

Figure 1-1 Function Name Components

ASL_

"1" in Figure 1-1 : The following eight letters are used to indicate the calculation precision.
d, w Double precision real-type calculation
r, v Single precision real-type calculation
z, j Double precision complex-type calculation
c, i Single precision complex-type calculation

However, the complex type calculations listed above do not necessarily require complex arguments.
"2" in Figure 1-1 : Currently, the following letters lettererererere are used to indicate the application field in the ASL C interface related products.

Letter	Application Field	Volume
a	Storage mode conversion	1
	Basic matrix algebra	1,7
b	Simultaneous linear equations (direct method)	2,7
c	Eigenvalues and eigenvectors	1,7
f	Fourier transforms and their applications	3,7
	Time series analysis	6
g	Spline function	4
h	Numeric integration	4
i	Special function	5
j	Random number tests	6
k	Ordinary differential equation (initial value problems)	4
l	Roots of equations	5
m	Extremum problems and optimization	5
n	Approximation and regression analysis	4,6
o	Ordinary differential equations (boundary value problems), integral	4
	equations and partial differential equations	4
p	Interpolation	4
q	Numerical differentials	4

Letter	Application Field	Volume
s	Sorting and ranking	5,7
x	Basic matrix algebra	1
	Simultaneous linear equations (iterative method)	7
1	Probability distributions	6
2	Basic statics	6
3	Tests and estimates	6
4	Analysis of variance and design of experiments	6
5	Nonparametric tests	6
6	Multivariate analysis	6

"3-6" in Figure 1-1 : These characters indicate the characteristic function of the individual function.

1.5 NOTES

(1) To use ASL C interface, the header file asl.hmust be included.
(2) For compiling the program with functions in ASL C interface 64-bit integer library, the compile option "-DASL_LIB_INT64" must be specified. This option will activate the prototype declaration for 64-bit integer functions in the header file asl.h, and without the option "-DASL_LIB_INT64", those for 32-bit integer functions will be activated.
(3) The name " $\langle 6$ lowercase letters \rangle following ASL_" is reserved by ASL C interface.
(4) For using 64-bit integer library, you must use "long" for integer type declaration. Otherwise, use "int" for integer type declaration.
(5) Use the functions of double precision version whenever possible. They not only provide higher precision solutions but also are more stable than single precision versions, in particular, for eigenvalue and eigenvector problems.
(6) To suppress compiler operation exceptions, ASL C interface functions are set to so that they conform to the compiler parameter indications of a user's main program. Therefore, the main program must suppress any operation exceptions.
(7) The numerical calculation programs generally deal with operations on finite numbers of digits, so the precision of the results cannot exceed the number of operation digits being handled. For example, since the number of operation digits (in the mantissa part) for double-precision operations is on the order of 15 decimal digits, when using these floating point modes to calculate a value that mathematically becomes 1 , an error on the order of 10^{-15} may be introduced at any time. Of course, if multiple length arithmetic is emulated such as when performing operations on an arbitrary number of digits, this kind of error can be controlled. However, in this case, when constants such as π or function approximation constants, which are fixed in double-precision operations, for example, are also to be subject to calculations that depend on the length of the multiple length arithmetic operations, the calculation efficiency will be worse than for normal operations.
(8) A solution cannot be obtained for a problem for which no solution exists mathematically. For example, a solution of simultaneous linear equations having a singular (or nearly singular) matrix for its coefficient matrix theoretically cannot be obtained with good precision mathematically. Numerical calculations cannot strictly distinguish between mathematically singular and nearly singular matrices. Of course, it is always possible to consider a matrix to be singular if the calculation value for the condition number is greater than or equal to an established criterion value.
(9) Generally, if data is assigned that causes a floating point exception during calculations (such as a floating point overflow), a normal calculation result cannot be expected. However, a floating point underflow that occurs when adding residuals in an iterative calculation is an exception to this.
(10) For problems that are handled using numerical calculations (specifically, problems that use iterative techniques as the calculation method), there are cases in which a solution cannot be obtained with good precision and cases in which no solution can be obtained at all, by a special-purpose function.
(11) Depending on the problem being dealt with, there may be cases when there are multiple solutions, and the execution result differs in appearance according to the compiler used or the computer or OS under which
the program is executed. For example, when an eigenvalue problem is solved, the eigenvectors that are obtained may differ in appearance in this way.
(12) The mark "DEPRECATED" denotes that the subroutine will be removed in the future. Use ASL Unified Interface, the higher performance alternative practice instead.

Chapter 2

SPECIAL FUNCTIONS

2.1 INTRODUCTION

This chapter describes functions which obtain values of special functions. The following methods are available to calculate special functions.

- Taylor expansion and asymptotic expansion
- Approximation formulae
- Continued fraction
- Recursion relations

In the functions given here, the range of a variable is divided into intervals, and in each interval a special function is calculated with the method considered to be the best for the interval.

2.1.1 Notes

(1) The Bessel function of the 2 nd kind $N_{\nu}(z)$ and the spherical Bessel function of the 2nd kind $n_{\nu}(z)$ are same as $Y_{\nu}(z)$ and $y_{\nu}(z)$ given here, respectively.
(2) The computation time of various Bessel functions of real number and integer orders becomes longer as the argument z and the order ν increase. Therefore it is desirable to set $|\nu|<1000.0$ and $|z|<1000.0$
(3) To calculate values of the Bessel, modified Bessel, spherical Bessel or modified spherical Bessel functions of the 1st kind successively changing the order by one, first obtain the values for the highest two successive orders with a function given here, and then calculate values for lower orders with recursion relations in the direction of decreasing order.
(4) $J_{-\nu}(x), I_{-\nu}(x), Y_{-\nu}(x), i_{-n}(x)$ and $Y_{-n}(x)$ are calculated with recursion relations. See the notes for each function for the recursion relations.
(5) The Bessel and modified Bessel functions of half integer order can efficiently be calculated from the spherical Bessel function using the following relations.

$$
\begin{array}{ll}
J_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} \cdot j_{n}(x), & Y_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} \cdot y_{n}(x) \\
I_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} \cdot i_{n}(x), & K_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} \cdot k_{n}(x)
\end{array}
$$

2.1.2 Algorithms Used

2.1.2.1 Bessel Functions

(1) Bessel functions of the 1 st kind (orders 0 and 1) $J_{0}(x)$ and $J_{1}(x)$
(1) $x<0.0$:

From $J_{0}(x)=J_{0}(-x)$ and $J_{1}(x)=-J_{1}(-x)$, following methods are applied to $J_{0}(-x)$ and $J_{1}(-x)$.
(2) $0.0 \leq x<4.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& J_{0}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k} \\
& J_{1}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}
\end{aligned}
$$

(3) $4.0 \leq x \leq 8.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& J_{0}(x)=\sum_{k=0}^{\infty} \frac{J_{0}^{(k)}(6)}{k!}(x-6)^{k} \\
& J_{1}(x)=\sum_{k=0}^{\infty} \frac{J_{1}^{(k)}(6)}{k!}(x-6)^{k}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22, "Coefficient Calculation Method".
$\left(J_{0}^{(k)}(6)\right.$ and $J_{1}^{(k)}(6)$ are k-th derivatives evaluated at $x=6.0$.)
(4) $x>8.0$:

The functions are calculated from the following equations of asymptotic expansion:

$$
J_{0}(x) \text { or } J_{1}(x)=\frac{P \cos (\phi)-Q \sin (\phi)}{\sqrt{x}}
$$

Here,
for calculating $J_{0}(x)$

$$
\begin{aligned}
P & =\frac{\sum_{n=0}^{m} a_{n}^{(1)}\left(\frac{8}{x}\right)^{2 n}}{\sum_{n=0}^{m^{\prime}} b_{n}^{(1)}\left(\frac{8}{x}\right)^{2 n}} \\
\phi & =x-\frac{\pi}{4}
\end{aligned}
$$

for calculating $J_{1}(x)$

$$
\begin{aligned}
Q & =\frac{\sum_{n=0}^{m} c_{n}^{(2)}\left(\frac{8}{x}\right)^{2 n}}{\sum_{n=0}^{m^{\prime}} d_{n}^{(2)}\left(\frac{8}{x}\right)^{2 n}} \\
\phi & =x-\frac{3}{4} \pi
\end{aligned}
$$

See reference (2) for the coefficients $a_{n}^{(1)}, a_{n}^{(2)}, b_{n}^{(1)}, b_{n}^{(2)}, c_{n}^{(1)}, c_{n}^{(2)}, d_{n}^{(1)}$ and $d_{n}^{(2)}$.
(2) Bessel functions of the 2nd kind (orders 0 and 1) $Y_{0}(x)$ and $Y_{1}(x)(x>0.0)$
(1) $0.0<x<4.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& Y_{0}(x)=\frac{2}{\pi}\left[J_{0}(x)\left\{\log \left(\frac{x}{2}\right)+\gamma\right\}-\sum_{k=1}^{\infty}\left\{\frac{(-1)^{k}}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k} \sum_{m=1}^{k} \frac{1}{m}\right\}\right] \\
& Y_{1}(x)=\frac{2}{\pi}\left[J_{1}(x)\left\{\log \left(\frac{x}{2}\right)+\gamma\right\}-\frac{1}{x}-\frac{1}{2} \sum_{k=0}^{\infty}\left\{\frac{(-1)^{k}}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}\left(\sum_{m=1}^{k} \frac{1}{m}+\sum_{m=1}^{k+1} \frac{1}{m}\right)\right\}\right]
\end{aligned}
$$

The Euler's constant γ is $0.5772 \cdots$.
(2) $4.0 \leq x \leq 8.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& Y_{0}(x)=\sum_{k=0}^{\infty} \frac{Y_{0}^{(k)}(6)}{k!}(x-6)^{k} \\
& Y_{1}(x)=\sum_{k=0}^{\infty} \frac{Y_{1}^{(k)}(6)}{k!}(x-6)^{k}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22, "Coefficient Calculation Method".
The k-th derivative of $Y_{0}(6)$ and $Y_{1}(6)$ are obtained from recurrence relations derived from

$$
\begin{aligned}
Z_{k}^{\prime}(x) & =Z_{k-1}(x)-\frac{k}{x} Z_{k}(x) \\
Z_{1}^{(k)}(x) & =-Z_{0}^{(k+1)}(x)
\end{aligned}
$$

where $Z_{k}(x)$ is the Bessel function to be calculated.
(3) $x>8.0$:

The functions are calculated from the following equations of asymptotic expansion:

$$
Y_{0}(x) \text { or } Y_{1}(x)=\frac{P \sin (\phi)+Q \cos (\phi)}{\sqrt{x}}
$$

Here P, Q and ϕ are the same as for $J_{0}(x)$ and $J_{1}(x)$. The coefficients $a_{n}^{(1)}, a_{n}^{(2)}, b_{n}^{(1)}$ and $b_{n}^{(2)}$ are given in reference (2).
(3) Bessel function of the 1st kind (integer order) $J_{n}(x)$
$J_{n}(x)$ is expressed as in Table $2-1$ using $J_{|n|}(|x|)$ depending on the sign of x and n. $J_{|n|}(|x|)$ is calculated
Table 2-1 Expressions Equivalent to $J_{n}(x)$ for Different Signs of x and n

-	$n<0$	$n \geq 0$
$x<0.0$	$J_{\|n\|}(\|x\|)$	$(-1)^{n} J_{\|n\|}(\|x\|)$
$x \geq 0.0$	$(-1)^{n} J_{\|n\|}(\|x\|)$	$\left.J_{\|n\|}\|x\|\right)$

as follows (for simple notation, n and x are used instead of $|n|$ and $|x|$, respectively.):
(1) $n=0$ or 1: $J_{0}(x)$ or $J_{1}(x)$ is used.
(2) $n \geq 2$:
(a) If

$$
0.0 \leq x^{2}<\left\{\begin{array}{ll}
\text { double precision } & : 0.1 n+0.4 \\
\text { single precision } & : 1.9 n+7.6
\end{array}\right\}
$$

The function is calculated from the power series expansion of the following equation:

$$
J_{n}(x)=\left(\frac{x}{2}\right)^{n} \sum_{k=0}^{9} \frac{(-1)^{k}\left(\frac{x}{2}\right)^{2 k}}{k!(n+k)!}
$$

(b) If
or

$$
x^{2} \geq\left\{\begin{array}{ll}
\text { double precision } & : 0.1 n+0.4 \\
\text { single precision } & : 1.9 n+7.6
\end{array}\right\}
$$

$$
n \geq\left\{\begin{array}{lc}
\text { double precision } & : 170 \\
\text { single precision } & : 34
\end{array}\right\}:
$$

i. For $x \leq n$:

Setting $T_{n+k+1}=0.0$, the parameters $T_{i}(i=n, n+1, \cdots, n+k-1, n+k)$ in the continued fraction approximation are calculated using the recurrence relations below:

$$
\begin{aligned}
& T_{i}=\frac{x^{2}}{2 i-T_{i+1}}(i=n+1, \cdots, n+k-1, n+k) \\
& T_{n}=\frac{x}{2 n-T_{n+1}}
\end{aligned}
$$

(T_{n} has a value $\left.\frac{J_{n}(x)}{J_{n-1}(x)}.\right)$
Here, the value k is choose as in Table $2-2$. It is defined that $B_{n}=T_{n}, B_{n-1}=1.0$. Then
Table 2-2 Value of k

single precision	double precision
$k=\left\lfloor\frac{(3.0+1.5 \sqrt{n}) x}{n}+1.5\right\rfloor$	$k=\left\lfloor\frac{(3.0+2.8 \sqrt{n}) x}{n}+5.2\right\rfloor$

B_{1} is calculated from the following recurrence relation:

$$
B_{i-1}=\frac{2 i}{x} B_{i}-B_{i+1}(i=n-1, n-2, \cdots, 2)
$$

(Here B_{1} has a value $\frac{J_{1}(x)}{J_{n-1}(x)}$)
Since the precision of computation becomes low when $J_{0}(x) \approx 0$ or $J_{1}(x) \approx 0, K$ is set as follows:

$$
K=\lfloor 1.27324 x+3\rfloor(\bmod 4)
$$

If $K=0$ or 3 ,

$$
B=\frac{2 B_{1}}{x}-B_{2}, J=J_{0}(x)
$$

$K=1$ or 2 ,

$$
B=B_{1}, \quad J=J_{1}(x)
$$

Using the values of T_{n}, B and $J, J_{n}(x)$ is calculated from

$$
J_{n}(x)=\frac{T_{n} J}{B}
$$

ii. For $x>n$:
$J_{n}(x)$ is calculated from the following recurrence relation starting with $J_{1}(x)$ and $J_{0}(x)$:

$$
J_{k+1}(x)=\frac{2 k}{x} J_{k}(x)-J_{k-1}(x)(k=1,2, \cdots, n-1)
$$

(4) Bessel function of the 2nd kind (integer order) $Y_{n}(x)(x>0.0)$
(1) $n<0$:

From $Y_{n}(x)=(-1)^{n} \cdot Y_{-n}(x)$, following methods are applied to $Y_{-n}(x)$.
(2) $n=0$ or 1 :
$Y_{0}(x)$ or $Y_{1}(x)$ is used.
(3) $n \geq 2$:
$Y_{n}(x)$ is calculated from the following recurrence relation starting with $Y_{1}(x)$ and $Y_{0}(x)$:

$$
Y_{k+1}(x)=\frac{2 k}{x} Y_{k}(x)-Y_{k-1}(x)(k=1,2, \cdots, n-1)
$$

(5) Bessel function of the 1st kind (real number order) $J_{\nu}(x)$
(1) If ν is an integer, the function for the Bessel function of the 1 st kind (integer order) is used with $n=\nu$.
(2) If n is a nonintegral real number $(x>0.0$ and $n>0.0)$:
(a) If

$$
0.0<x^{2}<\left\{\begin{array}{ll}
\text { double precision } & : 0.1 \nu+0.4 \\
\text { single precision } & : 1.9 \nu+7.6
\end{array}\right\}
$$

and

$$
\nu<\left\{\begin{array}{lc}
\text { double precision } & : 170.0 \\
\text { single precision } & : 34.0
\end{array}\right\}:
$$

The function is calculated from the power series expansion of

$$
J_{\nu}(x)=\left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{9} \frac{(-1)^{k}\left(\frac{x}{2}\right)^{2 k}}{k!\Gamma(\nu+k+1)} .
$$

(b) If

$$
x^{2} \geq\left\{\begin{array}{ll}
\text { double precision } & : 0.1 \nu+0.4 \\
\text { single precision } & : 1.9 \nu+7.6
\end{array}\right\}
$$

i. For

$$
x>\left\{\begin{array}{l}
\text { Double precision }: 30.0 \\
\text { Single precision }: 15.0
\end{array}\right\}
$$

and

$$
x \geq 0.55 \nu^{2}:
$$

The function is calculated from the equation of asymptotic expansion of

$$
J_{\nu}(x)=\sqrt{\frac{2}{\pi x}}(P \cos (\phi)-Q \sin (\phi))
$$

where

$$
\begin{aligned}
P & =1+\sum_{k=1}^{m}(-1)^{k} \frac{\left(4 \nu^{2}-1^{2}\right)\left(4 \nu^{2}-3^{2}\right) \cdots\left(4 \nu^{2}-(4 k-1)^{2}\right)}{(2 k)!(8 x)^{2 k}} \\
Q & =\sum_{k=0}^{m^{\prime}}(-1)^{k} \frac{\left(4 \nu^{2}-1^{2}\right)\left(4 \nu^{2}-3^{2}\right) \cdots\left(4 \nu^{2}-(4 k+1)^{2}\right)}{(2 k+1)!(8 x)^{2 k+1}} \\
\phi & =x-\left(\frac{\nu}{2}+\frac{1}{4}\right) \pi
\end{aligned}
$$

(m and m^{\prime} are the numbers which give the last terms such that the term does not affect the result of calculation when included.)
ii. For x other than the above:

The function is calculated from the (backward) recursion relation given below.
Assume that δ is the decimal part of ν, ν is the integer part of ν, M is a sufficiently large
number, and a is the positive minimum number (namely the smallest positive constant in the floating point mode).
The recurrence relation to be used is

$$
F_{\delta+k-1}(x)=\frac{2(\delta+k)}{x} F_{\delta+k}(x)-F_{\delta+k+1}(x)(k=M, M-1, \cdots, 1)
$$

with $F_{\delta+M+1}(x)=0$ and $F_{\delta+M}(x)=a$ as initial values. Then $J_{n}(x)$ is obtained from the following equation.

$$
J_{\nu}(x)=\frac{F_{\delta+n}(x)\left(\frac{x}{2}\right)^{\delta}}{\sum_{n=0}^{\left\lfloor\frac{M}{2}\right\rfloor} \frac{(\delta+2 m) \Gamma(\delta+m)}{m!} F_{\delta+2 m}(x)}
$$

The value of M is calculated from x and ν using an approximation equation.
(6) Bessel function of the 2nd kind (real number order) $Y_{\nu}(x)(x>0.0)$
(1) If ν is an integer, the function for the Bessel function of the 2 nd kind (integer order) is used with $n=\nu$.
(2) If ν is a nonintegral real number $(\nu>0.0): \nu$ is divided into the integer part n and the decimal part δ.
(a) If $0.0<x \leq 4.0$:

The function is calculated with the method of Yoshida and Ninomiya where the power series expansions of $J_{\nu}(x)$ and $J_{-\nu}(x)$ are inserted in

$$
Y_{\nu}(x)=\frac{J_{\nu}(x) \cos (\nu \pi)-J_{-\nu}(x)}{\sin (\nu \pi)}
$$

terms are grouped, and the parts which give figures at lower places are calculated with the best approximation. The procedures are shown below.
i. $0.0<\nu \leq 0.5$:

The function is calculated from the following equation

$$
Y_{\nu}(x)=\sum_{k=0}^{\infty}-\left(-\frac{x^{2}}{4}\right)^{k} \frac{\tilde{A}_{k}(\nu)+\tilde{B}_{k}(\nu)}{\sin (\nu \pi)}
$$

Here $\tilde{A}_{k}(\nu)$ is calculated from the recursion relation

$$
\tilde{A}_{k}(\nu)=\frac{\frac{1}{k!}\left\{\frac{1}{\Gamma(k-\nu)}+\frac{\cos (\nu \pi)}{\Gamma(k+\nu)}\right\}+\tilde{A}_{k-1}(\nu)}{(k+\nu)(k-\nu)}
$$

with

$$
\tilde{A}_{0}(\nu)=\left(\nu-\nu_{0}\right) \sum_{k=0}^{M} P_{k}^{(1)} \nu^{k}\left(\nu_{0}=0.221521 \cdots\right)
$$

as the initial value. $\tilde{B}_{k}(\nu)$ is calculated from

$$
\tilde{B}_{k}(\nu)=\frac{1}{k!}\left\{\frac{\phi_{1}}{\Gamma(k+1-\nu)}+\frac{\phi_{2} \cos (\nu \pi)}{\Gamma(k+1+\nu)}\right\}
$$

with

$$
\phi_{1}=\frac{\left(\frac{x}{2}\right)^{-\nu}-1}{\nu}, \phi_{2}=\frac{1-\left(\frac{x}{2}\right)^{\nu}}{\nu}
$$

for

$$
\left(\frac{x}{2}\right)^{\nu}<0.5 \text { or }\left(\frac{x}{2}\right)^{\nu}>2.0
$$

$$
\phi_{1}=-f\left(-\nu \log \left(\frac{x}{2}\right)\right) \log \left(\frac{x}{2}\right), \phi_{2}=-f\left(\nu \log \left(\frac{x}{2}\right)\right) \log \left(\frac{x}{2}\right)
$$

for

$$
0.5 \leq\left(\frac{x}{2}\right)^{\nu} \leq 2.0
$$

where $f(t)$ is calculated from the best approximation equation of $\frac{e^{t}-1}{t}$.
ii. $0.5 \leq \nu \leq 1.5$
A. $\delta \leq 0.5$:

It is set that $\delta=\delta+1$ and $n=n-1$, and the function is calculated in the range $0.5<\delta 1.5$.
B. $0.5<\delta 1.5$:

It is set that $\alpha=\delta-1$. The function is calculated from

$$
Y_{\delta}(x)=-\frac{\frac{2^{1+\alpha}}{x^{1+\alpha} \Gamma(1-\alpha)}+\sum_{k=0}^{\infty}\left\{\frac{x}{2}\left(-\frac{x^{2}}{4}\right)^{k}\left(\tilde{C}_{k}(\alpha)+\tilde{D}_{k}(\alpha)\right)\right\}}{\sin (\alpha \pi)}
$$

where $\tilde{C}_{k}(\alpha)$ and $\tilde{D}_{k}(\alpha)$ are calculated using best approximation equations as is done for $0.0<\nu \leq 0.5$.
Furthermore the function is calculated from

$$
Y_{\delta+1}(x)=\frac{-\frac{2^{\alpha}\left\{4(\alpha+1)+x^{2}\right\}}{x^{\alpha+2} \Gamma(1-\alpha)}+\sum_{k=0}^{\infty}\left\{\left(-\frac{x^{2}}{4}\right)^{k+1}\left(\tilde{E}_{k}(\alpha)+\tilde{F}_{k}(\alpha)\right)\right\}}{\sin (\alpha \pi)}
$$

where $\tilde{E}_{k}(\alpha)$ and $\tilde{F}_{k}(\alpha)$ are calculated using best approximation equations as is done for $0.0<\nu \leq 0.5$.
iii. $\nu>1.5$:
$Y_{\nu}(x)$ is calculated from the following recurrence relation using $Y_{\delta}(x)$ and $Y_{\delta+1}(x)$ obtained in ii.

$$
Y_{k+\delta+1}(x)=\frac{2(k+\delta)}{x} Y_{k+\delta}(x)-Y_{k+\delta-1}(x)(k=1,2, \cdots, n-1)
$$

(b) If $4.0<x \leq\left\{\begin{array}{l}\text { Double precision : } 30.0 \\ \text { Single precision : } 15.0\end{array}\right\}$
i. $0.0<\nu<2.0$:

If δ or $1-\delta$ is smaller than $\sqrt{\text { unit for determining error }} / 4$
The Bessel function of integer order (n or $n+1$) is taken as an approximation.
First $J_{\delta}(x)$ and $J_{\delta+1}(x)$ are obtained from (backward) recurrence relations. Similarly $J_{t}(x)$ and $J_{t+1}(x)$ are obtained by setting $t=1-\delta$. Then $J_{-\delta}(x)$ is calculated from

$$
J_{-\delta}(x)=\frac{2(1-\delta)}{x} J_{t}(x)-J_{t+1}(x)
$$

(See (5) $J_{\nu}(x)$.)
Finally $Y_{\delta}(x)$ and $Y_{\delta+1}(x)$ are calculated from:

$$
\begin{aligned}
Y_{\delta}(x) & =\frac{J_{\delta}(x) \cos (\delta \pi)-J_{-\delta}(x)}{\sin (\delta \pi)} \\
Y_{\delta+1}(x) & =\frac{J_{\delta+1}(x) \cos (\delta \pi)-\frac{2 \delta J_{-\delta}(x)}{x}-J_{t}(x)}{\sin (\delta \pi)}
\end{aligned}
$$

ii. $\nu \geq 2.0$:
$Y_{\nu}(x)$ is calculated from the following recurrence relation using $Y_{\delta}(x)$ and $Y_{\delta+1}(x)$ obtained in i. :

$$
Y_{k+\delta+1}(x)=\frac{2(k+\delta)}{x} Y_{k+\delta}(x)-Y_{k+\delta-1}(x)(k=1,2, \cdots, n-1)
$$

(c) If $\left\{\begin{array}{l}\text { Double precision : } 30.0 \\ \text { Single precision : } 15.0\end{array}\right\}$:
i. $x \leq 0.55 \nu^{2}$:

The function is calculated from the equation of asymptotic expansion of the following relation:

$$
Y_{\nu}(x)=\sqrt{\frac{2}{\pi x}}(P \sin (\phi)+Q \cos (\phi))
$$

where P, Q and ϕ are obtained as $J_{\nu}(x)$ in (5).
ii. $x>0.55 \nu^{2}$:

It is set that $m=\left\lfloor\sqrt{\frac{x}{0.55}}\right\rfloor-1 . Y_{m+\delta}(x)$ and $Y_{m+\delta+1}(x)$ are obtained from the equation of asymptotic expansion given above. The $Y_{\nu}(x)$ is calculated from the recurrence relation

$$
\begin{aligned}
Y_{m+\delta+k+1}(x)= & \frac{2(m+\delta+k)}{x} Y_{m+\delta+k}(x)-Y_{m+\delta+k-1}(x) \\
& (k=1,2, \cdots, n-m-1)
\end{aligned}
$$

(7) Bessel function of the 1st kind with complex variable (integer order) $J_{n}(z)$

The function is calculated from the following equation.

$$
J_{n}(z)=(-i)^{n} I_{n}(i z)(i=\sqrt{-1})
$$

(8) Bessel function of the 2nd kind with complex variable (integer order) $Y_{n}(z)(|z|>0.0)$
(1) $n<0$:

From $Y_{n}(z)=(-1)^{n} Y_{-n}(z)$, following methods are applied to $Y_{-n}(z)$.
(2) $n \geq 0$:

If the imaginary part of z is negative, $Y_{n}(\bar{z})=\overline{Y_{n}(z)}$ is used.
The function is calculated from

$$
Y_{n}(z)=i^{n+1} I_{n}(-i z)-\frac{2}{\pi}(-i)^{n} K_{n}(-i z)(i=\sqrt{-1})
$$

2.1.2.2 Modified Bessel Functions

(1) Modified Bessel functions of the 1st kind (orders 0 and 1) $I_{0}(x)$ and $I_{1}(x)$ $x<0.0$:
From $I_{0}(x)=I_{0}(-x), I_{1}(x)=-I_{1}(-x)$, following methods are applied to $I_{0}(-x)$ and $I_{1}(-x)$.

- Single precision
(1) $0.0 \leq x \leq 3.75$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& I_{0}(x)=\sum_{k=0}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k} \\
& I_{1}(x)=\sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}
\end{aligned}
$$

(2) $x>3.75$:

The functions are calculated from the following approximations:

$$
\begin{aligned}
& I_{0}(x)=\frac{\sum_{n=0}^{8} a_{n}^{(1)}\left(\frac{3.75}{x}\right)^{n}}{e^{-x} \sqrt{x}} \\
& I_{1}(x)=\frac{\sum_{n=0}^{8} a_{n}^{(2)}\left(\frac{3.75}{x}\right)^{n}}{e^{-x} \sqrt{x}}
\end{aligned}
$$

The coefficients $a_{n}^{(1)}$ and $a_{n}^{(2)}$ are given in reference (1).

- Double precision
(1) $0.0 \leq x \leq 8.0$:

The functions are calculated from the following best approximation equations obtained from the following equations:

$$
\begin{aligned}
& I_{0}(x)=\sum_{k=0}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k} \\
& I_{1}(x)=\sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}
\end{aligned}
$$

(2) $8.0<x<24.0$:

The functions are calculated from the following approximations:

$$
\begin{aligned}
& I_{0}(x)=\frac{\sum_{n=0}^{28} a_{n}^{(3)} x^{-n}}{e^{-x} \sqrt{x}} \\
& I_{1}(x)=\frac{\sum_{n=0}^{28} a_{n}^{(4)} x^{-n}}{e^{-x} \sqrt{x}}
\end{aligned}
$$

(3) $x \geq 24.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& I_{0}(x)=\frac{e^{x}}{\sqrt{2 \pi x}} \sum_{k=0}^{\infty} \frac{1^{2} \cdot 1^{2} \cdot 3^{2} \cdots(2 k-1)^{2}}{k!(8 x)^{k}} \\
& I_{1}(x)=\frac{e^{x}}{\sqrt{2 \pi x}}\left\{1+\sum_{k=1}^{\infty} \frac{(-3) \cdot 5 \cdots\left((2 k-1)^{2}-4\right)}{k!(8 x)^{k}}\right\}
\end{aligned}
$$

The coefficients $a_{n}^{(3)}$ and $a_{n}^{(4)}$ are obtained with the telescoping calculation method given in reference (7). The method of generating the best approximation is described in Section 2.1.2.22.
(2) Modified Bessel functions of the 2nd kind (order 0 and 1) $K_{0}(x)$ and $K_{1}(x)(x>0.0)$

- Single precision
(1) $0.0<x \leq 2.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
K_{0}(x)= & -\gamma+\sum_{k=1}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k}\left\{\left(\sum_{m=1}^{k} \frac{1}{m}\right)-\gamma\right\}-\log \left(\frac{x}{2}\right)\left\{\sum_{k=0}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k}\right\} \\
K_{1}(x)= & \frac{1+\sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+2}\left(2 \gamma-\sum_{m=1}^{k} \frac{1}{m}-\sum_{m=1}^{k+1} \frac{1}{m}\right)}{x} \\
& +\log \left(\frac{x}{2}\right) \sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}
\end{aligned}
$$

(Here, $\sum_{m=1}^{0} \frac{1}{m}=0$)
(2) $x>2.0$:

The functions are calculated from the following approximations:

$$
\begin{aligned}
& K_{0}(x)=\frac{e^{-x}}{\sqrt{x}} \sum_{n=0}^{6} a_{n}^{(1)}\left(\frac{2}{x}\right)^{n} \\
& K_{1}(x)=\frac{e^{-x}}{\sqrt{x}} \sum_{n=0}^{6} a_{n}^{(2)}\left(\frac{2}{x}\right)^{n}
\end{aligned}
$$

The coefficient $a_{n}^{(1)}$ and $a_{n}^{(2)}$ are given in reference (1).

- Double precision
(1) $0.0<x \leq 2.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
K_{0}(x)= & -\gamma+\sum_{k=1}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k}\left\{\left(\sum_{m=1}^{k} \frac{1}{m}\right)-\gamma\right\}-\log \left(\frac{x}{2}\right)\left\{\sum_{k=0}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k}\right\} \\
K_{1}(x)= & \frac{1+\sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+2}\left(2 \gamma-\sum_{m=1}^{k} \frac{1}{m}-\sum_{m=1}^{k+1} \frac{1}{m}\right)}{x} \\
& +\log \left(\frac{x}{2}\right) \sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}
\end{aligned}
$$

(Here, $\sum_{m=1}^{0} \frac{1}{m}=0$)
The Euler's constant γ is $0.5772 \cdots$.
(2) $2.0<x \leq 5.0$:

The functions are calculated from the best approximation equations:

$$
\begin{aligned}
& K_{0}(x)=\sum_{k=0}^{\infty} \frac{K_{0}^{(k)}(3.5)}{k!}(x-3.5)^{k} \\
& K_{1}(x)=\sum_{k=0}^{\infty} \frac{K_{1}^{(k)}(3.5)}{k!}(x-3.5)^{k}
\end{aligned}
$$

$\left(K_{0}^{(k)}(3.5)\right.$ and $K_{1}^{(k)}(3.5)$ are the differential values of k-th grades for $x=3.5$.)
The coefficients $K_{0}^{(k)}(3.5)$ and $K_{0}^{(k)}(3.5)$ are calculated from the following method.

$$
\begin{array}{r}
t_{0}=1, t_{1}=0, t_{2}=0, u_{0}=0, u_{1}=1 \\
v_{0}=0, v_{1}=0, w_{0}=0, w_{1}=0, w_{2}=-1 \\
i=3, x=3.5
\end{array}
$$

$$
\begin{aligned}
& \text { Repetition }\left[\begin{array}{l}
t_{j}^{\prime}=v_{j}-u_{j}(j=0, \cdots, i-2) \\
t_{i-1}^{\prime}=0, t_{i}^{\prime}=0 \\
u_{0}^{\prime}=w_{0}-t_{0} \\
u_{j}^{\prime}=w_{j}-t_{j}-u_{j-1}(j=1, \cdots, i-1) \\
t_{j}=t_{j}^{\prime}(j=0, \cdots, i), u_{j}=u_{j}^{\prime}(j=0, \cdots, i-1) \\
K_{0}^{(i)}(x)=\sum_{j=0}^{i-2} t_{j} x^{-j} K_{0}(x)+\sum_{j=0}^{i-1} u_{j} x^{-j} K_{1}(x) \\
v_{j+1}=-j t_{j}(j=1, i-2) \\
w_{j+1}=-j u_{j}(j=1, i-1) \\
i=i+1
\end{array}\right. \\
& K_{1}^{(i)}(x)=-K_{0}^{(i+1)}(x), K_{0}^{\prime \prime}(x)=K_{0}(x)+\frac{K_{1}(x)}{x}, K_{0}^{\prime}(x)=-K_{1}(x)
\end{aligned}
$$

(3) $5.0<x<24.0$:

$$
\begin{aligned}
K_{0}(x) & =\frac{e^{-x}}{\sqrt{x}} \sum_{n=0}^{18} a_{n}^{(3)} x^{-n} \\
K_{1}(x) & =\frac{e^{-x}}{\sqrt{x}} \sum_{n=0}^{18} a_{n}^{(4)} x^{-n}
\end{aligned}
$$

The coefficients $a_{n}^{(3)}$ and $a_{n}^{(4)}$ are obtained with the telescoping calculation method given in reference (7).
(4) $x \geq 24.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& K_{0}(x)=\sqrt{\frac{\pi}{2 x}} e^{-x} \sum_{k=0}^{\infty}(-1)^{k} \frac{1^{2} \cdot 1^{2} \cdot 3^{2} \cdots(2 k-1)^{2}}{k!(8 x)^{k}} \\
& K_{1}(x)=\sqrt{\frac{\pi}{2 x}} e^{-x}\left\{1+\sum_{k=1}^{\infty} \frac{3 \cdot(-5) \cdots\left(4-(2 k-1)^{2}\right)}{k!(8 x)^{k}}\right\}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(3) Modified Bessel function of the 1st kind (integer order) $I_{n}(x)$
$I_{n}(x)$ is expressed as in Table $2-3$ using $I_{|n|}(|x|)$ depending on the signs of x and $n . I_{|n|}(|x|)$ is calculated
Table 2-3 Expression Equivalent to $I_{n}(x)$ for Different Signs of x and n

-	$n<0$	$n \geq 0$
$x<0.0$	$\left.(-1)^{n} I_{\|n\|}\| \| x \mid\right)$	$(-1)^{n} I_{\|n\|}(\|x\|)$
$x \geq 0.0$	$I_{\|n\|}(\|x\|)$	$I_{\|n\|}(\|x\|)$

as follows (for simple notation, n and x are used instead of $|n|$ and $|x|$, respectively.):
(1) $n=0$ or 1:
$I_{0}(x)$ or $I_{1}(x)$ is used.
(2) $n \geq 2$:
(a) $0.0 \leq x^{2}<\left\{\begin{array}{ll}\text { double precision } & : 0.1 n+0.4 \\ \text { single precision } & : 1.9 n+7.6\end{array}\right\}$ and $n<\left\{\begin{array}{ll}\text { double precision } & : 170 \\ \text { single precision } & : 34\end{array}\right\}$:

The function is calculated from the power expansion of

$$
I_{n}(x)=\left(\frac{x}{2}\right)^{n} \sum_{k=0}^{9} \frac{\left(\frac{x}{2}\right)^{2 k}}{k!(n+k)!}
$$

(b) $0.0 \leq x^{2}<\left\{\begin{array}{ll}\text { double precision } & : 0.1 n+0.4 \\ \text { single precision } & : 1.9 n+7.6\end{array}\right\}$ and $n<\left\{\begin{array}{ll}\text { double precision } & : 170 \\ \text { single precision } & : 34\end{array}\right\}$:
i. $x \leq n$:

Setting $T_{n+k+1}=0.0$, the parameters $T_{i}(i=n, n+1, \cdots, n+k-1, n+k)$ in the continued fraction approximation are calculated using the recurrence relations below:

$$
\begin{aligned}
& \quad T_{i}=\frac{x^{2}}{2 i+T_{i+1}}(i=n+1, \cdots, n+k-1, n+k) \\
& \quad T_{n}=\frac{x}{2 n+T_{n+1}} \\
& \left(T_{n} \text { has a value of } \frac{I_{n}(x)}{I_{n-1}(x)}\right) .
\end{aligned}
$$

Here, the value k is choose as in Table 2-4. Setting $B_{n}=T_{n}$ and $B_{n-1}=1.0, B_{i} \quad(i=$
Table 2-4 Values of k

Single precision	Double precision
$k=\left\lfloor\frac{(4.6+0.5 \sqrt{n}) x}{n}+2.0\right\rfloor$	$k=\left\lfloor\frac{(6.0+1.2 \sqrt{n}) x}{n}+6.0\right\rfloor$

$1,2, \cdots, n-2)$ are calculated using the following recurrence relation.

$$
B_{i-1}=\frac{2 i}{x} B_{i}+B_{i+1}(i=2, \cdots, n-2, n-1)
$$

(B_{1} has a value $\frac{I_{1}(x)}{I_{n-1}(x)}$.)
Using the obtained values of T_{n}, B_{1} and $I_{1}(x), I_{n}(x)$ is calculated from

$$
I_{n}(x)=\frac{T_{n} I_{1}(x)}{B_{1}}
$$

ii. $x>n$:

The function is calculated from the following recurrence relation starting with $G_{M+1}(x)=0.0$ and $G_{M}(x)=a$, where a is the positive minimum number (namely the smallest positive constant in the floating point mode), and M is a number sufficiently larger than n :

$$
G_{k-1}(x)=\frac{2 k}{x} G_{k}(x)+G_{k+1}(x)(k=M, M-1, \cdots, 1)
$$

Then

$$
I_{n}(x)=\frac{G_{n}(x) e^{x}}{\sum_{m=0}^{M} \varepsilon_{m} G_{m}(x)}\left(\varepsilon_{0}=1, \varepsilon_{m}=2(m \geq 1)\right)
$$

(4) Modified Bessel function of the 2nd kind (integer order) $K_{n}(x)(x>0.0)$
(1) $n<0$:

From $K_{n}(x)=K_{-n}(x)$, following methods are applied to $K_{-n}(x)$.
(2) $n=0$ or 1 :
$K_{0}(x)$ and $K_{1}(x)$ are used.
(3) $n \geq 2$:
$K_{n}(x)$ is calculated from the following recurrence relation with $K_{1}(x)$ and $K_{0}(x)$ as initial values:

$$
K_{k+1}(x)=\frac{2 k}{x} K_{k}(x)+K_{k-1}(x)(k=1,2, \cdots, n-1)
$$

(5) Modified Bessel function of the 1st kind (real number order) $I_{\nu}(x)$
(1) If ν is an integer, the function for the modified Bessel function of the 1st kind (integer order) is used with $n=\nu$.
(2) If ν is a nonintegral real number $(x>0.0$ and $\nu>0.0)$:
(a) If $0.0 \leq x^{2}<\left\{\begin{array}{ll}\text { double precision } & 0.1 \nu+0.4 \\ \text { single precision } & 1.9 \nu+7.6\end{array}\right\}$ and $\nu<\left\{\begin{array}{lr}\text { double precision } & 170.0 \\ \text { single precision } & 34.0\end{array}\right\}$:

The function is calculated from the following equation of power expansion:

$$
I_{\nu}(x)=\left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{9} \frac{\left(\frac{x}{2}\right)^{2 k}}{k!\Gamma(\nu+k+1)}
$$

(b) If $x^{2} \geq\left\{\begin{array}{ll}\text { double precision } & \begin{array}{l}0.1 \nu+0.4 \\ \text { single precision }\end{array} \\ 1.9 \nu+7.6\end{array}\right\}$ or $\nu \geq\left\{\begin{array}{lr}\text { double precision } & 170.0 \\ \text { single precision } & 34.0\end{array}\right\}$:
i. If $x>\left\{\begin{array}{ll}\text { double precision } & 30.0 \\ \text { single precision } & 15.0\end{array}\right\}$ and $x \geq 0.55 \nu^{2}$:

The function is calculated from the following equation of asymptotic expansion:

$$
I_{\nu}(x)=\frac{e^{x}}{\sqrt{2 \pi x}} \sum_{k=0}^{m}(-1)^{k} \frac{\left(4 \nu^{2}-1^{2}\right)\left(4 \nu^{2}-3^{2}\right) \cdots\left(4 \nu^{2}-(2 k-1)^{2}\right)}{k!(8 x)^{k}}
$$

where m is the number for the last term such that the term does not affect the result of calculation up to the previous term when included.
ii. If x is a real number other than above:

The function is calculated from the following (backward) recurrence relation with $G_{\delta+M+1}(x)=$ 0.0 and $G_{\delta+M}(x)=a$ as initial value, where δ is the decimal part of ν, n is the integer part of ν, M a sufficiently large number and a is the positive minimum number (namely the smallest positive constant in the floating point mode).

$$
G_{\delta+k-1}(x)=\frac{2(\delta+k)}{x} G_{\delta+k}(x)+G_{\delta+k+1}(x)(k=M, M-1, \cdots, 1)
$$

Then

$$
I_{\nu}(x)=\frac{1}{2}\left(\frac{x}{2}\right)^{\delta} \frac{\Gamma(2 \delta+1)}{\Gamma(\delta+1)} e^{x} \frac{G_{n+\delta}(x)}{\sum_{k=0}^{M} \frac{(\delta+k) \Gamma(2 \delta+k)}{k!} G_{\delta+k}(x)}
$$

The value of M is obtained from the value of x and ν.
(6) Modified Bessel function of the 2nd kind (real number order) $K_{\nu}(x)(x>0.0)$
(1) $\nu<0.0$:

From $K_{\nu}(x)=K_{-\nu}(x)$, following methods are applied to $K_{-\nu}(x)$.
(2) If ν is an integer, the function for the Bessel function of the 2 nd kind (integer order) is used with $n=\nu$.
(3) ν is a nonintegral real number $(\nu>0.0)$:

When x is small, the functional is calculated with the method where the power series expansions of $I_{\nu}(x)$ and $I_{-\nu}(x)$ are inserted in

$$
K_{\nu}(x)=\frac{\pi}{2} \frac{I_{-\nu}(x)-I_{\nu}(x)}{\sin (\nu \pi)}
$$

Terms are grouped, and the parts which give figures at lower places are calculated with the best approximation.
When x is large, a method which is an extension of the τ - method for $K_{n}(x)$ extended for calculating
$K_{\nu}(x)$. In this way $K_{\nu}(x)$ is calculated for $0.0 \leq \nu \leq 2.5$. For $\nu>2.5$, it is calculated from the recurrence relation

$$
K_{\nu+1}(x)=\frac{2 \nu}{x} K_{\nu}(x)+K_{\nu-1}(x)
$$

The following shows the procedures of the calculation.
(a) $0.0 \leq \nu \leq 0.5$:
i. $x<-0.75 \nu^{2}+0.0235 \nu+0.778$

The function is calculated from

$$
K_{\nu}(x)=\frac{\sum_{k=0}^{\infty}\left\{\left(\frac{x}{2}\right)^{2 k}\left(\tilde{A}_{k}(\nu)+\tilde{B}_{k}(\nu)\right)\right\}}{\frac{\pi}{2} \sin (\nu \pi)}
$$

Here $\tilde{A}_{k}(\nu)(k \geq 2)$ is calculated from the recurrence relation.

$$
\tilde{A}_{k}(\nu)=\frac{\frac{\nu}{k!}\left\{\frac{1}{\Gamma(k-\nu)}+\frac{1}{\Gamma(k+\nu)}\right\}+\tilde{A}_{k-1}(\nu)}{(k+\nu)(k-\nu)}
$$

with $\tilde{A}_{0}(\nu)$ and $\tilde{A}_{1}(\nu)$ as the initial value, where $\tilde{A}_{0}(\nu)=\nu \sum_{k=0}^{M} p_{k}^{(1)} \nu^{2 k}, \tilde{A}_{1}(\nu)=\nu \sum_{k=0}^{M} q_{k}^{(1)} \nu^{2 k}$. $\tilde{B}_{k}(\nu)$ is calculated from

$$
\tilde{B}_{k}(\nu)=\frac{1}{k!}\left(\frac{\phi_{1}}{\Gamma(k+1-\nu)}+\frac{\phi_{2}}{\Gamma(k+1+\nu)}\right)
$$

with

$$
\begin{array}{ccl}
\phi_{1}=\left(\frac{x}{2}\right)^{-\nu}-1 & \phi_{2}=1-\left(\frac{x}{2}\right)^{\nu} & \text { for }\left(\frac{x}{2}\right)^{\nu}<0.5 \text { or }\left(\frac{x}{2}\right)^{\nu}>2.0 \\
\phi_{1}=f\left(-\nu \log \left(\frac{x}{2}\right)\right) & \phi_{2}=-f\left(\nu \log \left(\frac{x}{2}\right)\right) & \text { for } 0.5 \leq\left(\frac{x}{2}\right)^{\nu} \leq 2.0
\end{array}
$$

where $f(t)$ is calculated from the best approximation equation of $e^{t}-1$.
ii. $x \geq-0.75 \nu^{2}+0.0235 \nu+0.778$:

The function is calculated from the $\tau-$ method for

$$
K_{\nu}(x)=\sqrt{\frac{1}{x}} e^{-x} \frac{\sum_{i=0}^{m}\left(\frac{1}{x}\right)^{i}\left\{\sum_{j=0}^{i} b_{i j}\left(\nu^{2}\right)^{j}\right\}}{\sum_{i=0}^{m}\left(\frac{1}{x}\right)^{i} e_{i} \Psi_{i}}
$$

Here Ψ_{i} is obtained from

$$
\Psi_{0}=1, \Psi i=\prod_{l=0}^{i-1}\left\{\nu^{2}-\left(m-l+\frac{1}{2}\right)^{2}\right\}(i \geq 1)
$$

and, $e_{i}=\sqrt{\frac{2}{\pi}} \frac{(m-i)!}{(m+1)!} \frac{p_{m, m-i}^{*}}{2^{i}}$, and $p_{m, m-i}^{*}$ is the coefficients of shifted Legendre polynomial.
(b) $0.5<\nu \leq 2.5$:
ν is divided into the integer part n and the decimal part δ. It is set that $\alpha=\delta-1$. When $\delta \leq 0.5$, it is set that $\delta=\delta+1$ and $n=n-1, \alpha=\alpha+1$.
i. K_{δ} is calculated in the following method A. or B. :
A. $x<-0.675 \delta^{2}+1.973 \delta-0.12$:
$K_{\delta}(x)$ is calculated from

$$
K_{\delta}(x)=-\frac{\frac{2^{1+\alpha}}{x^{1+\alpha} \Gamma(1-\alpha)}+\sum_{k=0}^{\infty}\left\{\left(\frac{x}{2}\right)^{2 k+1}\left(\tilde{C}_{k}(\alpha)+\tilde{D}_{k}(\alpha)\right)\right\}}{\frac{\pi}{2} \sin (\alpha \pi)}
$$

where $\tilde{C}_{k}(\alpha)$ and $\tilde{D}_{k}(\alpha)$ are obtained using best approximate equations as is done for $\nu \leq 0.5$.
B. $x \geq-0.675 \delta^{2}+1.973 \delta-0.12$:
$K_{\delta}(x)$ is calculated with the $\tau-\operatorname{method}$ as is done for large x with $\nu \leq 0.5$.
ii. $K_{\delta+1}$ is calculated in the following method A. or B. :
A. $x<-0.277(\delta+1)^{2}+1.817(\delta+1)-0.94$:
$K_{\delta+1}(x)$ is calculated from

$$
K_{\delta+1}(x)=\frac{\frac{2^{\alpha} \alpha(4 \alpha+5)}{x^{\alpha} \Gamma(1-\alpha)}+\sum_{k=0}^{\infty}\left\{\left(\frac{x}{2}\right)^{2 k+2}\left(\tilde{E}_{k}(\alpha)+\tilde{F}_{k}(\alpha)\right)\right\}}{\frac{\pi}{2} \sin (\alpha \pi)}
$$

where $\tilde{E}_{k}(\alpha)$ and $\tilde{F}_{k}(\alpha)$ are obtained using best approximation equations as is done for $v \leq 0.5$.
B. $x \geq-0.277(\delta+1)^{2}+1.817(\delta+1)-0.94$:
$K_{\delta+1}(x)$ is calculated with the $\tau-$ method method as is done for large x with $\nu \leq 0.5$.
(c) $\nu>2.5$:
$K_{\nu}(x)$ is calculated from the following recurrence relation using $K_{\delta}(x)$ and $K_{\delta+1}(x)$ obtained above:

$$
K_{k+\delta+1}(x)=\frac{2(k+\delta)}{x} K_{k+\delta}(x)+K_{k+\delta-1}(x)(k=1,2, \cdots, n-1)
$$

(7) Modified Bessel function of the 1st kind with complex variable $I_{n}(z)$
(1) $n<0$:

From $I_{n}(z)=I_{-n}(z)$, following methods are applied to $I_{-n}(z)$.
(2) $n \geq 0$:
(a) $\operatorname{Re}(z)<0$:

From $I_{n}(z)=(-1)^{n} \cdot I_{n}(-z)$, following methods are applied to $I_{n}(-z)$.
(b) $\Re(z)>0$ and:
i. $|z|^{2}<\left\{\begin{array}{l}\text { Double precision : } 0.1 n+0.4 \\ \text { Single precision : } 1.9 n+7.6\end{array}\right\}$

The function is calculated from the power expansion

$$
I_{n}(z)=\left(\frac{z}{2}\right)^{n} \sum_{k=0}^{9} \frac{\left(\frac{z}{2}\right)^{2 k}}{k!(n+k)!}
$$

ii. $|z|^{2} \geq\left\{\begin{array}{l}\text { Double precision : } 0.1 n+0.4 \\ \text { Single precision : } 1.9 n+7.6\end{array}\right\}$
A. If $\Re(z)>100.0$ or $|\Im(z)|>100.0$ and $n \leq 15$:

The function is calculated from the following equation of asymptotic expansion:

$$
\begin{aligned}
I_{n}(z) & =\frac{e^{z}}{\sqrt{2 \pi z}} \sum_{k=0}^{m}(-1)^{k} \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 n-1)^{2}\right)}{k!(8 z)^{k}} \\
& +\frac{i(-1)^{n} e^{-z}}{\sqrt{2 \pi z}} \sum_{k=0}^{m^{\prime}} \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 n-1)^{2}\right)}{k!(8 z)^{k}}
\end{aligned}
$$

(m and m^{\prime} are the numbers which give the last terms such that the term does not affect the result of calculation up to the previous term when included.)
B. Otherwise:

The function is calculated from the following (backward) recurrence relation using $G_{M+1}(z)=$
$0.0 G_{M}(z)=a$ as initial values, where M is a sufficient large number, and a is the positive minimum number (namely smallest positive constant in the floating point mode).

Then

$$
G_{k-1}(z)=\frac{2 k}{z} G_{k}(z)+G_{k+1}(z)(k=M, M-1, \cdots, 1)
$$

$$
I_{n}(z)=\frac{G_{n}(z) e^{z}}{\sum_{m=0}^{M} \varepsilon_{m} G_{m}(z)}\left(\varepsilon_{0}=1, \varepsilon_{m}=2(m \geq 1)\right)
$$

The value of M is obtained from z and n using an approximate equation.
(8) Modified Bessel function of the 2nd kind with complex variable (integer order) $K_{n}(z)(|z|>0.0)$
(1) $\Re(z)<0$: From

$$
K_{n}(z)=(-1)^{n} K_{n}(-z)+\pi i I_{n}(-z) \cdot(\operatorname{sign} \text { of } \Im(-z))
$$

following methods are applied to $K_{n}(-z)$.
(2) $\Re(z)>0$:
(a) $n<0$:

From $K_{n}(z)=K_{-n}(z)$, following methods are applied to $K_{-n}(z)$.
(b) $0 \leq n<2$ and:
i. $|\Im(z)|<\left\{\begin{array}{l}\text { Double precision : }-4.0 \Re(z)+8.0 \\ \text { Single precision }:-2.25 \Re(z)+4.5\end{array}\right\}$
$K_{0}(z)$ and $K_{1}(z)$ are calculated from following equations:

$$
\begin{aligned}
& K_{0}(z)=-\left\{\gamma+\log \left(\frac{z}{2}\right)\right\} I_{0}(z)+\sum_{k=1}^{n} \frac{\left(\frac{z}{2}\right)^{2 k}}{(k!)^{2}}\left(\sum_{m=1}^{k} \frac{1}{m}\right) \\
& K_{1}(z)=\frac{\frac{1}{z}-I_{1}(z) K_{0}(z)}{I_{0}(z)}
\end{aligned}
$$

Where, γ is Euler's constant.
ii. $|\Im(z)| \geq\left\{\begin{array}{l}\text { Double precision : }-4.0 \Re(z)+8.0 \\ \text { Single precision }:-2.25 \Re(z)+4.5\end{array}\right\}$
$K_{0}(z)$ and $K_{1}(z)$ are calculated from the following equation with the τ-method:

$$
K_{n}(z)=\sqrt{\frac{1}{z}} e^{-z} \frac{\sum_{k=0}^{m} c_{k} z^{k-m}}{\sum_{k=0}^{m} d_{k} z^{k-m}}
$$

(c) $n \geq 2$: The function is calculated from the following recurrence relation using $K_{0}(z)$ and K_{1} as initial values:

$$
K_{k+1}(z)=\frac{2 k}{z} K_{k}(z)+K_{k-1}(z)(k=1,2, \cdots, n-1)
$$

2.1.2.3 Spherical Bessel Functions

(1) Spherical Bessel function of the 1st kind (integer order) $j_{n}(x)(x \geq 0.0)$
(1) $n<0$

The function is calculated from

$$
j_{n}(x)=(-1)^{n} y_{-n-1}(x) .
$$

(2) $n \geq 0$
(a) $x^{2}<0.1 n+0.47$ and $n<35$:

The function is calculated from the power series expansion of

$$
j_{n}(x)=x^{n} \sum_{k=0}^{9} \frac{\left(-\frac{x^{2}}{2}\right)^{k}}{k!(2 n+2 k+1)!!}
$$

(b) $x^{2} \geq 0.1 n+0.47$ or $n \geq 35$:
i. $n=0$ or 1 :

For $x=0, j_{0}(0)=1$ and $j_{1}(0)=0$. Otherwise the functions are calculated from

$$
j_{0}(x)=\frac{\sin (x)}{x}, j_{1}(x)=\frac{\sin (x)-x \cos (x)}{x^{2}}
$$

ii. $n \geq 2$:
A. $x \leq n$:

Setting $T_{n+k+1}=0.0$, the parameters $T_{i}(i=n, n+1, \cdots, n+k-1, n+k)$ in the continued fraction approximation are calculated using the recurrence relations below:

$$
\begin{aligned}
& T_{i}=\frac{x^{2}}{2 i-T_{i+1}+1}(i=n+1, \cdots, n+k-1, n+k) \\
& T_{n}=\frac{x}{2 n-T_{n+1}+1} \\
&\left(T_{n} \text { has a value } \frac{j_{n}(x)}{j_{n-1}(x)} .\right)
\end{aligned}
$$

Here, the value k is choose as in Table 2-5. Setting $B_{n}=T_{n}$ and $B_{n-1}=1.0, B_{i} \quad(i=$
Table 2-5 Value of k

Single precision	Double precision
$k=\left\lfloor\frac{(3.0+1.5 \sqrt{n}) x}{n}+1.5\right\rfloor$	$k=\left\lfloor\frac{(3.0+2.8 \sqrt{n}) x}{n}+5.2\right\rfloor$

$1,2, \cdots, n-2)$ are calculated using the following recurrence relation.

$$
B_{i-1}=\frac{2 i+1}{x} B_{i}-B_{i+1}(i=2, \cdots, n-2, n-1)
$$

Since the precision of computation becomes low when $j_{0}(x) \simeq 0$ or $j_{1}(x) \simeq 0, K$ is set as follows:

$$
K=\lfloor 1.27324 x\rfloor(\bmod 4)
$$

When $K=1$ or 2 ,

$$
B=\frac{3 B_{1}}{x}-B_{2}, j=j_{0}(x)
$$

When $K=0$ or 3 ,

$$
B=B_{1}, j=j_{1}(x)
$$

Using the obtained values of T_{n}, B and $j, j_{n}(x)$ is calculated from

$$
j_{n}(x)=\frac{T_{n} j}{B}
$$

B. $x>n$:
$j_{n}(x)$ is calculated from the following recurrence relation using $j_{1}(x)$ and $j_{0}(x)$ as initial values:

$$
j_{k+1}(x)=\frac{2 k+1}{x} j_{k}(x)-j_{k-1}(x)(k=1,2, \cdots, n-1)
$$

(2) Spherical Bessel function of the 2nd kind (integer order) $y_{n}(x)(x>0.0)$
(1) $n<0$:

The function is calculated from $y_{n}(x)=(-1)^{n+1} j_{-n-1}(x)$.
(2) $n \geq 0$:
(a) $x \leq 0.41$:

The function is calculated from the power expansion of

$$
y_{n}(x)=-\frac{(2 n-1)!!}{x^{n+1}}\left\{1+\sum_{k=1}^{9} \frac{\left(-\frac{x^{2}}{2}\right)^{k}}{k!(1-2 n)(3-2 n) \cdots(2 k-1-2 n)}\right\}
$$

(b) $x>0.41$:
i. $n=0$ or 1 :

The function is calculated from

$$
y_{0}(x)=-\frac{\cos (x)}{x}, y_{1}(x)=-\frac{\cos (x)+x \sin (x)}{x^{2}}
$$

ii. $n \geq 2$:
$y_{n}(x)$ is calculated from the following recurrence relation using $y_{1}(x)$ and $y_{0}(x)$ as initial values.

$$
y_{k+1}(x)=\frac{2 k+1}{x} y_{k}(x)-y_{k-1}(x)(k=1,2, \cdots n-1)
$$

(3) Modified spherical Bessel function of the 1st kind (integer order) $i_{n}(x)(n \geq 0, x \geq 0.0)$
(1) $x^{2}<0.1 n+0.47$ and $n \leq 30$:

The function is calculated from the power expansion of

$$
i_{n}(x)=x^{n} \sum_{k=0}^{9} \frac{\left(\frac{x^{2}}{2}\right)^{k}}{k!(2 n+2 k+1)!!}
$$

(2) $x^{2} \geq 0.1 n+0.47$ or $n>30$
(a) $n=0$ or 1 :

The function is calculated from

$$
\begin{aligned}
& i_{0}(x)=\frac{\sinh (x)}{x} \\
& i_{1}(x)=\frac{x \cosh (x)-\sinh (x)}{x^{2}}=\frac{e^{x}(x-1)+e^{-x}(x+1)}{2 x^{2}}
\end{aligned}
$$

(b) $n \geq 2$:
i. $x \leq n$:

Setting $T_{n+k+1}=0.0$, the parameters $T_{i}(i=n, n+1, \cdots, n+k-1, n+k)$ in the continued fraction approximation are calculated using the recurrence relations below:

$$
\begin{aligned}
T_{i} & =\frac{x^{2}}{2 i+T_{i+1}+1}(i=n+1, \cdots, n+k-1, n+k) \\
T_{n} & =\frac{x}{2 n+T_{n+1}+1}
\end{aligned}
$$

(T_{n} has a value $\frac{i_{n}(x)}{i_{n-1}(x)}$.)
Here, the value k is choose as in Table 2-6. Setting $B_{n}=T_{n}$ and $B_{n-1}=1.0, B_{k} \quad(k=$
Table 2-6 Value of k

Single precision	Double precision
$k=\left\lfloor\frac{(4.6+0.5 \sqrt{n}) x}{n}+2.0\right\rfloor$	$k=\left\lfloor\frac{(6.0+1.2 \sqrt{n}) x}{n}+6.0\right\rfloor$

$1,2, \cdots, n-2)$ are calculated using the following recurrence relation.

$$
B_{k-1}=\frac{2 k+1}{x} B_{k}+B_{k+1}(k=2, \cdots, n-2, n-1)
$$

(Here B_{1} has a value $\frac{i_{1}(x)}{i_{n-1}(x)}$.)
Using the obtained values of T_{n}, B_{1} and $i_{1}(x), i_{n}(x)$ is calculated from

$$
i_{n}(x)=\frac{T_{n} i_{1}(x)}{B_{1}}
$$

ii. $x<n$:

The function is calculated from the following recurrence relation using $G_{M+1}(x)=0.0$ and $G_{M}(x)=a$ as initial values, where a is the positive minimum number (namely the smallest positive constant in the floating point mode), and M is a number sufficiently larger than n.

$$
G_{k-1}(x)=\frac{2 k+1}{x} G_{k}(x)+G_{k+1}(x)(k=M, M-1, \cdots, 1)
$$

Then

$$
i_{n}(x)=\frac{G_{n}(x) e^{x}}{2 \sum_{m=0}^{M}(m+0.5) G_{m}(x)}
$$

(4) Modified spherical Bessel function of the 2nd kind (integer order) $k_{n}(x)(x>0.0)$
(1) $n<0$:

From $k_{n}(x)=k_{-n}(x)$, following methods are applied to $k_{-n}(x)$.
(2) $n \geq 0$:
(a) $n=0$ or 1 :

The function is calculated from

$$
k_{0}(x)=\frac{\pi}{2} \frac{e^{-x}}{x}, k_{1}(x)=\frac{\pi}{2} \frac{e^{-x}}{x}\left(1+\frac{1}{x}\right)
$$

(b) $n \geq 2$:
$k_{n}(x)$ is calculated from the following recurrence relation using $k_{1}(x)$ and $k_{0}(x)$ as initial values:

$$
k_{i+1}(x)=\frac{2 i+1}{x} k_{i}(x)+k_{i-1}(x)(i=1,2, \cdots, n-1)
$$

2.1.2.4 Functions Related To Bessel Functions

(1) Hankel functions of the 1st and 2nd kinds (integer order) $H_{n}^{(1)}(z), H_{n}^{(2)}(z)$

The function is calculated from

$$
\begin{aligned}
H_{n}^{(1)}(z) & =J_{n}(z)+i Y_{n}(z) \\
H_{n}^{(2)}(z) & =J_{n}(z)-i Y_{n}(z)
\end{aligned}
$$

(2) Kelvin functions $\operatorname{ber}_{n}(x), \operatorname{bei}_{n}(x)$
(1) $n<0$ or $x<0.0$

First $\operatorname{ber}_{|n|}(|x|)$ or $\left.\operatorname{bei}_{|n|}| | x \mid\right)$ is calculated as described in the case (2) $n \geq 0$ and $x \geq 0.0$ then $\operatorname{ber}_{n}(x)$ or $\operatorname{bei}_{n}(x)$ is calculated from the following expressions
(a) $n<0$ or $x<0$:

$$
\operatorname{ber}_{n}(x)=(-1)^{n} \operatorname{ber}_{|n|}(|x|), \operatorname{bei}_{n}(x)=(-1)^{n} \operatorname{bei}_{|n|}(|x|)
$$

(b) $n<0$ and $x<0$:

$$
\operatorname{ber}_{n}(x)=\operatorname{ber}_{|n|}(|x|), \quad \operatorname{bei}_{n}(x)=\operatorname{bei}_{|n|}(|x|)
$$

(2) $n \geq 0$ and $x \geq 0.0$:
(a) $x \leq\left\{\begin{array}{l}\operatorname{ber}_{\mathrm{n}}(\mathrm{x}): 5.65+0.25 \mathrm{n} \\ \operatorname{bei}_{\mathrm{n}}(\mathrm{x}): 6.92+0.25 \mathrm{n}\end{array}\right\}$:

The function is calculated from the following approximation.

$$
\begin{aligned}
& \operatorname{ber}_{n}(x) \simeq \sum_{k=0}^{m} \frac{\cos \left\{\frac{1}{4}(3 n+2 k) \pi\right\}}{k!(n+k)!}\left(\frac{x}{2}\right)^{n+2 k} \\
& \operatorname{bei}_{n}(x) \simeq \sum_{k=0}^{m} \frac{\sin \left\{\frac{1}{4}(3 n+2 k) \pi\right\}}{k!(n+k)!}\left(\frac{x}{2}\right)^{n+2 k}
\end{aligned}
$$

However, for $n=0$, both $\operatorname{ber}(x)$ and $\operatorname{bei}(x)$ are calculated from the expressions shown above by generating best approximations. The method of generating the both approximation is described in Section 2.1.2.22.
(b) $x \geq\left\{\begin{array}{l}\text { Double precision : } 20.0 \\ \text { Single precision : } 10.0\end{array}\right\}$ and $x \geq 0.5 n^{2}$:

The function is calculated from the asymptotic expansion expressions

$$
\begin{aligned}
\operatorname{ber}_{n}(x) & \simeq \frac{e^{\frac{x}{\sqrt{2}}}}{\sqrt{2 \pi x}}\{P \cos (\Psi)+Q \sin (\Psi)\} \\
\operatorname{bei}_{n}(x) & \simeq \frac{e^{\frac{x}{\sqrt{2}}}}{\sqrt{2 \pi x}}\{P \sin (\Psi)-Q \cos (\Psi)\}
\end{aligned}
$$

where:

$$
\begin{aligned}
P & =1+\sum_{k=1}^{m}(-1)^{k} \cos \left(\frac{k \pi}{4}\right) \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 k-1)^{2}\right)}{k!(8 x)^{k}} \\
Q & =\sum_{k=1}^{m}(-1)^{k} \sin \left(\frac{k \pi}{4}\right) \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 k-1)^{2}\right)}{k!(8 x)^{k}} \\
\Psi & =\frac{x}{\sqrt{2}}+\left(\frac{n}{2}-\frac{1}{8}\right) \pi
\end{aligned}
$$

However, for $n=0$, both P and Q are calculated by generating best approximation is described in Section 2.1.2.22.
(m is a value such that the final term will not affect values calculated before it.)
(c) Cases other than those described in (a) and (b):

The function is calculated from the Bessel function of the 1st kind with complex variable (integer order) $J_{n}(z)$ where:

$$
\begin{aligned}
\operatorname{ber}_{n}(x) & =\Re\left(J_{n}\left(-\frac{x}{\sqrt{2}}, \frac{x}{\sqrt{2}}\right)\right) \\
\operatorname{bei}_{n}(x) & =\Im\left(J_{n}\left(-\frac{x}{\sqrt{2}}, \frac{x}{\sqrt{2}}\right)\right)
\end{aligned}
$$

(3) Kelvin function $\operatorname{ker}_{n}(x), \operatorname{kei}_{n}(x)(x>0.0)$
(1) $n<0$:

First, $\operatorname{ker}_{|n|}(x)$ or $\operatorname{kei}_{|n|}(x)$ is described in case (3) $n>0$. Then $\operatorname{ker}_{n}(x)$ or $\operatorname{kei}_{n}(x)$ is calculated from the following expressions.

$$
\operatorname{ker}_{n}(x)=(-1)^{n} \operatorname{ker}_{|n|}(x), \operatorname{kei}_{n}(x)=(-1)^{n} \operatorname{kei}_{|n|}(x)
$$

(2) $n=0$ and $x \leq\left\{\begin{array}{l}\operatorname{ker}(\mathrm{x}): 5.77 \\ \operatorname{kei}(\mathrm{x}): 6.56\end{array}\right\}$:

The function is calculated by generating best approximations from

$$
\operatorname{ker}(x)=-\log \left(\frac{x}{2}\right) \operatorname{ber}(x)+\frac{\pi}{4} \operatorname{bei}(x)+\sum_{n=0}^{\infty}\left\{\frac{(-1)^{n}}{((2 n)!)^{2}}\left(\sum_{s=1}^{2 n} \frac{1}{s}-\gamma\right)\left(\frac{x}{2}\right)^{4 n}\right\}
$$

$$
\operatorname{kei}(x)=-\log \left(\frac{x}{2}\right) \operatorname{bei}(x)-\frac{\pi}{4} \operatorname{ber}(x)+\sum_{n=0}^{\infty}\left\{\frac{(-1)^{n}}{((2 n+1)!)^{2}}\left(\sum_{s=1}^{2 n} \frac{1}{s}-\gamma\right)\left(\frac{x}{2}\right)^{4 n+2}\right\}
$$

(γ : Euler's constant: $0.57721566 \cdots$).
The method of generating the best approximation is described in Section 2.1.2.22.
(3) $n>0$:
(a) $x \geq\left\{\begin{array}{l}\text { Double precision : 20.0 } \\ \text { Single precision : } 10.0\end{array}\right\}$ and $x \geq 0.5 n^{2}$:

The function is calculated from the asymptotic expansions

$$
\begin{aligned}
\operatorname{ker}_{n}(x) & \simeq \sqrt{\frac{\pi}{2 x}} e^{-x \sqrt{2}}\{P \cos (\Psi)-Q \sin (\Psi)\} \\
\operatorname{kei}_{n}(x) & \simeq \sqrt{\frac{\pi}{2 x}} e^{-x \sqrt{2}}\{-P \sin (\Psi)-Q \cos (\Psi)\}
\end{aligned}
$$

where:

$$
\begin{aligned}
& P=1+\sum_{k=1}^{m} \cos \left(\frac{k \pi}{4}\right) \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 k-1)^{2}\right)}{k!(8 x)^{k}} \\
& Q=\sum_{k=1}^{m} \sin \left(\frac{k \pi}{4}\right) \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 k-1)^{2}\right)}{k!(8 x)^{k}} \\
& \Psi=\frac{x}{\sqrt{2}}+\left(\frac{n}{2}-\frac{1}{8}\right) \pi
\end{aligned}
$$

However, for $n=0$, both P and Q are calculated by generating best approximation is described in Section 2.1.2.22.
(m is a value such that the final term will not affect values calculated before it.)
(b) Case other than those described in (a):

The function is calculated from the modified Bessel function of the 2nd kind with complex variable (integer order) $K_{n}(z)$ where A is the real part of $K_{n}\left(\frac{x}{\sqrt{2}}, \frac{x}{\sqrt{2}}\right), B$ is the imaginary part. If the remainder of $\frac{n}{4}$
i. 0 :

$$
\operatorname{ker}_{n}(x)=A, \operatorname{kei}_{n}(x)=B
$$

ii. 1 :

$$
\operatorname{ker}_{n}(x)=B, \operatorname{kei}_{n}(x)=-A
$$

iii. 2 :

$$
\operatorname{ker}_{n}(x)=-A, \operatorname{kei}_{n}(x)=-B
$$

iv. 3 :

$$
\operatorname{ker}_{n}(x)=-B, \operatorname{kei}_{n}(x)=A
$$

(4) Struve function $\mathbf{H}_{0}(x), \mathbf{H}_{1}(x), \mathbf{H}_{0}(x)-Y_{0}(x), \mathbf{H}_{1}(x)-Y_{1}(x)$
(1) $x<0.0$:

From $\mathbf{H}_{0}(x)=-\mathbf{H}_{0}(-x)$ and $\mathbf{H}_{1}(x)=\mathbf{H}_{1}(-x)$, following methods applied to $\mathbf{H}_{0}(-x)$ or $\mathbf{H}_{1}(-x)$. However, the difference with the Bessel function $\mathbf{H}_{0}(x)-Y_{0}(x)$ or $\mathbf{H}_{1}(x)-Y_{1}(x)$ gives fatal error.
(2) $0.0 \leq x \leq 8.0$;

The function is calculated by generating best approximations from the following expressions

$$
\begin{aligned}
& \mathbf{H}_{0}(x)=\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{((2 k+1)!!)^{2}} \\
& \mathbf{H}_{1}(x)=\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}(2 k+1) x^{2 k}}{((2 k+1)!!)^{2}}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
$\mathbf{H}_{0}(x)-Y_{0}(x)$ or $\mathbf{H}_{1}(x)-Y_{1}(x)$ is calculated by subtracting the Bessel function of the 2nd kind $Y_{0}(x)$ or $Y_{1}(x)$ from the value of $\mathbf{H}_{0}(x)$ or $\mathbf{H}_{1}(x)$ obtained in this way.
(3) $x>8.0$:

The function is calculated by using the following approximation expressions

$$
\begin{array}{rlrl}
\mathbf{H}_{0}(x)-Y_{0}(x)=\frac{1}{x} \sum_{k=0}^{n} a_{k}^{(1)}\left(\frac{1}{x}\right)^{2 n} & n & =\left\{\begin{array}{ll}
\text { Double precision : } 28 \\
\text { Single precision : } 6
\end{array}\right\} \\
\mathbf{H}_{1}(x)-Y_{1}(x) & =\sum_{k=0}^{n} a_{k}^{(2)}\left(\frac{1}{x}\right)^{2 n} & n & =\left\{\begin{array}{ll}
\text { Double precision : } 25 \\
\text { Single precision }: 5
\end{array}\right\}
\end{array}
$$

The coefficients $a_{n}^{(1)}$ and $a_{n}^{(2)}$ are obtained by a telescoping calculation of the approximation expressions as described in reference (7).
$\mathbf{H}_{0}(x)$ or $\mathbf{H}_{1}(x)$ is obtained by adding $Y_{0}(x)$ or $Y_{1}(x)$ to the value of the difference with the Bessel function obtained in this way.
(5) Airy functions and their derived functions $\operatorname{Ai}(x), \operatorname{Bi}(x), \operatorname{Ai}^{\prime}(x), \operatorname{Bi}^{\prime}(x)$

Assume $\zeta=\frac{2}{3}|x|^{\frac{3}{2}}$.
(1) $x<\left\{\begin{array}{l}-3.8315472(\text { for } \mathrm{Ai}(x), \mathrm{Bi}(x)) \\ -5.2414828\left(\text { for } \operatorname{Ai}^{\prime}(x), \mathrm{Bi}^{\prime}(x)\right)\end{array}\right\}$:

$$
\begin{aligned}
\operatorname{Ai}(x) & =\frac{\sqrt{-x}}{3}\left\{\frac{4}{3 \zeta} J_{\frac{2}{3}}(\zeta)-J_{\frac{5}{3}}(\zeta)+J_{\frac{1}{3}}(\zeta)\right\} \\
\operatorname{Bi}(x) & =\sqrt{\frac{-x}{3}}\left\{\frac{4}{3 \zeta} J_{\frac{2}{3}}(\zeta)-J_{\frac{5}{3}}(\zeta)-J_{\frac{1}{3}}(\zeta)\right\} \\
\operatorname{Ai}^{\prime}(x) & =\frac{x}{3}\left\{\frac{2}{3 \zeta} J_{\frac{1}{3}}(\zeta)-J_{\frac{4}{3}}(\zeta)-J_{\frac{2}{3}}(\zeta)\right\} \\
\operatorname{Bi}^{\prime}(x) & =\frac{-x}{\sqrt{3}}\left\{\frac{2}{3 \zeta} J_{\frac{1}{3}}(\zeta)-J_{\frac{4}{3}}(\zeta)+J_{\frac{2}{3}}(\zeta)\right\}
\end{aligned}
$$

$$
\text { (2) }\left\{\begin{array}{l}
-3.8315472(\text { for } \operatorname{Ai}(x), \operatorname{Bi}(x)) \\
-5.2414828\left(\text { for } \operatorname{Ai}^{\prime}(x), \operatorname{Bi}^{\prime}(x)\right)
\end{array}\right\} \leq x<\left\{\begin{array}{l}
3.8315472(\text { for } \operatorname{Ai}(x), \operatorname{Bi}(x)) \\
5.2414828\left(\text { for } \operatorname{Ai}^{\prime}(x), \operatorname{Bi}^{\prime}(x)\right)
\end{array}\right\} \text { : }
$$

$$
C_{1}=\frac{3^{-\frac{2}{3}}}{\Gamma\left(\frac{2}{3}\right)}
$$

$$
C_{2}=\frac{3^{-\frac{1}{3}}}{\Gamma\left(\frac{1}{3}\right)}
$$

$$
f(x)=1+\frac{1}{3!} x^{3}+\frac{1 \cdot 4}{6!} x^{6}+\frac{1 \cdot 4 \cdot 7}{9!} x^{9}+\cdots
$$

$$
g(x)=x+\frac{2}{4!} x^{4}+\frac{2 \cdot 5}{7!} x^{7}+\frac{2 \cdot 5 \cdot 8}{10!} x^{10}+\cdots
$$

The domain is divided into the intervals $x<0$ and $x \geq 0$. The function is calculated by generating best approximations from the following expressions

$$
\begin{aligned}
\operatorname{Ai}(x) & =C_{1} f(x)-C_{2} g(x) \\
\operatorname{Bi}(x) & =\sqrt{3}\left(C_{1} f(x)+C_{2} g(x)\right)
\end{aligned}
$$

$\operatorname{Ai}^{\prime}(x)$ is calculated by creating an expression by differentiating the approximation of $\operatorname{Ai}(x)$. $\operatorname{Bi}^{\prime}(x)$ is calculated by creating an expression by differentiating the approximation of $\operatorname{Bi}(x)$. The method of generating the best approximation is described in Section 2.1.2.22.
(3) $x \geq\left\{\begin{array}{l}3.8315472(\text { for } \operatorname{Ai}(x), \operatorname{Bi}(x)) \\ 5.2414828\left(\text { for } \operatorname{Ai}^{\prime}(x), \operatorname{Bi}^{\prime}(x)\right)\end{array}\right\}$:

$$
\begin{aligned}
\operatorname{Ai}(x) & =e^{-\zeta} x^{-\frac{1}{4}} \sum_{k=0}^{m 1} a_{k}^{(1)}\left(\frac{1}{\zeta}\right)^{k} \\
\operatorname{Bi}(x) & =e^{\zeta} x^{-\frac{1}{4}} \sum_{k=0}^{m 2} a_{k}^{(2)}\left(\frac{1}{\zeta}\right)^{k}+\sqrt{\frac{x}{3}} I_{\frac{5}{3}}(\zeta) \\
\operatorname{Ai}^{\prime}(x) & =e^{-\zeta} x^{\frac{1}{4}} \sum_{k=0}^{m 3} a_{k}^{(3)}\left(\frac{1}{\zeta}\right)^{k} \\
\operatorname{Bi}^{\prime}(x) & =e^{\zeta} x^{\frac{1}{4}} \sum_{k=0}^{m 4} a_{k}^{(4)}\left(\frac{1}{\zeta}\right)^{k}+\frac{x}{\sqrt{3}} I_{\frac{4}{3}}(\zeta)
\end{aligned}
$$

The coefficients $a_{k}^{(1)}$ through $a_{k}^{(4)}$ are new coefficients obtained as described in reference (7).

2.1.2.5 Gamma Functions

(1) Gamma function $\Gamma(x)$ with real variable and logarithmic Gamma function $\log _{e}(\Gamma(x))$ with real variable
(1) $x<0.0$:

From

$$
\begin{aligned}
\Gamma(x) & =\frac{\pi}{-x \sin (\pi x) \Gamma(-x)} \\
\log _{e}(\Gamma(x)) & =\log _{e} \pi-\log _{e}((-x) \sin (\pi x))-\log _{e}(\Gamma(-x))
\end{aligned}
$$

following methods are applied to $\Gamma(-x)$ and $\log _{e}(\Gamma(-x))$. where GAMMA and ALGAMA are the FORTRAN intrinsic functions for the Gamma function and logarithmic Gamma function.
(2) $x \geq 0.0$:

Use the FORTRAN intrinsic functions GAMMA and ALGAMA.
(2) Gamma function $\Gamma(z)$ with complex variable and logarithmic Gamma function $\log _{e}(\Gamma(z))$ with complex variable
(1) $\Im(z)=0.0$:

The function is calculated using the logarithmic Gamma function with real variable.
(2) $\Re(z)=0.0$ and $|\Im(z)|>12.0$:

The function is calculated from the following equation of asymptotic expansion:

$$
\begin{aligned}
& \Re\left(\log _{e}(\Gamma(z))\right) \sim \frac{1}{2}\left(\log _{e}(2 \pi)-\pi \Im(z)-\log _{e}(\Im(z))\right) \\
& \Im\left(\log _{e}(\Gamma(z))\right) \sim \Im(z) \log _{e}(\Im(z))-\Im(z)-\frac{1}{4} \pi-\sum_{n=1}^{\infty} \frac{(-1)^{n-1} B_{2 n}}{(2 n-1)(2 n)(\Im(z))^{2 n-1}}
\end{aligned}
$$

where, B_{n} is Bernoulli numbers.
(3) $\Im(z)<0.0$:

From

$$
\log _{e}(\Gamma(z))=\log _{e} \pi-\log _{e}(-z) \sin (\pi z)-\log _{e}(\Gamma(-z))
$$

following methods are applied to $\log _{e}(\Gamma(-z))$.
(4) $\Im(z)>0.0$:

The function is calculated with the following procedure.
(a) $|\Re(z)|<11.0$: From

$$
\log _{e}(\Gamma(z))=\log _{e}(\Gamma(n+z))-\log _{e}((n-1+z)(n-2+z) \cdots(z))
$$

following methods are applied to $\log _{e}(\Gamma(n+z))$. Where, $n=\lfloor 12.0-\Re(z)\rfloor$
(b) $|\Re(z)| \geq 11.0$: The function is calculated from the following equation of asymptotic expansion:

$$
\log _{e}(\Gamma(z)) \sim\left(z-\frac{1}{2}\right) \log _{e} z-z+\frac{1}{2} \log _{e}(2 \pi)+\sum_{n=1}^{\infty} \frac{B_{2 n}}{(2 n-1)(2 n) z^{2 n-1}}
$$

(5) The Gamma function with complex variable is returned as $\exp \left(\log _{e}(\Gamma(z))\right)$.
(3) Incomplete Gamma function of the 1st kind $\gamma(\nu, x),(\nu \geq 0.0, x \geq 0.0)$
(1) $x=0.0$:
$\gamma(\nu, x)=0.0$
(2) $x \leq \nu-0.5$ or $x \leq 3.5$:

For $\nu \leq \frac{e^{(\text {Maximum value) }}}{\text { (}}$

$$
\gamma(\nu, x)=\frac{1}{\nu}
$$

For cases other than above,

$$
\gamma(\nu, x)=\frac{e^{\nu \log (x)-x} P}{\nu}
$$

where

$$
P=1+\sum_{k=1}^{m} \frac{x^{k}}{(\nu+1)(\nu+2) \cdots(\nu+k)}
$$

(m is a value such that the final term will not affect values calculated before it.)
(3) For values of x other than above:

The function is calculated from

$$
\gamma(\nu, x)=\Gamma(\nu)-\Gamma(\nu, x)
$$

where $\Gamma(\nu, x)$ is the incomplete Gamma function of the 2 nd kind.
(4) Incomplete Gamma function of the 2 nd kind $\Gamma(\nu, x)(\nu \geq 0.0, x \geq 0.0)$
(1) $\nu \leq \frac{1.0}{(\text { Maximum value) }}$:
$-\operatorname{Ei}(-x)$ is calculated by using the function for the exponential integral.
(2) $x=0.0$:

Let $\Gamma(\nu, x)=\Gamma(\nu)$.
(3) ν is an integer $x>0.015 \nu^{2}$:

$$
\Gamma(\nu, x)=e^{(\nu-1) \log (x)-x}\left\{1+\sum_{k=1}^{m} \frac{(\nu-1)(\nu-2) \cdots(\nu-k)}{x^{k}}\right\}
$$

(m is a value such that the final term will not affect values calculated before it or such that $m \leq \nu+2$.)
(4) $x \leq \nu-0.5$:

Let $\Gamma(\nu, x)=\Gamma(\nu)-\gamma(\nu, x)$.
(5) $x \geq\left\{\begin{array}{l}\text { Double precision : } 49.0 \\ \text { Single precision : } 23.0\end{array}\right\}$:

Perform the same procedure as described in (3) for ν an integer and $x \geq 0.015 \nu^{2}$.
(6) $\nu<1.0$:
(a) $x<0.36 \nu+0.85$:

The function is calculated from

$$
\Gamma(\nu, x)=(\nu-1) \frac{\sum_{k=0}^{M} p_{k}^{(2)} \nu^{k}}{\sum_{k=0}^{N} q_{k}^{(2)} \nu^{k}}-\frac{e^{\nu \log (x)}-1}{\nu}-x^{\nu} \sum_{k=1}^{M^{\prime}} \frac{(-1)^{k} x^{k}}{k!(k+\nu)}
$$

$$
\left(M^{\prime}:\left\{\begin{array}{l}
\text { Double precision : } 21 \\
\text { Single precision }: 12
\end{array}\right\}\right)
$$

(b) $x \leq 1.5 \nu+2.1$:

The function is calculated from

$$
\Gamma(\nu, x)=\Gamma(1+\nu) e^{-x} \sum_{k=0}^{N^{\prime}}\left(x^{k} \tilde{A}_{k}(\nu)+x^{k} \frac{\phi(\nu, x)}{\Gamma(k+1+\nu)}\right.
$$

$$
\left(N^{\prime}:\left\{\begin{array}{l}
\text { Double precision }: 23 \\
\text { Single precision }: 14
\end{array}\right\}\right)
$$

where

$$
\begin{aligned}
& \tilde{A}_{0}(\nu)=(1+\nu)\left(\tilde{A}_{1}(\nu)-1\right) \\
& \tilde{A}_{1}(\nu) \simeq \sum_{k=0}^{M} p_{k}^{(1)} \nu^{k}
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{A}_{k}(\nu) & =\frac{1}{k+\nu}\left\{\tilde{A}_{k-1}(\nu)+\frac{1}{k!}\right\} \\
\phi(\nu, x) & =-\frac{e^{\nu \log (x)}-1}{\nu}
\end{aligned}
$$

(c) For cases other than the above:

The function is calculated from
where the following values are assumed for the continued fractions:
$\left\{\begin{array}{ll}\text { Double precision : }\left\lfloor\frac{120}{x}+5\right\rfloor \\ \text { Single precision }:\left\lfloor\frac{25}{x-0.25}+2\right\rfloor\end{array}\right\}$
(7) For cases other than those described in (1) through (6):
(a) $x \leq 5.6$:

Let $\alpha=\nu-\lfloor\nu\rfloor$ and $\mu=\alpha+1.0$, the function is calculated from

$$
\Gamma(\mu, x)=\Gamma(\mu) e^{-x}\left[1+\alpha \sum_{k=0}^{M^{\prime \prime}}\left(x^{k+1} \tilde{C}_{k}(\alpha)+x^{k+1} \frac{\phi(\alpha, x)}{\Gamma(k+1+\mu)}\right)\right]
$$

$\left(M^{\prime \prime}:\left\{\begin{array}{l}\text { Double precision : } 20 \\ \text { Single precision : } 12\end{array}\right\}\right)$
where

$$
\tilde{C}_{0}(\alpha)=\tilde{A}_{1}(\alpha)
$$

and

$$
\begin{aligned}
\tilde{C}_{k}(\alpha) & =\frac{1}{k+\nu}\left\{\tilde{C}_{k-1}(\alpha)+\frac{1}{(k+1)!}\right\} \\
\phi(\alpha, x) & =-\frac{e^{\alpha \log (x)}-1}{\alpha}
\end{aligned}
$$

- $\nu>2.0$:

For $m=\nu-\mu$
The function is calculated from

$$
\begin{aligned}
\Gamma(\nu, x)= & e^{(\nu-1) \log (x)-x}\left\{1+\sum_{k=1}^{m-1} \frac{(\nu-1)(\nu-2) \cdots(\nu-k)}{x^{k}}\right\} \\
& +(\nu-1)(\nu-2) \cdots(\nu-k) \Gamma(\mu, x)
\end{aligned}
$$

- $\nu \leq 2.0$:

$$
\Gamma(\nu, x)=\Gamma(\mu, x)
$$

(b) For cases other than (a):

The function is calculated from

$$
\begin{aligned}
\Gamma(\nu, x)= & e^{(\nu-1) \log (x)-x}\left\{1+\sum_{k=1}^{m-1} \frac{(\nu-1)(\nu-2) \cdots(\nu-k)}{x^{k}}\right\} \\
& +(\nu-1)(\nu-2) \cdots(\nu-m) e^{(\nu-m) \log (x)-x} \\
& \cdot\left[\frac{1 \mid}{\mid x}+{\left.\underset{n-1}{\infty}\left(\frac{n-(\nu-m) \mid}{\mid 1}+\frac{n \mid}{\mid x}\right)\right]}^{\left.\left\lvert\, \frac{1}{\mid}\right.\right)}\right.
\end{aligned}
$$

(m is the integer part of ν.)

2.1.2.6 Functions Related To The Gamma Function

(1) Digamma function $\Psi(x)$ (if $x<0.0$ then $x \neq$ integer)
(1) $x<-2.0$:

The function is calculated from

$$
\Psi(x)=\log (1-x)-\frac{1}{2(1-x)}+\frac{\sum_{k=0}^{m} a_{k}^{(2)}(1-x)^{-2 k}}{\sum_{k=0}^{m} b_{k}^{(2)}(1-x)^{-2 k}}-\pi \cot (\pi x)
$$

(2) $-2.0<x<0.5$:

The function is calculated from

$$
\Psi(x)=(1-c-x) \frac{\sum_{k=0}^{m} a_{k}^{(1)}(1-x)^{k}}{\sum_{k=0}^{m} b_{k}^{(1)}(1-x)^{k}}-\pi \cot (\pi x)
$$

(3) $0.5 \leq x \leq 3.0$:

The function is calculated from

$$
\Psi(x)=(x-c) \frac{\sum_{k=0}^{m} a_{k}^{(1)} x^{k}}{\sum_{k=0}^{m} b_{k}^{(1)} x^{k}}
$$

(4) $x>3.0$:

The function is calculated from

$$
\Psi(x)=\log (x)-\frac{1}{2 x}+\frac{\sum_{k=0}^{m} a_{k}^{(2)} x^{-2 k}}{\sum_{k=0}^{m} b_{k}^{(2)} x^{-2 k}}
$$

The value of c is assumed to be $c=1.46163214496836234126$ and the coefficients $a_{k}^{(1)}, b_{k}^{(1)}, a_{k}^{(2)}$ and $b_{k}^{(2)}$ are described in reference (4).
(2) Beta function $B(p, q)(p>0.0, q>0.0)$

The beta function is defined with the following formula.

$$
B(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x=B(q, p)(p, q>0)
$$

The function is calculated as follows depending on the values of p and q :
(1) $p<12.0$ and $q<12.0$:

The function is calculated using the Gamma function according to the following expression.

$$
B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}
$$

(2) $p<12.0$ and $q \geq 12.0$:

The function is calculated using the Gamma function and the Stirling formula as follows:

$$
B(p, q)=\Gamma(p) e^{\left(q-\frac{1}{2}\right) \log (q)+\Phi(q)-\left(p+q-\frac{1}{2}\right) \log (p+q)+p-\Phi(p+q)}
$$

where $\Phi(x)$ is obtained by generating the best approximation of

$$
\Phi(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} B_{n}}{(2 n)(2 n-1) x^{2 n-1}}
$$

(B_{n} : Bernoulli numbers).
The method of generating the best approximation is described in Section 2.1.2.22.
(3) $p \geq 12.0$ and $q<12.0$:

The function is calculated from $B(p, q)=B(q, p)$ using the same formula as described for $p<12.0$ and $q \geq 12.0$.
(4) $p \geq 12.0$ and $q \geq 12.0$:

The function is calculated from the Stirling formula as follows:

$$
B(p, q)=e^{\left(p-\frac{1}{2}\right) \log (p)+\left(q-\frac{1}{2}\right) \log (q)-\left(p+q-\frac{1}{2}\right) \log (p+q)+\log (\sqrt{2 \pi})+\Phi(p)+\Phi(q)-\Phi(p+q)}
$$

2.1.2.7 Elliptic Functions And Elliptic Integrals

(1) Complete elliptic integrals of the 1st and 2nd kinds $K(m), E(m)(0.0 \leq m \leq 1.0)$
(1) $0.0 \leq m \leq 0.25$:

The functions are calculated by generating the best approximations of

$$
\begin{aligned}
& K(m)=\frac{\pi}{2} \sum_{k=0}^{\infty}\left(\frac{(2 k-1)!!}{(2 k)!!}\right)^{2} m^{k} \\
& E(m)=\frac{\pi}{2}\left\{1-\sum_{k=1}^{\infty}\left(\frac{(2 k-1)!!}{(2 k)!!}\right)^{2} \frac{m^{k}}{2 k-1}\right\}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(2) $0.25<m<1.0$:

The functions are calculated from

$$
\begin{aligned}
& K(m)=\sum_{k=0}^{l}\left\{a_{k}^{(1)}(1-m)^{k}\right\}-\log (1-m) \sum_{k=0}^{l}\left\{b_{k}^{(1)}(1-m)^{k}\right\} \\
& E(m)=\sum_{k=0}^{l}\left\{a_{k}^{(2)}(1-m)^{k}\right\}-\log (1-m) \sum_{k=0}^{l}\left\{b_{k}^{(2)}(1-m)^{k}\right\}
\end{aligned}
$$

(3) $m=1.0$:

The following values are assumed.

$$
\begin{aligned}
K(m) & =+\infty \\
E(m) & =1.0
\end{aligned}
$$

The coefficients $a_{k}^{(1)}, b_{k}^{(1)}, a_{k}^{(2)}$ and $b_{k}^{(2)}$ are described in reference (2).
(2) Incomplete elliptic integrals of the 1st and 2nd kinds $F(x, m), E(x, m)(0.0 \leq x \leq 1.0,0.0 \leq m \leq 1.0)$
(1) $x=0.0$:

The function values are as follows:

$$
F(0.0, m)=E(0.0, m)=0.0
$$

(2) $x=1.0$:

The function values are calculated from the complete elliptic integrals as follows:

$$
\begin{aligned}
& F(1.0, m)=K(m) \\
& E(1.0, m)=E(m)
\end{aligned}
$$

(3) For cases other than those in (1) and (2).
(a) $m=0.0$:

The following values are returned.

$$
\begin{aligned}
& F(x, 0.0)=\sin ^{-1}(x) \\
& E(x, 0.0)=\sin ^{-1}(x)
\end{aligned}
$$

(b) $0.0<m<1.0$:

The following values are obtained from initial values

$$
\begin{aligned}
a_{k+1} & =\frac{a_{k}+b_{k}}{2} \\
b_{k+1} & =\sqrt{a_{k} b_{k}} \\
c_{k+1} & =\frac{a_{k}-b_{k}}{2}(k=0,1, \cdots)
\end{aligned}
$$

with $a_{0}=1.0, b_{0}=\sqrt{1-m}$ and $c_{0}=\sqrt{m}$ as initial values.
The convergence criterion is assumed to be

$$
c_{N}<a_{k} \cdot \text { (units for determining error). }
$$

The values $\phi_{1}, \cdots, \phi_{N}$ are obtained by using Newton method to solve for $\phi_{k+1}\left(>\phi_{k}\right)$

$$
\tan \left(\phi_{k+1}-\phi_{k}\right)-\frac{b_{k}}{a_{k}} \tan \left(\phi_{k}\right)=0(k=0, \cdots, N-1)
$$

with $\phi_{0}=\sin ^{-1}(x)$. Then the function is calculated from

$$
\begin{aligned}
& F(x, m)=\frac{\phi_{N}}{2^{N} a_{N}} \\
& E(x, m)=\left(1-\frac{1}{2} \sum_{k=0}^{N} 2^{k} c_{k}^{2}\right) F(x, m)+\sum_{k=1}^{N} c_{k} \sin \left(\phi_{k}\right)
\end{aligned}
$$

Another method is using $F(x, m)=\left(1+k_{1}\right) F\left(x_{1}, m_{1}\right)$ with

$$
k_{1}=\frac{1-\sqrt{1-m}}{1+\sqrt{1-m}}, m_{1}=k_{1}^{2}, m=k^{2}, x_{1}=\frac{2}{1+\sqrt{1-m x^{2}}} \frac{x}{1+k_{1}}
$$

Setting

$$
K_{n+1}=\frac{K_{n}^{2}}{\left(1+\sqrt{1-K_{n}^{2}}\right)^{2}}, \quad X_{n+1}=\frac{2}{1+\sqrt{1-K_{n}^{2} X_{n}^{2}}} \frac{X_{n}}{1+K_{n+1}}
$$

we have

$$
F(x, m)=\left(1+K_{1}\right)\left(1+K_{2}\right) \cdots\left(1+K_{n+1}\right) F\left(X_{n+1}, K_{n+1}^{2}\right),
$$

and $F\left(X_{n+1}, K_{n+1}^{2}\right)$ is almost equal to $\sin ^{-1} X_{n+1}$ since small n is enough to make K_{n+1} very small.
(c) $m=1.0$:

The following function values are assumed.

$$
\begin{aligned}
& F(x, m)=\operatorname{artanh}(\mathrm{x}) \\
& E(x, m)=x
\end{aligned}
$$

(3) Incomplete Modified Elliptic Integral and Incomplete Elliptic Integral of the Weierstrass Type

As defined already, $F(r, m)$ denotes the first kind incomplete elliptic integral, $E(r, m)$ denotes the second kind incomplete elliptic integral, which are defined as

$$
F(r, m)=\int_{0}^{r} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-m x^{2}\right)}}, E(r, m)=\int_{0}^{r} \sqrt{\frac{1-m x^{2}}{1-x^{2}}} d x .
$$

(A) Incomplete Modified Elliptic Integral

For real numbers $m \geq 0, a, b$ and $p \geq 0$, incomplete modified elliptic integral

$$
\int_{0}^{p} \frac{a+b t^{2}}{1+t^{2}} \frac{d t}{\sqrt{\left(1+t^{2}\right)\left(1+m t^{2}\right)}}
$$

is obtained with the following method.
When $m=0,1$ namely incomplete modified elliptic integral can be degenerated and can be expressed with elementary functions, this is obtained by using logarithmic function or opposite tangential function.
(a) If m is not near 1 and $m>1$, then the problem is reduced to the case $m<1$ (b) by applying integration by substitution.
(b) If m is not near 1 and $m<1$, then by setting $p=r / \sqrt{1-r^{2}}$, it holds that

$$
\int_{0}^{p} \frac{a+b t^{2}}{1+t^{2}} \frac{d t}{\sqrt{\left(1+t^{2}\right)\left(1+m t^{2}\right)}}=\frac{b-m a}{1-m} F(r, 1-m)+\frac{a-b}{1-m} E(r, 1-m)
$$

(c) If m is near 1 , then by setting $p=\tan \alpha, 0 \leq \alpha<\pi / 2$,

$$
\int_{0}^{p} \frac{a+b t^{2}}{1+t^{2}} \frac{d t}{\sqrt{\left(1+t^{2}\right)\left(1+m t^{2}\right)}}=\int_{0}^{\alpha} \frac{a+(b-a) \sin ^{2} u}{\sqrt{1-(1-m) \sin ^{2} u}} d u
$$

is applied since the value $I_{n}(\alpha)=\int_{0}^{\alpha} \sin ^{2 n} u d u$ is obtained from the recurrence formula

$$
(2 n+2) I_{n+1}(\alpha)=(2 n+1) I_{n}(\alpha)-\sin ^{2 n+1} \alpha \cos \alpha, n \geq 0
$$

and since the integrated function is expanded by using the formula

$$
\frac{1}{\sqrt{1-v}}=1+\sum_{n=1}^{\infty} \frac{I_{n}(\pi / 2)}{\pi / 2} v^{n},|v|<1
$$

(B) Incomplete Elliptic Integral of the Weierstrass Type

When incomplete elliptic integral can be degenerated and can be expressed with elementary functions, this can be obtained using logarithmic function or opposite tangential function. In the other cases, set

$$
v_{1}=\sqrt{\frac{(z-x) p}{1+z p}}, v_{2}=\sqrt{\frac{z-x}{z}}, m=\frac{z-y}{z-x}
$$

for real parameters which satisfy $z>y>x>0$ to obtain

$$
\frac{1}{2} \int_{0}^{1 / p} \frac{d t}{\sqrt{(t+x)(t+y)(t+z)}}=\frac{1}{\sqrt{z-x}}\left(F\left(v_{2}, m\right)-F\left(v_{1}, m\right)\right)
$$

(4) Elliptic function of Jacobi $\operatorname{sn}(u, m), \operatorname{cn}(u, m), \operatorname{dn}(u, m)(0.0 \leq m \leq 1.0)$
(1) $u=0.0$:

$$
\operatorname{sn}(0.0, m)=0.0, \operatorname{cn}(0.0, m)=\operatorname{dn}(0.0, m)=1.0
$$

(2) $m=1.0$:

$$
\begin{aligned}
\operatorname{sn}(u, 1.0) & =\tanh (u) \\
\operatorname{cn}(u, 1.0) & =\operatorname{dn}(u, 1.0)=\operatorname{sech}(u)
\end{aligned}
$$

(3) $m=0.0$:

$$
\begin{aligned}
\operatorname{sn}(u, 0.0) & =\sin (u) \\
\operatorname{cn}(u, 0.0) & =\cos (u) \\
\operatorname{dn}(u, 0.0) & =1.0
\end{aligned}
$$

(4) For cases other than those in (1), (2) and (3):

The following values are obtained

$$
\begin{aligned}
a_{k+1} & =\frac{a_{k}+b_{k}}{2} \\
b_{k+1} & =\sqrt{a_{k} b_{k}} \\
c_{k+1} & =\frac{a_{k}-b_{k}}{2}(k=0,1, \cdots)
\end{aligned}
$$

with $a_{0}=1.0$ and $b_{0}=\sqrt{1-m}$ as initial values.
The convergence criterion is assumed to be

$$
c_{N}<a_{N-1} \cdot(\text { units for determining error }) .
$$

The following values are obtained

$$
\begin{aligned}
K(m) & =\frac{\pi}{2 a_{N}} \\
y_{N} & =\frac{a_{N}}{\sin \left(a_{N} u\right)} \\
y_{N-1} & =y_{N}+\frac{a_{N} c_{N}}{y_{N}} \\
& \vdots \\
y_{0} & =y_{1}+\frac{a_{1} c_{1}}{y_{1}}
\end{aligned}
$$

and the functions are calculated from

$$
\begin{aligned}
& \operatorname{sn}(u, m)=\frac{1}{y_{0}} \\
& \operatorname{cn}(u, m)= \begin{cases}\sqrt{1-\left(\frac{1}{y_{0}}\right)^{2}} & \left(\text { when } \bmod \left(\left\lfloor\frac{|u|}{K(m)}\right\rfloor, 4\right)=0 \text { or } 3\right) \\
-\sqrt{1-\left(\frac{1}{y_{0}}\right)^{2}} & \left(\text { when } \bmod \left(\left\lfloor\frac{|u|}{K(m)}\right\rfloor, 4\right)=1 \text { or } 2\right)\end{cases} \\
& \operatorname{dn}(u, m)=\sqrt{1-m\left(\frac{1}{y_{0}}\right)^{2}}
\end{aligned}
$$

If the value of the difference of $\left\lfloor\frac{u}{K(m)}\right\rfloor$ and $\frac{u}{K(m)}$ is less than or equal to 0.03125 , then $\operatorname{sn}(u, m) \simeq 1.0$. Since many digits will be lost in the calculation of $\sqrt{1-\operatorname{sn}^{2}(u, m)}$, the function is calculated from the following expressions

$$
\begin{aligned}
v & =\frac{u}{2 K(m)} \\
\operatorname{sn}(u, m) & =\frac{\vartheta_{1}(v, q)}{\sqrt[4]{m} \vartheta_{4}(v, q)} \\
\operatorname{cn}(u, m) & =\frac{\vartheta_{2}(v, q) \sqrt[4]{\frac{1-m}{m}}}{\vartheta_{4}(v, q)} \\
\operatorname{dn}(u, m) & =\frac{\vartheta_{3}(v, q) \sqrt[4]{(1-m)}}{\vartheta_{4}(v, q)}
\end{aligned}
$$

(For the value of q, see next paragraph, "Nome q ".)
(5) Nome $q(0.0 \leq m \leq 1.0)$

If $m>0.5$, then replace m with $m=1-m$ and exchange the values of q and $q^{\prime}, K(m)$ and $K\left(m^{\prime}\right)$ and $E(m)$ and $E\left(m^{\prime}\right)$ respectively with the following procedure.
(1) $m=0.0$:

$$
\begin{aligned}
q & =0.0 \\
q^{\prime} & =1.0 \\
K(m) & =\frac{\pi}{2} \\
K\left(m^{\prime}\right) & =\text { (Maximum value) } \\
E(m) & =\frac{\pi}{2} \\
E\left(m^{\prime}\right) & =1.0
\end{aligned}
$$

(2) For cases other than the one in (1):

If ε are set as follows:

$$
\varepsilon=\frac{0.5 m}{(2(1+\sqrt[4]{1-m}(1+\sqrt{1-m})+\sqrt{1-m})-m)}
$$

then

$$
q=c_{4} \varepsilon^{13}+c_{3} \varepsilon^{9}+c_{2} \varepsilon^{5}+c_{1} \varepsilon
$$

(Where, $c_{1}=1, c_{2}=2, c_{3}=15, c_{4}=150$ for double precision; $c_{1}=1, c_{2}=2, c_{3}=0, c_{4}=0$ for single precision.)

$$
q^{\prime}=\exp \left(\frac{\pi^{2}}{\log (q)}\right)
$$

If δ is set as follows:

$$
\delta=\left(d_{4} q^{9}+d_{3} q^{4}+d_{2} q+d_{1}\right)^{2}
$$

(Where, $d_{1}=1, d_{2}=2, d_{3}=1, d_{4}=1$ for double precision; $d_{1}=1, d_{2}=2, d_{3}=1, d_{4}=0$ for single precision.) then

$$
\begin{aligned}
K(m) & =\frac{\pi}{2} \delta \\
K\left(m^{\prime}\right) & =(-0.5) \log (q) \delta \\
E(m) & =\left(\frac{\pi}{6 \delta}\right)\left(1+(2-m) \delta^{2}-\left(e_{7} q^{14}+e_{6} q^{12}+e_{5} q^{10}+e_{4} q^{8}+e_{3} q^{6}+e_{2} q^{4}+e_{1} q^{2}\right)\right. \\
E\left(m^{\prime}\right) & =K\left(m^{\prime}\right)\left(1-\frac{E(m)}{K(m)}\right)+\frac{1}{\delta}
\end{aligned}
$$

(Where, $e_{1}=24, e_{2}=72, e_{3}=96, e_{4}=168, e_{5}=144, e_{6}=288, e_{7}=192$ for double precision; $e_{1}=24, e_{2}=72, e_{3}=96, e_{4}=0, e_{5}=0, e_{6}=0, e_{7}=0$ for single precision.)
(6) Elliptic theta function $\vartheta_{i}(v, q)(0 \leq i \leq 4,0.0 \leq q \leq 1.0)$

If $i=0$, then set $i=4$. If $i=2$, then set $v=v+0.5$. If $i=3$, then set $v=v-0.5$.
(1) $i=1$ or 2 :

Set $s=\operatorname{SIGN}(v)$ and $v=|v|$. If $v=v-\operatorname{INT}(v)$ or $\operatorname{INT}(v)$ is an odd number, then let $s=-s$.
(a) $q=0.0$ or $v=0.0$, then

$$
\vartheta(v, q)=0.0
$$

(b) $q \leq 0.125$, then by setting $s w, s 3 w$ and $s 5 w$ as follows:

$$
\begin{aligned}
s w & =\sin (\pi \cdot v) \\
s 3 w & =\left(-4 \cdot s w^{2}+3\right) \cdot s w \\
s 5 w & =\left(\left(16 \cdot s w^{2}-20\right) \cdot s w^{2}+5\right) \cdot s w
\end{aligned}
$$

the function is calculated from the following expressions.

- Single precision

$$
\vartheta(v, q)=2 \cdot s \cdot \sqrt[4]{q} \cdot\left(\left(s 5 w \cdot q^{4}-s 3 w\right) \cdot q^{2}+s w\right)
$$

- Double precision

By setting $s 7 w$ and $s 9 w$ as follows:

$$
\begin{aligned}
s 7 w= & \left(\left(\left(-64 \cdot s w^{2}+112\right) \cdot s w^{2}-56\right) \cdot s w^{2}+7\right) \cdot s w \\
s 9 w= & \left(\left(\left(\left(256 \cdot\left(1-s w^{2}\right)-448\right) \cdot\right.\right.\right. \\
& \left.\left.\left.\left(1-s w^{2}\right)+240\right) \cdot\left(1-s w^{2}\right)-40\right) \cdot\left(1-s w^{2}\right)+1\right) \cdot s w
\end{aligned}
$$

the function is calculated from

$$
\vartheta_{i}(v, q)=2 \cdot s \cdot \sqrt[4]{q} \cdot\left(\left(\left(\left(s 9 w \cdot q^{8}-s 7 w\right) \cdot q^{6}+s 5 w\right) \cdot q^{4}-s 3 w\right) \cdot q^{2}+s w\right)
$$

(c) $q>0.125$:

If $v>0.5$, then $v=1.0-v$.
By setting $P L Q, w Q$ and w as follows:

$$
\begin{aligned}
P L Q & =\pi^{2} \cdot(1 / \log (q)) \\
w Q & =\exp (P L Q) \\
w & =-\exp (2 \cdot v \cdot P L Q)
\end{aligned}
$$

the function is calculated from the following expressions.

- Single precision

$$
\begin{aligned}
\vartheta_{i}(v, q)= & s \cdot \sqrt{\pi \cdot(-1 / \log (q))} \cdot \exp \left(\left(v^{2}-v+0.25\right) \cdot P L Q\right) \cdot\left(\left(\left(w Q^{6} \cdot w+w Q^{2}\right) \cdot w\right.\right. \\
& \left.+1) \cdot w+1+\left(w Q^{4} / w+1\right) \cdot\left(w Q^{2} / w\right)\right)
\end{aligned}
$$

- Double precision

$$
\begin{aligned}
\vartheta_{i}(v, q)= & s \cdot \sqrt{\pi \cdot(-1 / \log (q))} \cdot \exp \left(\left(v^{2}-v+0.25\right) \cdot P L Q\right) \\
& \cdot\left\{\left(\left(\left(w Q^{12} \cdot w+w Q^{6}\right) \cdot w+w Q^{2}\right) \cdot w+1\right) \cdot w+1\right. \\
& \left.+\left(\left(w Q^{8} / w+w Q^{2}\right) \cdot\left(w Q^{2} / w\right)+1\right) \cdot\left(w Q^{2} / w\right)\right\}
\end{aligned}
$$

(2) $i=3$ or 4 :

Let $v=|v|-\operatorname{INT}(|v|)$.
(a) If $q=0.0$, then

$$
\vartheta_{i}(v, q)=1.0
$$

(b) If $q \leq 0.125$, then by setting $c w, c 2 w$ and $c 3 w$ as follows:

$$
\begin{aligned}
c w & =\cos (2 \cdot \pi \cdot v) \\
c 2 w & =2 \cdot c w^{2}-1 \\
c 3 w & =\left(4 \cdot c w^{2}-3\right) \cdot c w
\end{aligned}
$$

the function is calculated from the following expressions.

- Single precision

$$
\vartheta_{i}(v, q)=2 \cdot\left(\left(-c 3 w \cdot q^{5}+c 2 w\right) \cdot q^{3}-c w\right) \cdot q+1
$$

- Double precision

By setting $c 4 w$ as follows:

$$
c 4 w=\left(8 \cdot c w^{2}-8\right) \cdot c w^{2}+1
$$

the function is calculated from

$$
\vartheta_{i}(v, q)=2 \cdot\left(\left(\left(c 4 w \cdot q^{7}-c 3 w\right) \cdot q^{5}+c 2 w\right) \cdot q^{3}-c w\right) \cdot q+1
$$

(c) $q>0.125$:

If $v>0.5$, then let $v=1.0-v$.
By setting $P L Q, w Q$ and w as follows:

$$
\begin{aligned}
P L Q & =\pi^{2} \cdot(1 / \log (q)) \\
w Q & =\exp (P L Q) \\
w & =\exp (2 \cdot v \cdot P L Q)
\end{aligned}
$$

the function is calculated from the following expressions.

- Single precision

$$
\begin{aligned}
\vartheta_{i}(v, q)= & \sqrt{\pi \cdot(-1 / \log (q))} \cdot \exp \left(\left(v^{2}-v+0.25\right) \cdot P L Q\right) \cdot\left(\left(\left(w Q^{6} \cdot w\right.\right.\right. \\
& \left.\left.\left.+w Q^{2}\right) \cdot w+1\right) \cdot w+1+\left(w Q^{4} / w+1\right) \cdot\left(w Q^{2} / w\right)\right)
\end{aligned}
$$

- Double precision

$$
\begin{aligned}
\vartheta_{i}(v, q)= & \sqrt{\pi \cdot(-1 / \log (q))} \cdot \exp \left(\left(v^{2}-v+0.25\right) \cdot P L Q\right) \cdot\left(\left(\left(\left(w Q^{12} \cdot w+w Q^{6}\right) \cdot w\right.\right.\right. \\
& \left.\left.\left.+w Q^{2}\right) \cdot w+1\right) \cdot w+1+\left(\left(w Q^{6} / w+w Q^{2}\right) \cdot\left(w Q^{2} / w\right)+1\right) \cdot\left(w Q^{2} / w\right)\right)
\end{aligned}
$$

(7) Zeta function of Jacobi $Z(u)(0.0 \leq m \leq 1.0)$
$K(m), K\left(m^{\prime}\right)$, nome q and complementary nome q^{\prime} are calculated from m.
The values v, s and w are set as follows:

$$
v=u /(2 \cdot K(m))
$$

$$
s=\operatorname{SIGN}(v), v=|v|-\operatorname{INT}(|v|), w=2 \pi \cdot v
$$

(1) $q \leq 0.125$:

- Single precision

$$
Z(u)=\frac{\pi \cdot 2 q}{K(m)} \cdot \frac{\sin (w)-2 q^{3} \cdot \sin (2 w)+3 q^{8} \cdot \sin (3 w)}{1-2 q\left(\cos (w)-q^{3} \cdot \cos (2 w)+q^{8} \cdot \cos (3 w)\right)} \cdot s
$$

- Double precision

$$
Z(u)=\frac{\pi \cdot 2 q}{K(m)} \cdot \frac{\sin (w)-2 q^{3} \cdot \sin (2 w)+3 q^{8} \cdot \sin (3 w)-4 q^{15} \cdot \sin (4 w)}{1-2 q\left(\cos (w)-q^{3} \cdot \cos (2 w)+q^{8} \cdot \cos (3 w)-q^{15} \cdot \cos (4 w)\right)} \cdot s
$$

(2) $q>0.125$:

Assume $z=\exp \left(-\pi u / K\left(m^{\prime}\right)\right)$.
The function is calculated from the following expressions.

- Single precision

$$
Z(u)=\frac{\pi}{2 k\left(m^{\prime}\right)} \cdot\left(\frac{-5 q^{\prime 6} z^{5}-3 q^{\prime 2} z^{4}-z^{3}+z^{2}+3 q^{\prime 2} z+5 q^{\prime 6}}{q^{\prime 6} z^{5}+q^{\prime 2} z^{4}+z^{3}+z^{2}+q^{\prime 2} z+q^{\prime 6}}-2 v\right) \cdot s
$$

- Double precision

$$
Z(u)=\frac{\pi}{2 k\left(m^{\prime}\right)} \cdot\left(\frac{\left(z^{3}-z^{4}\right)+3 q^{\prime 2}\left(z^{2}-z^{5}\right)+5 q^{\prime 6}\left(z-z^{6}\right)+7 q^{\prime 12}\left(1-z^{7}\right)}{\left(z^{3}+z^{4}\right)+q^{\prime 2}\left(z^{2}+z^{5}\right)+q^{\prime 6}\left(z+z^{6}\right)+q^{\prime 12}\left(1+z^{7}\right)}-2 v\right) \cdot s
$$

(3) $q>\left\{\begin{array}{l}\text { Double precision : } 0.8 \\ \text { Single precision :0.6 }\end{array}\right\}$ and $v \leq 0.5$:

The function is calculated from the following expression.

$$
Z(u)=\tanh (u)-2 v
$$

(8) Epsilon function of Jacobi $E(u)(0.0 \leq m \leq 1.0)$

The function is calculated from the following expression.

$$
E(u)=Z(u)+\frac{E(m)}{K(m)} \cdot u
$$

$(E(m)$ and $K(m)$ are calculated by using the nome q.)
(9) Theta function of Jacobi $\Theta(u)(0.0 \leq m \leq 1.0)$

The function is calculated from the following expression.

$$
\Theta(u)=\vartheta_{4}(u / 2 \cdot K(m), q)
$$

(q and $K(m)$ are calculated by using the nome q and ϑ_{4} is calculated by using the theta function.)
However, if $m=1.0, \Theta(u)=0.0$.
(10) Pi function $\Pi(u, \alpha)(0.0 \leq m<1.0)$

The function is calculated from the following expression.

$$
\Pi(u, \alpha)=\frac{1}{2} \log \frac{\Theta(u-\alpha)}{\Theta(u+\alpha)}+u \cdot Z(\alpha)
$$

2.1.2.8 Indefinite Integrals Of Elementary Functions

(1) Exponential integrals $\overline{\operatorname{Ei}}(x), \operatorname{Ei}(-x)(x>0.0)$

If $x<0.0, \mathrm{Ei}(x)$ is calculated; if $x>0.0, \overline{\operatorname{Ei}}(x)$ is calculated. The calculation methods are described below.
(1) $x<-4.0$:

The function is calculated from

$$
\operatorname{Ei}(x)=\frac{e^{x}}{x}\left\{1+\left(-\frac{1}{x}\right) \frac{\sum_{k=0}^{m} a_{k}^{(1)}\left(-\frac{1}{x}\right)^{k}}{\sum_{k=0}^{m} b_{k}^{(1)}\left(-\frac{1}{x}\right)^{k}}\right\}
$$

(2) $-4.0 \leq x<-1.0$:

The function is calculated from

$$
\operatorname{Ei}(x)=-e^{x} \frac{\sum_{k=0}^{m} a_{k}^{(2)}\left(-\frac{1}{x}\right)^{k}}{\sum_{k=0}^{m} b_{k}^{(2)}\left(-\frac{1}{x}\right)^{k}}
$$

(3) $-1.0 \leq x<0.0$:

The function is calculated by generating the best approximation of

$$
\operatorname{Ei}(x)=\log (-x)+\gamma+\sum_{n=1}^{\infty} \frac{(-x)^{n}}{n!n}
$$

(γ is the Euler number.)
The method of generating the best approximation is described in Section 2.1.2.22.
(4) $0.0<x \leq 1.0$:

The function is calculated by generating the best approximation of

$$
\overline{\operatorname{Ei}}(x)=\log (x)+\gamma+\sum_{n=1}^{\infty} \frac{x^{n}}{n!n}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(5) $1.0<x \leq 6.0$:

The function is calculated from

$$
\overline{\operatorname{Ei}}(x)=\log \left(\frac{x}{x_{0}}\right)+\left(x-x_{0}\right) \frac{\sum_{k=0}^{m} a_{k}^{(3)} x^{k}}{\sum_{k=0}^{m} b_{k}^{(3)} x^{k}}
$$

$$
\left(x_{0}=0.37250741078136663446\right)
$$

(6) $6.0<x \leq 12.0$:

The function is calculated from

$$
\overline{\operatorname{Ei}}(x)=\frac{e^{x}}{x}\left(a_{0}^{(4)}+{\left.\underset{k=1}{\Phi} \frac{b_{k-1}^{(4)}}{\mid a_{k}^{(4)}+x}\right)}_{)}\right.
$$

(7) $12.0<x \leq 24.0$:

The function is calculated from

$$
\overline{\operatorname{Ei}}(x)=\frac{e^{x}}{x}\left(a_{0}^{(5)}+\underset{k=1}{\Phi} \frac{b_{k-1}^{(5)}}{\mid a_{k-1}^{(5)}+x}\right)
$$

(8) $x>24.0$:

The function is calculated from

$$
\overline{\operatorname{Ei}}(x)=\frac{e^{x}}{x}\left\{1+\frac{1}{x}\left(a_{0}^{(6)}+\underset{k=1}{\underset{\Phi}{\Phi}} \frac{b_{k-1}^{(6)} \mid}{\mid a_{k}^{(6)}+x}\right)\right\}
$$

The coefficients $a_{k}^{(1)} \sim a_{k}^{(6)}, b_{k}^{(1)} \sim b_{k}^{(6)}$ are described in references (5) and (6). $a_{k}^{(3)}$ and $b_{k}^{(3)}$ are obtained with telescoping the coefficients of shifted Chebyshev polynomials.
(2) Logarithmic integral $\operatorname{Li}(x)(x \geq 1.0)$

The function is calculated using the exponential integral from

$$
\operatorname{Li}(x)=\overline{\operatorname{Ei}}(\log (x))
$$

(Logarithmic integral $\mathrm{Li}(x)$ is also denoted by $\operatorname{li}(x)$.)
(3) Sine integral $\operatorname{Si}(x)$
(1) $x<0.0$:

From $\operatorname{Si}(x)=-\operatorname{Si}(-x)$, following methods are applied to $\operatorname{Si}(-x)$.
(2) $x \geq 0.0$:
(a) $x \geq\left\{\begin{array}{l}\text { Double precision : } 2^{50} \cdot \pi \\ \text { Single precision : } 2^{18} \cdot \pi\end{array}\right\}$:

The function value is given as

$$
S i(x)=\frac{\pi}{2}
$$

(b) For cases other than those described in (a)
i. $x \leq 5.0$:

The function is calculated by generating the best approximation from

$$
S i(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \cdot x^{2 k+1}}{(2 k+1) \cdot(2 k+1!)}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
ii. $x \geq 42.0$:

The function is calculated from

$$
S i(x)=\frac{\pi}{2}-f(x) \cdot \cos (x)-g(x) \cdot \sin (x)
$$

where $f(x)$ and $g(x)$ are obtained by generating approximations of the following equations.

$$
\begin{aligned}
& f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \cdot(2 k)!}{x^{2 k+1}} \\
& g(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \cdot(2 k+1)!}{x^{2 k+2}}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
iii. $5.0<x<42.0$:

Let $Q=\operatorname{Si}\left(x_{n}\right)$ (where x_{n} is the closest integer to x and $S i\left(x_{n}\right)$ is the actual value of the sine integral at x_{n}) and let $z=x-x_{n}$.
A. If $|z|<$ (units for determining error) $\cdot x$, then the function value is given as

$$
S i(x)=S i\left(x_{n}\right)
$$

B. Otherwise, the following calculations are repeated until
$|Q Q|<\| Q \cdot($ units for determining error) $\|$

$$
\begin{aligned}
f^{(J)}\left(x_{n}\right) & =\left\{\left(\sin \left(x_{n}\right)\right)^{(J-1)}-(J-1) \cdot f^{(J-1)}\left(x_{n}\right)\right\} / x_{n} \\
Q Q & =f^{(J)}\left(x_{n}\right) \cdot Z^{J} / J! \\
S i(x) & =Q
\end{aligned}
$$

(4) Cosine integral $\mathrm{Ci}(x)(x \geq 0.0)$
(1) $x \leq 2.0$:

The function is calculated by generating the best approximation from

$$
\operatorname{Ci}(x)=\gamma+\log (x)+\sum_{k=1}^{\infty} \frac{(-1)^{k} \cdot x^{2 k}}{2 k \cdot(2 k)!}
$$

where γ is the Euler number ($\gamma=0.57721566490153286061$).
The method of generating the best approximation is described in Section 2.1.2.22.
(2) $x \geq 42.0$:

The function is calculated from

$$
\operatorname{Ci}(x)=f(x) \cdot \sin (x)-g(x) \cdot \cos (x)
$$

where $f(x)$ and $g(x)$ are the same as described in (35) for the sine integral.
(3) $2.0<x<42.0$:

Let $Q=\mathrm{Ci}\left(x_{n}\right)$ (where x_{n} is the closest integer to x and $\mathrm{Ci}\left(x_{n}\right)$ is the actual value of the cosine integral at $\left.x_{n}\right)$ and let $z=x-x_{n}$.
(a) $|z|<$ (units for determining error) $\cdot x$, then the function value is given as

$$
\mathrm{Ci}(x)=\mathrm{Ci}\left(x_{n}\right)
$$

(b) Otherwise, assuming that

$$
\begin{aligned}
f^{(1)}\left(x_{n}\right) & =\left(\cos \left(x_{n}\right)-1\right) / x_{n} \\
Q & =Q+f^{(1)}\left(x_{n}\right) \cdot z
\end{aligned}
$$

the following calculations are repeated until $|Q Q|<\mid Q \cdot$ (units for determining error) \mid

$$
\begin{aligned}
f^{(J)}\left(x_{n}\right) & =\left\{\left(\cos \left(x_{n}\right)\right)^{(J-1)}-(J-1) \cdot f^{(J-1)}\left(x_{n}\right)\right\} / x_{n} \\
Q Q & =f^{(J)}\left(x_{n}\right) \cdot z^{J} / J! \\
Q & =Q+Q Q \quad(J=2,3, \cdots \cdots)
\end{aligned}
$$

and then the function value is given as

$$
\operatorname{Ci}(x)=Q+\log \left(\frac{x}{x_{n}}\right)
$$

(5) Fresnel integral $S(x)$ and $C(x)$

Fresnel integrals are defined by the following equations.

$$
\begin{aligned}
S(x) & =\int_{0}^{x} \sin \left(\frac{\pi}{2} \cdot t^{2}\right) d t \\
C(x) & =\int_{0}^{x} \cos \left(\frac{\pi}{2} \cdot t^{2}\right) d t
\end{aligned}
$$

(1) $x<0.0$:

From $S(x)=-S(-x)$ or $C(x)=-C(-x)$, following methods are applied to $S(-x)$ or $C(-x)$.
(2) $x \geq 0.0$:
(a) $x \leq 1.6$:

The functions are calculated by generating the best approximation from

$$
\begin{aligned}
& S(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \cdot\left(\frac{\pi}{2}\right)^{2 k+1}}{(2 k+1)!\cdot(4 k+3)} \cdot x^{4 k+3} \\
& C(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \cdot\left(\frac{\pi}{2}\right)^{2 k}}{(2 k)!\cdot(4 k+1)} \cdot x^{4 k+1}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(b) $x \geq 5.0$:

The functions are calculated from

$$
\begin{aligned}
& S(x)=\frac{1}{2}-\left\{f(x) \cdot \cos \left(\frac{\pi}{2} \cdot x^{2}\right)+g(x) \cdot \sin \left(\frac{\pi}{2} \cdot x^{2}\right)\right\} \\
& C(x)=\frac{1}{2}+\left\{f(x) \cdot \sin \left(\frac{\pi}{2} \cdot x^{2}\right)-g(x) \cdot \cos \left(\frac{\pi}{2} \cdot x^{2}\right)\right\}
\end{aligned}
$$

where $f(x)$ and $g(x)$ are obtained by generating the best approximations of the following equations.

$$
\begin{aligned}
& f(x)=x \cdot \sum_{k=0}^{m} \frac{(-1)^{k} \cdot(4 k-1)!!}{\left(\pi \cdot x^{2}\right)^{2 k+1}} \\
& g(x)=x \cdot \sum_{k=0}^{m} \frac{(-1)^{k} \cdot(4 k+1)!!}{\left(\pi \cdot x^{2}\right)^{2 k+2}}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(c) $1.6<x<5.0$:

Using the conversion $Y=\frac{\pi}{2} \cdot x^{2}$, the functions are calculated from

$$
\begin{aligned}
S(x) & =\frac{1}{2}-\{f(Y) \cdot \cos (Y)+g(Y) \cdot \sin (Y)\} \\
C(x) & =\frac{1}{2}+\{f(Y) \cdot \sin (Y)-g(Y) \cdot \cos (Y)\}
\end{aligned}
$$

where $f(Y)$ and $g(Y)$ are as follows: Single precision:

$$
\begin{aligned}
f(Y) & =\frac{1}{x} \sum_{k=0}^{7} a_{k}^{(1)}\left(\frac{4}{Y}\right)^{k} \\
g(Y) & =\frac{1}{x} \sum_{k=0}^{8} b_{k}^{(1)}\left(\frac{4}{Y}\right)^{k}
\end{aligned}
$$

Double precision:

$$
\begin{aligned}
f(Y) & =\frac{1}{x} \sum_{k=0}^{34} a_{k}^{(2)}\left(\frac{4}{Y}\right)^{k} \\
g(Y) & =\frac{1}{x} \sum_{k=0}^{34} b_{k}^{(2)}\left(\frac{4}{Y}\right)^{k}
\end{aligned}
$$

The coefficients $a_{k}^{(1)}, b_{k}^{(1)}, a_{k}^{(2)}$ and $b_{k}^{(2)}$ are obtained with telescoping.
(6) Dawson integral $F(x)$

The value of the Dawson integral is defined by the following equation.

$$
F(x)=e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t
$$

(1) $x \geq 0.0$:

From $F(x)=-F(-x)$, following methods are applied to $F(-x)$.
(2) $x \geq 0.0$:
(a) $x \leq 2.5$:

The function is calculated from

$$
F(x)=x \frac{\sum_{k=0}^{m} a_{k}^{(1)} x^{2 k}}{\sum_{k=0}^{m} b_{k}^{(1)} x^{2 k}}
$$

(b) $2.5<x \leq 3.5$:

The function is calculated from

$$
F(x)=\frac{1}{x} \cdot\left(a_{0}^{(2)}+{\left.\underset{k=1}{\Phi} \frac{b_{k-1}^{(2)}}{\mid a_{k}^{(2)}+x^{2}}\right), ~}_{\text {a }}\right.
$$

(c) $3.5<x \leq 5.0$:

The function is calculated from the same equation in case (b) except that the coefficients are $a_{k}^{(3)}$ and $b_{k}^{(3)}$.
(d) $5.0<x \leq 1 / \varepsilon(\varepsilon$:units for determining error)

The function is calculated from

$$
F(x)=\frac{1}{2 x} \cdot\left\{1+x^{-2} \cdot\left(a_{0}^{(4)}+\underset{k=1}{\Phi} \frac{b_{k-1}^{(4)} \mid}{a_{k}^{(4)}+x^{2}}\right)\right\}
$$

(e) $x>1 / \varepsilon$:

The function is calculated from $F(x)=\frac{1}{2 x}$.
The coefficients $a_{k}^{(1 \sim 4)}$ and $b_{k}^{(1 \sim 4)}$ are described in reference (6).
(7) Normal distribution function and complementary normal distribution function $\Phi(x)$ and $\Psi(x)$

The function are calculated from the following equations.

$$
\begin{aligned}
& \Phi(x)=\frac{1}{2} \cdot \operatorname{ERF}(x / \sqrt{2}) \\
& \Psi(x)=\frac{1}{2} \cdot \operatorname{ERFC}(x / \sqrt{2})
\end{aligned}
$$

where error function ERF and complementary error function ERFC will be given later.

2.1.2.9 Associated Legendre Functions

(1) Associated Legendre function of the 1st kind $P_{n}^{m}(x)$
(1) For normalized Functions, see paragraph of Normalized Spherical Harmonics.
(2) $n<0$:

From $P_{n}^{m}(x)=P_{-n-1}^{m}(x)$, following methods are applied to $P_{-n-1}^{m}(x)$.
(3) $m<0$ and $n \geq 0$:

First, $P_{n}^{|m|}(x)$ is obtained using the methods described in (3) or (5), then $P_{n}^{m}(x)$ is calculated from the following expressions.
(a) $|x| \leq 1.0$:

$$
P_{n}^{m}(x)=(-1)^{m} \frac{(n-|m|)!}{(n+|m|)!} P_{n}^{|m|}(x)
$$

(b) $|x|>1.0$:

$$
P_{n}^{m}(x)=\frac{(n-|m|)!}{(n+|m|)!} P_{n}^{|m|}(x)
$$

(4) $m>n \geq 0$:

$$
P_{n}^{m}(x)=0.0
$$

(5) $m=0$:

The function $P_{n}^{m}(x)$ is equal to Legendre polynomial $P_{n}(x)$, its value is calculated using initial values $P_{0}(x)=1$ and $P_{1}(x)=x$ and the recurrence relation

$$
P_{k}(x)=\frac{2 k-1}{k} \cdot x \cdot P_{k-1}(x)-\frac{k-1}{k} \cdot P_{k-2}(x)(k=2, \cdots, n)
$$

(6) $n \geq m>0$:
(a) $n=1$ and $x \geq \sqrt{1 / \varepsilon}$:

The function is calculated from

$$
P_{n}^{m}(x)=x
$$

(b) $n=m$:

The function is calculated from

$$
P_{n}^{m}(x)=(2 n-1)!!\cdot\left(\sqrt{\left|1-x^{2}\right|}\right)^{m}
$$

(c) $n=m+1$:

The function is calculated from

$$
P_{n}^{m}(x)=(2 n-1)!!\cdot x \cdot\left(\sqrt{\left|1-x^{2}\right|}\right)^{m}
$$

(d) $n \geq m+2$:

The function is calculated using initial values

$$
F_{m}=(2 m-1)!!, F_{m+1}=(2 m+1)!!\cdot x=F_{m} \cdot(2 m+1) \cdot x
$$

and the recurrence relation

$$
\begin{aligned}
F_{k} & =\frac{2 k-1}{k-m} \cdot x \cdot F_{k-1}-\frac{k+m-1}{k-m} \cdot F_{k-2} \quad(k=m+2, \cdots n) \\
P_{n}^{m}(x) & =\left(\sqrt{\left|1-x^{2}\right|}\right)^{m} \cdot F_{n}
\end{aligned}
$$

(2) Associated Legendre function of the second kind $Q_{n}^{m}(x)(n \geq 0,|x|=1.0)$
(1) $m<0$:

First, $Q_{n}^{|m|}$ is obtained using described in the case (2) or (3), then $Q_{n}^{m}(x)$ is calculated from following expressions.
(a) $|x|<1.0$:

$$
Q_{n}^{m}(x)=(-1)^{m} \frac{(n-|m|)!}{(n+|m|)!} Q_{n}^{|m|}(x)
$$

(b) $|x|>1.0$:

$$
Q_{n}^{m}(x)=\frac{(n-|m|)!}{(n+|m|)!} Q_{n}^{|m|}(x)
$$

(2) $|x|<1.0$ and $m \geq 0$:

The values $Q_{n}^{0}(x)$ and $Q_{n-1}^{0}(x)$ are obtained bye using initial values

$$
Q_{0}^{0}(x)=\operatorname{artanh}(\mathrm{x}), \mathrm{Q}_{1}^{0}(\mathrm{x})=\mathrm{x} \cdot \mathrm{Q}_{0}^{0}(\mathrm{x})-1
$$

and the following recurrence relation

$$
Q_{k+1}^{0}(x)=\left\{(2 k+1) \cdot x \cdot Q_{k}^{0}(x)-k \cdot Q_{k-1}^{0}(x)\right\} /(k+1) \quad(k=1,2, \cdots, n-1)
$$

(If $m=0$, the calculation ends here.)
next, the value $Q_{n}^{1}(x)$ is obtained from

$$
Q_{n}^{1}(x)=\left\{-n \cdot x \cdot Q_{n}^{0}(x)+n \cdot Q_{n-1}^{0}(x)\right\} / \sqrt{1-x^{2}}
$$

If $n=0$, the following equation is used

$$
Q_{n}^{1}(x)=-1 / \sqrt{1-x^{2}}
$$

(If $m=1$, the calculation ends here.)
The $Q_{n}^{m}(x)$ is obtained by calculating the following recurrence relation

$$
\begin{aligned}
Q_{n}^{k+2}(x)= & 2 \cdot(k+1) \cdot\left(x / \sqrt{1-x^{2}}\right) \cdot Q_{n}^{k+1}(x)-(n-k) \cdot(n+k+1) \cdot Q_{n}^{k}(x) \\
& (k=0,1, \cdots, m-2)
\end{aligned}
$$

(3) $|x|>1.0$ and $m \geq 0$:
(a) $x>\sqrt{n+2}$ and $n \geq m$
i. $n=m=0$:

The function is calculated from

$$
Q_{n}^{m}(x)=\operatorname{artanh}(1 / \mathrm{x})
$$

ii. $|x|>\sqrt{(n+0.5) / \varepsilon}$:

The function is calculated from

$$
Q_{n}^{m}(x)=(-1)^{m} \frac{(n+m)!}{(2 n+1)!!} x^{-n-1}
$$

iii. Otherwise:

The function is calculated from the following series expansion

$$
\begin{aligned}
Q_{n}^{m}(x)= & (-1)^{m}\left(x^{2}-1\right)^{\frac{m}{2}} \frac{(n+m)!}{(2 n+1)!!} x^{-n-m-1} \\
& \cdot\left(1+\sum_{k=1}^{\infty} \frac{(n+m+1) \cdot(n+m+2) \cdots(n+m+2 \cdot k)}{2 k!!\cdot(2 n+3) \cdot(2 n+5) \cdots(2 n+2 k+1)} \cdot \frac{1}{x^{2 k}}\right)
\end{aligned}
$$

Where the summation Σ is calculated until the last term is sufficiently small compared with the first term.
(b) For values other than those in (a)

First, $Q_{0}^{0}(x)$ is calculated from the following expression

$$
Q_{0}^{0}(x)=\operatorname{artanh}(1 / \mathrm{x})
$$

(If $n=m=0$, the calculation ends here.)
Next, $Q_{n}^{0}(x)$ and $Q_{n-1}^{0}(x)$ are calculated using the series expansion of f as follows:

$$
\begin{aligned}
f & =\sum_{k=n}^{\infty} \frac{1}{(k+1) \cdot P_{k}(x) \cdot P_{k+1}(x)} \\
Q_{n}^{0}(x) & =P_{n}(x) \cdot f \\
Q_{n-1}^{0}(x) & =P_{n-1}(x) \cdot f+\frac{1}{n \cdot p_{n} \cdot(x)}
\end{aligned}
$$

where, $P_{k}(x)$ is solved using the algorithm shown in 2.1.2.10 (1).
(If $m=0$, the calculation ends.)
Next, $Q_{n}^{1}(x)$ is obtained from

$$
Q_{n}^{1}(x)=\left\{n \cdot x \cdot Q_{n}^{0}(x)-n \cdot Q_{n-1}^{0}(x)\right\} / \sqrt{x^{2}-1}
$$

However, if $n=0, Q_{n}^{1}(x)$ is calculated from

$$
Q_{n}^{1}(x)=-1 / \sqrt{x^{2}-1}
$$

(If $m=1$, the calculation ends here.)
Finally $Q_{n}^{m}(x)$ is obtained by calculating the following recurrence relation

$$
\begin{aligned}
Q_{n}^{k+2}(x)= & -2 \cdot(k+1) \cdot\left(x / \sqrt{x^{2}-1}\right) \cdot Q_{n}^{k+1}(x)+(n-k) \cdot(n+k+1) \cdot Q_{n}^{k}(x) \\
& (k=0,1, \cdots, m-2)
\end{aligned}
$$

2.1.2.10 Orthogonal Polynomials

(1) Legendre polynomial $P_{n}(x)(n \geq 0)$
$P_{n}(x)$ is obtained using initial values $P_{0}(x)=1.0$ and $P_{1}(x)=x$ and the following recurrence relation

$$
P_{k}(x)=\frac{2 k-1}{k} \cdot x \cdot P_{k-1}(x)-\frac{k-1}{k} \cdot P_{k-2}(x) \quad(k=2,3, \cdots, n)
$$

(2) Laguerre polynomial $L_{n}(x)(n \geq 0)$
$L_{n}(x)$ is obtained using initial values $L_{0}(x)=1.0$ and $L_{1}(x)=1.0-x$ and the following recurrence relation

$$
L_{k}(x)=\frac{(2 k-x-1)}{k} \cdot L_{k-1}(x)-\frac{(k-1)}{k} \cdot L_{k-2}(x) \quad(k=2,3, \cdots, n)
$$

(3) Hermite polynomial $H_{n}(x)(n \geq 0)$
$H_{n}(x)$ is obtained using initial values $H_{0}(x)=1.0$ and $H_{1}(x)=2 \cdot x$ and the following recurrence relation

$$
H_{k}(x)=2 \cdot x \cdot H_{k-1}(x)-2 \cdot(k-1) \cdot H_{k-2}(x) \quad(k=2,3, \cdots, n)
$$

(4) Chebyshev polynomial $T_{n}(x)(n \geq 0)$
$T_{n}(x)$ is obtained using initial values $T_{0}(x)=1.0$ and $T_{1}(x)=x$ and the following recurrence relation

$$
T_{k}(x)=2 \cdot x \cdot T_{k-1}(x)-T_{k-2}(x)(k=2,3, \cdots, n)
$$

(5) Chebyshev Function of the 2nd kind $U_{n}(x)(n \geq 0,|x| \leq 1.0)$
$U_{n}(x)$ is obtained using initial values $U_{0}(x)=0.0$ and $U_{1}(x)=\sqrt{1-x^{2}}$ and the following expression

$$
U_{n+1}(x)=2 \cdot x \cdot U_{n}(x)-U_{n-1}(x)
$$

(6) Generalized Laguerre polynomial $L_{n}^{(\alpha)}(x)(n \geq 0)$
$L_{n}^{\alpha}(x)$ is obtained by using initial values $L_{0}^{(\alpha)}(x)=1.0$ and $L_{1}^{(\alpha)}(x)=(1+\alpha)-x$ and the following recurrence relation

$$
L_{n}^{(\alpha)}(x)=\left((2 \cdot n+\alpha-x-1) \cdot L_{n-1}^{(\alpha)}(x)+(1-\alpha-n) \cdot L_{n-2}^{(\alpha)}(x)\right) / n
$$

2.1.2.11 Mathieu functions of integer orders

Consider the second order simultaneous ordinary differential equation as below

$$
\frac{d^{2} y}{d x^{2}}+(a-2 q \cos 2 x) y=0 .
$$

For a real parameter q, let $a=c_{0}, c_{1}, \cdots$ be the real parameters such that the solutions are 2π periodic and even functions. Here,

$$
c_{0}<c_{1}<c_{2}<\cdots .
$$

Also, let $a=s_{1}, s_{2}, \cdots$ be the real parameters such that the solutions are 2π periodic and odd functions. Here,

$$
s_{1}<s_{2}<s_{3}<\cdots
$$

For $a=c_{n}$ with an integer $n \geq 0$, normalize the periodic even solution $c_{n}(x, q)$ of the differential equation so that the following condition is satisfied.

$$
\int_{0}^{2 \pi} c e_{n}(x, q)^{2} d x=\pi
$$

The $c e_{n}(x, q)$ is referred to as Matheiu function of integer order. Similarly, for $a=s_{n}$ with an integer $n \geq 1$, normalize the periodic odd solution $s_{n}(x, q)$ of the differential equation so that the following condition is satisfied.

$$
\int_{0}^{2 \pi} s e_{n}(x, q)^{2} d x=\pi
$$

The $s e_{n}(x, q)$ is also referred to as Matheiu function of integer order.
It is known that $c e_{n}(x, q)$ and $s e_{n}(x, q)$ can be represented by the following Fourier expansions:
(1) If $s=0$ (for $c e_{n}$ with even n)

$$
c e_{n}(x, q)=\sum_{r=0}^{\infty} X_{r} \cos (2 r x) .
$$

(2) If $s=1$ (for $s e_{n}$ with odd n)

$$
s e_{n}(x, q)=\sum_{r=0}^{\infty} X_{r} \sin ((2 r+1) x) .
$$

(3) If $\mathrm{s}=2$ (for $c e_{n}$ with odd n)

$$
c e_{n}(x, q)=\sum_{r=0}^{\infty} X_{r} \cos ((2 r+1) x) .
$$

(4) If $\mathrm{s}=3$ (for $s e_{n}$ with positive even n)

$$
s e_{n}(x, q)=\sum_{r=0}^{\infty} X_{r} \sin ((2 r+2) x) .
$$

These are referred to as Mathieu functions of order n. By substituting these formulas for $c e_{n}$ and $s e_{n}$ into the differential equation, the equation reduces to an eigenvalue problem of tridiagonal real symmetric matrix $A_{s}(q)$, and this gives the expansions X_{r}.

$$
A_{s}(q)=\left[\begin{array}{ccccc}
K_{s}^{2}+d_{s} q & R_{s} q & & & \\
R_{s} q & \left(2+K_{s}\right)^{2} & q & 0 & \\
& q & \left(4+K_{s}\right)^{2} & q & \\
& 0 & & q & \left(6+K_{s}\right)^{2}
\end{array}\right] \cdot \begin{gathered}
\ddots \\
\\
\end{gathered}
$$

Here,
(1) $R_{0}=\sqrt{2}, R_{1}=R_{2}=R_{3}=1$
(2) $K_{0}=0, K_{1}=K_{2}=1, K_{3}=2$
(3) $d_{0}=0, d_{1}=-1, d_{2}=1, d_{3}=0$,
and $s=0,1,2$ or 3 . The s is determined by the kind of Mathieu functions (whether it is $c e_{n}(x, q)$ or $s e_{n}(x, q)$), and whether order n is odd or even. Eigenvalues $\left[R_{s} X_{0}, X_{1}, X_{2}, X_{3}, \cdots\right]^{t}$ of $A_{s}(q)$ are choose to become unit vectors. Define an integer constant l with the following conditions:
(1) For $c e_{n}$

$$
l=1+[n / 2]
$$

(2) For $s e_{n}$
$l=n / 2$ (If n is odd.)
$l=(n+1) / 2$ (If n is even.)
The direction of the eigenvector which corresponds to l-th smallest eigenvalue is selected to satisfy $X_{l}>0$. When $q \rightarrow 0$, Mathieu functions $c e_{n}(x, q)$ and $s e_{n}(x, q)$ which is obtained with this procedure converge to the following functions.
(1) $c e_{0}(x, q) \rightarrow \frac{1}{\sqrt{2}}$
(2) $c e_{n}(x, q) \rightarrow \cos n x(n=1,2, \cdots)$
(3) $s e_{n}(x, q) \rightarrow \sin n x(n=1,2, \cdots)$

2.1.2.12 Langevin function

(1) $x<0.0$:

From $L(x)=-L(-x)$, following methods are applied to $L(-x)$.
(2) $x \geq 0.0$:
(1) $x \leq 1.5$:

The function is calculated by generating the best approximation of the following equation.

$$
L(x)=x \cdot \sum_{k=1}^{\infty}(-1)^{k-1}\left\{\frac{2^{2 k} \cdot B_{k} \cdot x^{2 k+2}}{(2 k)!}\right\}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(2) $1.5<x<\left\{\begin{array}{l}\text { Double precision : } 45.0 \\ \text { Single precision : } 20.0\end{array}\right\}$:

The function is calculated from

$$
L(x)=\frac{2 \cdot e^{-2 \cdot x}}{1-e^{-2 \cdot x}}-\frac{1}{x}+1
$$

(3) $x \geq\left\{\begin{array}{l}\text { Double precision : } 45.0 \\ \text { Single precision : } 20.0\end{array}\right\}$:

The function is calculated from

$$
L(x)=1-\frac{1}{x}
$$

2.1.2.13 Gauss=Legendre integration formula

(1) Gauss=Legendre integration formula

Suppose an arbitrary Legendre polynomial $F(x)$ of degree $2 N-1$ or less is given. The remainder of $F(x)$ divided by $P_{N}(x)$, the Legendre polynomial of degree N, can be expressed as a linear combination of $P_{j}(x) \quad(j=0,1, \cdots, N-1)$:

$$
F(x)=P_{N}(x) Q(x)+b_{0}+\sum_{j=1}^{N-1} \sqrt{2 j+1} b_{j} P_{j}(x)
$$

where $Q(x)$ is a polynomial of degree $N-1$ or less and $b_{0}, b_{1}, \cdots, b_{N-1}$ are constants. An arbitrary polynomial $Q(x)$ of degree $N-1$ or less can be expressed as a linear combination of $P_{j}(x)(j=0,1, \cdots, N-1)$. Using the orthogonal relation

$$
\int_{-1}^{+1} P_{N}(x) P_{j}(x) d x=0(j=0,1, \cdots, N-1)
$$

it holds that

$$
\int_{-1}^{+1} P_{N}(x) Q(x) d x=0
$$

Also, by being aware of the fact:

$$
\int_{-1}^{+1} P_{j}(x) d x=0(j=1,2, \cdots, N-1)
$$

the relation below is induced from the expression formula for $F(x)$:

$$
\int_{-1}^{+1} F(x) d x=2 b_{0} .
$$

Let $\alpha_{k}(k=1,2, \cdots, N)$ be the the N number of zero points of $P_{N}(x)$. Substituting $x=\alpha_{k}$ into the expression formula for $F(x)$, it holds that:

$$
F\left(\alpha_{k}\right)=b_{0}+\sum_{j=1}^{N-1} \sqrt{2 j+1} b_{j} P_{j}\left(\alpha_{k}\right) \cdot(k=1,2, \cdots, N)
$$

For $k=1,2, \cdots, N$, let take d_{k}^{2} such that:

$$
d_{k}^{2}=\sum_{n=0}^{N-1}(2 n+1) P_{n}^{2}\left(\alpha_{k}\right) .
$$

From the above expression for $F\left(\alpha_{k}\right)$ and

$$
\begin{aligned}
& \sum_{k=1}^{N} d_{k}^{-2} P_{j}\left(\alpha_{k}\right)=0(j=1,2, \cdots, N-1) \\
& \sum_{k=1}^{N} d_{k}^{-2}=1
\end{aligned}
$$

it holds that:

$$
b_{0}=\sum_{k=1}^{N} d_{k}^{-2} F\left(\alpha_{k}\right)
$$

Therefore, if a polynomial $F(x)$ is choose so that its values $F\left(\alpha_{k}\right)$ at $x=\alpha_{k}(k=1,2, \cdots, N)$ coincides with the values of the function $f(x)$, the integration formula of degree $2 N-1$ holds:

$$
\int_{-1}^{+1} f(x) d x \simeq \int_{-1}^{+1} F(x) d x=2 b_{0}=2 \sum_{k=1}^{N} d_{k}^{-2} F\left(\alpha_{k}\right)
$$

$$
=2 \sum_{k=1}^{N} d_{k}^{-2} f\left(\alpha_{k}\right)
$$

Here, the polynomial $F(x)$ of degree $2 N-1$ or less needs only to satisfy the conditions at the N number of zero points. This means that the choice of $F(x)$ has freedom of degree N at most. If the integrand function $f(x)$ can not be approximated by some polynomial $F(x)$ (for instance when $f(x)$ is a vibrating function), it is necessary to set the degree N sufficiently large when applying this integration formula.
(2) Zero points of Legendre polynomial

We set $X_{n}=\sqrt{2 n+1} P_{n}(\alpha)$. If α satisfies $P_{N}(\alpha)=0$ for $a_{n}=n / \sqrt{4 n^{2}-1}$, it holds that

$$
\begin{aligned}
& a_{1} X_{1}=\alpha X_{0}, a_{2} X_{2}+a_{1} X_{0}=\alpha X_{1}, a_{3} X_{3}+a_{2} X_{1}=\alpha X_{2}, \cdots, \\
& a_{N-1} X_{N-1}+a_{N-2} X_{N-3}=\alpha X_{N-2}, a_{N-1} X_{N-2}=\alpha X_{N-1} .
\end{aligned}
$$

Therefore, since all the zero points of Legendre polynomial are single solutions, they are eigenvalues of a real symmetric tridiagonal matrix whose diagonals are zero and whose subdiagonals are $a_{1}, a_{2}, \cdots, a_{N-1}$, and they are obtained with root-free QR method.
For a Legendre polynomial of a large degree, all the zero points gather closely together in the open interval ($1,1)$. In this case all of the N number of zero points can be calculated certainly by solving the eigenproblem of this real symmetric tridiagonal matrix using root free QR method, instead of computing them using Newton method.

2.1.2.14 Zero points of Bessel Functions

(1) Positive solution for the transcendency equation $a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0$ containing the Bessel function Positive solution α for the transcendency equation

$$
a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0
$$

is obtained with the following method.
By using the following method, the positive solution for the transcendency equation can be calculated up to $M=50$ in rough. (If it is calculated with the single precision, set to $\mathrm{M} \leq 24$, that is $\mathrm{N} \leq 192$.) The parameter a should be set to $a=0$ and $10^{-10} \leq|a| \leq 10^{4}$.

1. Calculate an approximate value with the finite element method.

The differential equation

$$
u^{\prime \prime}(r)+u^{\prime}(r) / r+\alpha^{2} u(r)=0
$$

with a boundary condition

$$
u^{\prime}(1)=a u(1)
$$

has a non-trivial solution $u(r)(0 \leq r \leq 1)$ where $u(+0)$ is finite, if and only if $a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0$ is satisfied. Then it holds that $u(r)=C J_{0}(\alpha r)$.
Let $w_{j}(r)(j=0,1,2, \cdots, N-1, N)$ be the basis function which satisfy $w_{j}(j / N)=1, w_{j}(k / N)=0(k \neq j)$ at the nodal points $r=0,1 / N, 2 / N, \cdots,(N-1) / N, 1$. Using the w_{j}, interpolate $u(r)$ using the basis functions as below.

$$
u(r)=\sum_{j=0}^{N} u(j / N) w_{j}(r)
$$

Galerkin method can be applied to get

$$
\int_{0}^{1} w_{j}(r)\left(u^{\prime \prime}(r)+u^{\prime}(r) / r+\alpha^{2} u(r)\right) r d r=0
$$

Applying integration by parts to the factor including the second differential calculus, the above relation is reduced to the following integral relation.

$$
\int_{0}^{1} w_{j}^{\prime}(r) u^{\prime}(r) r d r-a w_{j}(1) u(1)=\alpha^{2} \int_{0}^{1} w_{j}(r) u(r) r d r
$$

Substitute the interpolated basis function

$$
A X=\alpha^{2} B X, \quad X=(u(0), u(1 / N), \cdots, u(1))^{t}
$$

Where A and B are

$$
\begin{aligned}
& A_{i, j}=\int_{0}^{1} w_{j}^{\prime}(r) w_{i}^{\prime}(r) r d r-\delta_{i, N} \delta_{j, N} a \\
& B_{i, j}=\int_{0}^{1} w_{j}(r) w_{i}(r) r d r
\end{aligned}
$$

Therefore, the approximate values of solutions $\alpha(\alpha>0)$ for $a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0$ are obtained by calculating $\sqrt{\beta}$ which are square roots of the positive eigenvalues β for the generalized eigenvalue problem $A X=\beta B X$.
2. Improving the Solution by Bisection and Newton method

Set $N=L M$. Here L is the approximate magnification ratio, which is preferred to be 8 in rough. The square roots of the positive eigenvalues β for the generalized eigenvalue problem the approximate the solutions for the transcendental equation.
E is defined as below:

$$
\begin{aligned}
& E=0(a<0) \\
& E=\alpha(0)^{2}(a \geq 0)
\end{aligned}
$$

Here $\alpha(0)$ is the positive smallest zero point of $J_{0}(x)$.
Let $\beta_{1}^{*}, \beta_{2}^{*}, \cdots, \beta_{M}^{*}$ be the eigenvalues greater than E in ascending order. We examine that the number of eigenvalues that is smaller than or equal to E does not reach 2 . We also examine that β_{j}^{*} is not a multiple root.
(1) Bisection method

If $\alpha^{*}=\sqrt{\beta_{j}^{*}}$ for $j \geq 2$ satisfies

$$
\left|a J_{0}\left(\alpha^{*}\right)+\alpha^{*} J_{1}\left(\alpha^{*}\right)\right|<0.1 *\left(\left|J_{0}\left(\alpha^{*}\right)\right|+\left|J_{1}\left(\alpha^{*}\right)\right|\right),
$$

then step forward to the process to improve the approximate solution using Newton method.
This condition holds when j is 10 or less. When j is larger than 10 , however, the condition is not satisfied because of the approximation error due to Galerkin method. In the latter case, therefore, improve α^{*} by Bisection method.
In Bisection method, use the property that $\left|a J_{0}\left(\alpha^{*}\right)+\alpha^{*} J_{1}\left(\alpha^{*}\right)\right|$ becomes small as the approximate solution α^{*} comes close to the exact solution. The interval $\left(\sqrt{\beta_{j}^{*}-\delta}, \sqrt{\beta_{j}^{*}+\delta}\right)$ such that includes
only the j -th solution is divided into two subintervals and α^{*} is replaced with one of the edges of these subintervals. Here, δ is positive real number which has the order of the approximate error. Divisions of intervals are repeated until α^{*} satisfies the condition above, and then step forward to the process to improve the approximate solution using Newton method.
(2) Newton method

The improvement using Newton method will be repeated until $\left|a J_{0}(x)+x J_{1}(x)\right|<e$ is satisfied, where $e=10^{-11}$ for double precision
or
$e=10^{-4}$ for single precision.
(2) Positive zero points of the Bessel function $J_{m+1}(x)$ with integer order When $m=1,2, \cdots$, the holomorphic function $F_{m}(x)$ can be defined as

$$
J_{m}(x)=x^{m} F_{m}(x)
$$

and this satisfies

$$
F_{m}^{\prime \prime}(x)+(2 m+1) F_{m}^{\prime}(x) / x+F_{m}(x)=0
$$

Furthermore, it holds that $x^{m} F_{m}^{\prime}(x)=-J_{m+1}(x)$. Therefore, the method of algorithm (1) can be applied to

$$
\begin{aligned}
& A_{i, j}=\int_{0}^{1} w_{j}^{\prime}(r) w_{i}^{\prime}(r) r^{2 m+1} d r \\
& B_{i, j}=\int_{0}^{1} w_{j}(r) w_{i}(r) r^{2 m+1} d r
\end{aligned}
$$

The threshold p for determining whether an eigenvalue for generalized eigenvalue problem is positive or not is:
$p=10^{-3}$ (for double precision),
$p=10^{-1}$ (for single precision).
In Bisection method, the following error criterion is applied:

$$
\left|J_{m+1}\left(\alpha^{*}\right)\right| \leq 0.001
$$

(3) Positive zero points of each Bessel function J_{0}, J_{1} of the order 0 and 1

The zero point of $J_{1}(x)$ is obtained as the positive zero point of the transcendent equation in the algorithm (1) when setting $a=0$.

When a is set to a sufficiently large value, the solution of the transcendent equation $a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0$ becomes the approximate value of the zero point of $J_{0}(x)$. Therefore the zero point of $J_{0}(x)$ is obtained by applying the algorithm (1) for a sufficiently large value a.

2.1.2.15 Positive zero points of the second kind Bessel function

(1) Obtain Positive zero point of the second kind Bessel function $Y_{n}(x)$ in window interval $\left[x_{1}, x_{1}+2 \pi\right]\left(x_{1}>0\right)$ with the following procedure.
(1) Positive zero point on each window interval

Set an initial value $x=x_{0}$ to the middle-point of the window interval. We let $F(x)=Y_{n}(x) \cos x-$ $J_{n}(x) \sin x$ and $G(x)=Y_{n}(x) \sin x+J_{n}(x) \cos x$. Furthermore, let α be an argument of the vector $(F(x), G(x))$.

$$
\begin{aligned}
& \cos \alpha=F(x) / S \\
& \sin \alpha=G(x) / S \\
& S=\sqrt{\left(F(x)^{2}+G(x)^{2}\right)}
\end{aligned}
$$

Here α is choose so that it lies in the window interval. The improved value x_{i+1} of the approximate zero point is given as the argument of the vector $(F(x), G(x))$. Repeat this improvement.
(2) Decision of existing the positive zero point When repetition of this improvement does not converge, we concluded that positive zero point does not exist in this window interval.

Shifting the window interval for 2π per step, repeat the above procedures until the number of already obtained positive zero points reaches the number to be obtained.

2.1.2.16 Zeta function of Positive definite quadratic form $x^{2}+a y^{2}$

We initially define the zeta function $Z(s, a)$ of the positive definite quadratic form $x^{2}+a y^{2}$ as:

$$
Z(s, a)=\sum_{(m, n) \in Z^{2},(m, n) \neq(0,0)}\left(m^{2}+a n^{2}\right)^{-s}(s>1)
$$

Subtracting the function to eliminate the unique pole of $Z(s, a)$, the analytic continuation of $Z(s, a)$ is obtained as described below:

$$
\begin{aligned}
& Z(s, a)-\frac{\pi^{s} a^{-s / 2}}{\Gamma(s)(s-1)} \\
= & \frac{\pi^{s} a^{-s / 2}}{\Gamma(s)} \sum_{(m, n) \in Z^{2},(m, n) \neq(0,0)}\left(A_{m, n}^{-s} \int_{A_{m, n}}^{\infty} e^{-t} t^{s-1} d t+A_{m, n}^{s-1} \int_{A_{m, n}}^{\infty} e^{-t} t^{-s} d t\right)-\frac{\pi^{s} a^{-s / 2}}{\Gamma(s+1)} .
\end{aligned}
$$

Each integral in the above formula is a second kind incomplete gamma integral. Therefore, we obtain

$$
\begin{aligned}
& Z(s, a)-\frac{\pi^{s} a^{-s / 2}}{\Gamma(s)(s-1)} \\
= & \frac{\pi^{s} a^{-s / 2}}{\Gamma(s)} \sum_{(m, n) \in Z^{2},(m, n) \neq(0,0)}\left(A_{m, n}^{-s} \Gamma\left(s, A_{m, n}\right)+A_{m, n}^{s-1} \Gamma\left(1-s, A_{m, n}\right)\right)-\frac{\pi^{s} a^{-s / 2}}{\Gamma(s+1)}
\end{aligned}
$$

with $A_{m, n}=\pi\left(\sqrt{a} m^{2}+n^{2} / \sqrt{a}\right)$.
The summation in the last expression should be taken for all those integer pairs $(m, n) \neq(0,0)$ that satisfy $A_{m, n}<40$.

2.1.2.17 Di-log function

The value of

$$
L i_{2}(x)=-\int_{0}^{x} \log |t-1| \frac{d t}{t}
$$

is given as follows:
(1) For $x=1$

The functional value $L i_{2}(x)$ is $\pi^{2} / 6$.
(2) For $x>1$

The functional value $L i_{2}(x)$ is $\pi^{2} / 3-\frac{1}{2}(\log x)^{2}-L i_{2}\left(\frac{1}{x}\right)$, where $L i_{2}\left(\frac{1}{x}\right)$ is obtained as below.
(3) For $0 \leq x<1$
(1) If $x>\frac{1}{2}, L i_{2}(x)$ is calculated by $L i_{2}(x)=\pi^{2} / 6-\log (1-x) \log x-L i_{2}(1-x)$. Where, $L i_{2}(1-x)$ is obtained by applying 2 .
(2) If $x \leq \frac{1}{2}, L i_{2}(x)$ is

$$
L i_{2}(x)=\alpha-\frac{1}{4} \alpha^{2}-\sum_{k=1}^{8} \frac{c_{2 k}}{2 k+1} \alpha^{2 k+1} .
$$

Where $\alpha=-\log (1-x)$ and $c_{2 k}$ is Bernoulli numbers.
The functional value $L i_{2}(x)$ can be calculated by using this relation.

2.1.2.18 Debye function

The Debye function $F_{D}(x)$ is defined as below:

$$
F_{D}(x)=\frac{3}{x^{3}} \int_{0}^{x} \frac{e^{t} t^{4}}{\left(e^{t}-1\right)^{2}} d t
$$

This is transformed as:

$$
F_{D}(x)=\frac{12}{x^{3}} \int_{0}^{x} \frac{t^{3}}{e^{t}-1} d t-\frac{3 x}{e^{x}-1}
$$

The value of this function is calculated by applying two kind of methods as below.
(1) For $0 \leq x \leq \log 2$ It can be obtained with

$$
F_{D}(x)=-\frac{3 x}{e^{x}-1}+12\left(\frac{1}{3}-\frac{x}{8}-\sum_{k=1}^{\infty} \frac{c_{2 k}}{2 k+3} x^{2 k}\right)=1+\sum_{k=1}^{\infty} \frac{3(2 k-1)}{2 k+3} c_{2 k} x^{2 k}
$$

Here $c_{2 k}$ is Bernoulli numbers. The summation of series for k is performed until the added factor becomes is less than or equal to the unit for determining error (Note Appendix B).
(2) For $x>\log 2$

It can be obtained with

$$
F_{D}(x)=\frac{12}{x^{3}} F(x)-\frac{3 x}{e^{x}-1},
$$

$$
\begin{aligned}
& F(x)=\frac{\pi^{4}}{15}+S_{1}(y)+S_{2}(y) \log y+S_{3}(y)(\log y)^{2}+y(\log y)^{3} \\
& S_{j}(y)=\sum_{k=1}^{\infty} b_{k, j} y^{k}(j=1,2,3)
\end{aligned}
$$

Here $y=-\log \left(1-e^{-x}\right)$. The summation of series for k is performed until the added factor becomes less than or equal to the unit for determining error (Note Appendix B). The coefficients $b_{k, j}$ are calculated with the following procedure.
For $F(x)=\int_{0}^{x} t^{3} d t /\left(e^{t}-1\right)$, use the parameter $y(0<y<\log 2)$

$$
F(x)=\int_{y}^{\infty}\left(-\log \left(1-e^{-u}\right)\right)^{3} d u=\int_{0}^{\infty}-\int_{0}^{y}=I_{1}-I_{2}
$$

Here,

$$
\begin{aligned}
& I_{1}=\int_{0}^{\infty}=F(\infty)=\frac{\pi^{4}}{15} \\
& I_{2}=\int_{0}^{y}=\int_{0}^{y}\left(\log \left(\frac{u}{1-e^{-u}}\right)-\log u\right)^{3} d u
\end{aligned}
$$

Furthermore, $b_{k, j}$ is calculated by using the series expansion of $\log \left(\frac{u}{1-e^{-u}}\right)$

$$
\log \left(\frac{u}{1-e^{-u}}\right)=\frac{u}{2}+\sum_{k=1}^{\infty} \frac{c_{2 k}}{2 k} u^{2 k},
$$

where $c_{2 k}$ is Bernoulli numbers.

2.1.2.19 Normalized Spherical Harmonics

For a real number $x(-1 \leq x \leq 1$), calculate the normalized spherical harmonic function (the normalized Legendre function)

$$
P_{n}^{* m}(x)=\frac{1}{4 \pi i^{m}} A_{n, m} \int_{-\pi}^{\pi}\left(x+i \sqrt{1-x^{2}} \cos \psi\right)^{n} \cos (m \psi) d \psi
$$

Here, $i=\sqrt{-1}$,

$$
A_{n, 0}=\sqrt{\frac{2 n+1}{\pi}}
$$

and

$$
A_{n, m}=\sqrt{\frac{2(2 n+1)(n-m)!(n+m)!}{\pi(n!)^{2}}}(1 \leq m \leq n) .
$$

To obtain the integral factor, apply the following Fourier expansion (set $x=\cos \theta, 0 \leq \theta \leq \pi$):

$$
(\cos \theta+i \sin \theta \cos \psi)^{n}=\sum_{m=0}^{n} i^{m} C_{n, m}(\theta) \cos (m \psi)
$$

If we define $I_{n, m}$ as

$$
I_{n, m}=\frac{1}{i^{m} \sin ^{m} \theta} \int_{-\pi}^{\pi}(\cos \theta+i \sin \theta \cos \psi)^{n} \cos (m \psi) d \psi,
$$

the coefficients $C_{n, m}(\theta)$ of the Fourier expansion can be obtained using the following recurrence formula:

$$
\begin{aligned}
& I_{n, n}=\frac{\pi}{2^{n-1}}, I_{n, n+1}=0 \\
& I_{n, m-2}=\frac{2}{m-n-2}\left\{-(m-1) \cos \theta I_{n, m-1}+(m+n) \frac{\sin ^{2} \theta}{2} I_{n, m}\right\} \\
& C_{n, m}(\theta)=\frac{\left(2-\delta_{m, 0}\right) \sin ^{m} \theta}{2 \pi} I_{n, m}
\end{aligned}
$$

Using the coefficients $C_{n, m}(\theta)$ of the Fourier expansion which can be obtained as procedure above, the normalized spherical harmonic function (the normalized Legendre function) $P_{n}^{* m}(\cos \theta)$ of the order n can be obtained as:

$$
P_{n}^{* m}(\cos \theta)=C_{n, m}(\theta) \frac{1}{h_{n, m}} .
$$

Here, the coefficients $h_{n, m}$ are:

$$
\begin{aligned}
& g_{n, 0}=1, g_{n, m}=g_{n, m-1}\left(1+\frac{m}{n}\right)^{-1}\left(1-\frac{m-1}{n}\right) \quad(m=1,2, \cdots) \\
& h_{n, m}=2 \sqrt{\frac{\left(2-\delta_{m, 0}\right) \pi g_{n, m}}{2 n+1}} .
\end{aligned}
$$

2.1.2.20 Hurwitz Zeta function for a real variable

(1) Definition

For real region $s>-1$ and $s \neq 1$ and for a parameter $a>0$, the Hurwitz zeta function $\zeta(s, a)$ is defined as follows :

$$
\zeta(s, a)=\frac{a^{-s+1}}{s-1}+\frac{a^{-s}}{2}+\int_{0}^{\infty}-s \psi(x)(x+a)^{-s-1} d x
$$

Here, $\psi(x)$ is a periodic function (of period 1) defined as $x-[x]-\frac{1}{2}$.
(a) Definition for $s>1$

The Hurwitz zeta function is expressed as follows:

$$
\begin{aligned}
& \zeta(s, a)=\int_{0}^{\infty}(x+a)^{-s} d x+\frac{a^{-s}}{2}+\int_{0}^{\infty}-s \psi(x)(x+a)^{-s-1} d x \\
& =\sum_{n=0}^{\infty}\left\{\int_{n}^{n+1}(x+a)^{-s} d x+\int_{n}^{n+1}-s \psi(x)(x+a)^{-s-1} d x\right\}+\frac{a^{-s}}{2} \\
& =\sum_{n=0}^{\infty}\left\{\int_{n}^{n+1} \frac{d}{d x}\left(\psi(x)(x+a)^{-s}\right) d x\right\}+\frac{a^{-s}}{2} \\
& =\sum_{n=0}^{\infty}\left\{\frac{1}{2}(n+a)^{-s}+\frac{1}{2}(n+1+a)^{-s}\right\}+\frac{a^{-s}}{2} \\
& =\sum_{n=0}^{\infty}(n+a)^{-s} .
\end{aligned}
$$

Therefore, the Hurwitz zeta function is equal to the infinite series sum $\sum_{n=0}^{\infty}(n+a)^{-s}$ for $s>1$, which converges to a finite value.
(b) Definition for $s>-1$

An infinite integral

$$
\int_{0}^{\infty}-s \psi(x)(x+a)^{-s-1} d x
$$

is convergent also for $s>-1$. This is easy to see from the fact that the alternating series

$$
\sum_{m=0}^{M} \int_{\frac{m}{2}}^{\frac{m+1}{2}}-s \psi(x)(x+a)^{-s-1} d x
$$

converge as $M \rightarrow \infty$. Therefore, the Hurwitz zeta function can also be defined in this region.
Now it can be said that the Hurwitz zeta function

$$
\zeta(s, a)=\frac{a^{-s+1}}{s-1}+\frac{a^{-s}}{2}+\int_{0}^{\infty}-s \psi(x)(x+a)^{-s-1} d x
$$

is a function defined in the region $s \neq 1$, which is an extension of the infinite series sum $\sum_{n=0}^{\infty}(n+a)^{-s}$ that is defined for $s>1$. Also,

$$
\zeta(s, a)-\frac{1}{s-1}=\int_{0}^{1}\{\zeta(s, a)-\zeta(s, x+1)\} d x
$$

has an integral expression

$$
\int_{a}^{1} x^{-s} d x+\frac{a^{-s}}{2}+\int_{0}^{\infty}-s \psi(x)(x+a)^{-s-1} d x
$$

which can be defined for $s>-1$, including the case $s=1$.
(2) Algorithm for Calculation
(a) Set N to a fixed natural number $10 ; N=10$. The Hurwitz zeta function can be expanded as the formula below:

$$
\begin{aligned}
\zeta(s, a) & =\sum_{n=0}^{N-1}(n+a)^{-s}+Z(s, a)+\frac{(N+a)^{-s}}{2}+R(s, a) \\
Z(s, a) & =\frac{(N+a)^{-s+1}}{s-1}
\end{aligned}
$$

and

$$
R(s, a)=\int_{N}^{\infty}-s(x+a)^{-s-1} \psi(x) d x
$$

This expansion formula is obtained by applying the integral expression to the second summation term in the right hand side of the Hurwitz zeta function

$$
\zeta(s, a)=\sum_{n=0}^{N-1}(n+a)^{-s}+\sum_{n=N}^{\infty}(n+a)^{-s}
$$

(b) The value of $R(s, a)$ is obtained from the following formula whose error is of the order 10^{-9} (for single precision) 10^{-18} (for double precision):

$$
R(s, a)=\sum_{j=0}^{m-2}(-s) \cdots(-s-j)(N+a)^{-s-1-j} \psi_{2+j}(0) .
$$

Here, $\psi_{k}(x) \quad(k=2,3, \cdots)$ are defined as periodic functions (of period 1)

$$
-\psi(x)=\psi_{2}^{\prime}(x), \quad-\psi_{2}(x)=\psi_{3}^{\prime}(x), \quad-\psi_{3}(x)=\psi_{4}^{\prime}(x), \cdots
$$

satisfying

$$
\int_{0}^{1} \psi_{k}(x) d x=0
$$

Depending on whether double precision or single precision is assumed and depending on the value s, the function $R(s, a)$ is obtained as follows:
i. For single precision

If $s>10$ then, set $R(s, a)=0$.
If $0 \leq s \leq 10$, then apply expansion formula with $m=10$.
ii. For double precision

If $s>20$, then set $R(s, a)=0$.
If $10<s \leq 20$, then apply expansion formula with $m=10$.
If $5<s \leq 10$, then apply expansion formula with $m=15$.
If $0 \leq s \leq 5$, then apply expansion formula with $m=20$.
Using the Bernoulli numbers $B_{l}, \psi_{k}(0)$ is represented as

$$
\psi_{2 j+1}(0)=0
$$

and

$$
\psi_{2 j}(0)=(-1)^{j} \frac{B_{j}}{(2 j)!} .
$$

For arbitrary real numbers x and $t(|t|<2 \pi)$, it holds that

$$
\frac{t e^{x_{1} t}}{e^{t}-1}=1-\sum_{k=1}^{\infty} \psi_{k}(x)(-t)^{k}
$$

Here, x_{1} is fractional part of x. The Bernoulli polynomials $\psi_{k}(x)$ are expressed using the Fourier expansions as

$$
(-1)^{\frac{k+1}{2}} 2 \sum_{n=1}^{\infty} \frac{\sin (2 \pi n x)}{(2 \pi n)^{k}} \quad(k: \text { oddnumber })
$$

and

$$
(-1)^{\frac{k}{2}} 2 \sum_{n=1}^{\infty} \frac{\cos (2 \pi n x)}{(2 \pi n)^{k}} \quad(k: \text { evennumber })
$$

This implies that these absolute values are of the order $(2 \pi)^{-k}$.
(3) Removal of Singular point

Since the Hurwitz zeta function has a pole at the point $s=1$, it is not able to obtain the value of the function when s is equal to 1 . But, as $\zeta(s, a)-1 /(s-1)$ can be defined as a regular function, as far as $|s-1|<10^{-4}$ (for single precision) or $|s-1|<10^{-8}$ (for double precision), we replace $Z(s, a)$ in the expansion formula of the Hurwitz zeta function $\zeta(s, a)$ with:

$$
-\log (N+a)\left(1-\frac{1}{2} \log (N+a)(s-1)\left(1-\frac{1}{3} \log (N+a)(s-1)\right)\right)
$$

which is an approximation formula for

$$
\frac{(N+a)^{-s+1}-1}{s-1}
$$

whose error is less than 10^{-9} (single precision) 10^{-18} (double precision). Here

$$
\lim _{s \rightarrow 1}\left(\zeta(s, a)-\frac{1}{s-1}\right)=-\frac{\Gamma^{\prime}(a)}{\Gamma(a)}
$$

2.1.2.21 The functions related to the error function

(1) The error function for complex values $e^{-z^{2}} \operatorname{Erfc}(-i z)$

The error function for complex values $e^{-z^{2}} \operatorname{Erfc}(-i z)$ can be obtained from the value of definite integral

$$
e^{-z^{2}} \int_{0}^{z} e^{w^{2}} d w
$$

(a) When the absolute value of $\Im(z)$ is small and less than 10^{-4}, we apply the following formula to avoid the small denominator due to some special values of $\Re(z)$ (also including the case $\Re(z)=0$)

$$
f(z)=f_{0}+f_{1}\left(z-z_{0}\right)+f_{2}\left(z-z_{0}\right)^{2} / 2+f_{3}\left(z-z_{0}\right)^{3} / 6,
$$

where $f(z)=e^{-z^{2}}+\frac{2 i}{\sqrt{\pi}} D_{w}(z)\left(D_{w}(z)\right.$ is the Dawson integral) and

$$
f_{0}=f\left(z_{0}\right), f_{1}=-2 z_{0} f_{0}+\frac{2 i}{\sqrt{\pi}}, f_{2}=-2 z_{0} f_{1}-2 f_{0}, f_{3}=-2 z_{0} f_{2}-4 f_{1}, z_{0}=\Re(z)
$$

(b) Assume that z is not real and set $z=\beta=R+i I(R$ and I are real and $I>0)$. If the imaginary part is negative, this problem is reduced to the case when the imaginary part is positive using the fact that the relation

$$
F(z)+F(-z)=2 e^{-z^{2}}
$$

holds for $F(z)=e^{-z^{2}} \operatorname{Erfc}(-i z)$.
(c) Suppose that $z=\beta=R+i I(R, I$ are real and $I>0)$. Set

$$
f(x)=\int_{-\infty}^{\infty} e^{-x t^{2}} /(t+\beta) d t=\int_{0}^{\infty} 2 \beta e^{-x t^{2}} /\left(\beta^{2}-t^{2}\right) d t(x \geq 0)
$$

For $x>0$, since

$$
\left(e^{\beta^{2} x} f(x)\right)^{\prime}=(\sqrt{\pi} \beta / \sqrt{x}) e^{\beta^{2} x}
$$

it holds that

$$
e^{\beta^{2}} f(1)-f(0)=\sqrt{\pi} \beta \int_{0}^{1} \frac{e^{\beta^{2} x}}{\sqrt{x}} d x .
$$

Therefore,

$$
\int_{0}^{\beta} e^{w^{2}} d w=\frac{1}{2 \sqrt{\pi}}\left(e^{\beta^{2}} f(1)-f(0)\right)
$$

Furthermore, in $f(0)=\int_{0}^{\infty} 2 \beta /\left(\beta^{2}-t^{2}\right) d t$, changing the integration pass $[0, \infty)$ to $[0, i \beta \infty)$ and considering the residual that is added with this change, it follows that

$$
e^{-\beta^{2}} \int_{0}^{\beta} e^{w^{2}} d w=\frac{1}{2 \sqrt{\pi}}\left(\int_{-\infty}^{\infty} e^{-t^{2}} /(t+\beta) d t+\pi i e^{-\beta^{2}}\right)
$$

Now we apply the Poisson formula. Setting

$$
g(x)=h \sum_{n=-\infty}^{\infty} \frac{e^{-h^{2}(n+x)^{2}}}{h(n+x)+\beta},
$$

$g(x)$ is a periodic function of the period 1 and can be expanded by the Fourier series. Evaluate each coefficient as

$$
\begin{aligned}
& \int_{0}^{1} g(x) e^{-2 \pi i n x} d x=\int_{-\infty}^{\infty} h \frac{e^{-h^{2} x^{2}}}{h x+\beta} e^{-2 \pi i n x} d x \\
& =\int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{x+\beta} e^{-2 \pi i n x / h} d x \\
& =\int_{-\infty}^{\infty} \frac{e^{-(x+\pi i n / h)^{2}}}{x+\beta} d x e^{-\pi^{2} n^{2} / h^{2}},
\end{aligned}
$$

here, moving the integration pass and considering the residuals if they are added, we get

$$
\begin{aligned}
& =e^{-\pi^{2} n^{2} / h^{2}} \int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{x+\beta-\pi i n / h} d x(\pi n / h<I) \\
& =e^{-\pi^{2} n^{2} / h^{2}}\left(\int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{x+\beta-\pi i n / h} d x-2 \pi i e^{-(-\beta+\pi i n / h)^{2}}\right)(\pi n / h>I)
\end{aligned}
$$

Therefore, taking h such that $\pi / h>\sqrt{\log \left(10^{16}\right)}$ and neglecting the terms of the order 10^{-16}, it is obtained that:

$$
h \sum_{n=-\infty}^{\infty} \frac{e^{-h^{2} n^{2}}}{h n+\beta}=\int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{x+\beta} d x-2 \pi i \sum_{\pi n / h>I} \exp \left(2 \pi i n \beta / h-\beta^{2}\right) .
$$

The infinite series on the both sides of this equation converge in a few terms. $e^{-z^{2}} \operatorname{Erfc}(-i z)$ becomes:

$$
\frac{i}{\pi} \int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{x+\beta} d x
$$

with $z=\beta$.
(2) The inverse function of the co-error function

The co-error function is defined as follows:

$$
y=\operatorname{Erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t
$$

Here, y is a non-negative real number.
To obtain values of its inverse function $y=\operatorname{Erfc}^{-1}(x)$, calculate y satisfying

$$
f(y)=\left(\frac{2}{\sqrt{\pi}} \int_{y}^{\infty} e^{-t^{2}} d t-x\right) e^{y^{2}}=0
$$

using Newton method first. The derivative of $f(y)$ is given by $f^{\prime}(y)=2 y f(y)-2 / \sqrt{\pi}$. Classifying by the range of x, the initial value $y_{\text {init }}$ for y is taken as follows:
(a) When $x \geq \operatorname{Erfc}(2)$

Set $y_{\text {init }}=0$.
(b) When $x<\operatorname{Erfc}(2)$

For a given x, the initial value $y_{\text {init }}$ is calculated using the formula below:

$$
y_{1}=1 /(\sqrt{\pi} x), y_{2}=\sqrt{\log y_{1}}, y_{3}=1 /\left(\sqrt{\pi} x y_{2}\right), y_{i n i t}=\sqrt{\log y_{3}}
$$

The initial value $y_{\text {init }}$ obtained by this procedure is an approximation of y which satisfies:

$$
\frac{\sqrt{\pi}}{2} x=e^{-y^{2}} \frac{1}{2 y}\left(1+O\left(\frac{1}{y^{2}}\right)\right)
$$

(3) The error function and the co-error function
(a) For $|x| \leq 0.476563$
i. Co-error function is obtained as $\operatorname{Erfc}(x)=1-\operatorname{Erf}(x)$.
ii. The error function $\operatorname{Erf}(x)$ is obtained as follows:

$$
\operatorname{Erf}(x)=\frac{e^{-x^{2}}}{\sqrt{\pi}} \frac{2 x}{1-\frac{2 x^{2}}{3+\frac{4 x^{2}}{5-\frac{6 x^{2}}{7+\frac{8 x^{2}}{9-\cdots}}}}}
$$

(b) For $|x|>0.476563$
i. Co-error function $\operatorname{Erfc}(x)$ is obtained as follows:

For $0 \leq x \leq 8.0$, using the best-fit formula.
For $8.0<x \leq 26.628736$,

$$
\operatorname{Erfc}(x)=\frac{e^{-x^{2}}}{\sqrt{\pi}} \frac{1.0}{x+\frac{0.5}{x+\frac{1.0}{x+\frac{1.5}{x+\cdots}}}}
$$

and if $x>26.628736$,then $\operatorname{Erfc}(x)=0$.
For negative value of $x, \operatorname{Erfc}(x)=2-\operatorname{Erfc}(-x)$ is applied.
Then error function is obtained as $\operatorname{Erf}(x)=1-\operatorname{Erfc}(x)$.

2.1.2.22 Coefficient Calculation Method

The functions in this library adopt arithmetic techniques to save the amount of calculation without degrading the accuracy.

2.1.2.23 Method of Calculating Related Special Functions

(1) Incomplete elliptic integral of the 3rd kind

$$
\begin{array}{rll}
\Pi(\varphi ; c, m) & =\int_{0}^{\varphi} \frac{d \theta}{\left(1+c \sin ^{2} \theta\right) \sqrt{1-m \sin ^{2} \theta}} & \\
& =\int_{0}^{x} \frac{d t}{\left(1+c t^{2}\right) \sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)}} & (x=\sin \varphi) \\
& =\int_{0}^{u} \frac{d w}{1+c \cdot \operatorname{sn}^{2} w} & (x=\operatorname{sn} u)
\end{array}
$$

If this integral is represented using the Π function, it appears as follows:

$$
\Pi(\varphi ; c, m)=u+\frac{\operatorname{sn} \alpha}{\operatorname{cn} \alpha \cdot \operatorname{dn} \alpha} \cdot \Pi(u, \alpha)
$$

(α is set so that $\operatorname{sn}^{2} \alpha=-\frac{c}{m}$.)
$(u=F(x, m)=F(\sin \varphi, m))$
Another method is described below.

- $-m<c<0$:

$$
\begin{aligned}
& \epsilon=\sqrt{-\frac{c}{m}} \\
& \beta=\frac{\pi}{2} \cdot F(\epsilon, m) / K(m) \\
& v=\frac{\pi}{2} \cdot F(x, m) / K(m) \quad(x=\sin \varphi) \\
& \delta_{1}=\sqrt{\frac{-c}{(1+c)(m+c)}} \\
& \Pi(\varphi ; c, m)=\delta_{1}\left[-\frac{1}{2} \log \frac{\vartheta_{4}(v+\beta)}{\vartheta_{4}(v-\beta)}+v \cdot \frac{\vartheta_{1}^{\prime}(\beta)}{\vartheta_{1}(\beta)}\right]
\end{aligned}
$$

Assume that the nome q for modulus m. Then the above function can be calculated using the following expressions.

$$
\begin{aligned}
\frac{1}{2} \log \frac{\vartheta_{4}(v+\beta)}{\vartheta_{4}(v-\beta)} & =2 \sum_{s=1}^{\infty} \frac{q^{s}}{s \cdot\left(1-q^{2 s}\right)} \cdot \sin (2 \cdot s \cdot v) \cdot \sin (2 \cdot s \cdot \beta) \\
\frac{\vartheta_{1}^{\prime}(\beta)}{\vartheta_{1}(\beta)} & =\cot \beta+4 \sum_{s=1}^{\infty} \frac{q^{2 s}}{1-2 \cdot q^{2 s} \cdot \cos (2 \cdot \beta)+q^{4 s}} \cdot \sin (2 \cdot \beta)
\end{aligned}
$$

The summation calculation are continued until the last term is sufficiently small relative to the first term.

- $c<-1$:

Assume $N=\frac{m}{c}, p_{1}=\sqrt{(-c-1)\left(1+\frac{m}{c}\right)}$. Then the function is calculated using the following expressions.

$$
\Pi(\varphi ; c, m)=-\pi(\varphi ; N, m)+F(x, m)+\frac{1}{2 p_{1}} \log \left[\frac{\Delta(\varphi)+p_{1} \tan \varphi}{\Delta(\varphi)-p_{1} \tan \varphi}\right]
$$

where, $\Delta(\varphi)=\sqrt{1-m \sin ^{2} \varphi}$.
$\Pi(\varphi ; N, m)$ is obtained using the calculations described above for $-m<c<0$.

- $-1<c<-m$:

$$
\begin{aligned}
& \epsilon=\sqrt{\frac{1+c}{1-m}} \\
& \beta=\frac{\pi}{2} \cdot F(\epsilon, 1-m) / K(m) \\
& v=\frac{\pi}{2} \cdot F(x, m) / K(m) \\
& \delta_{2}=\sqrt{\frac{c}{(1+c)(m+c)}} \\
& \lambda=a \cdot \tan (\tanh \beta \cdot \tan v)+2 \sum_{s=1}^{\infty} \frac{(-1)^{s-1} \cdot q^{2 s}}{s \cdot\left(1-q^{2 s}\right)} \cdot \sin (2 \cdot s \cdot v) \cdot \sinh (2 \cdot s \cdot \beta) \\
& \sum_{s=1}^{\infty} s q^{s^{2}} \sinh (2 \cdot s \cdot \beta) \\
& \mu=\frac{1+2 \sum_{s=1}^{\infty} q^{s^{2}} \cosh (2 \cdot s \cdot \beta)}{\Pi(\varphi ; c, m)=\delta_{2} \cdot(\lambda-4 \cdot \mu \cdot v)} \\
& \Pi(\lambda)
\end{aligned}
$$

- $c>0.0$:

$$
\begin{aligned}
N & =-\frac{m+c}{1+c} \\
p_{2} & =\sqrt{\frac{c \cdot(m+c)}{1+c}}
\end{aligned}
$$

$$
\begin{aligned}
\Pi(\varphi ; c, m)= & \left\{\sqrt{(1+N) \cdot\left(1+\frac{m}{N}\right)} \cdot \Pi(\varphi ; N, m)+\frac{m \cdot F(x, m)}{p_{2}}\right. \\
& \left.+a \tan \left(\frac{1}{2} p_{2} \cdot \sin \left(\frac{2 \cdot \varphi}{\Delta(\varphi)}\right)\right)\right\} / \sqrt{(1+c)\left(1+\frac{m}{c}\right)}
\end{aligned}
$$

Where, $\Delta(\varphi)=\sqrt{1-m \sin ^{2} \varphi}$.
$\Pi(\varphi ; N, m)$ is obtained using the calculations described above for $-m<c<0.0$.
(Refer to bibliography reference (1).)
(2) Heuman's lambda function

$$
\Lambda_{0}(\varphi \backslash \alpha)=\frac{2}{\pi}\left\{K(\alpha) E\left(\varphi \backslash 90^{\circ}-\alpha\right)-(K(\alpha)-E(\alpha)) \cdot F\left(\varphi \backslash 90^{\circ}-\alpha\right)\right\}
$$

Let $m=\sin ^{2} \alpha$. Then lambda function is obtained from the following equations.

$$
\begin{aligned}
K(\alpha) & =K(m) \\
E\left(\varphi \backslash 90^{\circ}-\alpha\right) & =E(\sin \varphi, 1-m) \\
E(\alpha) & =E(m) \\
F\left(\varphi \backslash 90^{\circ}-\alpha\right) & =F(\sin \varphi, 1-m)
\end{aligned}
$$

(Refer to bibliography reference (1).)
(3) Legendre function

- $x>1.0$:

$$
\begin{aligned}
P_{-1 / 2}(x) & =\frac{2}{\pi} \sqrt{\frac{2}{x+1}} K\left(\frac{x-1}{x+1}\right) \\
P_{1 / 2}(x) & =\frac{2}{\pi} \sqrt{x-\sqrt{x^{2}-1}} E\left(\frac{2 \sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}\right) \\
Q_{-1 / 2}(x) & =\sqrt{\frac{2}{x+1}} K\left(\frac{2}{x+1}\right) \\
Q_{1 / 2}(x) & =x \sqrt{\frac{2}{x+1}} K\left(\frac{2}{x+1}\right)-\sqrt{2(x+1)} E\left(\frac{2}{x+1}\right)
\end{aligned}
$$

- $x \leq 1.0$:

$$
\begin{aligned}
P_{-1 / 2}(x) & =\frac{2}{\pi} K\left(\frac{1-x}{2}\right) \\
P_{1 / 2}(x) & =\frac{2}{\pi}\left\{2 E\left(\frac{1-x}{2}\right)-K\left(\frac{1-x}{2}\right)\right\} \\
Q_{-1 / 2}(x) & =K\left(\frac{1+x}{2}\right) \\
Q_{1 / 2}(x) & =K\left(\frac{1+x}{2}\right)-2 E\left(\frac{1+x}{2}\right)
\end{aligned}
$$

(E and K are complete elliptic integrals)

2.1.3 Reference Bibliography

(1) Abramowitz, M. and Stegur, I. A. , eds. , "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables", Dover Publications, Inc. (1965).
(2) Hart, J. F. , ed. , "Computer approximation", John Wiley and Sons (1968).
(3) Cody W. J., Strecok A. J. and Thacher H. C. , "Chebyshev approximations for the psi function", Math. Comp., Vol.27, No.121, pp.123-127 (1973).
(4) Cody W. J. and Thacher H. C. , "Rational Chebyshev approximations for the exponential integral $E_{1}(x)$ ", Math. Comp. , Vol.22, pp.641-649 (1968).
(5) Cody W. J. and Thacher H. C., "Chebyshev approximations for the exponential integral $E_{i}(x)$ ", Math. Comp. , Vol.23, pp.289-303 (1969).
(6) Cody W. J. , Paciorek K. A. and Thacher H. C. Jr. , "Chebyshev approximations for Dawson's integral", Math. Comp. , Vol.24, pp.171-178 (1970).
(7) Luke Y. L., "The special functions and their approximations, II", Academic Press, (1969).

2.2 BESSEL FUNCTIONS

2.2.1 ASL_wibj0x, ASL_vibj0x

Bessel Function of the 1st Kind (Order 0)

(1) Function

For $x=X_{i}$, calculates values of the Bessel function of the 1st kind (order 0)

$$
J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin (t)) d t
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_wibj0x (nv, xi, xo); }
$$

Single precision:
ierr $=$ ASL_vibj0x (nv, xi, xo);
(3) Arguments and Return Value

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

long as for 64bit Integer\end{array}\right\}\)

No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	nv	I	1	Input	number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Input	X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Output	$J_{0}\left(X_{i}\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n v \geq 1$
(b) $|\mathrm{xi}[\mathrm{i}-1]| \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by xi $[\mathrm{i}-$ $1]$.	

(6) Notes
(a) Bessel function of the 1st kind $J_{\nu}(z)$ is the basic solution of Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{z}{2}\right)^{2 m}
$$

(b) Bessel function of the 1st kind is also called cylindrical function of the 1st kind.
(7) Example
(a) Problem

Obtain $J_{0}(x)$ for $x=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

```
/* C interface example for ASL_wibj0x */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
#include <stdio.h>
#include <stdlib.h>
#include <asl.h>
int main()
    double *xt;
    double *xo;
    int nv;
    int nv;
    int ierr;
    nv=10;
    xt=(double *)malloc((size_t)(sizeof(double) * nv));
    if( xt == NULL )
        printf("no enough memory for array xt\n");
        return -1;
    }
    xo=(double *)malloc((size_t)(sizeof(double) * nv));
    if( xo == NULL )
        printf("no enough memory for array xo\n")
        preturn -1;
    }
    printf( " *** ASL_wibj0x ***\n" );
    printf( "\n ** Input **\n\n" );
    for(i=0;i<nv;i++)
    {
    xt[i]=i;
    xt[i]=xt[i]/nv;
    printf( "\t xt = %8.3g\n", xt[i] );
    ierr = ASL_wibj0x(nv,xt, xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of JO(x)\n\n" );
    for(i=0;i<nv;i++)
    printf( "\t xo = %8.3g\n", xo[i] );
        free(xt);
        free(xo);
    return 0;
}
(c) Output results
\begin{tabular}{cc} 
*** ASL_wibj0x & *** \\
\(* *\) Input & \\
** & \\
xt \(=\) & 0 \\
\(x t=\) & 0.1 \\
\(x t=\) & 0.2 \\
\(x t=\) & 0.3 \\
\(x t=\) & 0.4 \\
\(x t=\) & 0.5
\end{tabular}
```

		0.6
		0.7
		0.8
	$=$	0.9
** Output **		
ierr		0
Value of JO(x)		
		1
xo	=	0.998
		0.99
		0.978
xo	=	0.96
		0.938
xo		0.912
xo	=	0.881
xo		0.846
	=	0.808

2.2.2 ASL_wiby0x, ASL_viby0x

Bessel Function of the 2nd Kind (Order 0)

(1) Function

For $x=X_{i}$, calculates values of the Bessel function of the 2 nd kind (order 0)

$$
Y_{0}(x)=-\frac{2}{\pi} \int_{0}^{\infty} \cos (x \cosh (t)) d t \quad(x>0.0)
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_wiby0x (nv, xi, xo); }
$$

Single precision:

$$
\text { ierr }=\text { ASL_viby0x (nv, xi, xo); }
$$

(3) Arguments and Return Value

D:Double precision real R :Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	nv	I	1	Input	number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Input	X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Output	$Y_{0}\left(X_{i}\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n v \geq 1$
(b) $\mathrm{xi}[\mathrm{i}-1] \geq 0.0$
(c) $\operatorname{xi}[i-1] \leq M$
where $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
2000	xi $[\mathrm{i}-1]=0.0$ (overflow)	xo $[\mathrm{i}-1]=$ (Minimum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) or (c) was not satisfied by xi $[\mathrm{i}-1]$.	

(6) Notes
(a) Bessel function of the 2nd kind $Y_{\nu}(z)$ is the basic solution of Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi}
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
Y_{n}(z)=\lim _{\nu \rightarrow n} Y_{\nu}(z)
$$

(b) Bessel function of the 2nd kind is also called cylindrical function of the 2nd kind.
(c) The Neumann function $N_{\nu}(z)$ is the same as the Bessel function of the 2nd kind $Y_{\nu}(z)$.

(7) Example

(a) Problem

Obtain $Y_{0}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program
/* C interface example for ASL_wiby0x */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xo
int nv;
int ierr;
nv=10;
xt=(double *)malloc((size_t) (sizeof(double) * nv));
if ($\mathrm{xt}==$ NULL $)$
printf("no enough memory for array xt\n");
return -1 ;
\}
xo=(double *)malloc((size_t) (sizeof(double) * nv)); if (xo == NULL)
printf("no enough memory for array xo\n");
\}
printf(" $\quad * * *$ ASL_Wiby0x $\left.* * * \backslash \mathrm{n}^{\prime \prime}\right)$;
printf ("\n $\quad * *$ Input $* * \backslash n \backslash n ")$;
for (i=0;i<nv;i++)
xt $[i]=i+1$;
$x t[i]=x t[i] / n v$;
printf("\t $x t=\% 8.3 g \backslash n ", x t[i])$;
$\left.{ }^{\mathbf{p}}\right\}$
ierr $=A S L _w i b y 0 x(n v, x t, x o)$;
printf ("\n $\quad * *$ Output $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
printf("\tierr $=\% 6 d \backslash n "$, ierr);
printf("\n\tValue of $\mathrm{YO}(\mathrm{x}) \backslash \mathrm{n} \backslash \mathrm{n} ")$;
for (i=0;i<nv;i++)
printf("\t xo $=\% 8.3 g \backslash n ", x o[i])$;
free (xt) ;
return 0;
\}
(c) Output results

```
*** ASL_wiby0x ***
** Input **
\begin{tabular}{rr}
\(\mathrm{xt}=\) & 0.1 \\
\(\mathrm{xt}=\) & 0.2 \\
\(\mathrm{xt}=\) & 0.3 \\
\(\mathrm{xt}=\) & 0.4 \\
\(\mathrm{xt}=\) & 0.5 \\
\(\mathrm{xt}=\) & 0.6 \\
\(\mathrm{xt}=\) & 0.7 \\
\(\mathrm{xt}=\) & 0.8 \\
\(\mathrm{xt}=\) & 0.9 \\
\(\mathrm{xt}=\) & 1
\end{tabular}
** Output **
ierr = 0
Value of YO(x)
xo = -1.53
x0 = -1.08
x0 = -0.807
xo = -0.606
xo = -0.445
xo = -0.309
x0 = -0.191
xo = -0.0868
xo = 0.00563
xo = 0.0883
```


2.2.3 ASL_wibj1x, ASL_vibj1x

Bessel Function of the 1st Kind (Order 1)

(1) Function

For $x=X_{i}$, calculates values of the Bessel function of the 1st kind (order 1)

$$
J_{1}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin (t)-t) d t
$$

(2) Usage

Double precision:
ierr = ASL_wibj1x (nv, xi, xo);

Single precision:

$$
\text { ierr }=\text { ASL_vibj1x (nv, xi, xo); }
$$

(3) Arguments and Return Value

D:Double precision real R :Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	nv	I	1	Input	number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Input	X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Output	$J_{1}\left(X_{i}\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n v \geq 1$
(b) $|x i[i-1]| \leq M$
with $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by xi[i - $1]$.	

(6) Notes

(a) Bessel function of the 1st kind $J_{\nu}(z)$ is the basic solution of Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{z}{2}\right)^{2 m}
$$

(b) Bessel function of the 1st kind is also called cylindrical function of the 1st kind.
(7) Example
(a) Problem

Obtain $J_{1}(x)$ for $x=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

```
/* C interface example for ASL_wibj1x */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
#include <stdio.h>
#include <stdlib.h>
#include <asl.h>
int main()
    double *xt;
    double *xo;
    int nv;
    int ierr;
    nv=10;
    xt=(double *)malloc((size_t)(sizeof(double) * nv));
    if( xt == NULL )
        printf("no enough memory for array xt\n");
        return -1;
    }
    xo=(double *)malloc((size_t)(sizeof(double) * nv));
    if( xo == NULL )
        printf("no enough memory for array xo\n");
    }
    printf( " *** ASL_wibj1x ***\n" );
    printf( "\n ** Input **\n\n" );
    for(i=0;i<nv;i++)
    {
    xt[i]=i;
    xt[i]=i;
    printf( "\t xt = % 8.3g\n", xt[i] );
    }
    ierr = ASL_wibj1x(nv,xt, xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of J1(x)\n\n" );
    for(i=0;i<nv;i++)
    printf('"\t xo = %8.3g\n", xo[i] );
        free(xt);
        free(xo);
    return 0;
}
(c) Output results
```


$\begin{array}{ll}\mathrm{xt}= & 0.6 \\ \mathrm{xt}= & 0.7\end{array}$

$\begin{array}{ll}\mathrm{xt}= & 0.8 \\ \mathrm{xt}= & 0.9\end{array}$
** Output **
ierr $=0$
Value of $\mathrm{J} 1(\mathrm{x})$
$\begin{array}{lr}\mathrm{xo}= & 0 \\ \mathrm{xo}= & 0.0499\end{array}$
$\mathrm{xo}=0.0499$
$\mathrm{xo}=0.0995$
$\mathrm{xo}=0.0995$
$\mathrm{xo}=0.148$
$x 0=0.148$
$x 0=0.196$
$\mathrm{xo}=0.196$
$\mathrm{xo}=0.242$
$\mathrm{xo}=0.287$
$\mathrm{xo}=0.329$
$\mathrm{xo}=\quad 0.369$
$\mathrm{xo}=0.306$

2.2.4 ASL_wiby1x, ASL_viby1x

Bessel Function of the 2nd Kind (Order 1)

(1) Function

For $x=X_{i}$, calculates values of the Bessel function of the 2 nd kind (order 1)

$$
Y_{1}(x)=\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin (t)-t) d t-\frac{1}{\pi} \int_{0}^{\infty} e^{-x \sinh (t)}\left[e^{t}-e^{-t}\right] d t
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_wiby1x (nv, xi, xo); }
$$

Single precision:

$$
\text { ierr }=\text { ASL_viby1x (nv, xi, xo); }
$$

(3) Arguments and Return Value

D:Double precision real
R:Single precision real
:---
C:Single precision complex

long as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $n v \geq 1$
(b) $\mathrm{xi}[\mathrm{i}-1] \geq 0.0$
(c) $\operatorname{xi}[i-1] \leq M$
where $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
$2000+i$	xi $[\mathrm{i}-1] \quad \leq \quad 1.0 /($ Maximum value) (overflow)	xo[i-1]= (Minimum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) or (c) was not satisfied by xi[i-1].	

(6) Notes
(a) Bessel function of the 2nd kind $Y_{\nu}(z)$ is the basic solution of Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi}
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
Y_{n}(z)=\lim _{\nu \rightarrow n} Y_{\nu}(z)
$$

(b) Bessel function of the 2nd kind is also called cylindrical function of the 2nd kind.
(c) The Neumann function $N_{\nu}(z)$ is the same as the Bessel function of the 2nd kind $Y_{\nu}(z)$.

(7) Example

(a) Problem

Obtain $Y_{1}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program
/* C interface example for ASL_wiby1x */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xo
int nv;
int ierr;
nv=10;
xt=(double *)malloc((size_t) (sizeof(double) * nv));
if ($\mathrm{xt}==$ NULL $)$
printf("no enough memory for array xt\n");
return -1 ;
\}
xo=(double *)malloc((size_t) (sizeof(double) * nv)); if (xo == NULL)
printf("no enough memory for array $x o \backslash n ")$;
\}
printf(" $\quad * * *$ ASL_Wiby1x $\left.* * * \backslash \mathrm{n}^{\prime \prime}\right)$;
printf ("\n $* *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
for (i=0;i<nv;i++)
xt [i] =i+1;
$x t[i]=x t[i] / n v$;
printf("\t xt $=\% 8.3 g \backslash n ", x t[i])$;
\}
ierr $=A S L _w i b y 1 x(n v, x t, x o)$;
printf ("\n $\quad * *$ Output $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
printf("\tierr $=\% 6 d \backslash n "$, ierr);
printf("\n\tValue of $\mathrm{Y} 1(\mathrm{x}) \backslash \mathrm{n} \backslash \mathrm{n} ")$;
for (i=0;i<nv;i++)
printf("\t xo $=\% 8.3 g \backslash n ", x o[i])$;
free (xt) ;
return 0;
\}
(c) Output results
*** ASL_wiby1x ***
** Input **

$\mathrm{xt}=$	0.1
$\mathrm{xt}=$	0.2
$\mathrm{xt}=$	0.3
$\mathrm{xt}=$	0.4
$\mathrm{xt}=$	0.5
$\mathrm{xt}=$	0.6
$\mathrm{xt}=$	0.7
$\mathrm{xt}=$	0.8
$\mathrm{xt}=$	0.9
$\mathrm{xt}=$	1

** Output **
ierr $=0$
Value of Y1(x)

$\mathrm{xo}=$	-6.46
$\mathrm{xo}=$	-3.32
$\mathrm{xo}=$	-2.29
$\mathrm{xo}=$	-1.78
xo $=$	-1.47
xo $=$	-1.26
xo $=$	-1.1
xo $=$	-0.978
xo $=$	-0.873
xo $=$	-0.781

2.2.5 ASL_dibjnx, ASL_ribjnx

Bessel Function of the 1st Kind (Integer Order)

(1) Function

Calculates a value of the Bessel function of the 1st kind (integer order)

$$
J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin (t)-n t) d t
$$

(2) Usage

Double precision:
ierr $=$ ASL_dibjnx ($n, ~ x i, \& x o$);
Single precision:

$$
\text { ierr }=\text { ASL_ribjnx (n, xi, \&xo); }
$$

(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	xi	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $J_{n}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) \mid xi $\mid \leq M$ where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\|n\|\left(\log _{e}\left\|\frac{n}{x}\right\|-M_{1}\right)>M_{2}$ (See Note (c)) $(\mathrm{xi} \neq 0.0$ and $\mathrm{n} \neq 0)$ (underflow)	xo $=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $J_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{n}|<1000$ and $|x i|<1000.0$.
(b) To calculate $J_{n}(x), J_{n+1}(x), J_{n+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this function repeatedly. The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation:

$$
J_{n-1}=\frac{2 n}{x} J_{n}(x)-J_{n+1}(x)
$$

(c) When ierr becomes 1000 in this function, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Bessel function of the 1st kind $J_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{z}{2}\right)^{2 m} .
$$

(e) Bessel function of the 1st kind is also called cylindrical function of the 1st kind.

(7) Example

(a) Problem

Obtain the value of $J_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data

$$
\mathrm{n}=5 \text { and } \mathrm{xi}=1.5 .
$$

(c) Main program

```
/* C interface example for ASL_dibjnx */
#include <stdio.h>
#include <asl.h>
{nt main()
    int nt;
    double xt
    double xo;
    int ierr;
    FILE *fp;
    fp = fopen( "dibjnx.dat", "r" );
    if( fp == NULL )
    {
        printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_dibjnx ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%d", &nt );
    fscanf( fp, "%lf", &xt );
    printf( "\tn = %6d\t\txi = %8.3g\n", nt, xt );
    fclose( fp );
    ierr = ASL_dibjnx(nt, xt, &xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of Jn(x)\n\n" );
```

```
printf( "\t xo = %8.3g\n", xo );
```

return 0;
$\}$
(d) Output results
*** ASL_dibjnx ***
** Input **
$\mathrm{n}=\quad 5 \quad \mathrm{xi}=\quad 1.5$
** Output **
ierr $=0$
Value of $\mathrm{Jn}(\mathrm{x})$
$\mathrm{xo}=0.0018$

2.2.6 ASL_dibynx, ASL_ribynx

Bessel Function of the 2nd Kind (Integer Order)

(1) Function

Calculates a value of the Bessel function of the 2nd kind (integer order)

$$
Y_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin (t)-n t) d t-\frac{1}{\pi} \int_{0}^{\infty} e^{-x \sinh (t)}\left[e^{n t}+(-1)^{n} e^{-n t}\right] d t
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_dibynx (n, xi, \&xo); }
$$

Single precision:

$$
\text { ierr }=\text { ASL_ribynx (n, xi, \&xo); }
$$

(3) Arguments and Return Value

D:Double precision real
R:Single precision real
:---
C:Single precision complex

long as for 64bit Integer\end{array}\right\}\)

No.	Argument and Return Value	Type	Size	Input/ Output	
1	n	I	1	Input	Order n
2	xi	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $Y_{n}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $\mathrm{xi} \geq 0.0$
(b) $\mathrm{xi} \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
2000	xi $\leq 2.0 /($ Maximum value)	If $\mathrm{n} \geq 0$, xo $=$ (Minimum value) is per- or $\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}$ (See Note (c)) $(\mathrm{xi} \neq 0.0$ and $\mathrm{n} \neq 0)$ (overflow) If $\mathrm{n}<0$, xo $=($ Minimum value $) \times(-1)^{\mathrm{n}}$ is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $Y_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{n}|<1000$ and $\mathrm{xi}<1000.0$.
(b) To calculate $Y_{n}(x), Y_{n+1}(x), Y_{n+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this function repeatedly.
Recurrence relation:

$$
Y_{n+1}(x)=\frac{2 n}{x} Y_{n}(x)-Y_{n-1}(x)
$$

(c) When ierr becomes 2000 in this function, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Bessel function of the 2nd kind $Y_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi}
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
Y_{n}(z)=\lim _{\nu \rightarrow n} Y_{\nu}(z)
$$

(e) Bessel function of the 2nd kind is also called cylindrical function of the 2nd kind.
(f) The Neumann function $N_{\nu}(z)$ is the same as the Bessel function of the 2nd kind $Y_{\nu}(z)$.

(7) Example

(a) Problem

Obtain the value of $Y_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{n}=5$ and $\mathrm{xi}=1.5$.
(c) Main program
/* C interface example for ASL_dibynx */
\#include <stdio.h>
\#include <asl.h>
int main()
int nt ;
double xi;
double xo;
int ierr;
$\mathrm{fp}=$ fopen("dibynx.dat", "r");
if ($\mathrm{fp}==\mathrm{NULL}$)
$\{$
printf("file open error $\backslash n$ ");
\}
printf(" $\quad * * *$ ASL_dibynx $* * * \backslash \mathrm{n} ")$;
printf ("\n $\quad * *$ Input $* * \backslash n \backslash n ")$;
fscanf(fp, "\%d", \&nt);
fscanf(fp, "\%lf", \&xi);
printf("\tn $=\% 6 d \backslash t \backslash t x i=\% 8.3 g \backslash n ", ~ n t, x i)$;
fclose(fp);
ierr = ASL_dibynx(nt, xi, \&xo);

```
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\tValue of Yn(x)\n\n" );
printf( "\t xo = %8.3g\n", xo );
return 0;
}
```

(d) Output results

```
*** ASL_dibynx ***
    ** Input **
n = 5 xi = 1.5
** Output **
```

ierr $=0$
Value of $\mathrm{Yn}(\mathrm{x})$
$\mathrm{xo}=-37.2$

2.2.7 ASL_dibjmx, ASL_ribjmx

Bessel Function of the 1st Kind (Real Number Order)

(1) Function

Calculates a value of the Bessel function of the 1st kind (real number order)

$$
J_{\nu}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin (t)-\nu t) d t-\frac{\sin (\pi \nu)}{\pi} \int_{0}^{\infty} e^{-x \sinh (t)} e^{-\nu t} d t
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_dibjmx (r, xi, \&xo); }
$$

Single precision:
ierr = ASL_ribjmx (r, xi, \&xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	r	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Order ν
2	xi	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $J_{\nu}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) When r corresponds with an integer:
$|\mathrm{r}| \leq M_{1}$
$|\mathrm{xi}| \leq M_{2}$
(b) When r does not correspond with an integer:
$0<\mathrm{r} \leq M_{1}$
$0<\mathrm{xi} \leq M_{2}$
where, $M_{1}=\left\{\right.$ double precision: 2^{31}, single precision: $\left.2^{31}\right\}$,
$M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\nu\left(\log _{e} \frac{\nu}{x}-M_{3}\right)>M_{4}$ (See Note (e)) (xi \neq	xo $=0.0$ is performed.
	0.0 and $\mathrm{r} \neq 0.0)$ (underflow)	
	(Note: When ν corresponds with an inte-	
ger, $\|\nu\|$ and $\|x\|$ are used for judging.)		
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes
(a) The computation time of $J_{\nu}(x)$ becomes longer as x and n increase. Generally it is desirable to set $\mathrm{r}<1000.0$ and $\mathrm{xi}<1000.0$.
(b) If the order is half an integer (a half of an odd integer), the spherical Bessel function should be used instead.

$$
J_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} j_{n}(x)
$$

(c) If ν is negative and is not an integer, the Bessel function of the 1st kind cannot be calculated by using this function. Therefore, it should be calculated by using a recurrence relation.
(d) To calculate $J_{\nu}(x), J_{\nu+1}(x), J \nu+2(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this function repeatedly. The computation, however, becomes unstable if it is done with increasing ν. Therefore the recurrence relation should be used with decreasing ν. Recurrence relation:

$$
J_{\nu-1}(x)=\frac{2 \nu}{x} J_{\nu}(x)-J_{\nu+1}(x)
$$

(e) When ierr becomes 1000 in this function, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(f) Bessel function of the 1st kind $J_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{z}{2}\right)^{2 m} .
$$

(g) Bessel function of the 1st kind is also called cylindrical function of the 1st kind.

(7) Example

(a) Problem

Obtain the value of $J_{\nu}(x)$ at $x=1.5$ for $\nu=3.3$.
(b) Input data
$\mathrm{r}=3.3$ and $\mathrm{xi}=1.5$.
(c) Main program

```
/* C interface example for ASL_dibjmx */
#include <stdio.h>
#include <asl.h>
int main()
    double r;
    double xi;
    double xo;
    int ierr;
    FILE *fp;
    fp = fopen( "dibjmx.dat", "r" );
    if( fp == NULL )
    {
        printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_dibjmx ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%lf", &r );
    fscanf( fp, "%lf", &xi);
    printf( "\tr = %8.3g\t\txi = %8.3g\n", r, xi );
    fclose( fp );
    ierr = ASL_dibjmx(r, xi, &xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of Jm(x)\n\n" );
    printf( "\t xo = %8.3g\n", xo );
    return 0;
}
```

(d) Output results

```
*** ASL_dibjmx ***
    ** Input **
    r = 3.3 xi = 1.5
    ** Output **
ierr = 0
Value of Jm(x)
    xo = 0.0383
```


2.2.8 ASL_dibymx, ASL_ribymx

Bessel Function of the 2nd Kind (Real Number Order)

(1) Function

Calculates a value of the Bessel function of the 2nd kind (real number order)

$$
Y_{\nu}(x)=\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin (t)-\nu t) d t-\frac{1}{\pi} \int_{0}^{\infty} e^{-x \sinh (t)}\left[e^{\nu t}+\cos (\pi \nu) e^{-\nu t}\right] d t
$$

(2) Usage

Double precision:
ierr $=$ ASL_dibymx (r, xi, \&xo);
Single precision:

$$
\text { ierr }=\text { ASL_ribymx (r, xi, \&xo); }
$$

(3) Arguments and Return Value
D:Double precision real

| R:Souble precision complex |
| :---: | :---: | :---: | :---: | :---: | :--- |
| R:Single precision real |\quad I: \(\left\{\begin{array}{l}int as for 32bit Integer

long as for 64bit Integer\end{array}\right\}\)

No.	Argument and Return Value	Type	Size	Input/ Output	
1	r	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Order ν
2	xi	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $Y_{\nu}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) When r corresponds with an integer,
$|\mathrm{r}| \leq M_{1}$
(b) When r does not corresponds with an integer,
$0<r \leq M_{1}$
where, $M_{1}=\left\{\right.$ double precision: 2^{31}, single precision: $\left.2^{31}\right\}$
(c) $\mathrm{xi} \geq 0.0$
(d) $\mathrm{xi} \leq M_{2}$
where, $M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$

(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
2000	$\begin{aligned} & \text { xi } \leq 2.0 /(\text { Maximum value) } \\ & \text { or } \nu\left(\log _{e} \frac{\nu}{x}-M_{3}\right)>M_{4} \text { (See Note (e)) } \\ & (\text { xi } \neq 0.0 \text { and } \mathrm{r} \neq 0) \text { (overflow) } \end{aligned}$ Note: When ν corresponds with an integer, $\|\nu\|$ is used for judging.	xo $=$ (Minimum value) is performed. Note: If $\mathrm{r}<0$, xo $=(-1)^{\mathrm{r}+1} \times$ (Maximum value) is performed.
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.

(6) Notes
(a) The Bessel function of the 2 nd kind $N_{n}(x)$ is the same as $Y_{n}(x)$.
(b) The computation time of $Y n(x)$ becomes longer as x and n increase. Generally it is desirable to set $\mathrm{r}<1000.0$ and $\mathrm{xi}<1000.0$.
(c) If the order is half an integer (a half of an odd integer), the spherical Bessel function should be used instead.

$$
Y_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} y_{n}(x)
$$

(d) If ν is negative and is not an integer, the Bessel function of the 1st kind cannot be calculated by using this function. Therefore, it should be calculated by using a recurrence relation.

$$
Y_{\nu-1}(x)=\frac{2 \nu}{x} Y_{\nu}(x)-Y_{\nu+1}(x)
$$

(e) To calculate $Y_{\nu}(x), Y_{\nu+1}(x), Y \nu+2(x), \cdots$ at a time, it is faster to successively use the recurrence relation than to call this function repeatedly.
(f) When ierr becomes 2000 in this function, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(g) Bessel function of the 2 nd kind $Y_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi}
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
Y_{n}(z)=\lim _{\nu \rightarrow n} Y_{\nu}(z)
$$

(h) Bessel function of the 2nd kind is also called cylindrical function of the 2nd kind.
(i) The Neumann function $N_{\nu}(z)$ is the same as the Bessel function of the 2nd kind $Y_{\nu}(z)$.

(7) Example

(a) Problem

Obtain the value of $Y_{\nu}(x)$ at $x=1.5$ for $\nu=3.3$.
(b) Input data
$\mathrm{r}=3.3$ and $\mathrm{xi}=1.5$.
(c) Main program

```
/* C interface example for ASL_dibymx */
#include <stdio.h>
#include <asl.h>
int main()
    double r;
    double xi;
    double xo;
    int lerr;
    FILE *fp;
    fp = fopen( "dibymx.dat", "r" );
    if( fp == NULL )
    {
        printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_dibymx ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%lf", &r );
    fscanf( fp, "%lf", &xi );
    printf( "\tr = %8.3g\t\txi = %8.3g\n", r, xi );
    fclose( fp );
    ierr = ASL_dibymx(r, xi, &xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of Ym(x)\n\n" );
    printf( "\t xo = %8.3g\n", xo );
    return 0;
}
```

(d) Output results

```
*** ASL_dibymx ***
** Input **
r = 3.3 xi = 1.5
** Output **
ierr = 0
Value of Ym(x)
xo = -2.9
```


2.2.9 ASL_zibjnz, ASL_cibjnz

Bessel Function of the 1st Kind with Complex Variable (Integer Order)

(1) Function

Calculates a value of the Bessel function of the 1st kind with complex variable (integer order)

$$
J_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin (t)-n t) d t
$$

(2) Usage

Double precision:
ierr = ASL_zibjnz (n, \&zi, \&zo);
Single precision:
ierr = ASL_cibjnz (n, \&zi, \&zo)
(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	zi	$\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}$	1	Input	Value of variable z
3	zo	$\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}$	1	Output	Value of $J_{n}(z)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $|\Im(\mathrm{zi})| \leq M_{1}$
where, $M_{1}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(b) $|\mathrm{zi}| \leq M_{2}$
where, $M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\|n\|\left(\log _{e} \frac{\|n\|}{z}-M_{3}\right)>M_{4}$ (See Note (c)) $(\|\mathrm{zi}\| \neq 0.0$ and $\mathrm{n} \neq 0)$ (underflow)	zo $=(0.0,0.0)$ is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $J_{n}(z)$ becomes longer as $|z|$ and n increase. Generally it is desirable to set $|\mathrm{n}|<1000$ and $|\mathrm{zi}|<1000.0$.
(b) To calculate $J_{n}(z), J_{n+1}(z), J_{n+2}(z), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this function repeatedly. The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation:

$$
J_{n-1}(z)=\frac{2 n}{z} J_{n}(z)-J_{n+1}(z)
$$

(c) When ierr becomes 1000 in this function, the values of M_{3} and M_{4} are as follows: $M_{3}=0.3068$, $M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Bessel function of the 1st kind $J_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{z}{2}\right)^{2 m} .
$$

(e) Bessel function of the 1st kind is also called cylindrical function of the 1st kind.

(7) Example

(a) Problem

Obtain the value of $J_{n}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{n}=3$ and $\mathrm{zi}=(1.0,2.0)$.
(c) Main program

```
/* C interface example for ASL_zibjnz */
#include <stdio.h>
#include <complex.h>
#include <asl.h>
int main()
    int n;
    double _Complex zi
    double _Complex zo;
    int lerr;
    fp = fopen( "zibjnz.dat", "r" );
    if( fp == NULL )
    {
        printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_zibjnz ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%d", &n );
    double tmp_re, tmp_im;
    fscanf( fp, "%lf", &tmp_re );
    fscanf( fp, "%lf", &tmp_im );
    zi = tmp_re + tmp_im * _Complex_I;
    printf( "\tn = %6d\t\tzi = (%8.3g,%8.3g)\n", n, creal(zi), cimag(zi) );
    fclose( fp );
    ierr = ASL_zibjnz(n, &zi, &zo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
```

```
printf( "\n\tValue of Jn(z)\n\n" );
printf( "\t zo = (%8.3g,%8.3g)\n", creal(zo), cimag(zo) );
return 0;
(d) Output results
```

```
*** ASL_zibjnz ***
```

*** ASL_zibjnz ***
** Input **
** Input **
n = 3 zi = (1, 2)
n = 3 zi = (1, 2)
** Output **
** Output **
ierr = 0
ierr = 0
Value of Jn(z)
Value of Jn(z)
zo = (-0.281, 0.0172)

```
    zo = ( -0.281, 0.0172)
```

\}

2.2.10 ASL_zibynz, ASL_cibynz

Bessel Function of the 2nd Kind with Complex Variable (Integer Order)
(1) Function

Calculates a value of the Bessel function of the 2nd kind with complex variable (integer order)

$$
Y_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \sin (z \sin (t)-n t) d t-\frac{1}{\pi} \int_{0}^{\infty} e^{-z \sinh (t)}\left[e^{n t}+(-1)^{n} e^{-n t}\right] d t
$$

(2) Usage

Double precision:
ierr = ASL_zibynz (n, \&zi, \&zo)

Single precision:

$$
\text { ierr }=\text { ASL_cibynz (n, \&zi, \&zo) }
$$

(3) Arguments and Return Value

D:Double precision real R :Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	zi	$\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}$	1	Input	Value of variable z
3	zo	$\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}$	1	Output	Value of $Y_{n}(z)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) \mid zi $\mid>0.0$
(b) $|\Im(\mathrm{zi})| \leq M_{1}$ where, $M_{1}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(c) $|\mathrm{zi}| \leq M_{2}$ where, $M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.	
4000	$\|\mathrm{zi}\| \leq 2.0 /($ Maximum value) or $\|n\|\left(\log _{e} \frac{\|n\|}{\|z\|}-M_{3}\right)>M_{4}$ (See Note (d)) $(\|\mathrm{zi}\| \neq 0.0$ and $\mathrm{n} \neq 0)$		

(6) Notes
(a) The Bessel function of the 2 nd kind $N_{n}(z)$ is the same as $Y_{n}(z)$.
(b) The computation time of $Y_{n}(z)$ becomes longer as $|z|$ and n increase. Generally it is desirable to set $|\mathrm{n}|<1000$ and $|\mathrm{zi}|<1000.0$.
(c) To calculate $Y_{n}(z), Y_{n+1}(z), Y_{n+2}(z), \cdots$ at a time, it is faster to successively use the recurrence relation than to call this function repeatedly.
Recurrence relation:

$$
Y_{n+1}(z)=\frac{2 n}{z} Y_{n}(z)-Y_{n-1}(z)
$$

(d) When ierr becomes 4000 in this function, the values of M_{3} and M_{4} are as follows:
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(e) Bessel function of the 2 nd kind $Y_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi}
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
Y_{n}(z)=\lim _{\nu \rightarrow n} Y_{\nu}(z)
$$

(f) Bessel function of the 2nd kind is also called cylindrical function of the 2nd kind.
(g) The Neumann function $N_{\nu}(z)$ is the same as the Bessel function of the 2nd kind $Y_{\nu}(z)$.

(7) Example

(a) Problem

Obtain the value of $Y_{n}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{n}=3$ and $\mathrm{zi}=(1.0,2.0)$.
(c) Main program
/* C interface example for ASL_zibynz */
\#include <stdio.h>
\#include <complex.h>
\#include <asl.h>
${ }_{\{ }^{\text {int }}$ main()
int nt;
double _Complex zt;
double _Complex zo;
int ierr;
FILE *fp;
$\mathrm{fp}=$ fopen("zibynz.dat", "r");
if ($f p==$ NULL $)$
\{
printf("file open error\n");
$\}$
printf(" $\quad * * *$ ASL_zibynz $* * * \backslash \mathrm{n} ")$;
printf ("\n $\quad * *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
fscanf(fp, "\%d", \&nt);
double tmp_re, tmp_im;
fscanf (fp, "\%lf", \&tmp_re);
fscanf(fp, "\%lf", \&tmp_im);
zt = tmp_re + tmp_im * _Complex_I;

```
printf( "\tn = %6d\t\tzi = (%8.3g,%8.3g)\n", nt, creal(zt), cimag(zt) );
fclose( fp );
ierr = ASL_zibynz(nt, &zt, &zo);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\tValue of Yn(z)\n\n" );
printf( "\t zo = (%8.3g,%8.3g)\n", creal(zo), cimag(zo) );
return 0;
```

\}
(d) Output results

```
*** ASL_zibynz ***
** Input **
n= 3 zi = ( 1, 2)
** Output **
ierr = 0
Value of Yn(z)
    zo = ( 0.29, -0.212)
```


2.3 ZERO POINTS OF THE BESSEL FUNCTIONS

2.3.1 ASL_dizbs0, ASL_rizbs0

Positive Zero Points of the Bessel Function of the 1st Kind (Order 0)
(1) Function

Obtain positive zero points of the Bessel function of the first kind of the order 0 .
(2) Usage

Double precision:
ierr = ASL_dizbs0 (n, z);

Single precision:
ierr $=$ ASL_rizbs0 (n, z);
(3) Arguments and Return Value
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}$

No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Number of zero points
2	z	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	n	Output	Zero points (stored in ascending order)
3	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $1 \leq \mathrm{n} \leq 50$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

None
(7) Example
(a) Problem

Set $\mathrm{N}=20$ to get the positive zero points of $J_{0}(x)$ to 20 -th one.
(b) Main program

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <math.h>
int main()
    double *z,y;
    int i,n,ierr;
    n=20;
    z=(double * )malloc((size_t)( sizeof(double)* n ));
    if(z == NULL )
        printf( "no enough memory for array z\n" );
        return -1;
    }
    printf( "\n\t *** ASL_dizbs0 \n\n" );
        printf( "\n\t input \n\n" );
        printf( "\n\t order of bessel function = 0\n\n");
        ierr = ASL_dizbs0(n, z);
        printf( "\\\\\t *** OUTPUT ***\n\n" );
        printf( "\n\tierr = %6d\n", ierr );
        printf( "\n\t zero points of the bessel function of the order 0\n\n");
        printf( "\n\t i z[i] abs error \n\n" );
        for ( i=0 ; i<n ; i++ )
            ierr=ASL_dibj0x(z[i],&y);
            printf( "\n%6d, %13.8g,%13.8g\n " ,i,z[i],y);
    free(z
    fret(z);
}
```

(c) Output results

```
*** ASL_dizbs0
input
order of bessel function = 0
*** OUTPUT ***
ierr = 0
zero points of the bessel function of the order 0
i z[i] abs error
0, 2.4048256, 0
1, 5.5200781,-5.5511151e-17
2, 8.6537279,-8.550601e-17
3, 11.791534,5.6074844e-16
4, 14.930918,3.1425706e-17
5, 18.071064,2.0607712e-17
6, 21.211637,2.3465576e-16
7, 24.352472,-2.8684606e-16
8, 27.493479,-1.6343398e-16
9, 30.634606,-4.6072464e-17
10, 33.77582,-1.7036219e-16
11, 36.917098,-4.5752467e-16
12, 40.058426,-3.7350766e-16
13, 43.199792,2.2315316e-16
```

14, $46.341188,4.1065487 \mathrm{e}-16$
15, $\quad 49.48261,3.5326335 \mathrm{e}-17$
16, $\quad 52.624052,2.9204024 \mathrm{e}-16$
17, $\quad 55.765511,-2.3113754 \mathrm{e}-16$
18, $58.906984,-8.4474973 e-17$
19, 62.048469,-8.6245239e-17

2.3.2 ASL_dizbs1, ASL_rizbs1

Positive Zero Points of the Bessel Function of the 1st Kind (Order 1)
(1) Function

Evaluate positive zero points of the Bessel function of the first kind of order 1.
(2) Usage

Double precision:
ierr = ASL_dizbs1 (n, z);

Single precision:
ierr $=$ ASL_rizbs1 (n, z);
(3) Arguments and Return Value
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}$

No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Number of zero points
2	z	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	n	Output	Positive zero points (stored in ascending order)
3	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $1 \leq \mathrm{n} \leq 50$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

None

(7) Example

(a) Problem

Set $\mathrm{N}=20$ to get positive zero points of $J_{1}(x)$ to 20 -th one.
(b) Main program

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <asl.h>
int main()
{nt
    double *z,y;
    int i,n,ierr;
    n=20;
    z=(double * )malloc((size_t)( sizeof(double)* n ));
    if( z == NULL )
        printf( "no enough memory for array z\n" );
        return -1;
    }
    printf( "\n\t *** ASL_dizbs1 \n\n" );
        printf( "\n\t input \n\n" );
        printf( "\n\t order of bessel function = 1\n\n");
        ierr = ASL_dizbs1(n, z);
        printf( ("\n\t *** OUTPUT' ***\n\n" );
        printf( "\n\tierr = %6d\n", ierr );
        printf( "\n\t zero points of the bessel function of the order 1\n\n");
        printf( "\n\t i z[i] abs error \n\n" );
        for ( i=0 ; i<n ; i++ )
            ierr=ASL_dibj1x(z[i],&y);
            printf( "\n%6d, %13.8g,%13.8g\n " ,i,z[i],y);
        }
        free(z);
}
```

(c) Output results

```
*** ASL_dizbs1
input
order of bessel function = 1
*** OUTPUT ***
ierr = 0
zero points of the bessel function of the order 1
i z[i] abs error
0, 3.831706, 0
1, 7.0155867,5.5511151e-17
2, 10.173468,8.9194811e-17
3, 13.323692,1.5873198e-16
4, 16.47063,1.8636384e-16
5, 19.615859,-2.8122313e-16
6, 22.760084,-2.4689546e-16
7, 25.903672,7.7711347e-17
8, 29.046829,-1.8668477e-16
9, 32.18968,3.5559172e-16
10, 35.332308,3.8406094e-16
11, 38.474766,3.3699954e-17
12, 41.617094,-5.1091421e-17
13, 44.759319,-1.6050153e-16
```

14, $47.901461,3.0616063 \mathrm{e}-16$
15, $51.043535,-1.9242396 \mathrm{e}-16$
16, $\quad 54.185554,1.3208823 \mathrm{e}-16$
17, $\quad 57.327525,-4.9030061 \mathrm{e}-17$
18, 60.469458,-1.2525988e-16
19, 63.611357,-7.8518163e-17

2.3.3 ASL_dizbsn, ASL_rizbsn

Positive Zero Points of Bessel Function of the 1st Kind (Integer Order)

(1) Function

Evaluate positive zero points of Bessel function of the first kind and integer order $J_{m}(x)$.
(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_dizbsn (n,m,lf, z, work); }
$$

Single precision:

$$
\text { ierr }=\text { ASL_rizbsn (n,m,lf, z, work); }
$$

(3) Arguments and Return Value

	ouble precision rea ngle precision real	Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Number of positive zero points
2	m	I	1	Input	m
3	lf	I	1	Input	Approximate magnification ratio
4	Z	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	n	Output	Positive zero points (stored in ascending order)
5	work	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	See Contents	Work	Work area size: $2 \times(\mathrm{lf} \times \mathrm{n}+1) \times(\mathrm{lf} \times \mathrm{n}+2)$
6	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $1 \leq \mathrm{n} \leq 50(\mathrm{~m}=-1,0,+1), 1 \leq \mathrm{n}$ (otherwise)
(b) lf ≥ 1
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
3500	The solution could not be improved.	
3600	The solution of eigenvalue problem was not obtained.	

(6) Notes

(a) n should be about 50 at most.
(b) Maximum iteration count for iterative improvement is $\operatorname{lf} \times \mathrm{n}$. This value is also used as the order of the eigenvalue problem which has to be solved to obtain an initial approximation value for iterative improvement. If this value is not sufficiently large, the precision for approximation of the initial value which is used in iterative improvement may become bad, which may cause ierr $=3500,3600$. On the other hand, if this value is too large, processing time required to calculate the initial approximation value which is used in iterative improvement becomes large. As a criterion, $n \times l f$ may be taken to be no less than 24 if m is around 10 , and may be taken to be no less than 30 if m is around 18 .
(c) For $m=-1,0,+1$, processing time becomes rather small because this function refers to an numerical table.
(7) Example
(a) Problem

Set $\mathrm{N}=20$ and $\mathrm{M}=10$ to obtain positive zero points of $J_{10}(x)$ to 20 -th one.
(b) Main program

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <asl.h>
int main()
{
        double *z;
    double *work;
    double *b;
        int i,ia,n,nn,ierr,i8;
    nn=2*(1+8*n)*(2+8*n)
        z=(double * )malloc((size_t)( sizeof(double)* n ));
        z=(double * NULL mal
            printf( "no enough memory for array z\n" );
            return -1;
        }}(\mathrm{ double * )malloc((size_t)(sizeof(double)* nn ))
    work=(double * )malloc((size_t)( sizeof(double)* nn ))
    if( work == NULL )
        printf( "no enough memory for array work \n" );
        return -1;
    }
    =(double * )malloc((size_t)( sizeof(double)* n ));
        if( b == NULL )
                    printf( "no enough memory for array b\n" );
                    return -1;
        printf( "\n\t *** ASL_dizbsn \n\n" )
    for ( ia = 10 ; ia< 11 ; ia++ )
    {
    printf( "\n\t \n\n" )
    printf( "\n\t *** INPUT order = %6d\n" , ia );
    ierr=ASL_dizbsn(n,ia,i8,z,work);
    printf( "\n\t *** OUTPUT ***\n\n" );
    printf( "\n\tierr = %6d\n", ierr );
    for (i=0 ; i<n ; i++ )
        ierr=ASL_dibjnx(ia,z[i],&b[i]);
    }
    printf( "\n\t i z[i] abs error \n\n" );
    for ( i=0 ; i<n ; i++ )
        printf( "\n%6d,%13.8g,%13.8g\n " ,i, z[i], b[i]);
    }
    free(z);
    free(work);
    free(b)
    return 0;
}
```

(c) Output results

*** ASL_dizbsn	
*	INPUT order $=10$
***	OUTPUT ***
ierr	$=0$
i	z[i] abs error
0 ,	14.475501,-1.6653345e-16
1,	18.433464,1.9428903e-16
2 ,	$22.046985,1.9428903 \mathrm{e}-16$
3 ,	25.509451,-2.6367797e-16
4,	$28.887375,1.3877788 \mathrm{e}-17$
5,	32.211856,-3.1918912e-16
6 ,	35.499909,4.4408921e-16
7 ,	38.761807,1.9428903e-16
8 ,	42.00419,5.5511151e-17
9,	45.231574,2.4980018e-16
10,	48.447151,-5.5511151e-17
11,	51.653252,1.6653345e-16
12,	54.851619, -1.5959456e-16
13,	$58.043588,-6.9388939 \mathrm{e}-17$
14,	61.230198, -3.400058e-16
15,	64.412272,3.5388359e-16
16,	67.590472,-3.5388359e-16
17,	70.765334,-6.0715322e-16
18,	$73.937299,4.6143644 \mathrm{e}-16$
19,	77.106734,-1.6306401e-16

2.3.4 ASL_dizbyn, ASL_rizbyn

Positive Zero Points of the Second Kind Bessel Function

(1) Function

Evaluate positive zero points of Bessel function of the second kind and integer order $Y_{m}(x)$.
(2) Usage

Double precision:
ierr = ASL_dizbyn (n, m, z, \&nconv);

Single precision:
ierr =ASL_rizbyn (n, m, z, \&nconv);
(3) Arguments and Return Value

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

long as for 64bit Integer\end{array}\right\}\)

No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Number of zero points
2	m	I	1	Input	Degree m
3	z	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	n	Output	Positive zeros (from smallest one)
4	nconv	I^{*}	1	Output	Maximum number of iteration
5	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n \geq 1$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
4000	The iterative improvement did not con- verge within the maximum number of iterations.	

(6) Notes
(a) The double precision version should be used to get zero points for the second kind Bessel function with the absolute value of the degree ≥ 5.

(7) Example

(a) Problem

For $Y_{10}(x)$, obtain zero points for 20 -th one.
(b) Input data
$\mathrm{n}=20$ and $\mathrm{m}=10$.
(c) Main program

```
/* C interface example for ASL_dizbyn */
#include <stdio.h>
#include <stdlib.h>
#include <asl.h>
int main()
    int n,m,ierr,nconv,i;
    double *z,derr;
    printf( ", *** ASL_dizbyn ***\n" );
    n=20;m=10;
    printf( "\n ** Input **\n\n" );
    z = ( double * )malloc(sizeof(double)*n);
    zif( z == NULL )
            printf( "no enough memory for array z\n");
    }
    printf( "\tn = %6d\n" , n );
    printf( "\tm = %6d\n" , m );
    ierr = ASL_dizbyn(n,m,z,&nconv);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\tnconv = %6d\n", nconv);
    printf( "\n\t Zero Point Valid" );
    for(i=0; i<n; i++)
            printf( "\n\t" );
            printf( "%6d",i);
            printf( "%8.3g",z[i]);
            printf( "\t ");
            ierr = ASL_dibynx(m, z[i], &derr);
            if( ierr > 0)
                    printf( "error in ASL_dibynx\n");
                    return -1;
            }
            printf( "%8.3g",derr);
        }
        printf( "\n" );
        free(z);
        return 0;
}
```

(d) Output results

```
*** ASL_dizbyn ***
    * Input **
\(\begin{array}{ll}\mathrm{n} & =20 \\ \mathrm{~m} & =10\end{array}\)
    * Output **
    ierr \(=0\)
    nconv \(=29\)
```

	Zero Point	Valid
0	12.1	$-3.35 \mathrm{e}-12$
1	16.5	$-4.68 \mathrm{e}-13$
2	20.3	$6.95 \mathrm{e}-14$
3	23.8	$-14.4 \mathrm{e}-13$
4	27.2	$-144 \mathrm{e}-14$
5	30.6	$-3.22 \mathrm{e}-14$
6	33.9	$1.78 \mathrm{e}-14$
7	37.1	$-3.57 \mathrm{e}-15$
8	40.4	$5.41 \mathrm{e}-16$
9	43.6	$3.98 \mathrm{e}-16$
10	46.8	$1.25 \mathrm{e}-15$
11	50.1	$-1.01 \mathrm{e}-15$
12	53.3	$1.94 \mathrm{e}-15$
13	56.4	$-1.96 \mathrm{e}-15$

16	66	$3.3 \mathrm{e}-15$
17	69.2	$-2.511-14$
18	72.4	$3.51 e-15$
19	75.5	$-4.1 \mathrm{e}-15$

2.3.5 ASL_dizbsl, ASL_rizbsl

Positive Zero Points of the Function $a J_{0}(\alpha)+\alpha J_{1}(\alpha)$

(1) Function

Evaluate the positive solutions α of the transcendental equation $a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0$
(2) Usage

Double precision:
ierr = ASL_dizbsl (n,a,lf, z, work);

Single precision:
ierr = ASL_rizbsl (n,a,lf, z, work);
(3) Arguments and Return Value

D:Double precision real R :Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Number of positive solutions
2	a	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	a
3	lf	I	1	Input	Approximate magnification ratio
4	z	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	n	Output	Positive solutions α (stored in ascending order)
5	work	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	See Contents	Work	Work area size: $2 \times(\mathrm{lf} \times \mathrm{n}+1) \times(\mathrm{lf} \times \mathrm{n}+2)$
6	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n \geq 1$
(b) If ≥ 1
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
3500	The solution could not be improved.	
3600	The solution of eigenvalue problem was not obtained.	

(6) Notes

(a) The effective range for parameter a (input value a) is $10^{-10} \leq|a| \leq 10^{4}$ or $a=0$.
(b) n should be about 50 at most.
(c) Maximum iteration count for iterative improvement is lf $\times \mathrm{n}$.
(d) As a criterion, lf may be taken to be about 8 .

(7) Example

(a) Problem

Set $a=-\beta \frac{J_{1}(\beta)}{J_{0}(\beta)}(\beta=2.304780), \mathrm{n}=20$ and lf=8 to obtain the positive solutions α of $a J_{0}(\alpha)+\alpha J_{1}(\alpha)=$ 0.
(b) Main program

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <asl.h>
int main()
    double *z;
    double *work;
    double a,f,d,p
    int i,n,nn,ierr,i8
        int i i i,n,nn,ierr,i8;
    nn=2*(1+8*n)*(2+8*n);
        z=(double * ) malíoc((size_t)( sizeof(double)* n ));
        if(z == NULL )
        printf( "no enough memory for array z\n" );
        return -1
        }}(\mathrm{ double *)malloc((size_t)( sizeof(double)* nn ));
    work=(double * )mal
        printf( "no enough memory for array work \n" );
        return -1;
    }
    b0=(double * )malloc((size_t)( sizeof(double)* n ))
        if( bO == NULL )
            printf( "no enough memory for array bO\n" );
        return -1;
        b1=(double * )malloc((size_t)( sizeof(double)* n ));
        if( b1 == NULL )
            printf( "no enough memory for array b1\n" );
                return -1;
        printf( "\n\t *** ASL_dizbsl \n\n" );
    =2.304780;
    ierr=ASL_dibj0x(a,&f);
    ierr=ASL_dibj1x(a,&d);
    a=-d*a/f;
    printf( "\n\t input : a \n\n" );
    printf( "\n%13.8g\n " ,a);
    ierr=ASL_dizbsl(n,a,i8,z,work)
    printf( "\n\t *** OUTPUT ***\n\n" );
    printf( "\n\tierr = %6d\n", ierr );
    for (i=0 ; i<n ; i++
        ierr=ASL_dibj0x(z[i],&b0[i]);
        ierr=ASL_dibj1x(z[i],&b1[i]);
    }
    printf( "\n\t i z[i] abs error \n\n" );
    for ( i=0 ; i<n ; i++ )
        p=a*b0[i]+b1[i]*z[i];
        printf( "\n%%d,%13.8g,%13.8g\n " ,i, z[i], p);
    }
    free(z);
    free(work);
    free(b0);
    free(b1);
    return 0;
}
```

(c) Output results

*** ASL_dizbsl	
input : a	
-23.456847	
*** OUTPUT ***	
ierr $=0$	
i	z[i] abs error
0 ,	2.30478, 0
1 ,	$5.2934884,1.3322676 \mathrm{e}-15$
2 ,	8.3065969,-4.8849813e-15
3 ,	11.333025,-1.2434498e-14
4,	14.371644,6.2172489e-15
5,	17.421959,-5.7731597e-15
6 ,	20.483189,4.4408921e-15
7 ,	23.554295,1.3322676e-15
8 ,	26.634127, 0
9 ,	29.721552,5.7731597e-15
10,	32.815519, -3.5527137e-15
11,	35.915098,1.4210855e-14
12,	$39.019482,-1.8651747 e-14$
13,	42.127984,1.5099033e-14
14,	$45.24002,-4.4408921 \mathrm{e}-16$
15,	48.355101, -6.6613381e-15
16,	$51.472814,1.5543122 \mathrm{e}-14$
17,	54.59281, 1.7319479e-14
18,	57.714796,2.3092639e-14
19,	60.838523,1.1990409e-14

2.4 MODIFIED BESSEL FUNCTIONS

2.4.1 ASL_wibi0x, ASL_vibi0x

Modified Bessel Function of the 1st Kind (Order 0)

(1) Function

For $x=X_{i}$, calculates values of the Modified Bessel function of the 1st kind (order 0)

$$
I_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{x \cos (t)} d t
$$

(2) Usage

Double precision:
ierr = ASL_wibi0x (nv, xi, xo);

Single precision:

$$
\text { ierr }=\text { ASL_vibi0x (nv, xi, xo); }
$$

(3) Arguments and Return Value

D:Double precision real R :Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	nv	I	1	Input	number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Input	X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Output	$I_{0}\left(X_{i}\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n v \geq 1$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing	
0	Normal termination.		
2000	Restriction (a) was not satisfied.	Processing is aborted.	
$2000+i$	\mid xi $[\mathrm{i}-1] \mid>\mathrm{M}$ (See Note (a) $)$ (overflow)	xo[i -1$] \quad=\quad$ (Maximum value) performed.	

(6) Notes
(a) When ierr $=2000$ in this function, the value of M is as follows:
$M=\{$ double precision: 713.067, single precision: 90.978$\}$
(b) Modified Bessel function of the 1st kind $I_{\nu}(z)$ is the particular solution of modified Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
I_{ \pm \nu}(z)=e^{\mp \sqrt{-1} \pi / 2} J_{ \pm \nu}(\sqrt{-1} z)
$$

(7) Example

(a) Problem

Obtain $I_{0}(x)$ for $x=0.0,0.1, \cdots, 0.9$.
(b) Main program

```
/* C interface example for ASL_wibiOx */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xo
int nv;
int i;
int ierr;
nv=10;
$\mathrm{xt}=($ double $*)$ malloc ((size_t) (sizeof (double) * nv));
if (xt == NULL)
printf("no enough memory for array $x t \backslash n$ ");
return -1
\}
xo=(double *)malloc ((size_t) (sizeof (double) * nv));
if (xo == NULL)
printf("no enough memory for array $x o \backslash n ")$;
return -1;
$\}$
printf(" $\quad * * *$ ASL_wibiOx $\left.* * * \backslash \mathrm{n}^{\prime \prime}\right)$;
printf("\n ** Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
for (i=0;i<nv;i++)
\{
xt [i]=i;
$x t[i]=x t[i] / n v$
printf("\t $x t=\% 8.3 g \backslash n ", x t[i])$;
\}
ierr $=$ ASL_wibiOx(nv,xt, xo);
printf("\n ** Output **\n\n");
printf("\tierr = \%6d\n", ierr);
printf("\n\tValue of $I 0(x) \backslash n \backslash n ")$;
for ($i=0$; $i<n v ; i++$)
printf("\t xo $=\% 8.3 \mathrm{~g} \backslash \mathrm{n} "$, xo[i])
free (xt) ;
free(xo) ;
return 0;
\}
(c) Output results

$* * *$ ASL_WibiOx	$* * *$
$* *$ Input	$* *$
$\mathrm{xt}=$	0
$\mathrm{xt}=$	0.1
$\mathrm{xt}=$	0.2
$\mathrm{xt}=$	0.3
$\mathrm{xt}=$	0.4
$\mathrm{xt}=$	0.5
$\mathrm{xt}=$	0.6
$\mathrm{xt}=$	0.7
$\mathrm{xt}=$	0.8
$\mathrm{xt}=$	0.9

[^0]
2.4.2 ASL_wibk0x, ASL_vibk0x

Modified Bessel Function of the 2nd Kind (Order 0)

(1) Function

For $x=X_{i}$, calculates values of the modified Bessel function of the 2 nd kind (order 0)

$$
K_{0}(x)=\int_{0}^{\infty} e^{-x \cosh (t)} d t
$$

(2) Usage

Double precision:
ierr $=$ ASL_wibk0x (nv, xi, xo);
Single precision:
ierr $=$ ASL_vibk0x (nv, xi, xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	nv	I	1	Input	number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Input	X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Output	$K_{0}\left(X_{i}\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n v \geq 1$
(b) $\mathrm{xi}[\mathrm{i}-1] \geq 0.0$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	xi $[\mathrm{i}-1]>\mathrm{M}$ (See Note (a)) (underflow)	xo[i-1]=0.0 is performed.
2000	xi $[\mathrm{i}-1]=0.0$ (overflow)	xo $[\mathrm{i}-1] \quad=\quad$ (Maximum value) performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+\mathrm{i}$	Restriction (b) was not satisfied by xi $[\mathrm{i}-$ $1]$.	

(6) Notes

(a) When ierr becomes 1000 in this function, the value of M is as follows:
$M=\{$ double precision: 705.117 , single precision: 85.114$\}$
(b) Modified Bessel function of the 2nd kind $K_{\nu}(z)$ is the particular solution of modified Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
K_{\nu}(z)=\frac{\pi}{2} \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
K_{n}(z)=\lim _{\nu \rightarrow n} K_{\nu}(z)
$$

(7) Example

(a) Problem

Obtain $K_{0}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program

```
/* C interface example for ASL_wibkOx */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
#include <stdio.h>
#include <stdlib.h>
#include <asl.h>
int main()
    double *xt;
    double *xo;
    int nv;
    int ierr;
    nv=10;
    xt=(double *)malloc((size_t)(sizeof(double) * nv));
    if( xt == NULL )
        printf("no enough memory for array xt\n")
        return -1;
    }
    xo=(double *)mal
        printf("no enough memory for array xo\n");
        return -1;
    }
    printf( " *** ASL_wibk0x ***\n" );
    printf( "\n ** Input **\n\n" );
    for(i=0;i<nv;i++)
    xt[i]=i+1;
    xt[i]=xt[i]/nv
    printf( "\t xt = %8.3g\n", xt[i] );
    } printf( "\t xt = %8.3g\n", xt[i] );
    ierr = ASL_wibk0x(nv,xt, xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of KO(x)\n\n" );
    for(i=0;i<nv;i++)
    printf('"\t xo = %8.3g\n", xo[i] );
        free(xt)
        free(xo);
    return 0;
}
```

(c) Output results

2.4.3 ASL_wibi1x, ASL_vibi1x

Modified Bessel Function of the 1st Kind (Order 1)
(1) Function

For $x=X_{i}$, calculates values of the modified Bessel function of the 1st kind (order 1)

$$
I_{1}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{x \cos (t)} \cos (t) d t
$$

(2) Usage

Double precision:
ierr = ASL_wibi1x (nv, xi, xo);

Single precision:
ierr = ASL_vibi1x (nv, xi, xo);
(3) Arguments and Return Value

D:Double precision real
R:Single precision real
:---
C:Single precision complex

long as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $n v \geq 1$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
2000	Restriction (a) was not satisfied.	Processing is aborted.
$2000+\mathrm{i}$	\mid xi $[\mathrm{i}-1] \mid>$ M (See Note (a) $)$	In the case where xi $[\mathrm{i}-1] \geq 0.0$, (overflow)
	xo $[\mathrm{i}-1]=$ (Maximum value) is per- formed. In the case where xi $[\mathrm{i}-1]<0.0$, xo $[\mathrm{i}-1]=-($ Maximum value $)$ is performed.	

(6) Notes
(a) When ierr becomes 2000 in this function, the value of M is as follows:
$M=\{$ double precision: 713.067 , single precision: 90.978$\}$
(b) Modified Bessel function of the 1st kind $I_{\nu}(z)$ is the particular solution of modified Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
I_{ \pm \nu}(z)=e^{\mp \sqrt{-1} \pi / 2} J_{ \pm \nu}(\sqrt{-1} z)
$$

(7) Example

(a) Problem

Obtain $I_{1}(x)$, for $x=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

```
/* C interface example for ASL_wibi1x */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <stdlib.
int main()
double *xt
double *xo
int nv;
int i;
int ier
nv=10;
xt=(double *)malloc ((size_t) (sizeof (double) * nv));
if ($\mathrm{xt}==$ NULL)
printf("no enough memory for array $x t \backslash n$ ");
\}
xo=(double *)malloc((size_t) (sizeof(double) * nv));
if(xo == NULL)
printf("no enough memory for array xo\n");
\}
printf(" $\quad * * *$ ASL_wibi1x $\left.* * * \backslash \mathrm{n}^{\prime \prime}\right)$;
printf ("\n $\quad * *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
for (i=0;i<nv;i++)
xt [i]=i;
xt[i]=xt[i]/nv;
printf("\t xt = \%8.3g\n", xt[i]);
\}
ierr = ASL_wibi1x(nv,xt, xo);
printf("\n $\quad * *$ Output $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
printf ("\tierr $=\% 6 d \backslash n "$, ierr);
printf("\n\tValue of $I 1(x) \backslash n \backslash n ")$;
for (i=0;i<nv;i++)
printf(" "\t xo = \%8.3g\n", xo[i]);
free (xt) ;
free (xt) ;
free (xo);
return 0;
\}
(c) Output results

```
*** ASL_Wibi1x ***
    ** Input **
    xt = rra
```

$\mathrm{xt}=$	0.3
$\mathrm{xt}=$	0.4
$\mathrm{xt}=$	0.5
$\mathrm{xt}=$	0.6
$\mathrm{xt}=$	0.7
$\mathrm{xt}=$	0.8
$\mathrm{xt}=$	0.9

** Output **
ierr = 0
Value of I1(x)

xo $=$	0
xo $=$	0.0501
xo $=$	0.101
xo $=$	0.152
xo $=$	0.204
xo $=$	0.258
xo $=$	0.314
xo $=$	0.372
xo $=$	0.433
xo $=$	0.497

2.4.4 ASL_wibk1x, ASL_vibk1x

Modified Bessel Function of the 2nd Kind (Order 1)

(1) Function

For $x=X_{i}$, calculates values of the modified Bessel function of the 2nd kind (order 1)

$$
K_{1}(x)=\int_{0}^{\infty} e^{-x \cosh (t)} \cosh (t) d t
$$

(2) Usage

Double precision:
ierr $=$ ASL_wibk1x (nv, xi, xo);
Single precision:

$$
\text { ierr }=\text { ASL_vibk1x (nv, xi, xo); }
$$

(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	nv	I	1	Input	number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Input	X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Output	$K_{1}\left(X_{i}\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n v \geq 1$
(b) $\operatorname{xi}[i-1] \geq 0.0$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\begin{aligned} & \text { xi }[\mathrm{i}-1]>\mathrm{M}(\text { See Note }(\mathrm{a})) \\ & \text { (underflow) } \end{aligned}$	$\mathrm{xo}[\mathrm{i}-1]=0.0$ is performed.
2000	$\begin{aligned} & \mathrm{xi}[\mathrm{i}-1] \leq 1.0 /(\text { Maximum value) } \\ & \text { (overflow) } \end{aligned}$	$\mathrm{xo}[\mathrm{i}-1]=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+\mathrm{i}$	Restriction (b) was not satisfied by xi[i$1]$.	

(6) Notes

(a) When ierr becomes 1000 in this function, the value of M is as follows:
$M=\{$ double precision: 705.117 , single precision: 85.114$\}$
(b) Modified Bessel function of the 2nd kind $K_{\nu}(z)$ is the particular solution

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
K_{\nu}(z)=\frac{\pi}{2} \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
K_{n}(z)=\lim _{\nu \rightarrow n} K_{\nu}(z)
$$

(7) Example
(a) Problem

Obtain $K_{1}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program
/* C interface example for ASL_wibk1x */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>

```
int main()
```

 double *xt;
 double *xo;
 int nv;
 int i;
 int ierr
 nv=10;
 xt=(double *)malloc((size_t) (sizeof(double) * nv));
 if(\(x t==\) NULL \()\)
 printf("no enough memory for array xt\n")
 return -1 .
 \}
 o=(double *)malloc ((size_t)(sizeof (double) * nv));
 if (xo == NULL)
 printf("no enough memory for array xo\n")
 \(\}\)
 printf(" \(\quad * * *\) ASL_wibk1x \(* * * \backslash \mathrm{n} ")\);
 printf("\n ** Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
 for (i=0;i<nv;i++)
 \(\mathrm{xt}[\mathrm{i}]=\mathrm{i}+1\)
 xt[i] \(=x t[i] / n v\);
 printf("\t xt = \(\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", \mathrm{xt}[\mathrm{i}]\));
 \}
 ierr = ASL_wibk1x(nv,xt, xo);
 printf("\n \(\quad * *\) Output \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
 printf("\tierr \(=\% 6 d \backslash n ", ~ i e r r ~) ; ~\)
 printf("\n\tValue of \(\mathrm{K} 1(\mathrm{x})\) \n\n");
 or (i=0;i<nv;i++)
 printf("\t xo = \%8.3g\n", xo[i]);
 free (xt)
 free (xo)
 return 0;
 \}
(c) Output results

```
*** ASL_Wibk1x ***
** Input **
```


2.4.5 ASL_dibinx, ASL_ribinx

Modified Bessel Function of the 1st Kind (Integer Order)
(1) Function

Calculates a value of the modified Bessel function of the 1st kind (integer order)

$$
I_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{x \cos (t)} \cos (n t) d t
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_dibinx (n, xi, \&xo) }
$$

Single precision:

$$
\text { ierr }=\text { ASL_ribinx (n, xi, \&xo); }
$$

(3) Arguments and Return Value

D:Double precision real
R:Single precision real
:---
C:Single precision complex

long as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) \mid xi $\mid \leq M$ where, $M=$ \{double precision: 713.067 , single precision: 90.978$\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\|n\|\left(\log _{e}\left\|\frac{n}{x}\right\|-M_{1}\right)>M_{2}$ (See Note (c)) $(\mathrm{xi} \neq 0.0$ and $\mathrm{n} \neq 0)$ (underflow)	xo $=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $I_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{n}|<1000$ and $|\mathrm{xi}|<1000.0$.
(b) To calculate $I_{n}(x), I_{n+1}(x), I_{n+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this function repeatedly. The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation :

$$
I_{n-1}=\frac{2 n}{x} I_{n}(x)+I_{n+1}(x)
$$

(c) When ierr becomes 1000 in this function, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Modified Bessel function of the 1st kind $I_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
I_{ \pm \nu}(z)=e^{\mp \sqrt{-1} \pi / 2} J_{ \pm \nu}(\sqrt{-1} z)
$$

(7) Example

(a) Problem

Obtain the value of $I_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{n}=5$ and $\mathrm{xi}=1.5$.
(c) Main program

```
/* C interface example for ASL_dibinx */
#include <stdio.h>
#include <asl.h>
int main()
    int nt;
    double xt;
    double xo;
    int ierr;
    fp = fopen( "dibinx.dat", "r" );
    if( fp == NULL )
    {
        printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_dibinx ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%d", &nt );
    fscanf( fp, "%lf", &xt );
    printf( "\tn = %6d\t\txi = %8.3g\n", nt, xt );
    fclose( fp );
    ierr = ASL_dibinx(nt, xt, &xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of In(x)\n\n" );
    printf( "\t xo = %8.3g\n", xo );
}
```

(d) Output results

```
*** ASL_dibinx ***
    ** Input **
n = 5 xi = 1.5
** Output **
ierr = 0
Value of In(x)
xo = 0.00217
```


2.4.6 ASL_dibknx, ASL_ribknx

Modified Bessel Function of the 2nd Kind (Integer Order)

(1) Function

Calculates a value of the modified Bessel function of the second kind (integer order)

$$
K_{n}(x)=\int_{0}^{\infty} e^{-x \cosh (t)} \cosh (n t) d t
$$

(2) Usage

Double precision:
ierr $=$ ASL_dibknx (n, xi, \&xo);
Single precision:
ierr = ASL_ribknx (n, xi, \&xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	xi	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $K_{n}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $\mathrm{xi} \geq 0.0$
(b) $\mathrm{xi} \leq M$
where, $M=\{$ double precision: 705.117 , single precision: 85.114$\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
	Normal termination.	
2000	$\begin{aligned} & \mathrm{xi} \leq 2.0 /(\text { Maximum value } \\ & \text { or }\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2} \text { (See Note (c)) } \\ & (\mathrm{xi} \neq 0.0 \text { and } \mathrm{n} \neq 0) \text { (overflow) } \end{aligned}$	$\mathrm{xo}=($ Maximum value $)$ is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $K_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{n}|<1000$ and $\mathrm{xi}<1000.0$.
(b) To calculate $K_{n}(x), K_{n+1}(x), K_{n+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this function repeatedly.

Recurrence relation:

$$
K_{n+1}(x)=\frac{2 n}{x} K_{n}(x)+K_{n-1}(x)
$$

(c) When ierr becomes 2000 in this function, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(d) Modified Bessel function of the 2nd kind $K_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
K_{\nu}(z)=\frac{\pi}{2} \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
K_{n}(z)=\lim _{\nu \rightarrow n} K_{\nu}(z)
$$

(7) Example
(a) Problem

Obtain the value of $K_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{n}=5$ and $\mathrm{xi}=1.5$.
(c) Main program
/* C interface example for ASL_dibknx */
\#include <stdio.h>
\#include <asl.h>
int main()
int nt;
int nt; double x i
double xo;
int ierr
ILE *fp;
$f p=$ fopen("dibknx.dat", "r");
if $(f p==$ NULL $)$
printf("file open error\n");
\}
printf(" *** ASL_dibknx ***\n");
printf ("\n $\quad * *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
fscanf(fp, "\%d", \&nt);
fscanf(fp, "\%lf", \&xi);
printf("\tn $=\% 6 d \backslash t \backslash t x i=\% 8.3 g \backslash n ", ~ n t, ~ x i) ;$
fclose(fp);
ierr $=$ ASL_dibknx(nt, xi, \&xo);
printf("\n $\quad * *$ Output $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$
printf("\tierr $=\% 6 d \backslash n "$, ierr);

```
    printf( "\n\tValue of Kn(x)\n\n" );
    printf( "\t xo = %8.3g\n", xo );
return 0;
}
(d) Output results
```

```
*** ASL_dibknx ***
```

*** ASL_dibknx ***
** Input **
** Input **
$\mathrm{n}=\quad 5 \quad \mathrm{xi}=\quad 1.5$
$\mathrm{n}=\quad 5 \quad \mathrm{xi}=\quad 1.5$
** Output **
** Output **
ierr $=0$
ierr $=0$
Value of $\mathrm{Kn}(\mathrm{x})$
Value of $\mathrm{Kn}(\mathrm{x})$
xo $=\quad 44.1$

```
    xo \(=\quad 44.1\)
```


2.4.7 ASL_dibimx, ASL_ribimx

Modified Bessel Function of the 1st Kind (Real Number Order)
(1) Function

Calculates a value of the modified Bessel function of the 1st kind (real number order)

$$
I_{\nu}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{x \cos (t)} \cos (\nu t) d t-\frac{\sin (\pi \nu)}{\pi} \int_{0}^{\infty} e^{-x \cosh (t)-\nu t} d t .
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_dibimx (r, xi, \&xo) }
$$

Single precision:

```
ierr = ASL_ribimx (r, xi, &xo);
```

(3) Arguments and Return Value

D:Double precision real
R:Single precision real

Z:Double precision complex C:Single precision complex	$\mathrm{I}:\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}$				
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	r	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Order ν
2	xi	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $I_{\nu}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) When r corresponds with an integer:
$|\mathrm{r}| \leq M_{1}$
$|\mathrm{xi}| \leq M_{2}$
(b) When r does not correspond with an integer:
$0<\mathrm{r} \leq M_{1}$
$0<\mathrm{xi} \leq M_{2}$
where, $M_{1}=\left\{\right.$ double precision: 2^{31}, single precision: $\left.2^{31}\right\}$, $M_{2}=\{$ double precision: 713.067, single precision: 90.978$\}$

(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\nu\left(\log _{e} \frac{\nu}{x}-M_{3}\right)>M_{4}$ (See Note (e)) (xi \neq 0.0 and $\mathrm{r} \neq 0.0)$ (underflow) (Note: When ν corresponds with an inte- ger, $\|\nu\|$ and $\|x\|$ are used for judging.)	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes
(a) The computation time of $I_{\nu}(x)$ becomes longer as x and n increase. Generally it is desirable to set $\mathrm{r}<1000.0$ and $\mathrm{xi}<1000.0$.
(b) If the order is half an integer (a half of an odd integer), the spherical Bessel function should be used instead.

$$
I_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} i_{n}(x)
$$

(c) If ν is negative and is not an integer, the Bessel function of the 1st kind cannot be calculated by using this function. Therefore, it should be calculated by using a recurrence relation.
(d) To calculate $I_{\nu}(x), I \nu+1(x), I_{\nu+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this function repeatedly. The computation, however, becomes unstable if it is done with increasing ν. Therefore the recurrence relation should be used with decreasing ν.
Recurrence relation:

$$
I_{\nu-1}(x)=\frac{2 \nu}{x} I_{\nu}(x)+I_{\nu+1}(x)
$$

(e) When ierr becomes 1000 in this function, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(f) Modified Bessel function of the 1st kind $I_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
I_{ \pm \nu}(z)=e^{\mp \sqrt{-1} \pi / 2} J_{ \pm \nu}(\sqrt{-1} z)
$$

(7) Example

(a) Problem

Obtain the value of $I_{\nu}(x)$ at $x=1.5$ for $\nu=3.3$.
(b) Input data
$\mathrm{r}=3.3$ and $\mathrm{xi}=1.5$.
(c) Main program
/* C interface example for ASL_dibimx */
\#include <stdio.h>
\#include <asl.h>
int main()
double r;
double xi
double xo
int ierr;
fp = fopen("dibimx.dat", "r");
if $(f p==$ NULL $)$
\{
printf("file open error\n");
\}
printf(" $\quad * * *$ ASL_dibimx $* * * \backslash \mathrm{n} ")$;
printf("\n ** Input **\n\n");
fscanf (fp, "\%lf", \&r);
fscanf(fp, "\%lf", \&xi)
printf ("\tr $=\% 8.3 g \backslash t \backslash t x i=\% 8.3 g \backslash n ", ~ r, ~ x i ~) ; ~$
fclose(fp)
ierr = ASL_dibimx(r, xi, \&xo);
printf("\n ** Output **\n\n")
printf("\tierr $=\% 6 d \backslash n "$ ierr);
printf("\n\tValue of $\operatorname{Im}(x) \backslash n \backslash n ")$;
printf("\t xo = \%8.3g\n", xo);
return 0;
\}
(d) Output results

```
*** ASL_dibimx ***
** Input **
r = 3.3 xi = 1.5
** Output **
ierr = 0
Value of Im(x)
    xo = 0.0497
```


2.4.8 ASL_dibkmx, ASL_ribkmx

Modified Bessel Function of the 2nd Kind (Real Number Order)

(1) Function

Calculates a value of the modified Bessel function of the 2nd kind (real number order)

$$
K_{\nu}(x)=\int_{0}^{\infty} e^{-x \cosh (t)} \cosh (\nu t) d t
$$

(2) Usage

Double precision:
ierr $=$ ASL_dibkmx (r, xi, \&xo);
Single precision:
ierr $=$ ASL_ribkmx (r, xi, \&xo);
(3) Arguments and Return Value

D:Double precision real
R:Single precision realZ:Double precision complex C:Single precision complex\quad I: $\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}$
No. Argument and Return Value Type Size Input/ Output
1
r
2

(4) Restrictions
(a) $|\mathrm{r}| \leq M_{1}$
where, $M_{1}=\left\{\right.$ double precision: 2^{31}, single precision: $\left.2^{31}\right\}$
(b) $x i \geq 0.0$
(c) $\mathrm{xi} \leq M_{2}$
where, $M_{2}=\{$ double precision: 705.117 , single precision: 85.114$\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
2000	xi $\leq 2.0 /($ Maximum value $)$ or $\nu\left(\log _{e} \frac{\nu}{x}-M_{3}\right)>M_{4}$ (See Note (d)) $(x i \neq 0.0$ and $\mathrm{r} \neq 0.0)$ (overflow)	
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.

(6) Notes
(a) The computation time of $K_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $\mathrm{r}<1000.0$ and $\mathrm{xi}<1000.0$.
(b) If the order is half an integer (a half of an odd integer), the spherical Bessel function should be used instead.

$$
K_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} k_{n}(x)
$$

(c) To calculate $K_{\nu}(x), K_{\nu+1}(x), K_{\nu+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this function repeatedly.
Recurrence relation:

$$
K_{\nu+1}(x)=\frac{2 \nu}{x} K_{\nu}(x)+K_{\nu-1}(x)
$$

(d) When ierr becomes 2000 in this function, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(e) Modified Bessel function of the 2nd kind $K_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
K_{\nu}(z)=\frac{\pi}{2} \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
K_{n}(z)=\lim _{\nu \rightarrow n} K_{\nu}(z)
$$

(7) Example

(a) Problem

Obtain the value of $K_{\nu}(x)$ at $x=1.5$ for $\nu=3.3$.
(b) Input data
$\mathrm{r}=3.3$ and $\mathrm{xi}=1.5$.
(c) Main program

```
/* C interface example for ASL_dibkmx */
#include <stdio.h>
#include <asl.h>
int main()
    double r;
    double xi;
    double xo;
    int ierr;
    FILE *fp;
    fp = fopen( "dibkmx.dat", "r" );
    if( fp == NULL )
    {
        printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_dibkmx ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%lf", &r );
    fscanf( fp, "%lf", &xi);
    printf( "\tr = %8.3g\t\txi = %8.3g\n", r, xi );
    fclose( fp );
    ierr = ASL_dibkmx(r, xi, &xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of Km(x)\n\n" );
    printf( "\t xo = %8.3g\n", xo );
    return 0;
}
```

(d) Output results

```
*** ASL_dibkmx ***
    ** Input **
r = 3.3 xi = 1.5
    ** Output **
ierr = 0
Value of Km(x)
    xo = 2.76
```


2.4.9 ASL_zibinz, ASL_cibinz

Modified Bessel Function of the 1st Kind with Complex Variable (Integer Order)

(1) Function

Calculates a value of the modified Bessel function of the 1st kind with complex variable (integer order)

$$
I_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} e^{z \cos (t)} \cos (n t) d t
$$

(2) Usage

Double precision:
ierr = ASL_zibinz (n, \&zi, \&zo)

Single precision:
ierr = ASL_cibinz (n, \&zi, \&zo);
(3) Arguments and Return Value

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

long as for 64bit Integer\end{array}\right\}\)

No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	zi	$\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}$	1	Input	Value of variable z
3	zo	$\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}$	1	Output	Value of $I_{n}(z)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) \mid zi $\mid \leq M_{1}$
where, $M_{1}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(b) $|\Re(\mathrm{zi})| \leq M_{2}$ where, $M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\|n\|\left(\log _{e} \frac{n \mid}{\|z\|}-M_{3}\right)>M_{4}$ (See Note (c)) $(\|z i\| \neq 0.0$ and $\mathrm{n} \neq 0)$ (underflow)	zo $=(0.0,0.0)$ is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $I_{n}(z)$ becomes longer as $|z|$ and n increase. Generally it is desirable to set $|\mathrm{n}|<1000$ and $|\mathrm{zi}|<1000.0$.
(b) To calculate $I_{n}(z), I_{n+1}(z), I_{n+2}(z), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this function repeatedly. The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation:

$$
I_{n-1}(z)=\frac{2 n}{z} I_{n}(z)+I_{n+1}(z)
$$

(c) When ierr becomes 1000 in this function, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Modified Bessel function of the 1st kind $I_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
I_{ \pm \nu}(z)=e^{\mp \sqrt{-1} \pi / 2} J_{ \pm \nu}(\sqrt{-1} z) .
$$

(7) Example

(a) Problem

Obtain the value of $I_{n}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{n}=3$ and $\mathrm{zi}=(1.0,2.0)$.
(c) Main program

```
/* C interface example for ASL_zibinz */
#include <stdio.h>
#include <complex.h>
#include <asl.h>
int main()
    int nt;
    double _Complex zt;
    double _Complex zo;
    int ierr;
    fp = fopen( "zibinz.dat", "r" );
    if( fp == NULL )
    {
        printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_zibinz ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%d", &nt );
    double tmp_re, tmp_im;
    fscanf( fp, "%lf", &tmp_re );
    fscanf( fp, "%lf", &tmp_im );
    zt = tmp_re + tmp_im * _Complex_I;
    printf( "\tn = %6d\t\tzi = (%8.3g,%8.3g)\n", nt, creal(zt), cimag(zt) );
    fclose( fp );
    ierr = ASL_zibinz(nt, &zt, &zo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
```

```
printf( "\n\tValue of In(z)\n\n" );
printf( "\t zo = (%8.3g,%8.3g)\n", creal(zo), cimag(zo) );
return 0;
}
```

(d) Output results

```
*** ASL_zibinz ***
** Input **
n = 3 zi = ( 1, 2)
** Output **
ierr = 0
Value of In(z)
    zo = ( -0.175, -0.0824)
```


2.4.10 ASL_zibknz, ASL_cibknz

Modified Bessel Function of the 2nd Kind with Complex Variable (Integer Order)
(1) Function

Calculates a value of the modified Bessel function of the second kind with complex variable (integer order)

$$
K_{n}(z)=\int_{0}^{\infty} e^{-z \cosh (t)} \cosh (n t) d t .
$$

(2) Usage

Double precision:
ierr = ASL_zibknz (n, \&zi, \&zo);

Single precision:
ierr = ASL_cibknz (n, \&zi, \&zo);
(3) Arguments and Return Value

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

long as for 64bit Integer\end{array}\right\}\)

No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	zi	$\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}$	1	Input	Value of variable z
3	zo	$\left\{\begin{array}{c}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}$	1	Output	Value of $K_{n}(z)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $|\mathrm{zi}|>0.0$
(b) $|\mathrm{zi}| \leq M_{1}$ where, $M_{1}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(c) $|\Re(\mathrm{zi})| \leq M_{2}$
where, $M_{2}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.
4000	$\|\mathrm{zi}\| \leq 2.0 /($ Maximum value $)$ or $\|n\|\left(\log _{e} \frac{\|n\|}{\|z\|}-M_{3}\right)>M_{4}$ (See Note (c)) $(\|\mathrm{zi}\| \neq 0.0$ and $\mathrm{n} \neq 0)$	

(6) Notes
(a) The computation time of $K_{n}(z)$ becomes longer as $|z|$ and n increase. Generally it is desirable to set $|\mathrm{n}|<1000$ and $|\mathrm{zi}|<1000.0$.
(b) To calculate $K_{n}(z), K_{n+1}(z), K_{n+2}(z), \cdots$ at a time, it is faster to successively use the recurrence relation given below than to call this function repeatedly.
Recurrence relation:

$$
K_{n+1}(z)=\frac{2 n}{z} K_{n}(z)+K_{n-1}(z)
$$

(c) When ierr becomes 4000 in this function, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(d) Modified Bessel function of the 2nd kind $K_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
K_{\nu}(z)=\frac{\pi}{2} \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
K_{n}(z)=\lim _{\nu \rightarrow n} K_{\nu}(z)
$$

(7) Example

(a) Problem

Obtain the value of $K_{n}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{n}=3$ and $\mathrm{zi}=(1.0,2.0)$.
(c) Main program
/* C interface example for ASL_zibknz */
\#include <stdio.h>
\#include <complex.h>
\#include <asl.h>
int main()
int nt;
double _Complex zt
double _Complex zo;
int ierr;
FILE *fp;

```
fp = fopen( "zibknz.dat", "r" );
if( fp == NULL )
{
        printf( "file open error\n" );
}
printf( " *** ASL_zibknz ***\n" );
printf( "\n ** Input **\n\n" );
fscanf( fp, "%d", &nt );
double tmp_re, tmp_im;
fscanf( fp, "%lf", &tmp_re );
fscanf( fp, "%lf", &tmp_im );
printf( "\tn = %6d\t\tz\overline{i}=(%8.3g,%8.3g)\n", nt, creal(zt), cimag(zt) );
fclose( fp );
ierr = ASL_zibknz(nt, &zt, &zo);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\tValue of Kn(z)\n\n" );
printf( "\t zo = (%8.3g,%8.3g)\n", creal(zo), cimag(zo) );
return 0;
```

\}
(d) Output results

```
*** ASL_zibknz ***
    ** Input **
n= 3 zi = ( 1, 2)
    ** Output **
ierr = 0
Value of Kn(z)
    zo = ( -0.681, 0.625)
```


2.5 SPHERICAL BESSEL FUNCTIONS

2.5.1 ASL_dibsjn, ASL_ribsjn

Spherical Bessel Function of the 1st Kind (Integer Order)
(1) Function

Calculates a value of the spherical Bessel function of the 1st kind (integer order)

$$
j_{n}(x)=\sqrt{\frac{\pi}{2 x}} J_{n+\frac{1}{2}}(x)
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_dibsjn (n, xi, \&xo) }
$$

Single precision:
ierr = ASL_ribsjn (n, xi, \&xo);
(3) Arguments and Return Value
D:Double precision real

| R:Single precision real |
| :---: | :---: | :---: | :---: | :---: | :--- | | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}int as for 32bit Integer

long as for 64bit Integer\end{array}\right\}\)

No.	Argument and Return Value	Type	Size	Input/ Output	
1	n	I	1	Input	Order n
2	xi	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $j_{n}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $\mathrm{xi} \geq 0.0$
(b) $\mathrm{xi} \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$

(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}($ See Note $(\mathrm{c}))$ (xi $\neq 0.0$ and $\mathrm{n} \neq 0$) (underflow or overflow)	If $\mathrm{n} \geq 0$, xo $=0.0$ is performed. If $\mathrm{n}<0$, xo $=(-1)^{\mathrm{n}+1} \times($ Maximum value $)$ is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes
(a) The computation time of $j_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{n}|<1000$ and xi <1000.0.
(b) To calculate $j_{n}(x), j_{n+1}(x), j_{n+2}(x) \cdots$ at a time, it is faster to successively use the recurrence relation bellow than to call this function repeatedly.
The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation:

$$
j_{n-1}(x)=\frac{2 n+1}{x} j_{n}(x)-j_{n+1}(x)
$$

(c) When ierr becomes 1000 in this function, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Spherical Bessel function of the 1st kind $j_{n}(z)$ is the particular solution of differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+2 z \frac{d w}{d z}+\left\{z^{2}-n(n+1)\right\} w=0 \quad(n=0, \pm 1, \pm 2, \cdots)
$$

and defined as

$$
j_{n}(z)=\sqrt{\frac{\pi}{2 z}} J_{n+\frac{1}{2}}(z)
$$

(7) Example

(a) Problem

Obtain the value of $j_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{n}=5$ and $\mathrm{xi}=1.5$.
(c) Main program
/* C interface example for ASL_dibsjn */
\#include <stdio.h>
\#include <asl.h>
int main()
int n ;
double xi
double xo;
int ierr
$\mathrm{fp}=\mathrm{fopen}($ "dibsjn.dat", "r");
if ($f p==$ NULL $)$
\{
printf("file open error\n");
\}
printf(" \quad *** ASL_dibsjn $* * * \backslash \mathrm{n} ")$;
printf ("\n $\quad * *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
fscanf(fp, "\%d", \&n);
fscanf(fp, "\%lf", \&xi)
printf("\tn $=\% 6 d \backslash t \backslash t x i=\% 8.3 g \backslash n ", n, x i) ;$
fclose(fp);
ierr = ASL_dibsjn(n, xi, \&xo);
printf("\n ** Output **\n\n")
printf ("\tierr $=\% 6 d \backslash n "$, ierr)
printf("\n\tValue of Spherical Jn(x) \n\n"); printf("\t xo = \%8.3g\n", xo);
return 0;
\}
(d) Output results

```
*** ASL_dibsjn ***
** Input **
n = 5 xi = 1.5
** Output **
ierr = 0
Value of Spherical Jn(x)
    xo = 0.00067
```


2.5.2 ASL_dibsyn, ASL_ribsyn

Spherical Bessel Function of the 2nd Kind (Integer Order)

(1) Function

Calculate a value of the spherical Bessel function of the 2nd kind (integer Order)

$$
y_{n}(x)=\sqrt{\frac{\pi}{2 x}} Y_{n+\frac{1}{2}}(x) .
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_dibsyn (n, xi, \&xo); }
$$

Single precision:
ierr = ASL_ribsyn (n, xi, \&xo);
(3) Arguments and Return Value

| D:Double precision real
 R:Single precision real | Z:Double precision complex
 C:Single precision complex |
| :--- | :--- |\quad I: \(\left\{\begin{array}{l}int as for 32bit Integer

long as for 64 bit Integer\end{array}\right\}\)

No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	xi	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $y_{n}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $\mathrm{xi} \geq 0.0$
(b) $\mathrm{xi} \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
2000	$\begin{aligned} & \text { xi } \leq 2.0 /(\text { Maximum value }) \\ & \text { or }\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}(\text { See Note (c)) } \\ & (x i \neq 0.0 \text { and } \mathrm{n} \neq 0) \\ & \text { (overflow or underflow) } \end{aligned}$	If $\mathrm{n} \geq 0$, xo $=$ (Minimum value) is performed. If $\mathrm{n}<0$, xo $=0.0$ is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $y_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{n}|<1000$ and xi <1000.0.
(b) To calculate $y_{n}(x), y_{n+1}(x), y_{n+2}(x) \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this function repeatedly.
Recurrence relation:

$$
y_{n+1}(x)=\frac{2 n+1}{x} y_{n}(x)-y_{n-1}(x)
$$

(c) When ierr becomes 2000 in this function, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(d) Spherical Bessel function of the 2nd kind $y_{n}(z)$ is the particular solution of differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+2 z \frac{d w}{d z}+\left\{z^{2}-n(n+1)\right\} w=0 \quad(n=0, \pm 1, \pm 2, \cdots)
$$

and defined as

$$
y_{n}(z)=\sqrt{\frac{\pi}{2 z}} Y_{n+\frac{1}{2}}(z) .
$$

(e) The spherical Neumann function $n_{n}(z)$ is the same as the spherical Bessel function of the 2nd kind $y_{n}(z)$.

(7) Example

(a) Problem

Obtain the value of $y_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{n}=5$ and $\mathrm{xi}=1.5$.
(c) Main program
/* C interface example for ASL_dibsyn */
\#include <stdio.h>
\#include <asl.h>
int main()
int n ;
double xi
double xo;
int ierr;
fp = fopen("dibsyn.dat", "r");
if (fp == NULL)
printf("file open error\n");
return -1 ;
\}
printf(" $\quad * * *$ ASL_dibsyn $* * * \backslash n ")$;
printf ("\n $\quad * *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
fscanf(fp, "\%d", \&n);
fscanf(fp, "\%lf", \&xi);
printf("\tn $=\% 6 d \backslash t \backslash t x i=\% 8.3 g \backslash n ", n, x i) ;$
fclose(fp);
ierr $=$ ASL_dibsyn(n, xi, \&xo);
printf ("\n ** Output **\n\n");
printf("\tierr $=\% 6 d \backslash n "$, ierr);
printf("\n\tValue of Spherical Yn(x) \n\n");
printf("\t xo = \%8.3g\n", xo);
return 0;
\}
(d) Output results

```
*** ASL_dibsyn ***
** Input **
\(\mathrm{n}=\quad 5 \quad \mathrm{xi}=\)
1.5
** Output **
ierr \(=0\)
Value of Spherical Yn(x)
    \(\mathrm{xo}=-94.2\)
```


2.5.3 ASL_dibsin, ASL_ribsin

Modified Spherical Bessel Function of the 1st Kind (Integer Order)
(1) Function

Obtain the value of the modified spherical Bessel function of the 1st kind (integer Order)

$$
i_{n}(x)=\sqrt{\frac{\pi}{2 x}} I_{n+\frac{1}{2}}(x)
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_dibsin (n, xi, \&xo); }
$$

Single precision:

$$
\text { ierr }=\text { ASL_ribsin (n, xi, \&xo) }
$$

(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	xi	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $i_{n}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n \geq 0$
(b) $\mathrm{xi} \geq 0.0$
(c) $\mathrm{xi} \leq M$
where, $M=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$n\left(\log _{e} \frac{n}{x}-M_{1}\right)>M_{2}($ See Note (d)) (xi \neq 0.0 and $\mathrm{n} \neq 0)$ (underflow)	xo $=0.0$ is performed.
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $i_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $\mathrm{n}<1000$ and $\mathrm{xi}<1000.0$.
(b) If n is negative and is not an integer, the Bessel function of the 1st kind cannot be calculated by using this function. Therefore, it should be calculated by using a recurrence relation.
(c) To calculate $i_{n}(x), i_{n+1}(x), i_{n+2}(x) \cdots$ at a time, it is faster to successively use the recurrence relation than to call this function repeatedly.
The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation:

$$
i_{n-1}(x)=\frac{2 n+1}{x} i_{n}(x)+i_{n+1}(x)
$$

(d) When ierr becomes 1000 in this function, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(e) Modified spherical Bessel function of the 1st kind $i_{n}(z)$ is the particular solution of differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+2 z \frac{d w}{d z}-\left\{z^{2}+n(n+1)\right\} w=0 \quad(n=0, \pm 1, \pm 2, \cdots)
$$

and defined as

$$
i_{n}(z)=\sqrt{\frac{\pi}{2 z}} I_{n+\frac{1}{2}}(z)
$$

(7) Example

(a) Problem

Obtain the value of $i_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{n}=5$ and $\mathrm{xi}=1.5$.
(c) Main program
/* C interface example for ASL_dibsin */
\#include <stdio.h>
\#include <asl.h>
int $_{\{ }$main()
int n;
double xi;
double xo
int ierr;
FILE *fp;
$\mathrm{fp}=$ fopen("dibsin.dat", "r");
if ($f p==$ NULL $)$
\{
printf("file open error $\backslash n$ ");
\}
printf(" $\quad * * *$ ASL_dibsin $* * * \backslash \mathrm{n} ")$;
printf ("\n $\quad * *$ Input $* * \backslash n \backslash n ")$;
fscanf(fp, "\%d", \&n);
fscanf(fp, "\%lf", \&xi);
printf("\tn $=\% 6 d \backslash t \backslash t x i=\% 8.3 g \backslash n ", n, x i) ;$
fclose(fp);
ierr $=$ ASL_dibsin(n, xi, \&xo);
printf("\n $\quad * *$ Output $* * \backslash n \backslash n ")$;

```
        printf( "\tierr = %6d\n", ierr );
        printf( "\n\tValue of Spherical In(x)\n\n" );
        printf( "\t xo = %8.3g\n", xo );
    return 0;
    }
(d) Output results
```

```
*** ASL_dibsin ***
```

*** ASL_dibsin ***
** Input **
** Input **
n = 5 xi = 1.5
n = 5 xi = 1.5
** Output **
** Output **
ierr = 0
ierr = 0
Value of Spherical In(x)
Value of Spherical In(x)
xo = 0.000796

```
    xo = 0.000796
```


2.5.4 ASL_dibskn, ASL_ribskn

Modified Spherical Bessel Function of the 2nd Kind (Integer Order)

(1) Function

Calculate a value of the modified spherical Bessel function of the 2nd kind (integer order)

$$
k_{n}(x)=\sqrt{\frac{\pi}{2 x}} K_{n+\frac{1}{2}}(x)
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_dibskn (n, xi, \&xo); }
$$

Single precision:

$$
\text { ierr }=\text { ASL_ribskn (n, xi, \&xo); }
$$

(3) Arguments and Return Value
D:Double precision real

Z:Double precision complex R:Single precision real	C:Single precision complex	$\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}$			
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	xi	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $k_{n}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $\mathrm{xi} \geq 0.0$
(b) $\mathrm{xi} \leq M$
where, $M=\{$ double precision: 702.293 , single precision: 83.364$\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
2000	xi $\leq 2.0 /($ Maximum value) or $\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}$ (See Note (c)) $(\mathrm{xi} \neq 0.0$ and $\mathrm{n} \neq 0)$ (overflow)	xo = (Maximum value) is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $k_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{n}|<1000$ and xi <1000.0.
(b) To calculate $k_{n}(x), k_{n+1}(x), k_{n+2}(x) \cdots$ at a time, it is faster to successively use the recurrence relation given bellow than to call this function repeatedly.

Recurrence relation:

$$
k_{n+1}(x)=\frac{2 n+1}{x} k_{n}(x)+k_{n-1}(x)
$$

(c) When ierr becomes 2000 in this function, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(d) Modified spherical Bessel function of the 2 nd kind $k_{n}(z)$ is the particular solution of differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+2 z \frac{d w}{d z}-\left\{z^{2}+n(n+1)\right\} w=0 \quad(n=0, \pm 1, \pm 2, \cdots)
$$

and defined as

$$
k_{n}(z)=\sqrt{\frac{\pi}{2 z}} K_{n+\frac{1}{2}}(z) .
$$

(7) Example
(a) Problem

Obtain the value of $k_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{n}=5$ and $\mathrm{xi}=1.5$.
(c) Main program

```
/* C interface example for ASL_dibskn */
#include <stdio.h>
#include <asl.h>
int main()
    int n;
    double xi;
    double xo;
    int ierr;
    fp = fopen( "dibskn.dat", "r" );
    if( fp == NULL )
    printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_dibskn ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%d", &n );
    fscanf( fp, "%lf", &xi );
    printf( "\tn = %6d\t\txi = %8.3g\n", n,xi );
    fclose( fp );
    ierr = ASL_dibskn(n, xi, &xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of Spherical Kn(x)\n\n" );
    printf( "\t xo = %8.3g\n", xo );
}
```

(d) Output results

```
*** ASL_dibskn ***
** Input **
\(\mathrm{n}=\quad 5 \quad \mathrm{xi}=\quad 1.5\)
** Output **
ierr \(=0\)
Value of Spherical \(\mathrm{Kn}(\mathrm{x})\)
\(\mathrm{xo}=115\)
```


2.6 FUNCTIONS RELATED TO BESSEL FUNCTIONS

2.6.1 ASL_zibh1n, ASL_cibh1n

Hankel Function of the 1st Kind

(1) Function

Calculates the value of the Hankel function of the 1st kind

$$
H_{n}^{(1)}(z)=-\frac{2 \sqrt{-1}}{\pi} e^{-\sqrt{-1} n \pi / 2} \int_{0}^{\infty} e^{\sqrt{-1} z \cosh (t)} \cosh (n t) d t \quad(0<\arg z<\pi)
$$

(2) Usage

Double precision:
ierr = ASL_zibh1n (n, \&zi, \&zo);

Single precision:

$$
\text { ierr }=\text { ASL_cibh1n (n, \&zi, \&zo) }
$$

(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	zi	$\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}$	1	Input	Value of variable z
3	zo	$\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}$	1	Output	Value of $H_{n}^{(1)}(z)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) \mid zi $\mid>0.0$
(b) $|\Im(\mathrm{zi})| \leq M_{1}$ where, $M_{1}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(c) $|\mathrm{zi}| \leq M_{2}$ where, $M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.
4000	\mid zi $\mid \leq 2.0 /($ Maximum value) or $\|n\|\left(\log _{e} \frac{\|n\|}{\|z\|}-M_{3}\right)>M_{4}$ (See Note (a))	

(6) Notes
(a) When ierr becomes 4000 in this function, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(b) Hankel function of the 1st kind $H_{\nu}^{(1)}(z)$ is the particular solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
H_{\nu}^{(1)}(z)=-\frac{1}{\pi} \int_{L_{1}} e^{-\sqrt{-1} z \sin \tau+\sqrt{-1} \nu \tau} d \tau
$$

where the path of integration L_{1} is taken as $(0,-\infty) \rightarrow(0,0) \rightarrow(-\pi, 0) \rightarrow(-\pi, \infty)$.
(c) Hankel functions of the 1st kind and of the 2nd kind are also called Bessel function of the 3rd kind or cylindrical function of the 3 rd kind.

(7) Example

(a) Problem

Obtain the value of $H_{n}^{(1)}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{n}=3$ and $\mathrm{zi}=(1.0,2.0)$.
(c) Main program
/* C interface example for ASL_zibh1n */
\#include <stdio.h>
\#include <complex.h>
\#include <asl.h>
int main()
int n;
double _Complex zi;
double _Complex zo;
int ierr;
FILE *fp;
$\mathrm{fp}=$ fopen("zibh1n.dat", "r");
if (fp == NULL)
\{
printf("file open error $\backslash n$ ");
\}
printf(" $\quad * * *$ ASL_zibh1n $* * * \backslash \mathrm{n} ")$;
printf ("\n $\quad * *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
fscanf (fp, "\%d", \&n) ;
double tmp_re, tmp_im;
fscanf(fp, "\%lf", \&tmp_re);
fscanf(fp, "\%lf", \&tmp_im);
zi = tmp_re + tmp_im * _Complex_I;
printf $(" \backslash t n=\% 6 \bar{d} \backslash t \backslash t z \bar{i}=(\% 8.3 g, \% 8.3 g) \backslash n ", n, \operatorname{creal}(z i), \operatorname{cimag}(z i)) ;$

```
            fclose( fp );
            ierr = ASL_zibh1n(n, &zi, &zo);
            printf( "\n ** Output **\n\n" );
            printf( "\tierr = %6d\n", ierr );
            printf( "\n\tValue of H1n(z)\n\n" );
            printf( "\t zo =(%8.3g,%8.3g)\n", creal(zo), cimag(zo) );
            return 0;
        }
(d) Output results
```

```
*** ASL_zibh1n ***
```

*** ASL_zibh1n ***
** Input **
** Input **
n = zi = (1, 2)
n = zi = (1, 2)
** Output **
** Output **
ierr = 0
ierr = 0
Value of H1n(z)
Value of H1n(z)
zo =(-0.0689, 0.307)

```
    zo =( -0.0689, 0.307)
```


2.6.2 ASL_zibh2n, ASL_cibh2n

Hankel Function of the 2nd Kind

(1) Function

Calculates the value of the Hankel function of the 2nd kind

$$
H_{n}^{(2)}(z)=\frac{2 \sqrt{-1}}{\pi} e^{\sqrt{-1} n \pi / 2} \int_{0}^{\infty} e^{-\sqrt{-1} z \cosh (t)} \cosh (n t) d t \quad(0<\arg z<\pi)
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_zibh2n (n, \&zi, \&zo })
$$

Single precision: ierr $=$ ASL_cibh2n ($\mathrm{n}, \& z \mathrm{zi}, \& z o$);
(3) Arguments and Return Value

D:Double precision real
Z:Double precision complex R:Single precision real\quad I: $\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { C:Single precision complex as for 64bit Integer }\end{array}\right\}$
No. Argument and Return Value Type Size Input/ Output
1

(4) Restrictions
(a) $|\mathrm{zi}|>0.0$
(b) $|\Im(\mathrm{zi})| \leq M_{1}$
where, $M_{1}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(c) \mid zi $\mid \leq M_{2}$
where, $M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.	
4000	\mid zi $\mid \leq 2.0 /($ Maximum value $)$ or $\|n\|\left(\log _{e} \frac{\|n\|}{\|z\|}-M_{3}\right)>M_{4}$ (See Note (a))		

(6) Notes

(a) When ierr becomes 4000 in this function, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(b) Hankel function of the 2nd kind $H_{\nu}^{(2)}(z)$ is the particular solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
H_{\nu}^{(2)}(z)=-\frac{1}{\pi} \int_{L_{2}} e^{-\sqrt{-1} z \sin \tau+\sqrt{-1} \nu \tau} d \tau
$$

where the path of integration L_{2} is taken as $(\pi, \infty) \rightarrow(\pi, 0) \rightarrow(0,0) \rightarrow(0,-\infty)$.
(c) Hankel functions of the 1st kind and of the 2nd kind are also called Bessel function of the 3rd kind or cylindrical function of the 3rd kind.
(7) Example
(a) Problem

Obtain the value of $H_{n}^{(2)}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{n}=3$ and $\mathrm{zi}=(1.0,2.0)$.
(c) Main program

```
/* C interface example for ASL_zibh2n */
#include <stdio.h>
#include <complex.h>
#include <asl.h>
int main()
    int n;
    double _Complex zi
    double _Complex zo;
    int ierr;
    fp = fopen( "zibh2n.dat", "r" );
    if( fp == NULL )
    {
        printf( "file open error\n" );
        preturn -1;
    }
    printf( " *** ASL_zibh2n ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%d", &n );
    double tmp_re, tmp_im;
    fscanf( fp, "%lf", &tmp_re );
    fscanf( fp, "%lf", &tmp_im );
    zi = tmp_re + tmp_im * _Complex_I;
    printf( "\tn = %6d\t\tzi = (%8.3g,%8.3g)\n", n, creal(zi), cimag(zi) );
    fclose( fp );
    ierr = ASL_zibh2n(n, &zi, &zo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of H2n(z)\n\n" );
    printf( "\t zo = (%8.3g,%8.3g)\n", creal(zo), cimag(zo) );
    return 0;
}
```

(d) Output results

```
*** ASL_zibh2n ***
** Input **
n= 3i = ( 1, 2)
** Output **
ierr = 0
Value of H2n(z)
zo = ( -0.493, -0.273)
```


2.6.3 ASL_dibber, ASL_ribber

Kelvin Function $\operatorname{ber}_{n}(x)$
(1) Function

Calculates the Kelvin function

$$
\operatorname{ber}_{n}(x)=\Re\left\{J_{n}\left(x e^{3 \sqrt{-1} \pi / 4}\right)\right\} .
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_dibber (n, xi, \&xo) }
$$

Single precision:

$$
\text { ierr }=\text { ASL_ribber (n, xi, \&xo); }
$$

(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	xi	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $\operatorname{ber}_{n}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $|\mathrm{xi}| \leq M$ where, $M=\{$ double precision: 1003.784 , single precision: 125.473$\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\|\mathrm{n}\|\left(\log _{e} \frac{\mathrm{n} \mid}{\|\mathrm{xi}\|}-M_{1}\right)>M_{2}$ (See Note (a)) (underflow)	xo $=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) When ierr becomes 1000 in this function, the values of M_{1} and M_{2} are as follows:

$$
\begin{aligned}
& M_{1}=0.3068 \\
& M_{2}=709.7827
\end{aligned}
$$

(b) $w=\operatorname{ber}_{\nu}(x)+\sqrt{-1} \operatorname{bei}_{\nu}(x), \operatorname{ber}_{-\nu}(x)+\sqrt{-1} \operatorname{bei}_{-\nu}(x), \operatorname{ker}_{\nu}(x)+\sqrt{-1} \operatorname{kei}_{\nu}(x)$, and $\operatorname{ker}_{-\nu}(x)+\sqrt{-1} \operatorname{kei}_{-\nu}(x)$ are the solutions of the differential equation:

$$
x^{2} \frac{d^{2} w}{d x^{2}}+x \frac{d w}{d x}-\left(\sqrt{-1} x^{2}+\nu^{2}\right) w=0
$$

(7) Example

(a) Problem

Obtain the value of $\operatorname{ber}_{n}(x)$ at $x=1.0$ for $n=3$.
(b) Input data
$\mathrm{n}=3$ and $\mathrm{xi}=1.0$.
(c) Main program
/* C interface example for ASL_dibber */
\#include <stdio.h>
\#include <asl.h>
int main()
int n;
double xi;
double xo
int ierr;
fp = fopen("dibber.dat", "r");
if ($f p==$ NULL $)$
printf("file open error\n");
\}
printf(" $\quad * * *$ ASL_dibber $* * * \backslash \mathrm{n} ")$;
printf ("\n $\quad * *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
fscanf(fp, "\%d", \&n);
fscanf(fp, "\%lf", \&xi);
printf("\tn $=\% 6 d \backslash t \backslash t x i=\% 8.3 g \backslash n ", n, x i)$;
fclose(fp);
ierr $=$ ASL_dibber ($n, ~ x i, ~ \& x o)$;
printf("\n $\quad * *$ Output $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
printf("\tierr $=\% 6 d \backslash n "$, ierr);
printf("\n\tValue of Bernx $\backslash n \backslash n$ ");
printf("\t xo = \%8.3g\n", xo);
return 0;
$\}$
(d) Output results

```
*** ASL_dibber ***
    ** Input **
n = 3 xi = 1
    ** Output **
ierr = 0
Value of Bernx
    xo = 0.0138
```


2.6.4 ASL_dibbei, ASL_ribbei

Kelvin Function bei $_{n}(x)$
(1) Function

Calculates the Kelvin function

$$
\operatorname{bei}_{n}(x)=\Im\left\{J_{n}\left(x e^{3 \sqrt{-1} \pi / 4}\right)\right\} .
$$

(2) Usage

Double precision: ierr $=$ ASL_dibbei ($\mathrm{n}, \mathrm{xi}, \& x o$);
Single precision:
ierr = ASL_ribbei (n, xi, \&xo);
(3) Arguments and Return Value

D:Double precision real
R:Single precision real
:---
C:Single precision complex

long as for 64bit Integer\end{array}\right\}\)

No.	Argument and Return Value	Type	Size	Input/ Output	
1	n	I	1	Input	Order n
2	xi	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of bei $_{n}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $|\mathrm{xi}| \leq M$
where, $M=\{$ double precision: 1003.784 , single precision: 125.473$\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\|\mathrm{n}\|\left(\log _{e} \frac{\mathrm{n} \mid}{\|A G X\|}-M_{1}\right)>M_{2}$ (See Note (a)) (underflow)	xo $=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) When ierr becomes 1000 in this function, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(b) $w=\operatorname{ber}_{\nu}(x)+\sqrt{-1} \operatorname{bei}_{\nu}(x)$, $\operatorname{ber}_{-\nu}(x)+\sqrt{-1} \operatorname{bei}_{-\nu}(x), \operatorname{ker}_{\nu}(x)+\sqrt{-1} \operatorname{kei}_{\nu}(x)$, and $\operatorname{ker}_{-\nu}(x)+\sqrt{-1} \operatorname{kei}_{-\nu}(x)$ are the solutions of the differential equation:

$$
x^{2} \frac{d^{2} w}{d x^{2}}+x \frac{d w}{d x}-\left(\sqrt{-1} x^{2}+\nu^{2}\right) w=0 .
$$

(7) Example

(a) Problem

Obtain the value of $\operatorname{bei}_{n}(x)$ at $x=1.0$ for $n=3$.
(b) Input data
$\mathrm{n}=3$ and $\mathrm{xi}=1.0$
(c) Main program
/* C interface example for ASL_dibbei */
\#include <stdio.h>
\#include <asl.h>
$\inf _{\{ }$main()
int n;
double xi;
double xo;
int ierr;
fp $=$ fopen("dibbei.dat", "r");
if ($f p==$ NULL $)$
\{
printf("file open error\n");
return -1
\}
printf(" \quad *** ASL_dibbei $* * * \backslash \mathrm{n} ")$;
printf ("\n $\quad * *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
fscanf(fp, "\%d", \&n);
fscanf(fp, "\%lf", \&xi);
printf("\tn $=\% 6 d \backslash t \backslash t x i=\% 8.3 g \backslash n ", ~ n, ~ x i) ;$
fclose(fp);
ierr = ASL_dibbei(n, xi, \&xo);
printf("\n ** Output **\n\n");
printf("\tierr $=\% 6 d \backslash n "$, ierr);
printf("\n\tValue of Beinx $\backslash n \backslash n "$);
printf("\t xo = \%8.3g\n", xo);
return 0;
\}
(d) Output results

```
*** ASL_dibbei ***
    ** Input **
n = 3 xi = 1
    ** Output **
ierr = 0
Value of Beinx
    xo = 0.0156
```


2.6.5 ASL_dibker, ASL_ribker

Kelvin Function $\operatorname{ker}_{n}(x)$
(1) Function

Calculates the Kelvin function

$$
\operatorname{ker}_{n}(x)=\Re\left\{e^{-\sqrt{-1} n \pi / 2} K_{n}\left(x e^{\sqrt{-1} \pi / 4}\right)\right\} .
$$

(2) Usage

Double precision:
ierr $=$ ASL_dibker ($\mathrm{n}, \mathrm{xi}, \& x o$);
Single precision:
ierr = ASL_ribker (n, xi, \&xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	xi	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $\operatorname{ker}_{n}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $0.0<\mathrm{xi} \leq M$
where, $M=\left\{\begin{array}{c}\text { double precision : } 1003.784 \\ \text { single precision : } 125.473\end{array}\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
4000	xi $\leq 2.0 /($ Maximum value) or $\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}$ (See Note (a))	

(6) Notes
(a) When ierr becomes 4000 in this function, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\left\{\begin{array}{c}\text { double precision : } 709.7827 \\ \text { single precision : } 88.72284\end{array}\right\}$
(b) $w=\operatorname{ber}_{\nu}(x)+\sqrt{-1} \operatorname{bei}_{\nu}(x)$, $\operatorname{ber}_{-\nu}(x)+\sqrt{-1} \operatorname{bei}_{-\nu}(x), \operatorname{ker}_{\nu}(x)+\sqrt{-1} \operatorname{kei}_{\nu}(x)$, and $\operatorname{ker}_{-\nu}(x)+\sqrt{-1} \operatorname{kei}_{-\nu}(x)$ are solutions of the differential equation:

$$
x^{2} \frac{d^{2} w}{d x^{2}}+x \frac{d w}{d x}-\left(\sqrt{-1} x^{2}+\nu^{2}\right) w=0
$$

(7) Example
(a) Problem

Obtain the value of $\operatorname{ker}_{n}(x)$ at $x=1.0$ for $n=3$.
(b) Input data
$\mathrm{n}=3$ and $\mathrm{xi}=1.0$.
(c) Main program

```
/* C interface example for ASL_dibker */
#include <stdio.h>
#include <asl.h>
int main()
    int n;
    double xi;
    double xo;
    intierr;
    FILE *fp;
    fp = fopen( "dibker.dat", "r" );
    if( fp == NULL )
    {
        printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_dibker ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%d", &n );
    fscanf( fp, "%lf", &xi);
    printf( "\tn = %6d\t\txi = %8.3g\n", n, xi );
    fclose( fp );
    ierr = ASL_dibker(n, xi, &xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of Kernx\n\n" );
    printf( "\t xo = %8.3g\n", xo );
    return 0;
}
```

(d) Output results

```
*** ASL_dibker ***
    ** Input **
n = xi = 1
    ** Output **
ierr = 0
Value of Kernx
    xo = 4.89
```


2.6.6 ASL_dibkei, ASL_ribkei

Kelvin Function kei $_{n}(x)$
(1) Function

Calculates the Kelvin function

$$
\operatorname{kei}_{n}(x)=\Im\left\{e^{-\sqrt{-1} n \pi / 2} K_{n}\left(x e^{\sqrt{-1} \pi / 4}\right)\right\} .
$$

(2) Usage

Double precision:
ierr $=$ ASL_dibkei ($\mathrm{n}, \mathrm{xi}, \& \mathrm{xo}$);
Single precision:

$$
\text { ierr }=\text { ASL_ribkei (n, xi, \&xo); }
$$

(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	n	I	1	Input	Order n
2	xi	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $\operatorname{kei}_{n}(x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $0.0<\mathrm{xi} \leq M$
where, $M=\{$ double precision: 1003.784 , single precision: 125.473$\}$
(5) Error indicator (Return Value)

ierr value	Meaning	
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing
4000	xi $\leq 2.0 /($ Maximum value) or $\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}$ (See Note (a) $)$	

(6) Notes
(a) When ierr becomes 4000 in this function, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(b) $w=\operatorname{ber}_{\nu}(x)+\sqrt{-1} \operatorname{bei}_{\nu}(x)$, $\operatorname{ber}_{-\nu}(x)+\sqrt{-1} \operatorname{bei}_{-\nu}(x), \operatorname{ker}_{\nu}(x)+\sqrt{-1} \operatorname{kei}_{\nu}(x)$, and $\operatorname{ker}_{-\nu}(x)+\sqrt{-1} \operatorname{kei}_{-\nu}(x)$ are solutions of the differential equation:

$$
x^{2} \frac{d^{2} w}{d x^{2}}+x \frac{d w}{d x}-\left(\sqrt{-1} x^{2}+\nu^{2}\right) w=0
$$

(7) Example
(a) Problem

Obtain the value of $\operatorname{kei}_{n}(x)$ at $x=1.0$ for $n=3$.
(b) Input data
$\mathrm{n}=3$ and $\mathrm{xi}=1.0$.
(c) Main program
/* C interface example for ASL_dibkei */
\#include <stdio.h>
\#include <asl.h>
int main()
int n ;
double xi
double xo;
int ierr;
fp = fopen("dibkei.dat", "r");
if ($\mathrm{fp}==$ NULL $)$
printf("file open error $\backslash \mathrm{n} ")$;
return -1
\}
printf(" $\quad * * *$ ASL_dibkei $* * * \backslash \mathrm{n}^{\prime \prime}$);
printf ("\n $\quad * *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
fscanf(fp, "\%d", \&n);
fscanf(fp, "\%lf", \&xi);
printf("\tn = \%6d\t\txi $=\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", \mathrm{n}$, xi);
fclose(fp);
ierr $=$ ASL_dibkei(n, xi, \&xo);
printf("\n ** Output $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
printf("\tierr = \%6d\n", ierr);
printf("\n\tValue of Keinx\n\n");
printf("\t xo $=\% 8.3 \mathrm{~g} \backslash \mathrm{n} "$, xo);
return 0;
$\}$
(d) Output results

```
*** ASL_dibkei ***
    ** Input **
    n = 3i = 1
    ** Output **
    ierr = 0
    Value of Keinx
        xo = -6.27
```


2.6.7 ASL_wibh0x, ASL_vibh0x Struve Function (Order 0)

(1) Function

For $x=X_{i}$, calculates the Struve function (order 0)

$$
\mathbf{H}_{0}(x)=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin (x \cos (t)) d t .
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_wibh0x (nv, xi, xo); }
$$

Single precision:
ierr $=$ ASL_vibh0x (nv, xi, xo);
(3) Arguments and Return Value

D:Double precision real
R:Single precision real
:---
C:Single precision complex

long as for 64bit Integer\end{array}\right\}\)

No.	Argument and Return Value	Type	Size	Input/ Output	
1	nv	I	1	Input	number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	nv	Input	Value of variable X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	nv	Output	$\mathbf{H}_{0}\left(X_{i}\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n v \geq 1$
(b) $\operatorname{xi}[\mathrm{i}-1] \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by xi $[\mathrm{i}-$ $1]$.	

(6) Notes
(a) For struve Function of order $\nu \mathbf{H}_{\nu}(z)$, the following recurrence relation holds:

$$
\mathbf{H}_{\nu-1}(z)+\mathbf{H}_{\nu+1}(z)=\frac{2 \nu}{z} \mathbf{H}_{\nu}(z)+\frac{\left(\frac{z}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{3}{2}\right)} .
$$

(b) The general solution of differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=\frac{4\left(\frac{z}{2}\right)^{\nu+1}}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)}
$$

is

$$
w=a J_{\nu}(z)+b Y_{\nu}(z)+\mathbf{H}_{\nu}(z),
$$

where $J_{\nu}(z)$ and $Y_{\nu}(z)$ are Bessel function of the 1st kind and of the 2nd kind respectively, and a and b are constants.

(7) Example

(a) Problem

Obtain $\mathbf{H}_{0}(x)$ for $x=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

```
/* C interface example for ASL_wibh0x */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
#include <stdio.h>
#include <stdio.h>
#include <stdlib.
int main()
    double *xt;
    double *xo;
    int nv;
    int i;
    int ierr;
    nv=10;
    xt=(double *)malloc((size_t)(sizeof(double) * nv));
    if( xt == NULL )
        printf("no enough memory for array xt\n");
    }
    xo=(double *)malloc((size_t)(sizeof(double) * nv));
    if( xo == NULL )
        printf("no enough memory for array xo\n");
    }
    printf( " *** ASL_Wibh0x ***\n" );
    printf( "\n ** Input **\n\n" );
    for(i=0;i<nv;i++)
    xt[i]=i;
    xt[i]=xt[i]/nv;
    printf( "\t xt = %8.3g\n", xt[i] );
    }
    ierr = ASL_wibh0x(nv,xt, xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of HO(x)\n\n" );
    for(i=0;i<nv;i++)
    printf( "\t xo = %8.3g\n", xo[i] );
    free(xt); (x);
    return 0;
}
```

(c) Output results

```
*** ASL_wibh0x ***
** Input **
\begin{tabular}{lr}
\(\mathrm{xt}=\) & 0 \\
\(\mathrm{xt}=\) & 0.1 \\
\(\mathrm{xt}=\) & 0.2 \\
\(\mathrm{xt}=\) & 0.3 \\
\(\mathrm{xt}=\) & 0.4 \\
\(\mathrm{xt}=\) & 0.5 \\
\(\mathrm{xt}=\) & 0.6 \\
\(\mathrm{xt}=\) & 0.7 \\
\(\mathrm{xt}=\) & 0.8 \\
\(\mathrm{xt}=\) & 0.9
\end{tabular}
** Output **
ierr = 0
Value of HO(x)
\begin{tabular}{lr} 
xo \(=\) & 0 \\
xo \(=\) & 0.0636 \\
xo \(=\) & 0.127 \\
xo \(=\) & 0.189 \\
xo \(=\) & 0.25 \\
xo \(=\) & 0.31 \\
xo \(=\) & 0.367 \\
xo \(=\) & 0.422 \\
xo \(=\) & 0.474 \\
xo \(=\) & 0.523
\end{tabular}
```


2.6.8 ASL_wibh1x, ASL_vibh1x
 Struve Function (Order 1)

(1) Function

For $x=X_{i}$, calculates the Struve function (order 1)

$$
\mathbf{H}_{1}(x)=\frac{2 x}{\pi} \int_{0}^{\frac{\pi}{2}} \sin (x \cos (t)) \sin ^{2}(t) d t
$$

(2) Usage

Double precision:

$$
\text { ierr }=\text { ASL_wibh1x (nv, xi, xo); }
$$

Single precision:
ierr = ASL_vibh1x (nv, xi, xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 b i t \text { Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	nv	I	1	Input	Number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Input	X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Output	$\mathbf{H}_{1}\left(X_{i}\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $\mathrm{nv} \geq 1$
(b) $\operatorname{xi}[\mathrm{i}-1] \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by xi $[\mathrm{i}-$ $1]$.	

(6) Notes

(a) For struve Function of order $\nu \mathbf{H}_{\nu}(z)$, the following recurrence relation holds

$$
\mathbf{H}_{\nu-1}(z)+\mathbf{H}_{\nu+1}(z)=\frac{2 \nu}{z} \mathbf{H}_{\nu}(z)+\frac{\left(\frac{z}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{3}{2}\right)} .
$$

(b) The general solution of differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=\frac{4\left(\frac{z}{2}\right)^{\nu+1}}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)}
$$

is

$$
w=a J_{\nu}(z)+b Y_{\nu}(z)+\mathbf{H}_{\nu}(z),
$$

where $J_{\nu}(z)$ and $Y_{\nu}(z)$ are Bessel functions of the 1st kind and of the 2nd kind respectively, and a and b are constants.
(7) Example
(a) Problem

Obtain $\mathbf{H}_{1}(x)$ for $x=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

```
/* C interface example for ASL_wibh1x */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
#include <stdio.h>
#include <stdlib.h>
#include <asl.h>
int main()
    double *xt;
    double *xo;
    int nv;
    int i;
    int ierr;
    nv=10;
    xt=(double *)malloc((size_t) (sizeof(double) * nv));
    if( xt == NULL )
        printf("no enough memory for array xt\n");
    }
    xo=(double *)malloc((size_t)(sizeof(double) * nv));
    if( xo == NULL )
        printf("no enough memory for array xo\n");
        return -1;
    }
    printf( " *** ASL_wibh1x ***\n" );
    printf( "\n ** Input **\n\n");
    for(i=0;i<nv;i++)
    xt[i]=i;
    xt[i]=xt[i]/nv;
    printf( "\t xt = % 8.3g\n", xt[i] );
    }
    ierr = ASL_wibh1x(nv,xt, xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of H1(x)\n\n" );
    for(i=0;i<nv;i++)
    printf( "\t xo = %8.3g\n", xo[i] );
        free(xt);
        free(xo);
    return 0;
}
```

(c) Output results

2.6.9 ASL_wibhy0, ASL_vibhy0

Difference of Struve Function (Order 0) and Bessel Function of the 2nd Kind (Order 0)
(1) Function

For $x=X_{i}$, calculates the difference of the Struve function (order 0) and Bessel function of the 2nd kind (order 0)

$$
\mathbf{H}_{0}(x)-Y_{0}(x)=\frac{2}{\pi} \int_{0}^{\infty} e^{-x t}\left(1+t^{2}\right)^{-\frac{1}{2}} d t
$$

(2) Usage

Double precision:
ierr = ASL_wibhy0 (nv, xi, xo);

Single precision: ierr $=$ ASL_vibhy0 (nv, xi, xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	nv	I	1	Input	number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Input	X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Output	$\mathbf{H}_{0}\left(X_{i}\right)-Y_{0}\left(X_{i}\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n v \geq 1$
(b) $\mathrm{xi}[i-1] \geq 0.0$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing	
0	Normal termination.		
2000	xi[i-1]=0.0 (overflow)	xo[i -1$]$ performed.	
3000	Restriction (a) was not satisfied.	Processing is aborted.	
$3000+i$	Restriction (b) was not satisfied by xi $[\mathrm{i}-$ $1]$.		

(6) Notes
(a) The following relation holds:

$$
\mathbf{H}_{\nu}(z)-Y_{\nu}(z)=\frac{2\left(\frac{z}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)} \int_{0}^{\infty} e^{-z t}\left(1+t^{2}\right)^{\nu-\frac{1}{2}} d t \quad\left(|\arg z|<\frac{\pi}{2}\right) .
$$

(7) Example
(a) Problem

Obtain $\mathbf{H}_{0}(x)-Y_{0}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program
$\begin{array}{lll}\text { /* } & \text { C interface example for ASL_wibhyO */ } \\ \text { /* } & \text { R9.0 UPDD } 03 / 02 / 05 \mathrm{~N} . \mathrm{Y} . \quad \text { CINT-SRC-02-0002 }\end{array}$
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int $_{\{ }$main()
double *xt;
double *xo;
int nv;
int ierr;
nv=10;
nv=(doubl
xt=(double *)malloc ((size_t) (sizeof(double) * nv));
if $(\mathrm{xt}==\mathrm{NULL})$
printf("no enough memory for array $x t \backslash n$ ");
return -1 ;
\}
xo=(double *)malloc ((size_t) (sizeof(double) * nv));
if ($\mathrm{xo}==$ NULL $)$
printf("no enough memory for array $x o \backslash n ")$; return -1 ;
\}
printf(" $\quad * * *$ ASL_wibhy0 $* * * \backslash \mathrm{n} ")$;
printf ("\n ** Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
for $(i=0 ; i<n v ; i++)$
f
xt
[i]
$x t[i]=i+1$;
xt[i]=xt[i]/nv;
printf("\t xt $=\% 8.3 g \backslash n ", x t[i])$;
,
ierr = ASL_wibhy0(nv, xt, xo);
printf("\n ** Output **\n\n");
printf("\tierr $=\% 6 d \backslash n "$, ierr);
printf("\n\tValue of HYO(x) \n\n");
for (i=0; i<nv;i++)
printf("\t xo $=\% 8.3 \mathrm{~g} \backslash \mathrm{n} "$, xo[i]);
free (xt);
free (xo);
return 0;
\}
(c) Output results

*** ASL_wibhy0	***
** Input	**
xt $=$	0.1
$\mathrm{xt}=$	0.2
$\mathrm{xt}=$	0.3
$\mathrm{xt}=$	0.4
$\mathrm{xt}=$	0.5
$\mathrm{xt}=$	0.6
$\mathrm{xt}=$	0.7
$\mathrm{xt}=$	0.8
$\mathrm{xt}=$	0.9
$\mathrm{xt}=$	1
** Output	$* *$
ierr $=$	0

Value of HYO(x)

| xo $=$ | 1.6 |
| ---: | ---: | ---: |
| $\mathrm{xo}=$ | 1.21 |
| $\mathrm{xo}=$ | 0.996 |
| xo $=$ | 0.856 |
| xo $=$ | 0.754 |
| xo $=$ | 0.675 |
| xo $=$ | 0.613 |
| xo $=$ | 0.561 |
| xo $=$ | 0.517 |
| xo $=$ | 0.48 |

2.6.10 ASL_wibhy1, ASL_vibhy1

Difference of Struve Function (Order 1) and Bessel Function of the 2nd Kind (Order 1)
(1) Function

For $x=X_{i}$, calculates the difference of the Struve function (order 1) and Bessel function of the 2nd kind (order 1)

$$
\mathbf{H}_{1}(x)-Y_{1}(x)=\frac{2 x}{\pi} \int_{0}^{\infty} e^{-x t}\left(1+t^{2}\right)^{\frac{1}{2}} d t
$$

(2) Usage

Double precision:
ierr = ASL_wibhy1 (nv, xi, xo);

Single precision:
ierr $=$ ASL_vibhy1 (nv, xi, xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	nv	I	1	Input	number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Input	X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Output	$\mathbf{H}_{1}\left(X_{i}\right)-Y_{1}\left(X_{i}\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n v \geq 1$
(b) $\operatorname{xi}[i-1] \geq 0.0$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing	
0	Normal termination.		
2000	xi $[\mathrm{i}-1] \quad \leq \quad 1.0 /($ Maximum value $)$ (overflow)	xo $[\mathrm{i}-1]$ performed.	
3000	Restriction (a) was not satisfied.	Processing is aborted.	
$3000+i$	Restriction (b) was not satisfied by xi $[\mathrm{i}-$ $1]$.		

(6) Notes
(a) The following relation holds:

$$
\mathbf{H}_{\nu}(z)-Y_{\nu}(z)=\frac{2\left(\frac{z}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)} \int_{0}^{\infty} e^{-z t}\left(1+t^{2}\right)^{\nu-\frac{1}{2}} d t \quad\left(|\arg z|<\frac{\pi}{2}\right) .
$$

(7) Example
(a) Problem

Obtain $\mathbf{H}_{1}(x)-Y_{1}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program

```
/* C interface example for ASL_wibhy1 */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
#include <stdio.h>
#include <stdlib.h>
#include <asl.h>
int main()
    double *xt;
    double *xo;
    int nv;
    int i;
    v=10;
    v=10;
    xt=(double *)malloc((size_t)(sizeof(double) * nv));
    if( xt == NULL )
        printf("no enough memory for array xt\n");
        return -1;
    }
    xo=(double *)malloc((size_t)(sizeof(double) * nv));
    if( xo == NULL )
        printf("no enough memory for array xo\n")
        return -1;
    }
    printf( " *** ASL_wibhy1 ***\n" );
    printf( "\n ** Input **\n\n" );
    for(i=0;i<nv;i++)
    {t
    xt[i]=i+1;
    xt[i]=xt[i]/nv;
    printf( "\t xt = %8.3g\n", xt[i] );
    ierr = ASL_wibhy1(nv,xt, xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of HY1(x)\n\n" );
    for(i=0;i<nv;i++)
    printf( "\t xo = %8.3g\n", xo[i] );
        free(xt);
        urn 0;
}
```

(c) Output results

Value of HY1 (x)	
xo $=$	6.46
xo	3.33
xo	2.31
xo	1.81
xo	1.52
xo	1.33
xo	1.2
$\mathrm{xo}=$	1.11
xo	1.04
$\mathrm{xo}=$	0.98

2.6.11 ASL_dibaix, ASL_ribaix

Airy Function $\operatorname{Ai}(x)$

(1) Function

Calculates the Airy function

$$
\operatorname{Ai}(x)= \begin{cases}\pi^{-1} \sqrt{\frac{x}{3}} K_{\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right) & (x \geq 0.0) \\ \frac{1}{3} \sqrt{|x|}\left[J_{\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)+J_{-\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right] & (x<0.0)\end{cases}
$$

(2) Usage

Double precision:
ierr = ASL_dibaix (xi, \&xo);

Single precision:
ierr = ASL_ribaix (xi, \&xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real
Z:Double precision complex C:Single precision complex I: $\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}$
No.Argument and Return Value
1

(4) Restrictions
(a) $\mathrm{xi} \geq-M$
where,
$M=\left\{\right.$ double precision: $\left(3 \times 2^{49} \pi\right)^{2 / 3}$, single precision: $\left.\left(3 \times 2^{17} \pi\right)^{2 / 3}\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	xi $>M_{1}$ (See Note (a))	xo $=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) When ierr becomes 1000 in this function, the value of M_{1} is as follows: $M_{1}=\{$ double precision: 103.8, single precision: 25.3$\}$
(b) Pairs of linearly independent solution of differential equation:

$$
\frac{d^{2} w}{d z^{2}}-z w=0
$$

are $\{\operatorname{Ai}(z), \operatorname{Bi}(z)\},\left\{\operatorname{Ai}(z), \operatorname{Ai}\left(z e^{\frac{2 \sqrt{-1} \pi}{3}}\right)\right\}$, and $\left\{\operatorname{Ai}(z), \operatorname{Ai}\left(z e^{\frac{-2 \sqrt{-1} \pi}{3}}\right)\right\}$.

(7) Example

(a) Problem

Obtain the value of $\operatorname{Ai}(x)$ at $x=-5.3$.
(b) Input data
$\mathrm{xi}=-5.3$
(c) Main program
/* C interface example for ASL_dibaix */
\#include <stdio.h>
\#include <asl.h>
int main()
double xi;
double xo;
int ierr;
FILE *fp;
fp = fopen("dibaix.dat", "r");
if ($\mathrm{fp}==$ NULL)
printf("file open error\n");
return -1;

\}

printf(" *** ASL_dibaix ***\n");
printf("\n ** Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
fscanf(fp, "\%lf", \&xi);
printf("\tValue of Variable $x=\% 8.3 \mathrm{~g} \backslash \mathrm{n} "$, $x i$);
fclose(fp);
ierr = ASL_dibaix(xi, \&xo);
printf("\n ** Output **\n\n");
printf("\tierr = \%6d\n", ierr);
printf("\n\tValue of Airy Function $\mathrm{Ai}(\mathrm{x})=\% 8.3 \mathrm{~g} \backslash \mathrm{n} "$, xo$)$;
return 0;
\}
(d) Output results
*** ASL_dibaix ***
** Input **
Value of Variable $\mathrm{x}=-5.3$
** Output **
ierr $=0$
Value of Airy Function $\mathrm{Ai}(\mathrm{x})=0.183$

2.6.12 ASL_dibbix, ASL_ribbix

Airy Function $\operatorname{Bi}(x)$

(1) Function

Calculates the Airy function

$$
\operatorname{Bi}(x)=\left\{\begin{array}{ll}
\sqrt{\frac{x}{3}}\left[I_{-\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)+I_{\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right] & (x \geq 0.0) \\
\sqrt{\frac{|x|}{3}}\left[J_{-\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)-J_{\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right] & (x<0.0)
\end{array} .\right.
$$

(2) Usage

Double precision:
ierr = ASL_dibbix (xi, \&xo);

Single precision:
ierr = ASL_ribbix (xi, \&xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real
Z:Double precision complex C:Single precision complex I: $\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}$
No.Argument and Return Value
1

(4) Restrictions
(a) $\mathrm{xi} \geq-M$
where, $M=\left\{\right.$ double precision: $\left(3 \times 2^{49} \pi\right)^{2 / 3}$, single precision: $\left.\left(3 \times 2^{17} \pi\right)^{2 / 3}\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
2000	xi $>M_{1}$ (See Note (a)) (overflow)	xo = (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) When ierr becomes 2000 in this function, the value of M_{1} is as follows: $M_{1}=\{$ double precision: 104.266 , single precision: 20.066$\}$
(b) Pairs of linearly independent solution of differential equation:

$$
\frac{d^{2} w}{d z^{2}}-z w=0
$$

are $\{\operatorname{Ai}(z), \operatorname{Bi}(z)\},\left\{\operatorname{Ai}(z), \operatorname{Ai}\left(z e^{\frac{2 \sqrt{-1} \pi}{3}}\right)\right\}$, and $\left\{\operatorname{Ai}(z), \operatorname{Ai}\left(z e^{\frac{-2 \sqrt{-1} \pi}{3}}\right)\right\}$.

(7) Example

(a) Problem

Obtain the value of $\operatorname{Bi}(x)$ at $x=-5.3$.
(b) Input data
$\mathrm{xi}=-5.3$.
(c) Main program

```
/* C interface example for ASL_dibbix */
#include <stdio.h>
#include <asl.h>
int main()
    double xi;
    double xo;
    int ierr;
    FILE *fp;
    fp = fopen( "dibbix.dat", "r" );
    if( fp == NULL )
        printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_dibbix ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%lf", &xi );
    printf( "\tValue of Variable x = % 8.3g\n", xi );
    fclose( fp );
    ierr = ASL_dibbix(xi, &xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of Airy Function Bi(x) = %8.3g\n", xo );
    return 0;
}
```

(d) Output results

```
*** ASL_dibbix ***
    ** Input **
Value of Variable x = -5.3
    * Output **
    ierr = 0
    Value of Airy Function Bi(x) = -0.324
```


2.6.13 ASL_dibaid, ASL_ribaid

Derived Airy Function $\mathrm{Ai}^{\prime}(x)$

(1) Function

Calculates the derived Airy function

$$
\operatorname{Ai}^{\prime}(x)=\left\{\begin{array}{ll}
-\frac{x}{\sqrt{3} \pi} K_{\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right) & (x \geq 0.0) \\
\frac{x}{3}\left[J_{-\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)-J_{\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right] & (x<0.0)
\end{array} .\right.
$$

(2) Usage

Double precision:
ierr = ASL_dibaid (xi, \&xo);

Single precision:
ierr = ASL_ribaid (xi, \&xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	xi	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
2	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $\mathrm{Ai}^{\prime}(x)$
3	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $\mathrm{xi} \geq-M$
where, $M=\left\{\right.$ double precision: $\left(3 \times 2^{49} \pi\right)^{2 / 3}$, single precision: $\left.\left(3 \times 2^{17} \pi\right)^{2 / 3}\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	xi $>M_{1}$ (See Note (a)) (underflow)	xo $=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) When ierr becomes 1000 in this function, the value of M_{1} is as follows:
$M_{1}=\{$ double precision: 104.1, single precision: 25.7$\}$

(7) Example

(a) Problem

Obtain the value of the derived function $\operatorname{Ai}^{\prime}(x)$ of the Airy function $\operatorname{Ai}(x)$ at $x=-5.3$.
(b) Input data
$x i=-5.3$.
(c) Main program
/* C interface example for ASL_dibaid */
\#include <stdio.h>
\#include <asl.h>
int main()
double xi;
double xo;
int ierr;
FILE *fp;
fp = fopen("dibaid.dat", "r");
if ($f p==$ NULL $)$
printf("file open error\n");
return -1;
\}
printf(" *** ASL_dibaid ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "\%lf", \&xi);
printf("\tValue of Variable $x=\% 8.3 \mathrm{~g} \backslash \mathrm{n} "$, xi);
fclose(fp);
ierr = ASL_dibaid(xi, \&xo);
printf("\n ** Output **\n\n");
printf("\tierr = \%6d\n", ierr);
printf("\n\tValue of Derived Airy Function Ai' (x) = \%8.3g\n", xo);
return 0;
\}
(d) Output results

```
*** ASL_dibaid ***
    ** Input **
    Value of Variable \(x=-5.3\)
    ** Output **
    ierr \(=0\)
    Value of Derived Airy Function \(A i^{\prime}(x)=0.755\)
```


2.6.14 ASL_dibbid, ASL_ribbid

Derived Airy Function $\operatorname{Bi}^{\prime}(x)$

(1) Function

Calculates the derived Airy function

$$
\mathrm{Bi}^{\prime}(x)=\left\{\begin{array}{ll}
\frac{x}{\sqrt{3}}\left[I_{-\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)+I_{\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right] & (x \geq 0.0) \\
-\frac{x}{\sqrt{3}}\left[J_{-\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)+J_{\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right] & (x<0.0)
\end{array} .\right.
$$

(2) Usage

Double precision:
ierr $=$ ASL_dibbid (xi, \&xo);
Single precision:

```
ierr = ASL_ribbid (xi, &xo);
```

(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	xi	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
2	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $\mathrm{Bi}^{\prime}(x)$
3	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $\mathrm{xi} \geq-M$
where, $M=\left\{\right.$ double precision: $\left(3 \times 2^{49} \pi\right)^{2 / 3}$, single precision: $\left.\left(3 \times 2^{17} \pi\right)^{2 / 3}\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
2000	xi $>M_{1}$ (See Note (a)) (overflow)	xo $=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) When ierr becomes 2000 in this function, the value of M_{1} is as follows:
$M_{1}=\{$ double precision: 104.266, single precision: 20.066$\}$
(7) Example
(a) Problem

Obtain the value of the derived function $\operatorname{Bi}^{\prime}(x)$ of the Airy function $\operatorname{Bi}(x)$ at $x=-5.3$.
(b) Input data
$\mathrm{xi}=-5.3$.
(c) Main program

```
/* C interface example for ASL_dibbid */
#include <stdio.h>
#include <asl.h>
int main()
    double xi;
    double xo
    int ierr
    fp = fopen( "dibbid.dat", "r" );
    if( fp == NULL )
    {
            printf( "file open error\n" );
            return -1;
        }
        printf( " *** ASL_dibbid ***\n" );
        printf( "\n ** Input **\n\n" );
        fscanf( fp, "%lf", &xi );
        printf( "\tValue of Variable x = %8.3g\n", xi );
        fclose( fp );
        ierr = ASL_dibbid(xi, &xo);
        printf( "\n ** Output **\n\n" );
        printf( "\tierr = %6d\n", ierr );
        printf( "\n\tValue of Derived Airy Function Bi'(x) = %8.3g\n", xo );
        return 0;
}
```

(d) Output results

```
*** ASL_dibbid ***
    ** Input **
Value of Variable \(\mathrm{x}=\quad-5.3\)
    ** Output **
ierr \(=0\)
Value of Derived Airy Function \(B i^{\prime}(x)=0.406\)
```


2.7 GAMMA FUNCTIONS

2.7.1 ASL_wigamx, ASL_vigamx

Gamma Function with Real Variable
(1) Function

For $x=X_{i}$, calculates the value of the Gamma function with real variable

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

(2) Usage

Double precision:
ierr $=$ ASL_wigamx (nv, xi, xo);
Single precision:

$$
\text { ierr }=\text { ASL_vigamx (nv, xi, xo); }
$$

(3) Arguments and Return Value

D:Double precision real R :Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	nv	I	1	Input	number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Input	X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Output	$\Gamma\left(X_{i}\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $n v \geq 1$
(b) $x i[i-1]$ is not any negative integer or 0.0 .
(c) $\operatorname{xi}[\mathrm{i}-1] \geq-\mathrm{M}$
where $M=$ \{double precision: 170.4 , single precision: 34.0$\}$

(5) Error indicator (Return Value)

| ierr value | Meaning | Processing |
| :---: | :--- | :--- | :--- |
| 0 | Normal termination. | |
| 2000 | $\|x i[\mathrm{i}-1]\| \leq 1.0 /($ Maximum value)
 or xi $[\mathrm{i}-1]>\mathrm{M}_{1}$ (See Note (c)) (overflow) | xo[i -1$] \quad=\quad$ (Maximum value)
 performed. |
| 3000 | Restriction (a) was not satisfied. | Processing is aborted. |
| $3000+i$ | Restriction (b) or (c) was not satisfied by
 xi $[\mathrm{i}-1]$. | |

(6) Notes
(a) If ierr $=3000+i$ and restriction (b) is not satisfied, furthermore $x i[i-1]$ is not a value close to a negative integer, $\Gamma\left(X_{i}\right)$ is a value close to 0.0 .
(b) $x=-n(n=0,1,2, \cdots)$ are simple poles of the Gamma function $\Gamma(x)$, i.e.

$$
\lim _{x \rightarrow-n} \frac{1}{\Gamma(x)}=0 \quad(n=0,1,2, \cdots)
$$

Therefore, high precision result cannot be expected for a calculated value of gamma function at a point close to zero or at a negative integer.
(c) The value to return ierr=2000 of M_{1} is as follows:
$M_{1}=\{$ double precision: 171.4, single precision: 35.0\}
(d) Gamma Function $\Gamma(z)$ is called Euler's integral of the 2nd kind. This function is also called factorial function because $\Gamma(z+1)=z \Gamma(z)=z!$ holds.

(7) Example

(a) Problem

Obtain $\Gamma(x)$ for $x=0.1,0.2, \cdots, 0.9,1.0$.
(b) Main program
/* C interface example for ASL_wigamx */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xo
int nv;
int i;
int ierr;
nv=10;
xt=(double *)malloc ((size_t) (sizeof(double) * nv));
if ($\mathrm{xt}==$ NULL $)$
printf("no enough memory for array $x t \backslash n$ ");
return -1 ;
\}
xo=(double *)malloc ((size_t) (sizeof (double) * nv));
if (xo == NULL)
printf("no enough memory for array xo\n");
\}
printf(" $\quad * * *$ ASL_wigamx $* * * \backslash \mathrm{n} ")$;
printf("\n ** Input **\n\n");
for (i=0;i<nv;i++)
\{
$\mathrm{xt}[\mathrm{i}]=\mathrm{i}+1 ;$
$\mathrm{xt}[\mathrm{i}]=\mathrm{xt}[\mathrm{i}] / \mathrm{nv} ;$

```
printf( "\t xt = %8.3g\n", xt[i] );
}
ierr = ASL_wigamx(nv,xt, xo);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\tValue of gamx(x)\n\n" );
for(i=0;i<nv;i++)
            free(xt)
            free(xo);
return 0;
}
```

(c) Output results

```
*** ASL_wigamx ***
```

** Input **
$\begin{array}{ll}\mathrm{xt} & = \\ \mathrm{xt} & = \\ \mathrm{x} & 0.1 \\ & 0.2\end{array}$
$\begin{array}{ll}x t= & 0.3 \\ x t= & 0.4\end{array}$
$\begin{array}{ll}x t= & 0.4 \\ x t= & 0.5\end{array}$
$\begin{array}{ll}\mathrm{xt}= & 0.5 \\ \mathrm{xt}= & 0.6 \\ \mathrm{xt}= & 0.7\end{array}$
$\begin{array}{ll}x t= & 0.7 \\ x t= & 0.8\end{array}$
$\begin{array}{ll}\mathrm{xt}= & 0.8 \\ \mathrm{xt}= & 0.9 \\ \mathrm{xt}= & 1\end{array}$
** Output **
ierr $=0$
Value of gamx (x)

xo $=$	9.51
xo $=$	4.59
xo $=$	2.99
xo $=$	2.22
xo $=$	1.77
xo $=$	1.49
xo $=$	1.3
xo $=$	1.16
xo $=$	1.07
xo $=$	1

2.7.2 ASL_wiglgx, ASL_viglgx

Logarithmic Gamma Function with Real Variable

(1) Function

For $x=X_{i}$, calculates the value of the logarithmic Gamma function with real variable $\log _{e}(\Gamma(x))$.
(2) Usage

Double precision:
ierr = ASL_wiglgx (nv, xi, xo);

Single precision:
ierr = ASL_viglgx (nv, xi, xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	nv	I	1	Input	number of input data
2	xi	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Input	X_{i}
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	nv	Output	$\log _{e}\left(\Gamma\left(X_{i}\right)\right)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $\mathrm{nv} \geq 1$
(b) xi[i-1] must not be any non-positive integer.
(c) $\mathrm{xi}[\mathrm{i}-1]>-M$
where $M=\left\{\right.$ double precision: 2^{50}, single precision: $\left.2^{18}\right\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\Gamma(x i[\mathrm{i}-1])$ is negative.	The natural logarithm of $\|\Gamma(x i[\mathrm{i}-1])\|$ is performed.
2000	xi $[\mathrm{i}-1]>\mathrm{M}_{1}$ (See Note (b)) (overflow)	xo $[\mathrm{i}-1]$ performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) or (c) was not satisfied by xi $[\mathrm{i}-1]$.	

(6) Notes

(a) When ierr $=1000$, the Gamma function value is obtained as $-\exp (x o[i-1])$ for a certain i , while it is obtained as $\exp (\mathrm{xo}[\mathrm{i}-1])$ in other cases.
(b) When ierr becomes 2000 in this function, the value of M_{1} is as follows: $M_{1}=\left\{\right.$ double precision: 2.545×10^{305}, single precision: $\left.4.08 \times 10^{36}\right\}$
(7) Example
(a) Problem

Obtain $\log _{e}(\Gamma(x))$ for $x=0.1,0.2, \cdots, 0.9,1.0$.
(b) Main program

```
/* C interface example for ASL_wiglgx */
* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
#include <stdio.h>
#include <stdlib.h>
#include <asl.h>
int main()
    double *xt;
    double *xo;
    int nv;
    int i;
    int ierr
    xt=(double *)malloc((size_t) (sizeof(double) * nv));
    if( xt == NULL )
        printf("no enough memory for array xt\n")
        return -1;
    }
    xo=(double *)malloc((size_t)(sizeof(double) * nv));
    if( xo == NULL )
        printf("no enough memory for array xo\n");
        return -1;
    }
    printf( " *** ASL_wiglgx ***\n" );
    printf( "\n ** Input **\n\n");
    for(i=0;i<nv;i++)
    xt[i]=i+1
    xt[i]=xt[i]/nv
    printf( "\t xt = %8.3g\n", xt[i] );
    }
    ierr = ASL_wiglgx(nv,xt, xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
    printf( "\n\tValue of glgx(x)\n\n" );
    for(i=0;i<nv;i++)
    printf( "\t xo = %8.3g\n", xo[i] );
        free(xt);
        free(xo)
    return 0;
}
```

(c) Output results

*** ASL_wiglgx ***		
	Input	**
xt	=	0.1
xt	,	0.2
xt	,	0.3
xt	,	0.4
xt	,	0.5
xt	t	0.6
xt	,	0.7
xt	,	0.8
xt	=	0.9
xt	t	1

** Output **

[^1]
2.7.3 ASL_digig1, ASL_rigig1

Incomplete Gamma Function of the 1st Kind

(1) Function

Calculates the value of the incomplete Gamma function of the 1st kind

$$
\gamma(\nu, x)=\int_{0}^{x} e^{-t} t^{\nu-1} d t
$$

(2) Usage

Double precision:
ierr $=$ ASL_digig1 (v, xi, \&xo);
Single precision:
ierr = ASL_rigig1 (v, xi, \&xo);
(3) Arguments and Return Value
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}$

No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	v	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable ν
2	xi	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $\gamma(\nu, x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $\mathrm{xi} \geq 0.0$
(b) $\mathrm{v} \geq 0.0$

(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	
1000	$\nu \log _{e}(x)<-M_{1}$ (See Note (b)) (underflow)	$\mathrm{xo}=0.0$ is performed.
2000	$\mathrm{v} \leq 1.0 /$ (Maximum value) (overflow)	$\mathrm{xo}=$ (Maximum value) is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
4000	For xi > 1.0, - $\nu>\left(M_{2}+x\right) / \log _{e}(x)$ or - $x>x_{m}$ and $\nu>\nu_{m}$ was satisfied (See Note (c)).	Processing is aborted. (See Note (a))

(6) Notes
(a) If ierr $=4000$, the value of $\gamma(\nu, x)$ is practically the (maximum value).
(b) When ierr becomes 1000 in this function, the value of M_{1} is as follows: $M_{1}=\{$ double precision: 708.396 , single precision: 87.336$\}$
(c) When ierr becomes 4000 in this function, the values of x_{m}, ν_{m}, and M_{2} are as follows: $x_{m}=\{$ double precision: 171.0 , single precision: 35.0$\}$, $\nu_{m}=\{$ double precision: 171.4 , single precision: 35.0$\}$, $M_{2}=\{$ double precision: 709.782, single precision: 88.722$\}$

(7) Example

(a) Problem

Obtain the value of $\gamma(\nu, x)$ at $x=3.0$ for $\nu=4.0$.
(b) Input data
$\mathrm{v}=4.0$ and $\mathrm{xi}=3.0$.
(c) Main program

```
/* C interface example for ASL_digig1 */
#include <stdio.h>
#include <asl.h>
int main()
    double v;
    double xi;
    double xo;
    int ierr;
    FILE *fp;
    fp = fopen( "digig1.dat", "r" );
    if( fp == NULL )
    printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_digig1 ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%lf", &v );
    fscanf( fp, "%lf", &xi );
    printf( "\tv = %8.3g\t\txi = %8.3g\n", v, xi );
    fclose( fp );
    ierr = ASL_digig1(v, xi, &xo);
```

```
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\tValue of Incomplete Gamma Function of The First Kind\n\n" );
printf( "\t xo = %8.3g\n", xo );
return 0;
```

(d) Output results

```
*** ASL_digig1 ***
** Input **
v = 4 xi = 3
** Output **
```

ierr $=0$
Value of Incomplete Gamma Function of The First Kind
$\mathrm{xo}=\quad 2.12$

2.7.4 ASL_digig2, ASL_rigig2

Incomplete Gamma Function of the 2nd Kind

(1) Function

Calculates the value of the incomplete Gamma function of the 2nd kind

$$
\Gamma(\nu, x)=\int_{x}^{\infty} e^{-t} t^{\nu-1} d t=e^{-x} \int_{0}^{\infty} e^{-t}(x+t)^{\nu-1} d t
$$

(2) Usage

Double precision:
ierr = ASL_digig2 (v, xi, \&xo);

Single precision:
ierr = ASL_rigig2 (v, xi, \&xo);
(3) Arguments and Return Value

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { int as for } 32 \text { bit Integer } \\ \text { long as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument and Return Value	Type	Size	Input/ Output	Contents
1	v	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Value of variable ν
2	xi	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	xo	$\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}$	1	Output	Value of $\Gamma(\nu, x)$
4	ierr	I	1	Output	Error indicator (Return Value)

(4) Restrictions
(a) $\mathrm{xi} \geq 0.0$
(b) $0.0 \leq \mathrm{v} \leq M$
where, $M=\{$ double precision: 171.4 , single precision: 35.0$\}$
(5) Error indicator (Return Value)

ierr value	Meaning	Processing
0	Normal termination.	xo $=0.0$ is performed.
1000	For xi $>\mathrm{v}$, $(\nu-1) \log _{e}(x)-x<-M_{1}$ (See Note (b) (underflow)	
2000	$\mathrm{v}=0.0$ and xi $=0.0$ (overflow)	xo $=$ (Maximum value) is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted. (See Note (a))
4000	For xi $\leq \mathrm{v}-0.5$, $\nu \log _{e}(x)>\left(M_{2}+x\right)$ or $x>x_{m}$ was satisfied (See Note (c)).	Processing is aborted.

(6) Notes
(a) If ν is a large value when ierr $=3000$, the value of $\Gamma(\nu, x)$ is practically the (maximum value).
(b) When ierr becomes 1000 in this function, the value of M_{1} is as follows:
$M_{1}=\{$ double precision: 708.396, single precision: 87.336$\}$
(c) When ierr becomes 4000 in this function, the values of x_{m} and M_{2} are as follows:
$x_{m}=\{$ double precision: 171.0, single precision: 35.0\},
$M_{2}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(7) Example
(a) Problem

Obtain the value of $\Gamma(\nu, x)$ at $x=3.0$ for $\nu=4.0$.
(b) Input data
$\mathrm{v}=4.0$ and $\mathrm{xi}=3.0$.
(c) Main program

```
/* C interface example for ASL_digig2 */
#include <stdio.h>
#include <asl.h>
int main()
    double v;
    double xi;
    double xo;
    int ierr;
    FILE *fp;
    fp = fopen( "digig2.dat", "r" );
    if( fp == NULL )
        printf( "file open error\n" );
        return -1;
    }
    printf( " *** ASL_digig2 ***\n" );
    printf( "\n ** Input **\n\n" );
    fscanf( fp, "%lf", &v );
    fscanf( fp, "%lf", &xi );
    printf( "\tv = %8.3g\t\txi = %8.3g\n", v,xi )
    fclose( fp );
    ierr = ASL_digig2(v, xi, &xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr );
```

```
printf( "\n\tValue of Incomplete Gamma Function of The Second Kind\n\n" );
printf( "\t xo = %8.3g\n", xo );
return 0;
(d) Output results
```

```
*** ASL_digig2 ***
```

*** ASL_digig2 ***
** Input **
** Input **
$\mathrm{v}=\quad 4 \quad \mathrm{xi}=\quad 3$
$\mathrm{v}=\quad 4 \quad \mathrm{xi}=\quad 3$
** Output **
** Output **
ierr $=0$
ierr $=0$
Value of Incomplete Gamma Function of The Second Kind
Value of Incomplete Gamma Function of The Second Kind
xo = 3.88

```
\}

\subsection*{2.7.5 ASL_zigamz, ASL_cigamz}

\section*{Gamma Function with Complex Variable}
(1) Function

Calculates the value of the Gamma function with complex variable
\[
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t \quad(\Re\{z\}>0)
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_zigamz ( \&zi, \&zo) }
\]

Single precision:
\[
\text { ierr }=\text { ASL_cigamz } \quad(\& z i, \& z o)
\]
(3) Arguments and Return Value
\begin{tabular}{l}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} \\
\begin{tabular}{|c|c|c|c|c|c|}
\multicolumn{1}{l}{\begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}} & I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\end{tabular} \\
\hline No. \begin{tabular}{c} 
Argument and \\
Return Value
\end{tabular} \\
\hline 1
\end{tabular}
(4) Restrictions
(a) zi must not be a negative integer and 0.0 , and \(|\mathrm{zi}|>1.0 /\) (Maximum value).
(b) \(-M_{1} \leq \Re(\mathrm{zi}) \leq M_{2}\)
where, \(M_{1}=\{\) double precision: 170.4 , single precision: 34.0\(\}\),
\(M_{2}=\{\) double precision: 171.4 , single precision: 35.0\(\}\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. (See Note (a)) \\
\hline
\end{tabular}
(6) Notes
(a) When \(\Re(z i)<-M_{1}\) (aborted with ierr \(=3000\); see Restriction(b)), the value of \(\Gamma(z)\) will be almost 0.0 except the case zi is close to a negative integer.
(b) \(z=-n(n=0,1,2, \cdots)\) is a singular point for gamma function \(\Gamma(z)\) such that
\[
\lim _{z \rightarrow-n} \frac{1}{\Gamma(z)}=0(n=0,1,2, \cdots)
\]

So, high precision result cannot be expected for a calculated value of gamma function at a point close to zero or at a negative integer.
(c) Gamma Function \(\Gamma(z)\) is called Euler's integral of the 2nd kind. This function is also called a factorial function because \(\Gamma(z+1)=z \Gamma(z)=z!\) holds.

\section*{(7) Example}
(a) Problem

Obtain the value of \(\Gamma(z)\) at \(z=1+2 \sqrt{-1}\).
(b) Input data
\(\mathrm{zi}=(1.0,2.0)\).
(c) Main program
/* C interface example for ASL_zigamz */
\#include <stdio.h>
\#include <complex.h>
\#include <asl.h>
int main(
double -Complex zi
int ierr;
FILE *fp;
fp = fopen( "zigamz.dat", "r" );
if ( \(f p==\) NULL )
\{
printf( "file open error\n" );
return -1;
\}
printf( " *** ASL_zigamz ***\n" ); printf( "\n ** Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
double tmp_re, tmp_im;
fscanf( fp, "\%lf", \&tmp_re );
fscanf( fp, "\%lf", \&tmp_im );
zi = tmp_re + tmp_im * _Complex_I;
printf( "\tzi = (\%8.3g,\%8.3g) \n", creal(zi), cimag(zi));
fclose( fp );
ierr = ASL_zigamz(\&zi, \&zo);
printf( "\n ** Output **\n\n" );
printf( "\tierr = \%6d\n", ierr );
printf( "\n\tValue of Gamma Function of Complex Variable\n\n" ); printf( "\t zo = (\%8.3g,\%8.3g) \n", creal(zo), cimag(zo) );
return 0;
\}
(d) Output results
```

*** ASL_zigamz ***
** Input **
zi = (1, 2)
** Output **
ierr = 0
Value of Gamma Function of Complex Variable
zo = (0.152, 0.0198)

```

\subsection*{2.7.6 ASL_ziglgz, ASL_ciglgz}

Logarithmic Gamma Function with Complex Variable
(1) Function

Calculates the value of the logarithmic Gamma function with complex variable \(\log _{e}(\Gamma(z))\).
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_ziglgz }(\& z i, \& z o) ;
\]

Single precision:
ierr = ASL_ciglgz ( \&zi, \&zo);
(3) Arguments and Return Value
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad \mathrm{I}:\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & zi & \(\left\{\begin{array}{l}\mathrm{Z} * \\
\mathrm{C} *\end{array}\right\}\) & 1 & Input & Value of variable \(z\) \\
\hline 2 & zo & \(\left\{\begin{array}{l}\mathrm{Z} * \\
\mathrm{C} *\end{array}\right\}\) & 1 & Output & Value of \(\log _{e}(\Gamma(z))\) \\
\hline 3 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) zi must not be a negative integer or 0.0.
(b) \(\Re(\mathrm{zi})>-M_{1}\)
where \(M_{1}=\left\{\right.\) double precision: \(2^{50}\), single precision: \(\left.2^{18}\right\}\)
(c) \(|\Im(\mathrm{zi})|, \Re(\mathrm{zi}) \leq M_{2}\) where \(M_{2}=\left\{\right.\) double precision: \(2.545 \times 10^{305}\), single precision: \(\left.4.08 \times 10^{36}\right\}\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & \(\Gamma(z)<0\) & zo \(=\log _{e}(|\Gamma(z)|)+\pi \sqrt{-1}\) is performed. \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) When ierr \(=1000\), the Gamma function value is obtained as \(\exp (\Re(z o))\), while it is obtained as \(\exp (z o)\) in general.
(b) Logarithmic gamma function with complex variable \(\log _{e}(\Gamma(z))\) is many-valued function (with infinite number of values) and the difference between their values is integer times of \(2 \pi \sqrt{-1}\). This function calculates the principal value determined so that \(-\pi<\Im\left\{\log _{e}(\Gamma(z))\right\} \leq \pi\) hold.

\section*{(7) Example}
(a) Problem

Obtain the value of \(\log _{e}(\Gamma(z))\) at \(z=1+2 \sqrt{-1}\).
(b) Input data
\(\mathrm{zi}=(1.0,2.0)\).
(c) Main program
/* C interface example for ASL_ziglgz */
\#include <stdio.h>
\#include <complex.h>
\#include <asl.h>
int main()
```

 double _Complex zi
 double _Complex zo;
 int ierr;
 FILE *fp;
 fp = fopen("ziglgz.dat", "r");
 if(fp == NULL)
 {
 printf("file open error\n");
 }
 printf(" *** ASL_ziglgz ***\n");
 printf("\n ** Input **\n\n");
 double tmp_re, tmp_im;
 fscanf(fp, "%lf", &tmp_re);
 fscanf(fp, "%lf", &tmp_im);
 zi = tmp_re + tmp_im * _Complex_I;
 printf("\tzi = (%8.3g,%8.3g)\n", creal(zi), cimag(zi));
 fclose(fp);
 ierr = ASL_ziglgz(&zi, &zo);
 printf("\n ** Output **\n\n");
 printf("\tierr = %6d\n", ierr);
 printf("\n\tValue of Logarithmic Gamma Function of Complex Variable\n\n");
 printf("\t zo = (%8.3g,%8.3g)\n", creal(zo), cimag(zo));
 return 0;
    ```
\}
(d) Output results
```

*** ASL_ziglgz ***
** Input **
zi = (1, 2)
** Output **
ierr = 0
Value of Logarithmic Gamma Function of Complex Variable
zo = (-1.88, 0.13)

```

\subsection*{2.8 FUNCTIONS RELATED TO THE GAMMA FUNCTION}

\subsection*{2.8.1 ASL_wigdig, ASL_vigdig \\ Digamma Function}
(1) Function

For \(x=X_{i}\), calculates the value of the digamma function (psi function)
\[
\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}=\frac{d}{d x} \log _{e}(\Gamma(x))
\]
(2) Usage

Double precision:
ierr = ASL_wigdig (nv, xi, xo);

Single precision:
\[
\text { ierr }=\text { ASL_vigdig (nv, xi, xo) }
\]
(3) Arguments and Return Value
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & nv & Output & \(\psi\left(X_{i}\right)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v \geq 1\)
(b) \(x i[i-1]\) is not negative integer or 0.0
(c) \(\operatorname{xi}[\mathrm{i}-1]>-M\)
where \(M=\left\{\right.\) double precision: \(2^{50}\), single precision: \(\left.2^{18}\right\}\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(3000+i\) & \begin{tabular}{l} 
Restriction (b) or (c) was not satisfied by \\
xi[i -1\(].\)
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) Digamma function \(\psi(x)\) is a solution of the following equations
\[
\psi(x+1)-\psi(x)=\frac{1}{x}, \quad \psi(1)=-\gamma, \quad \lim _{n \rightarrow \infty}\{\psi(x+n)-\psi(1+n)\}=0
\]
where, \(\gamma\) is Euler's constant:
\[
\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log _{e} n\right)
\]
(b) Derived functions of digamma function \(\psi(x): \psi^{\prime}(x), \psi^{\prime \prime}(x)\), and \(\psi^{\prime \prime \prime}(x)\), are called as trigamma function, tetragamma function, pentagamma function, respectively. In general, derived functions of digamma function are called polygamma function.
(7) Example
(a) Problem

Obtain \(\psi(x)\) for \(x=0.1,0.2, \cdots, 0.9,1.0\).
(b) Main program
```

/* C interface example for ASL_wigdig */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */

```
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
    double *xt;
    int nv;
    int i;
    int ierr;
    nv=10;
    xt=(double *)malloc((size_t) (sizeof(double) * nv));
    if ( xt == NULL )
        printf("no enough memory for array xt\n");
        return -1;
    \}
    xo=(double *)malloc((size_t)(sizeof(double) * nv));
    if ( \(x 0==\) NULL )
        printf("no enough memory for array xo\n");
    \}
    printf( " *** ASL_wigdig ***\n" );
    printf( "\n ** Input **\n\n" );
    for (i=0;i<nv;i++)
    \{
    \(\mathrm{xt}[i]=i+1 ;\)
\(x t[i]=x t[i] / n v ;\)
    printf ( \(" \backslash t\) xt \(=\% 8.3 \mathrm{~g} \backslash \mathrm{n} "\), \(x t[i])\);
    \({ }_{\}}{ }^{\text {pri }}\)
    ierr = ASL_wigdig(nv, xt, xo);
    printf( "\n \(\quad * *\) Output \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
    printf( "\tierr = \%6d\n", ierr );
    printf( "\n\tValue of gdig(x)\n\n");
    for (i=0;i<nv;i++)
    printf( " t t xo \(=\% 8.3 \mathrm{~g} \backslash \mathrm{n} "\), xo[i] );
        free ( xt ) ;
    return 0;
\}
(c) Output results
```

*** ASL_wigdig ***
** Input **
xt = 0.1

```
\begin{tabular}{rr}
\(\mathrm{xt}=\) & 0.3 \\
\(\mathrm{xt}=\) & 0.4 \\
\(\mathrm{xt}=\) & 0.5 \\
\(\mathrm{xt}=\) & 0.6 \\
\(\mathrm{xt}=\) & 0.7 \\
\(\mathrm{xt}=\) & 0.8 \\
\(\mathrm{xt}=\) & 0.9 \\
\(\mathrm{xt}=\) & 1
\end{tabular}
** Output **
ierr \(=0\)
Value of gdig(x)
\begin{tabular}{lr}
\(\mathrm{xo}=\) & -10.4 \\
\(\mathrm{xo}=\) & -5.29 \\
\(\mathrm{xo}=\) & -3.5 \\
\(\mathrm{xo}=\) & -2.56 \\
\(\mathrm{xo}=\) & -1.96 \\
\(\mathrm{xo}=\) & -1.54 \\
\(\mathrm{xo}=\) & -1.22 \\
\(\mathrm{xo}=\) & -0.965 \\
\(\mathrm{xo}=\) & -0.755 \\
\(\mathrm{xo}=\) & -0.577
\end{tabular}

\subsection*{2.8.2 ASL_wigbet, ASL_vigbet}

\section*{Beta Function}

\section*{(1) Function}

For \(p=X_{i}\) and \(q=Y_{i}\), calculates the value of the beta function
\[
B(p, q)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t
\]
(2) Usage

Double precision:
ierr \(=\) ASL_wigbet (nv, p, q, xo);
Single precision:
ierr \(=\) ASL_vigbet (nv, p, q, xo);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & p & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}\) \\
\hline 3 & q & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(Y_{i}\) \\
\hline 4 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & \(B\left(X_{i}, Y_{i}\right)\) \\
\hline 5 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v \geq 1\)
(b) \(2.0 /(\) maximum \()<\mathrm{p}[\mathrm{i}-1] \leq M\)
(c) \(2.0 /(\) maximum \()<\mathrm{q}[\mathrm{i}-1] \leq M\) where \(M=\left\{\right.\) double precision: \(1.2 \times 10^{305}\), single precision: \(\left.2.0 \times 10^{36}\right\}\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 2000 & \(\mathrm{p}[\mathrm{i}-1]>1000.0\) and \(\mathrm{q}[\mathrm{i}-1]>1000.0\) & \begin{tabular}{l} 
The solution is obtained but the precision \\
could not be guaranteed.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline \(3000+i\) & \begin{tabular}{l} 
Restriction (b) or (c) was not satisfied by \\
\(\mathrm{p}[\mathrm{i}-1]\) and \(\mathrm{q}[\mathrm{i}-1]\).
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) Beta Function \(B(p, q)\) is called Euler's integral of the 1st kind.
(b) Beta Function \(B(p, q)\) is represented using gamma function \(\Gamma(z)\) as
\[
B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)} .
\]
(7) Example
(a) Problem

Obtain \(B(p, q)\) for \(p=0.1,0.2, \cdots, 0.9,1.0\) and \(q=0.5\).
(b) Main program
/* C interface example for ASL_wigbet */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xt;
double *xo;
nt nv
int ierr;
int ierr
xt=(double *)malloc ((size_t) (sizeof (double) * nv));
if ( \(\mathrm{xt}==\) NULL )
printf("no enough memory for array \(x t \backslash n\) ") return -1;
\}
yt=(double *)malloc ((size_t) (sizeof (double) * nv)); if ( yt == NULL )
\{ printf("no enough memory for array yt\n"); return -1 ;
xo=(double *)malloc \(((\) size_t) (sizeof (double) \(* n v))\);
if ( xo == NULL )
printf("no enough memory for array \(x o \backslash n ")\)
return -1;
\}
printf( " *** ASL_wigbet ***\n" );
printf( "\n ** Input **\n\n");
for (i=0;i<nv;i++)
\{
\(x t[i]=i+1 ;\)
\(x t[i]=x t[i] / n v ;\)
\(x t[i]=x t[i]\)
\(y t[i]=0.5 ;\)
printf( "\t \(x t=\% 8.3 g \backslash n ", x t[i])\);
printf( "\t yt = \%8.3g\n", yt[i])
\}
ierr \(=\) ASL_wigbet(nv,xt,yt, xo);
printf( "\n ** Output **\n\n" )
printf( "\tierr \(=\% 6 d \backslash n "\), ierr );
```

printf("\n\tValue of gbet(x) \n\n");
for(i=0;i<nv;i++)
printf("\t xo = %8.3g\n", xo[i]);

```
free (xt) ;
free(yt);
free (xo)
return 0;
(c) Output results


\subsection*{2.9 ELLIPTIC FUNCTIONS AND ELLIPTIC INTEGRALS}

\subsection*{2.9.1 ASL_wieci1, ASL_vieci1}

\section*{Complete Elliptic Integral of the 1st Kind}
(1) Function

For \(m=X_{i}\), calculates the value of the complete elliptic integral of the 1 st kind
\[
K(m)=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)}}=\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-m \sin ^{2} \theta}} d \theta
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_wieci1 (nv, rm, xo); }
\]

Single precision: ierr \(=\) ASL_vieci1 ( \(\mathrm{nv}, \mathrm{rm}, \mathrm{xo}\) );
(3) Arguments and Return Value
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|l|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & rm & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & nv & Input & Modulus \(X_{i}\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & nv & Output & \(K\left(X_{i}\right)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v \geq 1\)
(b) \(0.0 \leq \operatorname{rm}[\mathrm{i}-1] \leq 1.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|ll|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{2}{c|}{ Processing } \\
\hline 0 & Normal termination. & & \\
\hline 2000 & rm[i-1] =1.0 (overflow) & \begin{tabular}{l} 
xo \([\mathrm{i}-1]\) \\
performed.
\end{tabular} & \(=\) (Maximum value) is \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(3000+i\) & \begin{tabular}{l} 
Restriction (b) was not satisfied by rm[i- \\
\(1]\).
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) If the complete elliptic integral of the 1st kind is given as \(K(k)=\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^{2} \sin ^{2} \theta}} d \theta\), then input \(k^{2}\) to \(\mathrm{rm}[\mathrm{i}-1]\).
(b) Evaluating both \(E(m)\) and \(K(m)\), it is more effective to use 2.9.8 \(\left\{\begin{array}{c}\text { ASL_wienmq } \\ \text { ASL_vienmq }\end{array}\right\}\).
(7) Example
(a) Problem

Obtain \(K(m)\) for \(m=0.0,0.1,0.2, \cdots, 0.9\).
(b) Main program
\(\begin{array}{lll}\text { /* } & \text { C interface example for ASL_wieci1 */ } \\ / * & \text { R9.0 UPDD } 03 / 02 / 05 \mathrm{~N} . \mathrm{Y} . & \text { CINT-SRC-02-0002 }\end{array}\)
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xo
int nv;
int ierr;
nv=10;
\(\mathrm{xt}=(\) double *)malloc ((size_t) (sizeof (double) * nv)
if ( \(\mathrm{xt}==\) NULL \()\)
printf("no enough memory for array \(x t \backslash n\) ");
\}
xo=(double *)malloc ((size_t) (sizeof (double) * nv)); if ( \(\mathrm{xo}==\) NULL \()\)
printf("no enough memory for array \(x o \backslash n\) ");
return -1;
\}
printf( " \(\quad * * *\) ASL_Wieci1 \(\left.* * * \backslash \mathrm{n}^{\prime \prime}\right)\);
printf( "\n ** Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
for (i=0;i<nv;i++)
xt[i]=i;
\(x t[i]=x t[i] / n v\);
printf ("\t xt = \(\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", ~ x t[i])\);
,
ierr = ASL_wieci1(nv,xt, xo);
printf( "\n ** Output **\n\n" );
printf( "\tierr \(=\% 6 d \backslash n ", ~ i e r r) ;\)
printf( "\n\tValue of eci1(x) \(\mathrm{n} \backslash \mathrm{n} "\) );
for (i=0; i<nv;i++)
printf(" "\t xo = \%8.3g\n", xo[i] );
free (xt);
free (xo);
return 0;
\}
(c) Output results

** Output **
ierr \(=0\)
Value of eci1(x)
\begin{tabular}{ll} 
xo \(=\) & 1.57 \\
xo \(=\) & 1.61 \\
xo \(=\) & 1.66 \\
xo \(=\) & 1.71 \\
xo \(=\) & 1.78 \\
xo \(=\) & 1.85 \\
xo \(=\) & 1.95 \\
xo \(=\) & 2.08 \\
xo \(=\) & 2.26 \\
xo \(=\) & 2.58
\end{tabular}

\subsection*{2.9.2 ASL_wieci2, ASL_vieci2}

\section*{Complete Elliptic Integral of the 2nd Kind}

\section*{(1) Function}

For \(m=X_{i}\), calculates the value of the complete elliptic integral of the 2 nd kind
\[
E(m)=\int_{0}^{1} \sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)} d t=\int_{0}^{\frac{\pi}{2}} \sqrt{1-m \sin ^{2} \theta} d \theta
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_wieci2 (nv, rm, xo); }
\]

Single precision:
ierr = ASL_vieci2 (nv, rm, xo);
(3) Arguments and Return Value
D:Double precision real
\begin{tabular}{c|c|c|c|c|l|} 
R:Single precision real
\end{tabular} C:Single precision complex \(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(\mathrm{nv} \geq 1\)
(b) \(0.0 \leq \operatorname{rm}[\mathrm{i}-1] \leq 1.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(3000+i\) & \begin{tabular}{l} 
Restriction (b) was not satisfied by rm[i- \\
\(1]\).
\end{tabular} & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) If the complete elliptic integral of the 2 nd kind is given as \(E(k)=\int_{0}^{\frac{\pi}{2}} \sqrt{1-k^{2} \sin ^{2} \theta} d \theta\) then the value of \(k^{2}\) must be input for \(\mathrm{rm}[\mathrm{i}-1]\).
(b) Evaluating both \(E(m)\) and \(K(m)\), it is more effective to use 2.9.8 \(\left\{\begin{array}{c}\text { ASL_wienmq } \\ \text { ASL_vienmq }\end{array}\right\}\).

\section*{(7) Example}
(a) Problem

Obtain \(E(m)\) for \(m=0.0,0.1,0.2, \cdots, 0.9\).
(b) Main program
/* C interface example for ASL_wieci2 */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xo;
int nv;
int ierr;
nv=10;
xt=(double *)malloc((size_t) (sizeof (double) * nv));
if ( \(x t==\) NULL \()\)
printf("no enough memory for array \(x t \backslash n\) ");
return -1;
\({ }_{\text {xo }}=(\) double \(*)\) malloc \(((\) size_t) \((\) sizeof \((\) double \() * n v))\);
xo=(double *)mal
if ( xo \(==\) NULL \()\)
printf("no enough memory for array xo\n");
return -1;
\}
printf( " \(\quad * * *\) ASL_wieci2 \(* * * \backslash \mathrm{n} ")\);
printf ( "\n ** Input **\n\n" );
for (i=0;i<nv;i++)
xt[i]=i;
printf( "\t xt = \% \(8.3 g \backslash n ", x t[i])\);
\}
ierr = ASL_wieci2(nv,xt, xo);
printf( "\n \(\quad * *\) Output \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
printf( "\tierr = \%6d\n", ierr );
printf( "\n\tValue of eci2 (x) \n\n" );
for (i=0;i<nv;i++)
printf(" "\t xo \(=\% 8.3 g \backslash n ", x o[i])\);
free (xt);
free (xo) ;
return 0;
\}
(c) Output results
\begin{tabular}{cc} 
*** ASL_Wieci2 & \(* * *\) \\
\(* *\) Input & \(* *\) \\
\(x t=\) & 0 \\
\(x t=\) & 0.1 \\
\(x t=\) & 0.2 \\
\(x t=\) & 0.3 \\
\(x t=\) & 0.4 \\
\(x t=\) & 0.5 \\
\(x t=\) & 0.6 \\
\(x t=\) & 0.7 \\
\(x t=\) & 0.8 \\
\(x t=\) & 0.9
\end{tabular}

\footnotetext{
** Output **
ierr \(=0\)
Value of eci2(x)
\(\mathrm{xo}=\quad 1.57\)
\(\mathrm{xo}=1.53\) \(\begin{array}{ll}\mathrm{xo}= & 1.49 \\ \mathrm{xo}= & 1.45\end{array}\) xo \(=\quad 1.4\) \(\mathrm{xo}=1.35\) \(x 0=1.3\)
\(\mathrm{xo}=1.24\)
\(\begin{array}{lr}\mathrm{xo}= & 1.18 \\ \mathrm{xo}= & 1.1\end{array}\)
}

\subsection*{2.9.3 ASL_dieii1, ASL_rieii1}

\section*{Incomplete Elliptic Integral of the 1st Kind}
(1) Function

Calculates the value of the incomplete elliptic integral of the 1st kind
\[
F(x, m)=\int_{0}^{x} \frac{1}{\sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)}} d t=\int_{0}^{\psi} \frac{1}{\sqrt{1-m \sin ^{2} \theta}} d \theta \quad(\text { here }, x=\sin \psi) .
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_dieii1 (xi, rm, \&xo); }
\]

Single precision:
\[
\text { ierr }=\text { ASL_rieii1 }(x i, \text { rm, \&xo }) ;
\]
(3) Arguments and Return Value
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|l|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & xi & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Value of variable \(x\) \\
\hline 2 & rm & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Modulus \(m\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & 1 & Output & Value of \(F(x, m)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0.0 \leq \mathrm{xi} \leq 1.0\)
(b) \(0.0 \leq \mathrm{rm} \leq 1.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 2000 & xi \(=1.0\) and rm \(=1.0\) (overflow) & xo = (Maximum value) is performed. \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline 4000 & \begin{tabular}{l} 
The Gaussian arithmetic-geometric mean \\
method or Newton method did not \\
converge.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) If the incomplete elliptic integral of the 1st kind is given as \(F(x, k)=\int_{0}^{\psi} \frac{1}{\sqrt{1-k^{2} \sin ^{2} \theta}} d \theta\), then the value of \(k^{2}\) must be input for rm .
(b) The incomplete elliptic integral of the 1st kind is also represented as
\[
F(\varphi \backslash \alpha)=F(\varphi \mid m)=\int_{0}^{\varphi} \frac{1}{\sqrt{1-\sin ^{2} \alpha \sin ^{2} \theta}} d \theta \quad\left(\text { here, } m=\sin ^{2} \alpha\right) .
\]
(c) If \(m<0.0\), use 2.9.5 \(\left\{\begin{array}{c}\text { ASL_dieii3 } \\ \text { ASL_rieii3 }\end{array}\right\}\).

\section*{(7) Example}
(a) Problem

Obtain the value of \(F(x, m)\) at \(x=0.3\) and \(m=0.5\).
(b) Input data
\(\mathrm{xi}=0.3\) and \(\mathrm{rm}=0.5\).
(c) Main program
```

/* C interface example for ASL_dieii1 */

```
\#include <stdio.h>
\#include <asl.h>
```

int main()
double xi;
double rm;
double xo;
int ierr;
FILE *fp;
fp = fopen("dieii1.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
return -1;
}
printf(" *** ASL_dieii1 ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%lf", \&xi)
fscanf(fp, "%lf", \&rm)
printf("\txi = %8.3g\t\trm = %8.3g\n", xi, rm);
fclose(fp);
ierr = ASL_dieii1(xi, rm, \&xo);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tValue of F (x,m)\n\n");
printf("\t xo = %8.3g\n", xo);
return 0;

```
(d) Output results
```

*** ASL_dieii1 ***
** Input **
xi = 0.3 rm = 0.5
** Output **
ierr = 0
Value of F(x,m)
xo = 0.307

```

\subsection*{2.9.4 ASL_dieii2, ASL_rieii2}

\section*{Incomplete Elliptic Integral of the 2nd Kind}
(1) Function

Calculates the value of the incomplete elliptic integral of the 2nd kind
\[
E(x, m)=\int_{0}^{x} \sqrt{\frac{1-m t^{2}}{1-t^{2}}} d t=\int_{0}^{\psi} \sqrt{1-m \sin ^{2} \theta} d \theta \quad(\text { here }, x=\sin \psi) .
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_dieii2 (xi, rm, \&xo) }
\]

Single precision:
\[
\text { ierr }=\text { ASL_rieii2 (xi, rm, \&xo); }
\]
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & xi & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Value of variable \(x\) \\
\hline 2 & rm & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Modulus \(m\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Value of \(E(x, m)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0.0 \leq \mathrm{xi} \leq 1.0\)
(b) \(0.0 \leq \mathrm{rm} \leq 1.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|c|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline 4000 & \begin{tabular}{l} 
The Gaussian arithmetic-geometric mean \\
method or Newton method did not \\
converge.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) If the incomplete elliptic integral of the 2 nd kind is given as \(E(x, k)=\int_{0}^{\psi} \sqrt{1-k^{2} \sin ^{2} \theta} d \theta\), then the value of \(k^{2}\) must be input for rm .
(b) The incomplete elliptic integral of the 2 nd kind is also represented as
\[
E(\varphi \backslash \alpha)=E(u \mid m)=\int_{0}^{\varphi} \sqrt{1-\sin ^{2} \alpha \sin ^{2} \theta} d \theta \quad\left(\text { here }, m=\sin ^{2} \alpha, \quad \sin \varphi=\operatorname{sn} u\right) .
\]

Calculating the value of \(E(u \mid m)\) for parameter \(u\), use 2.9.11 \(\left\{\begin{array}{c}\text { ASL_wiejep } \\ \text { ASL_viejep }\end{array}\right\}\).
(c) If \(m<0.0\), use 2.9.5 \(\left\{\begin{array}{c}\text { ASL_dieii3 } \\ \text { ASL_rieii3 }\end{array}\right\}\).
(7) Example
(a) Problem

Obtain the value of \(E(x, m)\) at \(x=0.3\) and \(m=0.5\).
(b) Input data
\(\mathrm{xi}=0.3\) and \(\mathrm{rm}=0.5\).
(c) Main program
/* C interface example for ASL_dieii2 */
\#include <stdio.h>
\#include <asl.h>
int main()
double xi;
double rm;
double xo;
int ierr;
fp \(=\) fopen( "dieii2.dat", "r" );
if ( fp == NULL )
\{
printf( "file open error \(\backslash \mathrm{n}\) " ) ;
\}
printf( " \(\quad * * *\) ASL_dieii2 \(\left.* * * \backslash \mathrm{n}^{\prime \prime}\right)\);
printf( "\n \(\quad * *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
fscanf( fp, "\%lf", \&xi );
fscanf( fp, "\%lf", \&rm );
printf( "\txi \(=\% 8.3 g \backslash t \backslash t r m=\% 8.3 g \backslash n ", ~ x i, ~ r m) ;\)
fclose( fp );
ierr = ASL_dieii2(xi, rm, \&xo);
printf ( "\n \(\quad * *\) Output \(* * \backslash n \backslash n ")\);
printf( "\tierr = \%6d\n", ierr );
printf( "\n\tValue of \(E(x, m) \backslash n \backslash n ")\);
printf( "\t xo \(=\% 8.3 g \backslash n "\), xo );
\}
(d) Output results
```

*** ASL_dieii2 ***
** Input **
$\mathrm{xi}=0.3 \quad \mathrm{rm}=0.5$
** Output **
ierr $=0$

```

Value of \(E(x, m)\)
\(\mathrm{xo}=0.302\)

\subsection*{2.9.5 ASL_dieii3, ASL_rieii3}

\section*{Incomplete Modified Elliptic Integral}

\section*{(1) Function}

For real numbers \(m \geq 0, a, b\) and \(x \geq 0\), obtain the value of incomplete modified elliptic integral
\[
f(x, m, a, b) \equiv \int_{0}^{x} \frac{a+b t^{2}}{\sqrt{\left(1+t^{2}\right)^{3}\left(1+m t^{2}\right)}} d t .
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_dieii3 }(\mathrm{x}, \mathrm{dm}, \mathrm{a}, \mathrm{~b}, \& \mathrm{y}) ;
\]

Single precision:
\[
\text { ierr }=\text { ASL_rieii3 }(\mathrm{x}, \mathrm{dm}, \mathrm{a}, \mathrm{~b}, \& \mathrm{y}) ;
\]
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & x & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & 1 & Input & Value of variable \(x\) \\
\hline 2 & dm & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Modulus \(m\) \\
\hline 3 & a & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Coefficient \(a\) of \(a+b t^{2}\) \\
\hline 4 & b & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Coefficient \(b\) of \(a+b t^{2}\) \\
\hline 5 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & value of \(f(x, m, a, b)\) \\
\hline 6 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(x \geq 0\)
(b) \(\mathrm{dm} \geq 0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) This function is valid for \(m \geq 1\) and the factor \(1+m t^{2}\) is difference from the incomplete elliptic integrals:
\[
F(r, m)=\int_{0}^{r} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)}}, E(r, m)=\int_{0}^{r} \sqrt{\frac{1-m t^{2}}{1-t^{2}}} d t .
\]
(b) The first incomplete elliptic integral \(\int_{0}^{\psi} \sqrt{\left(1-a \sin ^{2} \theta\right)^{-1}} d \theta\) is \(f(\tan \psi, 1-a, 1,1)\), here \(0 \leq a<1\) but this can be extended to \(a<1\).
(c) The second incomplete elliptic integral \(\int_{0}^{\psi} \sqrt{1-a \sin ^{2} \theta} d \theta\) is \(f(\tan \psi, 1-a, 1,1-a)\), here \(0 \leq a<1\) but this can be extended to \(a<1\).
(7) Example
(a) Problem

For \(x=1.0, m=3.0, a=4.0\) and \(b=2.0\), obtain incomplete modified elliptic integral.
(b) Input data
\(\mathrm{x}=1.0, \mathrm{dm}=3.0, \mathrm{a}=4.0\) and \(\mathrm{b}=2.0\).
(c) Main program
```

/* C interface example for ASL_dieii3 */
\#nclude <stdio.h>
\#include <stdlib.h
\#include <asl.h>
int main()
int ierr;
double x,dm,a,b,y
x=1.0,dm=3.0,a=4.0, b=2.0;
printf(" *** ASL_dieii3 ***\n");
printf("\n ** Input **\n\n");
printf("\n\tx = %8.3g\n",x);
printf("\n\tdm= %8.3g\n",dm)
printf("\n\ta = %8.3g\n",a)
printf("\n\tb = %8.3g\n",b)
ierr = ASL_dieii3(x, dm, a, b,\&y);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\ty= %8.3g\n",y);
}
(d) Output results

```
```

*** ASL_dieii3 ***

```
*** ASL_dieii3 ***
** Input **
** Input **
\(x=1\)
\(x=1\)
\(d m=\quad 3\)
\(d m=\quad 3\)
\(\mathrm{a}=\quad 4\)
\(\mathrm{a}=\quad 4\)
\(\mathrm{b}=\quad 2\)
\(\mathrm{b}=\quad 2\)
    ** Output **
    ** Output **
ierr \(=0\)
ierr \(=0\)
\(y=\quad 2.51\)
```

$y=\quad 2.51$

```

\subsection*{2.9.6 ASL_dieii4, ASL_rieii4}

Incomplete Elliptic Integral of The Weierstrass Type

\section*{(1) Function}

For positives \(x, y, z\) and real \(p \geq 0\), obtain incomplete elliptic integral of the Weierstrass type
\[
f(x, y, z, p) \equiv \frac{1}{2} \int_{0}^{1 / p} \frac{d t}{\sqrt{(t+x)(t+y)(t+z)}}
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_dieii4 }(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p}, \& \mathrm{di}) ;
\]

Single precision:
\[
\text { ierr }=\text { ASL_rieii4 (x, y, z, p, \&di); }
\]
(3) Arguments and Return Value
\begin{tabular}{ll}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} & \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}
\end{tabular} I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|l|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & x & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Variable \(x\) \\
\hline 2 & y & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Variable \(y\) \\
\hline 3 & z & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Variable \(z\) \\
\hline 4 & p & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Inverse number of top \(p\) (See Note (a)) \\
\hline 5 & di & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & 1 & Output & \begin{tabular}{l} 
Incomplete elliptic integral \(f(x, y, z, p)\) (See \\
Note (b))
\end{tabular} \\
\hline 6 & ierr & \begin{tabular}{c} 
I
\end{tabular} & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{x}, \mathrm{y}, \mathrm{z}>0.0\)
(b) \(\mathrm{p} \geq 0.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) If \(p\) is equal to zero, then the complete integral
\[
\frac{1}{2} \int_{0}^{\infty} \frac{d t}{\sqrt{(t+x)(t+y)(t+z)}}
\]
is output to di
(b) Note that the the integral defining \(f(x, y, z, p)\) is taken from zero to \(1 / p\) (See Note (a)).
(c) \(f(x, y, z, p)\) is symmetric for \(x, y, z\).
(d) If \(h \geq 0\),
\[
f(x+h, y+h, z+h, p)=\frac{1}{2} \int_{h}^{1 / p+h} \frac{d t}{\sqrt{(t+x)(t+y)(t+z)}} .
\]

\section*{(7) Example}
(a) Problem

For \(x=1.0, y=3.0, z=4.0 a n d p=2.0\), obtain incomplete elliptic integral of the Weierstrass type.
(b) Input data
\(\mathrm{x}=1.0, \mathrm{dm}=3.0, \mathrm{a}=4.0\) and \(\mathrm{b}=2.0\).
(c) Main program
```

** C interface example for ASL_dieii4 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int ierr;
double x, y, z, p, di;
x=1.0;y=3.0;z=4.0;p=2.0
printf(" *** ASL_dieii4 ***\n");
printf("\n ** Input **\n\n");
printf("\n\tx = %8.3g\n",x);
printf("\n\ty = %8.3g\n",y);
printf("\n\tz = %8.3g\n",z);
printf("\n\tp = %8.3g\n",p)
ierr = ASL_dieii4(x, y, z, p,\&di);
printf("\n ** Output **\n\n")
printf("\tierr = %6d\n", ierr);
printf("\n\tdi = %8.3g\n",di);
return 0;
}

```
(d) Output results
```

*** ASL_dieii4 ***
** Input **
x = 1
y = 3
z = 4
p = 2
** Output **
ierr = 0
di = 0.0607

```

\subsection*{2.9.7 ASL_wiejac, ASL_viejac}

Elliptic Functions of Jacobi

\section*{(1) Function}

For \(u=X_{i}\), calculates the values of the elliptic functions of \(\operatorname{Jacobi} \operatorname{sn}(u, m), \operatorname{cn}(u, m), \operatorname{dn}(u, m)\).
Here these are defined as for \(u\), setting \(u=F(x, m)\), which is incomplete elliptic integral of the 1 st kind with modulus \(m\),
\(\operatorname{sn}(u, m)=\sin \psi=x, \operatorname{cn}(u, m)=\cos \psi, \operatorname{dn}(u, m)=\sqrt{1-m \sin ^{2} \psi}\).
(2) Usage

Double precision:
ierr \(=\) ASL_wiejac (nv, ui, rm, sn, cn, dn);
Single precision:
ierr \(=\) ASL_viejac (nv, ui, rm, sn, cn, dn);
(3) Arguments and Return Value
D:Double precision real
R:Single precision real Z:Double precision complex \(\quad\) I:Single precision complex \(\quad\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(n v \geq 1\)
(b) \(0.0 \leq \mathrm{rm} \leq 1.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3001 & Restriction (b) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) Denoting \(u\) by the incomplete elliptic integral of 1st kind given as
\[
u=\int_{0}^{\psi} \frac{d \theta}{\sqrt{1-m \sin ^{2} \theta}},
\]
which implies \(\operatorname{sn}(u, m)=\sin \psi\), this function evaluates \(\operatorname{sn}(u, m), \operatorname{cn}(u, m)\) and \(\operatorname{dn}(u, m)\). On the other hand, denoting \(u\) by
\[
u=\int_{0}^{\psi} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}},
\]
which implies \(\operatorname{sn}(u, k)=\sin \psi\), and evaluating \(\operatorname{sn}(u, k), \operatorname{cn}(u, k)\) and \(\operatorname{dn}(u, k)\), the value \(k^{2}\) should be input to rm. Generally, \(\operatorname{sn}(u, m), \operatorname{cn}(u, m)\) and \(\operatorname{dn}(u, m)\) are denoted by \(\operatorname{sn}(u \mid m), \operatorname{cn}(u \mid m)\) and \(\operatorname{dn}(u \mid m)\), respectively.
(7) Example
(a) Problem

Suppose that \(m=0.5\). Obtain \(\operatorname{sn}(u, m), \operatorname{cn}(u, m)\) and \(\operatorname{dn}(u, m)\) for \(u=0.0,0.1,0.2, \cdots, 0.9\).
(b) Main program
/* C interface example for ASL_wiejac */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
ouble *xt;
double *sn;
ouble *cn;
ouble
double rm
int nv;
int ierr;
nv=10;
rm=0.5;
xt=(double *)malloc ((size_t) (sizeof (double) * nv));
if ( \(\mathrm{xt}==\) NULL )
printf("no enough memory for array \(x t \backslash n\) ") return -1 ;
\}
sn=(double *)malloc((size_t)(sizeof(double) * nv));
if ( \(\mathrm{sn}==\) NULL \()\)
printf("no enough memory for array \(\\) n");
return -1 ;
\}
cn=(double *)malloc((size_t)(sizeof(double) * nv)); if ( \(\mathrm{cn}==\) NULL \()\)
printf("no enough memory for array \(\backslash n\) ");
return -1;
dn=(double \(*)\) malloc \(((\) size_t) (sizeof (double) \(* n v))\); if ( \(\mathrm{dn}==\) NULL \()\)
printf("no enough memory for array \(\backslash n\) ");
\}
```

printf(" *** ASL_wiejac ***\n");
printf("\n ** Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
for (i=0;i<nv;i++)
\{
xt[i]=i;
xt[i] $=x t[i] / n v$;
printf($" \backslash t$ xt $=\% 8.3 g \backslash n ", ~ x t[i])$;
\}
ierr $=$ ASL_wiejac(nv,xt, rm, sn, cn, dn);
printf("\n ** Output **\n\n");
printf("\tierr = \%6d\n", ierr);
printf("\n\tValue of sn \n\n");
for (i=0;i<nv;i++)
printf ($" \backslash t$ sn $=\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", \operatorname{sn}[i])$;
printf ("\n\tValue of cn $\backslash n \backslash n ")$;
for (i=0;i<nv;i++)
printf(" $\backslash \mathrm{t}$ cn = \%8.3g\n", cn[i]);
printf("\n\tValue of dn $\backslash n \backslash n ")$;
for (i=0;i<nv;i++)
printf (${ }^{2} \backslash \mathrm{t}$ dn = $\left.\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", ~ d n[i]\right)$;
free (xt) ;
free (sn)
free (cn)
free(dn);
return 0;

```
(c) Output results
```

*** ASL_wiejac ***
** Input **

| $\mathrm{xt}=$ | 0 |
| :--- | ---: |
| $\mathrm{xt}=$ | 0.1 |
| $\mathrm{xt}=$ | 0.2 |
| $\mathrm{xt}=$ | 0.3 |
| $\mathrm{xt}=$ | 0.4 |
| $\mathrm{xt}=$ | 0.5 |
| $\mathrm{xt}=$ | 0.6 |
| $\mathrm{xt}=$ | 0.7 |
| $\mathrm{xt}=$ | 0.8 |
| $\mathrm{xt}=$ | 0.9 |

```
** Output **
ierr \(=0\)
Value of \(s n\)
\begin{tabular}{lc} 
sn \(=\) & \(-3.79 \mathrm{e}-16\) \\
\(\mathrm{sn}=\) & 0.0998 \\
\(\mathrm{sn}=\) & 0.198 \\
\(\mathrm{sn}=\) & 0.293 \\
\(\mathrm{sn}=\) & 0.385 \\
\(\mathrm{sn}=\) & 0.471 \\
\(\mathrm{sn}=\) & 0.551 \\
\(\mathrm{sn}=\) & 0.624 \\
\(\mathrm{sn}=\) & 0.691 \\
\(\mathrm{sn}=\) & 0.75
\end{tabular}

Value of cn
\begin{tabular}{lr}
\(c n=\) & 1 \\
\(c n=\) & 0.995 \\
\(c n=\) & 0.98 \\
\(c n=\) & 0.956 \\
\(c n=\) & 0.923 \\
\(c n=\) & 0.882 \\
\(c n=\) & 0.835 \\
\(c n=\) & 0.781 \\
\(c n=\) & 0.723 \\
\(c n=\) & 0.661
\end{tabular}

Value of dn
\begin{tabular}{lr}
\(d n=\) & 1 \\
\(d n=\) & 0.998 \\
\(d n=\) & 0.99 \\
\(d n=\) & 0.978 \\
\(d n=\) & 0.962 \\
\(d n=\) & 0.943 \\
\(d n=\) & 0.921 \\
\(d n=\) & 0.8973 \\
\(d n=\) & 0.848
\end{tabular}

\subsection*{2.9.8 ASL_wienmq, ASL_vienmq}

\section*{Nome \(q\) and Complete Elliptic Integrals}

\section*{(1) Function}

For \(m=X_{i}\), calculates the values of the nome \(q=e^{-\pi K\left(m^{\prime}\right) / K(m)}\), and complementary nome \(q^{\prime}=\) \(e^{-\pi K(m) / K\left(m^{\prime}\right)}\) (here, \(m^{\prime}=1-m\) ) and of the complete elliptic integrals of the 1st kinds \(K(m), K\left(m^{\prime}\right)\) and 2 nd kinds \(E(m), E\left(m^{\prime}\right)\).
(2) Usage

Double precision:
ierr \(=\) ASL_wienmq ( \(\mathrm{nv}, \mathrm{rm}, \mathrm{q}, \mathrm{qd}, \mathrm{k}, \mathrm{kd}\), e, ed);
Single precision:
ierr \(=\) ASL_vienmq (nv, rm, q, qd, k, kd, e, ed);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & rm & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & Modulus \(m=X_{i}\) \\
\hline 3 & q & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & Nome \(q\) \\
\hline 4 & qd & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & Complementary nome \(q^{\prime}\) \\
\hline 5 & k & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & Value of the complete elliptic integral of the 1st kind \(K(m)\) \\
\hline 6 & kd & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & Value of the complete elliptic integral of the 1st kind \(K\left(m^{\prime}\right)\) \\
\hline 7 & e & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & Value of the complete elliptic integral of the 2nd kind \(E(m)\) \\
\hline 8 & ed & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & Value of the complete elliptic integral of the 2nd kind \(E\left(m^{\prime}\right)\) \\
\hline 9 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(n v \geq 1\)
(b) \(0.0 \leq \operatorname{rm}[\mathrm{i}-1] \leq 1.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 2000 & \(\operatorname{rm}[\mathrm{i}-1]=0.0\) or 1.0 (overflow) & \begin{tabular}{l}
If \(\operatorname{rm}[\mathrm{i}-1]=0.0\), \\
\(\mathrm{kd}[\mathrm{i}-1]=\) (Maximum value) is performed. \\
If \(\mathrm{rm}[\mathrm{i}-1]=1.0\), \\
\(\mathrm{k}[\mathrm{i}-1]=\) (Maximum value) is performed.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(3000+i\) & Restriction (b) was not satisfied by rm[i\(1]\). & \\
\hline
\end{tabular}
(6) Notes
(a) If it is sufficient to obtain only value \(K(m)\) of the complete elliptic integral of the 1st kind or value \(E(m)\) of the complete elliptic integral of the 2nd kind, it is more efficient to use 2.9.1 \(\left\{\begin{array}{l}\text { ASL_wieci1 } \\ \text { ASL_vieci1 }\end{array}\right\}\) and 2.9.2 \(\left\{\begin{array}{c}\text { ASL_wieci2 } \\ \text { ASL_vieci2 }\end{array}\right\}\).
(7) Example
(a) Problem

Obtain the value of the nome \(q\), complementary nome \(q^{\prime}\), complete elliptic integrals \(K(m)\) and \(E(m)\) and \(K\left(m^{\prime}\right)\) and \(E\left(m^{\prime}\right)\) for \(m^{\prime}=1-m\) at modulus \(m=0.1,0.2, \cdots, 0.9\)
(b) Main program
/* C interface example for ASL_wienmq */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *q
double *qd;
double *k
double *kd
double *ed
int nv.
int i;
int ierr;
nv=9;
xt=(double *)malloc((size_t)(sizeof(double) * nv));
if ( \(\mathrm{xt}==\) NULL )
printf("no enough memory for array \(x t \backslash n\) "); return -1 ;
\}
\(\mathrm{q}=(\) double \(*) \operatorname{malloc}((\) size_t) \((\) sizeof \((\) double \() * n v))\);
if \((\mathrm{q}==\) NULL \()\)
\{
printf("no enough memory for array q \n"); return -1;
\[
\text { \} }
\]
    qd \(=(\) double \(*)\) malloc \(((\) size_t) \((\) sizeof (double) \(*\) nv \())\);
    if ( qd == NULL )
        printf("no enough memory for array qd \n");
    return -1;
    \({ }_{\mathrm{k}}^{\}}=(\)double \(*)\) malloc \(((\) size_t) \((\) sizeof \((\) double \() * \mathrm{nv}))\);
    if ( \(\mathrm{k} \stackrel{=}{=}\) NULL \()\)
        printf("no enough memory for array k \(\backslash n\) ");
        return -1 ;
    kd \(=(\) double \(*)\) malloc \(((\) size_t) (sizeof (double) \(*\) nv) );

        printf("no enough memory for array kd \n");
        return -1;
    \} ef \(=(\) double \(*)\) malloc \(((\) size_t \()(\) sizeof \((\) double \() * n v))\);

        printf("no enough memory for array e \(\backslash n\) ");
        return -1;
    \} \(\quad\) ed \(=(\) double \(*)\) malloc \(((\) size_t) \((\) sizeof (double) \(* n v))\);
    if ( ed \(==\) NULL )
        printf("no enough memory for array ed \n");
    \}
    printf( " *** ASL_wienmq ***\n" );
    printf( "\n ** Input **\n\n" );
    for (i=0;i<nv;i++)
    \(x t[i]=i+1 ;\)
\(x t[i]=x t[i] /(n v+1)\)
    printf( \(" \backslash t\) xt \(=\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", ~ x t[i])\);
    \({ }_{3}\)
    ierr = ASL_wienmq(nv,xt, q,qd,k,kd,e,ed);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = \%6d\n", ierr );
    printf( " \(\backslash n \backslash t\) Value of \(q\) \(\backslash n \backslash n ")\);
    for (i=0;i<nv;i++)
    printf( "\t xo = \%8.3g\n", q[i] );
        printf( "\n\tValue of qd \(\backslash n \backslash n ")\);
        for (i=0; i<nv;i++)
        printf ( \({ }^{\text {( } \backslash \mathrm{t}} \mathrm{xo}\) x \(\left.=\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", ~ q d[i]\right)\);
        printf( "\n\tValue of \(k \quad \backslash n \backslash n ")\);
        for (i=0;i<nv;i++)
        printf( "\t xo = \%8.3g\n", k[i] );
        printf( "\n\tValue of kd \(\backslash n \backslash n ")\);
        for (i=0; i<nv;i++)
        printf ( \({ }^{\text {( } \backslash \mathrm{t}} \mathrm{x}\) xo \(\left.=\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", ~ k d[i]\right)\);
        printf( "\n\tValue of e \(\backslash n \backslash n ")\);
        for (i=0;i<nv;i++)
        printf( "\t xo = \%8.3g\n", e[i] );
        printf( "\n\tValue of ed \(\backslash n \backslash n ")\);
        for (i=0; i<nv;i++)
        printf ( \({ }^{\prime} \backslash \mathrm{t}\) xo \(\left.=\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", ~ e d[i]\right)\);
        free (xt);
        free(q);
        free(qd)
        free(k);
        free (kd);
        free (e);
        return 0;
\}
(c) Output results

\(x t=0.9\)
** Output **
ierr \(=0\)
Value of \(q\)
\begin{tabular}{|c|c|}
\hline xo
\(\mathrm{xo}=\)
( & \[
\begin{array}{r}
0.00658 \\
0.0139
\end{array}
\] \\
\hline xo & 0.0223 \\
\hline xo & 0.0319 \\
\hline xo & 0.0432 \\
\hline xo & 0.057 \\
\hline xo & 0.0747 \\
\hline xo & 0.0993 \\
\hline xo & 0.14 \\
\hline alue & qd \\
\hline \(\mathrm{xo}=\) & 0.14 \\
\hline xo & 0.0993 \\
\hline xo & 0.0747 \\
\hline xo & 0.057 \\
\hline xo & 0.0432 \\
\hline xo & 0.0319 \\
\hline xo & 0.0223 \\
\hline xo & 0.0139 \\
\hline \(\mathrm{xo}=\) & 0.00658 \\
\hline
\end{tabular}

Value of \(k\)
\begin{tabular}{ll}
\(\mathrm{xo}=\) & 1.6 \\
\(\mathrm{xo}=\) & 1.6 \\
\(\mathrm{xo}=\) & 1.7 \\
\(\mathrm{xo}=\) & 1.7 \\
\(\mathrm{xo}=\) & 1.8 \\
\(\mathrm{xo}=\) & 1.9 \\
\(\mathrm{xo}=\) & 2.0 \\
\(\mathrm{xo}=\) & 2.26 \\
\(\mathrm{xo}=\) & 2.5
\end{tabular}

Value of kd
\begin{tabular}{ll}
\(\mathrm{xo}=\) & 2.58 \\
\(\mathrm{xo}=\) & 2.26 \\
\(\mathrm{xo}=\) & 2.08 \\
\(\mathrm{xo}=\) & 1.95 \\
\(\mathrm{xo}=\) & 1.85 \\
\(\mathrm{xo}=\) & 1.78 \\
\(\mathrm{xo}=\) & 1.71 \\
\(\mathrm{xo}=\) & 1.66 \\
\(\mathrm{xo}=\) & 1.61
\end{tabular}

Value of \(e\)
\begin{tabular}{rl} 
xo \(=\) & 1.53 \\
xo \(=\) & 1.49 \\
xo \(=\) & 1.45 \\
xo \(=\) & 1.4 \\
xo \(=\) & 1.35 \\
xo \(=\) & 1.3 \\
xo \(=\) & 1.24 \\
xo \(=\) & 1.18 \\
xo \(=\) & 1.1
\end{tabular}

Value of ed
\begin{tabular}{rrr}
\(\mathrm{xo}=\) & 1.1 \\
\(\mathrm{xo}=\) & 1.18 \\
\(\mathrm{xo}=\) & 1.24 \\
\(\mathrm{xo}=\) & 1.3 \\
\(\mathrm{xo}=\) & 1.35 \\
\(\mathrm{xo}=\) & 1.4 \\
\(\mathrm{xo}=\) & 1.45 \\
\(\mathrm{xo}=\) & 1.49 \\
\(\mathrm{xo}=\) & 1.53
\end{tabular}

\subsection*{2.9.9 ASL_wiethe, ASL_viethe}

Elliptic Theta Function

\section*{(1) Function}

For \(v=X_{j}\), calculates the values of the elliptic theta functions of Jacobi \(\vartheta_{i}(v, q)\).
\[
\begin{aligned}
& \vartheta_{0}(v, q)=\vartheta_{4}(v, q)=1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{n^{2}} \cos (2 n \pi v) \\
& \vartheta_{1}(v, q)=2 q^{1 / 4} \sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)} \sin ((2 n+1) \pi v) \\
& \vartheta_{2}(v, q)=2 q^{1 / 4} \sum_{n=0}^{\infty} q^{n(n+1)} \cos ((2 n+1) \pi v) \\
& \vartheta_{3}(v, q)=1+2 \sum_{n=1}^{\infty} q^{n^{2}} \cos (2 n \pi v)
\end{aligned}
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_wiethe (nv, i, v, q, xo); }
\]

Single precision:
ierr \(=\) ASL_viethe ( \(\mathrm{nv}, \mathrm{i}, \mathrm{v}, \mathrm{q}, \mathrm{xo}\) );
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & i & I & 1 & Input & Order \(i\) \\
\hline 3 & v & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{j}\) \\
\hline 4 & q & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & 1 & Input & Nome \(q\) \\
\hline 5 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & \(\vartheta_{i}\left(X_{j}, q\right)\) \\
\hline 6 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(n v \geq 1\)
(b) \(0 \leq \mathrm{i} \leq 4\)
(c) \(0 \leq\) q \(<1.0\)
(d) \(|\mathrm{v}[\mathrm{j}-1]|<M\)
where \(M=\left\{\right.\) double precision: \(2^{31}\), single precision: \(\left.2^{18}\right\}\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|c|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline \(4000+j\) & \begin{tabular}{l} 
Restriction (d) was not satisfied by v[j - \\
\(1]\).
\end{tabular} & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) \(\vartheta_{0}(v, q)=\vartheta_{4}(v, q)\).
(b) To obtain the value \(F(x, m)\) of the incomplete elliptic integral of the 1st kind corresponding to \((x, m)\), calculate \(u=F(x, m)\) from 2.9.3 \(\left\{\begin{array}{c}\text { ASL_dieii1 } \\ \text { ASL_rieii1 }\end{array}\right\}\), calculate nome \(q\) and the value \(K(m)\) of the complete elliptic integrals of the 1st kinds from 2.9.8 \(\left\{\begin{array}{c}\text { ASL_wienmq } \\ \text { ASL_vienmq }\end{array}\right\}\), and then apply this function for \(v=\) \(\frac{u}{2 K(m)}\).
(c) \(\vartheta_{4}^{\prime}(v, q)\) can also be obtained from the following expression: \(\vartheta_{4}^{\prime}(v, q)=2 Z(u) K(m) \vartheta_{4}(v, q)\).

\section*{(7) Example}
(a) Problem

Obtain \(\vartheta_{i}(v, q)\) for \(i=3, v=0.0,0.1,0.2, \cdots, 0.9\) and \(q=0.5\).
(b) Main program
```

/* C interface example for ASL_wiethe */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xo;
double q;
int nv;
int i;
int ierr;
nv=10;
ii=3;
ii=3;;
xt=(double *)malloc((size_t)(sizeof(double) * nv));
xt=(double *)mall
printf("no enough memory for array xt\n");
return -1;
}
xo=(double *)malloc((size_t)(sizeof(double) * nv));
if(xo == NULL)

```
printf("no enough memory for array xo\n");
\}
printf( " \(\quad * * *\) ASL_wiethe \(* * * \backslash \mathrm{n} ")\);
printf( "\n ** Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
for (i=0;i<nv;i++)
\{
\(x t[i]=i ;\)
\(x t[i]=x t\)
printf( \(" \backslash t \quad x t=\% 8.3 g \backslash n ", ~ x t[i])\);
\}
ierr = ASL_wiethe(nv,ii,xt, q, xo);
printf( "\n ** Output \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
printf( "\tierr = \%6d\n", ierr );
printf( "\n\tValue of ethe(x) \n\n" );
for (i=0;i<nv;i++)
printf( "\t xo = \%8.3g\n", xo[i] );
free ( xt ) ;
free (xo)
return 0;
\}
(c) Output results
*** ASL_wiethe ***
** Input **
\begin{tabular}{rr}
\(\mathrm{xt}=\) & 0 \\
\(\mathrm{xt}=\) & 0.1 \\
\(\mathrm{xt}=\) & 0.2 \\
\(\mathrm{xt}=\) & 0.3 \\
\(\mathrm{xt}=\) & 0.4 \\
\(\mathrm{xt}=\) & 0.5 \\
\(\mathrm{xt}=\) & 0.6 \\
\(\mathrm{xt}=\) & 0.7 \\
\(\mathrm{xt}=\) & 0.8 \\
\(\mathrm{xt}=\) & 0.9
\end{tabular}
** Output **
ierr \(=\)
0
Value of ethe( \(x\) )
\begin{tabular}{lr}
\(\mathrm{xo}=\) & 2.13 \\
\(\mathrm{xo}=\) & 1.85 \\
\(\mathrm{xo}=\) & 1.2 \\
\(\mathrm{xo}=\) & 0.593 \\
\(\mathrm{xo}=\) & 0.231 \\
\(\mathrm{xo}=\) & 0.121 \\
\(\mathrm{xo}=\) & 0.231 \\
\(\mathrm{xo}=\) & 0.593 \\
\(\mathrm{xo}=\) & 1.2 \\
\(\mathrm{xo}=\) & 1.85
\end{tabular}

\subsection*{2.9.10 ASL_wiejzt, ASL_viejzt}

\section*{Zeta Function of Jacobi}

\section*{(1) Function}

For \(u=X_{i}\), calculates the value of the zeta function of Jacobi
\[
Z(u)=\frac{\Theta^{\prime}(u)}{\Theta(u)} \quad\left(\text { where } \Theta(u)=\vartheta_{4}(v, q)=\vartheta_{4}(u / 2 K(m), q)\right)
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_wiejzt (nv, ui, rm, xo); }
\]

Single precision:
\[
\text { ierr }=\text { ASL_viejzt (nv, ui, rm, xo); }
\]
(3) Arguments and Return Value
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad \mathrm{I}:\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(n v \geq 1\)
(b) \(0.0 \leq \mathrm{rm} \leq 1.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3001 & Restriction (b) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) The value of \(u\) can be obtained from \(v\) and \(K(m)\) by using the expression \(u=2 K(m) v\).

\section*{(7) Example}
(a) Problem

Obtain \(Z(u)\) for \(u=0.0,0.1,0.2, \cdots, 0.9\) with a modulus \(m=0.5\).
(b) Main program
```

/* C interface example for ASL_wiejzt */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */

```
\#include <stdio.h>
\#include <stdlib.h>
\#include <stdlib.
int main()
    double *xt
    double *xo
    double rm
    int nv;
    int i;
    int ierr;
    \(\mathrm{nv}=10\);
\(\mathrm{rm}=0.5 ;\)
    xt=(double *)malloc((size_t) (sizeof(double) * nv));
    if ( \(\mathrm{xt}==\) NULL \()\)
        printf("no enough memory for array \(x t \backslash n ")\);
        return -1;
    \}
    xo=(double *)malloc((size_t) (sizeof(double) * nv));
    if ( xo == NULL \()\)
        printf("no enough memory for array \(x o \backslash n ")\);
    \}
    printf( " \(\quad * * *\) ASL_wiejzt \(* * * \backslash \mathrm{n} ")\);
    printf ( "\n \(* *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
    for (i=0;i<nv;i++)
    \{ \(\mathrm{t}[\mathrm{i}]=\mathrm{i}\);
    \(x t[i]=i ;\)
\(x t[i]=x t[i] / n v ;\)
    printf( "\t xt \(=\% 8.3 g \backslash n ", x t[i])\);
    \({ }_{\}}^{\text {pri }}\)
    ierr \(=\) ASL_wiejzt(nv, xt, rm, xo);
    printf ( "\n \(\quad * *\) Output \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
    printf( "\tierr = \%6d\n", ierr );
    printf( "\n\tValue of ejzt(x) \(\backslash n \backslash n ")\);
    for (i=0;i<nv;i++)
    printf( "\t xo = \%8.3g\n", xo[i] );
        free ( xt ) ;
    return 0;
\}
(c) Output results

\begin{tabular}{lr} 
xo \(=\) & 0 \\
xo \(=\) & 0.027 \\
xo \(=\) & 0.053 \\
xo \(=\) & 0.0771 \\
xo \(=\) & 0.0984 \\
xo \(=\) & 0.116 \\
xo \(=\) & 0.13 \\
xo \(=\) & 0.14 \\
xo \(=\) & 0.146 \\
xo \(=\) & 0.147
\end{tabular}

\subsection*{2.9.11 ASL_wiejep, ASL_viejep}

Epsilon Function of Jacobi

\section*{(1) Function}

For \(u=X_{i}\), calculates the value of the epsilon function of Jacobi
\[
E(u \mid m)=\int_{0}^{x} \sqrt{\frac{1-m t^{2}}{1-t^{2}}} d t=\int_{0}^{u} \operatorname{dn}^{2}(t) d t \quad\left(\text { here }, u=\int_{0}^{x} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)}}\right)
\]
(2) Usage

Double precision:
ierr = ASL_wiejep (nv, ui, rm, xo);

Single precision:
ierr = ASL_viejep (nv, ui, rm, xo);
(3) Arguments and Return Value
D:Double precision real
R:Single precision real \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(\mathrm{nv} \geq 1\)
(b) \(0.0 \leq \mathrm{rm} \leq 1.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3001 & Restriction (b) was not satisfied. & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) Epsilon function of Jacobi \(E(u \mid m)\) is the same as the incomplete elliptic integral of the 2nd kind \(E(\varphi \backslash \alpha)\) and the following relation holds:
\[
E(\varphi \backslash \alpha)=E(u \mid m)=\int_{0}^{\varphi} \sqrt{1-\sin ^{2} \alpha \sin ^{2} \theta} d \theta \quad\left(\text { where } m=\sin ^{2} \alpha, \quad \sin \varphi=\operatorname{sn} u\right)
\]
(See 2.9.2 \(\left\{\begin{array}{c}\text { ASL_wieci2 } \\ \text { ASL_vieci2 }\end{array}\right\}\) ).
(7) Example
(a) Problem

Obtain \(E(u \mid m)\) for \(u=0.0,0.1,0.2, \cdots, 0.9\), with modulus \(m=0.5\).
(b) Main program
```

/* C interface example for ASL_wiejep */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */

```
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
    double *xt;
    double *xo;
    double rm;
    int nv;
    int ier
    int ier
    \(\mathrm{nv}=10\);
\(\mathrm{rm}=0.5\);
    rm=0.5;
    xt=(double *)malloc ((size_t) (sizeof(double) * nv));
    if ( \(x t==\) NULL \()\)
        printf("no enough memory for array \(x t \backslash n ")\)
        return -1;
    \}
    xo=(double *)malloc((size_t)(sizeof(double) * nv));
    if ( xo == NULL )
        printf("no enough memory for array xo\n");
        return -1;
    \}
    printf( " *** ASL_wiejep ***\n" );
    printf( "\n ** Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
    for (i=0; i<nv;i++)
    \{
    \(x t[i]=i ;\)
    \(x t[i]=x t[i] / n v\);
    printf( " \(\backslash \mathrm{t}\) xt \(=\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", ~ x t[i])\);
    f
    ierr = ASL_wiejep(nv,xt, rm, xo);
    printf( "\n ** Output \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\) )
    printf( "\tierr = \%6d\n", ierr );
    printf( "\n\tValue of ejep(x) \n\n" );
    for (i=0;i<nv;i++)
    printf( "\t xo = \%8.3g\n", xo[i] );
        free ( xt ) ;
    return 0;
\}
(c) Output results

\begin{tabular}{|c|c|c|}
\hline & = & 0.6 \\
\hline & = & 0.7 \\
\hline & & 0.8 \\
\hline & \(=\) & 0.9 \\
\hline \multicolumn{3}{|l|}{** Output **} \\
\hline ierr & & 0 \\
\hline \multicolumn{3}{|l|}{Value of ejep(x)} \\
\hline & \(=\) & 0 \\
\hline xo & 0 & 0.0998 \\
\hline & = & 0.199 \\
\hline & & 0.296 \\
\hline xo & = & 0.39 \\
\hline & & 0.481 \\
\hline xo & & 0.568 \\
\hline xo & = & 0.65 \\
\hline xo & & 0.729 \\
\hline xo & \(=\) & 0.802 \\
\hline
\end{tabular}

\subsection*{2.9.12 ASL_wiejte, ASL_viejte}

\section*{Theta Function of Jacobi}

\section*{(1) Function}

For \(u=X_{i}\), calculates the value of the theta function of Jacobi
\[
\Theta(u)=\vartheta_{4}(v, q)=\vartheta_{4}(u / 2 K(m), q) .
\]
(2) Usage

Double precision:
ierr = ASL_wiejte (nv, ui, rm, xo);

Single precision:
\[
\text { ierr }=\text { ASL_viejte (nv, ui, rm, xo); }
\]

\section*{(3) Arguments and Return Value}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad \mathrm{I}:\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(n v \geq 1\)
(b) \(0.0 \leq \mathrm{rm} \leq 1.0\)
(c) \(\frac{|\mathrm{ui}[\mathrm{i}-1]|}{2 K(m)}<M\)
where, \(M=\left\{\right.\) double precision: \(2^{31}\), single precision: \(\left.2^{18}\right\}\), and \(K(m)\) denotes the complete elliptic integral of the 1 st kind with \(m=r m\).
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{2}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3001 & Restriction (b) was not satisfied. & \\
\hline \(4000+\mathrm{i}\) & \begin{tabular}{l} 
Restriction (c) was not satisfied by ui \([\mathrm{i}-\) \\
\(1]\).
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) \(\Theta^{\prime}(u)\) can be obtained from this function with \(Z(u)\) obtained from 2.9.10 \(\left\{\begin{array}{l}\text { ASL_wiejzt } \\ \text { ASL_viejzt }\end{array}\right\}\) using the relation
\[
\Theta^{\prime}(u)=Z(u) \Theta(u)
\]
(7) Example
(a) Problem

Obtain \(\Theta(u)\) for \(u=0.0,0.1,0.2, \cdots, 0.9\), with modulus \(m=0.5\).
(b) Main program
```

/* C interface example for ASL_wiejte */

* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */

```
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
    double *xt
    double *xo;
    double rm
    int nv;
    int i;
    int ierr;
    \(\mathrm{nv}=10\);
\(\mathrm{rm}=0.5\);
    \(\mathrm{rm}=0.5\);
    xt=(double *)malloc ((size_t) (sizeof(double) * nv));
    if ( \(\mathrm{xt}==\mathrm{NULL}\) )
        printf("no enough memory for array \(x t \backslash n ")\);
    \}
    xo=(double *)malloc((size_t)(sizeof(double) * nv));
    if ( xo == NULL )
        printf("no enough memory for array xo\n");
    \}
    printf( " *** ASL_wiejte ***\n" );
    printf( "\n ** Input \(* * \backslash n \backslash n ")\);
    for (i=0;i<nv;i++)
    \{
    \(x t[i]=i ;\)
    xt[i]=xt[i]/nv;
    printf( "\t xt = \%8.3g\n", xt[i] );
    ierr = ASL_wiejte(nv,xt, rm, xo);
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = \%6d\n", ierr );
    printf( "\n\tValue of ejte(x) \n\n");
    for (i=0;i<nv;i++)
    printf( "\t xo = \%8.3g\n", xo[i] );
        free(xt);
        free(xo);
    return 0;
\}
(c) Output results

** Output **
ierr \(=0\)
Value of ejte(x)
\(\mathrm{xo}=0.914\)
\(\mathrm{xo}=0.915\)
xo \(=0.918\)
\(\mathrm{xo}=0.925\)
\(\mathrm{xo}=0.933\)
\(\mathrm{xo}=0.943\)
\(\mathrm{xo}=0.955\)
\(\mathrm{xo}=0.968\)
\(\mathrm{xo}=0.982\)

\subsection*{2.9.13 ASL_wiepai, ASL_viepai}

\section*{Pi Function}

\section*{(1) Function}

For \(u=X_{i}\), calculates the value of the pi function
\[
\Pi(u, \alpha)=m \operatorname{sn} \alpha \operatorname{cn} \alpha \operatorname{dn} \alpha \int_{0}^{u} \frac{\mathrm{sn}^{2} t d t}{1-m \mathrm{sn}^{2} \alpha \mathrm{sn}^{2} t}
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_wiepai (nv, ui, alf, rm, xo); }
\]

Single precision:
\[
\text { ierr }=\text { ASL_viepai (nv, ui, alf, rm, xo); }
\]
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & ui & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}\) (value of the incomplete elliptic integral of the 1st kind \(F(x, m)\) ) \\
\hline 3 & alf & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & \(\alpha\) \\
\hline 4 & rm & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & 1 & Input & Modulus \(m\) \\
\hline 5 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & \(\Pi\left(X_{i}, \alpha\right)\) \\
\hline 6 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v \geq 1\)
(b) \(0.0 \leq \mathrm{rm}<1.0\)
(c) \(\left|\frac{|\mathrm{ui}[\mathrm{i}-1]| \text {-alf }}{2 K(m)}\right|<M\)
where, \(M=\left\{\right.\) double precision: \(2^{31}\), single precision: \(\left.2^{18}\right\}\), and \(K(m)\) denotes the complete elliptic integral of the 1 st kind with \(m=r m\).
(d) \(\left|\frac{\text { alf }}{2 K(m)}\right|<M\)
where, \(M\) and \(K(m)\) are the same as Restriction (c).
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{2}{|c}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3001 & Restriction (b) was not satisfied. & \\
\hline 4000 & Restriction (d) was not satisfied. & \\
\hline \(4000+\mathrm{i}\) & \begin{tabular}{l} 
Restriction (c) was not satisfied by ui \([\mathrm{i}-\) \\
\(1]\).
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) Pi Function \(\Pi(u, \alpha)\) is represented as:
\[
\Pi(u, \alpha)=u \frac{\Theta^{\prime}(\alpha)}{\Theta(\alpha)}+\frac{1}{2} \log _{e} \frac{\Theta(u-\alpha)}{\Theta(u+\alpha)} .
\]
(b) The incomplete elliptic integral of the 3rd kind \(F(z)\) is represented as
\[
F(z)=\int_{0}^{z} \frac{d z}{\left(1-a^{2} z^{2}\right) \sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}}=\frac{\operatorname{sn} \alpha}{\operatorname{cn} \alpha \operatorname{dn} \alpha} \Pi(u, \alpha)+u
\]
with \(z=\operatorname{sn} u, a^{2}=k^{2} \operatorname{sn}^{2} \alpha\).
(7) Example
(a) Problem

Obtain \(\Pi(u, \alpha)\) for \(u=0.0,0.1,0.2, \cdots, 0.9, \alpha=1.7\) and \(m=0.5\).
(b) Main program
```

/* C interface example for ASL_wiepai */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xo;
double rm;
double alf;
int nv;
int i;
int ierr;
nv=10;
rm=0.5;
alf=1.7
xt=(double *)malloc((size_t)(sizeof(double) * nv));
if(xt == NULL)
printf("no enough memory for array xt\n");
return -1;
xo=(double *)malloc((size_t)(sizeof(double) * nv));
if(xo == NULL)
printf("no enough memory for array xo\n");
}
printf(" *** ASL_wiepai ***\n");
printf("\n ** Input **\n\n");
for(i=0;i<nv;i++)
xt[i]=i;
xt[i]=xt[i]/nv;
printf("\t xt = %8.3g\n", xt[i]);
}
ierr = ASL_wiepai(nv,xt, alf, rm, xo);

```
```

printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tValue of epai(x)\n\n");
for(i=0;i<nv;i++)
printf("\t xo = %8.3g\n", xo[i]);
free(xt);
free(xo);
return 0;

```
(c) Output results


\subsection*{2.10 INDEFINITE INTEGRALS OF ELEMENTARY FUNCTIONS}

\subsection*{2.10.1 ASL_wiiexp, ASL_viiexp} Exponential Integral

\section*{(1) Function}

For \(x=X_{i}\), calculates the value of the exponential integral
\[
\begin{aligned}
& \overline{\operatorname{Ei}}(x)=P \int_{-\infty}^{x} \frac{e^{t}}{t} d t \quad(x>0.0) \\
& \operatorname{Ei}(x)=-\int_{-x}^{\infty} \frac{e^{-t}}{t} d t=\int_{-\infty}^{x} \frac{e^{t}}{t} d t \quad(x<0.0)
\end{aligned}
\]
where \(P\) denotes Cauchy's principal value.
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_wiiexp (nv, xi, xo); }
\]

Single precision:
\[
\text { ierr }=\text { ASL_viiexp (nv, xi, xo); }
\]
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & \[
\begin{aligned}
& X_{i}>0.0: \overline{\operatorname{Ei}}\left(X_{i}\right) \\
& X_{i}<0.0: \operatorname{Ei}\left(X_{i}\right)
\end{aligned}
\] \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v \geq 1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & xi \([\mathrm{i}-1]<-\mathrm{M}_{1}\) (See Note (b)) (underflow) & \(\mathrm{xo}[\mathrm{i}-1]=0.0\) is performed. \\
\hline 2000 & xi \([\mathrm{i}-1]=0.0\) (overflow) & \(\mathrm{xo}[\mathrm{i}-1]=\) (Minimum value) is performed. \\
\hline 2100 & xi \([\mathrm{i}-1]>\mathrm{M}_{2}\) (See Note (c)) (overflow) & \begin{tabular}{l} 
xo[ \([-1] \quad=\quad\) (Maximum value) is \\
performed.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) In the case where \(x=\operatorname{xi}[\mathrm{i}-1]>0.0, \overline{\operatorname{Ei}}(x)=P \int_{-\infty}^{x} \frac{e^{t}}{t} d t\) is evaluated, and in another case \(x=\) \(\mathrm{xi}[\mathrm{i}-1]<0.0 \operatorname{Ei}(x)=-\int_{-x}^{\infty} \frac{e^{-t}}{t} d t=\int_{-\infty}^{x} \frac{e^{t}}{t} d t\) is also evaluated.
(b) When ierr becomes 1000 in this function, the value of \(M_{1}\) is as follows:
\(M_{1}=\{\) double precision: 702.0, single precision: 83.0\(\}\)
(c) When ierr becomes 2100 in this function, the value of \(M_{2}\) is as follows:
\(M_{2}=\{\) double precision: 709.782 , single precision: 88.722\(\}\)
(d) The value of the exponential integral may defined as follows:
\[
E_{1}(z)=\int_{z}^{\infty} \frac{e^{t}}{t} d t \quad(|\arg z|<\pi)
\]

In this case, \(E_{1}(x)=-\operatorname{Ei}(-x) \quad(x>0)\) holds.
(7) Example
(a) Problem

Obtain \(\overline{\operatorname{Ei}}(x)\) for \(x=0.1,0.2, \cdots, 1.0\).
(b) Main program
```

/* C interface example for ASL_wiiexp */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt
double *xo
int nv;
int i;
int ierr;
nv=10;
xt=(double *)malloc((size_t)(sizeof(double) * nv));
if(xt == NULL)
printf("no enough memory for array xt\n");
return -1;
}
xo=(double *)malloc((size_t)(sizeof(double) * nv));
if(xo == NULL)
printf("no enough memory for array xo\n");
}
printf(" *** ASL_wiiexp ***\n");
printf("\n ** Input **\n\n");
for(i=0;i<nv;i++)
\&
xt[i]=xt[i]/nv;
printf("\t xt = %8.3g\n", xt[i]);
}
ierr = ASL_wiiexp(nv,xt, xo);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tValue of iexp(x)\n\n");
for(i=0;i<nv;i++)
printf("\t xo = %8.3g\n", xo[i]);
free(xt);
free(xo)
return 0;
}

```
(c) Output results
*** ASL_wiiexp ***
** Input **
\(\begin{array}{ll}\mathrm{xt}= & 0.1 \\ \mathrm{xt}= & 0.2\end{array}\) \(\mathrm{xt}=\quad 0.3\) \(\begin{array}{ll}\mathrm{xt}= & 0.4 \\ \mathrm{xt}= & 0.5\end{array}\) \(\begin{array}{ll}\mathrm{xt}= & 0.5 \\ \mathrm{xt}= & 0.6\end{array}\) \(\begin{array}{ll}\mathrm{xt}= & 0.6 \\ \mathrm{xt}= & 0.7\end{array}\) \(\begin{array}{ll}\mathrm{xt}= & 0.8 \\ \mathrm{xt}= & 0.9\end{array}\) xt
** Output **
ierr \(=0\)
Value of \(i \exp (x)\)
\begin{tabular}{rr}
\(\mathrm{xo}=\) & -1.62 \\
\(\mathrm{xo}=\) & -0.822 \\
\(\mathrm{xo}=\) & -0.303 \\
\(\mathrm{xo}=\) & 0.105 \\
\(\mathrm{xo}=\) & 0.454 \\
\(\mathrm{xo}=\) & 0.77 \\
\(\mathrm{xo}=\) & 1.06 \\
\(\mathrm{xo}=\) & 1.35 \\
\(\mathrm{xo}=\) & 1.62 \\
\(\mathrm{xo}=\) & 1.9
\end{tabular}

\subsection*{2.10.2 ASL_wiilog, ASL_viilog}

\section*{Logarithmic Integral}

\section*{(1) Function}

For \(x=X_{i}\), calculates the value of the logarithmic integral
\[
\operatorname{Li}(x)=\int_{0}^{x} \frac{1}{\log _{e}(t)} d t
\]
(2) Usage

Double precision:
ierr = ASL_wiilog (nv, xi, xo);

Single precision:
ierr = ASL_viilog (nv, xi, xo);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & \(\operatorname{Li}\left(X_{i}\right)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{nv} \geq 1\)
(b) \(\operatorname{xi}[i-1] \geq 1.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 2000 & xi \([\mathrm{i}-1]=1.0\) (overflow) & \(\mathrm{xo}[\mathrm{i}-1]=\) (Minimum value) is performed. \\
\hline 2100 & \(\log (\mathrm{xi}[\mathrm{i}-1])>\mathrm{M}_{2}\) (See Note (a).) & \begin{tabular}{l} 
xo \([\mathrm{i}-1] \quad=\quad\) (Maximum value) \\
performed.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(3000+i\) & \begin{tabular}{l} 
Restriction (b) was not satisfied by xi \([\mathrm{i}-\) \\
\(1]\).
\end{tabular} & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) When ierr becomes 2100 in this function, the value of \(M_{2}\) is as follows: \(M_{2}=\{\) double precision: 709.782, single precision: 88.722\(\}\)
(7) Example
(a) Problem

Obtain \(\operatorname{Li}(x)\) for \(x=1.1,1.2, \cdots, 2.0\).
(b) Main program

\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xo;
int nv;
int ierr;
nv=10;
\(x t=(\) double *)malloc((size_t)(sizeof(double) * nv));
if ( \(\mathrm{xt}==\mathrm{NULL}\) )
printf("no enough memory for array xt\n")
\}
o=(double *)malloc ((size_t)(sizeof(double) * nv));
if ( xo == NULL )
printf("no enough memory for array \(x o \backslash n ")\)
\}
printf( " \(\quad * * *\) ASL_wiilog \(* * * \backslash \mathrm{n} ")\);
printf ( "\n ** Input **\n\n");
for (i=0;i<nv;i++)
\(\mathrm{xt}[i]=i+1+n v\);
\(x t[i]=x t[i] / n v ; ~\)
printf( "\t \(x t=\% 8.3 g \backslash n ", x t[i])\);
\}
ierr \(=\) ASL_wiilog(nv,xt, xo);
printf( "\n \(\quad * *\) Output \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\)
printf( "\tierr = \%6d\n", ierr )
printf( "\n\tValue of ilog(x) \n\n" );
for (i=0;i<nv;i++)
printf( "\t xo = \%8.3g\n", xo[i] );
free (xt)
free (xo)
return 0;
\(\}\)
(c) Output results

\(\mathrm{xo}=\quad-1.68\)
\(\mathrm{xo}=-0.934\)
\(\mathrm{xo}=-0.48\)
\(\mathrm{xo}=\quad-0.145\)
\(\mathrm{xo}=0.125\)
\(\mathrm{xo}=0.354\)
\(\mathrm{xo}=0.554\)
xo \(=0.733\)
\(\mathrm{xo}=0.895\)
\(\mathrm{xo}=1.05\)

\subsection*{2.10.3 ASL_diisin, ASL_riisin} Sine Integral
(1) Function

Calculates the value of the sine integral
\[
\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t
\]
(2) Usage

Double precision:
ierr = ASL_diisin (xi, \&xo)

Single precision:
\[
\text { ierr }=\text { ASL_riisin (xi, \&xo); }
\]
(3) Arguments and Return Value
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & xi & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Value of variable \(x\) \\
\hline 2 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & 1 & Output & Value of \(\operatorname{Si}(x)\) \\
\hline 3 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions

None
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline
\end{tabular}
(6) Notes

None
(7) Example
(a) Problem

Obtain the value of \(\operatorname{Si}(x)\) at \(x=1.0\).
(b) Input data
\(x i=1.0\).
(c) Main program
```

/* C interface example for ASL_diisin */
\#include <stdio.h>
\#include <asl.h>

```
int main()
```

{
double xi;
int ierr;
FILE *fp;
fp = fopen("diisin.dat", "r");
if(fp == NULL)
printf("file open error\n");
return -1;
}
printf(" *** ASL_diisin ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%lf", \&xi);
printf("\txi = %8.3g\n", xi);
fclose(fp);
ierr = ASL_diisin(xi, \&xo);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tValue of Si(x)\n\n");
printf("\t xo = %8.3g\n", xo);
return 0;

```
(d) Output results
```

*** ASL_diisin ***
** Input **
xi = 1
** Output **
ierr = 0
Value of Si(x)
xo = 0.946

```

\subsection*{2.10.4 ASL_diicos, ASL_riicos}

\section*{Cosine Integral}
(1) Function

Calculates the value of the cosine integral
\[
\operatorname{Ci}(x)=-\int_{x}^{\infty} \frac{\cos t}{t} d t
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_diicos (xi, \&xo) }
\]

Single precision:
\[
\text { ierr }=\text { ASL_riicos (xi, \&xo) }
\]
(3) Arguments and Return Value
\begin{tabular}{l}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} \\
\begin{tabular}{|c|c|c|c|c|l|} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\) \\
\hline No. \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} \\
\hline 1
\end{tabular}
(4) Restrictions
(a) \(0.0 \leq \mathrm{xi} \leq M\)
where, \(M=\left\{\right.\) double precision: \(2^{50} \pi\), single precision: \(\left.2^{18} \pi\right\}\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 2000 & xi \(=0.0\) (overflow) & xo \(=\) (Minimum value) is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & \begin{tabular}{l} 
Processing is aborted. \\
(See Note (a))
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) For ierr \(=3000\), if xi is sufficiently large, then the value of \(\mathrm{Ci}(x)\) will be a value extremely close to 0.0 .
(7) Example
(a) Problem

Obtain the value of \(\mathrm{Ci}(x)\) at \(x=1.0\).
(b) Input data
\(x i=1.0\).
(c) Main program
/* C interface example for ASL_diicos */
\#include <stdio.h>
\#include <asl.h>
int main()
double xi;
double xo;
int ierr;
fp = fopen( "diicos.dat", "r" );
if ( fp == NULL )
printf( "file open error \(\backslash\) " " );
return -1
\}
printf( " \(\quad * * *\) ASL_diicos \(\left.* * * \backslash \mathrm{n}^{\prime \prime}\right)\);
printf ( "\n \(\quad * *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
fscanf( fp, "\%lf", \&xi );
printf( "\txi \(=\% 8.3 g \backslash n ", x i)\);
fclose( fp );
ierr \(=A S L \_d i i \cos (x i, \quad \& x o)\);
printf( "\n \(\quad * *\) Output \(* * \backslash n \backslash n ")\);
printf( "\tierr \(=\% 6 d \backslash n "\), ierr )
printf( "\n\tValue of Ci(x) \n\n" ); printf( "\t xo = \%8.3g\n", xo );
\}
(d) Output results
\begin{tabular}{lc}
\(* * *\) & ASL_diicos \\
\(* * *\) \\
** & Input \\
xi \(=\) & 1 \\
\(* *\) & Output \\
ierr \(=\) & 0 \\
Value of & Ci (x) \\
xo \(=\) & 0.337
\end{tabular}

\subsection*{2.10.5 ASL_wiifsi, ASL_viifsi}

\section*{Fresnel Sine Integral}

\section*{(1) Function}

For \(x=X_{i}\), calculates the value of the Fresnel sine integral
\[
S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_wiifsi (nv, xi, xo); }
\]

Single precision:
ierr = ASL_viifsi (nv, xi, xo);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R :Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & \(S\left(X_{i}\right)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v \geq 1\)
(b) \(|x i[i-1]| \leq M\)
where \(M=\{\) double precision: 47453132.0 , single precision: 724.07734\(\}\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(3000+i\) & \begin{tabular}{l} 
Restriction (b) was not satisfied by xi \([\mathrm{i}-\) \\
\(1]\).
\end{tabular} & \begin{tabular}{l} 
Processing is aborted. \\
(See Note (b))
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) If the Fresnel sine integral is given as \(S(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \frac{\sin t}{\sqrt{t}} d t\), then xi \([\mathrm{i}-1]\) must be \(\sqrt{\frac{2 x}{\pi}}\).
(b) For ierr \(=3000+i\), if \(|x|\) is sufficiently large \((x=\mathrm{xi}[\mathrm{i}-1]), S(x)\) will be a value extremely close to 0.5 (xi \([\mathrm{i}-1]>0.0)\), and to \(-0.5(\mathrm{xi}[\mathrm{i}-1]<0.0)\).

\section*{(7) Example}
(a) Problem

Obtain \(S(x)\) for \(x=0.0,0.1, \cdots, 0.9\).
(b) Main program
\(\begin{array}{lll}\text { /* } & \text { C interface example for }{ }^{2} \text { ASL_wiifsi */ } & \\ \text { /* } & \text { R9.0 UPDD 03/02/05 N.Y. } & \text { CINT-SRC-02-0002 }\end{array}\)
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt
double *xo;
int \(n v\);
int ierr;
int \(\mathrm{n}=10\);
\(x t=(\) double \(*)\) malloc \(((\) size_t) (sizeof(double) \(* \mathrm{nv}))\);
xt=(double *) mall
if \((\mathrm{xt}==\mathrm{NULL})\)
printf("no enough memory for array \(x t \backslash n\) ");
return -1
\}
xo=(double *)malloc \(((\) size_t) (sizeof (double) \(*\) nv)); if ( \(\mathrm{xo}==\) NULL \()\)
printf("no enough memory for array xo\n"); return -1 ;
\}
printf( " \(\quad * * *\) ASL_wiifsi \(* * * \backslash n^{\prime \prime}\) );
printf( "\n ** Input **\n\n" );
for (i=0;i<nv;i++)
xt[i]=i;
\(x t[i]=x t[i] / n v\);
printf( "\t \(x t=\% 8.3 g \backslash n ", x t[i])\);
ierr \(=\) ASL_wiifsi(nv,xt, xo);
printf( "\n ** Output **\n\n" );
printf( "\tierr \(=\% 6 d \backslash n "\), ierr );
printf( "\n\tValue of ifsi(x) \n\n" );
for (i=0; i<nv;i++)
printf( "\t xo \(=\% 8.3 \mathrm{~g} \backslash \mathrm{n}\) ", \(\mathrm{xo}[\mathrm{i}]\) );
free (xt) ;
free(xo);
return 0;
\}
(c) Output results


\subsection*{2.10.6 ASL_wiifco, ASL_viifco}

Fresnel Cosine Integral

\section*{(1) Function}

For \(x=X_{i}\), calculates the value of the Fresnel cosine integral
\[
C(x)=\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t
\]
(2) Usage

Double precision:
ierr = ASL_wiifco (nv, xi, xo);

Single precision:
ierr = ASL_viifco (nv, xi, xo);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular}} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & \(C\left(X_{i}\right)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v \geq 1\)
(b) \(|x i[i-1]| \leq M\)
where \(M=\{\) double precision: 47453132.0 , single precision: 724.07734\(\}\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(3000+i\) & \begin{tabular}{l} 
Restriction (b) was not satisfied by xi[i - \\
\(1]\).
\end{tabular} & \begin{tabular}{l} 
Processing is aborted. \\
(See Note (b))
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) If the Fresnel cosine integral is given as \(C(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \frac{\cos t}{\sqrt{t}} d t\), then the value of \(\mathrm{xi}[\mathrm{i}-1]\) must be \(\sqrt{\frac{2 x}{\pi}}\).
(b) For ierr \(=3000+i\), if \(|x|\) is sufficiently large \((x=\mathrm{xi}[\mathrm{i}-1]), C(x)\) will be a value extremely close to 0.5 (xi[i-1]>0.0) and to \(-0.5(x i[i-1]<0.0)\).

\section*{(7) Example}
(a) Problem

Obtain \(C(x)\) for \(x=0.0,0.1, \cdots, 0.9\).
(b) Main program
```

/* C interface example for ASL_wiifco */

* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */

```
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
    double *xt;
    double *xo;
    int nv;
    int i;
    int ierr;
    nv=10;
    xt=(double *)malloc ((size_t) (sizeof (double) * nv));
    if ( \(\mathrm{xt}==\) NULL )
        printf("no enough memory for array \(x t \backslash n\) ");
        return -1 ;
    \}
    xo=(double *)malloc ((size_t) (sizeof(double) * nv));
    if ( xo == NULL )
        printf("no enough memory for array xo\n");
        return -1
    \}
    printf( " \(\quad * * *\) ASL_Wiifco \(\left.* * * \backslash \mathrm{n}^{\prime \prime}\right)\);
    printf ( "\n \(\quad * *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
    for (i=0;i<nv;i++)
    \{ \(\mathrm{x}[\mathrm{i}]=\mathrm{i}\)
    xt[i]=xt[i]/nv;
    printf( "\t \(x t=\% 8.3 g \backslash n ", x t[i])\);
    \}
    ierr = ASL_wiifco(nv,xt, xo);
    printf( "\n \(\quad * *\) Output \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
    printf( "\tierr \(=\% 6 d \backslash n "\), ierr );
    printf( "\n\tValue of ifco (x) \(\backslash n \backslash n ")\);
    for (i=0;i<nv;i++)
    printf( "\t xo = \%8.3g\n", xo[i] );
        free (xt);
        free (xo) ;
    return 0;
\}
(c) Output results
\begin{tabular}{cc}
\(* * *\) & ASL_Wiifco \\
\(* * *\) \\
\(* *\) & \\
Input & \(* *\) \\
\(x t=\) & 0 \\
\(x t=\) & 0.1 \\
\(x t=\) & 0.2 \\
\(x t=\) & 0.3 \\
\(x t=\) & 0.4 \\
\(x t=\) & 0.5 \\
\(x t=\) & 0.6 \\
\(x t=\) & 0.7 \\
\(x t=\) & 0.8 \\
\(x t=\) & 0.9
\end{tabular}
** Output **
ierr \(=0\)
Value of ifco(x)
\(\begin{array}{lr}\mathrm{xo}= & 0 \\ \mathrm{xo}= & 0.1\end{array}\)
\(\begin{array}{ll}x 0 & 0.2\end{array}\)
\(\mathrm{xo}=0.299\)
\(x 0=0.397\)
\(\begin{array}{ll}\mathrm{xO}= & 0.492 \\ \mathrm{xo}= & 0.581\end{array}\)
\(\begin{array}{lr}\text { xo }= & 0.581 \\ \mathrm{xo}= & 0.66\end{array}\)
\(\begin{array}{ll}\mathrm{xo}= & 0.66 \\ \mathrm{xo}= & 0.723\end{array}\)
\(\begin{array}{ll}\text { xo }= & 0.723 \\ \mathrm{xo}= & 0.765\end{array}\)

\subsection*{2.10.7 ASL_wiidaw, ASL_viidaw}

Dawson Integral

\section*{(1) Function}

For \(x=X_{i}\), calculates the value of the Dawson integral
\[
e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t
\]
(2) Usage

Double precision:
ierr = ASL_wiidaw (nv, xi, xo);

Single precision:
ierr \(=\) ASL_viidaw (nv, xi, xo);
(3) Arguments and Return Value
D:Double precision real
R:Single precision real C:Double precision complex \(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(n v \geq 1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes

None
(7) Example
(a) Problem
\[
\text { Obtain } e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t \text { for } x=0.0,0.1, \cdots, 0.9
\]
(b) Main program
```

/* C interface example for ASL_wiidaw */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
{nt main()
double *xt;
double *xo;
int nv;
int ierr;
nv=10;
xt=(double *)malloc((size_t)(sizeof(double) * nv));
if(xt == NULL)
printf("no enough memory for array xt\n");
return -1;
}o=(double *)malloc((size_t)(sizeof(double) * nv));
xo=(double *)mal)
printf("no enough memory for array xo\n");
return -1;
}
printf(" *** ASL_wiidaw ***\n");
printf("\n ** Input **\n\n");
for(i=0;i<nv;i++)
{
xt[i]=i;
xt[i]=xt[i]/nv;; = % %.3g\n", xt[i]);
}
ierr = ASL_wiidaw(nv,xt, xo);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tValue of idaw(x)\n\n");
for(i=0;i<nv;i++)
printf('"\t xo = %8.3g\n", xo[i]);
free(xt)
free(xo)
return 0;
}

```
(c) Output results
*** ASL_wiidaw ***
** Input **
\begin{tabular}{lr}
\(\mathrm{xt}=\) & 0 \\
\(\mathrm{xt}=\) & 0.1 \\
\(\mathrm{xt}=\) & 0.2 \\
\(\mathrm{xt}=\) & 0.3 \\
\(\mathrm{xt}=\) & 0.4 \\
\(\mathrm{xt}=\) & 0.5 \\
\(\mathrm{xt}=\) & 0.6 \\
\(\mathrm{xt}=\) & 0.7 \\
\(\mathrm{xt}=\) & 0.8 \\
\(\mathrm{xt}=\) & 0.9
\end{tabular}
** Output **
ierr \(=0\)
Value of idaw(x)
\begin{tabular}{lr} 
xo \(=\) & 0 \\
xo \(=\) & 0.0993 \\
xo \(=\) & 0.195 \\
xo \(=\) & 0.283 \\
xo \(=\) & 0.36 \\
xo \(=\) & 0.424 \\
xo \(=\) & 0.475 \\
xo \(=\) & 0.511 \\
xo \(=\) & 0.532 \\
xo \(=\) & 0.541
\end{tabular}

\subsection*{2.10.8 ASL_wiicnd, ASL_viicnd}

Normal Distribution Function

\section*{(1) Function}

For \(x=X_{i}\), calculates the value of the normal distribution function
\[
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} d t
\]
(2) Usage

Double precision:
ierr = ASL_wiicnd (nv, xi, xo);

Single precision:
ierr = ASL_viicnd (nv, xi, xo);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & \(\Phi\left(X_{i}\right)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v \geq 1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes

None

\section*{(7) Example}
(a) Problem

Obtain \(\Phi(x)\) for \(x=0.0,0.1, \cdots, 0.9\).
(b) Main program
/* C interface example for ASL_wiicnd */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xo;
int nv;
int ierr:
nv=10;
xt=(double *)malloc((size_t) (sizeof(double) * nv));
xt=(double *) mal
if \((x t==\) NULL \()\)
printf("no enough memory for array xt \(\backslash n\) ") return -1;
\}
xo=(double *)malloc ((size_t) (sizeof (double) * nv));
if ( xo == NULL )
printf("no enough memory for array xo\n") return -1;
\}
printf( " *** ASL_wiicnd ***\n" );
printf( "\n ** Input **\n\n" );
for (i=0;i<nv;i++)
\(x t[i]=i\);
xt[i]=xt[i]/nv;
printf( "\t xt = \%8.3g\n", xt[i] );
ierr \(=\) ASL_wiicnd(nv,xt, xo);
printf( "\n ** Output **\n\n" )
printf( "\tierr = \%6d\n", ierr );
printf( "\n\tValue of icnd(x) \n\n" );
for (i=0;i<nv;i++)
printf ( \({ }^{\text {for }} \mathrm{t}\) ( xo \(\left.=\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", ~ x o[i]\right)\);
free (xt)
free(xo);
return 0;
\}
(c) Output results


\subsection*{2.10.9 ASL_wiicnc, ASL_viicnc}

\section*{Complementary Normal Distribution Function}

\section*{(1) Function}

For \(x=X_{i}\), calculates the value of the normal distribution function
\[
\Psi(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{t^{2}}{2}} d t
\]
(2) Usage

Double precision:
ierr \(=\) ASL_wiicnc (nv, xi, xo);
Single precision:
ierr = ASL_viicnc (nv, xi, xo);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & \(\Psi\left(X_{i}\right)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v \geq 1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \(\mathrm{xo}[\mathrm{i}-1]=0.0\) is performed. \\
\hline 1000 & \begin{tabular}{l} 
xi \([\mathrm{i}-1]>\mathrm{M}\) (See Note (a)) \\
(underflow)
\end{tabular} & Processing is aborted. \\
\hline 3000 & Restriction (a) was not satisfied. & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) When ierr becomes 1000 in this function, the value of \(M\) is as follows: \(M=\{\) double precision: 38.485 , single precision: 13.0\(\}\)
(7) Example
(a) Problem

Obtain \(\Phi(x)\) for \(x=0.0,0.1,0.2, \cdots, 0.9\).
(b) Main program
/* C interface example for ASL_wiicnc */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *xt;
double *xo;
int nv;
int ierr;
nv=10;
xt=(double *)malloc((size_t) (sizeof(double) * nv));
if ( xt == NULL )
printf("no enough memory for array xt\n")
\}
xo=(double *)malloc((size_t) (sizeof(double) * nv));
if ( xo == NULL )
printf("no enough memory for array xo\n");
\}
printf( " \(\quad\) *** ASL_wiicnc \(* * *\) n" ) ;
printf( "\n ** Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
for (i=0;i<nv;i++)
xt [i]=i;
\(x t[i]=x t[i] / n v\);
printf( "\t xt = \%8.3g\n", xt[i]);
\}
ierr = ASL_wiicnc(nv,xt, xo);
printf( "\n ** Output **\n\n" );
printf( "\tierr = \%6d\n", ierr )
printf( "\n\tValue of icnc(x) \n\n" );
for (i=0;i<nv;i++)
printf (" \(\ \mathrm{t}\) xo \(=\% 8.3 \mathrm{~g} \backslash \mathrm{n} "\), xo[i] );
free (xt)
return 0;
\}
(c) Output results

\begin{tabular}{rr}
\(\mathrm{xo}=\) & 0.5 \\
\(\mathrm{xo}=\) & 0.46 \\
\(\mathrm{xo}=\) & 0.421 \\
\(\mathrm{xo}=\) & 0.382 \\
\(\mathrm{xo}=\) & 0.345 \\
\(\mathrm{xo}=\) & 0.309 \\
\(\mathrm{xo}=\) & 0.274 \\
\(\mathrm{xo}=\) & 0.242 \\
\(\mathrm{xo}=\) & 0.212 \\
\(\mathrm{xo}=\) & 0.184
\end{tabular}

\subsection*{2.11 THE FUNCTIONS RELATED TO THE ERROR FUNCTIONS}

\subsection*{2.11.1 ASL_wierrf, ASL_vierrf}

Error Function
(1) Function

For \(x=X_{i}\), evaluate error function \(\operatorname{Erf}(x)\).
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_wierrf (nv, xv, yv); }
\]

Single precision:
\[
\text { ierr }=\text { ASL_vierrf ( } \mathrm{nv}, \mathrm{xv}, \mathrm{yv}) \text {; }
\]
(3) Arguments and Return Value
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|l|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & nv & I & 1 & Input & Number of inputs \\
\hline 2 & xv & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & nv & Input & \(x_{i}\) \\
\hline 3 & yv & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & nv & Output & Erf \(\left(x_{i}\right)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v>0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes

None

\section*{(7) Example}
(a) Problem

Evaluate values of \(\operatorname{Erf}\left(x_{i}\right)\) with \(i=1,2, \cdots, 10\) where each \(x_{i}\) is given as the functional value is \(0.1^{i}\).
(b) Main program
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include <asl.h>
\#nt main()
{nt main()
int nv,i;
int ierr
double
o1=0.1;nv=10;x=1.0;
xv=(double *)malloc((size_t)(sizeof(double)* nv));
if(xv == NULL)
{ printf("no enough memory for array }xv\n")
return -1;
}
yv=(double *)malloc((size_t)(sizeof(double)* nv));
if(yv == NULL)
{
printf("no enough memory for array yv\n");
return -1;
}
for (i=0 ; i<nv ; i++)
x=x*o1;
ierr=ASL_diierf(x,\&xv[i], 0);
if(ierr > 0))
printf("error in ASL_diierf\n");
}
}
printf("\n\t *** ASL_wierrf \n\n");
printf("\n\t *** input \n\n");
for (i=0 ; i<nv ; i++)
printf("\n%13.8g\n " ,xv[i]);
}
ierr=ASL_wierrf(nv, xv, yv);
printf("\n\t *** output \n\n");
printf("\n\tierr = %6d\n", ierr);
for (i=0 ; i<nv ; i++)
printf("\n%6d,%13.8g\n " ,i,1.0-yv[i]);
}
free(xv);
free(yv);
free(yv);

```
\}
(c) Output results
```

*** ASL_wierrf
*** input
1.1630872
1.8213864
2.3267538
2.7510639
3.1234133
3.4589107
3.7665626
4.0522372
4.3200054
4.572825
*** output
ierr = 0

```
\begin{tabular}{lr}
0, & 0.1 \\
1, & 0.01 \\
2, & 0.001 \\
3, & 0.0001 \\
4, & \(1 \mathrm{e}-05\) \\
5, & \(1 \mathrm{e}-06\) \\
6, & \(1 \mathrm{e}-07\) \\
7, & \(1 \mathrm{e}-08\) \\
\(8,9.9999997 \mathrm{e}-10\) \\
\(9,1.0000001 \mathrm{e}-10\)
\end{tabular}

\subsection*{2.11.2 ASL_wierfc, ASL_vierfc}

\section*{Co-Error Function}
(1) Function

For \(x=X_{i}\), evaluate co-error function \(\operatorname{Erfc}(x)\).
(2) Usage

Double precision:
ierr = ASL_wierfc (nv, xv, yv);

Single precision:
ierr = ASL_vierfc (nv, xv, yv);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & nv & I & 1 & Input & Number of inputs \\
\hline 2 & xv & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(x_{i}\) \\
\hline 3 & yv & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & \(\operatorname{Erfc}\left(x_{i}\right)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v>0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes

None

\section*{(7) Example}
(a) Problem

Evaluate values of \(\operatorname{Erfc}\left(x_{i}\right)\) for \(x_{i}\) with \(i=1,2, \cdots, 10\) given as the functional value equals to \(0.1^{i}\).
(b) Main program
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include <math.h>
\#include ()
int nv,i;
double *xv,*yv;
int lerr;
o1=0.1;nv=10;x=1.0;
xv=(double *)malloc((size_t)(sizeof(double)* nv));
if(xv == NULL)
printf("no enough memory for array xv\n");
return -1;
}
yv=(double *)malloc((size_t)(sizeof(double)* nv));
if(yv == NULL)
printf("no enough memory for array yv\n");
return -1;
}
for (i=0 ; i<nv ; i++)
x=x*o1;
ierr=ASL_diierf(x,\&xv[i], 0);
if(ierr > 0)
printf("error in ASL_diierf\n");
}
}
printf("\n\t *** ASL_wierfc \n\n");
printf("\n\t *** input \n\n");
for (i=0 ; i<nv ; i++)
printf("\n%13.8g\n " ,xv[i]);
}
ierr=ASL_wierfc(nv, xv, yv);
printf("\n\t *** output \n\n");
printf("\n\tierr = %6d\n", ierr);
for (i=0 ; i<nv ; i++)
printf("\n%6d,%13.8g\n " ,i,yv[i]);
}
free(xv);
free(yv);
free(yv);
}

```
(c) Output results
```

*** ASL_Wierfc
*** input
1.1630872
1.8213864
2.3267538
2.7510639
3.1234133
3.4589107
3.7665626
4.0522372
4.3200054
4.572825
*** output
ierr = 0

```
\begin{tabular}{lr}
0, & 0.1 \\
1, & 0.01 \\
2, & 0.001 \\
3, & 0.0001 \\
4, & \(1 \mathrm{e}-05\) \\
5, & \(1 \mathrm{e}-06\) \\
6, & \(1 \mathrm{e}-07\) \\
7, & \(1 \mathrm{e}-08\) \\
8, & \(1 \mathrm{e}-09\) \\
9, & \(1 \mathrm{e}-10\)
\end{tabular}

\subsection*{2.11.3 ASL_diierf, ASL_riierf}

Inverse of Co-Error Function
(1) Function

Evaluate \(\operatorname{Erfc}^{-1}\) i.e, for \(0<x \leq 1\), evaluate \(y\) satisfying \(\operatorname{Erfc}(y)=x\).
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_diierf }(x, \& y, \text { iter }) ;
\]

Single precision:
ierr \(=\) ASL_riierf ( \(\mathrm{x}, \& \mathrm{y}\), iter \()\);
(3) Arguments and Return Value
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular}
\begin{tabular}{|c|c|c|c|c|l|} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(0<x \leq 1\)
(b) iter \(\geq 1\) (Excluding the case where 0 or an negative value is input to be reset to the default value )
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \\
\hline 0 & Normal termination. & \\
\hline 1000 & \(\mathrm{x}=1\) & \(\mathrm{y}=0\) is performed. \\
\hline 3000 & \(\mathrm{x}>1\) & Processing \\
\hline 3500 & \(\mathrm{x} \leq 0\) & \\
\hline 4000 & \begin{tabular}{l} 
The solution did not converge within the \\
maximum number of iterations
\end{tabular} & \multicolumn{3}{|c|}{} \\
\hline
\end{tabular}
(6) Notes
(a) For \(2>x>1, y\) can be obtained by \(y=-\operatorname{Erfc}^{-1}(2-x)\) according to the following relation:
\[
\frac{2}{\sqrt{\pi}} \int_{-y}^{\infty} e^{-t^{2}} d t=2-x
\]
(b) \(\operatorname{Erfc}^{-1}(0)=\infty, \operatorname{Erfc}^{-1}(2)=-\infty\).
(c) Inverse of \(\operatorname{Erf}(x)\) is \(\operatorname{Erfc}^{-1}(1-x)\).
(d) The maximum count of iteration is set to 10 when iter is less than 1 .

\section*{(7) Example}
(a) Problem

Evaluate \(y\) satisfying \(\operatorname{ERF}(y)=0.9999\) and check this result.
(b) Main program
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include <asl.h>
int main()
double x,y,z,x1;
int m,ierr;
x=0.9999
x1=1.0-x
m=0
printf("\n\t *** ASL_diierf \n\n");
printf("\n\t *** input *** \n\n");
printf("\n%13.8g\n",x1)
ierr=ASL_diierf(x1,\&y,m);
printf("\n\t *** OUTPUT ***\n\n");
printf("\n\tierr = %6d\n", ierr);
ierr=ASL_wierrf(1,\&y,\&z);
printf("\n\ttestv output testv\n\n");
printf("\n%13.8g , %13.8g ,%13.8g\n", x,y,z);
return 0;
}

```
(c) Output results
```

*** ASL_diierf
*** input ***
0.0001
*** OUTPUT ***
ierr = 0
testv output testv
0.9999,
2.7510639,
0.9999

```

\subsection*{2.11.4 ASL_jiierf, ASL_iiierf}

\section*{Error Function for Complex Arguments}
(1) Function

For \(z=Z_{i}\), evaluate error function with complex argument \(e^{-z^{2}} \operatorname{Erfc}(-i z)\).
(2) Usage

Double precision:
ierr = ASL_jiierf (nv, z, w);

Single precision:
ierr \(=\) ASL_iiierf ( \(\mathrm{nv}, \mathrm{z}, \mathrm{w}\) );
(3) Arguments and Return Value
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|l|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{l|}{ Contents } \\
\hline 1 & nv & I & 1 & Input & Number of input values \\
\hline 2 & z & \(\left\{\begin{array}{l}\mathrm{Z} * \\
\mathrm{C} *\end{array}\right\}\) & nv & Input & \(z\) \\
\hline 3 & w & \(\left\{\begin{array}{l}\mathrm{Z} * \\
\mathrm{C} *\end{array}\right\}\) & nv & Output & \(e^{-z^{2}} \operatorname{Erfc}(-i z)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v>0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 4000 & Overflow occurred. (See Note (b)) & \\
\hline
\end{tabular}
(6) Notes
(a) If the imaginary part of \(z\) is close to 0.0 , the precision becomes rather low (within an error of order \(10^{-10}\) in the double precision case, though).
(b) If \(\Im(z)\) is negative and \(-\Re\left(z^{2}\right)\) is almost \(\log\) (Maximum positive), overflow occurs.
(7) Example
(a) Problem

Evaluate values in the integration pass \(|z-3 i|=1\).
(b) Main program
\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include <complex.h>
\#include <asl.h>
int main()
double _Complex s,z,z3,w,w3, paii,zerr;
double _Complex *zinp,*wout;
int \(n\);
int i;
\(\mathrm{n}=100\);
zinp \(=\) ( double _Complex * ) malloc ((size_t)( sizeof (double _Complex) * (n+1) ));
if ( zinp == NULL )
\{
printf( "no enough memory for array zinp\n" );
\}
wout \(=\) ( double _Complex * ) malloc ((size_t) ( sizeof (double _Complex) * (n+1) )); if ( wout == NULL )
printf( "no enough memory for array wout\n" );
return -1;
\}
\(\mathrm{s}=0.0\);
z3=3.0*_Complex_I;
paii=-1.0;
paii=clog(paii);
printf( "\n\t *** ASL_jiierf \(\backslash n \backslash n ")\);
for ( \(i=0\); \(i<n\); i++ )
\(\mathrm{z}=(\mathrm{i}+1) *\) cimag (paii) \(* 2.0 /\) (double) \(\mathrm{n} *\) _Complex_I;
\(\mathrm{z}=\operatorname{cexp}(\mathrm{z})\);
zinp[i]=z3+z;
\}
zinp[n]=z3;
\(\mathrm{n}=\mathrm{n}+1\);
ierr=ASL_jiierf(n, zinp, wout);
printf( "\n\t *** OUTPUT \(* * * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
printf ( "\n\tierr \(=\% 6 d \backslash n "\), ierr ) ;
printf( "\n\t output value \(\backslash n \backslash n ")\);
w3=wout [n-1];
for ( \(i=0\); \(i<n-1\); i++ )
\(\mathrm{w}=\) wout [i]/(double) (n-1);
\(\mathrm{s}=\mathrm{s}+\mathrm{w}\);
\}
printf( "\n\%8.3g , \%8.3g\n", creal(w3), cimag(w3));
printf( "\n\t value obtained by Cauchy's theorem \(\backslash n \backslash n "\) );
printf( "\n\%8.3g , \%8.3g\n", creal(s), cimag(s));
zerr=w3-s;
printf( "\n\%8.3g , \%8.3g\n", creal(zerr) , cimag(zerr));
free(zinp);
free(wout);
return 0
\}
(c) Output results
```

 *** ASL_jiierf
 *** OUTPUT ***
 ierr = 0
 output value
 0.179 , 6.25e-20
 value obtained by Cauchy's theorem
 0.179 , -1.3e-18
 *** abs error
    ```
\(5.55 \mathrm{e}-17\), \(1.36 \mathrm{e}-18\)

\subsection*{2.12 ASSOCIATED LEGENDRE FUNCTIONS}

\subsection*{2.12.1 ASL_dileg1, ASL_rileg1}

Associated Legendre Function of the 1st Kind

\section*{(1) Function}

Calculates the value of the associated Legendre function of the 1st kind
\[
P_{n}^{m}(x)=\left(\left|1-x^{2}\right|\right)^{\frac{m}{2}} \frac{d^{m} P_{n}(x)}{d x^{m}}
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_dileg1 (n, m, xi, \&xo })
\]

Single precision:
\[
\text { ierr }=\text { ASL_rileg1 (n, m, xi, \&xo); }
\]
(3) Arguments and Return Value
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad \mathrm{I}:\left\{\begin{array}{l|l|l|}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) When \(\mathrm{m}<0\), then \(|\mathrm{m}| \leq \mathrm{n}(\) if \(\mathrm{n}<0\), then \(|\mathrm{m}| \leq-\mathrm{n}-1)\)
(b) When \(|\mathrm{m}| \leq \mathrm{n}\) (if \(\mathrm{n}<0\), then \(r m|\mathrm{~m}| \leq-\mathrm{n}-1\) ), then \(|\mathrm{m}|<M_{1}\) where, \(M_{1}=\{\) double precision: 150 , single precision: 27\(\}\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 2000 & \(\mid\) xi \(\mid>(\text { Maximum value })^{1 / \mathrm{n}} / 2\) and \(\mathrm{n} \geq 2\) \\
(overflow) & \begin{tabular}{l} 
If xi \(\geq 0.0\), \\
xo \(=(\) Maximum value) is performed. \\
If xi \(<0.0\), \\
xo \(=(\) Maximum value \() \times(-1)^{\mathrm{n}}\) \\
is performed.
\end{tabular} \\
\hline 3000 & & Restriction (a) or (b) was not satisfied.
\end{tabular}
(6) Notes
(a) If \(|x|>1.0\), then the Hobson associated Legendre function
\[
P_{n}^{m}(x)=\left(x^{2}-1.0\right)^{\frac{m}{2}} \frac{d^{m} P_{n}(x)}{d x^{m}}
\]
is calculated, and if \(|x| \leq 1.0\), then the Ferrers associated Legendre function
\[
P_{n}^{m}(x)=\left(1.0-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} P_{n}(x)}{d x^{m}}
\]
is calculated.
(b) This function uses double length arithmetic internally to guarantee precision.
(c) Note that the associated Legendre function of the 1st kind may be defined as
\[
P_{n}^{m}(x)=(-1)^{m}\left(1.0-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} P_{n}(x)}{d x^{m}}
\]
when \(|x| \leq 1.0\) or it may be defined as the associated function multiplied by \((n-m)\) !.
(d) To obtain these values for many xi and for a large order \(n\), it is better to use 2.15.3 \(\left\{\begin{array}{l}\text { ASL_winplg } \\ \text { ASL_vinplg }\end{array}\right\}\). The relationship between the associated Legendre function of the 1st kind \(P_{n}^{m}(x)\) and the normalized spherical harmonic function \(P_{n}^{* m}(x)\) can be expressed as below.
\[
\begin{aligned}
& P_{n}^{* 0}(x)=\sqrt{\frac{2 n+1}{4 \pi}} P_{n}^{0}(x)(-1 \leq x \leq 1) \\
& P_{n}^{* m}(x)=\sqrt{\frac{2 n+1}{4 \pi}} \sqrt{2 \frac{(n-m)!}{(n+m)!}} P_{n}^{m}(x)(-1 \leq x \leq 1 ; m=1,2, \cdots, n)
\end{aligned}
\]

Note that the absolute value of normalized Legendre function of the 1st kind increases steeply with the factorial order when \(m\) is large.

\section*{(7) Example}
(a) Problem

Obtain the value of \(P_{n}^{m}(x)\) at \(n=4, m=2\) and \(x=0.8\).
(b) Input data
\(\mathrm{n}=4, \mathrm{~m}=2\) and \(\mathrm{xi}=0.8\).
(c) Main program
```

/* C interface example for ASL_dileg1 */
\#include <stdio.h>
\#include <asl.h>
int main()
int ni;
int mi;
double xi;
double xo;
int ierr;
FILE *fp;
fp = fopen("dileg1.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
return -1;
}
printf(" *** ASL_dileg1 ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&ni);
fscanf(fp, "%d", \&mi);
fscanf(fp, "%lf", \&xi);
printf("\tn = %6d m = %6d xi = %8.3g\n", ni, mi, xi);
fclose(fp);
ierr = ASL_dileg1(ni, mi, xi, \&xo);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tValue of Pnm(x)\n\n");
printf("\t xo = %8.3g\n", xo);
return 0;
}

```
(d) Output results
```

*** ASL_dileg1 ***
** Input **
$\mathrm{n}=4 \mathrm{~m}=2 \mathrm{xi}=0.8$
** Output **
ierr $=0$
Value of $\operatorname{Pnm}(x)$
xo = $\quad 9.4$

```

\subsection*{2.12.2 ASL_dileg2, ASL_rileg2}

\section*{Associated Legendre Function of the 2nd Kind}

\section*{(1) Function}

Calculates the value of the associated Legendre function of the 2nd kind
\[
Q_{n}^{m}(x)=\left(\left|1-x^{2}\right|\right)^{\frac{m}{2}} \frac{d^{m} Q_{n}(x)}{d x^{m}}
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_dileg2 (n, m, xi, \&xo) }
\]

Single precision:
\[
\text { ierr }=\text { ASL_rileg2 (n, m, xi, \&xo); }
\]
(3) Arguments and Return Value
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|l|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & n & I & 1 & Input & Order \(n\) \\
\hline 2 & m & I & 1 & Input & Multiple \(m\) \\
\hline 3 & xi & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Value of variable \(x\) \\
\hline 4 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & 1 & Output & Value of \(Q_{n}^{m}(x)\) \\
\hline 5 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n \geq 0\)
(b) When \(\mathrm{m}<0\), then \(|\mathrm{m}| \leq \mathrm{n}\)
(c) \(|\mathrm{xi}| \neq 1.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|c|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{2}{c}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline 4000 & Overflow occurred during the calculation. & \multicolumn{1}{|c|}{} \\
\hline 4100 & \begin{tabular}{l} 
Series expansion calculations did not \\
converge.
\end{tabular} & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) If \(|x|>1.0\), then the Hobson associated Legendre function
\[
Q_{n}^{m}(x)=\left(x^{2}-1.0\right)^{\frac{m}{2}} \frac{d^{m} Q_{n}(x)}{d x^{m}}
\]
is calculated, and if \(|x| \leq 1.0\), then the Ferrers associated Legendre function
\[
Q_{n}^{m}(x)=\left(1.0-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} Q_{n}(x)}{d x^{m}}
\]
is calculated.
(b) This function uses double length arithmetic internally to guarantee precision.
(c) Note that the associated Legendre function of the 2nd kind may be defined as the definition given above for \(Q_{n}^{m}(x)\) multiplied by \((-1)^{m}\) when \(|x|>1.0\) or \(|x|<1.0\) or it may be defined as the associated function multiplied by \((n-m)\) !.

\section*{(7) Example}
(a) Problem

Obtain the value of \(Q_{n}^{m}(x)\) at \(n=4, m=2\) and \(x=1.8\).
(b) Input data
\(\mathrm{n}=4, \mathrm{~m}=2\) and \(\mathrm{xi}=1.8\).
(c) Main program
```

/* C interface example for ASL_dileg2 */
\#include <stdio.h>
\#include <asl.h>
int main()
int n;
int mi;
double xi;
double xo;
int ierr;
FILE *fp;
fp = fopen("dileg2.dat", "r");
if(fp == NULL)
printf("file open error\n");
}
printf(" *** ASL_dileg2 ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&n);
fscanf(fp, "%d", \&mi);
fscanf(fp, "%lf", \&xi);
printf("\tn = %6d m = %6d xi = %8.3g\n", n, mi, xi);
fclose(fp);
ierr = ASL_dileg2(n, mi, xi, \&xo);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tValue of Qnm(x)\n\n");
printf("\t xo = %8.3g\n", xo);
}

```
(d) Output results
```

*** ASL_dileg2 ***
** Input **
n = 4 m = 2 xi = 1.8

```

\section*{** Output **}
ierr \(=0\)
Value of \(\mathrm{Qnm}(\mathrm{x})\)
\(\mathrm{xo}=0.0703\)

\subsection*{2.13 ORTHOGONAL POLYNOMIALS}

\subsection*{2.13.1 ASL_diople, ASL_riople}

\section*{Legendre Polynomial}
(1) Function

Calculates the value of the Legendre polynomial
\[
P_{i}(x)=\frac{1}{2^{i} i!} \frac{d^{i}}{d x^{i}}\left(x^{2}-1\right)^{i} \quad(i=0,1, \cdots, n)
\]
(2) Usage

Double precision:
ierr = ASL_diople (n, xi, xo);

Single precision: ierr \(=\) ASL_riople ( \(\mathrm{n}, \mathrm{xi}, \mathrm{xo}\) );
(3) Arguments and Return Value
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & n & I & 1 & Input & Highest order \(n\) \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Value of variable \(x\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & \(\mathrm{n}+1\) & Output & Value of \(P_{i}(x)(i=0,1, \cdots, n)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n \geq 0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 4000 & Overflow occurred during the calculation. & \\
\hline
\end{tabular}
(6) Notes
(a) This function uses double length arithmetic internally to guarantee precision.

\section*{(7) Example}
(a) Problem

Obtain the value of \(P_{n}(x)\) at \(n=3\) and \(x=0.8\).
(b) Input data
\(\mathrm{n}=3\) and \(\mathrm{xi}=0.8\).
(c) Main program
/* C interface example for ASL_diople */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int \(n\);
double xi;
double *xo;
int ierr;
ILE *fp;
fp = fopen( "diople.dat", "r" );
if ( fp == NULL )
printf( "file open error\n" );
return -1 ;
\}
printf( " \(\quad * * *\) ASL_diople \(* * * \backslash \mathrm{n} ")\);
printf( "\n \(\quad * *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
fscanf( fp, "\%d", \&n );
fscanf( fp, "\%lf", \&xi);
xo \(=(\) double \(*)\) malloc \(((\) size_t) \((\operatorname{sizeof(double)~} *(n+1))\); if ( xo == NULL )
printf( "no enough memory for array xo\n" );
return -1;
\}
printf( "\tn \(=\% 6 d \backslash t \backslash t x i=\% 8.3 g \backslash n ", ~ n, ~ x i) ;\)
fclose( fp );
ierr = ASL_diople(n, xi, xo);
printf( "\n ** Output **\n\n" );
printf( "\tierr \(=\% 6 d \backslash n "\), ierr );
printf ( "\n\tValue of \(\operatorname{Pn}(x) \backslash n \backslash n ")\);
printf( "\t xo \(=\% 8.3 \mathrm{~g} \backslash \mathrm{n} "\), xo[n] );
free ( xo );
return 0;
(d) Output results
```

*** ASL_diople ***
** Input **
n = xi = 0.8
** Output **
ierr = 0
Value of Pn(x)
xo = 0.08

```

\subsection*{2.13.2 ASL_dizglw, ASL_rizglw}

Gauss=Legendre Formula

\section*{(1) Function}

Evaluate the integration points and weights of (high degree) Gauss=Legendre formula.
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_dizglw }(\mathrm{n}, \mathrm{z}, \mathrm{w}, \text { work }) ;
\]

Single precision:
ierr \(=\) ASL_rizglw ( \(\mathrm{n}, \mathrm{z}, \mathrm{w}\), work);
(3) Arguments and Return Value
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|l|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & n & I & 1 & Input & Degree \(n\) \\
\hline 2 & z & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & n & Output & \begin{tabular}{l} 
Zero points of \(P_{n}(x)\) (stored in ascending \\
order)
\end{tabular} \\
\hline 3 & w & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & n & Output & Weights \\
\hline 4 & work & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & n & Work & Work area \\
\hline 5 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{n} \geq 1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{l}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & n was equal to 1. & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 4000 & The solution did not converge. & \\
\hline 5000 & Overflow occurred. & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) Zero points of \(P_{n}(x)\) are set as output.
(b) The original form of Gauss=Legendre formula is
\[
\int_{-1}^{1} f(x) d x=\sum_{j=1}^{n} w_{j} f\left(z_{j}\right)
\]
where \(z_{j}\) and \(w_{j}\) are zero points and weights of \(P_{n}(x)\) respectively. This form holds straightly only when the interval for integration is \([-1,1]\). If the interval for integration is other than \([-1,1]\), it can be reduced to the above case by applying integration by substitution.
(c) It is recommended to avoid applying Gauss=Legendre formula to a vibrating function. To illustrate this, we consider the integration below:
\[
\int_{-1}^{1} 5 e^{-25 x^{2}} \cos (10 A x) d x
\]

This integrand decreases steeply at the both end points. By mapping the interval so that the both end points are mapped to the both infinite points, the value of the integration are calculated as \(\sqrt{\pi} e^{-A^{2}}\). This mapping of the interval bears an error of order \(10^{-12}\). If Gauss=Legendre formula is applied with \(N=24\), the error has the order of \(0.3 * 10^{-7}\) when \(A=0.3\). When \(A=2.4\), the calculated value becomes -0.0004898 , but the true value is approximately 0.005585 . This indicates that even a vibration term such as \(\cos (24 x)\) can become a cause of an neglectable error in integration.
(d) This function can also be applied to Gauss=Legendre formulas of high degrees.

\section*{(7) Example}
(a) Problem

Set \(\mathrm{N}=24\) to evaluate \(\int_{-1}^{1} \frac{1}{1+x+x^{2}} d x=\frac{\pi}{\sqrt{3}}\).
(b) Main program
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include <asl.h>
int main()
double *z,*W,d,trued,three;
int n;
int i,ierr;
n=24;
three=3.0;
z=(double *)malloc((size_t)(sizeof(double) * n));
if(z == NULL)
printf("no enough memory for array z\n");
return -1;
}
W=(double *)malloc((size_t)(sizeof(double) * (2*n)));
if(w == NULL)
printf("no enough memory for array w\n");
return -1;
}
printf("\n\t *** ASL_dizglw \n\n");
ierr = ASL_dizglw(n, z, w, \&w[n]);
printf("\n\t *** OUTPUT ***\n\n");
printf("\n\tierr = %6d\n", ierr);
printf("\n\t *** Gauss points and weights \n\n");
for (i=0 ; i<n ; i++)
printf("\n%6d, %13.8g , %13.8g\n", i , z[i] , w[i]);
}
d=0.0;
for ('i=0 ; i<n ; i++)
d=d+w[i]/(1.0+z[i]+z[i]*z[i]);

```
```

}

```
            \}
            trued=M_PI/sqrt (three);
            printf( "\n\t *** value (Gauss-Legendre) and true value \(\backslash n \backslash n "\) );
            printf("\n\%13.8g, \%13.8g \n", d, trued );
            free(z);
            free(w)
            return 0 ;
(c) Output results


\footnotetext{
\(1.8137994, \quad 1.8137994\)
}

\subsection*{2.13.3 ASL_diopla, ASL_riopla}

\section*{Laguerre Polynomial}

\section*{(1) Function}

Calculates the value of the Laguerre polynomial
\[
L_{i}(x)=\frac{e^{x}}{i!} \frac{d^{i}}{d x^{i}}\left(e^{-x} x^{i}\right) \quad(i=0,1, \cdots, n) .
\]
(2) Usage

Double precision:
ierr = ASL_diopla (n, xi, xo);

Single precision:
ierr = ASL_riopla (n, xi, xo);
(3) Arguments and Return Value
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & n & I & 1 & Input & Highest order \(n\) \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Value of variable \(x\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & \(\mathrm{n}+1\) & Output & Value of \(L_{i}(x)(i=0,1, \cdots, n)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n \geq 0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 4000 & Overflow occurred during the calculation. & \\
\hline
\end{tabular}
(6) Notes
(a) This function uses double length arithmetic internally to guarantee precision.

\section*{(7) Example}
(a) Problem

Obtain the value of \(L_{n}(x)\) at \(n=3\) and \(x=0.8\).
(b) Input data
\(\mathrm{n}=3\) and \(\mathrm{xi}=0.8\).
(c) Main program
```

/* C interface example for ASL_diopla */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int n;
double xi;
double *xo;
int ierr;
FILE *fp;
fp = fopen("diopla.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
return -1;
}
printf(" *** ASL_diopla ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&n);
fscanf(fp, "%lf", \&xi);
xo = (double *)malloc((size_t)(sizeof(double) * (n+1)));
if(xo == NULL)
printf("no enough memory for array xo\n");
return -1;
}
printf("\tn = %6d\t\txi = %8.3g\n", n, xi);
fclose(fp);
ierr = ASL_diopla(n, xi, xo);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tValue of Ln(x)\n\n");
printf("\t xo = %8.3g\n", xo[n]);
free(xo);
return 0;
}
(d) Output results

```
```

*** ASL_diopla ***

```
*** ASL_diopla ***
    ** Input **
    ** Input **
n = 3 xi = 0.8
n = 3 xi = 0.8
    ** Output **
    ** Output **
ierr = 0
ierr = 0
Value of Ln(x)
Value of Ln(x)
    xo = -0.525
```

 xo = -0.525
    ```

\subsection*{2.13.4 ASL_diophe, ASL_riophe}

\section*{Hermite Polynomial}

\section*{(1) Function}

Calculates the value of the Hermite polynomial
\[
H_{i}(x)=(-1)^{i} e^{x^{2}} \frac{d^{i}}{d x^{i}}\left(e^{-x^{2}}\right) \quad(i=0,1, \cdots, n)
\]
(2) Usage

Double precision:
ierr = ASL_diophe (n, xi, xo);

Single precision:
ierr \(=\) ASL_riophe ( \(\mathrm{n}, \mathrm{xi}, \mathrm{xo}\) );
(3) Arguments and Return Value
\begin{tabular}{ll}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} & \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}
\end{tabular} I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & n & I & 1 & Input & Highest order \(n\) \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Value of variable \(x\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & \(\mathrm{n}+1\) & Output & Value of \(H_{i}(x)(i=0,1, \cdots, n)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n \geq 0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 4000 & Overflow occurred during the calculation. & \\
\hline
\end{tabular}
(6) Notes
(a) This function uses double length arithmetic internally to guarantee precision.
(7) Example
(a) Problem

Obtain the value of \(H_{n}(x)\) at \(n=3\) and \(x=0.8\).
(b) Input data
\(\mathrm{n}=3\) and \(\mathrm{xi}=0.8\).
(c) Main program
```

/* C interface example for ASL_diophe */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int n;
double xi;
double *xo;
int ierr;
FILE *fp;
fp = fopen("diophe.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
return -1;
}
printf(" *** ASL_diophe ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&n);
fscanf(fp, "%lf", \&xi);
xo = (double *)malloc((size_t)(sizeof(double) * (n+1)));
if(xo == NULL)
printf("no enough memory for array xo\n");
return -1;
}
printf("\tn = %6d\t\txi = %8.3g\n", n, xi);
fclose(fp);
ierr = ASL_diophe(n, xi, xo);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tValue of Hn(x)\n\n");
printf("\t xo = %8.3g\n", xo[n]);
free(xo);
return 0;
}
(d) Output results

```
```

*** ASL_diophe ***

```
*** ASL_diophe ***
    ** Input **
    ** Input **
n = 3 xi = 0.8
n = 3 xi = 0.8
    ** Output **
    ** Output **
ierr = 0
ierr = 0
Value of Hn(x)
Value of Hn(x)
    xo = -5.5
```

 xo = -5.5
    ```

\subsection*{2.13.5 ASL_diopch, ASL_riopch}

\section*{Chebyshev Polynomial}

\section*{(1) Function}

Calculates the value of the Chebyshev polynomial
\[
T_{i}(x)=\frac{(-1)^{i}}{(2 i-1)!!} \sqrt{1-x^{2}} \frac{d^{i}}{d x^{i}}\left(1-x^{2}\right)^{i-1 / 2} \quad(i=0,1, \cdots, n)
\]
(2) Usage

Double precision:
ierr = ASL_diopch ( \(\mathrm{n}, \mathrm{xi}, \mathrm{xo}\) );
Single precision:
ierr \(=\) ASL_riopch ( \(\mathrm{n}, \mathrm{xi}, \mathrm{xo}\) );
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R :Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & n & I & 1 & Input & Highest order \(n\) \\
\hline 2 & xi & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Value of variable \(x\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \(\mathrm{n}+1\) & Output & Value of \(T_{i}(x)(i=0,1, \cdots, n)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{n} \geq 0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 4000 & Overflow occurred during the calculation. & \\
\hline
\end{tabular}
(6) Notes
(a) This function uses double length arithmetic internally to guarantee precision.
(7) Example
(a) Problem

Obtain the value of \(T_{n}(x)\) at \(n=3\) and \(x=0.8\).
(b) Input data
\(\mathrm{n}=3\) and \(\mathrm{xi}=0.8\).
(c) Main program
```

/* C interface example for ASL_diopch */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int n;
double xi;
double *xo;
int ierr;
FILE *fp;
fp = fopen("diopch.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
return -1;
}
printf(" *** ASL_diopch ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&n);
fscanf(fp, "%lf", \&xi);
xo = (double *)malloc((size_t)(sizeof(double) * (n+1)));
if(xo == NULL)
printf("no enough memory for array xo\n");
return -1;
}
printf("\tn = %6d\t\txi = %8.3g\n", n, xi);
fclose(fp);
ierr = ASL_diopch(n, xi, xo);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tValue of Tn(x)\n\n");
printf("\t xo = %8.3g\n", xo[n]);
free(xo);
return 0;
}
(d) Output results

```
```

*** ASL_diopch ***

```
*** ASL_diopch ***
    ** Input **
    ** Input **
n = 3 xi = 0.8
n = 3 xi = 0.8
    ** Output **
    ** Output **
ierr = 0
ierr = 0
Value of Tn(x)
Value of Tn(x)
    xo = -0.352
```

 xo = -0.352
    ```

\subsection*{2.13.6 ASL_diopc2, ASL_riopc2}

\section*{Chebyshev Function of the 2nd Kind}
(1) Function

Calculates the value of the Chebyshev function of the 2nd kind
\[
U_{i}(x)=\frac{\sqrt{1-x^{2}}}{i} \frac{d T_{i}(x)}{d x} \quad(i=0,1, \cdots, n)
\]
(2) Usage

Double precision:
ierr = ASL_diopc2 (n, xi, xo);

Single precision:
ierr \(=\) ASL_riopc2 ( \(\mathrm{n}, \mathrm{xi}, \mathrm{xo}\) );
(3) Arguments and Return Value
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & n & I & 1 & Input & Highest order \(n\) \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Value of variable \(x\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & \(\mathrm{n}+1\) & Output & Value of \(U_{i}(x)(i=0,1, \cdots, n)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{n} \geq 0,|\mathrm{xi}| \leq 1.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes

None
(7) Example
(a) Problem

Obtain the value of \(U_{3}(0.8)\).
(b) Input data
\(\mathrm{n}=3\) and \(\mathrm{xi}=0.8\).
(c) Main program
/* C interface example for ASL_diopc2 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int n ;
double xi;
double *xo;
int ierr;
FILE *fp;
\(\mathrm{fp}=\) fopen( "diopc2.dat", "r" );
if \((f p==\) NULL \()\)
\{
printf( "file open error\n" );
\(\}\)
printf( " \(\quad * * *\) ASL_diopc2 \(* * * \backslash \mathrm{n}^{\prime \prime}\) );
printf( "\n ** Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
fscanf( fp, "\%d", \&n );
fscanf( fp, "\%lf", \&xi);
xo \(=(\) double \(*)\) malloc \(((\) size_t) \((\operatorname{sizeof(double)~*~(n+1)~));~}\)
if ( xo == NULL )
printf( "no enough memory for array xo\n" );
\(\}\)
printf( "\tn = \%6d\t\txi = \%8.3g\n", n, xi );
fclose( fp );
ierr \(=\) ASL_diopc2(n, xi, xo);
printf( "\n ** Output **\n\n" )
printf( "\tierr \(=\% 6 d \backslash n "\), ierr );
printf( "\n\tValue of \(\operatorname{Un}(x) \backslash n \backslash n ")\);
printf( "\t xo = \%8.3g\n", xo[n] );
free( xo );
return 0;
\}
(d) Output results
```

*** ASL_diopc2 ***
** Input **
n = 3 xi = 0.8
** Output **
ierr = 0
Value of Un(x)

```
    \(\mathrm{xo}=0.936\)

\subsection*{2.13.7 ASL_diopgl, ASL_riopgl}

\section*{Generalized Laguerre Polynomial}

\section*{(1) Function}

Calculates the value of the generalized Laguerre polynomial
\[
L_{i}^{(\alpha)}(x)=\frac{e^{x} x^{-\alpha}}{i!} \frac{d^{i}}{d x^{i}}\left(e^{-x} x^{i+\alpha}\right) \quad(i=0,1, \cdots, n)
\]
(2) Usage

Double precision:
ierr = ASL_diopgl (n, alf, xi, xo);

Single precision:
\[
\text { ierr }=\text { ASL_riopgl (n, alf, xi, xo); }
\]
(3) Arguments and Return Value
\begin{tabular}{ll}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} & \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & n & I & 1 & Input & Highest order \(n\) \\
\hline 2 & alf & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Value of variable \(\alpha\) \\
\hline 3 & xi & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 1 & Input & Value of variable \(x\) \\
\hline 4 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & \(\mathrm{n}+1\) & Output & Value of \(L_{i}^{(\alpha)}(x)(i=0,1, \cdots, n)\) \\
\hline 5 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{n} \geq 0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 4000 & Overflow occurred during the calculation. & \\
\hline
\end{tabular}
(6) Notes

None

\section*{(7) Example}
(a) Problem

Obtain the value of \(L_{n}^{(\alpha)}(x)\) for \(n=3, \alpha=0.5\) and \(x=0.8\).
(b) Input data
\(\mathrm{n}=3\), alf \(=0.5\) and \(\mathrm{xi}=0.8\).
(c) Main program
```

/* C interface example for ASL_diopgl */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int n;
ouble alf;
double xi;
double *xo;
int ierr;
fp = fopen("diopgl.dat", "r");
if(fp == NULL)
printf("file open error\n");
return -1;
}
printf(" *** ASL_diopgl ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&n);
fscanf(fp, "%lf", \&alf);
fscanf(fp, "%lf", \&xi);
xo = (double *)malloc((size_t)(sizeof(double) * (n+1)));
if(xo == NULL)
printf("no enough memory for array xo\n");
return -1;
}
printf("\tn = %6d alf = %8.3g xi = %8.3g\n", n, alf, xi);
fclose(fp);
ierr = ASL_diopgl(n, alf, xi, xo);
printf("\n ** Output **\n\n")
printf("\tierr = %6d\n", ierr);
printf("\n\tValue of Lna(x)\n\n");
printf("\t xo = %8.3g\n", xo[n]);
free(xo);
return 0;
}

```
(d) Output results
```

*** ASL_diopgl ***
** Input **
n = 3 alf = 0.5 xi = 0.8
** Output **
ierr = 0
Value of Lna(x)
xo = -0.278

```

\subsection*{2.14 MATHIEU FUNCTIONS}

\subsection*{2.14.1 ASL_dimtce, ASL_rimtce}

Mathieu Functions of Integer Orders \(c e_{n}(x, q)\)
(1) Function

Evaluate the value of \(c e_{n}(x, q)\).
(2) Usage

Double precision:
ierr \(=\) ASL_dimtce (nord, n, q, x, \&ce, \&isw, work);
Single precision:
ierr \(=\) ASL_rimtce (nord, n, q, x, \&ce, \&isw, work);
(3) Arguments and Return Value
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & nord & I & 1 & Input & term number for expansion-1 (See Note (a)) \\
\hline 2 & n & I & 1 & Input & order \(n\) \\
\hline 3 & q & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & parameter \(q\) \\
\hline 4 & x & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & variable \(x\) \\
\hline 5 & ce & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & the function \(c e_{n}(x, q)\) \\
\hline 6 & isw & I* & 1 & Input & \begin{tabular}{l}
switch \\
isw \(=0\) : after initial setting, evaluate ce \\
isw \(=1\) : only evaluate ce
\end{tabular} \\
\hline & & & & Output & if initial setting was done return 1 \\
\hline 7 & work & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & See Contents & Input/ Output & \begin{tabular}{l}
coefficient table (See Note (b)) \\
Size: \(2 \times\) nord \(^{2}+6 \times\) nord +108
\end{tabular} \\
\hline 8 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(2 \leq\) nord \(\leq 50\)
(b) \(0 \leq \mathrm{n} \leq 2 \times\) nord +1
(c) isw \(=0\) or isw \(=1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 2000 & \begin{tabular}{l} 
It became impossible to calculate in suffi- \\
cient accuracy.
\end{tabular} & Processing is aborted. \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) If nord is small, the precision for ce is not sufficient. Therefore the nord is prefer to the large value. The value of nord for the parameter q and n must be set to the following range:
\[
\min (50.0,0.5 \times \mathrm{n}+10+|\mathrm{q}|) \leq \text { nord } \leq 50 .
\]
(b) To obtain multiple values of Mathieu functions \(c e_{n}(x, q)\) where the parameter q is fixed, call this function once with isw \(=0\) and then call this function again after changing only the contents of x and n. Here, the value of nord must be set to the following range:
\[
\min \left(50.0,0.5 \times \mathrm{n}_{\max }+10+|\mathrm{q}|\right) \leq \operatorname{nord} \leq 50
\]
where \(n_{\max }\) is the largest order. This enables you to eliminate unnecessary calculations by performing the initial setting only once.
(c) When processing ends with ierr \(=2000\), the accuracy of a calculation result cannot be guaranteed.
(d) Mathieu functions \(c e_{n}(x, q)\) can be represented by Fourier series expansion (with cosine terms only). In this function, they are calculated by series sum up to the (nord+1)-th term. Therefore, the calculation time and accuracy depend on the value of nord.
(e) As \(|\mathrm{q}|\) or n is larger, the calculation time \(c e_{n}(x, q)\) trend to increase. It is prefer to set \(\mathrm{n} \leq 90\) and \(|\mathrm{q}|\) \(\leq 70.0\).

\section*{(7) Example}
(a) Problem

Obtain the values of \(c e_{7}(x, 5.0)\) on the approximation condition that the number of the expression terms is 21 for \(x=1.0,2.0, \cdots, 10.0\).
(b) Main program
```

/* C interface example for ASL_dimtce */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *work;
double q
double *ce
int n;
int i;
int isw;
int ierr1;
int nord;
nt size;
int nv;
nv=10;
nord=20;
n =7;
Size=2*nord*nord+6*nord+108;
work=(double *)malloc((size_t)(sizeof(double) * size));
if(work == NULL)

```
\{
printf("no enough memory for work \(\backslash\) n");
return -1;
\}
\(\mathrm{x}=(\) double \(*)\) malloc \(((\) size_t) \((\) sizeof \((\) double \() * n v))\);
if ( \(x==\) NULL \()\)
printf("no enough memory for \(x \backslash n ")\);
return -1;
\}
ce=(double *)malloc((size_t)(sizeof(double) * nv));
if ( \(\mathrm{ce}==\) NULL \()\)
printf("no enough memory for ce\n");
\}
printf( " *** ASL_dimtce ***\n" );
printf( "\n \(\quad * *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
isw=0;
ierr \(1=0 ;\)
for \((i=0 ; i<n v ; i++)\)
\{
\(x[i]=1+i\)
printf( \(\left.{ }^{\prime} \backslash t \quad x i=\% 8.3 g \backslash n ", x[i]\right)\);
ierr=ASL_dimtce(nord, \(n, ~ q, ~ x[i], ~ \& c e[i], ~ \& i s w, ~ w o r k) ; ~\)
\(\operatorname{iff}^{\text {( ierr }>0)}\)
ierr1=ierr;
printf( "\tierr = \%6d\n", ierr );
\}
\}
printf( "\n ** Output \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
printf( "\tierr = \%6d\n", ierr1 );
for (i=0;i<nv;i++)
printf( "\t xo = \%8.3g\n", ce[i] );
\}
free (work)
free (x)
free(ce);
return 0;
\}
(c) Output results


\subsection*{2.14.2 ASL_dimtse, ASL_rimtse}

Mathieu Functions of Integer Orders \(s e_{n}(x, q)\)
(1) Function

Evaluate the value of \(s e_{n}(x, q)\).
(2) Usage

Double precision:
ierr \(=\) ASL_dimtse (nord, n, q, x, \&se, \&isw, work);
Single precision:
ierr \(=\) ASL_rimtse (nord, n, q, x, \&se, \&isw, work);
(3) Arguments and Return Value
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & nord & I & 1 & Input & term number for expansion-1 (See Note (a)) \\
\hline 2 & n & I & 1 & Input & order \(n\) \\
\hline 3 & q & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & parameter \(q\) \\
\hline 4 & x & \(\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & variable \(x\) \\
\hline 5 & se & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & the function \(\operatorname{se}_{n}(x, q)\) \\
\hline 6 & isw & I* & 1 & Input & ```
switch
isw \(=0\) : after initial setting, evaluate se
isw \(=1\) : only evaluate se
``` \\
\hline & & & & Output & if initial setting was done return 1 \\
\hline 7 & work & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & See Contents & Input/ Output & \begin{tabular}{l}
coefficient table (See Note (b)) \\
Size: \(2 \times\) nord \(^{2}+6 \times\) nord +108
\end{tabular} \\
\hline 8 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(2 \leq\) nord \(\leq 50\)
(b) \(1 \leq \mathrm{n} \leq 2 \times\) nord +2
(c) isw \(=0\) or isw \(=1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 2000 & \begin{tabular}{l}
It became impossible to calculate in suffi- \\
cient accuracy.
\end{tabular} & Processing is aborted. \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) If nord is small, the precision for se is not sufficient. Therefore the nord is prefer to the large value. The value of nord for the parameter q and n must be set to the following range:
\[
\min (50.0,0.5 \times \mathrm{n}+10+|\mathrm{q}|) \leq \operatorname{nord} \leq 50 .
\]
(b) To obtain multiple values of Mathieu functions \(s e_{n}(x, q)\) where the parameter q is fixed, call this function once with isw \(=0\) and then call this function again after changing only the contents of x and n . Here, the value of nord must be set to the following range:
\[
\min \left(50.0,0.5 \times \mathrm{n}_{\max }+10+|\mathrm{q}|\right) \leq \operatorname{nord} \leq 50
\]
where \(\mathrm{n}_{\max }\) is the largest order. This enables you to eliminate unnecessary calculations by performing the initial setting only once.
(c) When processing ends with ierr=2000, the accuracy of a calculation result cannot be guaranteed.
(d) Mathieu functions \(s e_{n}(x, q)\) can be represented by Fourier series expansion (with sine terms only). In this function, they are calculated by series sum up to the (nord+1)-th term. Therefore, the calculation time and accuracy depend on the value of nord.
(e) As \(|\mathrm{q}|\) or n is larger, the calculation time \(s e_{n}(x, q)\) trend to increase. It is prefer to set \(\mathrm{n} \leq 90\) and \(|\mathrm{q}|\) \(\leq 70.0\).

\section*{(7) Example}
(a) Problem

Obtain the values of \(\operatorname{se}_{7}(x, 5.0)\) on the approximation condition that the number of the expression terms is 21 for \(x=1.0,2.0, \cdots, 10.0\).
(b) Main program
```

/* C interface example for ASL_dimtse */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *work
double q;
double *x;
double *se;
int n;
int isw;
int isw;
int ierr;
int lerrl;
int size;
int nv
nv=10;
nord=20
n =7;
size=2*nord*nord+6*nord+108;
work=(double *)malloc((size_t)(sizeof(double) * size));
if( work == NULL )

```
```

    {
            printf("no enough memory for work\n");
            return -1;
    }
    x=(double *)malloc((size_t)(sizeof(double) * nv));
    if( x == NULL )
            printf("no enough memory for x\n");
            return -1;
    }
    se=(double *)malloc((size_t)(sizeof(double) * nv));
    if( se == NULL )
            printf("no enough memory for se\n");
        return -1;
    printf( " *** ASL_dimtse ***\n" );
    printf( "\n *** ** Input **\n\n" );
    isw=0;
    ierr1=0;
    for(i=0;i<nv;i++)
        x[i]=1+i
        x[i]=1+i; (\t xi = %8.3g\n", x[i] );
        ierr=ASL_dimtse(nord, n, q, x[i], &se[i], &isw, work);
        if( ierr > 0 )
            ierr1=ierr;
            printf( "\tierr = %6d\n", ierr );
        }
    }
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n", ierr1 );
    for(i=0;i<nv;i++)
            printf( "\t xo = %8.3g\n", se[i] );
        }
        free(work);
        free(x);
        free(se);
        return 0;
    }
    (c) Output results
*** ASL_dimtse ***
** Input **

| $x i=$ | 1 |
| ---: | ---: | ---: |
| $x i=$ | 2 |
| $x i=$ | 3 |
| $x i=$ | 4 |
| $x i=$ | 6 |
| $x i=$ | 7 |
| $x i=$ | 8 |
| $x i=$ | 9 |
| $x i=$ | 10 |

** Output **
ierr $=0$

xo $=$	0.37
xo $=$	0.956
xo $=$	0.815
xo $=$	0.585
xo $=$	-0.569
xo $=$	-1.02
xo $=$	-1
xo $=$	-0.411
xo $=$	0.448
xo $=$	0.53

```

\subsection*{2.15 OTHER SPECIAL FUNCTIONS}

\subsection*{2.15.1 ASL_wixsps, ASL_vixsps}

Di-Log Function

\section*{(1) Function}

For real numbers \(X_{i}(\geq 0, i=1, \cdots, N)\), obtain values of di-log function defined as
\[
L i_{2}\left(X_{i}\right)=-\int_{0}^{X_{i}} \log |t-1| \frac{d t}{t} .
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_wixsps } \quad(\mathrm{nv}, \mathrm{xv}, \mathrm{yv})
\]

Single precision:
\[
\text { ierr = ASL_vixsps } \quad(\mathrm{nv}, \mathrm{xv}, \mathrm{yv}) ;
\]
(3) Arguments and Return Value
\begin{tabular}{ll}
\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular} & \begin{tabular}{l}
Z:Double precision complex \\
C:Single precision complex
\end{tabular}
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|l|l|}
\hline No. & \begin{tabular}{l}
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & nv & I & 1 & Input & Number \(N\) of \(X_{i}\) \\
\hline 2 & xv & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}(i=1, \cdots, \mathrm{nv})\) \\
\hline 3 & yv & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & nv & Output & \(L i_{2}\left(X_{i}\right)(i=1, \cdots, \mathrm{nv})\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v \geq 1\)
(b) \(x v[i-1] \geq 0 \quad(i=1, \cdots, n v)\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) \(L i_{2}(\mathrm{xv}[\mathrm{i}-1]) \quad(\mathrm{i}=1, \cdots, \mathrm{nv})\) are stored in \(\mathrm{yv}[\mathrm{i}-1]\).
(b) \(L i_{2}(x)\) increases monotonically in \(0 \leq x<2\), reaches the peak of \(\pi^{2} / 4\) at the point \(x=2\). In \(x>2\), \(L i_{2}(x)\) decreases as the asymptotic formula
\[
L i_{2}(x)=-\frac{1}{2}(\log x)^{2}+\frac{\pi^{2}}{3}+O\left(x^{-1}\right)
\]
(c) The zero point of \(L i_{2}(x)\) is the vicinity of \(x=12.59517037\).

\section*{(7) Example}
(a) Problem

Obtain the values of \(L i_{2}\left(x_{i}\right)\) for \(x_{i}=0.2 * i(i=1,2, \cdots, 10)\).
(b) Input data
\(\mathrm{nv}=10\) and array xv.
(c) Main program
```

/* C interface example for ASL_wixsps */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int nv,ierr,i
double *xv, *yv;
printf( " *** ASL_wixsps ***\n" );
nv=10;
printf( "\n ** Input **\n\n" );
xv = ( double *)malloc(sizeof(double)*nv);
if( xv == NULL )
printf( "no enough memory for array xv\n");
} return -1;
yv = ( double *)malloc(sizeof(double)*nv);
if( yv == NULL )
{
printf( "no enough memory for array yv\n");
}
printf( "\tnv = %6d\n" , nv);
for(i=0;i<nv;i++)
xv[i]=0.2*(i+1);
}err = ASL_wixsps(nv, xv, yv);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\t xv yv\n\n" );
for(i=0; i<nv; i++)
printf( "\n\t" );
printf( "%6d",i);
printf( "%8.3g",xv[i]);
printf( "\t ");
printf( "%8.3g",yv[i]);
}
printf( "\n" );
free(xv);
free(yv);
free(yv);
}

```
(d) Output results

\subsection*{2.15.2 ASL_widbey, ASL_vidbey}

\section*{Debye Function}

\section*{(1) Function}

For real values \(X_{i}(\geq 0, i=1, \cdots, N)\), obtain each value of the Debye function
\[
F_{D}\left(X_{i}\right)=\frac{3}{X_{i}^{3}} \int_{0}^{X_{i}} \frac{e^{t} t^{4}}{\left(e^{t}-1\right)^{2}} d t
\]
(2) Usage

Double precision:
ierr = ASL_widbey (nv,xv,yv);

Single precision:
ierr = ASL_vidbey (nv,xv,yv);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R :Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & nv & I & 1 & Input & Number \(N\) of \(X_{i}\) \\
\hline 2 & xv & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}(i=1, \cdots, n v)\) \\
\hline 3 & yv & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & \(F_{D}\left(X_{i}\right)(i=1, \cdots, n v)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{nv} \geq 1\)
(b) \(\mathrm{xv}[\mathrm{i}-1] \geq 0 \quad(\mathrm{i}=1, \cdots, \mathrm{nv})\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) \(F_{D}(\mathrm{xv}[\mathrm{i}-1]) \quad(\mathrm{i}=1, \cdots, \mathrm{nv})\) are stored in \(\mathrm{yv}[\mathrm{i}-1]\).
(b) Debye function \(F_{D}(y)\) decreases monotonically with y .
(c) \(F_{D}(0)\) means \(\lim _{y \rightarrow+0} F_{D}(y)\).

\section*{(7) Example}
(a) Problem

Obtain the value of \(F_{D}\left(x_{i}\right)\) for \(x_{i}=0.2 * i(i=1,2, \cdots, 10)\).
(b) Input data \(n v=10\) and array xv.
(c) Main program
```

/* C interface example for ASL_widbey */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int nv,ierr,i;
printf( " *** ASL_widbey ***\n" );
printf( "\n ** Input **\n\n" );
xv = ( double * )malloc(sizeof(double)*nv);
if( xv == NULL )
printf( "no enough memory for array xv\n");
return -1;
}
yv = ( double * )malloc(sizeof(double)*nv);
if( yv == NULL )
{
printf( "no enough memory for array yv\n");
return -1;
}
printf( "\tnv = %6d\n" , nv);
for(i=0;i<nv;i++)
xv[i]=0.2*(i+1);
}
ierr = ASL_widbey(nv, xv, yv);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\t xv yv\n\n" );
for(i=0; i<nv; i++)
printf( "\n\t" );
printf( "%6d",i);
printf( "%8.3g",xv[i]);
printf( "\t ");
printf( "%8.3g",yv[i]);
}
printf( "\n" );
free(xv);
free(yv);
}

```
(d) Output results
```

*** ASL_Widbey ***
** Input **
nv = 10
** Output **
ierr = 0
xv
yv
0
0.998
4
0.8 0.969
\$ }\quad0.95
0.908
0.883
0.855
0.825

```

\subsection*{2.15.3 ASL_winplg, ASL_vinplg}

\section*{Spherical Harmonic Function}

\section*{(1) Function}

For given real numbers \(X_{i}\left(\left|X_{i}\right| \leq 1 ; i=1, \cdots, N\right)\), this program obtains spherical harmonic functional systems (order \(m=0, \cdots, n\)) of the degree \(n\) which are normalized and defined as
\[
P_{n}^{* m}\left(X_{i}\right)=\frac{1}{4 \pi \sqrt{-1}^{m}} A_{n, m} \int_{-\pi}^{\pi}\left(X_{i}+\sqrt{-1} \sqrt{1-X_{i}^{2}} \cos \phi\right)^{n} \cos (m \phi) d \phi
\]
where normalize coefficients \(A_{n, m}\) are
\[
A_{n, 0}=\sqrt{\frac{2 n+1}{\pi}} ; A_{n, m}=\sqrt{\frac{2(2 n+1)(n-m)!(n+m)!}{\pi(n!)^{2}}}(m=1, \cdots, n) .
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_winplg }(\mathrm{nv}, \mathrm{xv}, \mathrm{n}, \mathrm{plg}, \mathrm{nvl}, \text { work }) ;
\]

Single precision:
ierr \(=\) ASL_vinplg (nv,xv,n,plg,nvl,work);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 b i t \text { Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & nv & I & 1 & Input & Number \(N\) of \(X_{i}\) \\
\hline 2 & xv & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}(i=1, \cdots, \mathrm{nv})\) \\
\hline 3 & n & I & 1 & Input & Degree \(n\) \\
\hline 4 & plg & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Output & \begin{tabular}{l}
Spherical harmonic \(P_{n}^{* m}\left(X_{i}\right)\) \((i=1, \cdots, \mathrm{nv} ; m=0, \cdots, \mathrm{n})\) (See Note (a)) \\
Size: \(\mathrm{nvl} \times \mathrm{n}+1\)
\end{tabular} \\
\hline 5 & nvl & I & 1 & Input & Adjustable dimension of array plg \\
\hline 6 & work & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & work & \begin{tabular}{l}
Work area \\
Size: \(3 \times \mathrm{nv}+\mathrm{n}+1\)
\end{tabular} \\
\hline 7 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(1 \leq \mathrm{nv} \leq \mathrm{nvl}\)
(b) \(n \geq 1\)
(c) \(|x v[i-1]| \leq 1 \quad(i=1, \cdots, n v)\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{2}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3100 & Restriction (c) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) \(P_{n}^{* \mathrm{~m}}(\mathrm{xv}[\mathrm{i}-1])\) are stored in \(\mathrm{plg}[\mathrm{i}+\mathrm{nvl} \times \mathrm{m}-1]\) for \(\mathrm{i}=1, \cdots, \mathrm{nv} ; \mathrm{m}=0, \cdots, \mathrm{n}\).
(b) When \(m=0, \cdots, n\) for a fixed \(n\), it is better to use this function than to use 2.12.1 \(\left\{\begin{array}{l}\text { ASL_dileg1 } \\ \text { ASL_rileg1 }\end{array}\right\}\).
(c) If two integers \(n_{1}\) and \(n_{2}\) satisfy \(n_{1}, n_{2} \geq m\) for a non-negative integer \(m\), the following integration relation is satisfied.
\[
\int_{-1}^{1} P_{n_{1}}^{* m}(x) P_{n_{2}}^{* m}(x) d x=\frac{\delta_{n 1, n 2}}{\left(1+\delta_{0, m}\right) \pi}
\]

If the normalized spherical harmonic functions \(P_{n}^{* m}(\cos \theta) \cos (m \phi)(m=0, \cdots, n)\) and \(P_{n}^{* m}(\cos \theta) \sin (m \phi)\) (\(m=1, \cdots, n\)) are obtained for \(n=1,2, \cdots\), then these functions consist the orthonormal basis for surface integration on a unit spherical surface \(\int_{-\pi \leq \phi \leq \pi ; 0 \leq \theta \leq \pi} \sin \theta d \theta d \phi\).
(d) The following relation holds:
\[
\frac{2 n+1}{4 \pi} P_{n}\left(x y+\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)} \cos \phi\right)=\sum_{m=0}^{n} P_{n}^{* m}(x) P_{n}^{* m}(y) \cos (m \phi)(-1 \leq x \leq 1,-1 \leq y \leq 1) .
\]

\section*{(7) Example}
(a) Problem

Obtain spherical harmonic functional values \(P_{n}^{* m}\left(x_{i}\right)(m=0, \cdots, n)\) for \(x_{1}=0.57735026919\) and \(x_{2}=-0.57735026919\) of the degree \(n=10\).
(b) Input data
\(\mathrm{nv}=2, \mathrm{nvl}=2\), array xv and \(\mathrm{n}=10\).
(c) Main program
```

* C interface example for ASL_winplg */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int nv,n,nvl,ierr,i;
double xv[2], *plg, *work;
printf( " *** ASL_winplg ***\n" );
nv=2;n=10,nvl=2;
printf( "\n ( ** Input **\n\n" );
plg = ( double * )malloc(sizeof(double)*nvl*(n+1));
if( plg == NULL )
printf( "no enough memory for array plg\n");
return -1;
}
Work = ( double *) malloc(sizeof(double)*(3*nv+n+1));
if( work == NULL )
printf( "no enough memory for array work\n")
return -1;
}
printf( "\tn = %6d\n" , n );
printf( "\tnv = %6d\n" , nv);
printf( "\tnvl = %6d\n" , nvl);
xv[0]=0.57735026919;xv[1]=-0.57735026919;

```
```

printf( "\txv = %8.3g",xv[0]);printf( "\t % %8.3g",xv[1]);
ierr = ASL_winplg( nv, xv, n, plg, nvl, work );
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\t value[0] value[1]\n\n" );
for(i=0; i<n+1; i++)
printf( "\n\t" );
printf( "%6d",i);
printf( "%8.3g",plg[nvl*i]);
printf( "\t , ");
printf( "%8.3g",plg[nvl*i+1]);
}
printf( "\n" );
free(plg);
free(work);
return 0;
(d) Output results
*** ASL_winplg ***
** Input **
$\begin{array}{llr}\mathrm{n} & = & 10 \\ \mathrm{nv} & = & 2 \\ \mathrm{nvl} & = & 2\end{array}$
$\mathrm{xv}=0.577 \quad-0.577$
** Output **
ierr $=\quad 0$
value[0] value[1]
$\begin{array}{ll}0 & -0.346 \\ 1 & 0.0767\end{array}$
-0. 346
$-0.0767$
$\begin{array}{lr}2.504 & 0.504\end{array}$ $\begin{array}{ll}0.0616 & -0.0616 \\ -0.493 & -0.493\end{array}$ $5-0.493-0.493$ $-0.358 \quad 0.358$ $\begin{array}{lr}0.24 & 0.24 \\ 0.635 & -0.635\end{array}$ $\begin{array}{ll}0.5877 & 0.587 \\ 0.32 & -0.32\end{array}$ $\begin{array}{ll}0.32 & -0.32 \\ 0.101\end{array}$
0.101

```
\}

\subsection*{2.15.4 ASL_wixsla, ASL_vixsla}

Langevin Function

\section*{(1) Function}

For \(x=X_{i}\), calculates the value of the Langevin function
\[
L(x)=\operatorname{coth}(x)-\frac{1}{x}
\]
(2) Usage

Double precision:
ierr = ASL_wixsla (nv, xi, xo);

Single precision:
ierr = ASL_vixsla (nv, xi, xo);
(3) Arguments and Return Value
\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular} \begin{tabular}{l}
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l|l|l|l|}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & \begin{tabular}{l}
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & \\
\hline 1 & nv & I & 1 & Input & number of input data \\
\hline 2 & xi & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & nv & Input & \(X_{i}\) \\
\hline 3 & xo & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & nv & Output & \(L\left(X_{i}\right)\) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n v \geq 1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) If \(L(x)\) is calculated directly according to its definition, precision will be bad at \(x \simeq 0\). Therefore, this function should be used.

\section*{(7) Example}
(a) Problem

Obtain \(L(x)\) for \(x=0.0,0.1, \cdots, 0.9\).
(b) Main program
/* C interface example for ASL_wixsla */
/* R9.0 UPDD 03/02/05 N.Y. CINT-SRC-02-0002 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int \(_{\{ }\)main()
double *xt
double *xo;
int nv;
int ierr;
nv=10;
\(x t=(\) double *)malloc ((size_t) (sizeof(double) * nv));
xt=(double *) mall
if \((\mathrm{xt}==\mathrm{NULL})\)
printf("no enough memory for array \(x t \backslash n\) ");
return -1
\}
xo=(double *)malloc \(((\) size_t) (sizeof (double) \(*\) nv)); if (xo == NULL)
printf("no enough memory for array xo\n"); return -1 ;
\}
printf(" \(\quad * * *\) ASL_Wixsla \(* * * \backslash \mathrm{n} ")\);
printf("\n ** Input **\n\n");
for (i=0;i<nv;i++)
xt[i]=i;
\(x t[i]=x t[i] / n v\);
printf("\t \(x t=\% 8.3 g \backslash n ", x t[i])\);
ierr \(=\) ASL_wixsla(nv,xt, xo);
printf("\n ** Output **\n\n");
printf("\tierr = \%6d\n", ierr);
printf("\n\tValue of xsla(x) \n\n") ;
for (i=0; i<nv;i++)
printf("\t xo \(=\% 8.3 \mathrm{~g} \backslash \mathrm{n}\) ", \(\mathrm{xo}[\mathrm{i}]\));
free (xt) ;
free(xo);
return 0;
\}
(c) Output results
\begin{tabular}{|c|c|c|}
\hline & Input & \\
\hline & \(=\) & 0 \\
\hline xt & \(=\) & 0.1 \\
\hline xt & = & 0.2 \\
\hline xt & \(=\) & 0.3 \\
\hline xt & = & 0.4 \\
\hline xt & = & 0.5 \\
\hline xt & \(=\) & 0.6 \\
\hline xt & = & 0.7 \\
\hline xt & = & 0.8 \\
\hline xt & \(=\) & 0.9 \\
\hline & Output & t ** \\
\hline ierr & & 0 \\
\hline Value & e of x & xsla(x) \\
\hline xo & = & 0 \\
\hline xo & 0 & 0.0333 \\
\hline xo & 0 & 0.0665 \\
\hline xo & 0 & 0.0994 \\
\hline xo & \(=\) & 0.132 \\
\hline xo & = & 0.164 \\
\hline xo & = & 0.195 \\
\hline xo & = & 0.226 \\
\hline xo & = & 0.256 \\
\hline xo & = & 0.285 \\
\hline
\end{tabular}

\subsection*{2.15.5 ASL_wixzta, ASL_vixzta}

\section*{Hurwitz Zeta Function}
(1) Function

For \(a>0\) ands \(=X_{i} \geq 0\), obtain the value of Hurwitz zeta function subtracted by \((s-1)^{-1}\)
\[
\zeta(s, a)-(s-1)^{-1}=\frac{1}{\Gamma(s)}\left(\int_{1}^{\infty} \frac{e^{-a t}}{1-e^{-t}} t^{s-1} d t+\int_{0}^{1}\left(\frac{e^{-a t}}{1-e^{-t}}-\frac{1}{t}\right) t^{s-1} d t+(s-1)^{-1}\right)-(s-1)^{-1}
\]
where the right-hand side is an example of the analytical continuation of
\[
\sum_{n=0}^{\infty}(n+a)^{-s}-(s-1)^{-1}
\]
\((\Re(s)>1)\) to the region \(\Re(s)>0\).
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_wixzta }(\mathrm{nv}, \mathrm{x}, \mathrm{a}, \mathrm{y}) ;
\]

Single precision:
\[
\text { ierr }=\text { ASL_vixzta }(\mathrm{nv}, \mathrm{x}, \mathrm{a}, \mathrm{y})
\]
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
ouble precision rea \\
ngle precision real
\end{tabular} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & nv & I & 1 & Input & Number of inputs \\
\hline 2 & x & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Input & Value of variable \(s\) \\
\hline 3 & a & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & 1 & Input & Parameter \(a\) \\
\hline 4 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nv & Output & Value of Hurwitz zeta function \(\zeta(s, a)-1 /(s-\) 1) \\
\hline 5 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(a>0.0\)
(b) \(x[i-1] \geq 0.0\)
(c) \(\mathrm{nv}>0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & \begin{tabular}{l}
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) \(\zeta(s, a)\) can be continued analytically to a rational function of the complex argument \(s\), and has only pole \(s=1\). This function does not calculates values of this function itself, but it calculates values of this function subtracted by the function \(1 /(s-1)\). Therefore, when \(\mathrm{x}[\mathrm{i}-1]=1\), \(-\mathrm{y}[\mathrm{i}-1]\) equals di-gamma-function \(\psi(a)\).
(b) Poly-gamma-function can be given as the values \(y[i-1]\) for \(x[i-1]=2,3, \cdots\) multiplied by a certain constant.
(7) Example
(a) Problem

Evaluate \(\zeta(x, a)-(x-1)^{-1}\) for \(x=0.5 \mathrm{i}(\mathrm{i}=1, \cdots, 10)\) and \(a=1\).
(b) Main program
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include <asl.h>
int main()
int nv,i,ierr;
double *x,*y,a;
nv=10;
x=(double * )malloc((size_t)( sizeof(double)* nv ));
if( x == NULL )
printf( "no enough memory for array x\n" );
return -1;
y=(double * )malloc((size_t)( sizeof(double)* nv ));
if( y == NULL )
{
printf( "no enough memory for array y\n" );
return -1;
}
for ( i=0 ; i<nv ; i++ )
x[i]=i+1;
}
printf( "\n\t *** ASL_wixzta \n\n" );
printf( "\n\t *** input a \n\n");
printf( "\n%13.8g\n " ,a);
ierr=ASL_wixzta(nv, x, a, y);
printf( "\n\t *** output \n\n" );
printf( "\n\tierr = %6d\n", ierr');
printf( "\n\t x y \n\n" );
for ( i=0 ; i<nv ; i++ )
printf( "\n%13.8g,%13.8g\n ",x[i],y[i]);
}
free(x);
free(y);
return 0;
}

```
(c) Output results
```

*** ASL_Wixzta
*** input a

```
```

        1
    *** output
ierr = 0
x y
0.5, 0.53964549
1, 0.57721566
1.5, 0.61237535
2, 0.64493407
2.5, 0.67482059
3, 0.7020569
3.5, 0.72673387
4, 0.7489899
4.5, 0.76899323
5, 0.78692776

```

\subsection*{2.15.6 ASL_dixeps, ASL_rixeps}

\section*{Zeta Function of the Positive Definite Quadratic Form \(x^{2}+a y^{2}\)}

\section*{(1) Function}

For \(s>-1\), obtain an analytical continuation of the zeta function subtracted by the function to cancel its pole for a positive quadratic form \(x^{2}+a y^{2}\)
\[
f(s ; a) \equiv \sum_{(m, n) \in Z^{2},(m, n) \neq(0,0)}\left(m^{2}+a n^{2}\right)^{-s}-\frac{\pi^{s} a^{-s / 2}}{\Gamma(s)(s-1)}(s>1)
\]
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_dixeps }(\mathrm{s}, \mathrm{a}, \& y)
\]

Single precision:
\[
\text { ierr }=\text { ASL_rixeps } \quad(\mathrm{s}, \mathrm{a}, \& y) ;
\]
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R :Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & S & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Value of \(s\) \\
\hline 2 & a & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Coefficient \(a\) of the form \\
\hline 3 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Value of zeta function \(f(s ; a)\) (See Note (a)) \\
\hline 4 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{s}>-1\)
(b) \(\mathrm{a}>0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) The zeta function for positive quadratic form \(x^{2}+a y^{2}\) is a rational function which has only single pole at the point \(s=1\). This function does not calculates values of this function itself, but it calculates values of this function subtracted by the function \(\frac{\pi^{s} a^{-s / 2}}{\Gamma(s)(s-1)}\).
(b) All integer pairs \((m, n)\) without \(m=n=0\).
(7) Example
(a) Problem

Obtain value of zeta-function of the form \(x^{2}+a y^{2}\) for \(s=3.0, a=1.0\) and check this value by another method using Hurwitz zeta function.
(b) Input data
\(\mathrm{s}=3.0\) and \(\mathrm{a}=1.0\).
(c) Main program
```

/* \#include < interface example for ASL_dixeps */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int ierr;
double s,a,f1,f2,y,z,z1,z2,z3,pai3,f1s;
pai3=31.006276680299820175476315067101/4.0;
f1s=0.25*0.25*0.25;
printf( " *** ASL_dixeps ***\n" );
printf(a=1.0;f1=0.25;f2=0.75;
printf( "\n ** Input **\n\n" );
printf( "\n\ts= %8.3g",s );
printf( "\n\ta= %8.3g\n",a );
ierr = ASL_dixeps(s,a,\&y);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\ty= %8.3g\n",y );
printf( "\n ** Test values **\n\n" );
z=y+pai3;
ierr = ASL_dixzta(s, a, \&z1);
if( ierr > 0)
printf( "\n\t dixzta_ierr = %6d\n", ierr );
}
ierr = ASL_dixzta(s,f1, \&z2);
if( ierr > 0 )
printf( "\n\t dixzta_ierr = %6d\n", ierr );
}err = ASL_dixzta(s,f2, \&z3);
if( ierr > 0)
printf( "\n\t dixzta_ierr = %6d\n", ierr );
}
z2=(z2 - z3)*f1s;
z1=z1*z2/f1,
printf( "\n\ttest1= %8.3g\n",z );
printf( "\n\ttest2= %8.3g\n",z1);
printf( "\n\tdist = %8.3g\n",z1-z);
return 0;
}

```
(d) Output results
```

*** ASL_dixeps ***
** Input **
s=
** Output **
ierr = 0
y= -3.09
** Test values **
test1= 4.66
test2= 4.66
dist = -2.66e-15

```

\section*{Chapter 3}

\section*{SORTING AND RANKING}

\subsection*{3.1 INTRODUCTION}

This chapter describes the functions for sorting, ranking, and merging data. This library provides functions having the following operations.
(1) Sorting a list of data
(2) Sorting a list of pairwise data
(3) Ranking of a list of data
(4) Top-N extraction
(5) Merging two sorted lists of data
(6) Merging two sorted lists of pairwise data

\subsection*{3.1.1 Algorithms Used}

\subsection*{3.1.1.1 Sorting}

The algorithms for sorting in ascending order are below. The algorithms for sorting in descending order, which differ only in terms of the relative magnitudes, are similar.
(1) Shell sort
(1) Set the spacing \(h\).
(2) Take all subsequences of spacing \(h\) from the data sequence.
(3) Compare adjacent pairs within each subsequence to arrange them in ascending order. If they are in the reverse order, exchange their positions and confirm again the relative order with the preceding data. If they are again in the reverse order, exchange the positions and work back toward the beginning.
(4) Decrease the spacing \(h\) and repeat steps (2) and (3). When the processing for \(h=1\) ends, sorting is completed.
(2) Heap sort
(1) Organize the assigned data into a heap tree (well-ordered binary tree in which parents have value greater than or equal to those of children).
(2) Exchange the root and the data at the very end of the tree.
(3) Let the portion excluding the very last data be A.
(4) Consider A to be a new tree, and organize this into a heap tree again.
(5) Repeat steps (2) to (4). When the remaining data is only the root, sorting is completed.
(3) Quick sort
(1) Count the number of data values within the sort interval.
(2) Do the following depending on the number of data values.
- if the number of data values is less than or equal to one: Do nothing.
- if the number of data values is 2 :
if they are in ascending order, exchange their positions.
- if the number of data values is greater than or equal to three:
(1) Select one pivot value from within the sort interval.
(2) Divide the data within the interval into two intervals consisting of values greater than the pivot value and values less than the pivot value.
(3) Repeat steps (1) and (2). When the number of data values in all data intervals is less than or equal to two, sorting is completed.
(4) Merge sort
(1) Count the number of data values within the sort interval.
(2) Do the following depending on the number of data values.
- If the number of data values is one:

Do nothing.
- If the number of data values is two :
if they are in ascending order, exchange their positions.
- If the number of data values is greater than or equal to three:
(1) Divide the data within the interval in half into the top half and bottom half.
(2) Recursively merge sort the top half. Recursively merge sort the bottom half.
(3) Merge the sorted top half and bottom half.

\subsection*{3.1.1.2 Ranking of a list of data}

Given \(n\) data values, this function returns the ascending rank number corresponding to each data value and the number of data values having the same rank.

\subsection*{3.1.1.3 Top-N extraction}

Given \(n\) data values \(a_{i}(i=1,2, \cdots, n)\), this function obtains the first \(m\) data values \(a_{j}\left(j=j_{1}, j_{2}, \cdots, j_{m}\right)(m<n)\) of the data sequence consisting of the original data values rearranged in descending or ascending order.

\subsection*{3.1.1.4 Merging two sorted lists of data}

This function merges two data sequences \(a_{i}(i=1,2, \cdots, n)\) and \(b_{j} \quad(j=1,2, \cdots, m)\), which had each been sorted into ascending order, to obtain the data sequence \(c_{k} \quad(k=1,2, \cdots, \ell)\), where, \(c_{k}\) satisfies the following relationship.
\[
c_{1} \leq c_{2} \leq \cdots \leq c_{\ell}
\]

\subsection*{3.1.1.5 Merging two sorted list of pairwise data}

This function merges the set of data \(\left(a_{i}, b_{i}\right) \quad(i=1,2, \cdots, n)\), which had been sorted into ascending order of \(a_{i}\), and the set of data \(\left(c_{j}, d_{j}\right) \quad(j=1,2, \cdots, m)\), which had been sorted into ascending order of \(c_{j}\), to obtain the set of data \(\left(e_{k}, f_{k}\right) \quad(k=1,2, \cdots, \ell)\), where, \(e_{k}\) satisfies the following relationship.
\[
e_{1} \leq e_{2} \leq \cdots \leq e_{\ell}
\]

If a second order sort was specified, the function determines \(k=1,2, \cdots, \ell\) so that \(f_{k} \leq f_{k+1}\) for any \(k\) for which \(e_{k}=e_{k+1}\) is satisfied.

\subsection*{3.1.2 Reference Bibliography}
(1) Niklaus Wirth, "ALGORITHMS + DATA STRUCTURES \(=\) PROGRAMS", Prentice-Hall Inc. (1976).
(2) Hiroto Namihira, "Sorting and Searching", CQ Publishing Co. Ltd.
(3) Yoshiyuki Kondo,"Algorithms and Data Structures", Softbank Publishing Inc.

\subsection*{3.2 SORTING}

\subsection*{3.2.1 ASL_dssta1, ASL_rssta1}

\section*{Sorting a List of Data}
(1) Function

Given \(n\) data values \(a_{i_{k}}(k=1,2, \cdots, n)\), the ASL_dssta1 or ASL_rssta1 function obtain the data sequence \(a_{j_{k}}(k=1,2, \cdots, n)\) consisting of the original data values \(a_{i}\) rearranged in ascending or descending order. Here, \(a_{j}\) satisfies the following relationship.

For ascending order : \(a_{j_{1}} \leq a_{j_{2}} \leq \cdots \leq a_{j_{n}}\)

For descending order : \(a_{j_{1}} \geq a_{j_{2}} \geq \cdots \geq a_{j_{n}}\)
(2) Usage

Double precision:
ierr \(=\) ASL_dssta1 (a,n,isw,wk,iwk);
Single precision:
ierr \(=\) ASL_rssta1 (a,n,isw,wk,iwk);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & a & (\(\mathrm{D} *\) & n & Input & Data to be sorted \(a_{i}\) \\
\hline & & R* \(\}\) & & Output & Sorted data \(a_{j}\) \\
\hline 2 & n & I & 1 & Input & Size of array a \\
\hline 3 & isw & I & 1 & Input & Sort method selection switch (See Note (a)) \\
\hline 4 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size: \\
n \(\quad(\) When isw \(=4,-4)\) \\
1 (Otherwise)
\end{tabular} \\
\hline 5 & iwk & I* & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size:
\[
\begin{array}{ll}
2 \times \mathrm{n} & (\text { When isw }=3,-3) \\
1 & \text { (Otherwise) }
\end{array}
\]
\end{tabular} \\
\hline 6 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{n} \geq 1\)
(b) isw \(=1,2,3,4,-1,-2,-3,-4\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3100 & Restriction (b) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) The sort methods to be selected by isw are as follows.
\begin{tabular}{rlrl}
isw & Sort Method & isw & Sort Method \\
\hline 1 & Shell sort (ascending order) & -1 & Shell sort (descending order) \\
2 & Heap sort (ascending order) & -2 & Heap sort (descending order) \\
3 & Quick sort (ascending order) & -3 & Quick sort (descending order) \\
4 & Merge sort (ascending order) & -4 & Merge sort (descending order)
\end{tabular}

The user should select an appropriate sort method according to the properties of the input data. The features of each sort method are shown below.
- Shell sort

The average of the amount of calculation is on the order of \(0\left(n^{1.5}\right)\). A fast, stable sort is performed for any kind of data. Sorting is faster if part of the data sequence has been sorted.
Retention of the ordinal relationships among data having the same value is not guaranteed between before and after sorting.
No work area is necessary.
- Heap sort

Although the amount of calculation is on the order of \(O(n \log n)\), the constant term portion is large. The sort time does not change much according to the properties of the input data.
Retention of the ordinal relationships among data having the same value is not guaranteed between before and after sorting.
No work area is necessary.
- Quick sort

Although the average of the amount of calculation is on the order of \(O(n \log n)\), this is an extremely inefficient sort for data having certain types of regularities such as data that has been partially sorted to begin with. This is the fastest sort method for random data.
Retention of the ordinal relationships among data having the same value is not guaranteed between before and after sorting.
- Merge sort

Although the amount of calculation is on the order of \(O(n \log n)\), the constant term portion is large.
The sort time does not change much according to the properties of the input data.
The ordinal relationships before sorting among data having the same value is retained after sorting.

\section*{(7) Example}
(a) Problem

Sort the following data in ascending order by using a shell sort.
\(\mathrm{a}[0]=5.0\)
\(\mathrm{a}[1]=4.0\)
\(\mathrm{a}[2]=9.0\)
\[
\begin{aligned}
\mathrm{a}[3] & =6.0 \\
\mathrm{a}[4] & =2.0 \\
\mathrm{a}[5] & =5.0
\end{aligned}
\]
(b) Input data

Array a, \(\mathrm{n}=6\) and isw \(=1\).
(c) Main program
```

/* C interface example for ASL_dssta1 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *a,*wk;
int n,isw,*iwk,ierr;
int i;
FILE *fp;
fp = fopen( "dssta1.dat", "r" );
if( fp == NULL )
{
printf( "file open error\n" );
return -1;
}
isw=1;
n=6;
printf( " *** ASL_dssta1 ***\n" );
printf( "\n ** Input **\n\n" );
printf( "\tn=%3d\n\n", n );
a = ( double * )malloc((size_t)( sizeof(double) * n ));
if( a == NULL )
printf( "no enough memory for array a\n" );
}
wk = ( double * )malloc((size_t)( sizeof(double) * n ));
if( wk == NULL )
printf( "no enough memory for array wk\n" );
}
iwk = ( int * )malloc((size_t)( sizeof(int) * (2*n) ));
if( iwk == NULL )
printf( "no enough memory for array iwk\n" );
return -1;
}
printf( "\tArray a" );
for( i=0 ; i<n ; i++ )
fscanf( fp, "%lf", \&a[i] );
printf( "%8.3g", a[i] );
}
printf( "\n" );
fclose( fp );
ierr = ASL_dssta1(a, n, isw, wk, iwk);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n\n", ierr );
printf( "\tArray a" );
for( i=0 ; i<n ; i++ )
printf( "%8.3g", a[i] );
}
printf( "\n" );
free( a );
free( wk);
free( iwk );
return 0;
}

```
(d) Output results
```

*** ASL_dssta1 ***
** Input **
$\mathrm{n}=6$
$\begin{array}{llllllll}\text { Array a } & 5 & 4 & 9 & 6 & 2 & 5\end{array}$
** Output **
ierr $=0$
$\begin{array}{llllllll}\text { Array a } & 2 & 4 & 5 & 5 & 6 & 9\end{array}$

```

\subsection*{3.2.2 ASL_dssta2, ASL_rssta2}

Sorting a List of Pairwise Data
(1) Function

Given two sets of n data values \(a_{i_{k}}(k=1,2, \cdots, n), b_{i_{k}}(k=1,2, \cdots, n)\), this function obtains the data sequence \(a_{j_{k}}(k=1,2, \cdots, n)\) consisting of the original \(a_{i}\) data values rearranged in ascending or ascending order and the data sequence \(b_{j_{k}}(k=1,2, \cdots, n)\) corresponding to it.
Here, \(a_{j}\) satisfies the following relationship.
\[
\text { For ascending order : } a_{j_{1}} \leq a_{j_{2}} \leq \cdots \leq a_{j_{n}}
\]

For descending order : \(a_{j_{1}} \geq a_{j_{2}} \geq \cdots \geq a_{j_{n}}\)

If a second order sort is specified, the function determines \(j=j_{1}, j_{2}, \cdots, j_{n}\) so that the following relationship is satisfied for any k for which \(a_{j_{k}}=a_{j_{k+1}}\) is satisfied.

For ascending order : \(b_{j_{k}} \leq b_{j_{k+1}}\)

For descending order: \(b_{j_{k}} \geq b_{j_{k+1}}\)
(2) Usage

Double precision:
ierr \(=\) ASL_dssta2 (a,n,b,isw1,isw2,wk,iwk);
Single precision:
```

ierr = ASL_rssta2 (a,n,b,isw1,isw2,wk,iwk);

```

\section*{(3) Arguments and Return Value}
\begin{tabular}{ll}
\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular} & \begin{tabular}{l}
Z:Double precision complex \\
C:Single precision complex
\end{tabular}
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{a} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} * \\
\mathrm{R} *
\end{array}\right\}
\]} & \multirow[t]{2}{*}{n} & Input & Data to be sorted \(a_{i}\) \\
\hline & & & & Output & Sorted data \(a_{j}\) \\
\hline 2 & n & I & 1 & Input & Size of array a \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{b} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} * \\
\mathrm{R} *
\end{array}\right\}
\]} & \multirow[t]{2}{*}{n} & Input & Data \(b_{i}\) corresponding to \(a_{i}\) \\
\hline & & & & Output & Data \(b_{j}\) corresponding to sorted \(a_{j}\) \\
\hline 4 & isw1 & I & 1 & Input & Sort method selection switch (See Note (a)) \\
\hline 5 & isw2 & I & 1 & Input & \begin{tabular}{l}
Second order sort switch \\
isw2=0: Do not perform second order sort \\
isw2=1 : Perform second order sort
\end{tabular} \\
\hline 6 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & See Contents & Work & \begin{tabular}{l}
Work area \\
Size:
\[
\begin{array}{ll}
2 \times \mathrm{n} & (\text { When isw1 }=4,-4) \\
1 & \text { (Otherwise) } \\
\hline
\end{array}
\]
\end{tabular} \\
\hline 7 & iwk & I* & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size:
\[
\begin{array}{ll}
2 \times \mathrm{n} & (\text { When isw1 }=3,-3) \\
1 & \text { (Otherwise) } \\
\hline
\end{array}
\]
\end{tabular} \\
\hline 8 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n \geq 1\)
(b) isw1 \(=1,2,3,4,-1,-2,-3,-4\)
(c) isw2=0 or 1
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing } \\
\hline 3100 & Restriction (b) was not satisfied. & \\
\hline 3200 & Restriction (c) was not satisfied. & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) The sort methods to be selected by isw1 are as follows.
\begin{tabular}{rlrl}
isw1 & Sort Method & isw1 & Sort Method \\
\hline 1 & Shell sort (ascending order) & -1 & Shell sort (descending order) \\
2 & Heap sort (ascending order) & -2 & Heap sort (descending order) \\
3 & Quick sort (ascending order) & -3 & Quick sort (descending order) \\
4 & Merge sort (ascending order) & -4 & Merge sort (descending order)
\end{tabular}

The user should select an appropriate sort method according to the properties of the input data. The features of each sort method are shown below.
- Shell sort

The average of the amount of calculation is on the order of \(O\left(n^{1.5}\right)\). A fast, stable sort is performed for any kind of data. Sorting is faster if part of the data sequence has been sorted.
It is not guaranteed that ordinal relations among plural values of the second set having the same value of the first set keep unchanged between before and after sorting.
No work area is necessary.
- Heap sort

Although the amount of calculation is on the order of \(O(n \log n)\), the constant term portion is large.
The sort time does not change much according to the properties of the input data.
It is not guaranteed that ordinal relations among plural values of the second set having the same value of the first set keep unchanged between before and after sorting.
No work area is necessary.
- Quick sort

Although the average of the amount of calculation is on the order of \(O(n \log n)\), this is an extremely inefficient sort for data having certain types of regularities such as data that has been partially sorted to begin with. This is the fastest sort method for random data.
It is not guaranteed that ordinal relations among plural values of the second set having the same value of the first set keep unchanged between before and after sorting.
- Merge sort

Although the amount of calculation is on the order of \(O(n \log n)\), the constant term portion is large. The sort time does not change much according to the properties of the input data.
The ordinal relationships before sorting among data having the same value is retained after sorting.
(7) Example
(a) Problem

Sort the following data for a in ascending order by using a shell sort and rearrange the corresponding data for b according to the sorted data for a . Also perform a second order sort.
\(\mathrm{a}[0]=5.0, \mathrm{~b}[0]=3.0\)
\(\mathrm{a}[1]=4.0, \mathrm{~b}[1]=4.0\)
\(\mathrm{a}[2]=9.0, \mathrm{~b}[2]=2.0\)
\(\mathrm{a}[3]=6.0, \mathrm{~b}[3]=3.0\)
\(\mathrm{a}[4]=2.0, \mathrm{~b}[4]=8.0\)
\(\mathrm{a}[5]=5.0, \mathrm{~b}[5]=1.0\)
(b) Input data

Arrays a and \(\mathrm{b}, \mathrm{n}=6\),isw \(1=1\) and isw \(2=1\).
(c) Main program
/* C interface example for ASL_dssta2 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
```

int main()
double *a,*b,*wk
int n,isw1,isw2,*iwk,ierr;
int i;
FILE *fp;
fp = fopen( "dssta2.dat", "r" );
if ( $f p==$ NULL $)$
\{
printf( "file open error $\backslash n$ " );
return -1;
\}
isw1=1;
isw2=1;
$\mathrm{n}=6$;
printf( " $\quad * * *$ ASL_dssta2 $\left.* * * \backslash \mathrm{n}^{\prime \prime}\right)$;
printf ( "\n $* *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
printf ( "\tn=\%3d\n\n", $n$ );
$\mathrm{a}=($ double $*)$ malloc $(($ size_t) $(\operatorname{sizeof}($ double $) * \mathrm{n}))$;
$\operatorname{if}_{\{ }(\mathrm{a}==$ NULL $)$
printf( "no enough memory for array $a \backslash n$ " );
return -1 ;
\}
$\mathrm{b}=($ double * $)$ malloc ((size_t) ( sizeof (double) * n ));
if ( $b==$ NULL $)$
printf( "no enough memory for array b\n" );
\}
$\mathrm{wk}=($ double $*)$ malloc ( (size_t) ( sizeof(double) $*(2 * \mathrm{n})$ ) ;
if ( wk == NULL )
printf( "no enough memory for array wk\n" );
return -1 ;
\}
iwk $=($ int $*)$ malloc ( (size_t) ( sizeof (int) $*(2 * n))$ );
if ( iwk == NULL )
printf( "no enough memory for array iwk\n" );
return -1;
$\}$
for ( i=0 ; i<n ; i++ )
fscanf( fp, "\%lf \%lf", \&a[i], \&b[i] );
\}
printf( "\t <Array a> <Array b>\n");
for ( i=0 ; i<n ; i++ )
printf( "\t\%8.3g $\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", \mathrm{a}[\mathrm{i}], \mathrm{b}[\mathrm{i}])$;
\}
fclose( fp );
ierr $=$ ASL_dssta2(a, $\mathrm{n}, \mathrm{b}$, isw1, isw2, wk, iwk);
printf( "\n ** Output **\n\n" );
printf( "\tierr $=\% 6 d \backslash n \backslash n "$, ierr );
printf( "\t <Array a> <Array b>\n" )
for ( i=0 ; i<n ; i++
printf( "\t\%8.3g \%8.3g\n", a[i], b[i] );
\}
free ( a ) ;
free ( b );
free (wk ).
free( wk iwk);
return 0 ;

```
\}
(d) Output results
*** ASL_dssta2 ***
** Input **
\(\mathrm{n}=6\)

** Output **
ierr \(=0\)
<Array a>
\begin{tabular}{cc}
ray a> & <Array b> \\
2 & 8 \\
4 & 4 \\
5 & 1 \\
5 & 3 \\
6 & 3 \\
9 & 2
\end{tabular}

\subsection*{3.3 RANKING}

\subsection*{3.3.1 ASL_dsstra, ASL_rsstra \\ Ranking of a List of Data}

\section*{(1) Function}

Given \(n\) data values, the ASL_dsstra or ASL_rsstra returns the ascending rank number corresponding to each data value and the number of data values having the same rank (See Note (a)). The precise specifications are as follows. Given \(n\) data values \(a_{i}(i=1,2, \cdots, n)\), if the data sequence consisting of the original data values rearranged in ascending order are given by the following \(a_{j}\left(j=j_{1}, j_{2}, \cdots, j_{m_{1}+\cdots+m_{k}}\right)\) :
\[
\begin{aligned}
a_{j_{1}}= & a_{j_{2}} \cdots=a_{j_{m_{1}}} \leq \\
& a_{j_{m_{1}+1}}=a_{j_{m_{1}+2}} \cdots=a_{j_{m_{1}+m_{2}}} \leq \\
& \cdots \leq \\
& a_{j_{m_{1}+\cdots+m_{k-1}+1}}=a_{j_{m_{1}+\cdots+m_{k-1}+2}} \cdots=a_{j_{m_{1}+\cdots+m_{k}}}
\end{aligned}
\]
where \(\left(m_{1}+\cdots+m_{k}=n\right)\), the function obtains the ranking data \(r_{j}(j=1,2, \cdots, n)\) defined by \(r_{j_{m_{1}+\cdots+m_{l-1}+1}}=\) \(r_{j_{m_{1}+\cdots+m_{l-1}+2}}=\cdots=r_{j_{m_{1}+\cdots+m_{l}}}=l\). Here, \(m_{l}\) is the number of identical rankings for the \(l\)-th smallest data value. To obtain the number of identical rankings, the data is stored in \(c_{j}(j=1,2, \cdots, n)\) so that \(c_{j_{m_{1}+\cdots+m_{l-1}+1}}=c_{j_{m_{1}+\cdots+m_{l-1}+2}}=\cdots=c_{j_{m_{1}+\cdots+m_{l}}}=m_{l}\) is satisfied.
(2) Usage

Double precision:
ierr \(=\) ASL_dsstra (a, n, ir, ic, isw, iw);
Single precision:
ierr \(=\) ASL_rsstra (a, n, ir, ic, isw, iw);

\section*{(3) Arguments and Return Value}
D:Double precision real
R:Single precision real \begin{tabular}{l}
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(\mathrm{n} \geq 2\)
(b) isw \(=0\) or isw \(=1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3010 & Restriction (b) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) \(\mathrm{a}[\mathrm{i}]\) is the ir \([\mathrm{i}]\)-th smallest data value among all of the data, and when isw \(=0\), the number of ir \([\mathrm{i}]\)-th smallest data values is ic[i].
(b) Since ic is not used when isw=1, a dummy array can be set for the argument.
(7) Example
(a) ProblemRank the following data.
\(\mathrm{a}[0]=1.2\)
\(\mathrm{a}[1]=3.2\)
\(\mathrm{a}[2]=4.2\)
\(\mathrm{a}[3]=5.2\)
\(\mathrm{a}[4]=7.2\)
\(\mathrm{a}[5]=1.2\)
\(\mathrm{a}[6]=9.2\)
\(\mathrm{a}[7]=1.2\)
\(\mathrm{a}[8]=1.2\)
\(\mathrm{a}[9]=7.2\)
\(\mathrm{a}[10]=6.2\)
\(\mathrm{a}[11]=8.2\)
\(\mathrm{a}[12]=7.2\)
\(\mathrm{a}[13]=5.2\)
\(\mathrm{a}[14]=0.2\)
\(\mathrm{a}[15]=2.2\)
(b) Input data

Array a, \(\mathrm{n}=16\) and isw \(=0\).
(c) Main program
```

/* C interface example for ASL_dsstra */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *a;
int n,*ir,*ic,isw,*iw,ierr;
int i;
fp = fopen( "dsstra.dat", "r" );
if( fp == NULL )
printf( "file open error\n" );
return -1;
}
n=16;
isw=0;
printf( " *** ASL_dsstra ***\n" );
printf( "\n ** Input **\n\n" );
printf( "\tn=%3d\n\n", n );
a =( double * )malloc((size_t)( sizeof(double) * n ));
if( a == NULL )
printf( "no enough memory for array a\n" );
return -1;
}
ir = ( int * )malloc((size_t)( sizeof(int) * n ));
if( ir == NULL )
printf( "no enough memory for array ir\n" );
}
ic = ( int * )malloc((size_t)( sizeof(int) * n ));
if( ic == NULL )
printf( "no enough memory for array ic\n" );
}
iw = ( int * )malloc((size_t)( sizeof(int) * n ));
if( iw == NULL )
printf( "no enough memory for array iw\n" );
return -1;
}
printf( "\tArray a\n" );
for( i=0 ; i<n ; i++ )
fscanf( fp, "%lf", \&a[i] );
printf( "\t%8.3g\n", a[i] );

```
```

        }
        fclose( fp );
        ierr = ASL_dsstra(a, n, ir, ic, isw, iw);
        printf( "\n ** Output **\n\n" );
        printf( "\tierr = %6d\n\n", ierr );
        printf( "\tArray a ir ic\n" );
        for( i=0 ; i<n ; i++ )
            printf( "\t%8.3g %4d %4d\n", a[i],ir[i],ic[i] );
        }
        free( a );
        ree( ir )
        free( ic );
        free( iw );
        return 0;
    }

```
(d) Output results

\subsection*{3.3.2 ASL_dsstpt, ASL_rsstpt}

\section*{Top-N Extraction}

\section*{(1) Function}

Given \(n\) data values \(a_{i}(i=1,2, \cdots, n)\), the ASL_dsstpt or ASL_rsstpt obtains the first \(m\) data values \(a_{j}\left(j=j_{1}, j_{2}, \cdots, j_{m}\right)(m<n)\) of the data sequence consisting of the original data values rearranged in descending or ascending order.
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_dsstpt }(\mathrm{a}, \mathrm{n}, \& m, \& \mathrm{p}, \text { isw }) ;
\]

Single precision: ierr \(=\) ASL_rsstpt \((\mathrm{a}, \mathrm{n}, \& \mathrm{~m}, \& \mathrm{p}, \mathrm{isw}) ;\)
(3) Arguments and Return Value
\(\left.\begin{array}{l}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} \\ \begin{array}{|c|c|c|c|c|l|}\text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array} \\ \hline \text { No. } \begin{array}{l}\text { I: }\left\{\begin{array}{l}\text { Argument and as for 32bit Integer } \\ \text { Return Value }\end{array}\right. \\ \hline 1\end{array} \quad \text { Type } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(\operatorname{isw} \in\{0,1\}\)
(b) \(\mathrm{m} \leq 0, \mathrm{n} \leq 0, \mathrm{n}<\mathrm{m}\)

\section*{(5) Error indicator (Return Value)}
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & Processing \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) The desired result is to return the elements of array a sorted in descending (isw=1) or ascending (isw=0) order in the first m elements of array a. For \(m\), enter the number of elements you want to be sorted, and the number of elements that were actually sorted is output in m. Here, (number of elements you want to be sorted) \(\leq\) (number of elements that were actually sorted).
(b) The processing of this function proceeds by sequentially dividing the input data based on a certain threshold value into a set of data greater than the threshold value and a set less than the threshold value. When the size of the set obtained in this way approaches the number of elements you want to be sorted, that set is rearranged. The initial threshold value is calculated as follows based on the data assigned for parameter p .
\[
\text { Initial value of threshold value }=\max \times p+\min \times(1.0-p)
\]

Here, max represents the maximum value of the data contained in array a and min represents the minimum value of the data contained in array a. Therefore, the initial value of the threshold value is defined as the point where the max and min are internally divided into \((1.0-\mathrm{p}): \mathrm{p}\). When the characteristics of the data to be sorted are known, the processing speed can be increased by assigning suitable data for p , that is, the initial value of the threshold value. For example, if \(n\) uniformly random numbers from the interval \((0,1)\) are given and you want to get the smallest \(m\) data values among them, the optimum threshold value estimate is \(\frac{m}{n}\). Therefore, you should specify p as follows.
\[
\mathrm{p}=\frac{m}{n}
\]

The number of times the threshold value actually was updated is output in p as a \(\left\{\begin{array}{c}\text { double-precision } \\ \text { single-precision }\end{array}\right\}\) real number. If this value is small, it indicates that the initial value of the threshold value was suitable.

\section*{(7) Example}
(a) Problem

Obtain the five smallest data values when the following data has been sorted in ascending order.
\(\mathrm{a}[0]=5.0\)
\(\mathrm{a}[1]=39.0\)
\(\mathrm{a}[2]=15.0\)
\(\mathrm{a}[3]=8.0\)
\(\mathrm{a}[4]=23.0\)
\(\mathrm{a}[5]=45.0\)
\(\mathrm{a}[6]=61.0\)
\(\mathrm{a}[7]=25.0\)
\(\mathrm{a}[8]=33.0\)
\(\mathrm{a}[9]=45.0\)
\(\mathrm{a}[10]=39.0\)
\(\mathrm{a}[11]=10.0\)
\(\mathrm{a}[12]=21.0\)
\(\mathrm{a}[13]=5.0\)
\(\mathrm{a}[14]=23.0\)
\(\mathrm{a}[15]=38.0\)
\(\mathrm{a}[16]=41.0\)
\(\mathrm{a}[17]=55.0\)
\(\mathrm{a}[18]=61.0\)
\(\mathrm{a}[19]=39.0\)
(b) Input data

Array \(\mathrm{a}, \mathrm{n}=20, \mathrm{~m}=5, \mathrm{p}=0.3\) and isw \(=0\).
(c) Main program
```

/* C interface example for ASL_dsstpt */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *a,p;
int n,m,isw,ierr;
intil; *f
isw=0;
fp = fopen( "dsstpt.dat", "r" );
if( fp == NULL )
{
printf( "file open error\n" );
return -1;
}
printf( " *** ASL_dsstpt ***\n" );
printf( "\n ** Input **\n\n" );
fscanf( fp, "%d", \&n );
fscanf( fp, "%d", \&m );
fscanf( fp, "%lf", \&p );
fscanf( fp, "%d", \&isw );
printf( "\tn =%3d\n", n )
printf( "\tm =%3d\n", m );
printf( "\tisw=%3d\n", isw );
printf( "\tp =%5.3g\n\n", p );
a = ( double *)malloc((size_t)( sizeof(double) * n ));
if( a == NULL )
printf( "no enough memory for array a\n" );
return -1;
}
printf( "\tArray a" );
for( i=0 ; i<n ; i++ )
fscanf( fp, "%lf", \&a[i] );
if( i%5 == 0)
printf( "\n\t" );
}
printf( "%8.3g", a[i] );
}
printf( "\n" );
fclose( fp );
ierr = ASL_dsstpt(a, n, \&m, \&p, isw);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n\n", ierr );
printf( "\tm=%3d\n\n", m );
printf( "\tArray a" );
for( i=0 ; i<m ; i++ )
printf( "%8.3g", a[i] );

```
```

        }
        printf( "\n" );
        free( a );
        return 0;
        }
    ```
(d) Output results
*** ASL_dsstpt ***
** Input **
\(\mathrm{n}=20\)
isw \(=0\)
\(\mathrm{p}=0.3\)
\begin{tabular}{rrrrr}
Array a & & & \\
5 & 39 & 15 & 8 & 23 \\
45 & 61 & 25 & 33 & 45 \\
39 & 10 & 21 & 5 & 23 \\
38 & 41 & 55 & 61 & 39
\end{tabular}
** Output **
ierr \(=0\)
\(m=6\)
\(\begin{array}{llllllll}\text { Array a } & 5 & 5 & 8 & 10 & 15 & 21\end{array}\)

\subsection*{3.4 MERGING}

\subsection*{3.4.1 ASL_dsmgon, ASL_rsmgon \\ Merging Two Sorted Lists of Data}

\section*{(1) Function}

The ASL_dsmgon or ASL_rsmgon merges two data sequences \(a_{i}(i=1,2, \cdots, n)\) and \(b_{j}(j=1,2, \cdots, m)\), which had each been sorted into ascending order, to obtain the data sequence \(c_{k} \quad(k=1,2, \cdots, \ell)\), where, \(c_{k}\) satisfies the following relationship.
\[
c_{1} \leq c_{2} \leq \cdots \leq c_{\ell}
\]
(2) Usage

Double precision:
ierr \(=\) ASL_dsmgon (\(\mathrm{a}, \mathrm{nn}, \mathrm{b}, \mathrm{nm}, \mathrm{c}, \mathrm{nl})\);
Single precision:
\[
\text { ierr }=\text { ASL_rsmgon }(\mathrm{a}, \mathrm{nn}, \mathrm{~b}, \mathrm{~nm}, \mathrm{c}, \mathrm{nl}) ;
\]
(3) Arguments and Return Value
\begin{tabular}{ll}
\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular} & \begin{tabular}{l}
Z:Double precision complex \\
C:Single precision complex
\end{tabular}
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|l|l|}
\hline No. & \begin{tabular}{l}
Argument and \\
Return Value
\end{tabular} & Type & \multicolumn{1}{|c|}{ Size } & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & a & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\)
\end{tabular} nn Input \begin{tabular}{l}
Data to be merged \(a_{i}\). \\
\hline 2
\end{tabular}
(4) Restrictions
(a) \(\mathrm{nn} \geq 1\)
(b) \(\mathrm{nm} \geq 1\)
(c) \(1 \leq \mathrm{nl} \leq \mathrm{nn}+\mathrm{nm}\)
(d) \(\mathrm{a}[0] \leq \mathrm{a}[1] \leq \cdots \leq \mathrm{a}[\mathrm{nn}-1]\)
(e) \(\mathrm{b}[0] \leq \mathrm{b}[1] \leq \cdots \leq \mathrm{b}[\mathrm{nm}-1]\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & Restriction (c) was not satisfied. & \begin{tabular}{l}
\(\mathrm{nl}=\mathrm{nn}+\mathrm{nm}\) is set and processing is \\
performed.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3100 & Restriction (b) was not satisfied. & \\
\hline 3200 & Restriction (d) was not satisfied. & \multirow{3}{*}{} \\
\hline 3300 & Restriction (e) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) When \(\mathrm{nl}<\mathrm{nn}+\mathrm{nm}\), only the nl smallest values of the merged result are output.

\section*{(7) Example}
(a) Problem

Divide the sequence \(a_{i}(i=1,2, \cdots, n)\), which contains \(n\) data stored in array x, into partial sequence of the length \(n_{s}\), and iterate merging of the partial sequences to sort the whole of the sequence \(a_{i}\). And, when files on an external memory device, instead of the arrays in the program below, are used, this problem becomes an external sort problem of \(n\) data \(a_{i}\).
(b) Input data

Array x and length \(n\).
(c) Main program
/* C interface example for ASL_dsmgon */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
\#include <math.h>
int main()
double *a,*b,*c,*x
int \(n\),ierr
int i,j,k; \(i s t a, i s t b, i s t c, i s i z e a, i s i z e b, i s i z e c, i s i z e, i s i z e 2 ;\)
int iloop,icrest,ia,ib,ic,na;
FILE *fp;
na \(=100\);
\(\mathrm{fp}=\) fopen("dsmgon.dat", "r");
if (fp == NULL)
\{
 printf("file open error\n");
 \}
 printf(" \(\quad * * *\) ASL_dsmgon \(* * * \backslash \mathrm{n} ")\);
 printf ("\n \(* *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
 fscanf(fp, "\%d", \&n);
 \(\mathrm{x}=(\) double \(*)\) malloc \(((\) size_t) (sizeof (double) * na));
 if (\(\mathrm{x}==\) NULL \()\)
 printf("no enough memory for array \(x \backslash n\) ");
 return -1 ;
 \}
 \(a=(\) double \(*)\) malloc ((size_t) (sizeof(double) * na));
 if \((\mathrm{a}==\) NULL \()\)
 printf("no enough memory for array a\n");
 return -1 ;
 \}
 \(\mathrm{b}=(\mathrm{double} *)\) malloc ((size_t)(sizeof(double) * na));
```

if( b == NULL )
printf( "no enough memory for array b\n" );
return -1;
}
c = ( double * )malloc((size_t)( sizeof(double) * na ));
if( c == NULL )
printf( "no enough memory for array c\n" );
return -1;
}
fclose( fp );
printf( "\tInput data\n\n" );
printf("\tn = %6d\n\n", n );
for( i=0 ; i<n ; i++ )
x[i] = (double)((int) (sin((double)i+1.0)*100.0));
printf( "\t%%.3g\n", x[i] );
}
for( i=0 ; i<n ; i++ )
c[i] = x[i];
}
iloop = 1;
while(1<<iloop<n){
iloop++;
}
for(i=0;i<iloop;i++){
isize = 1<<i
isize2 = 1<<'(i+1);
ia = 0;
ic = 0;
for(j=0;j<n/isize2;j++){
for(k=0;k<isize;k++){
ia++
a[ia-1] = c[ic+k];
}
ic += isize;
for(k=0;k<isize;k++){
ib++
b[ib-1] = c[ic+k];
}
ic += isize;
}
icrest = n - ic; ( icicrest) \&\& (icrest<=isize)){
for(k=0;k<icrest;k++){
ia++;
a[ia-1] = c[ic+k];
}
}
f( (isize<icrest) \&\& (icrest<isize*2) ){
for(k=0;k<isize;k++){
a[ia-1] = c[ic+k];
}
ic += isize;
for(k=0;k<icrest-isize;k++){
ib++;
b[ib-1] = c[ic+k];
}
for(j=0;j<n/isize2;j++){
ista = j*isize;
istb = j*isize;
istc = j*isize2;
isizea = isize;
isizeb = isize;
isizec = isizea + isizeb;
ierr = ASL_dsmgon
(a+ista,isizea,b+istb,isizeb,c+istc,isizec);
}
(0<icrest) \&\& (icrest<=isize) ){
ista = n/isize2*isize;
istc = n/isize2*isize2;
isizea = icrest;
for(k=0;k<isizea;k++){
}
}
if( (isize<icrest) \&\& (icrest<isize*2) ){
ista = n/isize2*isize
istb = n/isize2*isize;

```
```

                    istc = n/isize2*isize2;
                    isizea = isize;
                    isizeb = icrest-isize;
                    isizec = isizea+isizeb;
                    ierr =
                ASL_dsmgon(a+ista,isizea,b+istb,isizeb,c+istc,isizec);
                }
        }
        printf( "\n ** Output **\n\n" );
        printf( "\tierr = %6d\n\n", ierr );
        printf( "\tOutput data\n\n" )
        for(i=0;i<n;i++){
        printf('"\t%8.3g\n", c[i] );
        }
        free( x );
        free( a )
        free( b );
        free( c );
        return 0;
    (d) Output results
*** ASL_dsmgon ***
** Input **

```
 \}

Input data
n \(=17\)
84
90
14
-75
-95
-27
65
98
41
-54
-99
-53
42
99
65
-28
-96
** Output **
ierr \(=0\)
Output data
-99
-96
-95
-75
-54
-53
-28
-27
14
41
42
65
65
84
90
98
99

\subsection*{3.4.2 ASL_dsmgpa, ASL_rsmgpa}

\section*{Merging Two Sorted Lists of Pairwise Data}

\section*{(1) Function}

The ASL_dsmgpa or ASL_rsmgpa merges the set of data \(\left(a_{i}, b_{i}\right)(i=1,2, \cdots, n)\), which had been sorted into ascending order of \(a_{i}\), and the set of data \(\left(c_{j}, d_{j}\right) \quad(j=1,2, \cdots, m)\), which had been sorted into ascending order of \(c_{j}\), to obtain the set of data \(\left(e_{k}, f_{k}\right) \quad(k=1,2, \cdots, \ell)\), where, \(e_{k}\) satisfies the following relationship.
\[
e_{1} \leq e_{2} \leq \cdots \leq e_{\ell}
\]

If a second order sort was specified, the function determines \(k=1,2, \cdots, \ell\) so that
\[
f_{k} \leq f_{k+1}
\]
for any \(k\) for which \(e_{k}=e_{k+1}\) is satisfied.
(2) Usage

Double precision:
```

ierr = ASL_dsmgpa (a, nn, b, c, nm, d, e, nl, f, isw);

```

Single precision: ierr \(=\) ASL_rsmgpa \((\mathrm{a}, \mathrm{nn}, \mathrm{b}, \mathrm{c}, \mathrm{nm}, \mathrm{d}, \mathrm{e}, \mathrm{nl}, \mathrm{f}, \mathrm{isw})\);

\section*{(3) Arguments and Return Value}
\begin{tabular}{ll}
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & a & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nn & Input & Data to be merged \(a_{i}\). \\
\hline 2 & nn & I & 1 & Input & Size of array a. \\
\hline 3 & b & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nn & Input & Data \(b_{i}\) corresponding to \(a_{i}\). \\
\hline 4 & c & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nm & Input & Data to be merged \(c_{j}\) \\
\hline 5 & nm & I & 1 & Input & Size of array c. \\
\hline 6 & d & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nm & Input & Data \(d_{j}\) corresponding to \(c_{j}\). \\
\hline 7 & e & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nl & Output & Merged data \(e_{k}\). \\
\hline 8 & nl & I & 1 & Input & Size of array e. \\
\hline 9 & f & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nl & Output & Data \(f_{k}\) corresponding to \(e_{k}\). \\
\hline 10 & isw & I & 1 & Input & \begin{tabular}{l}
Second order sort switch \\
isw \(=0\) : Do not perform second order sort \\
isw=1: Perform second order sort
\end{tabular} \\
\hline 11 & ierr & 1 & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n n \geq 1\)
(b) \(\mathrm{nm} \geq 1\)
(c) \(1 \leq \mathrm{nl} \leq \mathrm{nn}+\mathrm{nm}\)
(d) \(\mathrm{a}[0] \leq \mathrm{a}[1] \leq \cdots \leq \mathrm{a}[\mathrm{nn}-1]\)
(e) \(c[0] \leq \mathrm{c}[1] \leq \cdots \leq \mathrm{c}[\mathrm{nm}-1]\)
(f) isw \(=0\) or isw \(=1\)
(g) When isw \(=1\) is specified, \(\mathrm{b}[i] \leq \mathrm{b}[i+1]\) must be satisfied for any \(i\) for which \(\mathrm{a}[i]=\mathrm{a}[i+1]\) is satisfied.
(h) When isw \(=1\) is specified, \(\mathrm{d}[i] \leq \mathrm{d}[i+1]\) must be satisfied for any \(i\) for which \(\mathrm{c}[i]=\mathrm{c}[i+1]\) is satisfied.

\section*{(5) Error indicator (Return Value)}
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & Restriction (c) was not satisfied. & \(\mathrm{nl}=\mathrm{nn}+\mathrm{nm}\) is set and processing is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 3100 & Restriction (b) was not satisfied. & \\
\hline 3200 & Restriction (d) was not satisfied. & \\
\hline 3300 & Restriction (e) was not satisfied. & \\
\hline 3400 & Restriction (f) was not satisfied. & \\
\hline 3500 & Restriction (g) was not satisfied. & \\
\hline 3600 & Restriction (h) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) When \(\mathrm{nl}<\mathrm{nn}+\mathrm{nm}\), only the nl smallest values of the merged result are output.

\section*{(7) Example}
(a) Problem

Divide the sequence \(\left(a_{i}, b_{i}\right)(i=1,2, \cdots, n)\), which contains a couple of \(n\) data stored in arrays x and y , into partial sequences of the length \(n_{s}\), and iterate merging of the partial sequences to sort the whole of the sequence \(\left(a_{i}, b_{i}\right)\). And, when files on an external memory device, instead of the arrays in the program below, are used, this problem becomes an external sort problem of a couple of \(n\) data \(a_{i}\) and \(b_{i}\).
(b) Input data

Array x, length \(n\) and isw=1.
(c) Main program
/* C interface example for ASL_dsmgpa */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
\#include <math.h>
int main()
```

double *a,*a2,*b,*b2,*c,*c2,*x,*y;
int n,isw,ierr;
int i,j,k;
int ista,istb,istc,isizea,isizeb,isizec,isize,isize2;
int iloop,icrest,ia,ib,ic,na;
FILE *fp;
na $=100$;
isw = 1;
fp = fopen( "dsmgpa.dat", "r" );
if ( $\mathrm{fp}==$ NULL $)$
\{
printf( "file open error\n" );
return -1;
\}
printf( " *** ASL_dsmgpa $* * * \backslash \mathrm{n} ")$;
printf( "\n $\quad * *$ Input $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
fscanf( fp, "\%d", \&n );
$\mathrm{x}=($ double $*)$ malloc ( (size_t) ( sizeof(double) * na ));
if $(x==$ NULL $)$
printf( "no enough memory for array $x \backslash n "$ );
return -1;
\}

```
```

y = ( double * )malloc((size_t)( sizeof(double) * na ));
if( y == NULL )
printf( "no enough memory for array y\n" );
return -1;
}
a = ( double * )malloc((size_t)( sizeof(double) * na ));
if( a == NULL )
printf( "no enough memory for array a\n" );
return -1;
}
a2 = ( double * )malloc((size_t)( sizeof(double) * na ));
if( a2 == NULL )
printf( "no enough memory for array a2\n" );
return -1;
}
b = ( double *)malloc((size_t)( sizeof(double) * na ));
if( b == NULL )
printf( "no enough memory for array b\n" );
}
b2 = ( double * )malloc((size_t)( sizeof(double) * na ));
if( b2 == NULL )
printf( "no enough memory for array b2\n" );
}
c=( double *)malloc((size_t)( sizeof(double) * na ));
if( c == NULL *)
printf( "no enough memory for array c\n" )
return -1;
}
c2 = ( double *)malloc((size_t)( sizeof(double) * na ));
if( c2 == NULL )
printf( "no enough memory for array c2\n" );
return -1;
}
fclose( fp );
printf( "\tInput data\n\n" );
printf( "\t n = %6d\n\n", n );
printf( "\t isw = %6d\n\n", isw );
for( i=0 ; i<n ; i++ )
x[i] = (double)((int)(sin((double)i+1.0)*100.0));
y[i] = (double)((int)(sin((double)i+1.0+0.5*M_PI)*100.0));
printf( "\t%8.3g %8.3g\n", x[i], y[i] );
}
{for( i=0 ; i<n ; i++ )
c[i] = x[i];
}
iloop = 1;
while(1<<iloop<n){
iloop++;
}
for(i=0;i<iloop;i++){
isize = 1<<i
isize2 = 1<<'(i+1);
ia = 0;
ib = 0;
for(j=0;j<n/isize2;j++){
for(k=0;k<isize;k++){
ia++;
a[ia-1] = c[ic+k];
a2[ia-1] = c2[ic+k];
}
ic += isize;
for(k=0;k<isize;k++){
ib++;
b[ib-1] = c[ic+k];
b2[ib-1] = c2[ic+k];

```
```

            }
            ic += isize;
        }
        icrest = n - ic;
        if( (0<icrest) && (icrest<=isize)){
            for(k=0;k<icrest;k++){
                        ia++;
                    a[ia-1] = c[ic+k];
                    a2[ia-1] = c2[ic+k];
        }
    }
    f( (isize<icrest) && (icrest<isize*2) ){
    for(k=0;k<isize;k++){
            a[ia-1] = c[ic+k];
            a2[ia-1] = c2[ic+k];
            }
            ic += isize;
            for(k=0;k<icrest-isize;k++){
                    ib++;
            b[ib-1] = c[ic+k]
            b2[ib-1] = c2[ic+k];
        }
        }
        for(j=0;j<n/isize2;j++){
            ista = j*isize;
            istb = j*isize
            istc = j*isize2;
            isizea = isize;
            isizeb = isize;
            isizec = isizea + isizeb;
            ierr = ASL_dsmgpa
            (a+ista,isizea,a2+ista,b+istb,isizeb,b2+istb,
        }
    if( (0<icrest) && (icrest<=isize) ){
            ista = n/isize2*isize;
            istc = n/isize2*isize2;
            isizea = icrest;
            for(k=0;k<isizea;k++){
                    c[istc+k] =a[ista+k];
                    c2[istc+k] = a2[ista+k];
            }
        }
        f( (isize<icrest) && (icrest<isize*2) ) {
            ista = n/isize2*isize;
            istb = n/isize2*isize;
            istc = n/isize2*isize2;
            isizea = isize;
            isizeb = icrest-isize;
            isizec = isizea+isizeb;
            ierr = ASL_dsmgpa
            (a+ista,isizea,a2+ista,b+istb,isizeb,b2+istb,
            c+istc,isizec,c2+istc,isw);
        }
    }
    printf( "\n ** Output **\n\n" );
    printf( "\tierr = %6d\n\n", ierr );
    printf( "\tOutput data\n\n" );
    for(i=0;i<n;i++){
        printf( "\t%8.3g %8.3g\n", c[i], c2[i] );
        }
        free( x );
        free( y );
    free( a );
    free( a2 );
    free( b );
    free( b2);
    free( c ); ;
    return 0;
    }
    ```
(d) Output results
```

*** ASL_dsmgpa ***
** Input **

```
Input data
 \(\mathrm{n}=17\)
 isw = 1
 \(84 \quad 54\)
 \(\begin{array}{ll}90 & -41 \\ 14 & -98\end{array}\)
\begin{tabular}{rr}
-75 & -65 \\
-95 & 28 \\
-27 & 96 \\
65 & 75 \\
98 & -14 \\
41 & -91 \\
-54 & -83 \\
-99 & 0 \\
-53 & 84 \\
42 & 90 \\
99 & 13 \\
65 & -75 \\
-28 & -95 \\
-96 & -27 \\
& \\
** Output & \(* *\) \\
ierr \(=\) & \\
& \\
Output data & \\
-99 & \\
-96 & -27 \\
-95 & 28 \\
-75 & -65 \\
-54 & -83 \\
-53 & 84 \\
-28 & -95 \\
-27 & 96 \\
14 & -98 \\
41 & -91 \\
42 & 90 \\
65 & -75 \\
65 & 75 \\
84 & 54 \\
90 & -41 \\
98 & -14 \\
99 & 13
\end{tabular}

\section*{Chapter 4}

\section*{ROOTS OF EQUATIONS}

\subsection*{4.1 INTRODUCTION}

This chapter describes functions that obtain the roots of an algebraic equation, a nonlinear equation or a set of simultaneous nonlinear equations.
This library provides the following two types of functions for obtaining the roots of the algebraic equations.
(1) Function that takes real-type input of real coefficients and provides real-type output of complex roots
(2) Function that takes complex-type input of complex coefficients and provides complex-type output of complex roots

In addition, this library provides the following three types of functions for obtaining the roots of nonlinear equations.
(1) Function that obtains one root when given an initial value
(2) Function that obtains one root when given an interval
(3) Function that obtains all roots within an interval

Among these functions, the ones that obtain a single root of a real function by assigning an initial value have been designed with particularly careful consideration so that a root is obtained even if the initial value is far from the root or if the function oscillates in the interval between the root and initial value.
When obtaining the roots of a set of simultaneous nonlinear equations, a Jacobian matrix calculation function may or may not be given. Functions for both of these cases have global convergence, and careful consideration has been given so that these problems can be solved even without scaling each of the simultaneous equations.

\subsection*{4.1.1 Notes}
(1) Although for real coefficient algebraic equations, roots near zero tend to be obtained first, this is not the case for complex coefficient algebraic equations.
(2) If there are multiple roots and the multiplicity of the roots is \(n\), then for an algebraic equation, the precision of the solution at that root is on the order of \(\sqrt[n]{\text { Unit for determining error, }}\), and for a nonlinear equation for which the solution is obtained by assigning an initial value, the precision is on the order of \(n \times(\) required precision).
(3) Except when obtaining a single root within an interval, convergence is determined for a nonlinear equation as follows. If \(e_{r}\) is the required precision, \(\varepsilon\) is the unit for determining error, and \(\Delta x\) is the amount \(x\) is updated, then convergence is considered to have occurred when the following relationships hold:
\[
\left(|\Delta x|<e_{r} \times \max (1,|x|) \text { and } \quad|f(x)|<e_{r}+64 \times \varepsilon \times|x|\right) \text { or } f(x)=0
\]

That is, convergence is considered to have occurred when the function value is zero or when both the function value and the movement of the solution are close to zero. Therefore, even if the problem is ill conditioned, convergence is correctly determined, and if there are multiple roots, precision can be maintained although the amount of calculations increases.
However, this decision criterion tends to be more severe than a method that decides based on only the movement of the solution, based on only the function value or based on either the movement of the solution or the function value.
(4) Convergence is considered to have occurred for a set of simultaneous nonlinear equations when the following relationships hold for all \(i \quad(i=1, \cdots\), number of order \()\) :
\[
\left(\left|\Delta x_{i}\right|<e_{r} \times \max \left(1,\left|x_{i}\right|\right) \text { and }\|f(x)\|_{\infty}<e_{r}+64 \times \varepsilon \times\left|x_{i}\right|\right) \text { or } f_{i}(x)=0
\]
(5) Note the following within a program that uses any of these ASL functions to obtain roots of a nonlinear equation or a set of simultaneous nonlinear equations.
(a) The functions f and df are created as follows.

Example:
Nonlinear equation (Let f and df have the same names in the all functions)
/* C interface example for ASL_dlnrds */
\#include <stdio.h>
\#include <math.h>
\#include <asl.h>
- Function f
double FORTRAN f (double *x)
\{
2
return \(\mathrm{f}(* \mathrm{x})\);
\}
- Function df
```

double FORTRAN df (double *x)
{
l
return f}\mp@subsup{\textrm{f}}{}{\prime}(*\textrm{x})
}

```
- Main function
```

int main()
{
l
ierr = ASL_dlnrds(卉, df , \cdots);
l
return 0;
}

```

Example:
Set of simultaneous nonlinear equations (Let sub and subd have the same names in the all functions)
/* C interface example for ASL_dlsrds */
\#include <stdio.h>
\#include <math.h>
\#include <asl.h>
- Function sub
```

    void FORTRAN sub (double \(* x\), int \(* \mathrm{n}\), double \(* \mathrm{f}\) )
    ```
 \{
 2
 \(\mathrm{f}[0]=f_{1}(\mathrm{x}[0], \cdots, \mathrm{x}[* \mathrm{n}-1]) ;\)
 2
 \(\mathrm{f}[\mathrm{n}-1]=f_{* \mathrm{n}}(\mathrm{x}[0], \cdots, \mathrm{x}[* \mathrm{n}-]) ;\)
 2
 return 0 ;
 \}
- Function subd
void FORTRAN subd (double \(* \mathrm{x}\), int \(* \mathrm{n}\), double \(* \mathrm{a}\))
\{
2
\(\mathrm{a}[0]=\partial f_{1} / \partial x_{1} ;\)
2
\(\mathrm{a}[(* \mathrm{n}) *(* \mathrm{n})-1]=\partial f_{* \mathrm{n}} / \partial x_{* \mathrm{n}} ;\)
2
```

    return 0;
    }

```
- Main function
```

int main()
{
2
ierr = ASL_dlsrds(sub, subd},\cdots)
l
return 0;
}

```
(6) If several errors occur at the same time, only the value of the most severe error will be output for the error indicator, and information about the other errors may be lost.

\subsection*{4.1.2 Algorithms Used}

\subsection*{4.1.2 1 Roots of a real coefficient algebraic equation}

\subsection*{4.1.2.1.1 When the degree \(n=2\)}

The roots are obtained as follows by using the formula for the roots of a quadratic equation.
For the quadratic equation:
\[
x^{2}+a_{1} x+a_{0}=0
\]
if we let:
\[
\begin{aligned}
r & =-\frac{a_{1}}{2} \\
D & =r^{2}-a_{0}
\end{aligned}
\]
then the roots are obtained as shown below for the following three cases.
(1) \(|D| \leq \varepsilon\)

The roots are:
\[
x=r, r
\]
(2) If \(D<0\)

The roots are:
\[
x=(r, \pm \sqrt{-D})
\]
(3) If \(D>0\)

The roots are:
\[
x=\alpha, \frac{a_{0}}{\alpha}
\]
where,
\[
\alpha= \begin{cases}r+\sqrt{D} & (r \geq 0) \\ r-\sqrt{D} & (r<0)\end{cases}
\]

\subsection*{4.1.2.1.2 When the degree \(n=3\)}

The roots are obtained as follows by using the Cardano method.
For the cubic equation:
\[
x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
\]
consider the following cases.
(1) If \(\left|a_{0}\right| \leq \varepsilon \quad\left(x\left(x^{2}+a_{2} x+a_{1}\right)=0\right)\)

By using the method described in (a) to solve the quadratic equation:
\[
x^{2}+a_{2} x+a_{1}=0
\]
to obtain the roots \(\alpha\) and \(\beta\), the roots of the cubic equation are:
\[
x=0, \alpha, \beta
\]
(2) If \(\left|a_{2}\right| \leq \varepsilon \quad\left(x^{3}+a_{1} x+a_{0}=0\right)\)

Consider the following two cases.
(a) \(\left|a_{1}\right| \leq \varepsilon \quad\left(x^{3}+a_{0}=0\right)\)

The roots are:
\[
x=r,\left(-\frac{r}{2}, \pm \frac{\sqrt{3} r}{2}\right)
\]
where,
\[
r= \begin{cases}-\sqrt[3]{a_{0}} & \left(a_{0} \geq 0\right) \\ \sqrt[3]{-a_{0}} & \left(a_{0}<0\right)\end{cases}
\]
(b) Otherwise

Assume \(b_{1}\) and \(b_{0}\) are as follows:
\[
\begin{aligned}
b_{1} & =\frac{a_{1}}{3} \\
b_{0} & =-\frac{a_{0}}{2}
\end{aligned}
\]
and use the method shown in subsection iii. below to solve the equation:
\[
x^{3}+3 b_{1} x-2 b_{0}=0
\]
(3) Otherwise

The cubic equation:
\[
x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
\]
can be transformed by using the variable transformation:
\[
\begin{aligned}
x & =y-Y M X \\
Y M X & =\frac{a_{2}}{3}
\end{aligned}
\]
to:
\[
y^{3}+3 b_{1} y-2 b_{0}=0
\]
where, \(b_{1}\) and \(b_{0}\) are given by:
\[
\begin{aligned}
& b_{1}=\frac{3 a_{1}-a_{2}^{2}}{9} \\
& b_{0}=\frac{\left(9 a_{1}-2 a_{2}^{2}\right) a_{2}-27 a_{0}}{54}
\end{aligned}
\]

Consider the following three cases.
(a) If \(\left|b_{0}\right| \leq \varepsilon \quad\left(y\left(y^{2}+3 b_{1}\right)=0\right)\)
i. If \(b_{1}<0\)
\(y\) and \(x\) are as follows:
\[
\begin{aligned}
y & =0, \pm \sqrt{-3 b_{1}} \\
x & =-Y M X, \pm \sqrt{-3 b_{1}}-Y M X
\end{aligned}
\]

Cancellation of significant digits that may occur in the calculation is prevented by using relationships between roots and coefficients.
ii. If \(b_{1} \geq 0\)
\(y\) and \(x\) are as follows:
\[
\begin{aligned}
y & =0,\left(0, \pm \sqrt{-3 b_{1}}\right) \\
x & =-Y M X,\left(-Y M X, \pm \sqrt{-3 b_{1}}\right)
\end{aligned}
\]
(b) If \(\left|b_{1}\right| \leq \varepsilon \quad\left(y^{3}-2 b_{0}=0\right)\)
\(y\) and \(x\) are as follows:
\[
\begin{aligned}
& y=r,\left(-\frac{r}{2}, \pm \frac{\sqrt{3} r}{2}\right) \\
& x=r-Y M X,\left(-\frac{r}{2}-Y M X, \pm \frac{\sqrt{3} r}{2}\right)
\end{aligned}
\]
where,
\[
r= \begin{cases}\sqrt[3]{2 b_{0}} & \left(b_{0} \geq 0\right) \\ -\sqrt[3]{-2 b_{0}} & \left(b_{0}<0\right)\end{cases}
\]

Cancellation of significant digits that may occur in the calculation is prevented by using relationships between roots and coefficients.
(c) Otherwise \(\quad\left(y^{3}+3 b_{1} y-2 b_{0}=0\right)\)

If we let:
\[
y=s+t
\]
we obtain the following equation:
\[
s^{3}+t^{3}-2 b_{0}+3\left(s t+b_{1}\right)(s+t)=0
\]

If we determine \(s\) and \(t\) so that the following relationships hold:
\[
\left\{\begin{aligned}
s t & =-b_{1} \\
s^{3}+t^{3} & =2 b_{0}
\end{aligned}\right.
\]
then we can use this to obtain \(y . s^{3}\) and \(t^{3}\) are the two roots of:
\[
z^{2}-2 b_{0} z-b_{1}^{3}=0
\]

If we let:
\[
\begin{aligned}
D & =b_{0}^{2}+b_{1}^{3}=D_{s}^{2} D_{d} \\
D_{s} & = \begin{cases}b_{0} & \left(\left|b_{0}\right| \geq\left|b_{1}\right|\right) \\
b_{1} & \left(\left|b_{0}\right|<\left|b_{1}\right|\right)\end{cases} \\
D_{d} & =\left\{\begin{array}{cc}
1+b_{1}\left(\frac{b_{1}}{b_{0}}\right)^{2} & \left(\left|b_{0}\right| \geq\left|b_{1}\right|\right) \\
\left(\frac{b_{0}}{b_{1}}\right)^{2}+b_{1} & \left(\left|b_{0}\right|<\left|b_{1}\right|\right)
\end{array}\right.
\end{aligned}
\]
we can obtain \(y\) and \(x\) by considering the following three cases.
i. If \(\left|D_{d}\right| \leq \varepsilon^{2} \quad\left(\left(z-b_{0}\right)^{2}=0\right)\)
\(s\) and \(t\) are as follows:
\[
\begin{aligned}
s^{3} & =t^{3}=b_{0} \\
s, t & =r,\left(-\frac{r}{2}, \pm \frac{\sqrt{3} r}{2}\right)
\end{aligned}
\]
where,
\[
r= \begin{cases}\sqrt[3]{b_{0}} & \left(b_{0} \geq 0\right) \\ -\sqrt[3]{-b_{0}} & \left(b_{0}<0\right)\end{cases}
\]

Since \(s\) and \(t\) satisfy st \(=-b_{1}, y\) and \(x\) are as follows:
\[
\begin{aligned}
& y=2 r,-r,-r \\
& x=2 r-Y M X,-r-Y M X,-r-Y M X
\end{aligned}
\]

Cancellation of significant digits that may occur in the calculation is prevented by using relationships between roots and coefficients.
ii. If \(D<0\)
\(s^{3}\) and \(t^{3}\) are as follows:
\[
\begin{aligned}
& s^{3}=\left(b_{0}, \sqrt{-D}\right) \\
& t^{3}=\left(b_{0},-\sqrt{-D}\right)
\end{aligned}
\]

Now, from the following:
\[
\left|s^{3}\right|^{2}=\left|t^{3}\right|^{2}=-b_{1}^{3}
\]
\(s\) and \(t\) are as follows:
\[
\begin{aligned}
s & =\frac{r}{2} e^{\sqrt{-1} \frac{\theta}{3}}, \frac{r}{2} e^{\sqrt{-1}\left(\pi+\frac{\theta-\pi}{3}\right)}, \frac{r}{2} e^{\sqrt{-1}\left(\frac{\theta+\pi}{3}-\pi\right)} \\
t & =\frac{r}{2} e^{-\sqrt{-1} \frac{\theta}{3}}, \frac{r}{2} e^{-\sqrt{-1}\left(\pi+\frac{\theta-\pi}{3}\right)}, \frac{r}{2} e^{-\sqrt{-1}\left(\frac{\theta+\pi}{3}-\pi\right)}
\end{aligned}
\]

Therefore, \(y\) and \(x\) are as follows:
\[
\begin{aligned}
& y=r \cos \frac{\theta}{3},-r \cos \frac{\pi-\theta}{3},-r \cos \frac{\pi+\theta}{3} \\
& x=r \cos \frac{\theta}{3}-Y M X,-r \cos \frac{\pi-\theta}{3}-Y M X,-r \cos \frac{\pi+\theta}{3}-Y M X
\end{aligned}
\]
where,
\[
\begin{aligned}
r & = \begin{cases}-2 \sqrt{b_{1}} & \left(b_{1} \geq 0\right) \\
2 \sqrt{-b_{1}} & \left(b_{1}<0\right)\end{cases} \\
\theta & = \begin{cases}\tan ^{-1} D_{\theta} & \left(b_{0} \geq 0\right) \\
\pi-\tan ^{-1} D_{\theta} & \left(b_{0}<0\right)\end{cases} \\
D_{\theta} & =\frac{|D|}{\left|b_{0}\right|}= \begin{cases}\sqrt{\left|D_{d}\right|} & \left(\left|b_{0}\right| \geq\left|b_{1}\right|\right) \\
\frac{\left|D_{s}\right| \sqrt{\left|D_{d}\right|}}{\left|b_{0}\right|} & \left(\left|b_{0}\right|<\left|b_{1}\right|\right)\end{cases}
\end{aligned}
\]

Cancellation of significant digits that may occur in the calculation is prevented by using relationships between roots and coefficients.
iii. If \(D>0\)
\(s^{3}\) and \(t^{3}\) are as follows:
\[
s^{3}=\alpha
\]
\[
t^{3}=\beta
\]
\[
\alpha= \begin{cases}b_{0}+\sqrt{D}=\left|D_{s}\right| r & \left(b_{0} \geq 0\right) \\ b_{0}-\sqrt{D}=-\left|D_{s}\right| r & \left(b_{0}<0\right)\end{cases}
\]
where,
\[
\beta=-\frac{b_{1}^{3}}{\alpha}
\]
\[
r=\frac{\left|b_{0}\right|+\sqrt{D}}{\left|D_{s}\right|}= \begin{cases}1+\sqrt{\left|D_{d}\right|} & \left(\left|b_{0}\right| \geq\left|b_{1}\right|\right) \\ \frac{\left|b_{0}\right|}{\left|D_{s}\right|}+\sqrt{\left|D_{d}\right|} & \left(\left|b_{0}\right|<\left|b_{1}\right|\right)\end{cases}
\]

Therefore, \(s\) and \(t\) are as follows:
\[
\begin{aligned}
& s=\alpha^{\prime},\left(-\frac{\alpha^{\prime}}{2}, \pm \frac{\sqrt{3} \alpha^{\prime}}{2}\right) \\
& t=\beta^{\prime},\left(-\frac{\beta^{\prime}}{2}, \pm \frac{\sqrt{3} \beta^{\prime}}{2}\right)
\end{aligned}
\]
where,
\[
\begin{aligned}
& \alpha^{\prime}= \begin{cases}\sqrt[3]{|\alpha|} & \left(b_{0} \geq 0\right) \\
-\sqrt[3]{|\alpha|} & \left(b_{0}<0\right)\end{cases} \\
& \beta^{\prime}=\left\{\begin{array}{cl}
\sqrt[3]{|\beta|} & \left(b_{0} b_{1}<0\right) \\
-\sqrt[3]{|\beta|} & \left(b_{0} b_{1} \geq 0\right)
\end{array}\right.
\end{aligned}
\]

Since \(s\) and \(t\) satisfy st \(=-b_{1}, y\) and \(x\) are as follows:
\[
\begin{aligned}
& y=u,\left(-\frac{u}{2}, \pm \frac{\sqrt{3} v}{2}\right) \\
& x=u-Y M X,\left(-\frac{u}{2}-Y M X, \pm \frac{\sqrt{3} v}{2}\right)
\end{aligned}
\]
where,
\[
u=\alpha^{\prime}+\beta^{\prime}, v=\alpha^{\prime}-\beta^{\prime}
\]

Cancellation of significant digits that may occur in the calculation is prevented by using relationships between roots and coefficients.

\subsection*{4.1.2.1.3 When the degree \(n=4\)}

The roots are obtained as follows by using the Ferrari method.
For the quartic (fourth degree) equation:
\[
x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
\]
consider the following cases.
(1) If \(\left|a_{0}\right| \leq \varepsilon \quad\left(x\left(x^{3}+a_{3} x^{2}+a_{2} x+a_{1}\right)=0\right)\)

By using the method described in (b) to solve the cubic equation:
\[
x^{3}+a_{3} x^{2}+a_{2} x+a_{1}=0
\]
to obtain the roots \(\alpha, \beta\) and \(\gamma\), the roots of the quartic equation are:
\[
x=0, \alpha, \beta, \gamma
\]
(2) If \(\left|a_{3}\right| \leq \varepsilon \quad\left(x^{4}+a_{2} x^{2}+a_{1} x+a_{0}=0\right)\)

Consider the following two cases.
(a) If \(\left|a_{1}\right| \leq \varepsilon \quad\left(x^{4}+a_{2} x^{2}+a_{0}=0\right)\)

If we let:
\[
\begin{aligned}
r & =-\frac{a_{2}}{2} \\
D & =r^{2}-a_{0}
\end{aligned}
\]
we can obtain \(x\) by considering the following three cases.
i. If \(|D| \leq \varepsilon \quad\left(\left(x^{2}-r\right)^{2}=0\right)\)
\(x\) is as follows:
\[
x= \begin{cases}\sqrt{r}, \sqrt{r},-\sqrt{r},-\sqrt{r} & (r \geq 0) \\ (0, \sqrt{-r}),(0, \sqrt{-r}),(0,-\sqrt{-r}),(0,-\sqrt{-r}) & (r<0)\end{cases}
\]
ii. If \(D<0\)
\(x^{2}\) is as follows:
\[
x^{2}=(r, \pm \sqrt{-D})
\]

Therefore, \(x\) is as follows:
\[
x=(\alpha, \pm \beta),(-\alpha, \pm \beta)
\]
where,
\[
\begin{aligned}
& \begin{cases}\alpha=\sqrt{\frac{r+N R D}{2}}, & \beta=\frac{\sqrt{-D}}{2 \alpha} \\
\beta=\sqrt{\frac{-r+N R D}{2}}, & (r>0) \\
\beta=\frac{\sqrt{-D}}{2 \beta} & (r \leq 0)\end{cases} \\
& N R D=\sqrt{r^{2}-D}= \begin{cases}|r| \sqrt{1+\frac{-D}{r^{2}}} & (|r| \geq \sqrt{-D}) \\
\sqrt{-D} \sqrt{\frac{r^{2}}{-D}+1} & (|r|<\sqrt{-D})\end{cases}
\end{aligned}
\]
iii. If \(D>0\)
\(x^{2}\) is as follows:
\[
x^{2}=\alpha, \beta
\]
where,
\[
\begin{aligned}
& \alpha= \begin{cases}r+\sqrt{D} & (r \geq 0) \\
r-\sqrt{D} & (r<0)\end{cases} \\
& \beta=\frac{a_{0}}{\alpha}
\end{aligned}
\]

Therefore, \(x\) is as follows:
\[
x= \begin{cases} \pm \sqrt{\alpha}, \pm \sqrt{\beta} & (r, \beta \geq 0) \\ \pm \sqrt{\alpha},(0, \pm \sqrt{-\beta}) & (r \geq 0, \beta \leq 0) \\ (0 \pm \sqrt{-\alpha}), \pm \sqrt{\beta} & (r<0, \beta \geq 0) \\ (0 \pm \sqrt{-\alpha}),(0 \pm \sqrt{-\beta}) & (r, \beta<0)\end{cases}
\]
(b) Otherwise

Use the method shown in subsection iii. below to solve the equation:
\[
x^{4}+a_{2} x^{2}+a_{1} x+a_{0}=0
\]
(3) Otherwise

The quartic equation:
\[
x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
\]
can be transformed by using the variable transformation:
\[
\begin{aligned}
x & =y-Y M X \\
Y M X & =\frac{a_{3}}{4}
\end{aligned}
\]
to:
\[
y^{4}+b_{2} y^{2}+b_{1} y+b_{0}=0
\]
where, \(b_{2}, b_{1}\) and \(b_{0}\) are given by:
\[
\begin{aligned}
& b_{2}=\frac{8 a_{2}-3 a_{3}^{2}}{8} \\
& b_{1}=\frac{8 a_{1}-a_{3}\left(4 a_{2}-a_{3}^{2}\right)}{8} \\
& b_{0}=\frac{256 a_{0}-a_{3}\left(64 a_{1}-a_{3}\left(16 a_{2}-3 a_{3}^{2}\right)\right)}{256}
\end{aligned}
\]

Consider the following four cases.
(a) \(b_{1}^{2} \leq \varepsilon^{2} \max \left(\left|4 b_{0} b_{2}\right|,\left|b_{2}^{3}\right|\right) \quad\left(y^{4}+b_{2} y_{2}+b_{0}=0\right)\)

If we let:
\[
\begin{aligned}
r & =-\frac{b_{2}}{2} \\
D & =r^{2}-b_{0}
\end{aligned}
\]
we can obtain \(y\) and \(x\) by considering the following three cases.
i. If \(|D| \leq \varepsilon\)
\(y\) and \(x\) are as follows:
\[
\begin{aligned}
\left(y^{2}-r\right)^{2} & =0 \\
y & = \begin{cases} \pm \sqrt{r}, \pm \sqrt{r} & (r \geq 0) \\
(0, \pm \sqrt{-r}),(0, \pm \sqrt{-r}) & (r<0)\end{cases} \\
x & = \begin{cases} \pm \sqrt{r}-Y M X, \pm \sqrt{r}-Y M X & (r \geq 0) \\
(-Y M X, \pm \sqrt{-r}),(-Y M X, \pm \sqrt{-r}) & (r<0)\end{cases}
\end{aligned}
\]
ii. If \(D<0\)
\(y\) and \(x\) are as follows:
\[
\begin{aligned}
y^{2} & =(r, \pm \sqrt{-D}) \\
y & =(\alpha, \pm \beta),(-\alpha, \pm \beta) \\
x & =(\alpha-Y M X, \pm \beta),(-\alpha-Y M X, \pm \beta)
\end{aligned}
\]
where,
\[
\begin{aligned}
& \begin{cases}\alpha=\sqrt{\frac{r+N R D}{2}}, & \beta=\frac{\sqrt{-D}}{2 \alpha} \\
\beta=\sqrt{\frac{-r+N R D}{2}}, & (r>0)\end{cases} \\
& N=\frac{\sqrt{-D}}{2 \beta}
\end{aligned} \quad(r \leq 0), ~(|r|>\sqrt{-D}) ~ \begin{array}{ll}
|r| \sqrt{1+\frac{-D}{r^{2}}} & (|r|<\sqrt{-D}) \\
\sqrt{-D} \sqrt{\frac{r^{2}}{-D}+1} & \left(\left\lvert\, r D=\sqrt{r^{2}-D}= \begin{cases} & (r)\end{cases} \right.\right.
\end{array}
\]
iii. If \(D>0\)
\(y\) and \(x\) are as follows:
\[
\begin{aligned}
y^{2} & =\alpha, \beta \\
\alpha & =\left\{\begin{aligned}
r+\sqrt{D} & (r \geq 0) \\
r-\sqrt{D} & (r<0)
\end{aligned}\right. \\
\beta & =\frac{b_{0}}{\alpha}
\end{aligned}
\]
\[
\begin{aligned}
& y= \begin{cases} \pm \sqrt{\alpha}, \pm \sqrt{\beta} & (r, \beta \geq 0) \\
(0, \pm \sqrt{-\alpha}), \pm \sqrt{\beta} & (r<0, \beta \geq 0) \\
\pm \sqrt{\alpha},(0, \pm \sqrt{-\beta}) & (r \geq 0, \beta<0) \\
(0, \pm \sqrt{-\alpha}),(0, \pm \sqrt{\beta}) & (r, \beta<0)\end{cases} \\
& x= \begin{cases} \pm \sqrt{\alpha}-Y M X, \pm \sqrt{\beta}-Y M X & (r, \beta \geq 0) \\
(-Y M X, \pm \sqrt{-\alpha}), \pm \sqrt{\beta}-Y M X & (r<0, \beta \geq 0) \\
\pm \sqrt{\alpha}-Y M X,(-Y M X, \pm \sqrt{-\beta}) & (r \geq 0, \beta<0) \\
(-Y M X, \pm \sqrt{-\alpha}),(-Y M X, \pm \sqrt{-\beta}) & (r, \beta<0)\end{cases}
\end{aligned}
\]
(b) If \(\left|b_{0}\right| \leq \varepsilon \quad\left(y\left(y^{3}+b_{2} y+b_{1}\right)=0\right)\)

By using the method described in (b) to solve the cubic equation:
\[
y^{3}+b_{2} y+b_{1}=0
\]
to obtain the roots \(\alpha, \beta\) and \(\gamma\), the roots of the quartic equation are:
\[
x=-Y M X, \alpha-Y M X, \beta-Y M X, \gamma-Y M X
\]
(c) If \(b_{1}^{2}>10^{-4}\left|b_{2}\left(b_{2}^{2}-4 b_{0}\right)\right|\)

If the quartic equation:
\[
y^{4}+b_{2} y^{2}+b_{1} y+b_{0}=0
\]
is transformed by adding \(p y^{2}+\frac{p^{2}}{4}\) to both sides, it appears as follows:
\[
\left(y^{2}+\frac{p}{2}\right)^{2}=\left(p-b_{2}\right) y^{2}-b_{1} y+\frac{p^{2}}{4}-b_{0}
\]

To express the right-hand side in the form of the square of a linear expression, the following equation should be satisfied:
\[
b_{1}^{2}-\left(p-b_{2}\right)\left(p^{2}-4 b_{0}\right)=0
\]

That is,
\[
p^{3}-b_{2} p^{2}-4 b_{0} p+\left(4 b_{2} b_{0}-b_{1}^{2}\right)=0
\]

If we solve this equation by the method described in (b) and take the real root obtained for this equation for \(p\), then since the following relationship holds:
\[
\left(y^{2}+\frac{p}{2}\right)^{2}=\left(p-b_{2}\right)\left\{y-\frac{b_{1}}{2\left(p-b_{2}\right)}\right\}^{2}
\]
by solving the quadratic equation:
\[
y^{2} \pm \sqrt{p-b_{2}} y \mp \frac{b_{1}}{2 \sqrt{p-b_{2}}}+\frac{p}{2}=0 \quad(\text { Compound same order })
\]
the solutions of the quartic equation are obtained as follows:
\[
\begin{aligned}
y & =\alpha \pm \sqrt{\beta-\gamma},-\alpha \pm \sqrt{\beta+\gamma} \\
\alpha & =\frac{\sqrt{p-b_{2}}}{2} \\
\beta & =-\frac{p+b_{2}}{4} \\
\gamma & =\frac{4 b_{1}}{\alpha}
\end{aligned}
\]

However, if \(p \simeq b_{2}\), the solution obtained by using this method is not very precise. The condition \(p \simeq b_{2}\) occurs when:
\[
\left|p-b_{2}\right|=\left|\frac{b_{1}^{2}}{p^{2}-4 b_{0}}\right| \simeq\left|\frac{b_{1}^{2}}{b_{2}^{2}-4 b_{0}}\right|<\delta\left|b_{2}\right|
\]
that is, when:
\[
b_{1}^{2}<\delta\left|b_{2}\left(b_{2}^{2}-4 b_{0}\right)\right|
\]
where, \(\delta\) is a sufficiently small positive number.
If the following condition holds:
\[
b_{1}^{2} \leq \varepsilon^{2} \max \left(\left|b_{2}^{3}\right|,\left|4 b_{0} b_{2}\right|\right)
\]
the solution of the quartic equation is obtained by ignoring \(b_{1}\) as described earlier and solving the following equation:
\[
y^{4}+b_{2} y^{2}+b_{0}=0
\]

On the other hand, if the following condition holds:
\[
10^{-4}\left|b_{2}\left(b_{2}^{2}-4 b_{0}\right)\right| \geq b_{1}^{2}>\varepsilon^{2} \max \left(\left|b_{2}^{3}\right|,\left|4 b_{0} b_{2}\right|\right)
\]
the solution of the quartic equation is obtained by using the method described in subsection D . below.
(d) Otherwise

It is known that the roots of the quartic equation:
\[
y^{4}+b_{2} y^{2}+b_{1} y+b_{0}=0
\]
can be expressed by using the square roots of the three roots \(z_{1}, z_{2}\) and \(z_{3}\) of the cubic equation:
\[
z^{3}+\frac{b_{2}}{2} z^{2}+\frac{b_{2}^{2}-4 b_{0}}{16} z-\frac{b_{1}^{2}}{64}=0
\]
(where, \(z_{1}, z_{2}\) and \(z_{3}\) are generally complex numbers) as follows:
\[
\begin{aligned}
y= & \sqrt{z_{1}}+\sqrt{z_{2}}+\sqrt{z_{3}}, \\
& \sqrt{z_{1}}-\left(\sqrt{z_{2}}+\sqrt{z_{3}}\right), \\
& -\sqrt{z_{1}}+\sqrt{z_{2}}-\sqrt{z_{3}}, \\
& -\sqrt{z_{1}}-\left(\sqrt{z_{2}}-\sqrt{z_{3}}\right)
\end{aligned}
\]

However, \(\sqrt{z}\) represents one of the two square roots \((\pm \sqrt{z})\) that \(z\) has. Although it is not known in advance which of the square roots should be selected, since the four root combinations are either \(y\), which was shown above or \(-y\), which is obtained by reversing all of the signs of the root, the root can be determined from the relationship between the roots and coefficients according to the sign of \(b_{1}\). The cubic equation is solved by using the method described in (b).

\subsection*{4.1.2.1.4 When the degree \(n>4\)}

This problem is solved by using the Hirano method, which is described below.
Assume that the given equation is as follows:
\[
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
\]

The Hirano method obtains all roots of the equation by alternately searching for a root according to iterative improvement of an approximate root and then reducing the equation. The origin is assumed as the starting value for the approximate root, and the expansion coefficients when the polynomial \(P_{n}(x)\) is expanded around
this approximate root are used to sequentially approach the true root. The root \(x=\left(x_{R}, x_{I}\right)\) obtained in this manner is used to reduce the equation, and all roots of the equation are obtained by sequentially repeating similar operations for the reduced equation.
The root \(x=\left(x_{R}, x_{I}\right)\) is determined as follows.
The convergence decision value \(\zeta\) is determined as follows.
Let the calculation of the coefficients \(c_{k}\) for \((k=n, n-1, \cdots, 0)\) have an error of \(\varepsilon\left|c_{k}\right|\) and let the calculation of \(\zeta\) have an error of up to \(\varepsilon|x|\) (where, \(x=z+\zeta\) is the value of the true root). Since \(P_{n}(z+\zeta)\) can be calculated from:
(1) Let the initial value of the approximate value \(z=\left(z_{R}, z_{I}\right)\) of root \(x\) be \(z=0\).
(2) Until the relationship \(\left|P_{n}\left(z+\zeta_{m}\right)\right| \leq \delta\) holds, replace \(z\) by \(z+\zeta_{m}\) and repeat the following calculations.
(a) Expand the polynomial \(P_{n}(x)\) centered on \(z\) as follows:
\[
P_{n}(\zeta+z)=c_{n} \zeta^{n}+c_{n-1} \zeta^{n-1}+\cdots+c_{1} \zeta+c_{0} \quad(x=\zeta+z)
\]
using synthetic division to calculate the coefficients \(c_{k}\) for (\(k=n, n-1, \cdots, 0\)).
(b) Let \(\mu=1\).
(c) Calculate \(\zeta_{k}(\mu)\) for \((k=1, \cdots, n)\) as follows:
\[
\zeta_{k}(\mu)=\left(-\mu \frac{c_{0}}{c_{k}}\right)^{1 / k} \quad \text { for } \quad(k=1, \cdots, n)
\]
and let \(\zeta_{m}\) be the one that has the smallest absolute value. Check whether the relationship \(\mid P_{n}(z+\) \(\left.\zeta_{m}\right) \left.\left|\leq\left(1-\frac{\mu}{4}\right)\right| P_{n}(z) \right\rvert\,\) holds. If not, replace \(\mu\) by \(\frac{\mu}{2}\) and repeat this calculation sequentially until the relationship holds.
(3) Assume \(z+\zeta_{m}\) is the root of the equation \(P_{n}(x)=0\).
\[
\begin{aligned}
b_{n} & =c_{n} \\
b_{k} & =b_{k+1} \zeta+c_{k} \text { for }(k=n-1, n-2, \cdots, 0) \\
P_{n}(z+\zeta) & =b_{0}
\end{aligned}
\]
the error \(\delta\) for the calculation of \(P_{n}(z+\zeta)\) can be calculated from:
\[
\begin{aligned}
d_{n}= & \varepsilon\left|c_{n}\right| \\
d_{k}= & d_{k+1}(|\zeta|+\varepsilon|x|)+\varepsilon\left(|x|\left|b_{k+1}\right|+\left|c_{k}\right|\right) \\
& \text { for }(k=n-1, n-2, \cdots, 0) \\
\delta= & d_{0}
\end{aligned}
\]

Now, in the calculation, let \(\zeta=\zeta_{m}\), and \(x\) is approximated by \(z+\zeta_{m}\).
Although the Hirano method proceeds by sequentially obtaining roots while reducing the equation, an error analysis is performed as follows during each reduction process to determine whether reduction succeeds.
(a) Reduction according to a single real root

If the equation:
\[
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
\]
is reduced as follows using the real root \(z\) :
\[
P_{n}(x)=(x-z)\left(b_{n} x^{n-1}+b_{n-1} x^{n-2}+\cdots+b_{1}\right)+b_{0}=0
\]
the coefficients are calculated as follows:
\[
\begin{aligned}
b_{n} & =a_{n} \\
b_{k} & =a_{k}+b_{k+1} z \text { for }(k=n-1, n-2, \cdots, 0)
\end{aligned}
\]

Although \(b_{0}\) originally is 0.0 , if an error of up to \(\sqrt{\varepsilon}|z|\) is permitted for \(z\) and an error of up to \(\varepsilon\left|a_{k}\right|\) is permitted for \(a_{k}\), the maximum error \(\delta_{k}\) permitted for \(b_{k}\) is expressed as follows:
\[
\begin{aligned}
\delta_{n} & =\varepsilon\left|a_{n}\right| \\
\delta_{k} & =\varepsilon\left|a_{k}\right|+\left(\delta_{k+1}+\sqrt{\varepsilon}\left|b_{k+1}\right|\right)|z| \quad \text { for } \quad(k=n-1, n-2, \cdots, 0)
\end{aligned}
\]

Therefore, when \(\left|b_{0}\right|<\delta_{0}\), reduction is assumed to have succeeded.
(b) Reduction according to complex conjugate roots

If the equation:
\[
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
\]
is reduced as follows using the complex conjugate roots \(z=\left(z_{R}, z_{I}\right)\) and \(\bar{z}=\left(z_{R},-z_{I}\right)\) :
\[
P_{n}(x)=(x-z)(x-\bar{z})\left(b_{n} x^{n-2}+b_{n-1} x^{n-3}+\cdots+b_{2}\right)+b_{1} x+b_{0}=0
\]
the coefficients are calculated as follows:
\[
\begin{aligned}
b_{n} & =a_{n} \\
b_{n-1} & =a_{n-1}+2 z_{R} b_{n} \\
b_{k} & =a_{k}+2 z_{R} b_{k+1}-\left(z_{R}^{2}+z_{I}^{2}\right) b_{k+2} \text { for }(k=n-1, n-3, \cdots, 0)
\end{aligned}
\]

Although \(b_{0}\) and \(b_{1}\) originally are 0.0 , if an error of up to \(\sqrt{\varepsilon}\left|z_{R}\right|\) is permitted for \(z_{R}\), an error of up to \(\sqrt{\varepsilon}\left|z_{I}\right|\) is permitted for \(z_{I}\), and an error of up to \(\varepsilon\left|a_{k}\right|\) is permitted for \(a_{k}\), the maximum error \(\delta_{k}\) permitted for \(b_{k}\) is expressed as follows:
\[
\begin{aligned}
& \delta_{n}= \varepsilon\left|a_{n}\right| \\
& \delta_{n-1}= \varepsilon\left|a_{n-1}\right|+\delta_{n}\left|2 z_{R}\right|+\sqrt{\varepsilon}\left|2 z_{R} b_{n}\right| \\
& \delta_{k}= \varepsilon\left|a_{k}\right|+\delta_{k+1}\left|2 z_{R}\right|+\sqrt{\varepsilon}\left|2 z_{R} b_{k+1}\right|+\delta_{k+2}\left(z_{R}^{2}+z_{I}^{2}\right) \\
&+2 \sqrt{\varepsilon} \\
&\left(\left|z_{R}\right|+\left|z_{I}\right|\right)\left|b_{k+2}\right| \text { for }(k=n-2, n-3, \cdots, 0)
\end{aligned}
\]

Therefore, when \(\left|b_{0}\right|<\delta_{0}\) and \(\left|b_{1}\right|<\delta_{1}\), reduction is assumed to have succeeded.

\subsection*{4.1.2.2 The roots of complex coefficient algebraic equations}

This problem is solved by using the Durand-Kerner cubic method.
Assume that the given equation is as follows:
\[
P_{n}(Z)=a_{0} Z^{n}+a_{1} Z^{n-1}+\cdots+a_{n-1} Z+a_{n}=0 \text { for }\left(a_{0} \neq 0\right)
\]

The iteration formula for obtaining all roots simultaneously is as follows:
where \(P_{n}^{\prime}\left(z_{i}{ }^{(\nu)}\right)\) is obtained according to the following formula:
\[
\left.\begin{array}{l}
\left\{\begin{aligned}
b_{0}{ }^{(1)} & =a_{0} \\
b_{0}{ }^{(2)} & =a_{0} \\
b_{k}{ }^{(1)} & =z_{i}^{(\nu)} b_{k-1}^{(1)}+a_{k} \\
b_{k}{ }^{(2)} & =z_{i}^{(\nu)} b_{k-1}^{(2)}+b_{k}^{(1)}
\end{aligned} \text { for }(k=1, \cdots, n-1)\right.
\end{array} P_{n}^{\prime}\left(z_{i}{ }^{(\nu)}\right)=b_{n-1}{ }^{(2)}\right)
\]

Convergence is assumed to have occurred if the value of \(P_{n}(z)\) is within the error included when it is calculated by Horner's method. That is, if \(\varepsilon\) is the unit for determining error, then for:
\[
\left\{\begin{array}{llll}
b_{0} & =a_{0} & : \text { Where the } b_{0} \text { error is } & \delta_{0}=0.0 \\
b_{k}^{\prime} & =z_{i}{ }^{(\nu)} b_{k-1} & : \text { Where the } b_{k}^{\prime} \text { error is } & \delta_{k}{ }^{*}=\delta_{k-1}\left|z_{i}{ }^{(\nu)}\right|+\varepsilon\left|b_{k}^{\prime}\right| \\
b_{k} & =b_{k}^{\prime}+a_{k} & : \text { Where the } b_{k} \text { error is } & \delta_{k}=\delta_{k}{ }^{*}+\varepsilon \max \left(\left|a_{k}\right|,\left|b_{k}^{\prime}\right|,\left|b_{k}\right|\right) \\
P_{n}(z) & =b_{n} & &
\end{array}\right.
\]
therefore the specified value \(\delta_{n}\) of the maximum error of \(P_{n}\left(z_{i}{ }^{(\nu)}\right)\) is given by:
\[
\left\{\begin{aligned}
\delta_{0} & =0.0 \\
\delta_{k} & =\delta_{k-1}\left|z_{i}^{(\nu)}\right|+\varepsilon\left\{\left|b_{k}^{\prime}\right|+\max \left(\left|a_{k}\right|,\left|b_{k}^{\prime}\right|,\left|b_{k}\right|\right)\right\} \quad \text { for } \quad(k=1, \cdots, n)
\end{aligned}\right.
\]
and if \(\left|P_{n}\left(z_{i}{ }^{(\nu)}\right)\right| \leq \delta_{n}\), then convergence is assumed to have occurred.
Iterations are continued only for unconverged \(z_{i}(\nu)\), and the calculation ends when all values are considered to have converged.
The iteration initial values are determined by the following three steps method.
(1) Determine the Aberth initial value.

For a center at:
\[
\beta=\frac{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}}{n}=-\frac{a_{1}}{n a_{0}}
\]
obtain the radius \(r\) of a circle that includes all roots. Using derived division, obtain the coefficients \(c_{0}, \cdots, c_{n}\) such that:
\[
P_{n}(Z)=P_{n}(\beta+\zeta)=c_{0} \zeta^{n}+c_{1} \zeta^{n-1}+\cdots+c_{n-1} \zeta+c_{n}
\]

Let \(m\) be the number of nonzero coefficients among \(c_{1}, \cdots, c_{n}\) and obtain \(r^{+}\)as follows:
\[
r^{+}=\max _{k=1, \cdots, n}\left(m \frac{\left|c_{k}\right|}{\left|c_{0}\right|}\right)^{1 / k}
\]

Let \(r^{+}\)be the initial value of \(r\), and obtain \(x\) such that:
\[
Q_{n}(x)=\left|c_{0}\right| x^{n}-\left|c_{1}\right| x^{n-1}-\cdots-\left|c_{n-1}\right| x-\left|c_{n}\right|=0
\]

Let this value of \(x\) be \(r\).
(2) Decrease the radius of the circle that includes all roots.

Let \(z\) be represented by:
\[
z=\beta+r w
\]

Then \(\varphi_{\ell}(w)\) and \(\varphi_{\ell+1}(w)\) can be defined as follows:
\[
\begin{aligned}
P_{n}(\beta+r w) & =\left(c_{0} r^{n}\right) w^{n}+\left(c_{1} r^{n-1}\right) w^{n-1}+\cdots+\left(c_{n-1} r\right) w+c_{n} \\
& =d_{0}{ }^{(0)} w^{n}+d_{1}{ }^{(0)} w^{n-1}+\cdots+d_{n-1}{ }^{(0)} w+d_{n}{ }^{(0)} \\
& =\varphi_{0}(w) \\
\varphi_{\ell}(w) & =d_{0}{ }^{(\ell)} w^{n \ell}+d_{1}{ }^{(\ell)} w^{n \ell-1}+\cdots+d_{n \ell-1}{ }^{(\ell)} w+d_{n \ell}{ }^{(\ell)} \quad\left(d_{0}^{(\ell)} \neq 0\right)
\end{aligned}
\]
(a) When \(\left|a_{0}{ }^{(\ell)}\right|<\left|a_{n \ell}{ }^{(\ell)}\right|\)
\[
\varphi_{\ell+1}(w)=\varphi_{\ell}(w)-\frac{d_{0}{ }^{(\ell)}}{\overline{d_{n \ell}{ }^{(\ell)}}} \tilde{\varphi}(w)
\]
(b) When \(\left|a_{0}^{(\ell)}\right| \geq\left|a_{n \ell}{ }^{(\ell)}\right|\)
\[
\varphi_{\ell+1}(w)=\left\{\varphi_{\ell}(w)-\frac{d_{n \ell}^{(\ell)}}{\overline{d_{0}(\ell)}} \tilde{\varphi}_{\ell}(w)\right\} / w
\]
where:
\[
\tilde{\varphi}(w)=\overline{d_{n \ell}{ }^{(\ell)}} w^{n \ell}+\overline{d_{n \ell-1}^{(\ell)}} w^{n \ell-1}+\cdots+\overline{d_{1}(\ell)} w+\overline{d_{0}{ }^{(\ell)}}
\]
until \(\varphi_{n}=\) constant.
The number of roots outside of the circle having radius \(r\) is equal to the number of times \(\left|a_{0}{ }^{(\ell)}\right|<\left|a_{n \ell}{ }^{(\ell)}\right|\) had occurred when \(\varphi_{n}\) was obtained. The roots inside this circle are the remaining roots.
The radius of the minimum circle that includes all roots is obtained by a bisection method beginning with the Aberth initial value \(r\) according to the condition that \(\left|a_{0}{ }^{(\ell)}\right|>\left|a_{n \ell}{ }^{(\ell)}\right|\) occurs for all roots.
(3) Find the radius that minimizes the sum of the squares of the distances from the various roots.

Use the method described in (b) to obtain the numbers of roots inside and outside the circle of each radius that is obtained by having the radius \(r\) obtained in (b). In \(j\) iterations, the ring \(D_{j}\) of width \(r 2^{-j}\) is obtained. If we let the average of the interior radius and exterior radius of ring \(D_{j}\) be \(r_{j}{ }^{*}\) and the number of roots contained in \(D_{j}\) be \(N_{j}\), then the desired radius \(r\) is obtained by:
\[
r=\frac{\sum_{j=1}^{m} r_{j}{ }^{*} N_{j}}{n}
\]

The initial value for the iteration is obtained from this \(r\) by using the following equation:
\[
z_{j}{ }^{(0)}=\beta+r \exp \left[i\left(\frac{2 \pi(j-1)}{n}+\frac{3}{2 n}\right)\right] \text { for }(j=1, \cdots, n ; i=\sqrt{-1})
\]

\subsection*{4.1.2.3 The roots of real functions (initial value specified; derivative definition required)}

Assume that the given nonlinear equation is \(f(x)=0\) and that the derivative of \(f(x)\) is \(f^{\prime}(x)\). This algorithm is based on Newton's method, which is given by:
\[
x^{(\nu+1)}=x^{(\nu)}-\frac{f\left(x^{(\nu)}\right)}{f^{\prime}\left(x^{(\nu)}\right)}
\]

However, since a root is not obtained by this method if the function oscillates or if the root update amount is too large, the algorithm has been improved as follows.
(1) Newton's iteration is performed as follows:
\[
x^{(\nu+1)}=x^{(\nu)}-\frac{f\left(x^{(\nu)}\right)}{f^{\prime}\left(x^{(\nu)}\right)}
\]
(2) If \(f^{\prime}\left(x^{(\nu)}\right)=0\) or \(\left|f\left(x^{(\nu+1)}\right)\right| \geq\left|f\left(x^{(\nu)}\right)\right|\), then skip to (c); otherwise, let \(x^{(\nu)}=x^{(\nu+1)}\) and return to (a).
(3) If \(\nu=1\) or \(f^{\prime}\left(x^{(\nu-1)}\right) \geq 0\), let \(I S=-1\); otherwise let \(I S=1\).

Let \(R=1, \quad P=0, \quad I O L D=\operatorname{sign}\left\{1, I S \times f\left(x^{(\nu)}\right)\right\}\), and \(I 1=-I O L D\).
(4) Let \(I 2=\operatorname{sign}\left\{1, I S \times f\left(x^{(\nu)}\right)\right\}\).

If \(I 2 \times I 1>0\), then change is accelerated by letting \(P=P+1\); otherwise, it is decelerated by letting \(R=R+1\). (For \(I 1\) : Old update direction and \(I 2\) : New update direction, + indicates update in the positive direction and - indicates update in the negative direction.)
\(x^{(\nu)}\) is updated by the following iteration.
Let \(\varepsilon\) be the unit for determining error, and let \(x^{(\nu+1)}\) be as follows:
\[
x^{(\nu+1)}=x^{(\nu)}+I S \times \sinh ^{-1}\left(f\left(x^{(\nu)}\right)\right) \times 2^{\{(p-3) / 3-R\}}+\left|x^{(\nu)}+1\right| \times I 2 \times \varepsilon
\]
(For IS: Global function slope estimate, + indicates decreasing to the right and - indicates increasing to the right.)
This update is repeated at least three times.
(5) For \(f\left(x^{(\nu-1)}\right) \gg f\left(x^{(\nu)}\right) \gg f\left(x^{(\nu+1)}\right)\), if \(\left|f\left(x^{(\nu+1)}\right)\right|\) becomes sufficiently small, return to Newton's method (a).
(6) For \(\left|f\left(x^{(\nu+1)}\right)\right|>\left|f\left(x^{(\nu)}\right)\right|\), when \(f\left(x^{(\nu+1)}\right)\) and \(f\left(x^{(\nu)}\right)\) have the same sign and \(I 2=I O L D\), the function slope and search direction are changed by letting \(I S=-I S, I O L D=I O L D\) and \(I 1=I O L D\).
When this condition occurs for the first time,
Let the left end of the searched interval \(X P=x^{(\nu+1)}\) and \(F P=f\left(x^{(\nu+1)}\right)\)
Let the right end of the searched interval \(X Q=X P\) and \(F Q=F P\)
When this condition occurs for the second or subsequent time,
If \(I 2>0\) (Update direction is positive)
Update the right end of the searched interval according to
\(X Q=x^{(\nu+1)}, F Q=f\left(x^{(\nu+1)}\right)\)
Begin from the left end of the searched interval according to
\(x^{(\nu)}=X P, f\left(x^{(\nu)}\right)=F P\).
If \(I 2 \leq 0\) (Update direction is negative)
Update the left end of the searched interval according to
\(X P=x^{(\nu+1)}, F P=f\left(x^{(\nu+1)}\right)\)
Begin from the right end of the searched interval according to
\(x^{(\nu)}=X Q, f\left(x^{(\nu)}\right)=F Q\).

Set \(P=0\). If the condition described above in (vi) occurs repeatedly several times, set \(R=2\) to accelerate the change so that the point emerges from a trough; otherwise, set \(R=0\). Then return to (d).
(7) If the condition described in (f) does not occur, then let \(I 1=I 2, x^{(\nu)}=x^{(\nu+1)}\) and return to (d). Figure \(4-1\) shows an example of the movements described above in (a) through (g).

Figure 4-1

(a) According to a Newton iteration, the following relationship occurs \(\left|f\left(x^{(\nu+1)}\right)\right|>\) \(\left|f\left(x^{(\nu)}\right)\right|\).
(b) The \(x^{(\nu+1)}\) update is performed according to the update expression shown in (d).
(c) Since the update direction was not change due to \(\left|f\left(x^{(\nu+1)}\right)\right|>\left|f\left(x^{(\nu)}\right)\right|\), the left end of the searched interval is determined according to (d) and the search direction is reversed.
(d) The search starting point and search direction are changed repeatedly in a similar manner as described in (3).
(e) Since \(\left|f\left(x^{(\nu+1)}\right)\right|<\left|f\left(x^{(\nu)}\right)\right|\) occurs, the root is obtained by the Newton's method of (a) or (d).

Convergence is determined as follows. If \(e_{r}\) is assumed to be the required precision, then convergence is considered to have occurred when:
\[
\begin{aligned}
& \left(\left|x^{(\nu+1)}-x^{(\nu)}\right|<e_{r} \max \left(1,\left|x^{(\nu+1)}\right|\right) \text { and }\left|f\left(x^{(\nu+1)}\right)\right|<e_{r}+64 \varepsilon\left|x^{(\nu+1)}\right|\right) \\
& \text { or } f\left(x^{(\nu+1)}\right)=0
\end{aligned}
\]

\subsection*{4.1.2.4 The roots of real functions (initial value specified; derivative definition not required)}

This algorithm basically uses the secant method indicated by:
\[
x^{(\nu+1)}=x^{(\nu)}-f\left(x^{(\nu)}\right) \frac{x^{(\nu)}-x^{(\nu-1)}}{f\left(x^{(\nu)}\right)-f\left(x^{(\nu-1)}\right)}
\]
which has been improved in a manner similar to that described in (3). However, when approaching \(f(x)=0\), an extremum search is performed for a location if a trough occurs or the bisection method is used if the sign of the root is found to reverse. The algorithm is explained in more detail below.
(1) Update the solution by using the secant method.
(2) If both the function value and the update amount are large, then since \(x^{(\nu)}\) is far from a root perform the following to be safe:
\(\left.\begin{array}{l}X P=X Q=x^{(\nu)} \\ F P=F Q=f\left(x^{(\nu)}\right)\end{array}\right\}\binom{\) Set the left and right ends of the searched interval; }{\(X P\) is the left end and \(X Q\) is the right end }
Let \(x^{(\nu+1)}=x^{(\nu)}\) and \(f\left(x^{(\nu+1)}\right)=f\left(x^{(\nu)}\right)\) and skip to (c)
If \(\left|f\left(x^{(\nu+1)}\right)\right| \geq\left|f\left(x^{(\nu)}\right)\right|\)
If \(\left|\frac{x^{(\nu)}-x^{(\nu-1)}}{f\left(x^{(\nu-1)}\right)}\right|>0.125 \quad\) (a root is expected to be at a location close to \(x^{(\nu)}\))
Let \(X P=X Q=x^{(\nu-1)}, F P=F Q=f\left(x^{(\nu-1)}\right), x^{(\nu+1)}=x^{(\nu-1)}\) and
\(f\left(x^{(\nu+1)}\right)=f\left(x^{(\nu-1)}\right)\) and go to (c)
If \(\left|\frac{\left(x^{(\nu)}-x^{(\nu-1)}\right.}{f\left(x^{(\nu-1)}\right)}\right| \leq 0.125\),
If the value was updated in the positive direction,
Let \(X P=x^{(\nu-1)}, X Q=x^{(\nu+1)}, F P=f\left(x^{(\nu-1)}\right)\) and \(F Q=f\left(x^{(\nu+1)}\right)\)
(set searched interval) and perform an extremum search in the interval from \(x^{(\nu-1)}\) to \(x^{(\nu+1)}\).
If the value was updated in the negative direction,
Let \(X P=x^{(\nu+1)}, X Q=x^{(\nu-1)}, F P=f\left(x^{(\nu+1)}\right)\) and \(F Q=f\left(x^{(\nu-1)}\right)\) (set searched interval) and perform an extremum search in the interval from \(x^{(\nu+1)}\) to \(x^{(\nu-1)}\).
If a root is not found by the extremum search then skip to (c).

If none of the above conditions occurs set \(x^{(\nu)}=x^{(\nu+1)}\) and return to (a).
(3) If the function increases to the right in the interval from \(x^{(\nu-1)}\) to \(x^{(\nu+1)}\), let \(I S=-1\); if it increases to the left, let \(I S=1\).
Let \(R=1, P=0, I O L D=\operatorname{sign}\left\{1, I S \times f\left(x^{(\nu+1)}\right)\right\}\), and \(I 1=-I O L D\).
(4) Let \(I 2=\operatorname{sign}\left\{1, I S \times f\left(x^{(\nu+1)}\right)\right\}\).

If \(I 2 \times I 1>0\), then change is accelerated by letting \(P=P+1\); otherwise, it is decelerated by letting \(R=R+1\). (For \(I 1\) : Old update direction and \(I 2:\) New update direction, + indicates update in the positive direction and - indicates update in the negative direction.)
Let \(x^{(\nu)}=x^{(\nu+1)}, f\left(x^{(\nu)}\right)=f\left(x^{(\nu+1)}\right), x^{(\nu-1)}=x^{(\nu)}\) and \(f\left(x^{(\nu-1)}\right)=f\left(x^{(\nu)}\right)\).
\(x^{(\nu)}\) is updated by the following iteration.
Let \(\varepsilon\) be the unit for determining error, and let \(x^{(\nu+1)}\) be as follows:
\[
x^{(\nu+1)}=x^{(\nu)}+I S \times \sinh ^{-1}\left(f\left(x^{(\nu)}\right)\right) \times 2^{\{(P-3) / 3-R\}}+\left|x^{(\nu)}+1\right| \times I 2 \times \varepsilon
\]
(For \(I S\) : Global function slope estimate, + indicates decreasing to the right and - indicates increasing to the right.)
This update is repeated at least three times.
(5) For \(f\left(x^{(\nu-1)}\right) \gg f\left(x^{(\nu)}\right) \gg f\left(x^{(\nu+1)}\right)\), if \(\left|f\left(x^{(\nu+1)}\right)\right|\) becomes sufficiently small, return to the secant method shown in (a).
(6) If the signs of \(f\left(x^{(\nu-1)}\right)\) through \(f\left(x^{(\nu+1)}\right)\) are the same when \(\left|f\left(x^{(\nu-1)}\right)\right|<\left|f\left(x^{(\nu)}\right)\right|<\left|f\left(x^{(\nu+1)}\right)\right|\), then:
```

If $I 2>0$ (update direction is positive)
Update the right end of the searched interval by setting $X Q=x^{(\nu+1)}$ and $F Q=f\left(x^{(\nu+1)}\right)$

```

If \(I 2 \leq 0\) (update direction is negative)
Update the right end of the searched interval by setting \(X P=x^{(\nu+1)}\) and \(F P=f\left(x^{(\nu+1)}\right)\)
Then, perform an extremum search in the interval from \(x^{(\nu+1)}\) to \(x^{(\nu-1)}\).
If a root was not found by the extremum search, then set \(x^{(\nu+1)}\) and \(f\left(x^{(\nu+1)}\right)\) for the endpoint of the searched interval in the direction opposite to the direction that the solution had been updated, let:
\[
I S=-I S, I O L D=-I O L D, I 2=I O L D, P=0, R=1
\]
so that the value is updated in the opposite direction, and return to (d).
(7) If the signs of \(f\left(x^{(\nu-1)}\right)\) through \(f\left(x^{(\nu+1)}\right)\) are the same when \(\left|f\left(x^{(\nu-1)}\right)\right|<\left|f\left(x^{(\nu)}\right)\right|<\left|f\left(x^{(\nu+1)}\right)\right|\), then set \(x^{(\nu+1)}\) and \(f\left(x^{(\nu+1)}\right)\) for the endpoint of the searched interval in the direction opposite to the direction that the solution had been updated, let:
\[
I S=-I S, I O L D=-I O L D, I 2=I O L D, P=0, R=1
\]
so that the value is updated in the opposite direction, and return to (d).
(8) If none of the conditions shown in (e) through (g) occurs, then let \(I 1=I 2\) and return to (d).

The extremum search portion of the algorithm obtains the minimum point by combining a golden section search with sequential parabolic interpolation. (See Section 5.1.2)
If a reversal of the sign of the equation value is seen during the extremum search, then the bisection method is performed to obtain the root that is on the initial value side of that point.

Figure 4-2 shows an example of the movements described above in (a) through (h).
Figure 4-2

(1) Perform the secant method iteration.
(2) \(\left|f\left(x^{(\nu+1)}\right)\right|>\left|f\left(x^{(\nu)}\right)\right|\) occurs.
(3) An extremum search is performed, but the extremum is not a root.
(4) The solution is updated according to the update expression shown in (d) and the condition described in (g) occurs.
(5) A similar situation as described in (4) occurs even though the movement is in the opposite direction.
(6) Since \(\left|f\left(x^{(\nu+1)}\right)\right|<\left|f\left(x^{(\nu)}\right)\right|\) occurs, the root is obtained by the secant method of (a) or (d).

Convergence is determined as follows. If \(e_{r}\) is assumed to be the required precision, then convergence is considered to have occurred when:
\[
\begin{aligned}
& \left(\left|x^{(\nu+1)}-x^{(\nu)}\right|<e_{r} \max \left(1,\left|x^{(\nu+1)}\right|\right) \text { and }\left|f\left(x^{(\nu+1)}\right)\right|<e_{r}+64 \varepsilon\left|x^{(\nu+1)}\right|\right) \\
& \text { or } f\left(x^{(\nu+1)}\right)=0
\end{aligned}
\]

Also, for an extremum search or for the bisection method, convergence is considered to have occurred when:
\[
\text { (Search reduction interval) }<e_{r} \max (1,|x|) \text { and }|f(x)|<e_{r}+64 \varepsilon|x|
\]

\subsection*{4.1.2.5 The roots of real functions (interval specification; derivative definition not required)}

Assume that \(f(x)\) is continuous on the interval \([a, b]\) and that the signs of the values \(f(a)\) and \(f(b)\) are opposite.
(1) Let \(c=a\) and \(d=e=b-a\).
(2) If \(|f(c)|<|f(b)|\), exchange \(b\) and \(c\) and let \(a\) be the \(c\) after the exchange. In this way, the relationship \(|f(b)| \leq|f(c)|\) always will occur and the root is searched for in the interval \([b, c]\).
(3) Let \(m=\frac{c-b}{2}\). Also, for:
\(\varepsilon=\) Unit for determining error,
\(e_{r}=\) Required precision
let:
\[
\delta=\frac{\varepsilon|b|+e_{r}}{2}
\]
(4) If \(|e| \geq \delta\) and \(|f(b)|<|f(a)|\), then

If \(a=c\), the linear interpolation method is applied in the interval between \(c\) and \(b\).
\[
\begin{aligned}
P & =(c-b) \frac{f(b)}{f(c)} \\
Q & =1-\frac{f(b)}{f(c)}
\end{aligned}
\]

If \(a \neq c,(|f(a)| \leq|f(c)|)\), the inverse quadratic interpolation method is applied in the intervals between \(a, b\) and \(c\).
\[
\begin{aligned}
& \text { For } r_{1}=\frac{f(a)}{f(c)}, r_{2}=\frac{f(b)}{f(c)}, r_{3}=\frac{f(b)}{f(a)} \\
& R=r_{3}\left\{(c-b) r_{1}\left(r_{1}-r_{2}\right)-(b-a)\left(r_{2}-1\right)\right\} \\
& Q=\left(r_{1}-1\right)\left(r_{2}-1\right)\left(r_{3}-1\right)
\end{aligned}
\]

If \(\left|\frac{P}{Q}\right|>\frac{3}{4}|c-b|-|\delta|\) or \(\left|\frac{P}{Q}\right|>\left|\frac{e}{2}\right|\), then skip to (e).
Otherwise, set \(e=d\) and \(d=-\frac{P}{Q}\).
Set \(a=b\) and let:
\[
b=b+\max (d, \operatorname{sign}(\delta, c-b))
\]
(5) If the condition described in (d) does not occur, then set \(a=b\), use the bisection method to set \(b\) to the midpoint of the interval \([b, c]\), and let \(d=e=m\).
(6) If the signs of the values \(f(b)\) and \(f(c)\) are the same, then set \(c=a\) and let \(d=e=b-a\).

After the above operation, return to (b).
Convergence is considered to have occurred if \(f(b)=0\) or if \(|c-b| \leq e_{r}+2 \varepsilon|b|\).

\subsection*{4.1.2.6 All the roots of real functions (interval specification; derivative definition not required)}

This algorithm basically uses the same algorithm as the one described in (4) that is for finding a single root of a nonlinear equation when the derivative definition is not required. However, this algorithm uses the fact that \(I S\) can be used in the expression shown in (d) to keep the search direction fixed so that roots are always obtained by moving inward from the endpoints of the interval. That is, this algorithm differs from the one in (4), and the following points have been changed.
- Intervals where a search for the solution will be excluded are taken from both ends of the interval.
- First, a root is sought beginning from the right end of the interval. If a root is found, the right end of the interval is changed to that point. Next, a root is sought beginning from the left end of the interval. If a root is found, the left end of the interval is changed to that point.
- If the root update value leaves the interval, it is moved back into the interval and processing continues.
- If the sign of the equation value changes during an extremum search, the roots to both the left and right of that point are obtained by the bisection method.
- If the interval size becomes less than or equal to \(\delta\), then processing ends.

When a root is found, the interval size is reduced. However, at this time, the endpoint is shifted by a distance of the following value of \(\delta\) towards the interior of the interval from that root.
\[
\begin{aligned}
\delta= & \max \left(2 e_{r},(|A|+|B|) \varepsilon, \sqrt[3]{\varepsilon}\right) \\
\text { Where, } & e_{r}: \text { Required precision } \\
& \varepsilon: \text { Unit for determining error } \\
& A, B: \text { Left and right ends of the initially set interval }
\end{aligned}
\]

\subsection*{4.1.2.7 The roots of complex functions (initial value specified; derivative definition not required)}

This algorithm finds a solution according to Muller's method.
If the initial value \(z=0\), then assume that the starting values are:
\[
\begin{cases}z_{1} & = \\ z_{2} & =1.0 \\ z_{3} & =0.0\end{cases}
\]

If the initial value \(z \neq 0\), then assume that the starting values are:
\[
\left\{\begin{array}{l}
z_{1}=0.9 z \\
z_{2}=1.1 z \\
z_{3}=z
\end{array}\right.
\]

Let \(f_{i}=f\left(z_{i}\right)\) and define \(q, q^{\prime}, a, b\) and \(c\) as follows:
\[
\begin{aligned}
q & =\frac{z_{3}-z_{2}}{z_{2}-z_{1}} \\
q^{\prime} & =q+1 \\
a & =q f_{3}-q q^{\prime} f_{2}+q^{2} f_{1} \\
b & =\left(q+q^{\prime}\right) f_{3}-q^{\prime 2} f_{2}+q^{2} f_{1} \\
c & =q^{\prime} f_{3}
\end{aligned}
\]

Define \(r\) as follows:
\[
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{2 c}{-b \mp \sqrt{b^{2}-4 a c}}
\]
and take the \(r\) having the smallest absolute value. (If the denominator of \(r\) is zero and \(f_{1}=f_{2}=f_{3}\), then set \(r=1\).)
Let \(z=z_{3}+r\left(z_{3}-z_{2}\right)\), and then set \(z_{3}, z_{2}\) and \(z_{1}\) as follows:
\[
\left\{\begin{array}{l}
z_{3}=z \\
z_{2}=z_{3} \\
z_{1}=z_{2}
\end{array}\right.
\]
and repeatedly iterate these steps.
Convergence is determined as follows. If \(e_{r}\) is assumed to be the required precision and \(\varepsilon\) is assumed to be the unit for determining error, then convergence is considered to have occurred when:
\[
\left(\left|z-z_{3}\right|<e_{r} \max (1,|z|) \text { and }|f(z)|<e_{r}+64 \varepsilon|z|\right) \text { or } f(z)=0
\]

\subsection*{4.1.2.8 The roots of a set of simultaneous nonlinear equations (Jacobian matrix definition optional)}

This algorithm obtains a solution according to Marquardt's method, which is explained below.
(1) Let \(\lambda=0.1\).
(2) Let the Jacobian matrix of \(f(\boldsymbol{x})\) be \(A\).

For \(f(\boldsymbol{x})\) and \(\boldsymbol{x}\) defined as follows:
\[
\begin{aligned}
f(\boldsymbol{x}) & =\left(f_{1}, f_{2}, \cdots, f_{n}\right)^{T} \\
\boldsymbol{x} & =\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}
\end{aligned}
\]
where \(n\) is the number of order, \(A\) is defined as follows:
\[
A=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & & & \vdots \\
\vdots & & & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & \cdots & \cdots & a_{1 n} \\
\vdots & & & \vdots \\
\vdots & & & \vdots \\
a_{n 1} & \cdots & \cdots & a_{n n}
\end{array}\right]
\]

Let \(D\) be a matrix formed by setting non-diagonal elements of \(A^{T} A\) to zero.
(3) Obtain \(\Delta x\) by solving the simultaneous linear equation:
\[
\left(A^{T} A+\lambda D\right) \Delta \boldsymbol{x}=-A^{T} f(\boldsymbol{x})
\]
(The expression is equivalent to applying Marquardt's method in which \(x\) is scaled by \(D^{1 / 2}\) and the \(\lambda I\) term is added.)
(4) Assume \(\boldsymbol{y}=\boldsymbol{x}+\Delta \boldsymbol{x}\).

If \(\|f(\boldsymbol{y})\| \geq\|f(\boldsymbol{x})\|\), (where the symbol \(\|\cdots\|\) indicates the square norm), then:
If \(\lambda=0\), set \(\lambda=0.001\)
and:
If \(\lambda \neq 0\), set \(\lambda=10 \lambda\)
and then return to (c).
If \(\|f(\boldsymbol{y})\|<\|f(\boldsymbol{x})\|\), then if \(\|f(\boldsymbol{y})\|<\|f(\boldsymbol{x})\|\) also occurred during the previous iteration, set \(\lambda=\frac{\lambda}{10}\).
Set \(\boldsymbol{x}=\boldsymbol{y}\) and return to (b).
Since the above Marquardt's method explicitly forms a system of normal equations, it has the shortcoming that it may not converge due to error. Therefore, if \(e_{r}\) is assumed to be the required precision and \(\varepsilon\) is assumed to be the unit for determining error, then if the following condition is reached:
\[
\begin{aligned}
& \left(\|\Delta \boldsymbol{x}\|_{\infty} \leq e^{\prime} \max \left(1,\|\boldsymbol{y}\|_{\infty}\right) \text { and }\|f(\boldsymbol{y})\|_{\infty} \leq e^{\prime}\right) \text { or }\|f(\boldsymbol{y})\|_{\infty}=0 \\
& e^{\prime}=e_{r}{ }^{0.2}
\end{aligned}
\]
where the symbol \(\|\cdots\|_{\infty}\) indicates the maximum of the absolute values of the elements
or if \(\|f(\boldsymbol{y})\|\) becomes only 0.75 times the value of \(\|f(\boldsymbol{y})\|\) from the (\(4 n\))-th previous iteration, then processing shifts to the following Newton's method with scaling.
Newton's method with scaling
Define \(g_{i}\) as follows:
\[
g_{i}=\max \left(\varepsilon, a_{i 1}, a_{i 2}, \cdots, a_{i n}\right) \text { for }(i=1, \cdots, n)
\]
and perform the following scaling operations:
\[
\begin{aligned}
& \left(a_{i 1}, a_{i 2}, \cdots, a_{i n}\right)=\frac{\left(a_{i 1}, a_{i 2}, \cdots, a_{i n}\right)}{g_{i}} \\
& f_{i}=\frac{f_{i}}{g_{i}}
\end{aligned}
\]

Solve the simultaneous linear equations \(A \Delta \boldsymbol{x}=-f(\boldsymbol{x})\) using the Jacobian matrix \(A\) and function values \(f(\boldsymbol{x})\) that were scaled in this way, and update the solution by using \(\Delta \boldsymbol{x}\) as the correction vector.
Convergence is assumed to have occurred when the following relationships hold:
\[
\begin{aligned}
& \left(\|\Delta \boldsymbol{x}\|_{\infty}<e_{r} \max \left(1,\|\boldsymbol{y}\|_{\infty}\right) \text { and }\|f(\boldsymbol{y})\|_{\infty}<e_{r}+64 \varepsilon\|\boldsymbol{y}\|_{\infty}\right) \\
& \text { or }\|f(\boldsymbol{y})\|_{\infty}=0
\end{aligned}
\]

\subsection*{4.1.2 9 The roots of a set of simultaneous nonlinear equations (Jacobian matrix definition not required)}
(1) Correction vector \(\Delta \boldsymbol{x}\) calculation

Assume that \(f(\boldsymbol{x}), A\) and \(G\) are as follows:
\(f(\boldsymbol{x})\) : Function value \(f(\boldsymbol{x})\) at variable value \(\boldsymbol{x}\)
\(A:\) Jacobian matrix \(\frac{\partial f}{\partial \boldsymbol{x}}\)
\(G\) : Inverse matrix of the Jacobian matrix

First, let the Gauss-Newton solution be represented by \(\Delta \boldsymbol{x}_{G}\) and the steepest descent solution be represented by \(\Delta \boldsymbol{x}_{S}\) as follows:
\[
\begin{aligned}
\Delta \boldsymbol{x}_{G} & =-G f(\boldsymbol{x}) \\
\Delta \boldsymbol{x}_{S} & =\left(\frac{\|\boldsymbol{b}\|^{2}}{\|A \boldsymbol{b}\|^{2}}\right) \boldsymbol{b}
\end{aligned}
\]
where \(\boldsymbol{b}=-A^{T} f(\boldsymbol{x})\).
At first, let \(\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{S}\) and \(d=\left\|\Delta \boldsymbol{x}_{S}\right\|\).
For the second and subsequent iteration, let \(d\) be the step size.
(a) If \(d \leq\left\|\Delta \boldsymbol{x}_{S}\right\|\), then:
\[
\Delta \boldsymbol{x}=d \frac{\Delta \boldsymbol{x}_{S}}{\left\|\Delta \boldsymbol{x}_{S}\right\|}
\]
(b) If \(\left\|\Delta \boldsymbol{x}_{S}\right\|<d<\left\|\Delta \boldsymbol{x}_{G}\right\|\), then:
\[
\Delta \boldsymbol{x}=\alpha \Delta \boldsymbol{x}_{S}+\beta \Delta \boldsymbol{x}_{G} \text { for } \quad(\alpha>0, \beta>0,\|\Delta \boldsymbol{x}\|=d)
\]
(c) If \(\left\|\Delta \boldsymbol{x}_{G}\right\| \leq d\)
\[
\Delta x=\Delta x_{G}
\]
(2) Step size \(d\) modification

Let \(\Delta s\) be the difference of the sum of the squares of the linearized model function values and let \(\Delta T\) be the difference of the sum of the squares of the actual function values. Estimate the degree of nonlinearity by using the ratio \(r\) of these values.
\[
\begin{aligned}
\Delta s & =\|f(\boldsymbol{x})-A \Delta \boldsymbol{x}\|^{2}-\|f(\boldsymbol{x})\|^{2} \\
\Delta T & =\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|^{2}-\|f(\boldsymbol{x})\|^{2} \\
r & =\frac{\Delta T}{\Delta s}
\end{aligned}
\]
(a) If \(r<0.1\), then reduce \(d\) by half and let \(\tau=1.0\).
(b) If \(r \geq 0.1\), then calculate \(\lambda\), which is the rate of increase of \(d\), as follows:
\[
\lambda=\sqrt{1-\frac{(r-0.1) \Delta s}{s_{p}+\sqrt{s_{p}^{2}-(r-0.1) s_{s} \Delta s}}}
\]
where, for \(\delta f\) defined as:
\[
\delta f=f(\boldsymbol{x}+\Delta \boldsymbol{x})-\{f(\boldsymbol{x})+A \Delta \boldsymbol{x}\}
\]
\(s_{p}\) and \(s_{s}\) are as follows:
\[
\begin{aligned}
& s_{p}=\sum_{i=1}^{n}\left|f_{i}(\boldsymbol{x}+\Delta \boldsymbol{x}) \delta f_{i}\right| \\
& s_{s}=\|\delta f\|^{2}
\end{aligned}
\]

Actually, to prevent the value of \(d\) from oscillating, \(d\) is increased only when an increase is required two times consecutively. Also, the rate of increase is held to at most 2 . The actual rate of increase \(\mu\) is calculated as follows:
\[
\begin{aligned}
\mu & =\min (2, \lambda, \tau) \\
\tau & =\frac{\lambda}{\mu}
\end{aligned}
\]
where the initial value for \(\tau\) is assumed to be 1 .
In addition, an upper limit \(d_{\max }\) and lower limit \(d_{\text {min }}\) are set for \(d\) and \(d\) is controlled so that it falls between these values.
(3) Calculations of the Jacobian matrix \(A\) and its inverse matrix \(G\)

The Jacobian matrix is obtained according to a difference only for the first iteration, and thereafter, it is sequentially updated. Similarly, its inverse matrix is obtained from the Jacobian matrix only the first iteration, and thereafter, it is sequentially updated. The sequential updates are calculated according to the following formulas:
\[
\begin{aligned}
A & =A+\delta f \frac{\Delta \boldsymbol{x}^{T}}{\|\Delta \boldsymbol{x}\|^{2}} \\
G & =G+(\Delta \boldsymbol{x}-G \Delta f) \Delta \boldsymbol{x}^{T} \frac{G}{\Delta \boldsymbol{x}^{T}} G \Delta f
\end{aligned}
\]
where:
\[
\Delta f=f(\boldsymbol{x}+\Delta \boldsymbol{x})-f(\boldsymbol{x})
\]
(4) Correction vector independence check

To correct the Jacobian matrix efficiently, the correction vectors that are taken sequentially must be nearly mutually orthogonal. Therefore, an original independence concept is defined according to a hybrid method, and the correction vectors are controlled so that they are taken in directions that are as independent as possible. A vector \(\alpha\) is said to be independent of the \(j\) vectors \(\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{j}\right)\) if \(\alpha\) forms an angle of at least 30 degrees with an arbitrary vector of the space defined by these \(j\) vectors. The calculation for this independence test conceived by Powell is as follows.
\(n\) mutually independent vectors from the vectors used to correct the Jacobian matrix during the past (\(2 \times n\)) iterations are made to be orthogonal and are stored in \(\Omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)\). The array \(\ell\) of size \(n\) is used to store information indicating the number of iterations earlier in which \(\omega_{i}\) was the correction vector. That is, this information indicates that \(\omega_{i}\) is the vector that was taken \(\ell_{i}\) iterations earlier. \(\Omega\) is initialized as the unit matrix, and \(\ell\) is initialized with values \(\ell_{i}=n-i+1\) for \((i=1, \cdots, n)\)
When a solution is corrected, the following steps are performed.
(a) When \(\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{G}\)

Regardless of its independence, \(\Delta \boldsymbol{x}\) is taken as the correction vector.
(b) When \(\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{G}\) does not occur

If \(\ell_{1}<2 n\) or if \(\Delta \boldsymbol{x}\) is independent of \(\left(\omega_{2}, \omega_{3}, \cdots, \omega_{n}\right)\), that is, if \(\left|\omega_{1}^{T} \Delta \boldsymbol{x}\right|>\frac{\|\Delta \boldsymbol{x}\|}{2}\), then \(\Delta \boldsymbol{x}\) is taken as the correction vector. Otherwise, the solution is not corrected.
When the Jacobian matrix is corrected, the following steps are performed.
If \(\|\Delta \boldsymbol{x}\|<d_{\min }\) or if \(\ell_{1}=2 n\) and \(\Delta \boldsymbol{x}\) is not independent of \(\left(\omega_{2}, \omega_{3}, \cdots, \omega_{n}\right)\), then \(\Delta \boldsymbol{x}=d_{\min } \omega_{1}\) is set.

Otherwise, \(\Delta \boldsymbol{x}\) is taken.
Next, \(\Omega\) and \(\ell\) are revised. When \(\Delta \boldsymbol{x}=d_{\min } \omega_{1}\) has been set, the following values should be set:
\[
\begin{array}{rlr}
\omega_{i} & =\omega_{i+1} \quad \text { for } \quad(i=1, \cdots, n-1) \\
\omega_{n} & =\omega_{1} & \\
\ell_{i} & =\ell_{i+1}+1 & \text { for } \quad(i=1, \cdots, n-1) \\
\ell_{n} & =1
\end{array}
\]

Otherwise, the following is performed.
The minimum value \(k\) is obtained for which \(\left(\omega_{k+1}, \omega_{k+2}, \cdots, \omega_{n}, \Delta \boldsymbol{x}\right)\) are mutually independent. \(\left(\omega_{1}, \cdots, \omega_{k-1}, \omega_{k+1}, \omega_{k+2}, \cdots, \omega_{n}, \Delta \boldsymbol{x}\right)\) are made to be orthogonal, and these are again assumed to be \(\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)\). The following values are then set:
\[
\begin{array}{rlr}
\ell_{i} & =\ell_{i}+1 & \text { for } \quad(i=1, \cdots, k-1) \\
\ell_{i} & =\ell_{i+1}+1 & \text { for } \quad(i=k, \cdots, n-1) \\
\ell_{n} & =1 &
\end{array}
\]

In this way, the relationship \(\ell_{1} \leq 2 n\) always holds.
(5) Switch of processing to Newton's method with scaling

If the various equations of the given problem have not been scaled, then trouble may occur during the solution modification process and this algorithm will not converge. Therefore, the following condition is used to detect the trouble during the solution modification process and cause processing to switch to Newton's method with scaling.
\[
\frac{\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|^{2}-\|f(\boldsymbol{x})\|^{2}}{d}>10^{10}
\]

The algorithm of Newton's method with scaling is as follows.
(a) Jacobian matrix calculation

The Jacobian matrix is obtained according to a difference during every iteration.
(b) Correction vector calculation

Assume that the \((i, j)\) component of the Jacobian matrix is \(a_{i j}\). First, the values \(g_{i}\) are obtained as follows.
\(g_{i}=\max \left(\right.\) Unit for determining error, \(\left.a_{i 1}, a_{i 2}, \cdots, a_{i N}\right)\) for \((i=1,2, \cdots, N)\)
Then the following scaling operations are performed:
\[
\begin{aligned}
& \left(a_{i 1}, a_{i 2}, \cdots, a_{i N}\right) \leftarrow \frac{\left(a_{i 1}, a_{i 2}, \cdots, a_{i N}\right)}{g_{i}} \\
& f_{i} \leftarrow \frac{f_{i}}{g_{i}} \\
& \text { for } \quad(i=1,2, \cdots, N)
\end{aligned}
\]

The simultaneous linear equations \(A \Delta \boldsymbol{x}=-f(\boldsymbol{x})\) obtained by using the Jacobian matrix \(A\) and function values \(f(\boldsymbol{x})\) that were scaled in this way are solved according to the Crout method. This \(\Delta \boldsymbol{x}\) becomes the correction vector.
(6) Convergence decision

Convergence is assumed to have occurred when the following relationships hold:
\[
\begin{aligned}
& \left(\|\Delta \boldsymbol{x}\|_{\infty}<e_{r} \max \left(1,\|\boldsymbol{x}+\Delta \boldsymbol{x}\|_{\infty}\right) \text { and }\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|_{\infty}<e_{r}+64 \varepsilon\|\boldsymbol{x}+\Delta \boldsymbol{x}\|\right) \\
& \text { or } f(\boldsymbol{x}+\Delta \boldsymbol{x})=0
\end{aligned}
\]
where \(e_{r}\) is the required relative precision, and:
\[
\begin{aligned}
\|\boldsymbol{x}\|_{\infty} & =\max _{i}\left|x_{i}\right| \\
\|\Delta \boldsymbol{x}\|_{\infty} & =\max _{i}\left|\Delta x_{i}\right| \\
\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|_{\infty} & =\max _{i}\left|f_{i}\right|
\end{aligned}
\]

\subsection*{4.1.3 Reference Bibliography}
(1) Forsythe, G. E. , Malcolm, M. A. and Moler, C. B. , "Computer Methods for Mathematical Computations", Prentice-Hall Inc. , (1978).

\subsection*{4.2 ALGEBRAIC EQUATIONS}

\subsection*{4.2.1 ASL_dlarha, ASL_rlarha}

\section*{The Roots of Real Coefficient Algebraic Equations}

\section*{(1) Function}

ASL_dlarha or ASL_rlarha solves an algebraic equation having real coefficients. (The roots are stored in real arrays.)
(2) Usage

Double precision: ierr \(=\) ASL_dlarha (\(\mathrm{a}, \mathrm{n}, \mathrm{xr}, \mathrm{xi}, \mathrm{wk}\));
Single precision:
ierr \(=\) ASL_rlarha (a, n, xr, xi, wk);
(3) Arguments and Return Value
\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular}\(\quad\)\begin{tabular}{l}
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & \begin{tabular}{l}
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & \\
\hline 1 & a & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & \(\mathrm{n}+1\) & Input & \begin{tabular}{l}
Coefficients of the algebraic equation stored \\
in the descending powers of \(x ;\) ca \([0]\) is the co- \\
efficient of \(x^{n}\), and ca[n] is the constant term.
\end{tabular} \\
\hline 2 & n & I & 1 & Input & Degree of algebraic equation \\
\hline 3 & xr & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & n & Output & \begin{tabular}{l}
Real parts of the roots of the algebraic \\
equation
\end{tabular} \\
\hline 4 & xi & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & n & Output & \begin{tabular}{l}
Imaginary parts of the roots of the algebraic \\
equation
\end{tabular} \\
\hline 5 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & \(4 \times(\mathrm{n}+1)\) & Work & Work area (not used when \(\mathrm{n} \leq 4)\) \\
\hline 6 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) At least one of \(\mathrm{a}[\mathrm{i}-1], \mathrm{i}=1,2, \cdots, \mathrm{n}\) must satisfy the condition \(|\mathrm{a}[\mathrm{i}-1]|>\) Unit for determining error.
(b) \(n \geq 1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline \(2000+i\) & \begin{tabular}{l}
The first \(i\) roots were obtained correctly, \\
but the subsequent roots were obtained \\
with bad precisions.
\end{tabular} & \begin{tabular}{l}
Processing terminates with the precision \\
of the \((i+1)\) th root remaining bad.
\end{tabular} \\
\hline \(2500+j\) & \begin{tabular}{l}
\(|\mathrm{a}[\mathrm{i}-1]| \leq\) Unit for determining error, \\
\(\mathrm{i}=1,2, \cdots, \mathrm{j}\)
\end{tabular} & \begin{tabular}{l}
Processing is performed on condition that \\
\(\mathrm{a}[\mathrm{i}-1]=0.0, \mathrm{i}=1,2, \cdots, \mathrm{j}\)
\end{tabular} \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l}
The first \(i\) roots were obtained, but the \\
subsequent roots could not be obtained.
\end{tabular} & \begin{tabular}{l}
The first \(i\) roots are calculated, and then \\
processing is aborted.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) If there are more than four roots, then except for the last four roots, this function tends to obtain roots in ascending order of their distance from 0.0.
(b) If there is a multiple root, then the relative precision for a root having multiplicity \(n\) will be on the order of \(\sqrt[n]{\text { Unit for determining error. }}\)
(7) Example
(a) Problem

Solve the following equation:
\[
x^{10}-55 x^{8}+1023 x^{6}-7645 x^{4}+21076 x^{2}-14400=0
\]
(b) Input data

Array a which contains coefficients of the algebraic equations:
\(\mathrm{a}[0]=1.0\),
\(\mathrm{a}[1]=0.0\),
\(\mathrm{a}[2]=-55.0\),
\(\mathrm{a}[3]=0.0\),
\(\mathrm{a}[4]=1023.0\),
\(\mathrm{a}[5]=0.0\),
\(a[6]=-7645.0\),
\(\mathrm{a}[7]=0.0\),
\(\mathrm{a}[8]=21076.0\),
\(\mathrm{a}[9]=0.0\)
\(\mathrm{a}[10]=14400.0\).
\(\mathrm{n}=10\)
(c) Main program
```

/* C interface example for ASL_dlarha *
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *ar;
int nn;
double *zr;
double *zi;
double *wk;
int ierr;
int i;
FILE *fp;
fp = fopen( "dlarha.dat", "r" );
if( fp == NULL )
{
printf( "file open error\n" );
return -1;
}
printf( " *** ASL_dlarha ***\n" );
printf( "\n ** Input **\n\n" );
fscanf( fp, "%d", \&nn );

```
```

ar = ( double * )malloc((size_t)( sizeof(double) * (nn+1) ));
if( ar == NULL )
printf( "no enough memory for array ar\n" );
return -1;
}
zr = ( double *)malloc((size_t)( sizeof(double) * nn ));
if( zr == NULL )
printf( "no enough memory for array zr\n" );
}
zi = ( double * )malloc((size_t)( sizeof(double) * nn ));
if( zi == NULL )
printf( "no enough memory for array zi\n" );
}
wk = ( double * )malloc((size_t)( sizeof(double) * (4*(nn+1)) ));
if( wk == NULL )
printf( "no enough memory for array wk\n" );
return -1;
}
printf( "\tDegree of Algebraic Equation = % 6d\n", nn );
printf( "\n\tCoefficients of Algebraic Equation \n\n" );
for( i=0 ; i<nn+1 ; i++ )
fscanf( fp, "%lf", \&ar[i] );
printf( "\t%%.3g\n", ar[i] );
}
fclose( fp );
ierr = ASL_dlarha(ar, nn, zr, zi, wk);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\tRoots\n" );
printf( "\t Real Part Imaginary Part\n" );
for( i=0 ; i<nn ; i++ )
printf( " %8.3g %8.3g\n", zr[i],zi[i] );
}
free( ar );
free( zr );
free( zi )
free( wk );
return 0;

```
\(\}\)
(d) Output results
*** ASL_dlarha \({ }^{* * *}\)
** Input \(* *\)

Degree of Algebraic Equation \(=10\)
Coefficients of Algebraic Equation

\begin{tabular}{rl}
4 & 0 \\
5 & 0 \\
-5 & 0 \\
-4 & 0
\end{tabular}

\subsection*{4.2.2 ASL_zlacha, ASL_clacha}

The Roots of Complex Coefficient Algebraic Equations

\section*{(1) Function}

ASL_zlacha or ASL_clacha solves an algebraic equation having complex coefficients. (The coefficients and the roots are stored in complex arrays.)
(2) Usage

Double precision:
ierr \(=\) ASL_zlacha (ca, n, \&nev, cx, wk, cwk);
Single precision:
ierr \(=\) ASL_clacha (ca, n, \&nev, cx, wk, cwk);
(3) Arguments and Return Value
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & ca & \(\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}\) & \(\mathrm{n}+1\) & Input & Coefficients of the algebraic equation stored in the descending powers of \(x\); ca \([0]\) is the coefficient of \(x^{\mathrm{n}}\), and ca[n] is the constant term. \\
\hline 2 & n & I & 1 & Input & Degree of algebraic equation \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{nev} & \multirow[t]{2}{*}{I*} & \multirow[t]{2}{*}{1} & Input & Maximum number of function evaluations (Default value: 100) \\
\hline & & & & Output & Actual number of function evaluations \\
\hline 4 & cx & \(\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}\) & n & Output & Roots of the algebraic equation \\
\hline 5 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \(\mathrm{n}+1\) & Work & Work area \\
\hline 6 & cwk & \(\left\{\begin{array}{l}\mathrm{Z} * \\ \mathrm{C} *\end{array}\right\}\) & \(4 \times(\mathrm{n}+1)\) & Work & Work area \\
\hline 7 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{ca}[0] \neq(0,0)\)
(b) \(\mathrm{n} \geq 1\)
(c) nev \(>0\) (except when 0 is entered in order to set nev to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & Restriction (c) was not satisfied. & \begin{tabular}{l}
Processing is performed with the default \\
value set for nev.
\end{tabular} \\
\hline \(2000+i\) & \begin{tabular}{l}
After the first \(i\) roots were obtained, con- \\
vergence did not occur within the maxi- \\
mum number of function evaluations.
\end{tabular} & \begin{tabular}{l}
Processing terminates with roots after the \\
first \(i\) roots not converging.
\end{tabular} \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) If 0 is entered for the argument nev, then the default value will be set.
(b) If there is a multiple root, then the relative precision for a root having multiplicity \(n\) will be on the order of \(\sqrt[n]{\text { Unit for determining error. }}\)
(7) Example
(a) Problem

Solve the following equation:
\[
x^{10}-100 \sqrt{-1} x^{9}-17 x^{6}+1700 \sqrt{-1} x^{5}+16 x^{2}-1600 \sqrt{-1} x=0
\]
(b) Input data

Array ca which contain coefficients of the algebraic equations:
\[
\begin{aligned}
\mathrm{ca}[0] & =(1.0,0.0), & \mathrm{ca}[1]=(0.0,-100.0), \\
\mathrm{ca}[2] & =(0.0,0.0), & \mathrm{ca}[3]=(0.0,0.0), \\
\mathrm{ca}[4] & =(-17.0,0.0), & \mathrm{ca}[5]=(0.0,1700.0), \\
\mathrm{ca}[6] & =(0.0,0.0), & \mathrm{ca}[7]=(0.0,0.0), \\
\mathrm{ca}[8] & =(16.0,0.0), & \mathrm{ca}[9]=(0.0,-1600.0), \\
\mathrm{ca}[10]=(0.0,0.0) . & & \\
\mathrm{n}=10 \text { and nev=0. } & &
\end{aligned}
\]
(c) Main program
```

/* C interface example for ASL_zlacha *
\#include <stdio.h>
\#include <stdlib.h>
\#include <complex.h>
\#include <asl.h>
int main()
double _Complex *ca;
int n;
double _Complex *cx;
double *wk;
double _Complex *cwk;
int ierr`;
int i;
FILE *fp;
fp = fopen( "zlacha.dat", "r" );
if( fp == NULL )
{
printf( "file open error\n" );
}
printf( " *** ASL_zlacha ***\n" );
printf( "\n ** Input **\n\n" );
fscanf( fp, "%d", \&n );

```
```

fscanf( fp, "%d", \&nev );
ca = ( double _Complex * )malloc((size_t)( sizeof(double _Complex) * (n+1) ));
if( ca == NULL )
printf( "no enough memory for array ca\n" );
return -1;
}
cx = ( double _Complex * )malloc((size_t)( sizeof(double _Complex) * n ));
if( cx == NULL )
printf( "no enough memory for array cx\n" );
return -1;
}
cwk = ( double _Complex * )malloc((size_t)( sizeof(double _Complex) * (4*(n+1)) ));
if( cwk == NULL )
printf( "no enough memory for array cwk\n" );
return -1;
}
wk = ( double * )malloc((size_t)( sizeof(double) * (n+1) ));
if( wk == NULL )
printf( "no enough memory for array wk\n" );
}
printf( "\tDegree of Algebraic Equation = % 6d\n", n );
printf( "\n\tMaximum Number of Function Evaluation = %6d\n", nev );
printf( "\n\tCoefficients of Algebraic Equation\n\n" );
printf( "\t Real Part Imaginary Part\n" );
for( i=0 ; i<n+1 ; i++ )
double tmp_re, tmp_im;
fscanf( fp, "%lf,%lf", \&tmp_re ,\&tmp_im);
ca[i] = tmp_re + tmp_im * _Complex_I;
printf( "\t%15.3g %15.3g\n", creal(ca[i]),cimag(ca[i]) );
}
fclose( fp );
ierr = ASL_zlacha(ca, n, \&nev, cx, wk, cwk);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\tPractical Number of Function Evaluations =%6d\n",nev );
printf( "\n\tRoots\n\n" );
printf( "\t Real Part Imaginary Part\n" );
for( i=0 ; i<n ; i++ )
printf( "\t%15.3g %15.3g\n", creal(cx[i]),cimag(cx[i]) );
}
free( ca );
free( cx )
free( wk )
free( cwk );
return 0;
(d) Output results

```
\begin{tabular}{rr}
Real Part & Imaginary Part \\
1 & 1 \\
11 & -1 \\
123 & 493 \\
\(-3.07 e+03\) & \(1.45 \mathrm{e}+03\) \\
\(-1.52 \mathrm{e}+04\) & \(-8.49 \mathrm{e}+03\) \\
\(2.47 \mathrm{e}+04\) & \(-4.29 \mathrm{e}+04\)
\end{tabular}
```

*** ASL_zlacha ***

```
*** ASL_zlacha ***
 ** Input **
 ** Input **
Degree of Algebraic Equation = 5
Degree of Algebraic Equation = 5
Maximum Number of Function Evaluation = 0
Maximum Number of Function Evaluation = 0
Coefficients of Algebraic Equation
Coefficients of Algebraic Equation
** Output **
** Output **
ierr = 0
```

ierr = 0

```
\}

Practical Number of Function Evaluations \(=6\)
Roots

\subsection*{4.3 NONLINEAR EQUATIONS}

\subsection*{4.3.1 ASL_dlnrds, ASL_rlnrds}

\section*{A Root of a Real Function (Initial Value Specified; Derivative Definition Required)}

\section*{(1) Function}

ASL_dlnrds or ASL_rlnrds obtains a root of a nonlinear equation from an initial value, when the derivative of the nonlinear equation is defined.
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_dlnrds (f, df, \&x, er, nev); }
\]

Single precision:
ierr = ASL_rlnrds (f, df, \&x, er, nev);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & f & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & - & Input & Name \(f(x)\) of function that defines the equation \\
\hline 2 & df & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & - & Input & Name \(\operatorname{df}(\mathrm{x})\) of function that defines the derivative \\
\hline 3 & x & \{ \(\mathrm{D} *\}\) & 1 & Input & Initial value of root \\
\hline & & \{ \(\mathrm{R} *\}\) & & Output & Root \\
\hline 4 & er & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & 1 & Input & \begin{tabular}{l}
Required precision \\
(Default value: (Unit for determining error) \(\times 64\))
\end{tabular} \\
\hline 5 & nev & I* & 2 & Input & \begin{tabular}{l}
nev[0]: Maximum number of function evaluations (Default value: 100) \\
nev[1]: Maximum number of derivative evaluations (Default value: 100)
\end{tabular} \\
\hline & & & & Output & nev[0]: Actual number of function evaluations nev[1]: Actual number of derivative evaluations \\
\hline 6 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(\operatorname{nev}[0]>0\) (except when 0 is entered in order to set nev \([0]\) to the default value)
(b) \(\operatorname{nev}[1]>0\) (except when 0 is entered in order to set nev[1] to the default value)
(c) er \(\geq\) Unit for determining error
(except when 0 is entered in order to set er to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & \begin{tabular}{l}
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & \begin{tabular}{l}
Processing is performed with the default \\
value set for nev[0], nev[1] or er.
\end{tabular} \\
\hline 4000 & The root could not be obtained. & Processing is aborted. \\
\hline 5000 & \begin{tabular}{l}
The root could not be obtained before the \\
maximum number of function evaluations \\
or maximum number of derivative evalu- \\
ations was reached.
\end{tabular} & The value of x at that time is returned. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) These functions should be created as follows.

Function creation method
```

double FORTRAN f(double * x)
{
return (f(*x));
}
double FORTRAN df(double * x)
{
return (f'(*x));
}

```
(b) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(c) The function algorithm has global convergency so that the problem can be solved even if the initial value is distant from the root.
(d) Convergence is considered to have occurred when the following relationships hold:
\[
\mid \text { (Root update amount) } \mid<\mathrm{er} \times \max (1, \mid \text { Root value } \mid)
\]
and
\[
\mid \text { Function value } \mid<\mathrm{er}+64 \times(\text { Unit for determining error }) \times \mid \text { Root value } \mid
\]

\section*{(7) Example}
(a) Problem

Obtain one root of the following equation:
\(\left\{\begin{array}{l}\mathrm{f}=\mathrm{x}^{7}+28 \mathrm{x}^{4}-483.809683=0 \\ \mathrm{f}^{\prime}=7 \mathrm{x}^{6}+112 \mathrm{x}^{3}\end{array}\right.\)
(b) Input data

Function name corresponding to function \(f(x)\) : f1
Function name corresponding to derivative \(f^{\prime}(x)\) : \(f 2\)
\(x=-1.0, \operatorname{er}=0.0, \operatorname{nev}[0]=0\) and \(\operatorname{nev}[1]=0\).
(c) Main program
```

/* C interface example for ASL_dlnrds */
\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include <asl.h>
\#ifdef
\#endif
\#endif \#ifdef __STDC_
\#ifdef _-STDC (-̄- f1(double *x)
\#else fle f1(x)
double *x;
\#endif
{
return (pow ((*x),7.0)+28.0*pow((*x),4.0)-483.809683);
}
} \#endif
\#ifdef --cplusplus
exter
\#endif
\#ifdef STDC
double -- f2(double *x)
\#else
double f2(x)
double *x;
\#endif
return (7.0*pow((*x),6.0)+112.0*pow((*x),3.0));
}
\#ifdef __cplusplus
}
\#endif
int main()
double x;
double er
int m[2];
int ierr;
FILE *fp;
fp = fopen( "dlnrds.dat", "r" );
if( fp == NULL )
{
printf( "file open error\n" );
}
printf( " *** ASL_dlnrds ***\n" );
printf( "\n ** Input **\n\n" );
fscanf( fp, "%d", \&m[0] );
fscanf( fp, "%d", \&m[1] );
fscanf( fp, "%lf", \&er );
fscanf( fp, "%lf", \&x );

```
```

printf( "\tMaximum Number of Function Evaluations =%6d\n", m[0] );
printf( "\tMaximum Number of Derivative Evaluations =%6d\n", m[1] );
printf( "\tRequired Accuracy =%%.3g\n", er );
printf( "\tInitial Value of Root =%%.3g\n", x );
fclose( fp );
ierr = ASL_dlnrds(f1, f2, \&x, er, m);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\tPractical Number of Function Evaluations =%6d\n", m[0] );
printf( "\tPractical Number of Derivative Evaluations =%6d\n", m[1] );
printf( "\tRoot =%8.3g\n", x );
return 0;

```
\}
(d) Output results
```

*** ASL_dlnrds ***

```
** Input **
Maximum Number of Function Evaluations \(=\)
Maximum Number of Derivative Evaluations \(=0\)
Required Accuracy =
Initial Value of Root \(=-1\)
** Output **
ierr \(=0\)
Practical Number of Function Evaluations \(=36\)
Practical Number of Derivative Evaluations \(=36\)
Root \(=1.93\)

\subsection*{4.3.2 ASL_dlnris, ASL_rlnris \\ A Root of a Real Function (Initial Value Specified; Derivative Definition Not Required)}
(1) Function

ASL_dlnris or ASL_rlnris obtains a root of nonlinear equation from an initial value, when the derivative of the nonlinear equation is not given.
(2) Usage

Double precision:
ierr \(=\) ASL_dlnris (f, \&x, er, \&nev);
Single precision:
ierr = ASL_rlnris (f, \&x, er, \&nev);
(3) Arguments and Return Value
\begin{tabular}{l}
\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular} \\
\begin{tabular}{|c|c|c|c|c|l|}
Z:Double precision complex \\
C:Single precision complex
\end{tabular} \\
\hline No. \begin{tabular}{l}
Argument and \\
Return Value
\end{tabular} \\
\hline 1
\end{tabular}

\section*{(4) Restrictions}
(a) nev \(>0\) (except when 0 is entered in order to set nev to the default value)
(b) er \(\geq\) Unit for determining error
(except when 0 is entered in order to set er to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & Restriction (a), (b) was not satisfied. & \begin{tabular}{l}
Processing is performed with the default \\
value set for nev or er.
\end{tabular} \\
\hline 4000 & The root could not be obtained. & Processing is aborted. \\
\hline 5000 & \begin{tabular}{l}
The root could not be obtained before the \\
maximum number of function evaluations \\
or maximum number of derivative evalu- \\
ations was reached.
\end{tabular} & The value of x at that time is returned. \\
\hline
\end{tabular}
(6) Notes
(a) These functions should be created as follows.

Function creation method
```

double FORTRAN f(double * x)
{
return(f(*x));
}

```
(b) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(c) The function algorithm has global convergency so that the problem can be solved even if the initial value is distant from the root.
(d) Convergence is considered to have occurred when the following relationships hold:
\[
\mid \text { (Root update amount) } \mid<\mathrm{er} \times \max (1, \mid \text { Root value } \mid)
\]
and
\(\mid\) Function value \(\mid<\mathrm{er}+64 \times\) (Unit for determining error \() \times \mid\) Root value \(\mid\)
(7) Example
(a) Problem

Obtain one root of the following equation:
\[
f=\exp (0.01 x)+3-(x-231)(x-597)=0
\]
(b) Input data

Function name corresponding to function \(f(x): \mathrm{f}\)
\(\mathrm{x}=0.0\), er=0.0 and nev=0.
(c) Main program
```

/* C interface example for ASL_dlnris */
\#include <stdio.h>
\#include <stdlib.h>
\#include <stdlib.h>
\#include <math.h>
\#include <asl.h>
\#ifdef "-cplusplus
exter
{
\#endif
\#ifdef __STDC
double }\overline{\textrm{f}}(\textrm{d
\#else
double f(x)
double *x;
\#endif
return exp(0.01*(*x))+(3.0)-((*x)-231.0)*((*x)-597.0);
}
\#ifdef __cplusplus

# \#endif

int main()
double x;
double er;
int m;
int ierr;
FILE *fp;
fp = fopen( "dlnris.dat", "r" );
if( fp == NULL )
{
printf( "file open error\n" );
return -1;
}
printf( " *** ASL_dlnris ***\n" );
printf( "\n ** Input **\n\n" );
fscanf( fp, "%d", \&m );
fscanf( fp, "%lf", \&er);
fscanf( fp, "%lf", \&x );
printf( "\tMaximum Number of Function Evaluations =%6d\n", m );
printf( "\tRequired Accuracy =% 8.3g\n", er );
printf( "\tInitial Value of Root =%8.3g\n", x );
fclose( fp );
ierr = ASL_dlnris(f, \&x, er, \&m);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\tPractical Number of Function Evaluations =%6d\n", m );
printf( "\tRoot =%8.3g\n", x );
return 0;
}

```
(d) Output results
```

*** ASL_dlnris ***
** Input **
Maximum Number of Function Evaluations = 0
Required Accuracy =
Initial Value of Root = 0
** Output **
ierr = 0
Practical Number of Function Evaluations = 10
Root = 231

```

\subsection*{4.3.3 ASL_dlnrss, ASL_rlnrss}

\section*{A Root of a Real Function (Interval Specified; Derivative Definition Not Required)}

\section*{(1) Function}

ASL_dlnrss or ASL_rlnrss obtains a root of a nonlinear equation within an interval in which the function sign changes.
(2) Usage

Double precision:
ierr \(=\) ASL_dlnrss (f, ax, bx, er, \&x);
Single precision:
ierr \(=\) ASL_rlnrss (f, ax, bx, er, \&x);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline & ble precision re gle precision rea & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & f & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & - & Input & Name of function \(f(x)\) that defines the equation \\
\hline 2 & ax & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Left end of interval that encloses root \\
\hline 3 & bx & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Right end of interval that encloses root \\
\hline 4 & er & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Required precision (Default value:(Unit for determining error) \(\times 64\)) \\
\hline 5 & x & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Root \\
\hline 6 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) er \(\geq\) Unit for determining error (except when 0.0 is entered in order to set er to the default value)
(b) \(a x \neq b x\)
(c) \(\mathrm{f}(\mathrm{ax}) \times \mathrm{f}(\mathrm{bx}) \leq 0.0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & Restriction (a) was not satisfied. & \begin{tabular}{l}
Processing is performed with the default \\
value set for er.
\end{tabular} \\
\hline 3000 & Restriction (b) or (c) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) This function should be created as follows.
```

double FORTRAN f(double * x)
{
return(f(*x));
}

```
(b) If 0.0 is entered for argument er, then the default value will be set.
(c) The problem can be solved even if ax is the right end of the interval and bx is the left end.
(d) Convergence is considered to have occurred when the following relationship holds:
\(\mid\) Interval that encloses root \(\mid<\mathrm{er}+2 \times\) (Unit for determining error) \(\times\) Root value

\section*{(7) Example}
(a) Problem

Obtain one root of the following equation:
\[
f=\exp (0.01 x)+3-(x-231)(x-597)=0
\]
(b) Input data

Function name corresponding to function \(f(x)\) : f
\(a x=-200.0, b x=240.0\) and \(\mathrm{er}=0.0\).
(c) Main program
```

/* C interface example for ASL_dlnrss */
\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include <asl.h>
\#ifdef -"cplusplus
extern
{
\#ifdef __STDC
double f(double
\#else
double f(x)
double *x;
\#endif
{
return exp(0.01*(*x))+(3.0)-((*x)-231.0)*((*x)-597.0);
}
\#ifdef __cplusplus

# \#endif

```
```

int main()
double ax
double bx
double er;
double x;
int ierr;
FILE *fp;
fp = fopen( "dlnrss.dat", "r" );
if( fp == NULL )
{
printf( "file open error\n" );
return -1;
}
printf( " *** ASL_dlnrss ***\n" );
printf( "\n ** Input **\n\n" );
fscanf( fp, "%lf", \&er );
fscanf( fp, "%lf", \&ax );
fscanf( fp, "%lf", \&bx );
printf( "\tRequired Accuracy =%8.3g\n", er );
printf( "\n\tInterval in Which Roots Exist\n" );
printf( "\t ax=%8.3g\n", ax );
printf( "\t bx=%8.3g\n", bx );
fclose( fp );
ierr = ASL_dlnrss(f, ax, bx, er, \&x);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\tRoot =%8.3g\n", x );
return 0;
}

```
(d) Output results
```

*** ASL_dlnrss ***
** Input **

```
Required Accuracy \(=0\)
Interval in Which Roots Exist
 \(\begin{array}{ll}\mathrm{ax}= & -200 \\ \mathrm{bx}= & 240\end{array}\)
 ** Output **
ierr \(=0\)
Root \(=231\)

\subsection*{4.3.4 ASL_dlnrsa, ASL_rlnrsa}

\section*{All Roots of a Real Function (Interval Specified; Derivative Definition Not Required)}
(1) Function

ASL_dlnrsa or ASL_rlnrsa obtains all roots of a nonlinear equation within an interval.
(2) Usage

Double precision:
ierr \(=\) ASL_dlnrsa (f, ax, bx, er, \&nev, x, \&m);
Single precision:
\[
\text { ierr }=\text { ASL_rlnrsa }(f, a x, b x, \text { er, \&nev, x, \&m); }
\]
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
uble precision rea \\
gle precision real
\end{tabular} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & f & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & - & Input & Name of function \(f(x)\) that defines the equation \\
\hline 2 & ax & \(\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Left end of interval that encloses root \\
\hline 3 & bx & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Right end of interval that encloses root \\
\hline 4 & er & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Required precision (Default value:(Unit for determining error) \(\times 64\)) \\
\hline 5 & nev & I* & 1 & Input & Maximum number of function evaluations (Default value: 100) \\
\hline & & & & Output & Actual number of function evaluation \\
\hline 6 & x & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Output & Root \\
\hline 7 & m & I* & 1 & Input & Maximum number of roots to be obtained \\
\hline & & & & Output & Number of roots obtained \\
\hline 8 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) er \(\geq\) Unit for determining error
(except when 0.0 is entered in order to set er to the default value)
(b) nev \(>0\)
(except when 0 is entered in order to set nev to the default value)
(c) \(\mathrm{m}>0\)
(d) \(a x \neq b x\)
(e) \(a x<b x\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1200 & Restriction (e) was not satisfied. & Processing is performed with ax and bx being switched. \\
\hline 1500 & Restriction (a) or (b) was not satisfied. & Processing is performed with the default value set for er or nev. \\
\hline 2000 & The maximum number of function evaluations was reached. & \multirow[t]{2}{*}{The m roots that were obtained are output, and processing is aborted.} \\
\hline 2500 & The number of roots exceeded the maximum number of roots m . & \\
\hline 3000 & Restriction (c) or (d) was not satisfied. & \multirow[t]{2}{*}{Processing is aborted.} \\
\hline 4000 & The root could not be obtained. & \\
\hline
\end{tabular}
(6) Notes
(a) This function should be created as follows.
```

double FORTRAN f(double * x)
{
return(f(*x));
}

```
(b) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(c) Convergence is considered to have occurred when the following relationships hold:

Rootupdateamount \(\mid<\) er \(\times \max (1, \mid\) Rootvalue \(\mid)\}\)
and
\[
\{\mid \text { Functionvalue } \mid<\text { er }+64 \times(\text { Unit for determining error }) \times \mid \text { Rootvalue } \mid\}
\]
(d) Since two roots that are closer together than
\[
\begin{aligned}
& \max (2 \times(\text { Required precision }), \\
& (|\mathrm{A}|+|\mathrm{B}|) \times(\text { Unit for determining error }), \\
& \sqrt[3]{(\text { Unit for determining error })})
\end{aligned}
\]
cannot be isolated, one of these roots may not be obtained.

\section*{(7) Example}
(a) Problem

Obtain all roots of the following equation:
\[
f=\exp (0.01 x)+3-(x-231)(x-597)=0
\]
(b) Input data

Function name corresponding to integrand \(f(x)\) : f
\[
a x=-200.0, b x=800.0, \text { er }=0.0, \text { nev }=0 \text { and } m=15 .
\]
(c) Main program
```

/* C interface example for ASL_dlnrsa */

```
\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include <asl.h>
\#ifdef \(\overline{\text { extern }}\) " Cpl "
\{xter
\#endif
\#ifdef STDC
double \(\overline{\mathrm{f}}\) (double \(* \mathrm{x}\))
\#else
double \(f(x)\)
double \(* x\);
\#endif
 return \(\exp (0.01 *(* \mathrm{x}))+(3.0)-((* \mathrm{x})-231.0) *((* \mathrm{x})-597.0)\);
\}
\#ifdef __cplusplus
\#
int main()
 double ax;
 double bx;
 double er
 int nev;
 double *x
 int m;
 int ierr;
 int i;
 FILE *fp;
 fp = fopen("dlnrsa.dat", "r");
 if (\(\mathrm{fp}==\mathrm{NULL}\))
 printf("file open error\n");
 return -1
 \}
 printf(" \(\quad * * *\) ASL_dlnrsa \(* * * \backslash n^{\prime \prime}\));
 printf("\n \(\quad * *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
 fscanf(fp, "\%d", \&nev);
 fscanf(fp, "\%lf", \&er);
 fscanf(fp, "\%d", \&m);
 fscanf(fp, "\%lf", \&ax)
 fscanf(fp, "\%lf", \&bx)
 \(\mathrm{x}=(\operatorname{double} *)\) malloc \(((\) size_t) \((\operatorname{sizeof}(\) double \() * \mathrm{~m}))\);
 if \((x\) double * \(x\))
 printf("no enough memory for array \(x \backslash n "\));
 return -1 ;
 \}
```

        printf( "\tMaximum Number of Function Evaluations =%6d\n", nev );
        printf( "\tRequired Accuracy =% %.3g\n", er );
        printf( "\n\tInterval in Which Roots Exist\n" );
        printf( "\t ax=%8.3g\n", ax );
        printf( "\t bx=%8.3g\n", bx );
        fclose( fp );
        ierr = ASL_dlnrsa(f, ax, bx, er, &nev, x, &m);
        printf( "\n ** Output **\n\n" );
        printf( "\tierr = %6d\n", ierr );
        printf( "\n\tPractical Number of Function Evaluations =%6d\n", nev );
        printf( "\n\tRoots\n");
        for( i=0 ; i<m ; i++ )
            printf( "\t%8.3g\n", x[i] );
        }
        free( x );
    return 0;
}
(d) Output results

```
```

*** ASL_dlnrsa ***

```
*** ASL_dlnrsa ***
** Input **
** Input **
Maximum Number of Function Evaluations = 0
Maximum Number of Function Evaluations = 0
Required Accuracy =
Required Accuracy =
Interval in Which Roots Exist
Interval in Which Roots Exist
 ax= -200
 ax= -200
** Output **
** Output **
ierr = 0
ierr = 0
Practical Number of Function Evaluations = 98
Practical Number of Function Evaluations = 98
Roots
Roots
 231
```

    231
    ```

\subsection*{4.3.5 ASL_zlncis, ASL_clncis}

\section*{A Root of a Complex Function (Initial Value Specified; Derivative Definition Not Required)}
(1) Function

ASL_zlncis or ASL_clncis obtains a root of a complex nonlinear equation from an initial value, when the derivative of the nonlinear equation is not given.
(2) Usage

Double precision:
ierr \(=\) ASL_zlncis (f, \&cx, er, \&nev);
Single precision:
```

ierr = ASL_clncis (f, \&cx, er, \&nev);

```
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & f & - & - & Input & Function name of function \(f(x, y)\) that defines the equation \\
\hline 2 & cx & \{ \(\mathrm{Z} *\) & 1 & Input & Initial value of root \\
\hline & & C* & & Output & Root \\
\hline 3 & er & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Required precision (Default value:(Unit for determining error) \(\times 64\)) \\
\hline 4 & nev & I* & 1 & Input & Maximum number of function evaluations (Default value: 100) \\
\hline & & & & Output & Actual number of function evaluation \\
\hline 5 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) nev \(>0\)
(except when 0 is entered in order to set nev to the default value)
(b) er \(\geq\) Unit for determining error
(except when 0.0 is entered in order to set er to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & Restriction (a) or (b) was not satisfied. & \begin{tabular}{l}
Processing is performed with the default \\
value set for nev or er.
\end{tabular} \\
\hline 4000 & A zero-division error occurred. & Processing is aborted. \\
\hline 5000 & \begin{tabular}{l}
The root could not be obtained before the \\
maximum number of function evaluations \\
was reached.
\end{tabular} & The value of cx at that time is returned. \\
\hline
\end{tabular}
(6) Notes
(a) This function should be created as follows.
```

/ * C interface example for ASL_zincis */
\#include < stdio.h >
\#include < complex.h >
\#include < asl.h >
void FORTRAN f (double _Complex *x, double _Complex *y)
{
*y = ~
return;
}
int main()
{
2
ierr = ASL_zincis(f,\&cx, er, \&nev);
2
}

```
(b) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(c) Convergence is considered to have occurred when the following relationships hold:
\(\mid\) Rootupdateamount \(\mid<\mathrm{er} \times \max (1, \mid\) Rootvalue \(\mid)\}\)
and
\(\{\mid\) Functionvalue \(\mid<\) er \(+64 \times(\) Unit for determining error \() \times \mid\) Rootvalue \(\mid\}\)

\section*{(7) Example}
(a) Problem

Obtain one root of the following equation:
\[
f=x^{10}-1=0
\]
(b) Input data

Function name corresponding to integrand \(f(x)\) : f
\(\mathrm{cx}=(1.0,-1.0), \mathrm{er}=1.0 \mathrm{e}-10\) and nev \(=100\).
(c) Main program
/* C interface example for ASL_zlncis */
\#include <stdio.h>
\#include <math.h>
\#include <complex.h>
\#include <asl.h>
\#ifdef \(\overline{\text { extern }} \overline{\mathrm{C}}\) " "plusplus
\{x
\#endif
void \(\quad f(\) double _Complex \(* x\), double _Complex \(* y)\)
र \({ }^{\text {void }}\)
double _Complex temp;
int i;
temp \(=(* x) *(* x)\);
for (\(\quad \mathrm{i}=3\); i<11 ; \(\quad\) i \(i++\))
returemp-1.0;
\}
\#ifdef __cplusplus
\}
\#endif
int main()
double _Complex cx;
double er;
int nev;
int ierr;
FILE *fp;
fp = fopen("zlncis.dat", "r");
if (\(\mathrm{fp}==\) NULL)
\{
printf("file open error\n");
\}
printf(" \(\quad\) *** ASL_zlncis \(* * * \backslash \mathrm{n} ")\);
printf("\n \(\quad * *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
fscanf(fp, "\%d", \&nev);
fscanf(fp, "\%lf", \&er);
double tmp_re, tmp_im;
fscanf(fp, "\%lf", \&tmp_re);
fscanf(fp, "\%lf", \&tmp_im);
cx = tmp_re + tmp_im * _Complex_I;
printf("\tMaximum Number of Function Evaluations =\%6d\n", nev);
printf("\n\tRequired Accuracy \(=\% 8.3 \mathrm{~g} \backslash \mathrm{n}\) ", er) ;
printf("\n\tInitial Value of Root \(\backslash n "\));
printf("\tReal Part Imaginary Part\n");
printf("\t\%8.3g\t \%8.3g\n", creal(cx) , cimag(cx));
fclose(fp);
ierr = ASL_zlncis(f, \&cx, er, \&nev);
printf("\n ** Output **\n\n");
printf("\tierr \(=\% 6 d \backslash n "\), ierr);
printf("\n\tPractical Number of Function Evaluations =\%6d\n", nev);
printf("\n\tRoot\n");
printf("\tReal Part Imaginary Part\n");
printf("\t\%8.3g\t \%8.3g\n", creal(cx) , cimag(cx))
return 0;
\}
(d) Output results
```

*** ASL_zlncis ***
** Input **
Maximum Number of Function Evaluations = 100
Required Accuracy = 1e-10
Initial Value of Root
Real Part 1 Imaginary Part
** Output **
ierr = 0
Practical Number of Function Evaluations = 11
Root
Real Part Imaginary Part
0.809
0.588

```

\subsection*{4.4 SETS OF SIMULTANEOUS NONLINEAR EQUATIONS}

\subsection*{4.4.1 ASL_dlsrds, ASL_rlsrds \\ A Root of a Set of Simultaneous Nonlinear Functions (Jacobian Matrix Optional)}
(1) Function

ASL_dlsrds or ASL_rlsrds obtains a root of a set of simultaneous nonlinear equations, either when the Jacobian matrix is defined or when it is not defined.
(2) Usage

Double precision: ierr = ASL_dlsrds (sub, subj, x, n, er, nev, isw, iwk, wk, dwk);
Single precision:
ierr \(=\) ASL_rlsrds (sub, subj, x, n, er, nev, isw, iwk, wk, dwk);

\section*{(3) Arguments and Return Value}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R :Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & sub & - & - & Input & Name of function \(\operatorname{sub}(x, n, f)\) that defines the n nonlinear equations. \\
\hline 2 & subj & - & - & Input & Name of function \(\operatorname{subj}(x, n\), a) that defines the Jacobian matrix. \\
\hline 3 & x & & n & Input & Initial value of root \\
\hline & & & & Output & Root \\
\hline 4 & n & I & 1 & Input & Number of simultaneous nonlinear equations \\
\hline 5 & er & \(\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & \begin{tabular}{l}
Required precision \\
(Default value: (Unit for determining error) \(\times 64\))
\end{tabular} \\
\hline 6 & nev & I* & 2 & Input & \begin{tabular}{l}
nev[0]: Maximum number of function evaluations (Default value: \(100 \times \mathrm{n}\)) \\
nev[1]: Maximum number of Jacobian matrix evaluations (Default value: \(100 \times \mathrm{n}\))
\end{tabular} \\
\hline & & & & Output & \begin{tabular}{l}
nev[0]: Actual number of function evaluations \\
nev[1]: Actual number of Jacobian matrix evaluations
\end{tabular} \\
\hline 7 & isw & I & 1 & Input & ```
Input switch
isw \(=0\) : Jacobian matrix is automatically
calculated
isw \(\neq 0\) : User-defined function that creates
Jacobian matrix is used
(See Notes (b))
``` \\
\hline 8 & iwk & I* & n & Work & Work area \\
\hline 9 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size: \(\mathrm{n} \times(\mathrm{n}+3)\)
\end{tabular} \\
\hline 10 & dwk & D* & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area. This array is double precision real. \\
Size: \(\mathrm{n} \times(2 \times \mathrm{n}+2)\)
\end{tabular} \\
\hline 11 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(\operatorname{nev}[0]>0\)
(except when 0 is entered in order to set nev[0] to the default value)
(b) \(\operatorname{nev}[1]>0\)
(except when 0 is entered in order to set nev[1] to the default value)
(c) er \(\geq\) Unit for determining error
(except when 0 is entered in order to set er to the default value)
(d) \(n>0\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|c|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & \begin{tabular}{l} 
Processing is performed with the default \\
value set for nev[0], nev[1] or er.
\end{tabular} \\
\hline 3000 & Restriction (d) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 4000 & \begin{tabular}{l} 
An error occurred when solving a set of \\
simultaneous linear equations.
\end{tabular} & \\
\hline 4500 & \begin{tabular}{l} 
The solution could not be updated be- \\
cause nonlinearity was too strong.
\end{tabular} & \\
\hline 5000 & \begin{tabular}{l} 
The solution could not be obtained before \\
the maximum number of function evalu- \\
ations or maximum number of Jacobian \\
matrix evaluations was reached.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) The functions should be created as follows.

If the set of simultaneous nonlinear equations is as follows:
\[
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \cdots, x_{N}\right)=0 \\
\vdots \\
f_{N}\left(x_{1}, \cdots, x_{N}\right)=0
\end{array}\right.
\]
then functionsub is written as follows:
```

void FORTRAN sub(double *x, int *n, double *f)
{
f[0] = f
\vdots
f[(*n)-1] = f(*n)}(\textrm{x}[0],\cdots,\textrm{x}[*\textrm{n}-1])

```
\}

If the Jacobian matrix \(A\) is defined as follows:
\[
A=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{1}}{\partial x_{N}} \\
\vdots & & & \vdots \\
\frac{\partial f_{N}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{N}}{\partial x_{N}}
\end{array}\right]=\left[\begin{array}{ccc}
a[0], & \cdots, & a[n *(n-1)] \\
\vdots & & \vdots \\
\vdots & & \vdots \\
a[n-1]), & \cdots, & a[n-1+n *(n-1)]
\end{array}\right]
\]
the functionsubj is written as follows
```

void FORTRAN subj(double *x, int *n, double *a)

```
\{
\[
\begin{aligned}
& \mathrm{a}[0]=\partial \mathrm{f}_{1} / \partial \mathrm{x}_{1} \\
& \mathrm{a}[(* \mathrm{n})-1]=\partial \mathrm{f}_{\mathrm{N}} / \partial \mathrm{x}_{1} \\
& \vdots \\
& \mathrm{a}[(* \mathrm{n}) *((* \mathrm{n})-1)]=\partial \mathrm{f}_{1} / \partial \mathrm{x}_{\mathrm{N}} \\
& \vdots \\
& \vdots \\
& \mathrm{a}[(* \mathrm{n}) *(* \mathrm{n})-1)]=\partial \mathrm{f}_{\mathrm{N}} / \partial \mathrm{x}_{\mathrm{N}}
\end{aligned}
\]
\}

Example: Assume that the set of simultaneous nonlinear equations is as follows:
\(\left\{\begin{array}{l}x_{1}+x_{2}+x_{3}=0 \\ x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=0 \\ x_{1} x_{2} x_{3}=0\end{array}\right.\)
and the Jacobian matrix a is as follows:
\(\mathrm{a}=\left[\begin{array}{ccc}1, & 1, & 1 \\ x_{2}+x_{3}, & x_{1}+x_{3}, & x_{1}+x_{2} \\ x_{2} x_{3}, & x_{1} x_{3}, & x_{1} x_{2}\end{array}\right]\)
Then the functions are written as follows:
```

void FORTRAN sub(double $* x$, int $*$ n, double $*$ f)
\{

$$
\begin{aligned}
& \mathrm{f}[0]=\mathrm{x}[0]+\mathrm{x}[1]+\mathrm{x}[2] ; \\
& \mathrm{f}[1]=\mathrm{x}[0]^{*} \mathrm{x}[1]+\mathrm{x}[1]^{*} \mathrm{x}[2]+\mathrm{x}[2]^{*} \mathrm{x}[0] ; \\
& \mathrm{f}[2]=\mathrm{x}[0]^{*} \mathrm{x}[1]^{*} \mathrm{x}[2] ;
\end{aligned}
$$

```
```

}
void FORTRAN subj(double *x, int *n, double *a)
{
a[0]= 1.0;
a[1]=x[1]+x[2];
a[2]= x[1]*x[2];
a[3]= 1.0;
a[4]=x[0]+x[2];
a[5]=x[0]*x[2];
a[6]= 1.0;
a[7]= x[0]+x[1];
a[8]=x[0]*x[1];
}

```
(b) If isw \(=0\), then the subj argument is a dummy argument and no corresponding function is required. Also, nev[1] need not be entered.
If isw \(\neq 0\), then a function having the actual name specified for subj must be created and nev[1] must be entered.
(c) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) Convergence is considered to have occurred for all roots or all function values when the following relationships hold:
\(\left\{\|\right.\) Rootupdateamount \(\|_{\infty}<\mathrm{er} \times \max \left(1, \|\right.\) Rootvalue \(\left.\left.\|_{\infty}\right)\right\}\)
and
\(\left\{\|\right.\) Functionvalue \(\left\|_{\infty}<\mathrm{er}+64 \times \varepsilon \times\right\|\) Rootvalue \(\left.\|_{\infty}\right\}\)

\section*{(7) Example}
(a) Problem

Solve the following set of simultaneous nonlinear equations:
\(\left\{\begin{array}{l}10\left(\mathrm{x}_{2}-\mathrm{x}_{1}^{2}\right)=0 \\ 1-\mathrm{x}_{1}=0\end{array}\right.\)
(b) Input data

Function name defining function \(\boldsymbol{f}(x)\) corresponding to nonlinear equations: f \(\mathrm{x}[0]=-1.2, \mathrm{x}[1]=1.0, \mathrm{n}=2\), er \(=0.0, \operatorname{nev}[0]=200, \operatorname{nev}[1]=200\) and isw \(=0\).
(c) Main program
```

/* C interface example for ASL_dlsrds */
\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include <asl.h>
\#ifdef __cplusplus

```
```

extern "C"
\#endif
\#ifdef _STDC
void \overline{f}
\#else f1(x,n,f)
double *x;
double *f;
int *n
\#endif
f[0]=10.0*(x[1]-x[0]*x[0])
f[1]=1.0-x[0];
\#if
\#ifdef __cplusplus
}
\#endif
\#ifdef "-cplusplus
ext
\#endif
\#ifdef __STDC
void \overline{f}2(doub\overline{le}*x,int *n,double *a)
\#else f2(x,n,a)
double *x;
double *a;
int *n

\#ifdef __cplusplus
}
\#endif
int main()
double *x
int n;
double er;
int nev[2];
int isw;
int *iwk;
double *wk;
double *dwk;
int ierr;
int i;
FILE *fp;
fp = fopen("dlsrds.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
return -1;
}
printf(" *** ASL_dlsrds ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&nev[0]);
fscanf(fp, "%d", \&nev[1]);
fscanf(fp, "%d", \&n);
iwk = (int *)malloc((size_t)(sizeof(int) * n));
if(iwk == NULL)
printf("no enough memory for array iwk\n");
}
x = (double *)malloc((size_t)(sizeof(double) * n));
f(x == NULL)
printf("no enough memory for array x\n");
return -1;
}
Wk = (double *)malloc((size_t)(sizeof(double) * (n*(n+3))));
if(wk == NULL)
printf("no enough memory for array wk\n");
return -1;
}
dwk = (double *)malloc((size_t)(sizeof(double) * (n*(2*n+2))));
if(dwk == NULL)
printf("no enough memory for array dwk\n");
return -1;
}
fscanf(fp, "%lf", \&er);
for(i=0 ; i<n ; i++)

```
```

 {
 }
 fscanf(fp, "%d", &isw);
 printf("\tMaximum Number of Functions Evaluations =%6d\n", nev[0]);
 printf("\tMaximum Number of Jacobian Evaluations =%6d\n", nev[1]);
 printf("\tNumber of Nonlinear Equations =%6d\n", n);
 printf("\tRequired Accuracy =%8.3g\n", er);
 printf("\n\tInitial Value of Root \n");
 for(i=0 ; i<n ; i++)
 printf("\t%8.3g\n", x[i]);
 }
 fclose(fp);
ierr = ASL_dlsrds(f1, f2, x, n, er, nev, isw, iwk, wk, dwk);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tPractical Number of Functions Evaluations =%6d\n", nev[0]);
printf("\tPractical Number of Jacobian Evaluations =%6d\n", nev[1]);
printf("\n\tRoot \n");
for(i=0 ; i<n ; i++)
printf("\t%8.3g\n", x[i]);
}
free(x);
free(iwk);
free(wk);
free(dwk);
return 0;
(d) Output results

```
```

*** ASL_dlsrds ***

```
*** ASL_dlsrds ***
    ** Input **
    ** Input **
Maximum Number of Functions Evaluations = 200
Maximum Number of Functions Evaluations = 200
Maximum Number of Jacobian Evaluations = 200
Maximum Number of Jacobian Evaluations = 200
Number of Nonlinear Equations = 2
Number of Nonlinear Equations = 2
Required Accuracy = Equatio
Required Accuracy = Equatio
Initial Value of Root
Initial Value of Root
    -1.2
    -1.2
    ** Output **
    ** Output **
ierr = 0
ierr = 0
Practical Number of Functions Evaluations = 66
Practical Number of Functions Evaluations = 66
Practical Number of Jacobian Evaluations = 0
Practical Number of Jacobian Evaluations = 0
Root
Root
    1
```

 1
    ```

\subsection*{4.4.2 ASL_dlsris, ASL_rlsris}

\section*{A Root of a Set of Simultaneous Nonlinear Functions (Jacobian Matrix Definition Not Required)}

\section*{(1) Function}

ASL_dlsris or ASL_rlsris obtains a root of a set of simultaneous nonlinear equations, when the Jacobian matrix is not defined.

\section*{(2) Usage}

Double precision:
ierr \(=\) ASL_dlsris (sub, x, n, er, \&nev, iwk, wk);
Single precision:
ierr \(=\) ASL_rlsris (sub, x, n, er, \&nev, iwk, wk);
(3) Arguments and Return Value
\begin{tabular}{l}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} \\
\begin{tabular}{|c|c|c|l|c|l|} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular} \\
\hline No. \(\left.\begin{array}{l}\text { I: }\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right. \\
\hline\end{array}\right\}\) \\
\hline 1
\end{tabular}

\section*{(4) Restrictions}
(a) nev \(>0\)
(except when 0 is entered in order to set nev to the default value)
(b) er \(\geq\) Unit for determining error
(except when 0 is entered in order to set er to the default value)
(c) \(\mathrm{n}>0\)

\section*{(5) Error indicator (Return Value)}
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & Restriction (a) or (b) was not satisfied. & \begin{tabular}{l} 
Processing is performed with the default \\
value set for nev or er.
\end{tabular} \\
\hline 3000 & Restriction (c) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline \(4000+\mathrm{i}\) & \begin{tabular}{l} 
The determinant of the Jacobian matrix \\
is 0. That is, \(i\) indicates the first \((i, i)\) \\
component of the Jacobian matrix to be \\
0.
\end{tabular} & \\
\hline 4500 & \begin{tabular}{l} 
A zero-division error occurred during the \\
calculation of the inverse matrix of the \\
Jacobian matrix or during the calculation \\
of the step size.
\end{tabular} & \multicolumn{2}{|c|}{} \\
\hline 5000 & \begin{tabular}{l} 
The solution could not be obtained before \\
the maximum number of function evalua- \\
tions was reached.
\end{tabular} & The value of x at that time is returned. \\
\hline
\end{tabular}
(6) Notes
(a) The functions should be created as follows.

If the set of simultaneous nonlinear equations is as follows:
\[
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \cdots, x_{N}\right)=0 \\
\vdots \\
f_{N}\left(x_{1}, \cdots, x_{N}\right)=0
\end{array}\right.
\]
then functionsub is written as follows:
```

void FORTRAN sub(double *x, int *n, double *f)
{
f[0] = f
f[(*n)-1] = f
}

```
(b) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(c) Although a solution can be obtained even if scaling is not performed for each of the equations in the set of simultaneous nonlinear equations, scaling should be performed to increase efficiency.
(d) Convergence is considered to have occurred for all roots or all function values when the following relationships hold:
\[
\left\{\| \text { Rootupdateamount } \|_{\infty}<\mathrm{er} \times \max \left(1, \| \text { Rootvalue } \|_{\infty}\right)\right\}
\]
and
\(\left\{\|\right.\) Functionvalue \(\|_{\infty}<\) er \(+64 \times \varepsilon \times \|\) Rootvalue \(\left.\|_{\infty}\right\}\)
(7) Example
(a) Problem

Solve the following set of simultaneous nonlinear equations:
\(\left\{\begin{array}{l}10\left(\mathrm{x}_{2}-\mathrm{x}_{1}^{2}\right)=0 \\ 1-\mathrm{x}_{1}=0\end{array}\right.\)
(b) Input data

Function name defining function \(\boldsymbol{f}(x)\) corresponding to nonlinear equations: f
\(\mathrm{x}[0]=-1.2, \mathrm{x}[1]=1.0, \mathrm{n}=2\), er=0.0 and nev=200.
(c) Main program
/* C interface example for ASL_dlsris */
\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include <asl.h>
\#ifdef \(\overline{\bar{C}} \overline{\mathrm{C}}\) "plusplus
exte
\#endi
\#ifdef __STDC
void \(\overline{\mathrm{f}}\) (double \(* \mathrm{x}\), int \(* \mathrm{n}\), double \(* \mathrm{f}\) )
\#els
void \(f(x, n, f)\)
double *x;
int *n
\#endif
\(\mathrm{f}[0]=10.0 *(\mathrm{x}[1]-\mathrm{x}[0] * \mathrm{x}[0]) ;\)
\(\mathrm{f}[1]=1.0-\mathrm{x}[0]\);
\#
\#ifdef __cplusplus
\}
\#endif
```

int main()
double *x;
int nn;
double ddps;
int m;
double *wk;
int ierr;
int i,nwk
FILE *fp;
fp = fopen("dlsris.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
return -1;
}
printf(" *** ASL_dlsris ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&m);
fscanf(fp, "%d", \& nn);
fscanf(fp, "%lf", \&ddps)
iwk = (int *)malloc((size_t)(sizeof(int) * (2*nn)));
if(iwk == NULL)
printf("no enough memory for array iwk\n");
return -1;
}

```
```

x = (double *)malloc((size_t)(sizeof(double) * nn));
if(x == NULL)
printf("no enough memory for array x\n");
return -1;
}
nwk=nn*(3*nn+7);
wk = (double *)malloc((size_t)(sizeof(double) * nwk));
if(wk == NULL)
printf("no enough memory for array wk\n");
return -1;
}
for(i=0 ; i<nn ; i++)
fscanf(fp, "%lf", \&x[i]);
}
printf("\tMaximum Number of Functions Evaluations =%6d\n", m);
printf("\tNumber of NOnlinear Evaluations =%6d\n", nn);
printf("\tRequired Accuracy =%8.3g\n", ddps);
printf("\n\tInitial Value of Root \n");
for(i=0 ; i<nn ; i++)
printf("\t%8.3g\n", x[i]);
}
fclose(fp);
ierr = ASL_dlsris(f, x, nn, ddps, \&m, iwk, wk);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\tPractical Number of Functions Evaluations =%6d\n", m);
printf("\n\tRoot \n");
for(i=0 ; i<nn ; i++)
printf("\t%8.3g\n", x[i]);
}
free(x);
free(iwk);
free(wk);
return 0;
(d) Output results

```
```

*** ASL_dlsris ***

```
*** ASL_dlsris ***
    ** Input **
    ** Input **
Maximum Number of Functions Evaluations = 200
Maximum Number of Functions Evaluations = 200
Number of NOnlinear Evaluations = 2
Number of NOnlinear Evaluations = 2
Required Accuracy =
Required Accuracy =
Initial Value of Root
Initial Value of Root
    -1.2
    -1.2
** Output **
** Output **
ierr = 0
ierr = 0
Practical Number of Functions Evaluations = 34
Practical Number of Functions Evaluations = 34
Root
Root
    1
```

 1
    ```

\section*{Chapter 5}

\section*{EXTREMUM PROBLEMS AND OPTIMIZATION}

\subsection*{5.1 INTRODUCTION}

This chapter explains functions for performing minimization of a function of one variable without constraints, minimization of a function of many variables without constraints, minimization of the sum of the squares of a function without constraints, minimization of a constrained function of one variable, minimization of a constrained linear function of many variables (linear programming, mixed 0-1 programming minimal-cost flow problem, project scheduling problem and transportation problem), minimization of a quadratic function of several variables (quadratic programming), minimization of a constrained function of several variables (nonlinear programming) and distance minimization on a graph (shortest path problem).
This library provides the following function for minimizing a function of one variable with no constraints.
(1) Minimization of a function of one variable

This function searches for the minimum value of a function of one variable by starting from a given initial point. This library provides the following functions for minimizing a function of many variables with no constraints.
(1) Minimization of a function of many variables (derivative definition unnecessary)
(2) Minimization of a function of many variables (derivative definition required)

These functions search for the minimum value of a function of many variables by starting from a given initial point. If the user cannot provide a function that calculates the gradient vector of the function, then the user can use the function for which the derivative definition is unnecessary. If the user can provide a function that calculates the gradient vector of the function, then the function for which the derivative definition is required will obtain better results.

This library provides the following function for minimizing the sum of the squares of a function with no constraints.
(1) Nonlinear least squares method (derivative function unnecessary)

This function searches for the minimum value of the sum of the squares of a function of \(m\) variables, by starting from a given initial point. The user need not provide a function that calculates the Jacobian matrix of the function.

This library provides the following function for minimizing a function of one variable with constraints.
(1) Minimization of a function of one variable (interval specified)

This function searches for the minimum value of a function of one variable within a given interval.
This library provides the following functions for minimizing a constrained linear function of several variables.
(1) Minimization of a constrained linear function of several variables (linear constraints)
(2) Minimization of a constrained linear function of several variables including 0-1 variables (linear constraints)
(3) Minimization of cost for flow in a network
(4) Minimization of cost for project scheduling
(5) Minimization of cost for transportation from supply place to demand place

These functions searches for the minimum value of a linear function of several variables within the given linear constraints (Linear programming, mixed 0-1 programming and minimal-cost flow problem).

This library provides the following functions for minimizing a quadratic function of several variables.
(1) Minimization of a constrained convex quadratic function of several variables (linear constraints)
(2) Minimization of a constrained generalized convex quadratic function of several variables (linear constraints)
(3) Minimization of an unconstrained 0-1 quadratic function of several variables

These functions search for the minimum value of a quadratic function of several variables within the given linear constraints (Quadratic programming).

This library provides the following function for minimizing a constrained function of several variables.
(1) Minimization of a constrained function of several variables (nonlinear constraints)

This function searches for the minimum value of a function of several variables within the given nonlinear constraints (Nonlinear programming).

This library provides the following functions for distance minimization on a graph.
(1) Distance minimization for a given node to the other nodes on a graph
(2) Distance minimization for all sets of two nodes on a graph
(3) Distance minimization for two nodes on a graph

These functions search minimum distance for the nodes on a graph. (Shortest path problem).

\subsection*{5.1.1 Notes}
(1) The search starting point should be located as close as possible to exact solution.
(2) An appropriate value for the required precision is on the order of the square root of the unit for determining error.
(3) When minimizing a function of many variables, scaling should be performed so that the contribution to the function value from each of the variables is on the same order. For example, if the problem is similar to \(f(x)=10000 x_{1}^{2}+x_{2}^{3}\), then better results will be obtained by transforming the variables according to \(y_{1}=100 x_{1}, y_{2}=x_{2}\) so that the problem becomes \(h(y)=y_{1}^{2}+y_{2}^{3}\).

\subsection*{5.1.2 Algorithms Used}

\subsection*{5.1.2.1 Minimization of a function of one variable}

This algorithm uses a combination of the golden section search method and successive parabolic interpolation. The search begins with a golden section search and switches to successive parabolic interpolation when possible. This algorithm is based on algorithms created by Brent (1973).
(1) Golden section search

The algorithm for reducing the interval according to a golden section is described below.
Assume that the interval to be reduced is \([a, b]\) and that the function value \(f(x)\) is calculated at a single point \(x\) within the interval \((a<x<b)\). If \(c=\frac{a+b}{2}\) is the midpoint of the interval, then for \(x<c\), the function value \(f(u)\) is calculated at the point \(u=x+r(b-x)\) where \(r=\frac{3-\sqrt{5}}{2}\). If \(f(x)<f(u)\), then \(b=u\) is set; otherwise, \(a=x\) and \(x=u\) are set. For \(x \geq c\), a similar procedure is followed. In this way, since the previously calculated function value can be used, the function should be calculated once for each reduction of the interval. If \(x=a+r(b-a)\) is taken initially, then the interval will continue to be reduced at a fixed rate of \(1-r\).
This algorithm converges with order 1.
(2) Successive parabolic interpolation

The algorithm for reducing the interval according to successive parabolic interpolation is described below.
Assume that the interval to be reduced is \([a, b]\). If function values have been calculated at three points \(v, w\) and \(x\), then a parabola is created that passes through the three points \((v, f(v)),(w, f(w))\) and \((x, f(x))\), and the X coordinate of its vertex is assumed to be \(u\). For \(x<u\), if \(f(x)<f(u)\), then \(b=u\) is set; otherwise \(a=x\) and \(x=u\) are set. For \(x \geq u\), a similar procedure is followed.
If \(f^{\prime \prime}(x)>0\) at the extremum and if the interpolation begins with a sufficiently good approximation, then it has been proven that the algorithm converges with order \(1.324 \cdots\).
(3) Switch from the golden section search to successive parabolic interpolation

When a new function value is calculated, \(v, w\) and \(x\) are updated to be the three points having the smallest function values among the function values calculated up to that time. If possible, the X coordinate \(u\) of the vertex of the parabola described above is calculated, and if the following condition is satisfied, then the algorithm switches from the golden section search to sequential parabolic interpolation.
\[
\begin{aligned}
& a<u<b \\
& |x-u|<\frac{b-a}{2}
\end{aligned}
\]
(4) Convergence decision

If the required precision is \(e_{r}\), then convergence is determined according to the following condition:
\[
\max (b-x, x-a) \leq 2 e_{r} \max (1,|x|)
\]
(5) Enclosure

Minimization without constraints is achieved by an enclosure operation that obtains an interval including the minimum point by beginning from an arbitrary starting point.
This algorithm is explained below.
(a) Obtain the direction of inclination at the starting point \(a\).
(b) Let the enclosure point \(b\) be at a distance \(D=\max \left(\sqrt{\varepsilon}|x|, 1.0,2 e_{r}|x|\right)\) in the direction of inclination.
(c) If the function value at point \(b\) is less than the function value at point \(a\), then a decision is made that there is no minimum point, point \(b\) is assumed to be point \(x\), and a new point \(b\) is set to enclose a wider interval extending to a width of \((3-r)(x-a)\) from point \(a\). In this way, the ratio \(b-a: x-a\) becomes the golden section ratio, that is, \(b-a: x-a=1: r\). If the function value at point \(b\) is greater than the function value at point \(a\), then since there is a minimum point in the interval \([a, b]\), the search will begin in this interval.
(d) If the function value at point \(b\) is less than the function value at point \(x\), then point \(x\) is assumed to be point \(a\), point \(b\) is assumed to be point \(x\), and a new point \(b\) is taken at a distance of \((3-r)(x-a)\) from point \(a\). The actions described in iv. are performed repeatedly in this way.
If the function value at point \(b\) is greater than the function value at point \(x\), then the search will begin in the interval \([a, b]\). At this time, a function value obtained in the enclosure can be used by letting point \(x\) be the point where the function value is calculated in the golden section search.


\subsection*{5.1.2.2 Minimization of a function of many variables}

Given a function \(f(\boldsymbol{x})\) of \(n\) variables, the problem is to obtain a value \(\boldsymbol{x}\) for which \(f(\boldsymbol{x})\) is a minimum. This value of \(\boldsymbol{x}\) will be the solution of the equation \(\nabla f(\boldsymbol{x})=0\). To solve this equation, the algorithm assumes that \(\boldsymbol{x}_{0}\) is the starting point and sequentially corrects an approximate solution.
Now, the search proceeds to the solution value \(\boldsymbol{x}\) by repeatedly attempting to obtain a next corrected solution \(\boldsymbol{x}^{\prime}\). The correction vector \(\boldsymbol{d}\) of Newton's method is given by the following equation:
\[
\boldsymbol{d}=-H \boldsymbol{g}
\]
where \(\boldsymbol{g}\) is the gradient vector \(\boldsymbol{g}=\nabla^{T} f(\boldsymbol{x})\) and \(H\) is the inverse matrix of the Hessian matrix \(B=\nabla^{2} f(\boldsymbol{x})\). (The notation \({ }^{T}\) indicates the transpose.) Actually, \(\boldsymbol{d}\) is taken to be the direction vector and the solution is corrected by performing a rectilinear search according to the following equation:
\[
\boldsymbol{x}^{\prime}=\boldsymbol{x}+\alpha \boldsymbol{d}
\]

This method that sequentially updates an approximate solution without directly calculating \(H\) is called a quasiNewton method. The value \(\alpha\) is determined by the rectilinear search described in (b).
(1) Calculating the inverse matrix \(H\) of the Hessian matrix

Although various formulas for updating \(H\) have been proposed, this function algorithm uses the BFGS formula proposed by Broyden, Fletcher, Goldfarb, and Shanno.
The unit matrix \(E\) is taken as the initial value of \(H\), and this is then updated by the following formula:
\[
H^{\prime}=\left\{E-\frac{\delta \gamma^{T}}{\delta^{T} \gamma}\right\} H\left\{E-\frac{\gamma \delta^{T}}{\delta^{T} \gamma}\right\}+\frac{\delta \delta^{T}}{\delta^{T} \gamma}
\]
where:
\[
\begin{aligned}
\delta & =\boldsymbol{x}^{\prime}-\boldsymbol{x} \\
\gamma & =\nabla^{T} f\left(\boldsymbol{x}^{\prime}\right)-\nabla^{T} f(\boldsymbol{x})
\end{aligned}
\]
(2) Rectilinear search

Since a precise rectilinear search is not very efficient, Armijo's method is used. This method obtains the smallest nonnegative integer \(m\) for which the following condition is satisfied:
\[
f\left(\boldsymbol{x}+\beta^{m} \alpha_{0} \boldsymbol{d}\right)-f(\boldsymbol{x}) \leq \beta^{m} \alpha_{0} \mu \nabla f(\boldsymbol{x}) \boldsymbol{d}
\]
and sets \(\alpha=\beta^{m} \alpha_{0}\), where \(\alpha_{0}>0,0<\beta<1\) and \(0<\mu<1\).
(3) Convergence decision

Convergence is determined according to the following condition, where \(\boldsymbol{x}^{\prime}\) is assumed to be the solution.
\[
\begin{aligned}
& \left\|\nabla^{T} f\left(\boldsymbol{x}^{\prime}\right)\right\|_{\infty} \leq \varepsilon \text { or } \\
& \text { ( }\left\|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right\|_{\infty} \leq \varepsilon \text { and a problem occurred during the previous modification) } \\
& \text { or } \\
& \left\|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right\|_{\infty} \leq e_{r} \max \left(1,\left\|\boldsymbol{x}^{\prime}\right\|_{\infty}\right) \text { and }\left\|\nabla^{T} f\left(\boldsymbol{x}^{\prime}\right)\right\|_{\infty} \leq 2 e_{r}
\end{aligned}
\]
where \(\varepsilon\) is the unit for determining error, \(e_{r}\) is the required precision, and \(\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|\boldsymbol{x}_{i}\right|\).

\subsection*{5.1.2.3 Nonlinear least square method}

Given \(m\) functions \(f_{1}(\boldsymbol{x}), \cdots, f_{m}(\boldsymbol{x})\) of \(n\) variables, the problem is to obtain a value \(\boldsymbol{x}\) for which the sum of the squares of the functions:
\[
S(\boldsymbol{x})=\sum_{i=1}^{m} f_{i}(\boldsymbol{x})^{2}=\|\boldsymbol{f}(\boldsymbol{x})\|^{2}
\]
is a minimum, where \(\boldsymbol{f}(\boldsymbol{x})\) is a vector value function having components \(f_{1}(\boldsymbol{x}), \cdots, f_{m}(\boldsymbol{x})\) and \(\|\boldsymbol{x}\|=\sqrt{\boldsymbol{x}^{T} \boldsymbol{x}}\) (the notation \({ }^{T}\) indicates the transpose).
To solve this problem, it is necessary to solve the equations \(\frac{\partial S}{\partial \boldsymbol{x}}=0\). To obtain a solution, a search is begun from an initial value \(\boldsymbol{x}_{0}\), and Powell's hybrid method is used to sequentially correct the solution value.
The hybrid method blends a steepest descent solution and the Gauss-Newton solution of a linearized model depending on the nonlinearity of the function. An independence check always is performed for the correction vector so that approximate solutions do not end up being confined within a subspace. Also, function information is used to make corrections without directly calculating the Jacobian matrix.
(1) Correction vector \(\Delta \boldsymbol{x}\) calculation

The model in which \(f\) is linearized is as follows:
\[
S_{L}(\boldsymbol{x}+\Delta \boldsymbol{x})=\|\boldsymbol{f}(\boldsymbol{x})+A \Delta \boldsymbol{x}\|^{2}
\]
where \(A\) is the Jacobian matrix \(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\) of \(\boldsymbol{f}\).
The steepest descent solution of this model \(\Delta \boldsymbol{x}_{S}\) is given by:
\[
\Delta \boldsymbol{x}_{S}=\frac{\|\boldsymbol{b}\|^{2}}{\|A \boldsymbol{b}\|^{2}} \boldsymbol{b}
\]
where \(\boldsymbol{b}=-A^{T} \boldsymbol{f}(\boldsymbol{x})\).
The Gauss-Newton solution \(\Delta \boldsymbol{x}_{G}\) is obtained by solving the normal equation:
\[
A^{T} A \Delta \boldsymbol{x}=\boldsymbol{b}
\]

This function uses the linear least squares method's QR decomposition algorithm to solve this equation. It has been provided that, in general, the following relationship holds:
\[
\left\|\Delta \boldsymbol{x}_{S}\right\| \leq\left\|\Delta \boldsymbol{x}_{G}\right\|
\]

These two solutions are blended as follows according to the step size \(d\), which is determined depending to the nonlinearity of the function.
(a) If \(d \leq\left\|\Delta \boldsymbol{x}_{S}\right\|\), then:
\[
\Delta \boldsymbol{x}=d \frac{\Delta \boldsymbol{x}_{S}}{\left\|\Delta \boldsymbol{x}_{S}\right\|}
\]
(b) If \(\left\|\Delta \boldsymbol{x}_{S}\right\|<d<\left\|\Delta \boldsymbol{x}_{G}\right\|\), (See Figure 5-1) then:
\[
\Delta \boldsymbol{x}=\alpha \Delta \boldsymbol{x}_{S}+\beta \Delta \boldsymbol{x}_{G} \quad(\alpha>0, \beta>0,\|\Delta \boldsymbol{x}\|=d)
\]

Figure 5-1

(c) If \(\left\|\Delta \boldsymbol{x}_{G}\right\| \leq d\)
\[
\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{G}
\]
(2) Step size \(d\) modification

The initial value of the step size is assumed to be \(d=\left\|\Delta \boldsymbol{x}_{S}\right\|\). Thereafter, if the nonlinearity of the function is strong, then the step size is decreased; if the function is nearly linear, then the step size is increased.
To measure the degree of nonlinearity, the ratio \(r=\frac{\Delta S}{\Delta S_{L}}\) is used where the amount of change for the linear model is represented by:
\[
\Delta S_{L}=\Delta S_{L}(\boldsymbol{x}+\Delta \boldsymbol{x})-S_{L}(\boldsymbol{x})
\]
and the actual amount of change is represented by:
\[
\Delta S=S(\boldsymbol{x}+\Delta \boldsymbol{x})-S(\boldsymbol{x})
\]
(a) If \(r<0.1\), then nonlinearity is considered to be strong and \(d\) is reduced by half.
(b) If \(r \geq 0.1\), then \(\lambda\), which is the rate of increase of \(d\), is calculated as follows:
\[
\lambda^{2}=1.0-(r-0.1) \frac{\Delta S_{L}}{S_{P}+\sqrt{\left(S_{P}^{2}-S_{S}(r-0.1) \Delta S_{L}\right)}}
\]
where, for \(\delta \boldsymbol{f}\) defined as:
\[
\delta \boldsymbol{f}=\boldsymbol{f}(\boldsymbol{x}+\Delta \boldsymbol{x})-(\boldsymbol{f}(\boldsymbol{x})+A \Delta \boldsymbol{x})
\]
\(S_{P}\) and \(S_{S}\) are as follows:
\[
\begin{aligned}
S_{P} & =\sum_{i=1}^{n}\left|f_{i}(\boldsymbol{x}+\Delta \boldsymbol{x}) \delta f_{i}\right| \\
S_{S} & =\|\delta \boldsymbol{f}\|^{2}
\end{aligned}
\]

Actually, to prevent the value of \(d\) from oscillating, \(d\) is increased only when an increase is required two times consecutively. Also, the rate of increase is held to at most 2 . The actual rate of increase \(\mu\) is calculated as follows:
\[
\begin{aligned}
\mu & =\min (2, \lambda, \tau) \\
\tau & =\frac{\lambda}{\mu}
\end{aligned}
\]
where the initial value for \(\tau\) is 1 , and 1 is reset whenever a reduction of \(d\) is required.
In addition, an upper limit \(d_{\max }\) and lower limit \(d_{\min }\) are set for \(d\) and \(d\) is controlled so that it falls between these values.
(3) Correction vector independence check

To correct the Jacobian matrix efficiently, the correction vectors that are taken sequentially must be nearly mutually orthogonal. Therefore, an original independence concept is defined according to a hybrid method, and the correction vectors are controlled so that they are taken in directions that are as independent as possible. A vector \(\boldsymbol{p}\) is said to be independent of the \(i\) vectors \(\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \cdots, \boldsymbol{p}_{i}\right)\) if \(\boldsymbol{p}\) forms an angle of at least 30 degrees with an arbitrary vector of the space defined by these \(i\) vectors. The calculation for this independence test conceived by Powell is as follows.
\(n\) mutually independent vectors from the vectors used to correct the Jacobian matrix during the past \(2 \times n\) iterations are made to be orthogonal and are stored in \(\Omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)\). The array \(\boldsymbol{j}\) of size \(n\) is used to store information indicating the number of iterations earlier in which \(\omega_{i}\) was the correction vector. That is, this information indicates that \(\omega_{i}\) is the vector that was taken \(j_{i}\) iterations earlier. \(\Omega\) is initialized as the unit matrix, and \(\boldsymbol{j}\) is initialized with values \(j_{i}=n-i+1\) for \((i=1, \cdots, n)\).
When a solution is corrected, the following steps are performed.
(a) When \(\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{G}\)

Regardless of its independence, \(\Delta \boldsymbol{x}\) is taken as the correction vector.
(b) When \(\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{G}\) does not occur

If \(j_{1}<2 n\) or if \(\Delta \boldsymbol{x}\) is independent of \(\left(\omega_{2}, \omega_{3}, \cdots, \omega_{n}\right)\), then \(\Delta \boldsymbol{x}\) is taken as the correction vector. Otherwise, the solution is not corrected.
(4) Calculation of Jacobian matrix \(A\)

The Jacobian matrix is obtained according to a difference only for the first iteration, and thereafter, it is sequentially updated. This method, which was devised by Broyden, calculates the Jacobian matrix according to the following equation:
\[
A^{\prime}=A+\delta \boldsymbol{f} \frac{\Delta \boldsymbol{x}^{T}}{\|\Delta \boldsymbol{x}\|^{2}}
\]

However, if \(\|\Delta \boldsymbol{x}\|<d_{\min }\) or if \(j_{1}=2 n\) and \(\Delta \boldsymbol{x}\) is not independent of \(\left(\omega_{2}, \omega_{3}, \cdots, \omega_{n}\right)\), then \(\Delta \boldsymbol{x}=d_{\min } \omega_{1}\) is set.
(5) Revision of \(\Omega\) and \(\boldsymbol{j}\)
\(\Omega\) and \(\boldsymbol{j}\) are revised as follows.
When \(\Delta \boldsymbol{x}=d_{\min } \omega_{1}\) has been set, the following values should be set:
\[
\begin{aligned}
\omega_{i} & =\omega_{i+1} \text { for }(i=1, \cdots, n-1) \\
\omega_{n} & =\omega_{1} \\
j_{i} & =j_{i+1}+1 \text { for }(i=1, \cdots, n-1) \\
j_{n} & =1
\end{aligned}
\]

Otherwise, the following is performed.
The minimum value \(k\) is obtained for which \(\left(\omega_{k+1}, \omega_{k+2}, \cdots, \omega_{n}, \Delta \boldsymbol{x}\right)\) are mutually independent.
\(\left(\omega_{1}, \cdots, \omega_{k-1}, \omega_{k+1}, \omega_{k+2}, \cdots, \omega_{n}, \Delta \boldsymbol{x}\right)\) are made to be orthogonal, and these are again assumed to be \(\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)\). The following values are then set:
\[
\begin{aligned}
j_{i} & =j_{i}+1 \text { for }(i=1, \cdots, k-1) \\
j_{i} & =j_{i+1}+1 \text { for }(i=k, \cdots, n-1) \\
j_{n} & =1
\end{aligned}
\]

In this way, the relationship \(j_{1} \leq 2 n\) always holds.
(6) Convergence decision

Convergence is assumed to have occurred when the following relationship holds and \(\boldsymbol{x}+\Delta \boldsymbol{x}\) is assumed to be the solution:
\[
\|\Delta \boldsymbol{x}\|_{\infty} \leq e_{r} \max \left(1,\|\boldsymbol{x}+\Delta \boldsymbol{x}\|_{\infty}\right)
\]
where \(e_{r}\) is the required relative precision, and:
\[
\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right|
\]

\subsection*{5.1.2.4 Minimization of a constrained linear function of several variables (linear constraints)}

When a linear function \(f(\boldsymbol{x})\) of several variables related to a vector \(\boldsymbol{x}\) of dimension \(n\) is given as follows together with \(m\) linear constraints and the domain of vector \(\boldsymbol{x}\), this algorithm deals with a problem (linear programming problem) that obtains the vector \(\boldsymbol{x}\) of dimension \(n\) that satisfies the linear constraints and minimizes \(f(\boldsymbol{x})\).
\[
\begin{array}{clll}
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x} \rightarrow \min & & \\
\text { Linear constraints: } & \boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i} & \text { for }\left(i=1,2, \cdots, m_{e}\right) \\
& \boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i} & \text { for }\left(i=m_{e}+1, m_{e}+2, \cdots, m_{n e}\right) \\
& \boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i} & \text { for }\left(i=m_{n e}+1, m_{n e}+2, \cdots, m\right) \quad 0 \leq m_{e} \leq m_{n e} \leq m \\
\text { Domain of } \boldsymbol{x}: & \boldsymbol{d} \leq \boldsymbol{x} \leq \boldsymbol{u} & &
\end{array}
\]

Here, \(\boldsymbol{c}, \boldsymbol{a}_{i}, \boldsymbol{d}\) and \(\boldsymbol{u}\) are each constant vectors of dimension \(n\), and \(\left(b_{i}\right)\) is a constant vector of degree \(m\). These are fixed by the problem.
Although an inequality is used for vectors such as \(\boldsymbol{d} \leq \boldsymbol{x}\), this is used to mean that the inequality holds for each
element of the vector.
To solve a linear programming problem, this library provides functions that use the modified simplex method to handle cases in which the matrix \(A=\left(a_{i j}\right)\) that assigns the constraints is a dense matrix and functions that use the interior point method to handle cases in which \(A\) is a sparse matrix.

First, the modified simplex method is explained. By adding new variables \(X_{i}\), the inequality constraints \(\boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}\) can be converted to \(\boldsymbol{a}_{i}^{T} \boldsymbol{x}+X_{i}=b_{i}\) and \(\boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i}\) can be converted to \(\boldsymbol{a}_{i}^{T} \boldsymbol{x}-X_{i}=b_{i}\). These variables are called a slack variables. By introducing slack variables, the constraints can all be represented by an equality as follows.

Linear constraints: \(\quad A \boldsymbol{x}^{\prime}=\boldsymbol{b}\)
Domain of \(\boldsymbol{x}: \quad \boldsymbol{d}^{\prime} \leq \boldsymbol{x}^{\prime} \leq \boldsymbol{u}^{\prime}\)
Here, \(A\) is an \(n \times\left(n+m-m_{e}\right)\) matrix and \(\boldsymbol{x}^{\prime}, \boldsymbol{b}, \boldsymbol{d}^{\prime}\) and \(\boldsymbol{u}^{\prime}\) are vectors of dimension \(n+m-m_{e}\). Therefore, only equality constraints are considered subsequently. To simplify the notation, let's express \(\boldsymbol{x}^{\prime}, \boldsymbol{d}^{\prime}\) and \(\boldsymbol{u}^{\prime}\) as \(\boldsymbol{x}, \boldsymbol{d}\) and \(u\).
(1) Basic feasible solutions

The optimal solution exists among the basic feasible solutions. The simplex method obtains the optimal solution from among the basic feasible solutions, which are a finite set. Basic feasible solutions are explained below.
Select \(m\) linearly independent columns from the columns of matrix \(A\) and consider an \(m \times m\) regular matrix \(B\) having the selected columns as elements. Determine a transformation matrix \(P\) of order \(n+m-m_{e}\) so that the following are satisfied:
\[
\begin{aligned}
A P & =[B|L| U] \\
\left(P^{-1} \boldsymbol{x}\right)^{T} & =\left[\boldsymbol{x}_{B}^{T}\left|\boldsymbol{x}_{L}^{T}\right| \boldsymbol{x}_{U}^{T}\right], \\
\left(P^{-1} \boldsymbol{d}\right)^{T} & =\left[\boldsymbol{d}_{B}^{T}\left|\boldsymbol{d}_{L}^{T}\right| \boldsymbol{d}_{U}^{T}\right], \\
\left(P^{-1} \boldsymbol{u}\right)^{T} & =\left[\boldsymbol{u}_{B}^{T}\left|\boldsymbol{u}_{L}^{T}\right| \boldsymbol{u}_{U}^{T}\right]
\end{aligned}
\]
and represent the constraints in the following form:
\[
\begin{array}{r}
B \boldsymbol{x}_{B}+L \boldsymbol{x}_{L}+U \boldsymbol{x}_{U}=\boldsymbol{b} \\
\boldsymbol{d}_{B} \leq \boldsymbol{x}_{B} \leq \boldsymbol{u}_{B} \\
\boldsymbol{d}_{L} \leq \boldsymbol{x}_{L} \leq \boldsymbol{u}_{L} \\
\boldsymbol{d}_{U} \leq \boldsymbol{x}_{U} \leq \boldsymbol{u}_{U}
\end{array}
\]

Here, \(\boldsymbol{x}_{B}, \boldsymbol{d}_{B}\) and \(\boldsymbol{u}_{B}\) represent vectors of dimension \(m ; L\) represents an \(m \times \ell\) matrix; \(\boldsymbol{x}_{L}, \boldsymbol{d}_{L}\) and \(\boldsymbol{u}_{L}\) represent vectors of dimension \(\ell ; U\) represents an \(m \times\left(n-m_{e}-\ell\right)\) matrix; and \(\boldsymbol{x}_{U}, \boldsymbol{d}_{U}\) and \(\boldsymbol{u}_{U}\) represent vectors of dimension \(n-m_{e}-\ell\). However, \(\ell\) is an integer that satisfies \(0 \leq \ell \leq n-m_{e}\). Now, when \(\boldsymbol{x}_{B}, \boldsymbol{x}_{L}, \boldsymbol{x}_{U}\) satisfy the following conditions, then:
\[
\boldsymbol{x}=P\left[\begin{array}{l}
\boldsymbol{x}_{B} \\
\boldsymbol{x}_{L} \\
\boldsymbol{x}_{U}
\end{array}\right]
\]
is called the basic feasible solution.
\[
\boldsymbol{d}_{B} \leq \boldsymbol{x}_{B} \leq \boldsymbol{u}_{B}
\]
\[
\begin{array}{ll}
\boldsymbol{x}_{L} & =\boldsymbol{d}_{L} \\
\boldsymbol{x}_{U} & =\boldsymbol{u}_{U}
\end{array}
\]
\(B\) is called a basic matrix, \(\boldsymbol{x}_{B}\) is called a basic variable, \(L\) and \(U\) are called nonbasic matrices, and \(\boldsymbol{x}_{L}\) and \(\boldsymbol{x}_{U}\) are called nonbasic variables.
(2) Simplex method

The simplex method procedure is as follows.
(a) Obtain the initial feasible solution.
(b) With other nonbasic variables fixed, change a certain single variable \(X_{I N}\) (element of \(\boldsymbol{x}_{L}\) or \(\boldsymbol{x}_{U}\) ) until a certain variable \(x\) (element of \(\boldsymbol{x}_{B}\) or \(X_{I N}\) ) becomes the upper or lower bound value.
(c) When \(\boldsymbol{x}_{B}\) has become the upper or lower bound value, replace the basic variable with a nonbasic variable.
(d) As long as the function value can get smaller, perform these operations repeatedly while selecting various nonbasic variables \(x\) as \(X_{I N}\).

This is explained concretely below.
First, obtain the initial feasible solution.
Next, obtain the nonbasic variable to be changed, \(X_{I N}\). Using basic and nonbasic variables, the function value \(f(\boldsymbol{x})\) can be represented in a form that includes the constraints as follows:
\[
\begin{aligned}
f(\boldsymbol{x}) & =\boldsymbol{c}_{B}^{T} B^{-1} \boldsymbol{b}+\boldsymbol{g}_{L}^{T} \boldsymbol{x}_{L}+\boldsymbol{g}_{U}^{T} \boldsymbol{x}_{U} \\
\boldsymbol{g}_{L}^{T} & =\boldsymbol{c}_{L}^{T}-\boldsymbol{c}_{B}^{T} B^{-1} L \\
\boldsymbol{g}_{U}^{T} & =\boldsymbol{c}_{U}^{T}-\boldsymbol{c}_{B}^{T} B^{-1} U
\end{aligned}
\]

Here, in \((P \boldsymbol{c})^{T}=\left(\begin{array}{lll}\boldsymbol{c}_{B}^{T} & \boldsymbol{c}_{L}^{T} & \boldsymbol{c}_{U}^{T}\end{array}\right)\), the vectors \(\boldsymbol{c}_{B}, \boldsymbol{c}_{L}\) and \(\boldsymbol{c}_{U}\) are vectors of dimension \(m, \ell\) and \(n-m_{e}-\ell\) respectively.
Since \(\boldsymbol{x}_{L}=\boldsymbol{d}_{L}\) and \(\boldsymbol{x}_{U}=\boldsymbol{u}_{U}\), elements of \(\boldsymbol{x}_{L}\) can only be changed in the positive direction and elements of \(\boldsymbol{x}_{U}\) can only be changed in the negative direction. Therefore, the function value \(f(\boldsymbol{x})\) can be reduced only when a certain element of \(\boldsymbol{g}_{L}\) is negative or a certain element of \(\boldsymbol{g}_{U}\) is positive. When there is no such element, the current value \(\boldsymbol{x}\) is the optimal solution. The element of \(\boldsymbol{g}_{U}\) or \(\boldsymbol{g}_{L}\) that satisfies this condition and has the largest absolute value becomes the element \(I N\) to be changed.
At this time, the variable \(x\) (element of \(\boldsymbol{x}_{B}\) or \(X_{I N}\) ) to be changed to the upper or lower bound value is as follows. When the nonbasic variable \(X_{I N}\) is changed, if \(X_{I N}\) is assumed to be an element of \(X_{L}\), the following relationships hold while the constraints are satisfied. Here, \(\boldsymbol{a}_{I N}\) is the \(I N\)-th column of \(A\) (this differs from the \(\boldsymbol{a}\) mentioned earlier), and \(\Delta\) is the amount of change in \(X_{I N}(\Delta \geq 0)\).
\[
\begin{array}{cccl}
\boldsymbol{d}_{B} \leq & \boldsymbol{x}_{B}-B^{-1} \boldsymbol{a}_{I N} \Delta & \leq \boldsymbol{u}_{B} \\
\boldsymbol{d}_{I N} \leq & X_{I N}+\Delta & \leq \boldsymbol{u}_{I N}
\end{array}
\]

When \(\Delta\) is changed, the first variable \(x\) (element of \(\boldsymbol{x}_{B}\) or \(X_{I N}\) ) for which the above relationship is not satisfied becomes the variable to be changed to the upper or lower bound value. If \(\boldsymbol{x}_{I N}\) is an element of \(\boldsymbol{x}_{U}\), the following relationship holds instead of the one shown above.
\[
\begin{array}{cccc}
\boldsymbol{d}_{B} \leq & \boldsymbol{x}_{B}+B^{-1} \boldsymbol{a}_{I N} \Delta & \leq \boldsymbol{u}_{B} \\
d_{I N} \leq & X_{I N}-\Delta & \leq \boldsymbol{u}_{I N}
\end{array}
\]

The amount of decrease of \(f(\boldsymbol{x})\) at this time is as follows. Assume the updated \(f(\boldsymbol{x})\) is \(f\left(\boldsymbol{x}^{\prime}\right)\).
\[
\begin{array}{ll}
f\left(\boldsymbol{x}^{\prime}\right)=f(\boldsymbol{x})+g_{I N} \Delta & \left(\text { When } X_{I N} \text { is an element of } \boldsymbol{x}_{L}, g_{I N}<0\right) \\
f\left(\boldsymbol{x}^{\prime}\right)=f(\boldsymbol{x})-g_{I N} \Delta & \left(\text { When } X_{I N} \text { is an element of } \boldsymbol{x}_{U}, g_{I N}>0\right)
\end{array}
\]

Finally, replace elements of \(B, L\) and \(U\) to match the change in the variable value.
If the above operations are performed repeatedly until there is no more \(X_{I N}\) that can be selected, the optimal solution is obtained.
(3) Revised simplex method

The revised simplex method improves the handling of the basic matrix and the method of selecting the variable to be entered in the basis so that computations can be performed efficiently.
The greatest distinguishing feature of the revised simplex method is that uses an eta matrix \(E_{k}\), which is defined in the following form, when updating the basic matrix \(B_{k-1}\) to \(B_{k}\).
\[
E_{k}=\left[\begin{array}{cccccccccc}
1 & & & & B_{k-1}^{-1} & \vdots & \boldsymbol{a}_{I N} & & & \\
& \ddots & & & & \vdots & & & & 0 \\
& & 1 & & & \vdots & & & & \\
& & & \ddots & & \vdots & & & & \\
& & & & B_{k-1}^{-1} & & \boldsymbol{a}_{I N}(O U T) & & & \\
& & & & & \vdots & & \ddots & & \\
& & & & \vdots & & & 1 & & \\
& 0 & & & & \vdots & & & & \ddots \\
& & & & B_{k-1}^{-1} & \vdots & \boldsymbol{a}_{I N} & & & \\
& & &
\end{array}\right]
\]
(OUT: Subscript of basic variable to be changed to the upper or lower bound value)
\(\left(\boldsymbol{a}_{I N}(O U T): O U T\right.\)-th element of \(\left.\boldsymbol{a}_{I N}\right)\)
Updating is performed according to \(B_{k}=B_{k-1} E_{k}\).
Next, the interior point method is explained.
(1) Form of problems handled by the interior point method

The interior point method handles problems that were formulated as follows so that the lower limit value of \(\boldsymbol{x}\) is 0 .
\[
\begin{equation*}
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x} \rightarrow \min \tag{5.1}
\end{equation*}
\]

Linear constraint \(A \boldsymbol{x}=\boldsymbol{b}\)
Domain of \(\boldsymbol{x} \quad \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}\)
Here, \(A\) is an \(m \times n\) matrix that assigns \(m\) constraints for the \(n\)-dimensional vector \(\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}\). The general linear programming problem that was handled by the modified simplex method can be expressed in the form shown in (5.1) by a translation in the \(\boldsymbol{x}\) space and the introduction of slack variables. Although there are numerous types of algorithms that are classified as interior point methods, this library uses a method in which an affine transformation is performed.
(2) Optimal solution search in the interior point method

While the simplex method searches for an optimal solution from within the basic feasible solutions corresponding to the vertices of the feasible region \(S\), the interior point method starts from the interior of the feasible region and searches for an optimal solution while varying the solution in the direction that reduces the objective function.

When \(\boldsymbol{x}^{(k)}\) is a feasible solution, the interior point method searches in the direction of the direction vector \(\boldsymbol{d}^{(k)}\) for which the reduction rate of the objective vector is the greatest among the vectors \(\boldsymbol{d}^{(k)}\) for which \(\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+t \boldsymbol{d}^{(k)}\) is feasible and \(\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{(k+1)}<\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{(k)}\) is satisfied. Here, \(t\) is called the step size. If the constraint is not taken into account, the direction that reduces the objective function value \(\boldsymbol{c} \cdot \boldsymbol{x}\) the most is the \(-\boldsymbol{c}\) direction. Actually, since the constraint \(A \boldsymbol{x}^{(k+1)}=A\left(\boldsymbol{x}^{(k)}+t \boldsymbol{d}^{(k)}\right)=\boldsymbol{b}\) must be satisfied, the direction for which \(-\boldsymbol{c}\) is projected onto the subspace \(\{x \mid A \boldsymbol{x}=\mathbf{0}\}\) of \(S\) should be taken as the \(\boldsymbol{d}^{(k)}\) direction.
(3) Big-M method

To search for the optimal solution according to the interior point method, an interior point of the feasible region, that is, an initial solution \(\boldsymbol{x}^{(0)}\) which is inside the feasible region and not on the boundary, is required as the search starting point. However, the method of obtaining this kind of initial solution is not self-evident. Therefore, this library uses a method called the Big-M method to calculate the feasible solutions and optimal solution simultaneously. First, introduce \(m\) artificial variables as the vector
\[
\boldsymbol{x}^{\prime}=\left(x_{n+1}, x_{n+2}, \ldots, x_{n+m}\right)^{\mathrm{T}}
\]
and formulate a linear programming problem of \(n+m\) variables as follows.
\[
\begin{array}{ll}
\bar{f}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\boldsymbol{c}^{T} \boldsymbol{x}+M \boldsymbol{x}^{\prime} \rightarrow \min \\
\text { Linear constraint } & A \boldsymbol{x}+\bar{A} \boldsymbol{x}^{\prime}=\boldsymbol{b} \\
\text { Domain of } \boldsymbol{x} & \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}  \tag{5.2}\\
\text { Domain of } \boldsymbol{x}^{\prime} & \mathbf{0} \leq \boldsymbol{x}^{\prime}
\end{array}
\]

If we define the \(m \times m\) matrix \(\bar{A}=\left(\bar{a}_{i j}\right)(1 \leq i, j \leq m)\) for an arbitrary \(\boldsymbol{x}^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)}\right)^{\mathrm{T}}\) by
\[
\bar{a}_{i j}=\left\{\begin{array}{cc}
\sum_{k=1}^{n} a_{i k} x_{k}^{(0)} & (\text { when } i=j) \\
0 & (\text { when } i \neq j)
\end{array}\right.
\]
then
\[
\left[\begin{array}{c}
\boldsymbol{x} \\
\boldsymbol{x}^{\prime}
\end{array}\right]=\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)}, 1,1, \ldots, 1\right)^{\mathrm{T}}
\]
clearly is a feasible solution of (5.2). If a sufficiently large positive number is taken for the parameter \(M\), then as the objective function \(\bar{f}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\) of (5.2) with the artificial variables \(x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}\right)^{\mathrm{T}}\) is reduced according to the interior method, the artificial variable term \(M \boldsymbol{x}^{\prime}\) quickly approaches zero. This means that each artificial variable rapidly approaches zero. When the various artificial variables are sufficiently close to zero, the portion of the feasible solution of (5.2) excluding the artificial variables is viewed as a feasible solution of (5.1). As the objective function \(\bar{f}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\) is further reduced, the \(\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}\) term will be reduced. Therefore, the portion of the optimal solution of (5.2) excluding the artificial variables ultimately will be an optimal feasible solution of (5.1). If the artificial variables do not become sufficiently close to zero in the optimal solution of (5.2), that is if the following relationship holds for a given small positive number \(\epsilon_{A}\),
\[
\max _{1 \leq j \leq m}\left\{\left|x_{n+j}^{\prime}\right|\right\}>\epsilon_{A}
\]
the problem in (5.1) is considered to be infeasible.
In the following explanations, artificial variables are considered to already have been incorporated in (5.1).
(4) Determining the search direction according to an affine transformation

In the method of determining the search direction of the optimal solution described above, when \(\boldsymbol{x}^{(k)}\) is near the center of \(S\), since the step size \(t\) is taken sufficiently large, the value of the objective function can be significantly reduced. However, when \(\boldsymbol{x}^{(k)}\) is near the boundary of \(S\), since a large step size cannot be taken, the objective function is not sufficiently reduced. Therefore, a transformation is performed for the variable \(\boldsymbol{x}\) so that the current solution \(\boldsymbol{x}^{(k)}\) becomes sufficiently distant from the boundary of the feasible region \(S^{\prime}\) in the post-transformation space. Then, the solution is updated so that the objective function is significantly reduced, and the inverse transformation is performed for the new solution in the pre-transformation space that was obtained to get \(\boldsymbol{x}^{(k+1)}\). For this purpose, the affine transformation
\[
y=\left(D^{(k)}\right)^{-1} x
\]
is performed according to the following diagonal matrix that is defined for the current solution \(\boldsymbol{x}^{(k)}\).
\[
D^{(k)}=\left[\begin{array}{cccc}
x_{1}^{(k)} & & & 0 \\
& x_{2}^{(k)} & & \\
& & \ddots & \\
0 & & & x_{n}^{(k)}
\end{array}\right]
\]

It is clear that \(\boldsymbol{x}^{(k)}\) in the pre-transformation space is shifted to \((1,1, \ldots, 1)^{\mathrm{T}}\). The original linear programming problem is expressed as follows in the \(\boldsymbol{y}\) space.
\[
\begin{aligned}
& f(\boldsymbol{y})=\hat{\boldsymbol{c}}^{(k) \mathrm{T}} \boldsymbol{y} \rightarrow \min \\
& \text { Linear constraint } \quad \hat{A}^{(k)} \boldsymbol{y}=\boldsymbol{b} \\
& \text { Domain of } \boldsymbol{y} \quad
\end{aligned} \quad \mathbf{0} \leq \boldsymbol{y} \leq \hat{\boldsymbol{u}}^{(k)} \text {. }
\]

Here,
\[
\hat{A}^{(k)}=A D^{(k)}
\]
and
\[
\hat{\boldsymbol{c}}^{(k)}=D^{(k)} \boldsymbol{c}
\]

The direction \(\hat{\boldsymbol{d}}^{(k)}\) that maximizes the reduction rate of the objective function in this problem is the direction for which \(-\hat{\boldsymbol{c}}^{(k)}\) is projected onto the subspace \(\left\{\boldsymbol{y} \mid \hat{A}^{(k)} \boldsymbol{y}=\boldsymbol{0}\right\}\). Since this projection is given by the transformation matrix expressed as follows
\[
\hat{P}^{(k)}=I-\left(\hat{A}^{(k)}\right)^{\mathrm{T}}\left(\hat{A}^{(k)}\left(\hat{A}^{(k)}\right)^{\mathrm{T}}\right)^{-1} \hat{A}^{(k)}
\]
the search direction will be
\[
\hat{\boldsymbol{d}}^{(k)}=-\hat{P}^{(k)} \hat{\boldsymbol{c}}^{(k)}
\]

However, since this search direction has the following relationship with the search direction \(\boldsymbol{d}^{(k)}\) for the original variable
\[
\boldsymbol{d}^{(k)}=D^{(k)} \hat{\boldsymbol{d}}^{(k)}
\]
the search direction in the original space is given by
\[
\boldsymbol{d}^{(k)}=-D^{(k)} \hat{P}^{(k)} \hat{\boldsymbol{c}}^{(k)}=-\left(D^{(k)}\right)^{2}\left(I-A^{\mathrm{T}}\left(A\left(D^{(k)}\right)^{2} A^{\mathrm{T}}\right)^{-1} A\left(D^{(k)}\right)^{2}\right) \boldsymbol{c}
\]

Although the inverse matrix calculation is included in this formula, the actual calculations first solve the following simultaneous linear equations to obtain \(\boldsymbol{w}^{(k)}\)
\[
\left(A\left(D^{(k)}\right)^{2} A^{\mathrm{T}}\right) \boldsymbol{w}^{(k)}=A\left(D^{(k)}\right)^{2} \boldsymbol{c}
\]
and the search direction \(\boldsymbol{d}^{(k)}\) can be determined as
\[
\boldsymbol{d}^{(k)}=-\left(D^{(k)}\right)^{2}\left(\boldsymbol{c}-A^{\mathrm{T}} \boldsymbol{w}^{(k)}\right)
\]
(5) Determining the step size

Points on the straight line \(\boldsymbol{x}^{(k)}+t \boldsymbol{d}^{(k)}(t \geq 0)\) given by the search direction \(\boldsymbol{d}^{(k)}\) that was determined as described above will satisfy the constraint,
\[
A \boldsymbol{x}=\boldsymbol{b}
\]
and the objective function will decrease monotonically for increases in the step size \(t\). However, since the variable \(\boldsymbol{x}\) is not permitted to leave the variable domain \(\mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}\), the maximum value that can be taken for the step size \(t\) will be as follows.
\[
t_{\max }=\min \left\{\min \left\{\left.\frac{x_{j}^{(k)}}{-d_{j}^{(k)}} \right\rvert\, d_{j}^{(k)}<0\right\}, \min \left\{\left.\frac{u_{j}-x_{j}^{(k)}}{d_{j}^{(k)}} \right\rvert\, d_{j}^{(k)}>0\right\}\right\}
\]

Actually, since the search cannot continue if the boundary of the feasible region is reached, the value \(t^{(k)}\) given by where the parameter \(\alpha\) satisfying \(0<\alpha<1\) will be the step size for \(\boldsymbol{x}^{(k)}\), and the new solution \(\boldsymbol{x}^{(k+1)}\) will be given by
\[
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+t^{(k)} \boldsymbol{d}^{(k)}
\]
(6) Replacing the upper and lower limits of the variable

If any variable approaches the lower limit during the search for the optimal solution, the affine transformation described earlier is effective. However, if the variable approaches the upper limit, the same method cannot be used. Therefore, if the variable \(x_{j}\) approaches its upper limit \(u_{j}\), this function replaces the upper and lower limits of the variable by performing the following transformations.
\[
\begin{array}{rlcl}
x_{j} & \leftarrow & u_{j}-x_{j} & \\
u_{j} & \leftarrow & u_{j} & \\
c_{j} & \leftarrow & -c_{j} & \\
b_{i} & \leftarrow & b_{i}-a_{i j} u_{j} & (i=1,2, \ldots, m) \\
a_{i j} & \leftarrow & -a_{i j} & (i=1,2, \ldots, m)
\end{array}
\]
(7) Checking the residual for the constraint

While repeating the iterative calculations for finding the optimal solution, the residual \(\|A \boldsymbol{x}-\boldsymbol{b}\|\) for the constraint may become large because of calculation error. Once the residual becomes large, subsequent
calculations are meaningless. To prevent this, a check is performed every \(\ell\)-th iteration to determine if the following relationship is satisfied
\[
\left\|A \boldsymbol{x}^{(k)}-\boldsymbol{b}\right\| \leq \epsilon_{r}
\]
for a given positive number \(\epsilon_{r}\). If it is not satisfied, the search for the optimal solution is started over again from the beginning by recalculating the matrix \(\bar{A}\) of problem (5.2) with
\[
\left[\begin{array}{c}
\boldsymbol{x} \\
\boldsymbol{x}^{\prime}
\end{array}\right]=\left(x_{1}^{(k-\ell)}, x_{2}^{(k-\ell)}, \ldots, x_{n}^{(k-\ell)}, 1,1, \ldots, 1\right)^{\mathrm{T}}
\]
as the initial solution.
(8) Determining convergence

When the following relationship is satisfied
\[
\frac{\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{(k-1)}-\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{(k)}}{1+\left\|\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{(k)}\right\|} \leq \epsilon_{C}
\]
the \(\boldsymbol{x}^{(k)}\) values are considered to converge to the optimal solution. \(\epsilon_{C}\) is the parameter for determining convergence.

\subsection*{5.1.2.5 Minimization of a constrained linear function of several variables including \(\mathbf{0 - 1}\) variables}

This section deals with a linear programming problem having the added condition that several of the variables are \(0-1\) variables, that is, variables that take only 0 or 1 as the value (mixed \(0-1\) programming problem).
```

Objective function : $f(\boldsymbol{x}) \quad=\quad \boldsymbol{c}^{T} \boldsymbol{x} \quad \rightarrow$ min
Linear constraints $\quad: a_{i j} x_{j} \quad=\quad b_{i} \quad(i=1, \cdots, m ; j=1, \cdots, n)$
Domain of $\boldsymbol{x} \quad: \quad d_{j} \leq x_{j} \leq u_{j} \quad\left(j=n_{01}+1, \cdots, n\right)$
$0-1$ variable condition : $x_{j}=0$ or $1 \quad\left(j=1, \cdots, n_{01}\right)$
$\left(1 \leq n_{01} \leq n\right)$

```

The explanation below assumes that the required number of slack variables have been introduced in advance so that only equality constraints are included as constraints.
This library uses the branch-and-bound method to solve the mixed \(0-1\) programming problem. he branch-andbound method decomposes the original problem into several partial problems and obtains the solutions of the original problem by solving all of these partial problems. A partial problem of a mixed 0-1 programming problem is one in which the values of several \(0-1\) variables are fixed at 0 or 1 . This is represented as follows.
```

Objective function $: f(\boldsymbol{x}) \quad=\quad \boldsymbol{c}^{T} \boldsymbol{x} \quad \rightarrow$ min
Linear constraints $: a_{i j} x_{j}=b_{i} \quad(i=1, \cdots, m ; j=1, \cdots, n)$
Domain of $\boldsymbol{x} \quad: \quad d_{j} \leq x_{j} \leq u_{j} \quad\left(j \notin S^{0} \cup S^{1} \cup F\right)$
$0-1$ variable condition $: x_{j}=0 \quad\left(j \in S^{0}\right)$
$x_{j}=1 \quad\left(j \in S^{1}\right)$
$x_{j}=0$ or $1 \quad(j \in F)$

```

Here, \(S^{0}, S^{1}\), and \(F\) are the set of subscripts of \(0-1\) variables having values fixed at 0 , the set of subscripts of \(0-1\) variables having values fixed at 1 , and the set of subscripts of \(0-1\) variables having values that are not fixed, respectively, in partial problem \(P_{k}\). Now, \(0-1\) variables having values fixed at 0 or 1 are called fixed variables, and
other 0-1 variables are called free variables. A partial problem is a mixed 0-1 programming problem in itself. In particular, the partial problem having \(S^{0} \cup S^{1}=\phi\), that is, not having fixed variables, is the original mixed 0-1 programming problem (hereafter called \(P_{1}\) ) itself. Also, the linear programming problem represented as follows is called the relaxation problem for the original partial problem.
```

Objective function : $f(\boldsymbol{x}) \quad=\quad \boldsymbol{c}^{T} \boldsymbol{x} \quad \rightarrow$ min
Linear constraints : $a_{i j} x_{j}=b_{i} \quad(i=1, \cdots, m ; j=1, \cdots, n)$
Domain of $\boldsymbol{x} \quad: \quad d_{j} \leq x_{j} \leq u_{j} \quad\left(j \notin S^{0} \cup S^{1} \cup F\right)$
$0-1$ variable condition $: x_{j}=0 \quad\left(j \in S^{0}\right)$
$x_{j}=1 \quad\left(j \in S^{1}\right)$
$0 \leq x_{j} \leq 1 \quad(j \in F)$

```

The method of obtaining the solutions of \(P_{1}\) by the branch-and-bound method is explained below.
(1) Initial settings
(a) Partial problem list

The branch-and-bound method uses the partial problem list PLIST. In the initial state, the members of PLIST consist only of \(P_{1}\), and the number of members of PLIST \(L\) is \(1 . L\) increases and decreases as the branch-and-bound method calculations proceed.
(b) Incumbent

In the initial state, since not even one feasible solution of \(P_{1}\) is found, the incumbent \(\boldsymbol{x}^{*}\) is indeterminate, and a sufficiently large positive value is set in advance as the objective function value \(z^{*}\) for the incumbent \(\boldsymbol{x}^{*}\).
(c) Pseudo cost

The initial values of the pseudo costs \(h_{u p}(j)\) and \(h_{\text {down }}(j)(j \in F)\) to be used for updating PLIST are set as follows. First, the revised simplex method is used to solve the relaxation problem for \(P_{1}\). At this time, if the optimal solution that was obtained is represented by \(\overline{\boldsymbol{x}}\), the set of subscripts of basic variables within the optimal solution is represented by \(B\), the set of subscripts of nonbasic variables that take the upper bound of the domain of definition is represented by \(N_{u p}\), and the set of subscripts of nonbasic variables that take the lower bound of the domain of definition is represented by \(N_{\text {down }}\), the various basic variables \(\bar{x}_{B_{i}}\) and the objective function value \(f(\overline{\boldsymbol{x}})\) are represented as follows, using the nonbasic variables.
\[
\begin{aligned}
f(\overline{\boldsymbol{x}}) & =\bar{z}_{0}+\sum_{j \in N_{\text {down }}} \bar{c}_{j} \bar{x}_{j}-\sum_{j \in N_{u p}} \bar{c}_{j} \bar{x}_{j} \\
\bar{x}_{B_{i}} & =\bar{b}_{i}-\sum_{j \in N_{\text {down }}} y_{i j} \bar{x}_{j}-\sum_{j \in N_{u p}} y_{i j} \bar{x}_{j} \quad\left(B_{i} \in B\right)
\end{aligned}
\]

Here, \(\bar{z}_{0}, \bar{b}_{i}, \bar{c}_{j}\) and \(y_{i j}\) are quantities obtained by the revised simplex method calculation process when obtaining the optimal solution of the relaxation problem of \(P_{1}\), and the following relationship is satisfied.
\[
\bar{c}_{j} \geq 0 \quad\left(j \in N_{u p} \cup N_{\text {down }}\right)
\]

These quantities are used to set the initial values of \(h_{u p}(p)\) and \(h_{\text {down }}(p)\). When \(p \in N_{u p}\) :
\[
\begin{aligned}
h_{u p}(p) & =0 \\
h_{\text {down }}(p) & =-\bar{c}_{p}
\end{aligned}
\]

When \(p \in N_{\text {down }}\) :
\[
\begin{aligned}
h_{u p}(p) & =\bar{c}_{p} \\
h_{\text {down }}(p) & =0
\end{aligned}
\]

When \(p=B_{i} \in B\) :
\[
\begin{aligned}
h_{u p}(p) & =\min \left\{-\bar{c}_{j} / y_{i j} \mid y_{i j}<0, j \in N_{\text {down }}-F \text { or } y_{i j}>0, j \in N_{u p}-F\right\} \\
h_{\text {down }}(p) & =\min \left\{\bar{c}_{j} / y_{i j} \mid y_{i j}>0, j \in N_{\text {down }}-F \text { or } y_{i j}<0, j \in N_{u p}-F\right\}
\end{aligned}
\]

However, when \(p=B_{i} \in B\), if there is no \(j\) that satisfies the condition on the right-hand side for either \(h_{\text {up }}(p)\) or \(h_{\text {down }}(p)\) (but not both), a sufficiently large positive number is set as the value. If there is no \(j\) that satisfies the condition on the right-hand side for both \(h_{u p}(p)\) and \(h_{d o w n}(p)\), then \(h_{u p}(p)\) and \(h_{\text {down }}(p)\) are as follows:
\[
\begin{aligned}
h_{u p}(p) & =\frac{\sum_{j \in N_{u p}}-\bar{c}_{j} / y_{i j}}{\left|M_{u p}\right|} \\
h_{\text {down }}(p) & =\frac{\sum_{j \in N_{u p}} \bar{c}_{j} / y_{i j}}{\left|M_{\text {down }}\right|}
\end{aligned}
\]
where, \(M_{u p}(p)\) and \(M_{\text {down }}(p)\) are defined as follows.
\[
\begin{aligned}
M_{u p}(p) & =\left\{j \mid y_{i j}<0, j \in N_{\text {down }} \cap F \text { or } y_{i j}>0, j \in N_{u p} \cap F\right\} \\
M_{\text {down }}(p) & =\left\{j \mid y_{i j}>0, j \in N_{\text {down }} \cap F \text { or } y_{i j}<0, j \in N_{u p} \cap F\right\}
\end{aligned}
\]
(2) Relaxation problem

If any relaxation problem corresponding to a partial problem included in PLIST has not been solved, the revised simplex method is used to solve it. If the optimal value \(g\left(P_{i}\right)\) for the solutions of the relaxation problem corresponding to partial problem \(P_{i}\) satisfies \(g\left(P_{i}\right)>z^{*}, P_{i}\) is removed from PLIST and \(L \leftarrow L-1\) is performed. Also, when the optimal solution is represented by \(\overline{\boldsymbol{x}}\), if the value of \(\overline{\boldsymbol{x}}_{j}\) is 0 or 1 for all \(j \in F\), the solutions of the relaxation problem are solutions of the original partial problem, and the optimal value of the partial problem is equal to the optimal value \(g\left(P_{i}\right)\) of the relaxation problem. At this time, if \(f\left(P_{i}\right)<z^{*}\), \(\boldsymbol{x}^{*}\) and \(z^{*}\) are replaced by \(\overline{\boldsymbol{x}}\) and \(f\left(P_{i}\right)\).
Now, a new relaxation problem must be solved when the initial settings described above are made and when \(L\) is increased by a branching operation, which is described later. In the latter case, the last two partial problems in PLIST are the pair of partial problems \(P_{i 0}\), for which the branching variable \(x_{j_{0}}\) is fixed at 0 , and \(P_{i 1}\), for which it is fixed at 1. At this time, the pseudo costs are updated as follows by using the optimal values of the relaxation problems obtained as described above \(g\left(P_{i 0}\right)\) and \(g\left(P_{i 1}\right)\), the optimal value of the partial problem \(P_{i}\) before the branching operation \(g\left(P_{i}\right)\), and the optimal solution value \(\bar{x}_{j_{0}}\).
\[
\begin{aligned}
h_{u p}\left(j_{0}\right) & =\left(g\left(P_{i 1}\right)-g\left(P_{i}\right)\right) /\left(1-\bar{x}_{j_{0}}\right) \\
h_{\text {down }}\left(j_{0}\right) & =\left(g\left(P_{i 0}\right)-g\left(P_{i}\right)\right) / \bar{x}_{j_{0}}
\end{aligned}
\]
(3) Optimal value estimate

If the branching operation, which is described later, has been performed, let \(K^{\prime}=\min \{K+1, L\}\). Otherwise, let \(K^{\prime}=\min \{K, L\}\). Here, \(K\), which is called the depth of search in the branch-and-bound method, is a positive integer parameter that has been assigned in advance. For the last \(K^{\prime}\) partial problems \(P_{i}\) in PLIST, the optimal value of the relaxation problem \(g\left(P_{i}\right)\), the optimal solution \(\overline{\boldsymbol{x}}\), and the pseudo costs \(h_{u p}(j)\)
and \(h_{\text {down }}(j)\) are used to calculate the estimate \(h\left(P_{i}\right)\) of the optimal value \(f\left(P_{k}\right)\) of the partial problem as follows:
\[
h\left(P_{i}\right)=g\left(P_{i}\right)+\sum_{j \in F} \min \left\{h_{u p}(j)\left(1-\bar{x}_{j}\right), h_{\text {down }}(j) \bar{x}_{j}\right\}
\]
and the last \(K^{\prime}\) entries of PLIST are rearranged in descending order of \(h\left(P_{i}\right)\).
(4) Partial problem test

For the last partial problem \(P_{k}\) in PLIST, if the basic variables \(\bar{x}_{B_{i}}\left(B_{i} \in B\right)\) of the optimal solution of its relaxation problem are represented by the nonbasic variables \(\bar{x}_{j}\left(j \in N_{u p} \cup N_{d o w n}\right)\), quantities are obtained that correspond to the quantities \(\bar{z}_{0}, y_{i j}, \bar{c}_{j}\), and \(\bar{b}_{i}\), which were obtained earlier when calculating the initial values of the pseudo costs. These quantities are used to defined \(Z_{\max }(i)\) and \(Z_{\min }(i)\) as follows:
\[
\begin{aligned}
& Z_{\max }(i)=\bar{b}_{i}-\sum_{j \in N_{\text {down }}-S^{0}} \min \left\{0, y_{i j}\right\}\left(u_{j}-d_{j}\right)+\sum_{j \in N_{u_{p}-S^{1}}} \max \left\{0, y_{i j}\right\}\left(u_{j}-d_{j}\right) \\
& Z_{\min }(i)=\bar{b}_{i}-\sum_{j \in N_{\text {down }}-S^{0}} \max \left\{0, y_{i j}\right\}\left(u_{j}-d_{j}\right)+\sum_{j \in N_{u p}-S^{1}} \min \left\{0, y_{i j}\right\}\left(u_{j}-d_{j}\right)
\end{aligned}
\]
and the following eight rules can be used to fix several of the free variables \(x_{j}(j \in F)\) at 0 or 1 .
- \(Z_{\text {max }}(i)<1\) and \(B_{i} \in F\), then \(x_{B_{i}}=0\)
- \(Z_{\text {min }}(i)>0\) and \(B_{i} \in F\), then \(x_{B_{i}}=1\)
- \(Z_{\text {max }}(i)-\max \left\{0, y_{i j}\right\}<d_{B_{i}}\) and \(j \in N_{\text {down }} \cap F\), then \(x_{j}=0\)
- \(Z_{\text {max }}(i)+\min \left\{0, y_{i j}\right\}<d_{B_{i}}\) and \(j \in N_{u p} \cap F\), then \(x_{j}=1\)
- \(Z_{\text {min }}(i)-\min \left\{0, y_{i j}\right\}>u_{B_{i}}\) and \(j \in N_{\text {down }} \cap F\), then \(x_{j}=0\)
- \(Z_{\text {min }}(i)+\max \left\{0, y_{i j}\right\}>u_{B_{i}}\) and \(j \in N_{u p} \cap F\), then \(x_{j}=1\)
- \(\left|\bar{c}_{j}\right| \geq z^{*}-g\left(P_{k}\right)\) and \(j \in N_{\text {down }} \cap F\), then \(x_{j}=0\)
- \(\left|\bar{c}_{j}\right| \geq z^{*}-g\left(P_{k}\right)\) and \(j \in N_{u p} \cap F\), then \(x_{j}=1\)

Now, \(F, S^{0}\), and \(S^{1}\) are updated each time a variable is fixed. When all free variables have been fixed, the partial problem \(P_{k}\) is solved, \(P_{k}\) is removed from PLIST, and \(L \leftarrow L-1\) is performed. At this time, if \(f\left(P_{k}\right)<z^{*}, \boldsymbol{x}^{*}\) and \(z^{*}\) are replaced by the solution of \(P_{k}\) and \(f\left(P_{k}\right)\). Then, processing proceeds with step (6) according to the updated PLIST. If there are any remaining free variables that have not been fixed, processing proceeds with the next branching operation.
(5) Branching operation
\(P_{k}\) is removed from PLIST. Then, one branching variable \(x_{j_{0}}\) is selected from the free variables that have not been fixed by the partial problem test described above, the partial problems \(P_{k 0}\), for which \(j_{0}\) was added to \(S^{0}\), and \(P_{k 1}\), for which \(j_{0}\) was added to \(S^{1}\), are added at the end of PLIST, and \(L \leftarrow L+1\) is performed. The branching variable \(x_{j_{0}}\) is determined here as follows.
When incumbent \(\boldsymbol{x}^{*}\) has not been obtained:
For \(j_{0}\), set the \(j \in F \cap B\) that maximizes the value of \(\left|h_{u p}(j)\left(1-\bar{x}_{j}\right)-h_{\text {down }}(j) \bar{x}_{j}\right|\). Here, \(\overline{\boldsymbol{x}}\) is the optimal solution of relaxation problem of the partial problem \(P_{k}\).
When incumbent \(\boldsymbol{x}^{*}\) has been obtained:
For \(j_{0}\), set the \(j \in F \cap B\) that maximizes the value of \(\min \left\{h_{u p}(j)\left(1-\bar{x}_{j}\right), h_{\text {down }}(j) \bar{x}_{j}\right\}\).
(6) Termination condition

If \(L=0\), processing for the branch-and-bound method terminates, and the incumbent at that time \(x^{*}\) is the solution of \(P_{1}\), that is, of the original mixed 0-1 programming problem. Otherwise, processing returns to step (2).

\subsection*{5.1.2.6 Minimization of cost for flow in a network}

Consider a network having \(n\) vertices and \(m\) edges in which it is assumed that no loops (edges for which the tail of the edge and head of the edge are the same vertex) exist. Directed edge \(k\), which is represented by its tail \(\operatorname{tail}(k)\) and head \(\operatorname{head}(k)\), has a nonnegative capacity \(u_{k}\) and cost coefficient per unit flow \(c_{k}\). The minimal-cost

Figure 5-2 Edge \(k\) and its Capacity \(u_{k}\) and Cost Coefficient \(c_{k}\)

flow problem obtains the nonnegative flows \(x_{k}(k=1, \cdots, m)\) that satisfy the vertex \(i\) inflow/outflow amount \(b_{i}\) and edge \(k\) capacity \(u_{k}\) constraints and minimize the sum of the costs of all edges in this kind of network.
\[
\begin{aligned}
\text { Objective function }: & \sum_{k=1}^{m} c_{k} x_{k} \longrightarrow \min \\
\text { Constraints }: & \sum_{\operatorname{tail}(k)=i} x_{k}-\sum_{\operatorname{head}(k)=i} x_{k}=b_{i}, \quad(i=1, \cdots, n) \\
& 0 \leq x_{k} \leq u_{k}, \quad(k=1, \cdots, m) \\
& \sum_{i=1}^{n} b_{i}=0
\end{aligned}
\]

Although this is a linear programming problem to which the simplex method can be applied, a data structure representing the tableau graphically can be created by taking advantage of the characteristics of the constraints, and calculations involving pivoting arithmetic can be executed more efficiently.

Figure 5-3 Network Example

(1) Initial feasible solution

Add vertex \(n+1\) to the network to create edge \(k=(i, n+1)\) from vertex \(i\) if \(b_{i} \geq 0\) or edge \(k=(n+1, i)\) to vertex \(i\) if \(b_{i}<0\). Here, a sufficiently large positive value \(L\) is set for the cost coefficient of the added edge, \(\infty\) (specifically, a sufficiently large positive value \(U\) ) is set for the capacity, and \(b_{n+1}\) is set equal to zero. At this time, the modified minimal-cost flow problem is as follows.
\[
\begin{aligned}
\text { Objectivefunction }: & \sum_{k=1}^{m^{\prime}} c_{k} x_{k} \longrightarrow \min \\
\text { Constraints }: & \sum_{\operatorname{tail}(k)=i} x_{k}-\sum_{\operatorname{head}(k)=i} x_{k}+\operatorname{sign}\left(b_{i}\right) \cdot x_{m+i}=b_{i}, \quad(i=1, \cdots, n) \\
& 0 \leq x_{k} \leq u_{k}, \quad\left(k=1, \cdots, m^{\prime}(=m+n)\right) \\
& \sum_{i=1}^{n} b_{i}=0
\end{aligned}
\]
where,
\[
\begin{gathered}
c_{k}=L \\
u_{k}=U \quad, k=m+1, \cdots, m^{\prime} \\
\operatorname{sign}\left(b_{i}\right)=\left\{\begin{aligned}
1, & b_{i} \geq 0 \\
-1, & b_{i}<0
\end{aligned}\right.
\end{gathered}
\]

From this, the initial feasible solution should be as follows:
\[
x_{k}= \begin{cases}0 & (k=1, \cdots, m) \\ \operatorname{sign}\left(b_{k-m}\right) \cdot b_{k-m} & \left(k=m+1, \cdots, m^{\prime}\right)\end{cases}
\]
(2) Selection of a column as the pivoting column and pivoting arithmetic

If \(A_{k}\) is the \(k\)-th column of the coefficient matrix of the constraints and \(B\) is a basic matrix determined by selecting an appropriate \(n \times n\) regular submatrix from the coefficient matrix, then \(\overline{c_{k}}\) defined as follows:
\[
\overline{c_{k}}=c_{k}-c_{B}^{T} B^{-1} A_{k}
\]
is obtained for nonbasic variable \(x_{k}\), and the column that satisfies the following condition:
\[
\begin{array}{ll}
\overline{c_{k}}<0, & \text { for } x_{k}=0 \\
\overline{c_{k}}>0, & \text { for } x_{k}=u_{k} \tag{5.3}
\end{array}
\]
is selected for one pivot column. When the pivot column \(k\) is determined, the upper bound \(\Delta\) of the variation of \(x_{k}\) is equal to the maximum possible flow when flowing along the circuit \(j \longrightarrow i \longrightarrow p \longrightarrow j\) passing through vertex \(p\), which is the vertex having the maximum depth among the common ancestors of end vertices \(i\) and \(j\) of edge \(k\). The minimum value among the \(\Delta_{\ell}\), which are determined as follows for each

Figure 5-4 Circulation of Flow \(\Delta\)

(a) When \(x_{k}=0\)

(b) When \(x_{k}=u_{k}\)
edge \(\ell\) within this circuit, should be set for \(\Delta\).
- On edge \(k, \Delta_{k}=u_{k}\)
- If the direction of edge \(\ell\) on the path from \(i\) to \(p\) is downward, \(\Delta_{\ell}=u_{\ell}-x_{\ell}\); if it is upward, \(\Delta_{\ell}=x_{\ell}\)
- If the direction of edge \(\ell\) on the path from \(j\) to \(p\) is downward, \(\Delta_{\ell}=x_{\ell}\); if it is upward, \(\Delta_{\ell}=u_{\ell}-x_{\ell}\)

Next, make flow amount \(\Delta\) flow along this circuit. That is, for each edge \(\ell\) within the circuit, perform the following:
\[
x_{\ell}:= \begin{cases}x_{\ell}+\Delta, & \text { when directions of edge } \ell \text { and circuit match } \\ x_{\ell}-\Delta, & \text { when directions of edge } \ell \text { and circuit are opposite }\end{cases}
\]
and do not change the flow amount of edges not on the circuit. This is pivoting arithmetic. Also, let the new flow amount \(x_{\ell}\) of edge \(\ell\) for which \(\Delta_{\ell}=\Delta\) had been satisfied within the circuit be zero or let \(u_{\ell}\) be a new nonbasic variable \(x_{r}\) (if multiple nonbasic variables exist, select any one of them). Repeat the processing described. Processing terminates when there are no columns left that satisfy condition (5.3)).

\subsection*{5.1.2.7 Minimization of cost for project scheduling}

The project which consists of two or more tasks is considered. Each task has some of the precedence tasks, and if they all are not completed, it cannot start it. A project network expresses each task with an effective branch, and a precedence relation is shown by minding a node.

Each task \(k\) has a normal task time \(t_{N}(k)\) and a crash task time \(t_{C}(k), t_{N}(k)\) and \(t_{C}(k)\) are related as follows.
\[
t_{N}(k) \geq t_{C}(k)
\]

Also, the normal task \(\operatorname{cost} c_{N}(k)\) and crash task \(\operatorname{cost} c_{C}(k)\) for accomplishing task \(k\) are related as follows.
\[
c_{N}(k) \leq c_{C}(k)
\]

When \(t_{N}(k) \geq t_{C}(k)\), the cost \(c(k)\) to accomplish task \(k\) according to an intermediate task time \(t(k)\) can be given by the equation:
\[
c(k)=a(k)-b(k) \times t(k)
\]
where,
\[
a(k)=\frac{c_{C}(k) \times t_{N}(k)-c_{N}(k) \times t_{C}(k)}{t_{N}(k)-t_{C}(k)}, \quad b(k)=\frac{c_{C}(k)-c_{N}(k)}{t_{N}(k)-t_{C}(k)}
\]

Now, when each task \(k\) is done by task time \(t(k)\), for each node \(i\), the time for which all tasks that enter \(i\) are completed and the tasks for branches leaving \(i\) can start at any time \(E(i)\), which is called the earliest node time, is obtained by the following equations:
\[
\begin{aligned}
& E(1)=0 \\
& E(i)=\max \{E(\operatorname{tail}(k))+t(k) \quad \mid \operatorname{head}(k)=i\}, \quad i=2,3, \cdots, n
\end{aligned}
\]

Since \(n\) represents the number of nodes, \(\operatorname{tail}(k)\) represents the starting point of each task \(k\) and \(h e a d(k)\) represented the endpoint. Also, the project completion time \(T\) is obtained by the following equation:
\[
T=E(n)
\]

And the time for which to complete the project at time \(T\), by what time must the tasks that enter each node \(i\) be completed even if they are delayed \(L(i)\), which is called the latest node time, is obtained by the following equations:
\[
\begin{aligned}
& L(n)=T \\
& L(i)=\min \{L(\operatorname{head}(k))-t(k) \mid \operatorname{tail}(k)=i\}, \quad i=n-1, n-2, \cdots, 1
\end{aligned}
\]

To devise a concrete scheduling plan, first, set the scheduled completion time \(T_{S}\). \(T_{S}\) is normally set in the following range:
\[
T_{C} \leq T_{S} \leq T_{N}
\]

The problem of completing a project within the scheduled completion time \(T_{S}\) according to a minimum cost can be formulated as the following linear programming problem by setting the required time for task \(k\) as the variable \(t(k)\) and the node time of node \(i\) as the variable \(\tau(i)\).
\[
\begin{aligned}
\text { Objective function }: & \sum_{k=1}^{n}(a(k)-b(k) \times t(k)) \rightarrow \min \\
\text { Constraints }: & t(k)+\tau(\operatorname{tail}(k))-\tau(\operatorname{head}(k)) \leq 0, \quad k=1,2, \cdots, n \\
& \tau(1)=0 \\
& \tau(n) \leq T_{S} \\
& t(k) \leq t_{N}(k), \quad k=1,2, \cdots, n \\
& -t(k) \leq-t_{C}(k), \quad k=1,2, \cdots, n
\end{aligned}
\]

When the node time \(\tau(i)\) is obtained, the required time \(t(k)\) of task \(k\) can be obtained. \(t(k)\) should be set as follows.
\[
t(k)=\min \left\{t_{N}(k), \tau(\text { head }(k))-\tau(\operatorname{tail}(k))\right\}
\]

Furthermore, the earliest node time \(E(i)\) and latest node time \(L(i)\) of each node \(i\) can be obtained.
At this time, the earliest time \(E S(k)\) that work can begin for task \(k\), which is called the earliest start time of task \(k\), and the last possible time \(L S(k)\) by which work for task \(k\) must begin, even if it is delayed, in order for the project to be completed by \(T_{S}\), which is called the latest start time of task \(k\) are given as follows:
\[
\begin{aligned}
& E S(k)=E(\operatorname{tail}(k)) \\
& L S(k)=L(\operatorname{head}(k))-t(k)
\end{aligned}
\]

Also, if the start of task \(k\) is delayed within a range \(T F(k)\), the project can be completed within \(T_{S}\) as long as the schedule of the remaining tasks is properly adjusted, which is called the total float of task \(k\), and within the total float, even if the start of task \(k\) is delayed in a range \(F F(k)\), the subsequent work plan is not affected at all, which is called the free float of task \(k\) are given as follows:
\[
\begin{aligned}
& T F(k)=L S(k)-E S(k) \\
& F F(k)=E(\operatorname{head}(k))-E(\operatorname{tail}(k))-t(k)
\end{aligned}
\]

\subsection*{5.1.2.8 Minimization of cost for transportation from supply place to demand place}

The transportation problem is a special problem among linear programming problems. This problem requires us to find a route by which an article, which is a problem caused along with moving goods, is transported from a supply site to a demand site at minimum transportation costs, and also requires us to find out the expense to be presumed in that case. To solve this problem, settle on an initial plan in the first approximate solution and then improve it to get to the final plan (optimal solution). This library provides the northwestern corner rule and Houthakker's Method as first approximate solution, and Revised Simplex Method as method of improvement. (See "Algorithms Used" (5.1.2.4).) Here, supply quantity of supply place \(i\) is \(a_{i}\), demand quantity of demand place \(j\) is \(b_{j}\) and \(x_{i j}\) is the volume transported from supply place \(i\) to demand place \(j\).

Constraint
\[
\begin{aligned}
& \sum_{j=1}^{n} x_{i j}=a_{i} \quad(i=1, \cdots, m) \\
& \sum_{i=1}^{m} x_{i j}=b_{i} \quad(j=1, \cdots, n) \\
& x_{i j} \geq 0 \quad(\text { For all } i \text { and } j \text { numbers })
\end{aligned}
\]

Therefore, the total transportation cost is obtained by finding \(x_{i j}\) that minimizes the following function.
\[
Z=\sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j} x_{i j}
\]
(1) First Approximate Solution(The Northwest Corner Rule, Houthakker's Method)

The northwest corner rule distributes a minimum of resources one by one after comparing the transportation cost, supply quantity, and demand quantity for a given unit quantity with one another from upper left of the matrix. Houthakker's Method distributes resources in a multiple way to a minimum of a unit transportation cost that extends from each supply place to each demand place.
(2) Unbalanced Transportation Problem

The total supply volume \(\sum a_{i}\) is sometimes less than the total demand volume \(\sum b_{j}\) because of a transportation problem. In this case, even if all demand volumes cannot be satisfied, a certain amount of the volume can be distributed from supply places to demand places by a method that minimizes the total handling cost. In this case, assume that we have a fictitious supply places that handles a total volume of \(\sum b_{j}-\sum a_{i}\). Assume that the cost that covers delivering one unit from the fictitious supply places to a destination is zero. If the original shape problem is the ns \(\times\) nd problem, this problem, therefore, is supposed to be solved in the same way as a transportation problem that handles the ( \(\mathrm{ns}+1\) ) \(\times \mathrm{nd}\) problem. If the total supply volume of the problem is larger than the total demand volume, set up a fictitious problem in the same way. In this case, assume a fictitious destination that satisfies \(\sum a_{i}-\sum b_{j}\). Assume that this delivery cost is zero. Then, the following ns \(\times\) nd problem is supposed to be solved for a ns \(\times(\mathrm{nd}+1)\) problem.

\subsection*{5.1.2.9 Minimization of a constrained quadratic function of several variables (linear constraints)}

This algorithm deals with a problem (quadratic programming problem) that minimizes the \(n\) variable objective function:
\[
M(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}
\]
under the constraints:
\[
\begin{array}{ll}
\boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i} & \text { for } \quad\left(i=1,2, \cdots, m_{e}\right) \\
\boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i} & \text { for } \quad\left(i=m_{e}+1, \cdots, m\right)
\end{array}
\]

Here, \(\boldsymbol{a}_{i}\) and \(\boldsymbol{c}\) are \(n\) dimensional column vectors, \(b_{i}\) are constants, and \(G\) is an \(n \times n\) positive symmetric matrix. This library uses the GI method to solve this problem. This method was proposed by D. Goldfarb and A. Idnani. Let \(J\) be a set consisting of several of the constraint subscripts, let the solution \(\boldsymbol{x}\) that minimizes the objective function \(M(\boldsymbol{x})\) under all of the constraints corresponding to elements of \(J\) be called the \(J\)-optimal solution, and let the solution of the original problem be called simply the optimal solution. Also, denote the number of elements of \(J\) by \(|J|\) and denote the \(n \times|J|\) matrix having \(\boldsymbol{a}_{i} \quad(i \in J)\) as columns by \(A_{J}\). Furthermore, let \(K\) be the set of all subscripts of inequality constraints and \(E\) be the set of all subscripts of equality constraints. Therefore, when \(J=E \cup K\), the \(J\)-optimal solution is the optimal solution itself. As the procedure for obtaining the optimal solution, first let \(J=E \cup K\) and let the \(J\)-optimal solution at this time be the initial solution. Add inequality constraints that must be satisfied one at a time to \(J\) and continue to revise the \(J\)-optimal solution so that the added constraint is satisfied. Repeatedly revise the solution until finally \(J=E \cup K\).
(1) Calculate the initial solution

Obtain the \(J\)-optimal solution when \(J=E\). When the object function is convex, the problem the obtains the optimal solution is equivalent to obtaining \(\boldsymbol{x}\) and \(\boldsymbol{v}_{J}\) satisfying the Kuhn-Tucker condition:
\[
\begin{aligned}
G \boldsymbol{x}-A_{J} \boldsymbol{v}_{J} & =-\boldsymbol{c} \\
A_{J}^{T} \boldsymbol{x} & =\boldsymbol{b}_{J} \\
\boldsymbol{v}_{i} & \geq 0 \quad(i \in J)
\end{aligned}
\]

Here, \(\boldsymbol{v}_{J}\) and \(\boldsymbol{b}_{J}\) are \(|J|\) dimensional vectors having \(v_{i}(i \in J)\) and \(b_{i}(i \in J)\) as components, respectively. Now, if we let:
\[
\begin{aligned}
& A_{J}^{\dagger}=\left(A_{J}^{T} G^{-1} A_{J}\right)^{-1} A_{J}^{T} G^{-1} \\
& H_{J}=G^{-1}\left(I-A_{J} A_{J}^{\dagger}\right)
\end{aligned}
\]
then \(\boldsymbol{x}\) and \(\boldsymbol{v}_{J}\) are calculates as follows:
\[
\begin{aligned}
\boldsymbol{x} & =\left(A_{J}^{\dagger}\right)^{T} b_{J}-H_{J} \boldsymbol{c} \\
\boldsymbol{v}_{J} & =\left(A_{J}^{T} G^{-1} A_{J}\right)^{-1} \boldsymbol{b}_{J}+A_{J}^{\dagger} \boldsymbol{c}
\end{aligned}
\]
(2) Update \(J\)

If the \(J\)-optimal solution has been obtained for a certain \(J \subset K\) and that solution is not the optimal solution, determine the constraint to be added to \(J\) as follows. First, if we let:
\[
c_{i}(x)=\boldsymbol{a}_{i}^{T} \boldsymbol{x}-\boldsymbol{b}_{i}
\]
then there exists at least one \(s \notin J\) for which \(\boldsymbol{c}_{s}(x)<0\) is satisfied. Therefore, determine \(s\) according to:
\[
c_{s}(x)=\min \left\{c_{i}(x) \mid i \notin J\right\}<0
\]

Then, if \(\boldsymbol{a}_{s}\) is independent of the \(\boldsymbol{a}_{i}(i \in J)\) that form the columns of \(A_{J}\), let \(J \cup\{s\}\) be the new \(J\). Otherwise, recalculate the \(J\)-optimal solution by eliminating one element from \(J\).
(3) Update the \(J\)-optimal solution

After updating \(J\) by adding the following inequality constraint determined in step (b) to \(J\) :
\[
\boldsymbol{a}_{s}^{T} \boldsymbol{x}-\boldsymbol{b}_{s} \geq 0
\]
obtain the \(J\)-optimal solution as follows. Let \(\boldsymbol{x}\) be the \(J\)-optimal solution before \(J\) was updated and let \(c_{i}=0(i \in J)\). At this time, if we set:
\[
\overline{\boldsymbol{x}}=\boldsymbol{x}+t H_{J} \boldsymbol{a}_{s}
\]
then the following relationships hold for the \(c_{i}(i \in J)\) and \(c_{s}\) defined in (b) and for \(v_{i}(i \in J)\) :
\[
\begin{aligned}
c_{i}(\overline{\boldsymbol{x}}) & =c_{i}(\boldsymbol{x})=0 \quad(i \in J) \\
c_{s}(\overline{\boldsymbol{x}}) & =c_{s}(\boldsymbol{x})+t \boldsymbol{a}_{s}^{T} H_{J} \boldsymbol{a}_{s} \\
v_{i}(\overline{\boldsymbol{x}}) & =v_{i}(\boldsymbol{x})-t \cdot r_{i}
\end{aligned}
\]
where, \(r_{i} \quad(i \in J)\) is the \(i\)-th component of:
\[
\boldsymbol{r}=A_{J}^{\dagger} \boldsymbol{a}_{s}
\]
now, if we let:
\[
\begin{aligned}
t_{1} & =\min \left\{\left.\frac{v_{i}(\boldsymbol{x})}{r_{i}} \right\rvert\, r_{i}>0, \quad i \in J \cap K\right\} \\
t_{2} & =-\frac{c_{s}(\boldsymbol{x})}{\boldsymbol{a}_{s}^{T} H_{J} \boldsymbol{a}_{s}}
\end{aligned}
\]
then in the range \(0 \leq t \leq t_{1}\) :
\[
v_{i}(\overline{\boldsymbol{x}}) \geq 0 \quad(i \in \bar{J} \cap K)
\]
and when \(t=t_{2}\) :
\[
c_{s}(\overline{\boldsymbol{x}})=0
\]

Therefore, if \(t_{1} \geq t_{2}\), the \(\overline{\boldsymbol{x}}\) when \(t=t_{2}\) satisfies the Kuhn-Tucker condition used in (a) for constraints corresponding to \(J \cup\{s\}\), and this becomes the \(J\)-optimal solution after \(J\) is updated. On the other hand, if \(t_{1} \geq t_{2}\), one element is removed from \(J\) and the \(J\)-optimal solution is recalculated.
(4) Termination condition

If the \(J\)-optimal solution \(\boldsymbol{x}\) satisfies:
\[
c_{i}(\boldsymbol{x}) \geq 0
\]
for all \(i \in \bar{J} \cap K\), the optimal solution is assumed to be \(\boldsymbol{x}\), and the calculation ends.

\subsection*{5.1.2.10 Minimization of a generalized convex quadratic function of several variables (linear constraints)}

Here we will deal with the problem of obtaining \(\boldsymbol{x}^{*}\) that minimizes the generalized convex quadratic function of \(n\) variables
\[
f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \quad(G: \text { positive semi-definite symmetric matrix })
\]
which is the objective function under the constraints
\[
\begin{aligned}
\sum_{j=1}^{n}\left(a_{i j} x_{j}\right) & =b_{i} \text { for }\left(i=1, \cdots, m_{e}\right) \\
\sum_{j=1}^{n}\left(a_{i j} x_{j}\right) & \geq b_{i} \text { for }\left(i=m_{e}+1, \cdots, m\right) \\
x_{i} & \geq 0 \text { for }(i=1, \cdots, n)
\end{aligned}
\]
and to obtain the function value \(f\left(\boldsymbol{x}^{*}\right)\) at that time. To solve this problem, the functions in this library convert the given problem to an equivalent linear complementarity problem and solve that problem by using the Lemke method.
The actual procedure is shown below.
(1) Creation of linear complementarity problem

First, eliminate \(m_{e}\) variables by using the equality constraints and convert the original quadratic programming problem to a quadratic programming problem for the remaining variables. Then, create an equivalent linear complementarity problem for the new quadratic programming problem. From \(\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]\), use the equality constraints to represent \(x_{1}, x_{2}, \cdots, x_{m_{e}}\) in terms of \(x_{m_{e}+1}, \cdots, x_{n}\) as follows.
\[
x_{i}=\sum_{j=m_{e}+1}^{n}\left(p_{i j} x_{j}\right)+r_{i} \text { for }\left(i=1, \cdots, m_{e}\right)
\]

Using this expression, convert the given quadratic programming problem to a quadratic programming problem for \(\left(n-m_{e}\right)\) variables \(\boldsymbol{x}^{\prime}=\left[x_{m_{e}+1}, \cdots, x_{n}\right]=\left[x_{1}^{\prime}, \cdots, x_{n-m_{e}}^{\prime}\right]\)
\[
\begin{aligned}
\text { Constraints } & : \sum_{j=1}^{n-m_{e}}\left(a_{i j}^{\prime} x_{j}^{\prime}\right) \geq b_{i}^{\prime} \text { for }\left(i=1, \cdots, n-m_{e}\right) \\
& x_{i}^{\prime} \geq 0 \text { for }\left(i=1, \cdots, n-m_{e}\right) \\
\text { Objective function }: & f\left(\boldsymbol{x}^{\prime}\right)=\frac{1}{2}\left(\boldsymbol{x}^{\prime}\right)^{T} G^{\prime} \boldsymbol{x}^{\prime}+\boldsymbol{c}^{\prime T} \boldsymbol{x}^{\prime}
\end{aligned}
\]

For
\[
\begin{aligned}
G_{i-m_{e}, j-m_{e}}^{\prime} & =G_{i, j}+\sum_{k=1}^{m_{e}}\left(G_{i, k} p_{k, j}\right)+\sum_{k=1}^{m_{e}}\left(G_{k, j} p_{k, i}\right)+\sum_{s=1}^{m_{e}} \sum_{t=1}^{m_{e}}\left(p_{s, i} G_{s, t} p_{t, j}\right) \\
c_{i-m_{e}}^{\prime} & =c_{i}+\sum_{j=1}^{m_{e}}\left(c_{j} p_{j, i}\right)+\sum_{k=1}^{m_{e}}\left(G_{i, k} r_{k}\right)+\sum_{s=1}^{m_{e}} \sum_{t=1}^{m_{e}}\left(G_{s, t} p_{s, i} r_{t}\right) \\
a_{i j-m_{e}}^{\prime} & = \begin{cases}p_{i, j} & \text { for }\left(i=1, \cdots, m_{e} ; j=m_{e}+1, \cdots, n\right) \\
a_{i, j}+\sum_{k=1}^{m_{e}}\left(a_{i, k} p_{k, j}\right) & \text { for }\left(i=m_{e}+1, \cdots, m ; j=m_{e}+1, \cdots, n\right)\end{cases} \\
b_{i}^{\prime} & = \begin{cases}-r_{i}{\text { for }\left(i=1, \cdots, m_{e}\right)}_{b_{i}-\sum_{k=1}^{m_{e}}\left(a_{i, k} r_{k}\right)} \quad \text { for }\left(i=m_{e}+1, \cdots, m\right)\end{cases}
\end{aligned}
\]
let \(A^{\prime}=\left(a_{i, j}^{\prime}\right), G^{\prime}=\left(G_{i, j}^{\prime}\right),\left(\boldsymbol{c}^{\prime}\right)^{T}=\left[c_{1}^{\prime}, \cdots, c_{n-m_{e}}^{\prime}\right]\) and \(\left(\boldsymbol{b}^{\prime}\right)^{T}=\left[b_{1}^{\prime}, \cdots, b_{n-m_{e}}^{\prime}\right]\) to create the following linear complementarity problem where, \(\boldsymbol{v}\) is the Lagrange multiplier vector for the inequality constraints.
\[
\begin{aligned}
{\left[\begin{array}{c}
\boldsymbol{y} \\
\boldsymbol{w}
\end{array}\right] } & =\left[\begin{array}{cc}
G^{\prime} & -A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{v}
\end{array}\right]+\left[\begin{array}{c}
\boldsymbol{c}^{\prime} \\
-\boldsymbol{b}^{\prime}
\end{array}\right] \\
y_{i} & \geq 0 \text { for }\left(i=1, \cdots, n-m_{e}\right) \\
w_{i} & \geq 0 \text { for }(i=1, \cdots, m) \\
x_{i} & \geq 0 \text { for }\left(i=1, \cdots, n-m_{e}\right) \\
v_{i} & \geq 0 \text { for }(i=1, \cdots, m) \\
{\left[\boldsymbol{y}^{T} \boldsymbol{w}^{T}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{v}
\end{array}\right] } & =0
\end{aligned}
\]
(2) Linear complementarity problem

Solve the linear complementarity problem to obtain solutions of the new quadratic programming problem obtained by eliminating the equality constraints.
For the given \(n \times n\) matrix
\[
T=\left[\begin{array}{cc}
G^{\prime} & -A^{T} \\
A & 0
\end{array}\right]
\]
obtain the \(n\)-dimensional vectors \(\boldsymbol{x}\) and \(\boldsymbol{y}\) satisfying
\[
\begin{align*}
\boldsymbol{y} & =T \boldsymbol{x}+\boldsymbol{q}  \tag{5.4}\\
x_{i} & \geq 0 \text { for }(i=1, \cdots, n)  \tag{5.5}\\
y_{i} & \geq 0 \text { for }(i=1, \cdots, n) \tag{5.6}
\end{align*}
\]

First, for the linear complementarity problem in (5.4), (5.5) and (5.6), define the following equation for the \((2 n+1)\) variables \((\boldsymbol{y}, \boldsymbol{x}, \xi)\)
\[
\boldsymbol{y}-T \boldsymbol{x}-\boldsymbol{d} \xi=\boldsymbol{q}
\]
where, \(\boldsymbol{d}\) is an \(n\)-dimensional constant vector for which all components are positive. Within \((\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{\xi})\), the nonzero components are called basic variables and the others are called nonbasic variables.

Next, let the initial solution for the equation in (5.4) be \((\boldsymbol{y}, \boldsymbol{x}, \xi)=\left(\boldsymbol{q}+\boldsymbol{d} \xi_{0}, 0, \xi_{0}\right)\), where,
\[
\begin{aligned}
\xi_{0} & =\max \left\{\left.-\frac{q_{i}}{d_{i}} \right\rvert\, i=1,2, \cdots, n\right\} \\
\eta & =\max \left\{\left.-\frac{q_{i}}{d_{i}} \right\rvert\, i=1,2, \cdots, n\right\}
\end{aligned}
\]

When the value of a certain basic variable becomes 0 , if the basic variable at this time is \(y_{s}\) remove \(y_{s}\) from the basis, insert \(\eta\) in the basis, and let \(\eta=x_{s}\). If \(x_{s}\) is a basis variable, remove \(x_{s}\) from the basis, insert \(\eta\) in the basis, and let \(\eta=y_{s}\). Repeat this processing, and terminate the calculation when that basis variable becomes \(\xi\).
Also, if the value of \(\eta\) for which the expressions in (5.5) and (5.6) are satisfied can get infinitely large, terminate the calculation with no solution existing.
(3) Transformation of the solution

The solution that was obtained is transformed to a solution of the original quadratic programming problem before the equality constraints were removed.

\subsection*{5.1.2.11 Minimization of anconstrained \(\mathbf{0} \mathbf{- 1}\) quadratic function of several variables}

This section describes the problem of minimizing quadratic functions (unconstrained 0-1 quadratic programming problem) where every variables assumes a \(0-1\) variables, namely, only 0 or 1 , as the value.
\[
\begin{array}{lll}
\text { Objective function } & : f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \quad \rightarrow \text { min } \\
0-1 \text { condition } & : x_{j}=0 \text { or } 1 \quad(j=1, \cdots, n)
\end{array}
\]

This library uses the branch-and-bound method to solve the unconstrained 0-1 quadratic programming problem.
For an unconstrained 0-1 quadratic programming problem, we use a following partial problem.
\[
\begin{array}{llll}
\text { The objective function } & : & f(\boldsymbol{x}) \quad=\quad \frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \quad \rightarrow \min \\
\text { The } 0-1 \text { condition } & : & x_{j}=0 & \left(j \in S^{0}\right) \\
& x_{j}=1 & \left(j \in S^{1}\right) \\
& x_{j}=0 \text { or } 1 & (j \in F)
\end{array}
\]

Here, \(S^{0}, S^{1}\), and \(F\) are the set of subscripts of \(0-1\) variables having values fixed at 0 , the set of subscripts of \(0-1\) variables having values fixed at 1 , and the set of subscripts of \(0-1\) variables having values that are not fixed, respectively, in partial problem \(P_{k}\). Now, \(0-1\) variables having values fixed at 0 or 1 are called fixed variables, and other \(0-1\) variables are called free variables. A partial problem is an unconstrained \(0-1\) quadratic programming problem in itself. In particular, the partial problem having \(S^{0} \cup S^{1}=\phi\), that is, not having fixed variables, is the original mixed 0-1 programming problem (hereafter called \(P_{1}\) ) itself.

In addition, the relaxation problem for partial problems is defined as follows:
\[
\begin{array}{lll}
\text { The objective function } & : f(\boldsymbol{x})= & \frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \quad \rightarrow \min \\
\text { The 0-1 condition } & : x_{j}=0 & \left(j \in S^{0}\right) \\
& x_{j}=1 & \left(j \in S^{1}\right) \\
& 0 \leq x_{j} \leq 1 & (j \in F)
\end{array}
\]

The method of obtaining the solutions of \(P_{1}\) by the branch-and-bound method is explained below.
(1) Initial setting
(a) Preconditioning for coefficient matrix

To successfully solve the relaxation problem described bellow, the coefficient matrix of an objective function must be a positive definite matrix. Using the characteristic of \(0-1\) variable having
\[
x_{i}^{2}=x_{i} \quad(i=1, \ldots, n)
\]
in the unconstrained 0-1 quadratic programming problem, the objective function can be rewritten into a quadratic function with symmetric matrix in its coefficient as follows:
\[
f(x)=\frac{1}{2} x^{T} G^{\prime} x
\]

Where, \(G^{\prime}\) is as follows:
\[
G^{\prime}=\frac{1}{2}\left(G+G^{T}\right)+2 \operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)
\]

If \(G^{\prime}\) is a positive semi-definite matrix, \(P_{1}\) has a self-evident optimal solution, as in the following.
\[
x^{*}=(0,0, \ldots, 0)^{T}
\]

If \(G^{\prime}\) is not a positive semi-definite matrix, namely, \(G^{\prime}\) has a negative eigen value, the objective function can be rewritten into a quadratic function with a positive definite matrix \(G^{\prime \prime}\) as the coefficient, as in the following,
\[
f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} G^{\prime \prime} \boldsymbol{x}+\left(\boldsymbol{c}^{\prime \prime}\right)^{T} \boldsymbol{x}
\]
by defining the following with the minimal eigen value \(\lambda_{\text {min }}\) of \(G^{\prime}\) and positive number parameter \(\beta(>0)\) :
\[
\begin{aligned}
G^{\prime \prime} & =G^{\prime}+\left(\left|\lambda_{\min }\right|+\beta\right) \operatorname{diag}(1,1, \ldots, 1) \\
\boldsymbol{c}^{\prime \prime} & =-\frac{1}{2}\left(\left|\lambda_{\min }\right|+\beta\right)(1,1, \ldots, 1)^{T}
\end{aligned}
\]
where, \(\beta\) is a minimal eigen value of matrix \(G^{\prime \prime}\). In the following explanation, the coefficient matrix \(G\) is assumed to have been converted into a positive definite matrix in advance through this kind of preconditioning.
(b) Partial problem list

The branch-and-bound method uses the partial problem list PLIST. In the initial state, the members of PLIST consist only of \(P_{1}\), and the number of members of PLIST \(L\) is \(1 . L\) increases and decreases as the branch-and-bound method calculations proceed.
(c) Incumbent solution

In contrast to the case of a mixed 0-1 programming problem, the way to use a solution whose objective function is as small as possible is more efficient in searching the optimal solution by the branch-andbound method, although the existence of an executable solution is self-evident. In this library, we use a solution obtained by two heuristic search methods, simulated annealing and tabu search, as an initial incumbent solution.
(d) Simulated annealing method
(1) Select an initial solution \(\boldsymbol{x}=\boldsymbol{x}_{0}\) at random.
(2) Set the initial temperature to \(T=T_{0}\).
(3) Assume \(z \leftarrow f\left(\boldsymbol{x}_{0}\right)\).
(4) Assume \(y \leftarrow f(\boldsymbol{x})\).
(5) Assume \(T \leftarrow \alpha \times T(0<\alpha \leq 1)\).
(6) Select one subscript \(i(1 \leq i \leq n)\) at random.
(7) Assume \(x_{i} \leftarrow 1-x_{i}\).
(8) If \(y<f(\boldsymbol{x})\), select a real number \(r \in[0,1]\) randomly. If \(r>\exp (-1 / T)\), assume \(x_{i} \leftarrow 1-x_{i}\).
(9) Assume \(z \leftarrow \min \{y, z\}\).
(10) Repeat processing from (4) to (9) for the specified count. Assume that \(z\), which is ultimately obtained, is the objective function value of the initial incumbent solution by the branch-and-bound method.
(e) Tabu search method
(1) Select an initial solution \(\boldsymbol{x}=\boldsymbol{x}_{0}\) at random.
(2) Assume \(K=\phi\) tabu list.
(3) Assume \(z \leftarrow f\left(\boldsymbol{x}_{0}\right)\).
(4) Assume \(U(\boldsymbol{x})=\left\{\boldsymbol{u}^{(1)}, \boldsymbol{u}^{(2)}, \ldots, \boldsymbol{u}^{(n)}\right\}\) where \(\boldsymbol{u}^{(i)}=\left(x_{1}, \ldots, x_{i-1}, 1-x_{i}, x_{i+1}, \ldots, x_{n}\right)^{T}\).
(5) Assume \(\boldsymbol{x} \leftarrow \min _{U \backslash K} \boldsymbol{u}_{i}\).
(6) Assume \(K \leftarrow K \cup\{\boldsymbol{x}\}\). If the number of \(K\) 's elements exceeds the specified number, remove the element the most previously added to \(K\).
(7) Assume \(z \leftarrow \min \{f(\boldsymbol{x}), z\}\).
(8) Repeat processing from (4) to (7) for the specified count. Assume that \(z\), which is ultimately obtained, is the objective function value of the initial incumbent solution by the branch-and-bound method.

By the tabu search method, you can obtain a workable solution, although considerable time is needed. The computation time by the simulated annealing method is relatively short. In addition to those search methods, this library supports a method by which a primary solution obtained by the simulated annealing method is improved by the tabu search. If \(n\), the number of variables, is relatively large, it is hard to obtain an exact optimal solution by the branch-and-bound method described later. However, in most cases, a solution obtained by a heuristic search has ample approximate accuracy. Therefore, this library also supports a method by which any branch-and-bound method calculation is omitted because a solution obtained by a heuristic search is used as an approximate solution as is.
(2) Lower bound value calculation

Calculate the lower bound value of an optimal value using the corresponding relaxation problem as follows:
(a) Assume that the eigen values of coefficient matrix \(G\) are \(\lambda_{1}, \ldots, \lambda_{n}\) and the corresponding orthonormalized eigen vectors \(\boldsymbol{u}^{(1)}, \ldots, \boldsymbol{u}^{(n)}\).
(b) Solve the convex quadratic programming problem, which is a relaxation problem, using the G-I method, and assume that its optimal solution is \(\overline{\boldsymbol{x}}\).
(c) If free variable \(x_{i}(i \in F)\) satisfies the following, \(x_{i}\) is fixed as zero.
\[
f(\overline{\boldsymbol{x}})+\frac{1}{2}\left|\frac{\bar{x}_{i}^{2}}{\sum_{k=1}^{n} \frac{\left(u_{i}^{(k)}\right)^{2}}{\lambda_{k}}}\right| \leq z^{*}<f(\overline{\boldsymbol{x}})+\frac{1}{2}\left|\frac{\left(1-\bar{x}_{i}\right)^{2}}{\sum_{k=1}^{n} \frac{\left(u_{i}^{(k)}\right)^{2}}{\lambda_{k}}}\right|
\]

Then, assume \(S_{0} \leftarrow S_{0} \cup\{i\}, F \leftarrow F-\{i\}\).
(d) If free variable \(x_{i}(i \in F)\) satisfies the following, \(x_{i}\) is fixed as one.
\[
f(\overline{\boldsymbol{x}})+\frac{1}{2}\left|\frac{\left(1-\bar{x}_{i}\right)^{2}}{\sum_{k=1}^{n} \frac{\left(u_{i}^{(k)}\right)^{2}}{\lambda_{k}}}\right| \leq z^{*}<f(\overline{\boldsymbol{x}})+\frac{1}{2}\left|\frac{\bar{x}_{i}^{2}}{\sum_{k=1}^{n} \frac{\left(u_{i}^{(k)}\right)^{2}}{\lambda_{k}}}\right|
\]

Then, assume \(S_{1} \leftarrow S_{1} \cup\{i\}, F \leftarrow F-\{i\}\).
If some free variables are fixed by the above operation, solve the relaxation problem again and repeat it until there are no more free variables to be newly fixed.
(e) Coordinate transformation

Define the \(U_{i}^{0}\) and \(U_{i}^{1}\) sub sets of the space of variable \(\hat{\boldsymbol{x}}\) defined with
\[
x_{i}-\bar{x}_{i} \leftarrow \sum_{j=1}^{n} \frac{u_{i}^{(j)}}{\sqrt{\lambda_{j}}} \hat{x}_{j}
\]
as follows:
\[
\begin{aligned}
& U_{i}^{0}=\left\{\hat{\boldsymbol{x}} \left\lvert\, \sum_{j=1}^{n} \frac{u_{i}^{(j)}}{\sqrt{\lambda_{j}}} \hat{x}_{j}=0\right.\right\} \\
& U_{i}^{1}=\left\{\hat{\boldsymbol{x}} \left\lvert\, \sum_{j=1}^{n} \frac{u_{i}^{(j)}}{\sqrt{\lambda_{j}}} \hat{x}_{j}=1\right.\right\}
\end{aligned}
\]

As for the set of subscripts for an arbitrary free variable \(\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}\), if
\[
D=\min \left\{\mid \hat{\boldsymbol{x}} \| \boldsymbol{x} \in \cap_{k=1}^{r}\left(U_{i_{k}}^{0} \cup U_{i_{k}}^{1}\right)\right\}
\]
is assumed,
\[
g(\overline{\boldsymbol{x}})=f(\overline{\boldsymbol{x}})+\frac{D^{2}}{2}
\]
provides the lower bound value of a partial problem. In this library, \(r\) portions from a larger one of those among free variables obtained form the following formula are used to calculate \(D\).
\[
\frac{\min \left\{\bar{x}_{i}, 1-\bar{x}_{i}\right\}^{2}}{\sum_{k=1}^{n} \frac{\left(u_{i}^{(k)}\right)^{2}}{\lambda_{k}}}
\]

If the optimal value \(g\left(P_{i}\right)\) for the solutions of the relaxation problem corresponding to partial problem \(P_{i}\) satisfies \(g\left(P_{i}\right)>z^{*}, P_{i}\) is removed from PLIST and \(L \leftarrow L-1\) is performed. Also, when the optimal solution is represented by \(\overline{\boldsymbol{x}}\), if the value of \(\overline{\boldsymbol{x}}_{j}\) is 0 or 1 for all \(j \in F\), the solutions of the relaxation problem are solutions of the original partial problem, and the optimal value of the partial problem is equal to the optimal value \(g\left(P_{i}\right)\) of the relaxation problem. At this time, if \(f\left(P_{i}\right)<z^{*}, \boldsymbol{x}^{*}\) and \(z^{*}\) are replaced by \(\overline{\boldsymbol{x}}\) and \(f\left(P_{i}\right)\).
Now, a new relaxation problem must be solved when the initial settings described above are made and when \(L\) is increased by a branching operation, which is described later. In the latter case, the last two partial problems in PLIST are the pair of partial problems \(P_{i 0}\), for which the branching variable \(x_{j_{0}}\) is fixed at 0 , and \(P_{i 1}\), for which it is fixed at 1.
(3) Branching operation
\(P_{k}\) is removed from PLIST. Then, one branching variable \(x_{j_{0}}\) is selected from the free variables that have not been fixed by the partial problem test described above, the partial problems \(P_{k 0}\), for which \(j_{0}\) was added to \(S^{0}\), and \(P_{k 1}\), for which \(j_{0}\) was added to \(S^{1}\), are added at the end of PLIST, and \(L \leftarrow L+1\) is performed. The branching variable \(x_{j_{0}}\) is determined here as follows.
\[
j_{0}=\operatorname{argmin}_{j \in F}\left|\bar{x}_{j}-\frac{1}{2}\right|
\]

After the branching operation, calculate the lower bound of the optimal value of each partial problem for \(P_{k 0}\) and \(P_{k 1}\).
(4) PLIST sorting

Assume \(K^{\prime}=\min \{K, L\}\). Here, \(K\) is called the "search depth in the branch-and-bound method" and is a positive integer parameter. The last \(K^{\prime}\) portions of partial problems \(P_{i}\) in PLIST are sorted in descending order of the lower bound value \(g\left(P_{i}\right)\).
(5) Partial problem test

For the last partial problem \(P_{k}\) in PLIST, when all free variables have been fixed, the partial problem is solved, \(P_{k}\) is removed from PLIST, and \(L \leftarrow L-1\) is performed. At this time, if \(f\left(P_{k}\right)<z^{*}, \boldsymbol{x}^{*}\) and \(z^{*}\) are replaced by the solution of \(P_{k}\) and \(f\left(P_{k}\right)\). Then, processing proceeds with step (6) according to the updated PLIST. If there are any remaining free variables that have not been fixed, processing proceeds with the next branching operation.
(6) Termination condition

If \(L=0\), processing for the branch-and-bound method terminates, and the incumbent at that time \(x^{*}\) is the solution of \(P_{1}\), that is, of the original mixed 0-1 programming problem. Otherwise, processing returns to step (2).

\subsection*{5.1.2.12 Minimization of a constrained function of several variables}

Here, given a function \(f(\boldsymbol{x})\) of \(n\) variables, we will deal with the problem of obtaining the point \(\boldsymbol{x}^{*}\) (optimal solution) that minimizes it based on the \((m+\ell)\) given constraints
\[
\left\{\begin{array}{l}
g_{i}(\boldsymbol{x}) \leq 0 \quad \text { for } \quad(i=1, \cdots, m)  \tag{5.7}\\
h_{j}(\boldsymbol{x})=0 \quad \text { for } \quad(j=1, \cdots, \ell)
\end{array}\right.
\]

Global minimization generally is difficult to achieve. This library deals only with local minimization. Therefore, in the explanation below, the term "minimization" is used only in the local sense. Similarly, the local optimal solution \(\boldsymbol{x}^{*}\) is referred to simply as the optimal solution.
Now, if we define the penalty function \(\theta_{\delta}(\boldsymbol{x})\) as
\[
\theta_{\delta}(\boldsymbol{x})=f(\boldsymbol{x})+\delta \max \left(0, g_{1}(\boldsymbol{x}), \cdots, g_{m}(\boldsymbol{x}),\left|h_{1}(\boldsymbol{x})\right|, \cdots,\left|h_{\ell}(\boldsymbol{x})\right|\right) \text { for }(\delta>0)
\]
then the following holds for an arbitrary \(\boldsymbol{x}\)
\[
\theta_{\delta}(\boldsymbol{x}) \geq f(\boldsymbol{x})
\]
and, in particular, when \(\boldsymbol{x}\) is a point that satisfies the constraints given above, the following relationship holds
\[
\theta_{\delta}(\boldsymbol{x})=f(\boldsymbol{x})
\]

Therefore, the problem of minimizing \(f(\boldsymbol{x})\) under constraints (5.7) is reduced to the problem of minimizing \(\theta_{\delta}(\boldsymbol{x})\) without constraints.
\(\theta_{\delta}(\boldsymbol{x})\) is a strict penalty function, and if the quasi-Newton method is applied to it, the optimal solution can be obtained theoretically. However, since \(\theta_{\delta}(\boldsymbol{x})\) mathematically has unstable properties, this library uses an algorithm called the sequential quadratic programming method to perform iterative improvement of a solution, which resembles the quasi-Newton method for the Lagrange function
\[
L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\boldsymbol{x})+\sum_{i=1}^{m}\left(\lambda_{i} g_{i}(\boldsymbol{x})\right)+\sum_{j=1}^{\ell}\left(\mu_{j} h_{j}(\boldsymbol{x})\right)
\]
\(\theta_{\delta}(\boldsymbol{x})\) is used as the linear search evaluation function. The computation procedure is as follows.
(1) Partial quadratic programming problem when the \(k\)-th approximation \(\boldsymbol{x}_{k}\) of optimal solution \(\boldsymbol{x}^{*}\) is obtained, the following quadratic programming problem
\[
\begin{array}{llll}
\text { Objective function } & : \frac{1}{2} \boldsymbol{d}^{T} B_{k} \boldsymbol{d}+\nabla f\left(\boldsymbol{x}_{k}\right)^{T} \boldsymbol{d} & \\
\text { Inequality constraints } & : g_{i}\left(\boldsymbol{x}_{k}\right)+\nabla g_{i}\left(\boldsymbol{x}_{k}\right)^{T} \boldsymbol{d} \leq 0 & \text { for }(i=1, \cdots, m) \\
\text { Equality constraints } & : h_{j}\left(\boldsymbol{x}_{k}\right)+\nabla h_{j}\left(\boldsymbol{x}_{k}\right)^{T} \boldsymbol{d}=0 & \text { for }(j=1, \cdots, \ell)
\end{array}
\]
which is obtained by expanding the objective function and constraints around \(\boldsymbol{x}_{k}\) is solved, and that solution is denoted as \(\boldsymbol{d}_{k}\). However, since calculating the Hessian \(\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\) is difficult mathematically, it is replaced by its approximation matrix \(B_{k}\) in a similar manner as in the quasi-Newton method.
The Goldfarb-Idnani method is used as the algorithm for solving this quadratic programming problem.
If \(\boldsymbol{d}_{k}=0\), the calculation terminates with \(\boldsymbol{x}^{*}=\boldsymbol{x}_{k}\). The Lagrange multiplier vectors obtained here are set to \(\boldsymbol{\lambda}_{k+1}\) and \(\boldsymbol{\mu}_{k+1}\).
(2) Linear search

Search for \(\boldsymbol{x}_{k+1}\) with \(\boldsymbol{d}_{k}\) as the search direction. Start with \(\alpha_{k}=1\), and if the following condition is satisfied
\[
\theta_{\delta}\left(\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k}\right) \leq \theta_{\delta}\left(\boldsymbol{x}_{k}\right)-\omega \alpha_{k} \boldsymbol{d}_{k}^{T} B_{k} \boldsymbol{d}_{k}
\]
proceed to the processing in (c). If the condition is not satisfied, repeatedly replace \(\alpha_{k}\) so that \(\tau \alpha_{k} \rightarrow \alpha_{k}\) until the condition is satisfied.
(3) Updating of \(\boldsymbol{x}_{k}\)
\[
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k}
\]
(4) Updating of \(B_{k}\)

Since the positive definite property of \(B_{k}\) is not maintained in the original BFGS formula, \(B_{k}\) is updated by the modified BFGS formula as shown below.
\[
B_{k+1}=B_{k}-\frac{B_{k} \boldsymbol{s}_{k} \boldsymbol{s}_{k}^{T} B_{k}}{\boldsymbol{s}_{k}^{T} B_{k} \boldsymbol{s}_{k}}+\frac{\boldsymbol{\eta}_{k} \boldsymbol{\eta}_{k}^{T}}{\boldsymbol{s}_{k}^{T} \eta_{k}}
\]
where,
\[
\begin{aligned}
\boldsymbol{s}_{k} & =\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k} \\
\boldsymbol{y}_{k} & =\nabla \boldsymbol{x}^{L} L\left(\boldsymbol{x}_{k+1}, \boldsymbol{\lambda}_{k+1}, \boldsymbol{\mu}_{k+1}\right)-\nabla \boldsymbol{x} L\left(\boldsymbol{x}_{k}, \boldsymbol{\lambda}_{k+1}, \boldsymbol{\mu}_{k+1}\right) \\
\phi & = \begin{cases}1 & \text { for } \boldsymbol{s}_{k}^{T} \boldsymbol{y}_{k} \geq 0.2 \boldsymbol{s}_{k}^{T} \\
\frac{0.8 \boldsymbol{s}_{k}^{T} B_{k} \boldsymbol{s}_{k}}{\boldsymbol{s}_{k}^{T}\left(B_{k} \boldsymbol{s}_{k}-\boldsymbol{y}_{k}\right)} & \text { otherwise }\end{cases} \\
\boldsymbol{\eta}_{k} & =\phi \boldsymbol{y}_{k}+(1-\phi) B_{k} \boldsymbol{s}_{k}
\end{aligned}
\]
(5) Termination of updating

The updating of \(\boldsymbol{x}_{k}\) is repeated until the Karush-Kuhn-Tucker condition
\[
\begin{aligned}
\nabla f(\boldsymbol{x})+\sum_{i=1}^{m}\left(\lambda_{i} \nabla g_{i}(\boldsymbol{x})\right)+\sum_{j=1}^{\ell}\left(\mu_{j} \nabla h_{j}(\boldsymbol{x})\right) & =0 \\
g_{i}(\boldsymbol{x}) & =0 \text { for }(i=1, \cdots, m)
\end{aligned}
\]
\[
\begin{aligned}
h_{j}(\boldsymbol{x}) & =0 \text { for }(j=1, \cdots, \ell) \\
\sum_{i=1}^{m}\left(\lambda_{i} g_{i}(\boldsymbol{x})\right) & =0 \\
\lambda_{i} & \geq 0 \text { for }(i=1, \cdots, m)
\end{aligned}
\]
is satisfied.

\subsection*{5.1.2.13 Minimization of the distance between two nodes in a network}
(1) Calculating the shortest path from a given node to all other nodes

The Dijkstra's method is used to obtain the shortest path from a given specified node init on graph \(G=\) \((V, E)\) to all other nodes and the corresponding distance. However, the branch weights are assumed to be nonnegative.
(a) For each vertex \(i \in V\), let Distance \((i)=\infty, \operatorname{Path}(i)=i n i t\), and \(P=\phi\). For the starting point init, let Distance \((\) init \()=0\). Also, let next \(=\) init.
(b) Let \(P=P \cup\{n e x t\}\). For each node \(j\) that is connected to node next, if Distance \((j)>\operatorname{Distance}(\) next \()+\) Weight \((\) next,\(j)\), update Distance \((j)=\operatorname{Distance}(n e x t)+W e i g h t(n e x t, j)\) and Path \((j)=\) next.
(c) For each vertex \(i \in P\), select node \(v\) for which Distance \((i)\) is the minimum. Let next \(=v\) for that node.
(d) Repeat steps (ii) and (iii) until \(P=V\).
(2) Calculating the shortest path between all sets of two nodes The Floyd's method is used to obtain the shortest path between all sets of two nodes on graph \(G=(V, E)\) and the corresponding distance.
For undirected graphs:Assume that no negative weighted branches are included.
(a) For each pair of nodes \(i, j \in V\), let \(\operatorname{Distance}(i, j)=\infty\) and \(\operatorname{Path}(i, j)=i\).
(b) For each pair of nodes \(i, j\), if \(\operatorname{Distance}(i, j)>\operatorname{Distance}(i, k)+\operatorname{Distance}(k, j)\), update Distance \((i, j)=\) Distance \((i, k)+\operatorname{Distance}(k, j)\) and \(\operatorname{Path}(i, j)=k\).
(c) Repeat step (ii) for \(k=1, \ldots, n\).

For directed graphs:Assume that negative weighted branches are included but cycles with negative lengths are not included.
(a) For each pair of nodes \(i, j \in V\), let \(\operatorname{Distance}(i, j)=\infty\) and \(\operatorname{Path}(i, j)=0\).
(b) For each pair of nodes \(i, j \in V\), if \(\operatorname{Distance}(i, j)>\operatorname{Distance}(i, k)+\operatorname{Distance}(k, j)\), update Distance \((i, j)=\) Distance \((i, k)+\operatorname{Distance}(k, j)\) and \(\operatorname{Path}(i, j)=k\).
(c) If Distance \((i, i)\) is negative, interrupt processing since no solution exists. Otherwise, repeat step (ii) for \(k=1, \ldots, n\).
(3) Calculating the shortest path between two nodes

The Dijkstra's method described above is applied to obtain the shortest path between two nodes on graph \(G=(V, E)\) and the corresponding distance. However, the branch weights are assumed to be nonnegative.
(a) For each vertex \(i \in V\), let \(\operatorname{Distance}(i)=\infty, \operatorname{Path}(i)=0\), and \(P=j\). For the starting point init, let Distance \((\) init \()=0\). Also, let next \(=\) init.
(b) Let \(P=P \cup\) next. For each node \(j\) that is connected to node next, if Distance \((j)>D(\) next \()+\) Weight \((\) next,\(j)\), update Distance \((j)=D(n e x t)+W e i g h t(n e x t, j)\) and \(\operatorname{Path}(j)=n e x t\).
(c) For each vertex \(i \in P\), select node \(v\) for which Distance \((i)\) is the minimum. Let next \(=v\) for that node.
(d) Repeat steps (ii) and (iii) until next \(=e n d\).

\subsection*{5.1.3 Reference Bibliography}
(1) Forsythe, G. E. , Malcolm, M. A. and Moler, C. B. , "Computer method for mathematical computations", Prentice-Hall Inc. , (1978).
(2) Brent, R. P. , "Algorithms for minimization without derivatives", Englewood Cliffs, N. J., Prent-Hall, (1973).
(3) Powell, M. J. D. , "A Hybrid Method for Nonlinear Equations", Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowits, ed. , Gordon and Breach, pp.87-161, (1970).

\subsection*{5.2 MINIMIZATION OF A FUNCTION OF ONE VARIABLE WITHOUT CONSTRAINTS}

\subsection*{5.2.1 ASL_dmuusn, ASL_rmuusn \\ Minimization of a Function of One Variable}
(1) Function

ASL_dmuusn or ASL_rmuusn searches for the minimum value of a function \(f(x)\) of one variable.
(2) Usage

Double precision:
ierr \(=\) ASL_dmuusn (f, \&x, er, \&nev, \&y);
Single precision:
ierr \(=\) ASL_rmuusn (f, \&x, er, \&nev, \&y);
(3) Arguments and Return Value
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & f & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & - & Input & Name of function that defines the function \(f(x)\). (See Notes (a)) \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{x} & \multirow[t]{2}{*}{\(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\)} & \multirow[t]{2}{*}{1} & Input & Search starting point \(\mathrm{x}_{0}\) \\
\hline & & & & Output & Final destination \(\mathrm{x}^{*}\) \\
\hline 3 & er & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Required precision (Default value: \(2 \times \sqrt{(\text { Unit for determining error })})\) \\
\hline \multirow[t]{2}{*}{4} & \multirow[t]{2}{*}{nev} & \multirow[t]{2}{*}{I*} & \multirow[t]{2}{*}{1} & Input & \begin{tabular}{l}
Maximum number of evaluations of function \(f(x)\) \\
(Default value: 100)
\end{tabular} \\
\hline & & & & Output & Actual number of function evaluations \\
\hline 5 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Function value \(y=f\left(x^{*}\right)\) at final destination \(x^{*}\) \\
\hline 6 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) er \(\geq\) Unit for determining error
(except when 0.0 is entered in order to set er to the default value)
(b) nev \(>3\)
(except when 0.0 is entered in order to set nev to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & Restriction (a) or (b) was not satisfied. & \begin{tabular}{l} 
Processing is performed with the default \\
value set for nev or er.
\end{tabular} \\
\hline 4000 & The enclosure operation failed. & Processing is aborted. \\
\hline 5000 & \begin{tabular}{l} 
The root could not be obtained before \\
maximum number of function evaluations \\
was reached.
\end{tabular} & \begin{tabular}{l} 
The values of x and y at that time are \\
output and processing is aborted.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) This function should be created as follows.
- Function creation method:
```

double FORTRAN f(double *x)
{
return (f(*x));
}

```
(b) If the search interval becomes \([a, b]\) due to interval reduction, then convergence is determined according to the following condition:
\[
\max (b-x, x-a) \leq 2 \times \text { er } \times \max (1,|x|)
\]

A value on the order of the default value should be taken for er.
(c) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) If there are multiple minimum values, you cannot guarantee to which minimum value the function will converge.
(e) The function must continuously first-order differentiable.
(f) To search for a maximum value, set the function value \(f(x)\) so that the sign will be reverse. At this time, the value of the fifth argument \(y\) will be output with the sign reversed.

\section*{(7) Example}
(a) Problem

Search for the minimum value of the function:
\[
f(x)=x\left(x^{2}-2\right)-5
\]
(b) Input data

Function name corresponding to function \(f(x)\) : f
\(\mathrm{x}=1.0\), er=0.0 and nev=0.
(c) Main program
/* C interface example for ASL_dmuusn */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
\#ifdef \(\overline{\text { extern }} \overline{\text { C }}\) "
\{xter
\#ifdef
\#else
double \(f(x)\)
double *x;
\#endif
\{
return \((* \mathrm{x}) *((* \mathrm{x}) *(* \mathrm{x})-2.0)-5.0\);
\}
\#ifdef __cplusplus
\}
\#endif
int main()
double \(x\);
double er
int nev;
double y;
int ierr;
\(f p=\) fopen( "dmuusn.dat", "r" );
if ( \(\mathrm{fp}==\) NULL )
\{
printf( "file open error\n" );
\}
printf( " \(\quad * * *\) ASL_dmuusn \(* * * \backslash \mathrm{n} ")\);
printf ( "\n \(\quad * *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
fscanf( fp, "\%d", \&nev );
fscanf( fp, "\%lf", \&er );
fscanf( fp, "\%lf", \&x );
printf( "\tnev = \%6d\n", nev );
printf( "\ter \(=\% 8.3 g \backslash n ", ~ e r) ;\)
printf( "\n\tInitial Value \(\backslash n\) " );
printf ( "\t \(x=\% 8.3 g \backslash n ", x)\);
fclose ( fp );
ierr \(=\) ASL_dmuusn(f, \&x, er, \&nev, \&y);
printf ( "\n \(\quad * *\) Output \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
printf( "\tierr = \%6d\n", ierr );
printf( "\n\tnev \(=\% 6 d \backslash n "\), nev );
printf( "\n\tSolution\n" );
printf( "\t x =\%8.3g\n", x );
printf( "\n\tFunction Value\n" );
printf( "\t y =\%8.3g\n", y );
return 0 ;
\(\}\)
(d) Output results


\subsection*{5.3 MINIMIZATION OF A FUNCTION OF MANY VARIABLES WITHOUT CONSTRAINTS}

\subsection*{5.3.1 ASL_dmumqn, ASL_rmumqn}

Minimization of a Function of Many Variables (Derivative Definition Unnecessary)
(1) Function

ASL_dmumqn or ASL_rmumqn searches for the minimum value of a function \(f(\boldsymbol{x})\) of \(n\) variables.
(2) Usage

Double precision:
\[
\text { ierr }=\text { ASL_dmumqn }(f, x, n, \text { er, } \& n e v, \& y, \text { wk }) ;
\]

Single precision:
ierr \(=\) ASL_rmumqn (f, x, n, er, \&nev, \&y, wk);
(3) Arguments and Return Value
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & f & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & - & Input & \begin{tabular}{l}
Name of function \(\mathrm{f}(\mathrm{x})\) that defines the function \(f(\boldsymbol{x})\). \\
(See Notes (a))
\end{tabular} \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{x} & \multirow[t]{2}{*}{\(\underline{\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}}\)} & \multirow[t]{2}{*}{n} & Input & Search starting point \(\boldsymbol{x}_{0}\) \\
\hline & & & & Output & Final destination \(\boldsymbol{x}^{*}\) \\
\hline 3 & n & I & 1 & Input & Number of components \(n\) of independent variable \(\boldsymbol{x}\) \\
\hline 4 & er & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & \begin{tabular}{l}
Required precision (Default value: \\
\(2 \times \sqrt{(\text { Unit for determining error })})\)
\end{tabular} \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{nev} & \multirow[t]{2}{*}{I*} & \multirow[t]{2}{*}{1} & Input & \begin{tabular}{l}
Maximum number of evaluations of function \(f(\boldsymbol{x})\) \\
(Default value: \(400 \times \mathrm{n}\) )
\end{tabular} \\
\hline & & & & Output & Actual number of function evaluations \\
\hline 6 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Function value \(y=f\left(\boldsymbol{x}^{*}\right)\) at final destination \(x^{*}\) \\
\hline 7 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & See Contents & Work & \begin{tabular}{l}
Work area \\
Size: \(\mathrm{n} \times(3 \times \mathrm{n}+7)\)
\end{tabular} \\
\hline 8 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(\mathrm{n}>0\)
(b) er \(\geq\) Unit for determining error
(except when 0.0 is entered in order to set er to the default value)
(c) \(n e v>0\)
(except when 0.0 is entered in order to set nev to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & Restriction (b) or (c) was not satisfied. & \begin{tabular}{l} 
Processing is performed with the default \\
value set for nev or er
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 5000 & \begin{tabular}{l} 
The root could not be obtained before \\
maximum number of function evaluations \\
was reached.
\end{tabular} & \begin{tabular}{l} 
The values of x and y at that time are \\
output and processing is aborted.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) This function should be created as follows.

Function creation method
```

double FORTRAN f(double *x)
{
return (f(*x));
}

```
(b) Convergence is determined according to the following condition, and the solution is assumed to be \(\boldsymbol{x}+\Delta \boldsymbol{x}\) :
\[
\|\Delta \boldsymbol{x}\| \leq \text { er } \times \max (1,\|\boldsymbol{x}+\Delta \boldsymbol{x}\|)
\]
and
\(\|\nabla f(\boldsymbol{x})\| \leq 2 \times\) er
or
\(\|\nabla f(\boldsymbol{x})\| \leq\) Unit for determining error
where \(\Delta \boldsymbol{x}\) is the correction vector for \(\boldsymbol{x}\) and \(\|\boldsymbol{x}\|=\max _{i}\left|x_{i}\right|\). Also, \(\nabla f(\boldsymbol{x})\), which is the gradient vector of \(f(\boldsymbol{x})\), has components \(\partial f(\boldsymbol{x}) / \partial x_{i}\). A value on the order of the default value should be taken for er.
(c) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) If the gradient vector can be calculated analytically, then it is more efficient to use the function 5.3.2 \(\left\{\begin{array}{c}\text { ASL_dmumqg } \\ \text { ASL_rmumqg }\end{array}\right\}\).
(e) Scaling should be performed so that the contribution to the function value from each of the variables is on the same order. (See Section 5.1.1)
(f) If the gradient vector is 0 at the initial point, then that point is output as the solution.
(g) If there is no minimum value, then processing will be continued until the maximum number of function evaluations is reached and ierr \(=5000\) will be output.
(h) If there are multiple minimum values, you cannot guarantee to which minimum value the function will converge.
(i) The function must continuously second-order differentiable.
(j) To search for a maximum value, set the function value \(f(\boldsymbol{x})\) so that the sign will be reversed. At this time, the value of the sixth argument \(y\) will be output with the sign reversed.

\section*{(7) Example}
(a) Problem

Search for the minimum value of the function
\[
f(\boldsymbol{x})=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2},
\]
using \(\boldsymbol{x}=[-1.2,1.0]^{T}\) as the initial value.
(b) Input data

Function name corresponding to function \(f(\boldsymbol{x})\) : f
\(\mathrm{x}[0]=-1.2, \mathrm{x}[1]=1.0, \mathrm{er}=0.0\) and \(\mathrm{nev}=0\).
(c) Main program
```

/* C interface example for ASL_dmumqn */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
\#ifdef --cplusplus
{xter
\#endif
\#ifdef __STDC
double \overline{f}(\mathrm{ double *x)}
\#else
double f(x)
double *x;
\#endif
double y[2];
y[0]=10.0*(x[1]-x[0]*x[0]);
y[1]=1.0-x[0];
return (y[0]*y[0]+y[1]*y[1]);
}
\#ifdef __cplusplus
}
\#endif
int main()
double *x;
int n;
double er;
int nev;
double y;
double *wk;
int ierr
int i;

```
```

 fp = fopen("dmumqn.dat", "r");
 if(fp == NULL)
 {
 printf("file open error\n");
 return -1;
 }
 printf(" *** ASL_dmumqn ***\n");
 printf("\n ** Input **\n\n");
 n=2;
 fscanf(fp, "%d", &nev);
 fscanf(fp, "%lf", &er);
 x = (double *)malloc((size_t)(sizeof(double) * n));
 if(x == NULL)
 printf("no enough memory for array x\n");
 return -1;
 }
 wk = (double *)malloc((size_t)(sizeof(double) * (n*(3*n+7))));
if(wk == NULL ')
printf("no enough memory for array wk\n");
return -1;
}
for(i=0 ; i<n ; i++)
fscanf(fp, "%lf", \&x[i]);
}
printf("\tn = %6d\n", n);
printf("\tnev = %6d\n", nev);
printf("\ter =%8.3g\n", er);
printf("\n\tInitial Value \n");
for(i=0 ; i<n ; i++)
printf("\t x[%6d]=%8.3g\n", i,x[i]);
}
fclose(fp);
ierr = ASL_dmumqn(f, x, n, er, \&nev, \&y, wk);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tnev = %6d\n", nev);
printf("\n\tSolution\n");
for(i=0 ; i<n ; i++)
printf("\t x[%6d]=%8.3g\n", i,x[i]);
}
printf("\n\tFunction Value\n");
printf("\t y =%8.3g\n", y);
free(x);
free(wk);
return 0;
(d) Output results

```
```

*** ASL_dmumqn ${ }^{* * *}$

```
*** ASL_dmumqn \({ }^{* * *}\)
    ** Input **
    ** Input **
\(\begin{array}{ll}\mathrm{n}= & 2 \\ \mathrm{nev} & =\end{array}\)
\(\begin{array}{ll}\mathrm{n}= & 2 \\ \mathrm{nev} & =\end{array}\)
er \(=0\)
er \(=0\)
\(\begin{array}{ccr}\text { Initial } & \text { Value } \\ \times\left[\begin{array}{lll}\text { x }\end{array}\right. & 0]= & -1.2 \\ \times[ & 1]= & 1\end{array}\)
\(\begin{array}{ccr}\text { Initial } & \text { Value } \\ \times\left[\begin{array}{lll}\text { x }\end{array}\right. & 0]= & -1.2 \\ \times[ & 1]= & 1\end{array}\)
    ** Output **
    ** Output **
ierr \(=0\)
ierr \(=0\)
nev \(=140\)
nev \(=140\)
Solution
Solution
    \(\left.\begin{array}{ll}x[ & 0]= \\ x[ & 1\end{array}\right]=\)
    \(\left.\begin{array}{ll}x[ & 0]= \\ x[ & 1\end{array}\right]=\)
Function Value
Function Value
    \(y=5.45 \mathrm{e}-24\)
```

 \(y=5.45 \mathrm{e}-24\)
    ```

\subsection*{5.3.2 ASL_dmumqg, ASL_rmumqg}

Minimization of a Function of Many Variables (Derivative Definition Required)

\section*{(1) Function}

ASL_dmumqg or ASL_rmumqg searches for the minimum of a function \(f(\boldsymbol{x})\) of \(n\) variables.
(2) Usage

Double precision:
ierr \(=\) ASL_dmumqg (f, subg, x, n, er, nev, \&y, wk);
Single precision:
ierr \(=\) ASL_rmumqg (f, subg, \(\mathrm{x}, \mathrm{n}, \mathrm{er}, \mathrm{nev}, \& \mathrm{y}, \mathrm{wk})\);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular}} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & f & \(\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}\) & - & Input & \begin{tabular}{l}
Name of function \(f(x)\) that defines the function \(f(\boldsymbol{x})\). \\
(See Notes (a))
\end{tabular} \\
\hline 2 & subg & - & - & Input & \begin{tabular}{l}
Name of function \(\operatorname{subg}(x, g)\) that calculates the gradient vector \(\nabla f(\boldsymbol{x})\). \\
(See Notes (b))
\end{tabular} \\
\hline 3 & x & ( D ) & n & Input & Search starting point \(\boldsymbol{x}_{0}\) \\
\hline & & (R*) & & Output & Search point final destination \(\boldsymbol{x}^{*}\) \\
\hline 4 & n & I & 1 & Input & Number of components \(n\) of independent variable \(\boldsymbol{x}\) \\
\hline 5 & er & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Required precision (Default value: \(2 \times \sqrt{(\text { Unit for determining error })})\) \\
\hline 6 & nev & I* & 2 & Input & nev[0]: Maximum number of evaluations of function f (Default value: \(100 \times \mathrm{n}\) ) nev[1]: Maximum number of evaluations of functionsubg (Default value: \(100 \times \mathrm{n}\) ) \\
\hline & & & & Output & Actual number of function evaluations \\
\hline 7 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Function value \(y=f\left(\boldsymbol{x}^{*}\right)\) at final destination \(\boldsymbol{x}^{*}\) \\
\hline 8 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size: \(\mathrm{n} \times(3 \times \mathrm{n}+7)\)
\end{tabular} \\
\hline 9 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(\mathrm{n}>0\)
(b) er \(\geq\) Unit for determining error
(except when 0.0 is entered in order to set er to the default value)
(c) \(\operatorname{nev}[\mathrm{i}-1]>0(\mathrm{i}=1,2)\)
(except when 0.0 is entered in order to set \(\operatorname{nev}[\mathrm{i}-1] \quad(\mathrm{i}=1,2)\) to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & Restriction (b) or (c) was not satisfied. & \begin{tabular}{l} 
Processing is performed with the default \\
value set for nev[0], nev[1] or er
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 5000 & \begin{tabular}{l} 
The root could not be obtained before \\
maximum number of function evaluations \\
was reached.
\end{tabular} & \begin{tabular}{l} 
The values of x and y at that time are \\
output and processing is aborted.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) This function should be created as follows.

Function creation method
```

double FORTRAN f(double *x)
{
return (f(*x));
}

```
(b) This function should be created as follows.

Function creation method
```

void FORTRAN subg(double *x, double *g)
{
g[0] = 1st component of \nablaf(\boldsymbol{x})=\partialf(\boldsymbol{x})\partial\mp@subsup{x}{i}{}
\vdots
g[n-1] = n st component of \nablaf(\boldsymbol{x})=\partialf(\boldsymbol{x})\partial\mp@subsup{x}{n}{}
}

```
(c) Convergence is determined according to the following condition, and the solution is assumed to be \(\boldsymbol{x}+\Delta \boldsymbol{x}\) :
\(\|\Delta \boldsymbol{x}\| \leq\) er \(\times \max (1,\|\boldsymbol{x}+\Delta \boldsymbol{x}\|)\) and \(\|\nabla f(\boldsymbol{x})\| \leq 2 \times\) er or \(\|\nabla f(\boldsymbol{x})\| \leq\) Unit for determining error where \(\Delta \boldsymbol{x}\) is the correction vector for \(\boldsymbol{x}\) and \(\|\boldsymbol{x}\|=\max _{i}\left|x_{i}\right|\). A value on the order of the default value should be taken for er.
(d) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(e) Scaling should be performed so that the contribution to the function value from each of the variables is on the same order. (See Section 5.1.1)
(f) If the gradient vector is 0 at the initial point, then that point is output as the solution.
(g) If there is no minimum value, then processing will be continued until the maximum number of function evaluations is reached and ierr \(=5000\) will be output.
(h) If there are multiple minimum values, you cannot guarantee to which minimum value the function will converge.
(i) The function must continuously second-order differentiable.
(j) To search for a maximum value, set the function value \(f(\boldsymbol{x})\) so that the sign will be reversed. At this time, the value of the seventh argument \(y\) will be output with the sign reversed.

\section*{(7) Example}
(a) Problem

Search for the minimum value of the function.
\[
f(\boldsymbol{x})=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
\]
using \(\boldsymbol{x}=[-1.2,1.0]^{T}\) as the initial value.
(b) Input data

Function name corresponding to function \(f(\boldsymbol{x})\) : f1
Name of function which calculates the gradient vector \(\nabla f(\boldsymbol{x})\) : f2
\(\mathrm{x}[0]=-1.2, \mathrm{x}[1]=1.0, \mathrm{n}=2\), er=0.0, nev[0]=0 and \(\operatorname{nev}[1]=0\).
(c) Main program
```

/* C interface example for ASL_dmumqg */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
\#ifdef \overline{ ccplusplus}
extern
\#endi
\#ifdef __STDC
double f1(double *x)
\#else
double f1(x)
double *x;
\#endif
double y[2];
y[0]=10.0*(x[1]-x[0]*x[0]);
y[1]=1.0-x[0];
return (y[0]*y[0]+y[1]*y[1]);
}
\#ifdef __cplusplus
}
\#endif
\#ifdef }\mp@subsup{\overline{"-}}{\mathrm{ Extern Cplusplus}}{
{xt
\#endif

```
```

\#ifdef __STDC_
void -q2(double *x,double *g)
\#else f2(x,g)
double *x;
double *g;
\#endif
double y[2];
y[0] = 10.0*(x[1]-x[0]*x[0]);
y[1] = 1.0-x[0];
g[0] = -2.0*(20.0*x[0]*y[0]+y[1]);
g[1] = 20.0*y[0];
}
\#ifdef __cplusplus
}
\#endif
int main()
double *x;
int n;
double er;
int nev [2];
double y;
double *wk
int ierr;
int i;
FILE *fp;
fp = fopen("dmumqg.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
return -1;
}
printf(" *** ASL_dmumqg ***\n");
printf("\n ** Input **\n\n");
n=2; (n)
x =
if(x == NULL)
printf("no enough memory for array x\n");
return -1
}
wk = (double *)malloc((size_t)(sizeof(double) * (n*(3*n+7))));
if(wk == NULL)
printf("no enough memory for array wk\n");
return -1;
}
fscanf(fp, "%d", \&nev[0]);
fscanf(fp, "%d", \&nev[1]);
fscanf(fp, "%lf", \&er);
for(i=0 ; i<n ; i++)
fscanf(fp, "%lf", \&x[i]);
}
printf("\tn = %6d\n", n);
printf("\tnev[0] = %6d\n", nev[0]);
printf("\tnev[1] = %6d\n", nev[1]);
printf("\ter =%8.3g\n", er);
printf("\n\tInitial Value\n\n");
for(i=O ; i<n ; i++)
printf("\t x[%6d] = %8.3g\n", i,x[i]);
}
fclose(fp);
ierr = ASL_dmumqg(f1, f2, x, n, er, nev, \&y, wk);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tnev[0] = %6d\n", nev[0]);
printf("\tnev[1] = %6d\n", nev[1]);
printf("\n\tSolution\n\n");
for(i=0 ; i<n ; i++)
printf("\t x[%6d] = %8.3g\n", i,x[i]);
}
printf("\n\tFunction Value\n\n");
printf("\t y = %8.3g\n", y);
free(x);

```
```

 free(wk);
 return 0;
 }
    ```
(d) Output results
```

*** ASL_dmumqg ***
** Input **
n nev [0]
nev[1] =
er
Initial Value
x[
** Output **
ierr = 0
nev[0] = 55
Solution
x[
Function Value
y = 7.66e-25

```

\subsection*{5.4 MINIMIZATION OF THE SUM OF THE SQUARES OF A FUNCTION WITHOUT CONSTRAINTS}

\subsection*{5.4.1 ASL_dmussn, ASL_rmussn}

Nonlinear Least Squares Method (Derivative Definition Unnecessary)
(1) Function

ASL_dmussn or ASL_rmussn searches for the minimum value of the sum of the squares \(s=\sum_{i=1}^{m} f_{i}(\boldsymbol{x})^{2}\) of a function of \(n\) variables, where \(f_{i}(\boldsymbol{x})\) is the \(i\)-th component of the vector function \(\boldsymbol{f}(\boldsymbol{x})\) of \(n\) variables \((i=1, \cdots, m)\).
(2) Usage

Double precision:
ierr \(=\) ASL_dmussn (sub, x, n, er, \&nev, y, m, \&s, iwk, wk);
Single precision:
ierr \(=\) ASL_rmussn (sub, x, n, er, \&nev, y, m, \&s, iwk, wk);

\section*{(3) Arguments and Return Value}
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & sub & - & - & Input & \begin{tabular}{l}
Name of function \(\operatorname{sub}(x, y)\) that calculates the function value \(\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})\). \\
(See Notes (a))
\end{tabular} \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{x} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} * \\
\mathrm{R} *
\end{array}\right\}
\]} & \multirow[t]{2}{*}{n} & Input & Search starting point \(\boldsymbol{x}_{0}\) \\
\hline & & & & Output & Search point final destination \(\boldsymbol{x}^{*}\) \\
\hline 3 & n & I & 1 & Input & Number of components \(n\) of independent variable \(\boldsymbol{x}\) \\
\hline 4 & er & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & \begin{tabular}{l}
Required precision (Default value: \\
\(2 \times \sqrt{(\text { Unit for determining error })})\)
\end{tabular} \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{nev} & \multirow[t]{2}{*}{I*} & \multirow[t]{2}{*}{1} & Input & Maximum number of evaluations of function \(\boldsymbol{f} \boldsymbol{( x )}\) (Default value: \(100 \times \mathrm{n}\) ) \\
\hline & & & & Output & Actual number of function evaluations \\
\hline 6 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Output & Function value \(\boldsymbol{y}=\boldsymbol{f}\left(\boldsymbol{x}^{*}\right)\) at final destination \(\boldsymbol{x}^{*}\) \\
\hline 7 & m & I & 1 & Input & Number of components \(m\) of dependent variable \(\boldsymbol{y}\) \\
\hline 8 & S & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & The sum of the squares of the function at the final destination \(\boldsymbol{x}^{*}\) :
\[
\mathrm{s}=\sum_{i=1}^{m} f_{i}\left(\boldsymbol{x}^{*}\right)^{2}
\] \\
\hline 9 & iwk & I* & \(4 \times \mathrm{n}\) & Work & Work area \\
\hline 10 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size: \(\mathrm{m} \times(2 \times \mathrm{n}+1)+\mathrm{n} \times(\mathrm{n}+4)\)
\end{tabular} \\
\hline 11 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{n} \leq \mathrm{m}\)
(b) er \(\geq\) Unit for determining error
(except when 0.0 is entered in order to set er to the default value)
(c) \(\mathrm{nev}>0\)
(except when 0.0 is entered in order to set nev to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & Restriction (b) or (c) was not satisfied. & \begin{tabular}{l} 
Processing is performed with the default \\
value set for nev or er.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 4000 & \begin{tabular}{l} 
The linear least squares method could not \\
be solved.
\end{tabular} & \begin{tabular}{l} 
The value of x, y, and s at that time are \\
output and processing is aborted.
\end{tabular} \\
\hline 4100 & \begin{tabular}{l} 
The steepest descent could not be \\
calculated.
\end{tabular} \\
\hline 4200 & \begin{tabular}{l} 
The solution could not be corrected \(2 \times \mathrm{n}\) \\
times consecutively.
\end{tabular} \\
\hline 5000 & \begin{tabular}{l} 
The values did not converge before the \\
given maximum number of evaluations \\
was reached.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) This function should be created as follows.

Function creation method
```

void FORTRAN sub(double *x, double *y)
{
y[0] = f
\vdots
y[m-1] = fm
}

```
(b) Convergence is determined according to the following condition, and the solution is assumed to be \(\boldsymbol{x}+\Delta \boldsymbol{x}\) :
\[
\|\Delta \boldsymbol{x}\| \leq \operatorname{er} \times \max (1,\|\boldsymbol{x}+\Delta \boldsymbol{x}\|)
\]
where \(\Delta \boldsymbol{x}\) is the correction vector for \(\boldsymbol{x}\) and \(\|\boldsymbol{x}\|=\max _{i}\left|x_{i}\right|\). A value on the order of the default value should be taken for er.
(c) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) Scaling should be performed so that the contribution to the function value from each of the variables is on the same order. (See Section 5.1.1)
(e) If there are multiple minimum values, you cannot guarantee to which minimum value the function will converge.
(f) The function must continuously first-order differentiable.
(7) Example
(a) Problem

Minimize \(s=f_{1}(\boldsymbol{x})^{2}+f_{2}(\boldsymbol{x})^{2}\) for the functions:
\[
\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{l}
f_{1}(\boldsymbol{x}) \\
f_{2}(\boldsymbol{x})
\end{array}\right]=\left[\begin{array}{c}
10\left(x_{2}-x_{1}^{2}\right) \\
1-x_{2}
\end{array}\right]
\]
using \(\boldsymbol{x}=[-1.2,1.0]^{T}\) as the initial value.
(b) Input data

Name of function that calculates the function: f
\(\mathrm{x}[0]=-1.2, \mathrm{x}[1]=1.0, \mathrm{n}=2\), er=0.0, nev=0 and \(\mathrm{m}=2\).
(c) Main program
/* C interface example for ASL_dmussn */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
\#ifdef \(\overline{\text { extern }} \overline{\text { cplusplus }}\)
\{xter
\#endif
\#ifdef STDC
void \(\overline{\mathrm{f}}\) (double \(* \mathrm{x}\), double \(* \mathrm{y}\) )
\(\begin{array}{ll}\text { \#else } \\ \text { void } & f(x, y)\end{array}\)
double *x;
double *y;
\#endif
\(\mathrm{y}[0]=10.0 *(\mathrm{x}[1]-\mathrm{x}[0] * \mathrm{x}[0])\)
\(y[1]=1.0-x[0]\);
\}
\#ifdef __cplusplus
\}
\#endif
int main()
double *x;
int \(n\);
double er
int nev;
double *y
int m;
double s;
int *iwk;
double *wk;
int ierr;
int i;
fp \(=\) fopen( "dmussn.dat", "r" );
if ( \(\mathrm{fp}==\) NULL \()\)
\{
printf( "file open error\n" );
\}
printf( " *** ASL_dmussn ***\n" );
printf ( "\n \(\quad * *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
\(\mathrm{n}=2\);
\(\mathrm{m}=2\);
iwk \(=(\) int \(*)\) malloc ( (size_t) ( sizeof(int) * (3*n) ));
if (iwk \(==\) NULL \()\)
printf( "no enough memory for array iwk \(\backslash n\) " ); return -1 ;
\}
\(\mathrm{x}=\left(\operatorname{double}^{*}\right)\) malloc \(((\) size_t) \((\operatorname{sizeof}(\) double \() * \mathrm{n}))\);
\(\operatorname{iff}_{\{ }(x \quad==\) NULL \()\)
printf( "no enough memory for array \(x \backslash n\) " );
return -1 ;
\(\mathrm{y}=(\) double \(*)\) malloc \(((\) size_t) ( sizeof (double) \(* \mathrm{~m}))\);
```

 if(y == NULL)
 printf("no enough memory for array y\n")
 return -1;
 }
wk = (double *)malloc((size_t)(sizeof(double) * (m*(2*n+1)+n*(n+4))));
if(wk == NULL)
printf("no enough memory for array wk\n");
return -1
}
fscanf(fp, "%d", \&nev);
fscanf(fp, "%lf", \&er);
for(i=0 ; i<n ; i++)
fscanf(fp, "%lf", \&x[i]);
}
printf("\tn = %6d\n", n)
printf("\tm = %6d\n", m);
printf("\tnev = %6d\n", nev);
printf("\ter =%8.3g\n", er);
printf("\n\tInitial Value \n");
for(i=0 ; i<n ; i++)
printf("\t x[%6d]=%8.3g\n", i,x[i]);
}
fclose(fp);
ierr = ASL_dmussn(f, x, n, er, \&nev, y, m, \&s, iwk, wk);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tnev = %6d\n", nev);
printf("\n\tSolution\n");
for(i=0 ; i<n ; i++)
printf("\t x[%6d]=%8.3g\n", i,x[i]);
}
printf("\n\tLeast Squares\n");
printf("\t s =%8.3g\n", s);
printf("\n\tFunction Value\n");
printf("\t y[0] =%8.3g\n", y[0]);
printf("\t y[1] =%8.3g\n", y[1]);
free(x);
free(iwk);
free(wk);
return 0;
}
(d) Output results

```
\begin{tabular}{lll}
n & \(=\) & 2 \\
m & \(=\) & 2 \\
nev & \(=\) & 0 \\
er & \(=\) & 0
\end{tabular}
```

*** ASL_dmussn ***

```
*** ASL_dmussn ***
    ** Input **
    ** Input **
Mnitial Valuerrerer
Mnitial Valuerrerer
    ** Output **
    ** Output **
ierr = 0
ierr = 0
nev = 30
nev = 30
Solution
Solution
    x[[ 0]=
    x[[ 0]=
Least Squares
Least Squares
Function Value
Function Value
    y[0] =
    y[0] =
    y[1] = 0
```

 y[1] = 0
    ```

\subsection*{5.5 MINIMIZATION OF A FUNCTION OF ONE VARIABLE WITH CONSTRAINTS}

\subsection*{5.5.1 ASL_dmcusn, ASL_rmcusn \\ Minimization of a Function of One Variable (Interval Specified)}

\section*{(1) Function}

ASL_dmcusn or ASL_rmcusn searches for the minimum value of a function \(f(x)\) of one variable, within the interval \([a, b]\).
(2) Usage

Double precision:
ierr \(=\) ASL_dmcusn (f, ax, bx, er, \&nev, \&x, \&y);
Single precision:
\[
\text { ierr }=\text { ASL_rmcusn }(f, a x, b x, \text { er, } \& n e v, \& x, \& y)
\]

\section*{(3) Arguments and Return Value}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R :Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & f & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & - & Input & \begin{tabular}{l}
Name of function that defines the function \(f(x)\) \\
(See Notes (a))
\end{tabular} \\
\hline 2 & ax & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Initial value \(a\) of left end of search interval \\
\hline 3 & bx & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & 1 & Input & Initial value \(b\) of right end of search interval \\
\hline 4 & er & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Required precision (Default value: \(2 \times \sqrt{(\text { Unit for determining error })})\) \\
\hline 5 & nev & I* & 1 & Input & Maximum number of evaluations of function \(\boldsymbol{f} \boldsymbol{( x )}\) (Default value: \(100 \times \mathrm{n}\) ) \\
\hline & & & & Output & Actual number of function evaluations \\
\hline 6 & x & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Final destination \(x^{*}\) \\
\hline 7 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Function value \(y=f\left(x^{*}\right)\) at final destination \\
\hline 8 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(a x<b x\)
(b) \(a x \neq b x\)
(c) er \(\geq\) Unit for determining error
(except when 0.0 is entered in order to set er to the default value)
(d) \(n e v>0\)
(except when 0.0 is entered in order to set nev to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l} 
Processing is performed with ax and bx \\
switched.
\end{tabular} \\
\hline 1200 & Restriction (a) was not satisfied. & \begin{tabular}{l} 
Processing is performed with the default \\
value set for nev or er.
\end{tabular} \\
\hline 1500 & Restriction (c) or (d) was not satisfied. & Processing is aborted. \\
\hline 3000 & Restriction (b) was not satisfied. & \begin{tabular}{l} 
The value did not converge before the \\
given maximum number of function eval-
\end{tabular} \\
\hline 5000 & \begin{tabular}{l} 
The value of x and y at that time are out- \\
put and processing is aborted.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) This function should be created as follows.
- Function creation method:
```

double FORTRAN f(double *x)
{
return (f(*x));
}

```
(b) If the search interval becomes \([a, b]\) due to interval reduction, then convergence is determined according to the following condition:
\[
\max (b-a, x-a) \leq 2 \times \operatorname{er} \times \max (1,|x|)
\]

A value on the order of the default value should be taken for er.
(c) If a default value is shown for an argument in the "Contents" column of the table in the section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) If there is no minimum value, then the end point is assumed to be the solution and 0 is output for ierr.
(e) If there are multiple minimum values, you cannot guarantee to which minimum value the function will converge.
(f) The function must continuously first-order differentiable.
(g) To search for a maximum value, set the function value \(f(x)\) so that sign will be reversed. At this time, the value of the seventh argument \(y\) will be output with the sign reversed.

\section*{(7) Example}
(a) Problem

Search for the minimum value of the function
\[
f(x)=x\left(x^{2}-2\right)-5
\]
in the interval \([0,1]\).
(b) Input data

Function name corresponding to function \(f(x)\) : f
\(a x=0.0, b x=1.0, e r=0.0\) and \(n e v=0\).
(c) Main program
```

/* C interface example for ASL_dmcusn */
\#include <stdio.h>
\#include <asl.h>
\#ifdef "-cplusplus
exter
{
\#endif
\#ifdef __STDC
double \overline{f}(\mathrm{ doubl`e *x)}
\#else
double f(x)
double *x;
\#endif
{
return ((*x)*((*x)*(*x)-2.0)-5.0);
}
\#ifdef __cplusplus
}
\#endif
int main()
double ax;
double bx
double er;
int nev;
double x;
double y;
int ierr;
fp = fopen("dmcusn.dat", "r");
if(fp == NULL)
printf("file open error\n");
return -1;
}
printf(" *** ASL_dmcusn ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&nev);
fscanf(fp, "%lf", \&er);
fscanf(fp, "%lf", \&ax);
fscanf(fp, "%lf", \&bx);
printf("\tnev = %6d\n", nev);
printf("\ter =%8.3g\n", er);
printf("\n\tSearch Section\n");
printf("\t ax =%8.3g\n", ax);
printf("\t bx =%8.3g\n", bx);
fclose(fp);
ierr = ASL_dmcusn(f, ax, bx, er, \&nev, \&x, \&y);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n\tnev = %6d\n", nev);
printf("\n\tSolution\n");
printf("\t x =%8.3g\n", x);
printf("\n\tFunction Value\n");
printf("\t y =%8.3g\n", y);
return 0;
}

```
(d) Output results
```

*** ASL_dmcusn ***
** Input **
nev = 0
Search Section
ax = 0
** Output **
ierr = 0
nev = 11
x Solution = 0.816
Function Value

```

\subsection*{5.6 MINIMIZATION OF A CONSTRAINED LINEAR FUNCTION OF SEVERAL VARIABLES (LINEAR PROGRAMMING)}

\subsection*{5.6.1 ASL_dmclsn, ASL_rmclsn \\ Minimization of a Linear Function of Several Variables (Linear Constraints)}

\section*{(1) Function}

ASL_dmclsn or ASL_rmclsn obtains the \(\boldsymbol{x}\) that minimized a linear function of several variables \(f(\boldsymbol{x})\) of the \(n\) dimensional vector \(\boldsymbol{x}=\left[x_{1}, \cdots, x_{n}\right]^{T}\).
\[
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}
\]
\(m\) constraints: Any of the following for \(i=1,2, \cdots, m\)
- \(\boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i}\)
- \(\boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}\)
- \(\boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i}\)

Domain of \(x\) :
\[
d_{j} \leq x_{j} \leq u_{j} \quad(j=1,2, \cdots, n)
\]
where \(\boldsymbol{c}^{T}=\left[c_{1}, c_{2}, \cdots, c_{n}\right]\) and \(\boldsymbol{a}_{i}^{T}=\left[a_{i, 1}, a_{i, 2}, \cdots, a_{i, n}\right]\) are vectors of dimension \(n\) and \(b_{i}, d j\) and \(u_{j}\) are constants \((i=1,2, \cdots, m ; \quad j=1,2, \cdots, n)\).
(2) Usage

Double precision:
ierr \(=\) ASL_dmclsn (a, lma, \&nm, b, m, xup, xlow, c, itype, er, \&nev, x, \&y, isw, iwk, wk);
Single precision:
ierr \(=\) ASL_rmclsn (a, lma, \&nm, b, m, xup, xlow, c, itype, er, \&nev, x, \&y, isw, iwk, wk);
(3) Arguments and Return Value
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 1 & a & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & & \(\operatorname{lma} \times \mathrm{nm}\) & Input \\
\cline { 4 - 6 } & & & \begin{tabular}{l} 
When isw=0, Matrix \(A=\left(a_{i, j}\right)\) \\
\((i=1,2, \cdots, m ; j=1,2, \cdots, n)\) correspond- \\
ing to the constant coefficients of constraints. \\
(See Notes (a) and (f)) \()\)
\end{tabular} \\
\cline { 3 - 6 } & & Output & \begin{tabular}{l} 
Matrix corresponding to the constant coeffi- \\
cients of constraints modified by using slack \\
variables.
\end{tabular} \\
\hline 2 & lma & 1 & Input & Adjustable dimension of array a \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{l|}{\begin{tabular}{l} 
nm \\
\hline 3
\end{tabular}} \\
& & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{c|}{ Contents } \\
\hline 14 & isw & I & 1 & Input & \begin{tabular}{l} 
Processing switch (See Notes (i)) \\
\(0:\) First processing \\
\(1:\) Continuation processing
\end{tabular} \\
\hline 15 & iwk & \(\mathrm{I}^{*}\) & \(\mathrm{~nm}+\mathrm{m}\) & Work & Work area \\
\hline 16 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l} 
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l} 
Work area \\
Size: \(2 \times \mathrm{m}^{2}+\mathrm{nm} \times(7+\mathrm{m})\)
\end{tabular} \\
\hline 17 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(0<\mathrm{nm}, 0<\mathrm{m} \leq \mathrm{lma}\)
(b) isw \(=0\) or isw \(=1\)
(c) er \(\geq\) Unit for determining error (except when 0.0 is entered in order to set er to the default value)
(d) nev \(>0\) (except when 0 is entered in order to set nev to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1500 & Restriction (c) or (d) was not satisfied. & \begin{tabular}{l} 
Processing is performed with the default \\
value set for nev or er.
\end{tabular} \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline 4000 & A basic feasible solution was not obtained. & \\
\hline 5000 & \begin{tabular}{l} 
The values did not converge before the \\
given maximum number of function eval- \\
uations was reached.
\end{tabular} & \begin{tabular}{l} 
The values of x and y at that time are \\
output and processing is aborted. (See \\
Notes (h) and (i))
\end{tabular} \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) When isw \(=0\), coefficients \(a_{i, j}(i=1,2, \cdots, m ; j=1,2, \cdots, n)\) corresponding to the constants of constraints must be set in array a as follows. Where, \(n\) is number of variables and \(m\) is number of constraints.
(b) Values of final destination \(\boldsymbol{x}\) are set in \(\mathrm{x}[0]\) through \(\mathrm{x}[n-1]\). The remainder of array x is filled with slack variable values and so on.
(c) If the variable upper and lower bounds have not been specifically determined, positive or negative numbers having appropriately large absolute values must be set for the upper and lower bounds, respectively. Since the optimal solution may not be obtained when the value of variable at destination matches a value of upper or lower bounds set here, numbers having even larger absolute values may have to be set for the upper and lower bounds and the calculation must be performed again.
(d) If a default value is shown for an argument in the "Contents" column of the table in the arguments section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(e) Scaling should be performed so that the contribution to the function value from each variable is of the same order. For example, if \(f(\boldsymbol{x})=100 x_{1}+x_{2}\) with the constraint \(200 x_{1}+5 x_{2}=3\), the best result

Storage status within array a[lmaxnm]


\section*{Remarks}
a. \(\quad \mathrm{nm}=n+2 \times m\) must hold.

Figure 5-5
is obtained by performing the variable transformations \(y_{1}=100 x_{1}, y_{2}=x_{2}\) to set \(h(\boldsymbol{y})=y_{1}+y_{2}\) with the constraint \(2 y_{1}+5 y_{2}=3\).
(f) Value after the constraints have been transformed are entered in a, b, xup, xlow, c and nm for output.
(g) To search for the maximum value, perform a search for the minimum value of \(-f(\boldsymbol{x})\). At this time, the value of y is the maximum value with the sign reversed.
(h) Although the value of \(\boldsymbol{x}\) when ierr \(=5000\) is not the optimal solution, the constraint is satisfied.
(i) If ierr \(=5000\) is returned and the number of iterations is less than the specified convergence count, the calculation can be continued using the information calculated up to the intermediate point. To perform this processing set 1 for the isw value, set a sufficient value for the nev value, and use the output values of the previous execution for all other input values. Also, use the work information from the previous execution. (See the example)

\section*{(7) Example}
(a) Problem

Minimize the function:
\[
f(\boldsymbol{x})=-x_{1}-3 x_{2}+2 x_{3}+3 x_{4}-4 x_{5}-2 x_{6}
\]
based on:
\[
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}-3 x_{4}-2 x_{5}-x_{6} & \leq 20 \\
2 x_{1}-3 x_{2}-x_{3}+2 x_{4}+4 x_{5}+x_{6} & \geq 28 \\
-3 x_{1}+2 x_{2}+2 x_{3}+x_{4}+5 x_{5}+2 x_{6} & =40 \\
5 x_{1}-x_{2}+3 x_{3}+3 x_{4}-2 x_{5}+4 x_{6} & =50 \\
0.0 \leq x_{i} \leq 1000.0(i=1,2,3,4,5,6) &
\end{aligned}
\]

In this example, to illustrate the continuation processing described in Note (i), the maximum number of evaluations nev \(=6\) is set small enough so that ierr \(=5000\) is output.
(b) Input data
(First time): \(n m=14, \mathrm{~m}=4\), er \(=0.0\), \(n e v=6\), \(\mathrm{isw}=0, \operatorname{lma}=11\), arrays \(\mathrm{a}, \mathrm{b}\), xup, xlow, c and itype.
(Second and subsequent times): nev \(=6\) and isw \(=1\).
(For other arguments, the value obtained after the previous calculation is used directly as the input value.)
(c) Main program
```

/* C interface example for ASL_dmclsn */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *a, *b, *xup, *xlow, *c, er, *x, y, *wk
int *itype, nm, m, Ima, nev, isw, *iwk, ierr;
int i,j, nn, once=0,nwk;
FILE *fp;
fp = fopen("dmclsn.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
}
printf(" *** ASL_dmclsn ***\n");
printf("\n ** Input **\n\n");
lma = 11; fscanf(fp, "%d %d %lf %d %d", \&nm, \&m, \&er, \&nev, \&isw);
printf("\tnm = %6d\tm = %6d\n", nm, m);
nn = nm-2*m;
a = (double *)malloc((size_t)(sizeof(double) * (lma*nm)));
if(a == NULL ()
printf("no enough memory for array a\n");
return -1;
}
b}=(\mathrm{ double *)malloc((size_t)(sizeof(double) * m));
if(b == NULL)
printf("no enough memory for array b\n");
return -1;
}
xup = (double *)malloc((size_t)(sizeof(double) * nm));
if(xup == NULL)
{
printf("no enough memory for array xup\n");
}
xlow = (double *)malloc((size_t)(sizeof(double) * nm));
if(xlow == NULL)
printf("no enough memory for array xlow\n");
return -1;
}
c=(double *)malloc((size_t)(sizeof(double) * nm));
if(c == NULL)
printf("no enough memory for array c\n");
return -1;
}
itype = (int *)malloc((size_t)(sizeof(int) * m));
if(itype == NULL)
printf("no enough memory for array itype\n");
return -1;
}
x = (double *)malloc((size_t)(sizeof(double) * nm));
if(x == NULL)
printf("no enough memory for array x\n");
return -1;
}
nwk=2*m*m+nm*(7+m);
wk = (double *)malloc((size_t)(sizeof(double) * nwk));
if(wk == NULL)
printf("no enough memory for array wk\n");
return -1;
iwk = (int *)malloc((size_t)(sizeof(int) * (nm+m)));
if(iwk == NULL)
printf("no enough memory for array iwk\n");
}
printf("\n ** Matrix a **\n\n");
for(i=0 ; i<m ; i++)
printf("\t");
for(j=0 ; j<nn ; j++)
fscanf(fp, "%lf", \&a[i+lma*j]);
printf("%8.3g ", a[i+lma*j]);

```
```

 }
 printf("\n");
 }
printf("\n ** Vector b **\n\n");
printf("\t");
for(i=0 ; i<m ; i++)
fscanf(fp, "%lf", \&b[i]);
printf("%8.3g ", b[i]);
}
printf("\n");
printf("\n ** Vector xup **\n\n");
printf("\t");
for(i=0 ; i<nn ; i++)
fscanf(fp, "%lf", \&xup[i]);
printf("%8.3g ", xup[i]);
}
printf("\n");
printf("\n ** Vector xlow **\n\n");
printf("\t");
for(i=0 ; i<nn ; i++)
fscanf(fp, "%lf", \&xlow[i]);
printf("%8.3g ", xlow[i]);
}
printf("\n");
printf("\n ** Vector c **\n\n");
printf("\t");
for(i=0 ; i<nn ; i++)
fscanf(fp, "%lf", \&c[i]);
printf("%8.3g ", c[i]);
}
printf("\n");
printf("\n ** Vector itype **\n\n");
printf("\t");
for(i=0 ; i<m ; i++)
fscanf(fp, "%d", \&itype[i]);
printf(" %6d ", itype[i]);
}
printf("\n");
ierr = ASL_dmclsn(a, lma, \&nm, b, m, xup, xlow, c, itype, er, \&nev, x, \&y, isw, iwk, wk);
printf("\n ** Output **\n");
printf("\n ** First Result (isw == 0) **\n");
printf("\n\tierr = %6d\n", ierr);
printf("\n ** Vector x **\n\n");
for(i=0 ; i<nn ; i++)
printf("\tx[%6d] = %8.3g\n", i, x[i]);
}
printf("\ty = %8.3g\n", y);
fscanf(fp, "%d %d", \&nev, \&isw);
ierr = ASL_dmclsn(a, lma, \&nm, b, m, xup, xlow, c, itype, er, \&nev, x, \&y, isw, iwk, wk);
printf("\n\n ** Improved Result (isw != 0) **\n");
printf("\n\tierr = %6d\n", ierr);
printf("\n ** Vector x **\n\n");
for(i=0 ; i<nn ; i++)
printf("\tx[%6d] = %8.3g\n", i, x[i]);
}
printf("\ty = %8.3g\n", y);
if (ierr == 5000 \&\& once==0)
once=1;
goto loop;
}
fclose(fp);
free(a);
free(b);

```
loop:
```

 free(xup);
 free(xlow)
 free(c);
 free(itype);
 free(x);
 free(iwk)
 free(lwk);
 return 0;
 }

```
(d) Output results
```

*** ASL_dmclsn ***
** Input **
$\mathrm{nm}=\quad 14 \mathrm{~m}=\quad 4$
** Matrix a **

| 1 | 2 | 3 | -3 | -2 | -1 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | -3 | -1 | 2 | 4 | 1 |
| -3 | 2 | 2 | 1 | 5 | 2 |
| 5 | -1 | 3 | 3 | -2 | 4 |

 ** Vector b **
 \(20 \quad 28 \quad 40\)
 ** Vector xup **
 \(1 e+031 e+031 e+031 e+03 \quad 1 e+03 \quad 1 e+03\)
 ** Vector xlow **
 00
 ** Vector c **
 \(-1 \quad-3\)
 ** Vector itype **
 \(1 \quad-1\)
 1
 0
 0
** Output **
** First Result (isw == 0) **
ierr $=5000$
** Vector x **

| x [| 0] | 5.16 |
| :---: | :---: | :---: |
| x [| 1] | 0 |
| x [| $2]$ | 9.84 |
| x [| $3]$ | 0 |
| x [| 4] | 6.41 |
| x [| 5] | 1.87 |
| $\mathrm{y}=$ | -14.9 | |

 ** Improved Result (isw != 0) **
 ierr $=0$
** Vector x **

| $\mathrm{x}[$ | $0]=$ | 18.1 |
| :--- | :--- | ---: |
| $\mathrm{x}[$ | $1]=$ | 14.2 |
| $\mathrm{x}[$ | $2]=$ | 0 |
| $\mathrm{x}[$ | $3]=$ | 0 |
| $\mathrm{x}[$ | $4]=$ | 13.2 |
| $\mathrm{x}[$ | $5]=$ | 0 |
| $\mathrm{y}=$ | -113 | |

```

\subsection*{5.6.2 ASL_dmclaf, ASL_rmclaf \\ Minimization of a Function of Many Variables (Linear Constraint Given by a Real Irregular Sparse Matrix)}
(1) Function

ASL_dmclaf or ASL_rmclaf function obtains the value \(\boldsymbol{x}\) that minimizes the function of many variables
\[
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}
\]
of the \(n\)-dimensional vector \(\boldsymbol{x}=\left[x_{1}, \cdots, x_{n}\right]^{T}\). There are \(m\) constraints, which are given by one of the following for \(i=1,2, \cdots, m\).
- \(\boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i}\)
- \(\boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}\)
- \(\boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i}\)

Also, the domain of \(\boldsymbol{x}\) is defined as
\[
d_{j} \leq x_{j} \leq u_{j} \quad(j=1,2, \cdots, n)
\]

Here, \(\boldsymbol{c}^{T}=\left[c_{1}, c_{2}, \cdots, c_{n}\right], \boldsymbol{a}_{i}^{T}=\left[a_{i, 1}, a_{i, 2}, \cdots, a_{i, n}\right]\) are \(n\)-dimensional vectors, and \(b_{i}, d j\) and \(u_{j}\) are constants \((i=1,2, \cdots, m ; \quad j=1,2, \cdots, n)\).
(2) Usage

Double precision:
ierr = ASL_dmclaf (aval, na, jcn, ia, nm, b, m, xup, xlow, c, itype, etb, ap, bm, nck, \&nev, x, \&y, \&isw1, isw2, iw, w, nw);
Single precision:
ierr \(=\) ASL_rmclaf (aval, na, jcn, ia, nm, b, m, xup, xlow, c, itype, etb, ap, bm, nck, \&nev, x, \&y, \&isw1, isw2, iw, w, nw);

\section*{(3) Arguments and Return Value}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D:Double precision real R :Single precision real} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{aval} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} * \\
\mathrm{R} *
\end{array}\right\}
\]} & \multirow[t]{2}{*}{\(\mathrm{na}+2 \times \mathrm{m}\)} & Input & When isw \(=0\), Matrix \(A=\left(a_{i, j}\right)\) \((i=1,2, \cdots, m ; j=1,2, \cdots, n)\) corresponding to coefficients of constraints (See Note (e)) \\
\hline & & & & Output & Matrix corresponding to coefficients of constraints that were modified by using slack variables \\
\hline 2 & na & I & 1 & Input & Number of nonzero elements of matrix \(A\) \\
\hline 3 & jcn & I* & \(\mathrm{na}+2 \times \mathrm{m}\) & Input & \begin{tabular}{l}
Column numbers of nonzero elements of matrix \(A\) \\
(See Notes (e) and (f))
\end{tabular} \\
\hline 4 & ia & I* & \(\mathrm{m}+1\) & Input & \begin{tabular}{l}
Information about nonzero elements of matrix \(A\) \\
(See Notes (e) and (f))
\end{tabular} \\
\hline 5 & nm & I & 1 & Input & Value of \(n+2 \times m\) when isw \(2=0\), where \(n\) the number of variables and \(m\) is the number of constraints (See Note (f)) \\
\hline \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{b} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} * \\
\mathrm{R} *
\end{array}\right\}
\]} & \multirow[t]{2}{*}{m} & Input & Right-hand side \(\boldsymbol{b}=\left(b_{i}\right)(i=1,2, \cdots, m)\) of constraints when isw2=0 (See Note (f)) \\
\hline & & & & Output & Right-hand side of constraints that were modified by using slack variables \\
\hline 7 & m & I & 1 & Input & Number of constraints \(m\) \\
\hline \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{xup} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} * \\
\mathrm{R} *
\end{array}\right\}
\]} & \multirow[t]{2}{*}{nm} & Input & Upper limit values \(\boldsymbol{u}=\left(u_{j}\right)(j=1,2, \cdots, n)\) of variables when isw2=0 (See Notes (b) and (f).) \\
\hline & & & & Output & Upper limit values of variables that were modified by using slack variables \\
\hline \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{xlow} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} * \\
\mathrm{R} *
\end{array}\right\}
\]} & \multirow[t]{2}{*}{nm} & Input & Lower limit values \(\boldsymbol{d}=\left(d_{j}\right)(j=1,2, \cdots, n)\) of variables when isw2=0 (See Notes (b) and (f).) \\
\hline & & & & Output & Lower limit values of variables that were modified by using slack variables \\
\hline \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{c} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} * \\
\mathrm{R} *
\end{array}\right\}
\]} & \multirow[t]{2}{*}{nm} & Input & Coefficients \(\boldsymbol{c}=\left(c_{j}\right)(j=1,2, \cdots, n)\) of functions when isw2=0 (See Note (f)) \\
\hline & & & & Output & Coefficients of functions that were modified by using slack variables \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 11 & itype & I* & m & Input & Distinction among symbols for equality and inequality of constraints
\[
\begin{aligned}
& \text { 0: } \boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i} \\
& \text { 1: } \boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i} \\
& -1: \boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i}
\end{aligned}
\] \\
\hline 12 & etb & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 3 & Input & \(\operatorname{etb}[0] \quad: \quad\) Unit for \(\quad\) deter-
mining convergence \(\epsilon_{C}(\) Default value : 10
\(\times \sqrt{(\text { unit for determining error })})\)
\(\operatorname{etb}[1]:\) Unit for testing residual \(\epsilon_{r}(\) Default
value \(: \sqrt{(\text { unit for determining error })})\)
\(\operatorname{etb}[2]:\) Unit for testing feasibility \(\epsilon_{A} \quad(\) De-
fault value :
\(\sqrt{(\text { unit for determining error })})\)
\((\) See Note \((\mathrm{i}))\) \\
\hline 13 & ap & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Step size parameter \(\alpha\) (Default value:0.99)(See Note (h)) \\
\hline 14 & bm & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Parameter \(M\) for Big-M method (Default value : \(10 \times \max _{i}\left|c_{i}\right|\) ) \\
\hline 15 & nck & I & 1 & Input & ```
Spacing for performing residual check for con-
straints (Default value : 10)
(See Note (i))
``` \\
\hline 16 & nev & I* & 1 & Input & Maximum number of evaluations of function \(f(\boldsymbol{x})\) (Default value : \(10 \times \mathrm{m}\)) \\
\hline & & & & Output & Actual number of function evaluations \\
\hline 17 & x & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nm & Output & Final destination \(\boldsymbol{x}\) (See Note (a)) \\
\hline 18 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Function value \(f(\boldsymbol{x})\) at final destination \(\boldsymbol{x}\) \\
\hline \multirow[t]{2}{*}{19} & \multirow[t]{2}{*}{isw1} & \multirow[t]{2}{*}{I*} & \multirow[t]{2}{*}{1} & Input & \begin{tabular}{l}
Processing switch (Default value:0) (See Note (j)) \\
0: Automatic selection \\
1: Treat coefficient matrix of simultaneous linear equations as a dense matrix. \\
2: Treat coefficient matrix of simultaneous linear equations as a sparse matrix.
\end{tabular} \\
\hline & & & & Output & Selected switch when isw1=0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 20 & isw2 & I & 1 & Input & \begin{tabular}{l}
Processing switch (Default value:0) (See Note (k)) \\
Initial processing \\
1: Continuation processing
\end{tabular} \\
\hline 21 & iw & I* & See Contents & Work & \begin{tabular}{l}
Work area \\
Size: \(\mathrm{nw}+\mathrm{na}+14 \times \mathrm{m}+4 \times \mathrm{nm}+30\)
\end{tabular} \\
\hline 22 & w & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nw & Work & Work area \\
\hline 23 & nw & I & 1 & Input & Size of array w (See Note (l)) \\
\hline 24 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) xlow \([\mathrm{j}-1] \leq \operatorname{xup}[\mathrm{j}-1] \mathrm{j}=1,2, \ldots, \mathrm{~nm}-2 \times \mathrm{m}\)
(b) isw1 \(=0\) or isw1 \(=1\)
(c) isw \(2=0\) or isw2 \(=1\)
(d) etb \([\mathrm{i}-1] \geq\) unit for determining error \((\mathrm{i}=1,2,3)\) (except when 0.0 is entered to set default value)
(e) nev \(>0\) (except when 0 is entered to set default value)
(f) nck \(>0\) (except when 0 is entered to set default value)
(g) ap \(>0\) (except when 0.0 is entered to set default value)
(h) \(\mathrm{bm}>0\) (except when 0.0 is entered to set default value)
(i) \(0<\mathrm{nm}, 0<\mathrm{m}\) (except when 0 is entered to set default value)
(j) \(\mathrm{ia}[0]=1\)
\(0<\mathrm{ia}[\mathrm{i}]-\mathrm{ia}[\mathrm{i}-1] \leq \mathrm{n}(\mathrm{i}=1,2, \cdots, \mathrm{n}-1)\)
\(0<\mathrm{na}-\mathrm{ia}[\mathrm{n}-1]+1 \leq \mathrm{n}\)
(k) \(\mathrm{m} \leq \mathrm{na} \leq \mathrm{m} \times \mathrm{n}\)
(l) \(0<\) Column number of nonzero element of matrix \(A \leq n\)

The column numbers of the nonzero elements of matrix \(A\), which are stored in array jcn, must be in ascending order for each row. Also, each column must have at least one nonzero element.
\((\mathrm{m}) \mathrm{nw} \geq \mathrm{na}+17 \times \mathrm{m}+13+\left(\right.\) size of area required to perform LU decomposition of \(\left.A\left(D^{(k)}\right)^{2} A^{\mathrm{T}}\right)\).
Here, \(\mathrm{n}=\mathrm{nm}-2 \times \mathrm{m}\). Also, \(D^{(k)}\) is a diagonal matrix having \(x_{i}^{(k)}\) in element \((i, i)\) for the solution \(\boldsymbol{x}^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right)^{\mathrm{T}}\) at the time of the \(k\)-th iteration.

\section*{(5) Error indicator (Return Value)}
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & For some \(j(j=1,2, \ldots, \mathrm{~nm}-2 \times \mathrm{m})\), xlow \([j-1]\) and \(\operatorname{xup}[j]\) did not satisfy Restriction (a). & The values of xlow \([j-1]\) and \(\operatorname{xup}[j-1]\) are swapped and processing is performed. \\
\hline 1500 & One of restrictions (b) to (h) was not satisfied. & Processing is performed with the default value set. \\
\hline 3000 & Restriction (i) was not satisfied. & \multirow[t]{6}{*}{Processing is aborted.} \\
\hline 3010 & One of restrictions (j) to (l) was not satisfied. & \\
\hline 3100 & Restriction (m) was not satisfied. & \\
\hline 4000 & A basic feasible solution could not be obtained. & \\
\hline 4100 & \(\operatorname{rank}(A)<m\) for the matrix \(A\) that assigns the constraints. (\(m\) is the number of constraints.) & \\
\hline 4200 & The residual for the constraints did not satisfy the required precision. (See Note (i)) & \\
\hline 5000 & The sequence did not converge even though the maximum assigned iteration count was reached. & The values of x and y at that time were output, and processing is aborted. (See Notes (h) and (i)) \\
\hline
\end{tabular}
(6) Notes
(a) The value of the final destination \(\boldsymbol{x}\) is set in \(\mathrm{x}[0]\) to \(\mathrm{x}[n-1]\). The remainder of array x contains values such as the slack variables.
(b) If the upper and lower limit values of the variable have not specifically been defined, they are set to positive and negative numbers having suitably large absolute values. If the variable value at the final destination matches the upper or lower limit value defined here, an optimal value may not be obtained. Therefore, a number having a larger absolute value must be set for the upper or lower limit value and the calculation must be executed again.
(c) If a default value appears in the "Contents" column of the argument table and 0 is entered for an integer type argument or 0.0 is entered for a real type argument, the default value is set.
(d) Scaling should be performed so that each variable participates to an equal degree in the function value. For example, if \(f(\boldsymbol{x})=100 x_{1}+x_{2}\) with constraint: \(200 x_{1}+5 x_{2}=3\) the transformation \(y_{1}=100 x_{1}, y_{2}=x_{2}\) should be performed so that the result is obtained using, \(h(\boldsymbol{y})=y_{1}+y_{2}\) with constraint : \(2 y_{1}+5 y_{2}=3\).
(e) When isw2=0, only nonzero coefficients among the coefficients \(a_{i, j}(i=1,2, \cdots, m ; j=1,2, \cdots, n)\) corresponding to constraints are stored in array aval. Here, \(m\) represents the number of constraints and \(n\) represents the number of variables. For example, if the matrix \(A=\left(a_{i j}\right)\) representing the constraints
is given by
\[
A=\left[\begin{array}{cccccc}
0.0 & a_{12} & a_{13} & 0.0 & 0.0 & a_{16} \\
a_{21} & 0.0 & 0.0 & 0.0 & a_{25} & 0.0 \\
0.0 & a_{32} & 0.0 & 0.0 & 0.0 & a_{36} \\
0.0 & 0.0 & 0.0 & a_{44} & 0.0 & a_{46}
\end{array}\right]
\]
the storage conditions of arrays aval, jcn and ia are as follows.

StorageConditionsofArraysaval, jaandia

Remark: The portions indicated by \(*\) need not be set as input values.
(f) The values after the constraints and other items were transformed are entered for the output of \(a\), \(b\), xup, xlow, c and nm.
(g) To search for the maximum value, you should search for the minimum value of \(-f(\boldsymbol{x})\). At this time, the maximum value will be the value of y with the plus or minus sign reversed.
(h) In theory, as the step size parameter \(\alpha\) approaches 1 , fewer iterations are required to converge to the optimal solution. However, in some cases, if \(\alpha\) is too close to 1 , the error gets large.
(i) To prevent a situation in which the constraint cannot be satisfied with sufficient precision due to calculation error, this function performs the check described below when the iteration count \(k\) satisfies any of the following conditions.
i. \(k\) is 1
ii. \(k\) is divisible by the value of the argument nck
iii. \(k\) is equal to the value of the argument nev

When any of these conditions is satisfied, the function checks whether or not the residual for the constraint of the solution \(\boldsymbol{x}^{(k)}\) at that time satisfies the condition
\[
\left\|A \boldsymbol{x}^{(k)}-b\right\| \leq \epsilon_{r}
\]
where \(\epsilon_{r}\) is the value that is set for the argument etb[1]. If this condition is not satisfied, the initial solution is recalculated based on the previous solution for which this condition was satisfied, and the iterations are repeated. If the condition is not satisfied again after nck iterations from the recalculation of the initial value, the value of nck is replaced by, \(\max (\mathrm{nck} / 2,1)\) and the iterations are repeated further. If this condition is still not satisfied even when nck \(=1\), ierr \(=4200\) is output, and processing is stopped.
(j) This function solves simultaneous linear equations to determine the search direction for the optimal solution. The value of the argument isw1 can be used to select whether the coefficient matrix of the simultaneous linear equations is to be treated as a dense matrix or as a sparse matrix. If the coefficient matrix is to be treated as a dense matrix, the function 2.2.2 \(\left\{\begin{array}{l}\text { ASL_dbgmsl } \\ \text { ASL_rbgmsl }\end{array}\right\}\) (described in <Basic Functions Vol. \(2>\), Section (2.2.2)) is used. If the coefficient matrix is to be treated as a sparse matrix, the function 2.21.1 \(\left\{\begin{array}{c}\text { ASL_dbmfsl } \\ \text { ASL_rbmfsl }\end{array}\right\}\) (described in \(<\) Basic Functions Vol. 2> , Section (2.21.1)) is used. If the coefficient matrix \(A\) of the constraints is a sparse matrix and if \(A A^{\mathrm{T}}\) is also a sparse matrix, the calculation time will be shorter if the coefficient matrix of the simultaneous linear equations is treated as a sparse matrix. Otherwise, isw \(1=0\) should be set.
(k) If the specified convergence count is small and ierr=5000 is returned, the calculation can be continued using information that was calculated up to that time. To perform this processing, set 1 for the value of isw1, set a sufficiently large value for nev, and use the output values from the previous execution directly for the other input values. Also use the work area information from the previous execution (See the example).
(l) If the maximum value of the absolute values of the artificial variables is greater than the value that was set for etb[2] when the iterative calculation ends, the assigned problem is considered to be infeasible, and ierr \(=4000\) is output.
(m) If \(\operatorname{rank}(A)<m\) for the coefficient matrix \(A\) that assigns the constraints, this function cannot calculate the optimal solution, and ierr=4100 is output. In this case, the function 5.6.1 \(\left\{\begin{array}{l}\text { ASL_dmclsn } \\ \text { ASL_rmclsn }\end{array}\right\}\) should be used.
(n) The size nw of the array w must be estimated in advance. To prevent ierr=3100 from being output because nw is not sufficiently large, \(\mathrm{nw}=\mathrm{na}+13 \times \mathrm{nm}+2 \times \mathrm{m} \times(\mathrm{m}+1)+13\) should be set.

\section*{(7) Example}
(a) ProblemMinimize
\[
f(\boldsymbol{x})=2 x_{1}+x_{2}+x_{3}-3 x_{4}+x_{5}
\]
based on
\[
\begin{aligned}
& x_{1}+2 x_{4}+3 x_{5} \geq-7 \\
& 2 x_{2}-x_{3}=0 \\
& x_{1}+2 x_{5} \leq 8 \\
& 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1,1 \leq x_{3} \leq 2,-3 \leq x_{4} \leq 0,2 \leq x_{5} \leq 5 .
\end{aligned}
\]

In this example, to show the continuation processing described in Note \((\mathrm{k})\), the maximum evaluation count nev is set to a small value, nev \(=5\), so that ierr \(=5000\) will be output.
(b) Input data
(First time): \(\mathrm{nm}=14, \mathrm{~m}=4\), \(\mathrm{ap}=0.0, \mathrm{bm}=0.0\), \(\mathrm{nev}=3\), isw \(1=0\), isw \(2=0\), \(\operatorname{lma}=11\), arrays a , jcn, ia, b , xup, xlow, c, etb and itype.
(Second and subsequent times): nev=20 and isw=1.
(For the other arguments, the values that were output by the previous calculation are used directly as input values.)
(c) Main program
```

/* C interface example for ASL_dmclaf */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *aval;
int na;
nt *jcn;
nt *ia
double *b
int m;
double *xup;
double *xlow
double *c;
int *itype;
double er[3];
double ap;
double bm
int nck;
double *x
double y;
int isw1;
int isw2;
int *iw;
double *W
*nt nW.
int nw;
int ierr;
FILE *fp;
fp = fopen( "dmclaf.dat", "r" );
if( fp == NULL )
{
printf( "file open error\n" );
}
printf( " *** ASL_dmclaf ***\n" );

```
```

printf( "\n ** Input **\n\n" );
fscanf( fp, "\%d", \&na );
fscanf( fp, "\%d", \&nm );
fscanf( fp, "\%d", \&m );
fscanf( fp, "\%lf \%lf \%lf", \&er[0], \&er[1], \&er[2] );
fscanf( fp, "\%lf", \&ap );
fscanf( fp, "\%lf", \&bm );
fscanf( fp, "\%d", \&nck );
fscanf( fp, "\%d", \&nev );
fscanf( fp, "\%d", \&isw1);
fscanf( fp, "\%d", \&isw2 );
fscanf( fp, "\%d", \&nw );
$\mathrm{n}=\mathrm{nm}-2 * \mathrm{~m}$;
aval = ( double * )malloc((size_t) ( sizeof(double) * (na+2*m) ));
if ( aval == NULL )
printf( "no enough memory for array aval\n" );
return -1;
\}
jcn $=($ int $*)$ malloc ( (size_t) ( sizeof(int) * (na+2*m) ));
if ( jcn == NULL )
\{
printf( "no enough memory for array jcn\n" );
return -1 ;
\}
ia $=($ int * $)$ malloc ( $($ size_t) ( sizeof (int) * (m+1) ));
if ( ia $==$ NULL $)$
printf( "no enough memory for array ia\n" );
return -1;
\}
$\mathrm{b}=($ double *) malloc ((size_t) ( sizeof(double) * m ));
$\operatorname{if}^{\mathrm{if}}(\mathrm{b}==$ NULL $)$
printf( "no enough memory for array b\n" );
return -1;
\}
xup = ( double * ) malloc((size_t)( sizeof(double) * nm ));
if ( $x u p==$ NULL $)$
\{
printf( "no enough memory for array xup\n" );
return -1;
\}
xlow $=($ double $*)$ malloc ((size_t) ( sizeof(double) $* \mathrm{~nm}))$;
if ( xlow $==$ NULL $)$
printf( "no enough memory for array xlow $\backslash$ " ) ;
return -1;
\}
c = ( double * ) malloc((size_t)( sizeof(double) * nm ));
$\operatorname{if}(\mathrm{c}==$ NULL $)$
printf( "no enough memory for array c\n" );
\}
itype $=($ int $*)$ malloc ((size_t) ( sizeof(int) * m ));
if ( itype == NULL )
\{
printf( "no enough memory for array itype\n" );
return -1
\}
$\mathrm{x}=\left(\right.$ double $\left.{ }^{*}\right)$ malloc ((size_t)( sizeof(double) * nm ));
$x=\left(\right.$ double ${ }^{*}{ }^{*}(x==$ NULL $)$
printf( "no enough memory for array $x \backslash n "$ );
\}
iw $=($ int * ) malloc((size_t)( sizeof(int) * (nw+na+14*m+4*nm+30) ));
if $=($ int * $)$ mal
if
$==$
NULL $)$
printf( "no enough memory for array iw\n" );
return -1;
\}
$\underset{\mathrm{w}}{ }=($ double * $) \operatorname{malloc}(($ size_t)( sizeof(double) * (nw) ));
if $^{\text {if }}(\mathrm{w}==$ NULL $)$
printf( "no enough memory for array w w " ) ;
return -1;

```
```

}
printf( "\tna = %6d nm = %6d m = %6d\n", na, nm, m );
printf( "\tnck = %6d nev = %6d isw1 = %6d\n", nck, nev, isw1 );
printf( "\tisw2 = %6d nw = %6d\n\n", isw2, nw );
printf( "\ter[0] = %8.3g er[1] = %8.3g er[2] = %8.3g\n\n", er[0], er[1], er [2] );
printf( "\tap = %8.3g bm = %8.3g\n", ap, bm );
printf( "\n\n\tMatrix A\n" );
printf("\n\t");
for( i=0 ; i<na ; i++ )
fscanf( fp, "%lf", \&aval[i] );
printf( "%8.3g ", aval[i] );
}
printf("\n");
for( i=0 ; i<na ; i++ )
fscanf( fp, "%d", \&jcn[i] );
}
for( i=0 ; i<m ; i++ )
fscanf( fp, "%d", \&ia[i] );
}
printf( "\n\n\tConstant vector b\n" );
printf("\n\t");
for( i=0 ; i<m ; i++ )
fscanf( fp, "%lf", \&b[i] );
printf( "%8.3g ", b[i] );
}
printf("\n");
printf( "\n\n\tUpper bound of each variable xup\n" );
printf("\n\t");
for( i=0 ; i<n ; i++ )
fscanf( fp, "%lf", \&xup[i] );
printf( "%8.3g ", xup[i] );
}
printf("\n");
printf( "\n\n\tLower bound of each variable xlow\n" );
printf("\n\t");
for( i=0 ; i<n ; i++ )
fscanf( fp, "%lf", \&xlow[i] );
printf( "%8.3g ", xlow[i] );
}
printf("\n");
printf( "\n\n\tCoefficient vector c\n" );
printf("\n\t");
for( i=0 ; i<n ; i++ )
fscanf( fp, "%lf", \&c[i] );
printf( "%8.3g ", c[i] );
}
printf("\n");
printf( "\n\n\tType of each constraint itype\n" );
printf("\n\t");
for( i=0 ; i<m ; i++ )
{ fscanf( fp, "%d", \&itype[i] );
printf( "%6d ", itype[i] );
}
printf("\n");
fclose( fp );
ierr = ASL_dmclaf(aval, na, jcn, ia, nm, b, m, xup, xlow, c, itype,
er, ap, bm, nck, \&nev, x, \&y, \&isw1, isw2, iw, w, nw);
printf( "\n ** Output **\n\n");
printf( "\n ** First result **\n\n" );
printf( "\tierr = %6d\n\n", ierr );
printf( "\tSelected isw1 = %6d \n", isw1 );
isw2 = 1;
nev = 100
ierr = ASL_dmclaf(aval, na, jcn, ia, nm, b, m, xup, xlow, c, itype,
er, ap, bm, nck, \&nev, x, \&y, \&isw1, isw2, iw, w, nw);

```
** Output **\n\n");
printf ("\n \(\quad * *\) Improved result \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
printf("\tierr = \%6d\n\n", ierr);
printf("\tSelected isw1 = \%6d \(\backslash n "\), isw1);
printf("\tIteration number \(=\% 6 d \backslash n \backslash n "\), nev);
printf("\n\tSolution\n\n");
 printf("\t \(x[\% 6 d]=\% 8.3 g \backslash n ", i, x[i]) ;\)
printf("\t \(y=\% 8.3 \mathrm{~g} \backslash \mathrm{n} ", \mathrm{y})\);
\}
(d) Output results
```

*** ASL_dmclaf ***
** Input **
$\begin{array}{lllll}\mathrm{na} & = & 7 \mathrm{~nm}= & 11 \mathrm{~m} & = \\ \mathrm{nck} & = & 0 \mathrm{nev}= & 5 \text { isw1 }= & 3\end{array}$
isw2 $=0$ nw $=200$
$\operatorname{er}[0]=0$ er $[1]=0$ er $[2]=0$
$\mathrm{ap}=\quad 0 \mathrm{bm}=0$
$\begin{array}{rrrrrrr}\text { Matrix A } & & & & \\ 1 & 2 & 3 & 2 & -1 & 1 & 2\end{array}$
Constant vector b
$\begin{array}{lll}-7 & 0 & 8\end{array}$
Upper bound of each variable xup
$\begin{array}{lllll}1 & 1 & 2 & 0 & 5\end{array}$
Lower bound of each variable xlow
$\begin{array}{llll}0 & 0 & 1 & -3\end{array}$
Coefficient vector c

2	1	1	-3	1

Type of each constraint itype
$\begin{array}{lll}-1 & 0 & 1\end{array}$
** Output **
** First result **
ierr $=5000$
Selected isw1 = 1
** Output **
** Improved result **
ierr = 1500
Selected isw1 = 1
Solution

```
\begin{tabular}{lllr}
\(\mathrm{x}[\) & \(0]\) & \(=\) & \(2.19 \mathrm{e}-09\) \\
\(\mathrm{x}\left[\begin{array}{ll}{[} & 1]\end{array}\right.\) & \(=\) & 0.5 \\
\(\mathrm{x}[\) & \(2]\) & \(=\) & 1 \\
\(\mathrm{x}[\) & \(3]\) & \(=\) & \(-1.32 \mathrm{e}-10\) \\
\(\mathrm{x}[\) & \(4]\) & \(=\) & 2 \\
\(\mathrm{y}=\) & 3.5 &
\end{tabular}

\subsection*{5.6.3 ASL_dmclmz, ASL_rmclmz}

\section*{Minimization of a Constrained Linear Function of Several Variables Including 0-1 Variables (Mixed 0-1 Programming)}
(1) Function

ASL_dmclmz or ASL_rmclmz obtains \(\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)\) that minimizes the objective function:
\[
f(\boldsymbol{x})=\sum_{j=1}^{n} c_{j x_{j}}
\]
based on the constraints:
\[
\begin{array}{rlrl}
\sum_{j=1}^{n} a_{i, j} x_{j} & =b_{i} & & \left(i=1, \cdots, m_{e} ; j=1, \cdots, n\right) \\
\sum_{j=1}^{n} a_{i, j} x_{j} & \leq b_{i} & & \left(i=m_{e}+1, \cdots, m ; j=1, \cdots, n\right) \\
d_{j} & \leq x_{j} \leq u_{j} & (j=1, \cdots, n) \\
x_{j} & =0,1 & & \left(j \in N_{01}\right)
\end{array}
\]
and the value of the objective function \(f(\boldsymbol{x})\) for that \(\boldsymbol{x} . N_{01}\) is the set of subscripts of the \(0-1\) variables.
(2) Usage

Double precision:
ierr \(=\) ASL_dmclmz (\(\mathrm{a}, \mathrm{ma}, \mathrm{n}, \mathrm{b}, \mathrm{m}, \mathrm{me}, \mathrm{xup}, \mathrm{xlow}, \mathrm{lz}, \ln , \mathrm{c}, \mathrm{mp}, \mathrm{np}, \mathrm{er}, \mathrm{nev}, \mathrm{x}, \& \mathrm{y}\), isw, iwk, wk);
Single precision:
ierr \(=\) ASL_rmclmz (\(\mathrm{a}, \mathrm{ma}, \mathrm{n}, \mathrm{b}, \mathrm{m}, \mathrm{me}\), xup, xlow, lz, \(\ln , \mathrm{c}, \mathrm{mp}, \mathrm{np}, \mathrm{er}, \mathrm{nev}, \mathrm{x}, \& \mathrm{y}\), isw, iwk, wk);
(3) Arguments and Return Value
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & a & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \(m a \times n\) & Input & Coefficients of left-hand side of constraints \(a_{i, j}\) (See Note (a)) \\
\hline 2 & ma & I & 1 & Input & Adjustable dimension of array a \\
\hline 3 & n & I & 1 & Input & Number of variables \(n\) \\
\hline 4 & b & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Input & \(m\)-dimensional vector having constants of right-hand side of constraints \(b_{i}\) as components \\
\hline 5 & m & I & 1 & Input & Number of constraints \(m\) \\
\hline 6 & me & I & 1 & Input & Number of equality constraints \(m_{e}\) \\
\hline 7 & xup & I* & n & Input & Variable \(x_{j}\) upper bound \(u_{j}\) (See Note (b)) \\
\hline 8 & xlow & I* & n & Input & Variable \(x_{j}\) lower bound \(d_{j}\) (See Note (b)) \\
\hline 9 & lz & I* & \(\ln\) & Input & Set of subscripts of \(0-1\) variables \(N_{01}\) (See Note (i)) \\
\hline 10 & \(\ln\) & I & 1 & Input & Number of 0-1 variables (See Note (h)) \\
\hline 11 & c & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & n & Input & Objective function coefficient Vector \(c_{j}\) \\
\hline 12 & mp & I & 1 & Input & \begin{tabular}{l}
Depth of search in branch-and-bound method \(p\) \\
When \(p=1\), a depth-first search is performed. \\
As \(p\) gets larger, the search gets closer to a heuristic search (See Note (f))
\end{tabular} \\
\hline 13 & np & I & 1 & Input & Maximum length of partial problem list in branch-and-bound method \\
\hline 14 & er & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Required precision (See Note (c)) \\
\hline 15 & nev & I & 1 & Input & Maximum number of iterations when solving the relaxation problem (See Note (d)) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 16 & x & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & n & Output & Optimal solution \(\boldsymbol{x}\) \\
\hline 17 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Objective function value \(f(\boldsymbol{x})\) for optimal solution \(\boldsymbol{x}\) \\
\hline 18 & isw & I & 1 & Input & \begin{tabular}{l}
Processing switch (See Notes (g) and (h)) isw=0: Initial processing \\
isw=1: Continuation processing
\end{tabular} \\
\hline 19 & iwk & I* & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size : \(m p+(m p+3) \times(n+m-m e)+m+\)
\[
(\ln +2) \times \mathrm{np}+7
\]
\end{tabular} \\
\hline 20 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size : \(\mathrm{m} \times 4+(\mathrm{m}+4) \times(\mathrm{n}+2 \times \mathrm{m}-\mathrm{me})+(\mathrm{mp}+\) \\
\(1) \times(\mathrm{m}+1) \times(\mathrm{n}-\mathrm{me}+1)+(\mathrm{m}+1) \times(\mathrm{n}+\mathrm{m}-\)
\[
\mathrm{me}+1)+2 \times \ln +(\mathrm{n}+\mathrm{m}-\mathrm{me}+2) \times(\mathrm{np}+1)+2
\]
\end{tabular} \\
\hline 21 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(m, \ln , n, m p>0\)
(b) \(\mathrm{ma} \geq \mathrm{m}\)
(c) \(0 \leq m e \leq n, m\)
(d) \(\mathrm{n} \geq \ln\)
(e) \(n p \geq 2\)
(f) \(0 \leq \operatorname{lz}[0]<\operatorname{lz}[1]<\cdots<\operatorname{lz}[\ln -1] \leq n\)
(g) er \(>0.0\) (except when 0.0 or a negative value is entered to use the default value)
(h) nev \(>0\) (except when 0 or a negative value is entered to use the default value)
(i) \(\mathrm{isw}=0\) or \(\mathrm{isw}=1\)
(j) \(\operatorname{xup}[\mathrm{i}-1] \geq \operatorname{xlow}[\mathrm{i}-1] \quad(\mathrm{i}=1,2, \cdots, \mathrm{n})\)
(k) When isw \(=1\) is set to perform continuation processing after ierr \(=5600\) is output, the value of np must be set larger than it was for the previous processing.
(5) Error indicator (Return Value)
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & Restriction (g) or (h) was not satisfied. & The default value is used, and processing continues. \\
\hline 1100 & Restriction (i) was not satisfied. & isw \(=0\) is considered to have been specified, and processing continues. \\
\hline 1200 & Restriction (j) was not satisfied. & The upper and lower bounds are switched, and processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow[t]{8}{*}{Processing is aborted.} \\
\hline 3010 & Restriction (b) was not satisfied. & \\
\hline 3020 & Restriction (c) was not satisfied. & \\
\hline 3030 & Restriction (d) was not satisfied. & \\
\hline 3040 & Restriction (e) was not satisfied. & \\
\hline 3100 & Restriction (f) was not satisfied. & \\
\hline 3500 & Restriction (k) was not satisfied. & \\
\hline 4000 & No feasible solution exists. & \\
\hline 5000 & The solution of the relaxation problem could not be obtained within the given number of iterations. The incumbent has been obtained. & The incumbent at that time is output, and processing is aborted. \\
\hline 5100 & The solution of the relaxation problem could not be obtained within the given number of iterations. The incumbent has not been obtained. & Processing is aborted. \\
\hline 5500 & The number of partial problems retained in memory without processing ending reached np during calculations of the branch-and-bound method. The incumbent has been obtained. & The incumbent at that time is output, and processing is aborted. \\
\hline 5600 & The number of partial problems retained in memory without processing ending reached \(n p\) during calculations of the branch-and-bound method. The incumbent has not been obtained. & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) The coefficients \(a_{i, j}\) of the left-hand side of the constraints are stored as follows in array a.

(b) When \(x_{j}\) is a \(0-1\) variable, the values of \(\operatorname{xup}[j-1]\) and \(\operatorname{xlow}[j-1]\) need not be set in advance.
(c) If a nonpositive value is entered for argument er, the default value, which is
\(2 \times \sqrt{(\text { Units for determining error })}\), is used as the required precision.
(d) A problem in which some of the \(0-1\) variables of a mixed \(0-1\) problem are fixed at 0 or 1 is called a partial problem. The linear programming problem in which the conditions for the \(0-1\) variables that have not been fixed in a partial problem have been weakened so that these variables can take real values greater than or equal to 0 and less than or equal to 1 is called the relaxation problem of that partial problem. When using the simplex method to solve the relaxation problem of a partial problem generated in the process for searching for the solutions of a mixed 0-1 programming problem, the value of argument nev is used as the upper bound of the number of iterations. If a nonpositive value is entered for argument nev, the default value, which is \(10 \times \mathrm{m}\) is used as the upper bound of the number of iterations.
(e) During the search for the optimal solution by using the branch-and-bound method, the solution that yields the smallest objective function value among the solutions satisfying the constraints that have been obtained up to that time is called the incumbent. If ierr \(=5000\) or 5500 is returned, the incumbent is output for x when processing is aborted. At this time, although the solution that was obtained satisfies the constraints, it does not necessarily match the true optimal solution.
(f) The depth of search mp is a parameter assigned by the user for setting the solution search method in the branch-and-bound method. The larger the value assigned for mp , the stronger the tendency for a good incumbent to be obtained quickly. However, as the value assigned for mp gets larger, the number of partial problems retained in memory without processing terminating tends to increase dramatically. Therefore, the value of \(n p\) must be set sufficient large in advance. When \(m p=1\), the area required for calculations is smallest. To prevent ierr \(=5500\) or 5600 from being returned because the size of \(n p\) is insufficient, the value of mp should be set to 1 and the value of np should be set to \(\ln +1\).
(g) When ierr=5000 or 5100 is output and processing is aborted, isw=1 can be set, nev can be reset to a larger value, and calculations can be resumed using the previous calculation results. In this case, the contents of all arguments other than nev that were used by the previous processing must be saved in advance.
(h) When ierr \(=5500\) or 5600 is output and processing is aborted, isw \(=1\) can be set, np can be reset to a larger value, and calculations can be resumed using the previous calculation results. In this case, the contents of all arguments other than np, iwk and wk that were used by the previous processing must
be saved in advance. In addition, for iwk and wk, which are work area arrays, suitably large areas must be reserved according to the value of np, and the contents of iwk and wk at the time the previous processing terminated must be stored in advance at the beginnings of those areas.
(i) The subscripts of \(0-1\) variables among the variables \(x_{1}, x_{2}, \cdots, x_{n}\) are stored in array lz, and the number of \(0-1\) variables is stored in argument ln . For example, when dealing with the mixed \(0-1\) programming problem in which there are eight variables \(x_{1}, x_{2}, \cdots, x_{8}\) of which \(x_{2}, x_{5}\), and \(x_{8}\) are 0-1 variables, set array lz and argument ln as follows.
\[
\begin{aligned}
\ln & =3 \\
\operatorname{lz}[0] & =2 \\
\operatorname{lz}[1] & =5 \\
\operatorname{lz}[2] & =8
\end{aligned}
\]

\section*{(7) Example}
(a) Problem

Minimize the following objective function:
\[
\begin{aligned}
f(\boldsymbol{x})= & -13 x_{1}-18 x_{2}-10 x_{3}-8 x_{4}-8 x_{5}-12 x_{6} \\
& -10 x_{7}-8 x_{8}+11 x_{9}-9 x_{10}-30 x_{11}-10 x_{12}
\end{aligned}
\]
under the following constraints:
\[
\begin{aligned}
& x_{2}+x_{3}+x_{10}=1 \\
& 6 x_{1}+28 x_{2}+6 x_{3}+6 x_{4}+3 x_{5}+6 x_{6} \\
&+21 x_{7}+8 x_{8}-18 x_{9}+12 x_{10}+20 x_{11}+23 x_{12} \leq 60 \\
& 7 x_{1}+7 x_{2}+5 x_{3}+2 x_{4}+2 x_{5}+5 x_{6} \\
&+4 x_{7}+2 x_{8}-3 x_{9}+3 x_{10}+8 x_{11}+3 x_{12} \leq 20 \\
&-x_{4}-x_{11} \leq-1 \\
&-x_{6}-x_{7}-x_{12} \leq-1 \\
& 0 \leq x_{1} \leq 2,0 \leq x_{5} \leq 3,0 \leq x_{8} \leq 1,-2 \leq x_{9} \leq 0 \\
& x_{j}=0,1 \quad(j=2,3,4,6,7,10,11,12)
\end{aligned}
\]
(b) Input data
\(\mathrm{ma}=6, \mathrm{n}=12, \mathrm{~m}=5, \mathrm{me}=1, \mathrm{mp}=4\),
\(n \mathrm{n}=50, \mathrm{er}=0.0\) (Set to the default value), nev=0 (Set to the default value) and isw=0.
Arrays a and b for coefficients of constraints, array c for objective function coefficients and array lz for subscripts of 0-1 variables.
(c) Main program
```

/* C interface example for ASL_dmclmz */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *a
int ma;
int n; *ouble *b
int m;
int m;
double *xup;
double *xlow;
int *lz;
int ln;
int ln;

```
```

int mp;
int np;
double er;
int nev;
double *x;
double y;
int isw;
int *iw1;
double *w1
int ierr;
int i,j,flag,niw1,nw1;
FILE *fp;
fp = fopen( "dmclmz.dat", "r" );
if( fp == NULL )
{
printf( "file open error\n" );
}
printf( " *** ASL_dmclmz ***\n" );
printf( "\n ** Input **\n\n" );
fscanf( fp, "%d", \&ma );
fscanf( fp, "%d", \&n );
fscanf( fp, "%d", \&m );
fscanf( fp, "%d", \&me );
fscanf( fp, "%d", \&ln );
fscanf( fp, "%d", \&mp );
fscanf( fp, "%d", \&np );
fscanf( fp, "%d", \&nev );
fscanf( fp, "%d", \&isw )
fscanf( fp, "%lf", \&er );
a = ( double * )malloc((size_t)( sizeof(double) * (ma*n) ));
a=( ( double *
printf( "no enough memory for array a\n" );
return -1;
}
b}=(\mathrm{ double * )malloc((size_t)( sizeof(double) * m ));
if( b == NULL )
printf( "no enough memory for array b\n" );
return -1;
}
xup = ( double * )malloc((size_t)( sizeof(double) * n ));
if( xup == NULL )
{
printf( "no enough memory for array xup\n" );
return -1;
}
xlow = ( double * )malloc((size_t)( sizeof(double) * n ));
if( xlow == NULL )
printf( "no enough memory for array xlow\n" );
return -1;
}
lz = ( int * )malloc((size_t)( sizeof(int) * ln ));
if( lz == NULL )
printf( "no enough memory for array lz\n" );
}
c = ( double * )malloc((size_t)( sizeof(double) * n ));
c=( double *)
printf( "no enough memory for array c\n" );
return -1
}
x = ( double * )malloc((size_t)( sizeof(double) * n ));
if( x == NULL )
printf( "no enough memory for array x\n" );
return -1;
}
niw1 = mp+(mp+3)*(n+m-me)}+m+(ln+2)*np+7
iw1 = ( int * )malloc((size_t)( sizeof(int) * niw1 ));
if( iw1 == NULL)
printf( "no enough memory for array iw1\n" );
}
nw1 = m*4+(m+4)*(n+2*m-me)+(mp+1)*(m+1)*(n-me+1)+(m+1)*(n+m-me+1)

```
```

    +2*ln+(n+m-me+2)*(np+1)+2;
    W1 = ( double *)malloc((size_t)( sizeof(double) * nw1 ));
if( w1 == NULL )
printf( "no enough memory for array w1\n" );
return -1;
}
printf( "\tma = %6d n = %6d m = %6d\n", ma, n, m );
printf( "\tme = %6d ln = %6d mp = %6d\n", me, ln, mp );
printf( "\tnp = %6d nev = %6d isw = %6d\n", np, nev, isw );
printf( "\ter = %8.3g\n", er );
printf( "\n\t Matrix a\n\n");
for( i=0 ; i<m ; i++ )
for( j=0 ; j<n ; j++ )
fscanf( fp, "%lf", \&a[i+ma*j] );
printf( "%7.2g", a[i+ma*j] );
}
fscanf( fp, "%lf", \&b[i] );
printf( "\t%7.2g", b[i] );
printf( "\n");
}
printf( "\n\t Vector c\n\n");
for( j=0 ; j<n ; j++ )
for
fscanf( fp, "%lf", \&c[j] );
printf( "\t%8.3g\n", c[j] );
}
printf( "\n\tIndeces of 0-1 variables lz\n\n");
for( j=0 ; j<ln ; j++ )
fscanf( fp, "%d", \&lz[j] );
printf( "\tlz[%6d] = %6d\n", j,lz[j] );
}
printf( "\n\tUpper and lower bounds\n\n");
for( j=0 ; j<n ; j++ )
{
flag = 0;
for(i=0; i<ln ; i++){
if( lz[i]== j+1 i'){
flag=1;
continue;
}
if(flag==1){
flag==1){
f
fscanf( fp, "%lf %lf", \&xup[j],\&xlow[j] );
printf( "\txup[%6d] = %%.3g xlow[%6d] = %8.3g\n", j,xup[j],j,xlow[j]);
}
fclose( fp );
ierr = ASL_dmclmz(a, ma, n, b, m, me, xup, xlow, lz, ln, c, mp, np, er, nev, x, \&y, isw, iw1, w1);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n\tVector x\n\n" );
for( i=0 ; i<n ; i++ )
printf( "\t%%.3g\n", x[i] );
}
printf( "\n\ty = %8.3g\n", y );
free( a );
free( b );
free( xup);
free( xlow )
free( lz);
free( c );
free( x );
free( iw1');
free( w1);'
return 0;

```
(d) Output results
```

*** ASL_dmclmz ***
Matrix a

0	1	1	0	0	0	0	0	0	1	0	0	1
6	28	6	6	3	6	21	8	-18	12	20	23	3
7	7	5	2	2	5	4	2	-3	3	8	30	
0	0	0	-1	0	0	0	0	0	0	-1	0	-1
0	0	0	0	0	-1	-1	0	0	0	0	-1	-1

Vector c
-13
Indeces of $0-1$ variables $l z$

$1 z[$	0] =	2
$1 z$	1]	3
lz [	$2]$	4
lz[	3]	6
$1 z$	$4]$	7
lz [	$5]$	10
lz[	$6]$	11
lz [	7] =	12

Upper and lower bounds

$\operatorname{xup}[$	$0]$	$=$	$2 \times \operatorname{xlow}[$	$0]$	$=$
$\operatorname{xup}[$	$4]$	$=$	3 xlow $[$	$4]$	$=$
$\operatorname{xup}[$	$7]$	$=$	1 xlow $[$	$7]$	$=$
$\operatorname{xup}[$	$8]$	$=$	0 xlow $[$	$8]$	$=$
0					

```

\section*{** Output **}
```

ierr $=0$
Vector x
0
0
0
1
3
1
0
1
-0.667
1
0
0
$y=-68.3$

```

\subsection*{5.6.4 ASL_dmclmc, ASL_rmclmc}

Minimization of Cost for Flow in a Network (Minimal-Cost Flow Problem)

\section*{(1) Function}

ASL_dmclmc or ASL_rmclmc obtains the nonnegative flows \(x_{k} \quad(k=1,2, \cdots, m)\) that satisfy the vertex \(i\) inflow/outflow amount \(b_{i}\) and directed edge \(k\) nonnegative capacity \(u_{k}\) constraints and minimize the sum of the costs of all edges in a network having \(n\) vertices and \(m\) edges, and the function also obtains the minimum value of \(\sum_{k=1}^{m} c_{k} x_{k}\) at that time.
\[
\begin{aligned}
\text { Objective function }: & \sum_{k=1}^{m} c_{k} x_{k} \rightarrow \min \\
\text { Constraints }: & \sum_{\operatorname{tail}(k)=i} x_{k}-\sum_{\operatorname{head}(k)=i} x_{k}=b_{i}, \quad(i=1, \cdots, n) \\
& 0 \leq x_{k} \leq u_{k}, \quad(k=1, \cdots, m) \\
& \sum_{i=1}^{n} b_{i}=0
\end{aligned}
\]

\section*{(2) Usage}

Double precision:
ierr \(=\) ASL_dmclmc (n, m, b, itl, ihd, cap, cost, \&nev, x, \&y, isw, iwk, wk);
Single precision:
ierr \(=\) ASL_rmclmc (\(\mathrm{n}, \mathrm{m}, \mathrm{b}\), itl, ihd, cap, cost, \&nev, \(\mathrm{x}, \& \mathrm{y}\), isw, iwk, wk);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular}} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & n & I & 1 & Input & Number of vertices \(n\) \\
\hline 2 & m & I & 1 & Input & Number of edges \(m\) \\
\hline 3 & b & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & n & Input & Vertex \(i\) inflow/outflow amount \(b_{i}\) \\
\hline 4 & itl & I* & \(\mathrm{m}+\mathrm{n}\) & Input & Vertex number of edge \(k\) tail, \(\operatorname{tail}(k)\) (See Note (a)) \\
\hline & & & & Output & Vertex numbers of edge tail after graph modification \\
\hline 5 & ihd & I* & \(\mathrm{m}+\mathrm{n}\) & Input & Vertex number of edge \(k\) head, head(\(k\)) (See Note (a)) \\
\hline & & & & Output & Vertex numbers of edge head after graph modification \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{cap} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} * \\
\mathrm{R} *
\end{array}\right\}
\]} & \multirow[t]{2}{*}{\(\mathrm{m}+\mathrm{n}\)} & Input & Edge \(k\) capacity \(u_{k}\) (See Note (a)) \\
\hline & & & & Output & Edge capacity after graph modification \\
\hline \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{cost} & \multirow[t]{2}{*}{\(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\)} & \multirow[t]{2}{*}{\(\mathrm{m}+\mathrm{n}\)} & Input & Edge \(k\) cost coefficient per unit flow \(c_{k}\) (See Note (a)) \\
\hline & & & & Output & Edge costs coefficient per unit flow after graph modification \\
\hline \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{nev} & \multirow[t]{2}{*}{I*} & \multirow[t]{2}{*}{1} & Input & \begin{tabular}{l}
Maximum number of updates of basic tree \\
(Default: \(\mathrm{n} \times 10\)) \\
(See Note (c))
\end{tabular} \\
\hline & & & & Output & Actual number of updates of basic tree \\
\hline 9 & x & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Output & Flow minimizing sum of costs of all edges \(x_{k}\) \\
\hline 10 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Sum of costs at final destination \(\mathrm{x} \sum_{k=1}^{m} c_{k} x_{k}\) \\
\hline 11 & isw & I & 1 & Input & \begin{tabular}{l}
Processing switch (See Note (d)) isw=0: Initial processing \\
isw=1: Continuation processing
\end{tabular} \\
\hline 12 & iwk & I* & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size \(: \mathrm{n}^{2}+11 \times \mathrm{n}+\mathrm{m}+3\)
\end{tabular} \\
\hline 13 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size: \(2 \times n+m+1\)
\end{tabular} \\
\hline 14 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(n \geq 2\)
(b) \(\mathrm{m} \geq 1\)
(c) \(\mathrm{b}[0]+\mathrm{b}[1]+\cdots+\mathrm{b}[\mathrm{n}-1]=0.0\)
(d) \(1 \leq \operatorname{itl}[\mathrm{k}-1] \leq \mathrm{n}, \quad(k=1, \cdots, \mathrm{~m})\)
(e) \(1 \leq \operatorname{ihd}[\mathrm{k}-1] \leq \mathrm{n}, \quad(k=1, \cdots, \mathrm{~m})\)
(f) \(\operatorname{itl}[\mathrm{k}-1] \neq \operatorname{ihd}[\mathrm{k}-1], \quad(k=1, \cdots, \mathrm{~m}) \quad\) (No loop, that is, edge for which the head and tail are the same, exists)
(g) cap \([\mathrm{k}-1] \geq 0.0, \quad(k=1, \cdots, \mathrm{~m})\)
(h) nev \(>0\) (Except when zero or a negative number is entered to set the default value)
(i) isw \(=0\) or isw \(=1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & Restriction (h) was not satisfied. & Processing is performed with the default value set. \\
\hline 1100 & Restriction (i) was not satisfied. & Processing is performed with isw \(=0\) set. \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & Processing is aborted. \\
\hline 3100 & Restriction (c) was not satisfied. & \\
\hline 3200 & Restriction (d) or (e) was not satisfied. & \\
\hline 3300 & Restriction (f) was not satisfied. & \\
\hline 3400 & Restriction (g) was not satisfied. & \\
\hline 4000 & No basic feasible solution could be obtained. & \\
\hline 5000 & The problem could not be solved even though the assigned maximum number of updates of the basic tree was reached. & \\
\hline
\end{tabular}
(6) Notes
(a) You should set the values of the leading \(m\) elements of itl, ihd, cap and cost respectively. The last \(n\) elements of these arrays are used for work areas.
(b) If the capacities have not been specifically determined, positive numbers having appropriately large absolute values are assumed for the capacities, respectively. Since the optimal solution may not be obtained when the destination matches a value set here, numbers having even larger absolute values may have to be set for the capacities.
(c) If zero or a negative number is entered for nev, the default value is set.
(d) If the specified value of the maximum number of updates of the basic tree was too small and ierr=5000 was returned, continuation processing can be performed using information that was calculated up to that point. To perform this processing, set isw to 1 , set a sufficiently large value for nev, and use the values from the previous processing directly for the input values of other arguments. Also, use the Work information from the previous processing.

\section*{(7) Example}
(a) Problem

For the network shown below, obtain the flow that satisfies the constraints for the inflow/outflow of each vertex and capacity of each edge and minimizes the sum of the costs of all edges.

(b) Input data
\(\mathrm{n}=10, \mathrm{~m}=18\), array b for inflow/outflow amount array cap for capacity, arrays itl and ihd for vertex number of edge, and array cost for edge cost coefficient per unit flow. nev=0 (Set to the default value) and isw=0.
(c) Main program
```

/* C interface example for ASL_dmclmc */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
{nt main()
int n;
int m;
double *b;
int *itail;
int *ihead
double *cap;
double *cost;
int nev;
double *x;
double y;
int isw;
int *iwk;
double *wk;
int ierr;
int lerr;
FILE i,nmp;
fp = fopen( "dmclmc.dat", "r" );
if( fp == NULL )
{
printf( "file open error\n" );
return -1;
}

```

```

fscanf( fp, "\%d", \&nmax );
fscanf ( fp, "\%d", \&mmax );
fscanf( fp, "\%d", \&n );
fscanf( fp, "\%d", \&m );
fscanf( fp, "\%d", \&nev );
fscanf( fp, "\%d", \&isw);
$\mathrm{b}=($ double $*$ ) malloc ((size_t) ( sizeof (double) $* \operatorname{nmax})$ );
$\operatorname{if}^{\mathrm{b}}\left(\mathrm{b}==\right.$ NULL $\left.{ }^{*}\right)$
printf( "no enough memory for array b\n" );
return -1;
\}
itail $=($ int $*)$ malloc ( (size_t) ( sizeof(int) $*(\operatorname{mmax}+\operatorname{nmax}))$ );
if ( itail == NULL )
printf( "no enough memory for array itail\n" );
return -1;
ihead $=($ int $*)$ malloc $(($ size_t $)($ sizeof(int) $*(\operatorname{mmax}+n \max )))$;
if ( ihead $==$ NULL )
printf( "no enough memory for array ihead\n" );
\}
cap $=($ double $*)$ malloc $(($ size_t) $($ sizeof (double) $*(\operatorname{mmax}+\operatorname{nmax})))$;
if ( cap == NULL )
printf( "no enough memory for array cap\n" );
return -1 ;
cost $=($ double $*)$ malloc $(($ size_t) $(\operatorname{sizeof}($ double $) *(\operatorname{mmax}+\operatorname{nmax})))$;
if ( cost $==$ NULL $)$
printf( "no enough memory for array cost ${ }^{\text {return }}$-1 ) ;
return -1;
$\stackrel{\}}{x}=($ double $*)$ malloc $(($ size_t $)($ sizeof (double) $* \operatorname{mmax}))$;
if $(x==$ NULL $)$
printf( "no enough memory for array $x \backslash n "$ );
return -1;
\}
iwk $=($ int * $)$ malloc ( $($ size_t $)($ sizeof (int) $*(n \max *(n \max +11)+\max +3))$ );
ink $=($ int * $)$ ma
if
iwk
printf( "no enough memory for array iwk\n" );
return -1;
\}
$\mathrm{wk}=(\mathrm{double} *)$ malloc ((size_t)( sizeof(double) * (2*nmax+mmax+1)));
if ( wk == NULL )
printf( "no enough memory for array wk\n" );
\}
printf( "\tn $=\% 6 d m=\% 6 d$ nev $=\% 6 d$ isw $=\% 6 d \backslash n ", n, m$, nev, isw $)$;
printf( "\n\t b\n" );
for ( i=0 ; i<n ; i++ )
fscanf( fp, "\%lf", \&b[i] );
printf( "\t\%8.3g\n", b[i] );
\}
printf( "\n\t itail ihead cap cost\n");
for ( i=0 ; i<m ; i++ )
\{
fscanf( fp, "\%d \%d \%lf \%lf", \&itail[i],\&ihead[i],\&cap[i],\&cost[i] );
printf( " $\backslash \mathrm{t} \% 6 \mathrm{~d} \% 6 \mathrm{~d} \% 8.3 \mathrm{~g} \% 8.3 \mathrm{~g} \backslash \mathrm{n} "$, itail[i],ihead[i], cap[i],cost[i] );
\}
fclose( fp );
ierr = ASL_dmclmc(n, m, b, itail, ihead, cap, cost, \&nev, x, \&y, isw, iwk, wk);
printf ( "\n $\quad * *$ Output $* * \backslash \mathrm{n} \backslash \mathrm{n} ")$;
printf( "\tierr $=\% 6 d \backslash n "$, ierr ) ;
printf( "\tnev = \%6d\n", nev );
printf( "\ty = \%8.3g\n", y );
printf( $" \backslash n \backslash t$ Vector $x \backslash n ")$;
for ( i=0 ; i<m ; i++ )
\{
printf( "\t\%\%.3g\n", x[i] );
\}
free( b );
free ( itail );
free ( itail) ;
free( cap );

```
free（ cost ）；
free（ x\()\) ；
free（ x ）；
free（ iwk ）；
free（ iwk ）；
free（ wk ）；
return 0 ；
\}
（d）Output results
＊＊＊ASL＿dmclmc＊＊＊
＊＊Input＊＊
\(\mathrm{n}=\quad 10 \mathrm{~m}=\quad 18 \mathrm{nev}=\quad 0\) isw \(=\quad 0\)
\(b\)
5
3
-1
0
0
0
-1
-3
7
-10
\begin{tabular}{rrrr}
itail & ihead & cap & cost \\
1 & 2 & 5 & 1 \\
2 & 3 & 8 & 1 \\
3 & 4 & 1 & 2 \\
1 & 5 & 1 & 3 \\
5 & 2 & 2 & 1 \\
6 & 2 & 1 & 1 \\
3 & 6 & 5 & 2 \\
3 & 7 & 5 & 3 \\
4 & 7 & 1 & 2 \\
6 & 5 & 3 & 1 \\
6 & 7 & 2 & 5 \\
5 & 8 & 3 & 1 \\
5 & 9 & 1 & 1 \\
9 & 6 & 2 & 2 \\
9 & 7 & 3 & 2 \\
7 & 10 & 3 & 6 \\
8 & 9 & 1 & 3 \\
9 & 10 & 8 & 3
\end{tabular}
＊＊Output＊＊
\(\begin{array}{lc}\text { ierr }= & 1000 \\ \text { nev }= & 13 \\ y= & 72\end{array}\)
Vector
かONOOー OWOWんOOーOVカA

\subsection*{5.6.5 ASL_dmclcp, ASL_rmclep Minimization of Cost for Project Scheduling (Project Scheduling Problem)}

\section*{(1) Function}

ASL_dmclcp or ASL_rmclcp solves the problem of completing a project within the scheduled completion time according to a minimum cost.
(2) Usage

Double precision: ierr \(=\) ASL_dmclcp (\(n, m, i t l, i h d, \mathrm{tn}, \mathrm{tc}, \mathrm{cn}, \mathrm{cc}, \mathrm{ts}, \& n e v, \& t m a x, \& t m i n\), time, \&ttime, es, ls, tf, ff, \&cmax, \&cmin, cost, \&tcost, iwk, wk);
Single precision:
ierr \(=\) ASL_rmclcp (\(\mathrm{n}, \mathrm{m}, \mathrm{itl}, \mathrm{ihd}, \mathrm{tn}, \mathrm{tc}, \mathrm{cn}, \mathrm{cc}, \mathrm{ts}, \& n e v, \& t m a x, \& t m i n, ~ t i m e, ~ \& t t i m e, ~ e s, ~ l s\), tf, ff, \&cmax, \&cmin, cost, \&tcost, iwk, wk);
(3) Arguments and Return Value
\(\left.\begin{array}{l}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} \text { Z:Double precision complex } \quad \text { I:Single precision complex }\end{array} \quad \begin{array}{l}\text { Int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 11 & tmax & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Completion time with normal process times. \\
\hline 12 & tmin & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Completion time with crash process times. \\
\hline 13 & time & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Output & Scheduled process time of task \(k\). \\
\hline 14 & ttime & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Total task time. \\
\hline 15 & es & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Output & Earliest start time of task \(k\). \\
\hline 16 & ls & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Output & Latest start time of task \(k\). \\
\hline 17 & tf & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Output & Total float of task \(k\). \\
\hline 18 & ff & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Output & Free float of task \(k\). \\
\hline 19 & cmax & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Completion time with normal process costs. \\
\hline 20 & cmin & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Completion time with crash process costs. \\
\hline 21 & cost & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Output & Schedules process cost of task \(k\). \\
\hline 22 & tcost & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Total task cost. \\
\hline 23 & iwk & I* & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area. \\
Size: \({ }^{2}+15 \times n+6 \times m+23\)
\end{tabular} \\
\hline 24 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & See Contents & Work & \begin{tabular}{l}
Work area. \\
Size: \(7 \times n+12 \times m+14\)
\end{tabular} \\
\hline 25 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{n}>1\)
(b) \(\mathrm{m} \geq \mathrm{n}-1\)
(c) \(1 \leq \operatorname{itl}[\mathrm{k}-1]<\mathrm{n}, \quad(k=1, \cdots, \mathrm{~m})\)
(d) \(1<\operatorname{ihd}[\mathrm{k}-1] \leq \mathrm{n}, \quad(k=1, \cdots, \mathrm{~m})\)
(e) \(\operatorname{itl}[\mathrm{k}-1]<\operatorname{ihd}[\mathrm{k}-1], \quad(k=1, \cdots, \mathrm{~m})\)
(f) \(\operatorname{tn}[\mathrm{k}-1] \geq 0.0, \quad(k=1, \cdots, \mathrm{~m})\)
(g) \(\mathrm{tc}[\mathrm{k}-1] \geq 0.0, \quad(k=1, \cdots, \mathrm{~m})\)
(h) \(\operatorname{tn}[\mathrm{k}-1] \geq \mathrm{tc}[\mathrm{k}-1], \quad(k=1, \cdots, \mathrm{~m})\)
(i) \(\mathrm{cn}[\mathrm{k}-1] \leq \mathrm{cc}[\mathrm{k}-1], \quad(k=1, \cdots, \mathrm{~m})\)
(j) nev \(>0\) (Except when zero is entered to set the default value.)
(5) Error indicator (Return Value)
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & \(\mathrm{nev}=0\). & Processing is performed with the default value set. \\
\hline 1100 & ts \(\geq\) tmax. & Processing is performed with ts=tmax. \\
\hline 1200 & ts \(\leq\) tmin. & Processing is performed with ts=tmin. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 3100 & Restriction (b) was not satisfied. & \\
\hline 3200 & Restriction (c) was not satisfied. & \\
\hline 3300 & Restriction (d) was not satisfied. & \\
\hline 3400 & Restriction (e) was not satisfied. & \\
\hline 3500 & Restriction (f) was not satisfied. & \\
\hline 3600 & Restriction (g) was not satisfied. & \\
\hline 3700 & Restriction (h) was not satisfied. & \\
\hline 3800 & Restriction (i) was not satisfied. & \\
\hline 3900 & Restriction (j) was not satisfied. & \\
\hline 4000 & No basic feasible solution for MinimalCost Flow Problem could be obtained. & \\
\hline 5000 & Minimal-Cost Flow Problem could not be solved even though the assigned maximum number of updates of the basic tree was reached. & \\
\hline
\end{tabular}
(6) Notes
(a) If zero is entered for nev, the default value is set.
(b) If large number than completion time with normal process times tmax is entered for scheduled completion time ts, completion time with normal process times is set for scheduled completion time. And if large number than completion time with crash process times tmin is entered for scheduled completion time ts, completion time with crash process times is set for scheduled completion time.

\section*{(7) Example}
(a) Problem

Compute completion time with normal process times, completion time with crash process times, an optimal schedule, its cost, earliest start time, latest start time, total float, free float, total task time and total task cost for given project follows task lists.
\begin{tabular}{|r|r|r|r|r|r|r|}
\hline task & \begin{tabular}{r}
tail of \\
task
\end{tabular} & \begin{tabular}{r}
head of \\
task
\end{tabular} & \begin{tabular}{r}
normal \\
task time
\end{tabular} & \begin{tabular}{r}
crash \\
task time
\end{tabular} & \begin{tabular}{r}
normal \\
task cost
\end{tabular} & \begin{tabular}{r}
crash \\
task cost
\end{tabular} \\
\hline 1 & 1 & 2 & 5 & 3 & 3 & 6 \\
2 & 1 & 3 & 8 & 4 & 2 & 3 \\
3 & 2 & 4 & 5 & 2 & 1 & 5 \\
4 & 2 & 5 & 9 & 4 & 1 & 3 \\
5 & 4 & 5 & 0 & 0 & 0 & 0 \\
6 & 2 & 6 & 3 & 3 & 4 & 4 \\
7 & 3 & 6 & 7 & 3 & 2 & 3 \\
8 & 5 & 7 & 5 & 1 & 1 & 5 \\
9 & 6 & 7 & 0 & 0 & 0 & 0 \\
10 & 6 & 8 & 12 & 6 & 7 & 11 \\
11 & 7 & 8 & 7 & 4 & 2 & 7 \\
12 & 5 & 9 & 15 & 8 & 5 & 10 \\
13 & 7 & 9 & 8 & 2 & 5 & 11 \\
14 & 8 & 9 & 2 & 1 & 3 & 4 \\
15 & 8 & 10 & 8 & 5 & 2 & 5 \\
16 & 9 & 10 & 3 & 2 & 1 & 3 \\
17 & 8 & 11 & 13 & 10 & 10 & 12 \\
18 & 10 & 11 & 8 & 4 & 6 & 10 \\
\hline
\end{tabular}
(b) Input data
\(\mathrm{n}=11, \mathrm{~m}=18\), tail of task itl,head of task ihd, normal task time tn,crash task time tc,normal task cost cn , crash task cost cc, ts \(=36\) and \(\mathrm{nev}=\mathrm{n} \times 10\).
(c) Main program
/* C interface example for ASL_dmclcp */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
\#include <math.h>
int main()
int \(n \max =11, \max =18\);
int n,m,*itail,*ihead,nev,*iwk,ierr;
double *tn,*tc,*cn,*cc,ts;
double tmin, tmax,*time,ttime;
double \(* \mathrm{~s}, * l \mathrm{l}, * \mathrm{tf}, * \mathrm{ff}\);
double cmin,cmax,*cost,tcost,*wk;
int k;
fp \(=\) fopen("dmclcp.dat", "r");
if (\(\mathrm{fp}==\) NULL \()\)
\{
printf("file open error\n");
\}
itail \(=(\) int *) malloc ((size_t) (sizeof(int) * (mmax)));
```

if( itail == NULL )
printf( "no enough memory for array itail\n" );
return -1;
}
ihead = ( int * )malloc((size_t)( sizeof(int) * (mmax)));
if( ihead == NULL )
printf( "no enough memory for array ihead\n" );
return -1;
}
iwk = ( int * )malloc((size_t)( sizeof(int) * (nmax*nmax+15*nmax+6*mmax+23)));
if( iwk == NULL )
printf( "no enough memory for array iwk\n" );
return -1;
}
tn = ( double * )malloc((size_t)( sizeof(double) * (mmax)));
if( tn == NULL )
printf( "no enough memory for array tn\n" );
return -1;
tc = (double * )malloc((size_t)( sizeof(double) * (mmax)));
if( tc == NULL )
printf( "no enough memory for array tc\n" );
return -1;
}
cn = ( double *)malloc((size_t)( sizeof(double) * (mmax)));
if( cn == NULL )
printf( "no enough memory for array cn\n" );
return -1;
}
cc = ( double * )malloc((size_t)( sizeof(double) * (mmax)));
if( cc == NULL )
printf( "no enough memory for array cc\n" );
return -1;
}
time = ( double * )malloc((size_t)( sizeof(double) * (mmax)));
if( time == NULL )
printf( "no enough memory for array time\n" );
return -1;
es = ( double *)malloc((size_t)( sizeof(double) * (mmax)));
if( es == NULL )
printf( "no enough memory for array es\n" );
return -1;
}
ls = ( double * )malloc((size_t)( sizeof(double) * (mmax)));
if( ls == NULL )
printf( "no enough memory for array ls\n" );
return -1;
}
tf = ( double * )malloc((size_t)( sizeof(double) * (mmax)));
if( tf == NULL )
printf( "no enough memory for array tf\n" );
return -1;
}
ff = ( double *
if( ff == NULL )
printf( "no enough memory for array ff\n" );
}
cost = ( double *)malloc((size_t)( sizeof(double) * (mmax)));
if( cost == NULL )
printf( "no enough memory for array cost\n" );
return -1;
}
wk = ( double *) malloc((size_t)( sizeof(double) * (7*nmax+12*mmax+14)));
if( wk == NULL )
printf( "no enough memory for array wk\n" );
return -1;
}
printf( " *** ASL_dmclcp ***\n" );
printf( "\n ** Input **\n\n" );
fscanf( fp, "%d", \&n );
fscanf( fp, "%d", \&m );
fscanf( fp, "%lf", \&ts );
fscanf( fp, "%d", \&nev );
printf( "\tn = %6d m = %6d nev = %6d\n", n,m,nev );
printf( "\n\n" );

```
```

    printf( "\t normal crash normal crash\n" );
    printf( "\ttask tail head task time task time task cost task cost\n" );
    for( k=0 ; k<m ; k++ )
        fscanf( fp, "%d %d %lf %lf %lf %lf",
            &itail[k],&ihead[k],&tn[k],&tc[k],&cn[k],&cc[k] );
    printf( "\t%4d %6d %6d %8.3g %8.3g %8.3g %8.3g\n",
            k,itail[k],ihead[k],tn[k],tc[k],cn[k],cc[k] );
    printf( "\n\trequest task time = %8.3g\n", ts );
fclose( fp );
ierr = ASL_dmclcp
(n,m,itail,ihead,tn,tc, cn, cc,ts,\&nev,\&tmax,\&tmin,time,\&ttime,es,ls,tf,ff,\&cmax,\&cmin, cost,\&tcost,iwk,wk);
printf( "\n ** Output **\n\n" );
printf( "\tierr = %6d\n", ierr );
printf( "\n" );
printf( "\tnormal completion time = %8.3g\n", tmax );
printf( "\tcrash completion time = %8.3g\n", tmin );
printf( "\n\n" );
printf( "\t earliest latest\n" )
lllask lask
for( k=0 ; k<m ; k++
printf( "\t%4d %8.3g %8.3g %8.3g %8.3g %8.3g %8.3g\n",
k,time[k],cost[k],es[k],ls[k],tf[k],ff[k] );
}
printf( "\n" );
printf( "\titeration count = %6d\n", nev );
printf( "\n" );
printf( "\ttotal task time = %8.3g\n", ttime );
printf( "\ttotal task cost = %8.3g\n", tcost );
free( itail );
free( ihead);
free( iwk);
free( tn );
free( tc)
free( cn )
free( cc)
free( time)
free( es )
free( ls )
free(tf )
free(tf)
free( cost),
free( cost )
return 0;
(d) Output results

```
\}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{*** ASL_dmclcp ***} \\
\hline \multicolumn{7}{|l|}{** Input **} \\
\hline \(\mathrm{n}=\) & 11 & \(\mathrm{m}=\) & 18 & nev \(=1\) & 110 & \\
\hline & & & normal & crash & normal & crash \\
\hline task & tail & head & task time & task time & task cost & task cost \\
\hline 0 & 1 & 2 & 5 & 3 & 3 & 6 \\
\hline 1 & 1 & 3 & 8 & 4 & 2 & 3 \\
\hline 2 & 2 & 4 & 5 & 2 & 1 & 5 \\
\hline 3 & 2 & 5 & 9 & 4 & 1 & 3 \\
\hline 4 & 4 & 5 & 0 & 0 & 0 & 0 \\
\hline 5 & 2 & 6 & 3 & 3 & 4 & 4 \\
\hline 6 & 3 & 6 & 7 & 3 & 2 & 3 \\
\hline 7 & 5 & 7 & 5 & 1 & 1 & 5 \\
\hline 8 & 6 & 7 & 0 & 0 & 0 & 0 \\
\hline 9 & 6 & 8 & 12 & 6 & 7 & 11 \\
\hline 10 & 7 & 8 & 7 & 4 & 2 & 7 \\
\hline 11 & 5 & 9 & 15 & 8 & 5 & 10 \\
\hline 12 & 7 & 9 & 8 & 2 & 5 & 11 \\
\hline 13 & 8 & 9 & 2 & 1 & 3 & 4 \\
\hline 14 & 8 & 10 & 8 & 5 & 2 & 5 \\
\hline 15 & 9 & 10 & 3 & 2 & 1 & 3 \\
\hline 16 & 8 & 11 & 13 & 10 & 10 & 12 \\
\hline 17 & 10 & 11 & 8 & 4 & 6 & 10 \\
\hline \multicolumn{3}{|l|}{request task time \(=\)} & \multicolumn{2}{|l|}{36} & & \\
\hline ** & put * & & & & & \\
\hline
\end{tabular}

\section*{ierr \(=0\)}

\section*{\(\begin{array}{ll}\text { normal completion time }= & 43 \\ \text { crash completion time }= & 23\end{array}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & task & task & \[
\begin{array}{r}
\text { earliest } \\
\text { start }
\end{array}
\] & latest start & total & free \\
\hline task & time & cost & time & time & float & float \\
\hline 0 & 5 & 3 & 0 & 0 & 0 & 0 \\
\hline 1 & 7 & 2.25 & 0 & 0 & 0 & 0 \\
\hline 2 & 5 & 1 & 5 & 5 & 0 & 0 \\
\hline 3 & 5 & 2.6 & 5 & 5 & 0 & 0 \\
\hline 4 & 0 & 0 & 10 & 10 & 0 & 0 \\
\hline 5 & 3 & 4 & 5 & 7 & 2 & 2 \\
\hline 6 & 3 & 3 & 7 & 7 & 0 & 0 \\
\hline 7 & 5 & 1 & 10 & 10 & 0 & 0 \\
\hline 8 & 0 & 0 & 10 & 15 & 5 & 5 \\
\hline 9 & 12 & 7 & 10 & 10 & 0 & 0 \\
\hline 10 & 7 & 2 & 15 & 15 & 0 & 0 \\
\hline 11 & 15 & 5 & 10 & 10 & 0 & 0 \\
\hline 12 & 8 & 5 & 15 & 17 & 2 & 2 \\
\hline 13 & 2 & 3 & 22 & 23 & 1 & 1 \\
\hline 14 & 6 & 4 & 22 & 22 & 0 & 0 \\
\hline 15 & 3 & 1 & 25 & 25 & 0 & 0 \\
\hline 16 & 13 & 10 & 22 & 23 & 1 & 1 \\
\hline 17 & 8 & 6 & 28 & 28 & 0 & 0 \\
\hline itera & count & 19 & & & & \\
\hline \begin{tabular}{l}
total \\
total
\end{tabular} & \[
\begin{aligned}
& k \text { time } \\
& k \text { cost }
\end{aligned}
\] & 59. & & & & \\
\hline
\end{tabular}

\subsection*{5.6.6 ASL_dmcltp, ASL_rmcltp \\ Minimization of Cost for Transportation from Supply Place to Demand Place (Transportation Problem)}

\section*{(1) Function}

Supply quantity of supply place \(i\) is \(a_{i}\), demand quantity of demand place \(j\) is \(b_{j}\) and \(x_{i j}\) is the volume transported from supply place \(i\) to demand place \(j\).

Constraint:
\[
\begin{aligned}
& \sum_{j=1}^{n} x_{i j}=a_{i} \quad(i=1, \cdots, m) \\
& \sum_{i=1}^{m} x_{i j}=b_{i} \quad(j=1, \cdots, n) \\
& x_{i j} \geq 0 \quad(\text { For all } i \text { and } j \text { numbers })
\end{aligned}
\]

Therefore, the total transportation cost is obtained by finding \(x_{i j}\) that minimizes the following function.
\[
Z=\sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j} x_{i j}
\]
(2) Usage

Double precision:
ierr \(=\) ASL_dmcltp (c, lmc, ns, nd, s, d, \&nev, x, \&z, isw1, isw2, iwk, wk);
Single precision:
ierr \(=\) ASL_rmcltp (\(c, \operatorname{lmc}, \mathrm{~ns}, \mathrm{nd}, \mathrm{s}, \mathrm{d}, \& n e v, \mathrm{x}, \& \mathrm{z}, \mathrm{isw} 1\), isw2, iwk, wk);
(3) Arguments and Return Value
\begin{tabular}{|c|c|c|c|c|c|}
\hline & uble precision re gle precision rea & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & c & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Input & ```
Transportation Costs \(c_{i j}(i=1, \cdots, m: j=\)
\(1, \cdots, n\))
(See Note (a))
Size: \(\operatorname{lmc} \times(\mathrm{nd}+1)\)
``` \\
\hline 2 & lmc & I & 1 & Input & Adjustable dimension of array c \\
\hline 3 & ns & I & 1 & Input & Number of supply places including imaginary supply places \(m\) (See Note (b)) \\
\hline 4 & nd & I & 1 & Input & Number of demand places including imaginary demand places \(n\) (See Note (b)) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 5 & S & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \(\mathrm{ns}+1\) & Input & Supply volume of each Supply places \(a_{i}(i=\) \(1, \cdots, m)\) \\
\hline 6 & d & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & nd+1 & Input & Demand volume of each Demand places \(b_{j}(j=1, \cdots, n)\) \\
\hline 7 & nev & I* & 1 & Input & Maximum number of evaluation of Transportation plan \(x_{i j}\) \\
\hline & & & & Output & Actual number of Transportation plan \(x_{i j}\) evaluation \\
\hline 8 & x & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Output & \begin{tabular}{l}
The improved transportation plan
\[
x_{i j}(i=1, \cdots, m: j=1, \cdots, n)
\] \\
(See Note (c), (d)) \\
Size: \(\operatorname{lmc} \times(\mathrm{nd}+1)\)
\end{tabular} \\
\hline 9 & z & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Total transportation cost of The improved transportation plan \(Z\) \\
\hline 10 & isw1 & I & 1 & Input & \[
\begin{aligned}
& \text { Processing switch (See Note }(\mathrm{e})) \\
& 0: \text { First processing } \\
& \text { 1: Continuation processing } \\
& \hline
\end{aligned}
\] \\
\hline 11 & isw2 & I & 1 & Input & \begin{tabular}{l}
Select switch of first approximate solution (See note (f)) \\
0: Northwest corner rule \\
1: Houthakker's method
\end{tabular} \\
\hline 12 & iwk & I* & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size: \(12 \times(\mathrm{ns}+\mathrm{nd}+1)+5\)
\end{tabular} \\
\hline 13 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size: \(3 \times(\mathrm{ns}+\mathrm{nd}+2)\)
\end{tabular} \\
\hline 14 & ierr & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{c}[\mathrm{i}-1+\operatorname{lmc} \times(\mathrm{j}-1)] \geq 0(i=1, \cdots, \mathrm{~ns}: j=1, \cdots, \mathrm{nd})\)
(b) \(\mathrm{s}[\mathrm{i}-1]>0(i=1, \cdots, \mathrm{~ns})\)
(c) \(\mathrm{d}[\mathrm{i}-1]>0(i=1, \cdots\), nd \()\)
(d) isw1, isw \(2=0\) or 1
(e) ns \(>2\),nd \(>2\)
(f) \(\mathrm{lmc} \geq \mathrm{ns}+1\)
(g) nev \(\geq 0\)

\section*{(5) Error indicator (Return Value)}
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & Total demand volume is greater than Total supply volume. & Processing continues by setting up an imaginary supply place that handles a surplus. \\
\hline 1100 & Total demand volume is less than Total supply volume & Processing continues by setting up an imaginary demand place that handles a surplus. \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow[t]{7}{*}{Processing is aborted.} \\
\hline 3100 & Restriction (b) was not satisfied. & \\
\hline 3200 & Restriction (c) was not satisfied. & \\
\hline 3300 & Restriction (d) was not satisfied. & \\
\hline 3400 & Restriction (e) was not satisfied. & \\
\hline 3500 & Restriction (f) was not satisfied. & \\
\hline 3600 & Restriction (g) was not satisfied. & \\
\hline 5000 & The values did not converge before the given maximum number of function evaluation was reached. & The values of x and z at that time are output and processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) Store the transportation cost in Array c as in the following table so that it can correspond to each supply place and demand place. In the following table, \(c_{2,1}\) indicates the unit cost for transportation between Supply Place 2 and Demand Place 1.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Demand \\
place 1
\end{tabular} & \begin{tabular}{c} 
Demand \\
place 2
\end{tabular} & \begin{tabular}{l}
\(\cdots\) \\
\(\cdots\)
\end{tabular} & \begin{tabular}{c} 
Demand \\
place \(n\)
\end{tabular} & \begin{tabular}{c} 
Supply \\
volume
\end{tabular} \\
\hline \begin{tabular}{c} 
Supply \\
place 1
\end{tabular} & \(c_{11}\) & \(c_{12}\) & \(\cdots\) & \(c_{1, n}\) & \(a_{1}\) \\
\hline \begin{tabular}{c} 
Supply \\
place 2
\end{tabular} & \(c_{21}\) & \(c_{22}\) & \(\cdots\) & \(c_{2, n}\) & \(a_{2}\) \\
\hline\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\ddots\) & \(\vdots\) & \(\vdots\) \\
\hline \begin{tabular}{c} 
Supply \\
place \(m\)
\end{tabular} & \(c_{m, 1}\) & \(c_{m, 2}\) & \(\cdots\) & \(c_{m, n}\) & \(a_{m}\) \\
\hline \begin{tabular}{c} 
Demand \\
volume
\end{tabular} & \(b_{1}\) & \(b_{2}\) & \(\cdots\) & \(b_{n}\) & \\
\hline
\end{tabular}
(b) For Array c and Array x, \((\mathrm{nd}+1) \times(\mathrm{ns}+1)\) units or more must be secured per each. For Array s and Array d, (ns+1) units or more and (nd +1 ) units or more must be secured, respectively. However, the values to be actually input are enough with nd \(\times\) ns units for Array c, and ns and nd units for Array s and Array d, respectively.
(c) Store the improved transportation cost in Array x as in the following table so that it can correspond to each supply place and demand place. In the following table, \(c_{2,1}\) indicates the transport volume for transportation between Supply Place 2 and Demand Place 1.
\begin{tabular}{|c|c|c|l|c|c|}
\hline & \begin{tabular}{c} 
Demand \\
place 1
\end{tabular} & \begin{tabular}{c} 
Demand \\
place 2
\end{tabular} & \(\cdots\) & \begin{tabular}{c} 
Demand \\
place \(n\)
\end{tabular} & \begin{tabular}{c} 
Imaginary demand \\
place \(n+1)\)
\end{tabular} \\
\hline \begin{tabular}{c} 
Supply \\
place 1
\end{tabular} & \(c_{11}\) & \(c_{12}\) & \(\cdots\) & \(c_{1, n}\) & \(*\) \\
\hline \begin{tabular}{c} 
Supply \\
place 2
\end{tabular} & \(c_{21}\) & \(c_{22}\) & \(\cdots\) & \(c_{2, n}\) & \(*\) \\
\hline\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\ddots\) & \(\vdots\) & \(\vdots\) \\
\hline \begin{tabular}{c} 
Supply \\
place \(m\)
\end{tabular} & \(c_{m, 1}\) & \(c_{m, 2}\) & \(\cdots\) & \(c_{m, n}\) & \(*\) \\
\hline \begin{tabular}{c} 
( Imaginary supply \\
place \(m+1)\)
\end{tabular} & \(*\) & \(*\) & \(\cdots\) & \(*\) & \\
\hline
\end{tabular}
(d) Although the value of \(\boldsymbol{x}\) when ierr \(=5000\) is not the optimal solution, the constraint is satisfied.
(e) If ierr \(=5000\) is returned and the number of iterations is less than the specified convergence count, the calculation can be continued using the information calculated up to the intermediate point. To perform this processing set 1 for the isw1 value, set a sufficient value for the nev value, and use the output values of the previous execution for all other input valued. Also, use the work information from the previous execution (See the example).
(f) In this function, the northwestern corner rule or Houthakker's Method is applied. By Houthakker's Method, you can obtain as a primary solution an approximate solution value closer to the optimum solution than that by the northwest corner rule, which can shorten the time for improving the solution. However, calculating approximate solution by Houthakker's Method needs longer time compared with calculating it by the northwestern corner rule.

\section*{(7) Example}
(a) Problem

Transportation cost:
\[
C=\left[\begin{array}{lllllll}
6.000 & 2.000 & 6.000 & 1.000 & 3.000 & 3.000 & 7.000 \\
7.000 & 5.000 & 3.000 & 8.000 & 5.000 & 8.000 & 5.000 \\
4.000 & 8.000 & 9.000 & 7.000 & 5.000 & 7.000 & 2.000 \\
4.000 & 7.000 & 3.000 & 6.000 & 7.000 & 3.000 & 4.000 \\
2.000 & 3.000 & 6.000 & 4.000 & 7.000 & 9.000 & 9.000 \\
2.000 & 3.000 & 9.000 & 4.000 & 3.000 & 2.000 & 3.000
\end{array}\right]
\]

Demand volume of each Demand place:
\[
D=\left[\begin{array}{lllllll}
40.000 & 73.000 & 32.000 & 24.000 & 32.000 & 45.000 & 35.000
\end{array}\right]
\]

Supply volume of each Supply place:
\[
S=\left[\begin{array}{llllll}
73.000 & 29.000 & 64.000 & 23.000 & 76.000 & 34.000
\end{array}\right]
\]

In this example, to illustrate the continuation processing described in Note (e), the maximum number of evaluations nev=2 is set small enough so that ierr=5000 is output.
(b) Input data
(First time): array c, \(n s=7, \operatorname{lmc}=7, n d=8\), array \(d\), array \(s, n e v=2\), isw \(1=0\) and isw \(2=1\).
(Second and subsequent times):nev \(=2\) and isw1 \(=1\).
(For other arguments, the value obtained after the previous calculation is used directly as the input value.)
(c) Main program
```

/* C interface example for ASL_dmcltp */

```
\#include <stdio.h>
\#include <stdio.h>
\#include <stdlib.
int main()
    double *c;
    int \(1 \mathrm{mc}=7\);
    int ns;
    int nd;
    double *s;
    double *d
    int nev;
    double *x
    double z;
    int isw1;
    int isw2;
    int *iwk;
    double *wk;
    int ierr;
    int i,j;
    \(\mathrm{fp}=\mathrm{fopen}(\) "dmcltp.dat", "r" );
    if ( \(f p==\) NULL \()\)
    if
        printf( "file open error\n" );
        return -1;
    \(\}\)
    fscanf( fp, "\%d", \&isw1);
    fscanf( fp, "\%d", \&isw2)
    fscanf( fp, "\%d", \&nev );
    fscanf( fp, "\%d", \&ns );
    fscanf( fp, "\%d", \&nd );
    printf( " \(\quad * * *\) ASL_dmcltp \(\left.* * * \backslash \mathrm{n}^{\prime \prime}\right)\);
    printf ( "\n \(\quad * *\) Input \(* * \backslash \mathrm{n} \backslash \mathrm{n} ")\);
    printf ( "\tlmc \(=\% 6 d \backslash n ", ~ l m c) ;\)
    printf( "\tns \(=\% 6 d \backslash n "\), ns );
    printf( "\tnd = \%6d\n", nd );
    printf( "\tnev \(=\% 6 d \backslash n "\), nev );
    printf( "\tisw1 \(=\% 6 d \backslash n "\), isw1);
    printf( "\tisw2 \(=\% 6 d \backslash n "\), isw2);
    \(c=(\) double \(*)\) malloc \(((\) size_t) \((\) sizeof (double) \(*(\operatorname{lmc} *(n d+1)))\);
    \(\left.\operatorname{if}^{\text {( }} \mathrm{c}==\mathrm{NULL}\right)\)
    printf( "no enough memory for array \(c \backslash n "\) );
    return -1 ;
    \(\}\)
\(\mathrm{s}=\)
\(=\)
    \(\mathrm{s}=(\) double \(*)\) malloc ( (size_t) ( sizeof (double) * (ns+1) ));
    if ( \(s==\) NULL \()\)
    printf( "no enough memory for array \(s \backslash n\) " );
    return -1 ;
    \(\}\)
\(d\)\((\) double \(*)\) malloc \(((\) size_t \()(\operatorname{sizeof}(\) double \() *(n d+1)))\);
    dif \((d\) double *
*
NULL \()\)
    printf( "no enough memory for array \(d \backslash n\) " );
    return -1 ;
    \}
    \(\mathrm{x}=(\) double \(*)\) malloc \(((\) size_t) \((\operatorname{sizeof}(\) double \() *(\operatorname{lmc} *(\) nd +1\()))\);
    \(\operatorname{if}(\mathrm{x}==\mathrm{NULL})\)
        printf( "no enough memory for array \(x \backslash n\) " );
        return -1;
    \(\}\)
for
    for ( i=0 ; i<ns ; i++ )
    for ( \(j=0\); \(j<n d\); \(j++\) )
    \{ fscanf( fp, "\%lf", \&c[i + lmc*j] );
    \(\}\)
    \}
    for (i=0 ; i<ns ; i++ )
    fscanf( fp, "\%lf", \&s[i] );
    \}
    for \((j=0 \quad ; \quad j<n d \quad ; j++)\)
    fscanf( fp, "\%lf", \&d[j] );
```

 }
 fclose(fp);
 /*
Output
*/
printf("\n\tTransportation Cost = \n")
for(i=0 ; i<ns ; i++)
printf("\t%6d ", i+1);
for(j=0 ; j<nd ; j++)
{
printf("%8.3g", c[i + lmc*j]);
}rintf("\n");
}
printf("\tSupply-Site\n"
printf("\n\tDemand = \n");
printf("\t"
for(j=0 ; j<nd ; j++)
{
printf("%8.3g", d[j]);
}
printf("\n");
printf("\n\tSupply = \n");
printf("\t");
for(i=0 ; i<ns ; i++)
printf("%8.3g", s[i]);
}
printf("\n");
iwk = (int *)malloc((size_t)(sizeof(int) * 12*(ns+nd+1)+5));
if(iwk == NULL)
printf("no enough memory for array iwk\n");
return -1;
}
wk = (double *)malloc((size_t)(sizeof(double) * 3*(ns+nd+2)));
wk = =(double *)
printf("no enough memory for array wk\n");
return -1;
}
ierr = ASL_dmcltp(c, lmc, ns, nd, s, d, \&nev, x, \&z, isw1, isw2, iwk, wk);
printf("\n\n\t ** Output **\n");
printf("\n\t** First Result ** \n\n");
printf("\tierr = %6d\n", ierr);
printf("\tnev = %6d\n", nev);
printf("\tTotal Cost = %8.3g\n\n", z);
printf("\tTransportation Plan = \n");
for(i=0 ; i<ns+1 ; i++)
printf("\t%6d ", i+1);
for(j=0 ; j<nd+1 ; j++)
{
printf("%8.3g", x[i + lmc*j]);
} printf("\n");
}
printf("\tSupply-Site\n"
printf("
isw1 = 1;
ierr = ASL_dmcltp(c, lmc, ns, nd, s, d, \&nev, x, \&z, isw1, isw2, iwk, wk);
printf("\n\t** Improved Result ** \n\n");
printf("\tierr = %6d\n", ierr);
printf("\tnev = %6d\n", nev);
printf("\tTotal Cost = %8.3g\n\n", z);
printf("\tTransportation Plan = \n");
for(i=0 ; i<ns+1 ; i++)
printf("\t%6d ", i+1);
for(j=0 ; j<nd+1 ; j++)

```
        printf( "\%8.3g", x[i + lmc*j] );
    \}
        printf( "\n");
    \}
    printf("\tSupply-Site\n"
    \(\begin{array}{lccccc}\text { printf("\t } & \text { Demand-Site } & 1 & 2 & 3 & 4 ") ; \\ \text { printf(" } & 5 & 6 & 7 & 8 \backslash \mathrm{n} " & ) \text {; }\end{array}\)
    free (c );
    free(s )
    free(d )
    free (x )
    free(iwk)
    free(wk);
    return 0;
(d) Output results
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{*** ASL_dmcltp ***} \\
\hline \multicolumn{8}{|l|}{** Input **} \\
\hline 1 mc & 7 & & & & & & \\
\hline ns & 6 & & & & & & \\
\hline nd & 7 & & & & & & \\
\hline nev & 2 & & & & & & \\
\hline isw1 & 0 & & & & & & \\
\hline isw2 & 1 & & & & & & \\
\hline \multicolumn{8}{|l|}{Transportation Cost} \\
\hline & 6 & 2 & 6 & 1 & 3 & 3 & 7 \\
\hline 2 & 7 & 5 & 3 & 8 & 5 & 8 & 5 \\
\hline 3 & 4 & 8 & 9 & 7 & 5 & 7 & 2 \\
\hline 4 & 4 & 7 & 3 & 6 & 7 & 3 & 4 \\
\hline 5 & 2 & 3 & 6 & 4 & 7 & 9 & 9 \\
\hline 6 & 2 & 3 & 9 & 4 & 3 & 2 & 3 \\
\hline Supply-Site Demand-Site & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \multicolumn{8}{|l|}{Demand =} \\
\hline 40 & 73 & 32 & 24 & 32 & 45 & 35 & \\
\hline \[
\text { Supply }_{73}=
\] & 29 & 64 & 23 & 76 & 34 & & \\
\hline ** Output & ** & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{llr} 
ierr & \(=\) & 5000 \\
nev & \(=\) & 2 \\
Total Cost & \(=\) & 707
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Transportation & Plan & 37 & & & & & & \\
\hline 1 & 0 & 37 & 0 & 24 & 3 & 0 & 0 & 9 \\
\hline 2 & 0 & 0 & 20 & 0 & 0 & 0 & 0 & 9 \\
\hline 3 & 0 & 0 & 0 & 0 & 29 & 0 & 35 & 0 \\
\hline 4 & 0 & 0 & 12 & 0 & 0 & 11 & 0 & 0 \\
\hline 5 & 40 & 36 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 0 & 0 & 0 & 0 & 0 & 34 & 0 & 0 \\
\hline 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Supply-Site & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}
** Improved Result **
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{ll} 
ierr & \(=\) \\
nev & \(=\) \\
Total Cost & \(=\)
\end{tabular} &  & & & & & & & \\
\hline \multicolumn{9}{|l|}{Transportation Plan} \\
\hline & 0 & 37 & 0 & 24 & 12 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 29 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 0 & 0 & 0 & 0 & 11 & 0 & 35 & 18 \\
\hline 4 & 0 & 0 & 3 & 0 & 0 & 20 & 0 & 0 \\
\hline 5 & 40 & 36 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 0 & 0 & 0 & 0 & 9 & 25 & 0 & 0 \\
\hline 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Supply-Site Demand-Site & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}

\subsection*{5.7 MINIMIZATION OF A QUADRATIC FUNCTION OF SEVERAL VARIABLES (QUADRATIC PROGRAMMING)}

\subsection*{5.7.1 ASL_dmcqsn, ASL_rmcqsn}

Minimization of a Constrained Convex Quadratic Function of Several Variables (Linear Constraints)
(1) Function

ASL_dmcqsn or ASL_rmcqsn obtains the \(\boldsymbol{x}\) that minimizes a convex quadratic function of several variables \(f(\boldsymbol{x})\) of the \(n\) dimensional vector \(\boldsymbol{x}=\left[x_{1}, \cdots, x_{n}\right]^{T}\).
\[
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}+(1 / 2) \boldsymbol{x}^{T} G \boldsymbol{x}
\]

Constraints :
\[
\begin{aligned}
& \boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i} \quad\left(i=1,2, \cdots, m_{e}\right) \\
& \boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i} \quad\left(i=m_{e}+1, m_{e}+2, \cdots, m ; \quad 0 \leq m_{e} \leq m\right)
\end{aligned}
\]
where \(G\) is an \(n \times n\) positive definite matrix, \(\boldsymbol{c}^{T}=\left[c_{1}, c_{2}, \cdots, c_{n}\right]\) and \(\boldsymbol{a}_{i}^{T}=\left[a_{i, 1}, a_{i, 2}, \cdots, a_{i, n}\right]\) are vectors of dimension \(n\) and \(b_{i}\) are constants \((i=1,2, \cdots, m)\).
(2) Usage

Double precision:
ierr \(=\) ASL_dmcqsn (a, lna, m, b, g, c, n, me, er, \&nev, x, \&y, isw, iwk, wk);
Single precision:
ierr \(=\) ASL_rmcqsn ( \(\mathrm{a}, \operatorname{lna}, \mathrm{m}, \mathrm{b}, \mathrm{g}, \mathrm{c}, \mathrm{n}, \mathrm{me}\), er, \&nev, \(\mathrm{x}, \& \mathrm{y}, \mathrm{isw}, \mathrm{iwk}, \mathrm{wk})\);

\section*{(3) Arguments and Return Value}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular}} & \multicolumn{3}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{a} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} * \\
\mathrm{R} *
\end{array}\right\}
\]} & \multirow[t]{2}{*}{\(\ln a \times \mathrm{m}\)} & Input & When isw \(=0\), transposed matrix \(A^{T}=\left(\left(a_{j, i}\right)(i=1,2, \cdots, m ; j=1,2, \cdots, n)\right.\) corresponding to the constant coefficients of constraints. (See Notes (a) and (d)) \\
\hline & & & & Output & Transposed matrix corresponding to the constant coefficients of constraints after transform. \\
\hline 2 & \(\operatorname{lna}\) & I & 1 & Input & Adjustable dimension of array a \\
\hline 3 & m & I & 1 & Input & Number of constraints \(m\) \\
\hline \multirow[t]{2}{*}{4} & \multirow[t]{2}{*}{b} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} * \\
\mathrm{R} *
\end{array}\right\}
\]} & \multirow[t]{2}{*}{m} & Input & When isw \(=0\), right-hand side of constraints \(\boldsymbol{b}=\left(b_{i}\right) \quad(i=1,2, \cdots, m)(\) See Notes (d) \()\) \\
\hline & & & & Output & Right-hand side of constraints after transform. \\
\hline 5 & g & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \(\operatorname{lna} \times \mathrm{n}\) & Input & Objective function second order coefficient matrix \(G\) \\
\hline 6 & c & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & n & Input & objective function first order coefficient vector \(\boldsymbol{c}\) \\
\hline 7 & n & I & 1 & Input & Number of variables \(n\) \\
\hline 8 & me & I & 1 & Input & Number of equality constraints \(m_{e}\) \\
\hline 9 & er & \(\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Required precision (Default value: \(2 \times \sqrt{(\text { Unit for determining error })})\) \\
\hline \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{nev} & \multirow[t]{2}{*}{I*} & \multirow[t]{2}{*}{1} & Input & Maximum number of evaluations of function \(f(\boldsymbol{x})\) (Default value: \(10 \times \mathrm{n}+\mathrm{m}\) ) \\
\hline & & & & Output & Actual number of function evaluations \\
\hline 11 & x & \{ \(\left.\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & n & Output & Final destination \(\boldsymbol{x}\) \\
\hline 12 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Function value \(f(\boldsymbol{x})\) at final destination \(\boldsymbol{x}\) \\
\hline 13 & isw & I & 1 & Input & \begin{tabular}{l}
Processing switch (See Notes (f)) \\
First processing \\
Continuation processing
\end{tabular} \\
\hline 14 & iwk & I* & 3 & Work & Work area \\
\hline 15 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & See Contents & Work & \begin{tabular}{l}
Work area \\
Size: \(2 \times \mathrm{n}^{2}+17 \times \mathrm{n}+16 \times \mathrm{m}+16\)
\end{tabular} \\
\hline 16 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{n} \leq \operatorname{lna}, 0<\mathrm{m}, 0 \leq \mathrm{me} \leq \mathrm{m}\)
(b) isw \(=0\) or isw \(=1\)
(c) er \(\geq\) Unit for determining error (except when 0.0 is entered in order to set er to the default value)
(d) nev \(>0\) (except when 0 is entered in order to set nev to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & n was equal to 1. & Processing continues. \\
\hline 1500 & Restriction (c) or (d) was not satisfied. & Processing is performed with the default value set for nev or er. \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & \multirow[t]{4}{*}{Processing is aborted.} \\
\hline 3500 & Equality constraints were not mutually independent. & \\
\hline 4000 & The problem was not executable. & \\
\hline \(4000+i\) & \begin{tabular}{l}
(1)The diagonal element became 0.0 in the processing of the \(i\)-th column during QR decomposition. \\
(2)The diagonal element became less than or equal to 0.0 in the processing of the \(i\)-th column during LL \(^{T}\) decomposition.
\end{tabular} & \\
\hline 5000 & The value did not converge before the given maximum number of function evaluations was reached. & The value of \(x\) and \(y\) at that time is output and processing is aborted. (See Notes (e) and (f)) \\
\hline
\end{tabular}
(6) Notes
(a) When isw \(=0\), coefficients \(a_{i, j}\left(i=1,2, \cdots, m_{e} ; j=1,2, \cdots, n\right)\) corresponding to the equality constraints and coefficients \(a_{i, j}\left(i=m_{e}+1, m_{e}+2, \cdots, m ; j=1,2, \cdots, n\right)\) corresponding to the inequality constraints must be set in array a as follows, where \(n\) is number of variables and \(m\) is number of constraints.


\section*{Remarks}
a. \(\quad \ln a \geq n\) must hold.
(b) The optimal solution is not obtained by this function if the objective function second order coefficient matrix \(G\) is not positive definite.
(c) If a default value is shown for an argument in the "Contents" column of the table in the Arguments section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) Transformed values are entered in a and b for output.
(e) Usually, the value of \(\boldsymbol{x}\) is not satisfied constraints when ierr \(=5000\) is returned.
(f) If ierr \(=5000\) is returned and the number of iterations is less than the specified convergence count, the calculation can be continued using the information calculated up to the intermediate point. To perform this processing set 1 for the isw value, set a sufficient value for the nev value, and use the output values of the previous execution for all other input values. Also use the work information from the previous execution. (See the example)

\section*{(7) Example}
(a) Problem

Minimize the function:
\[
f(\boldsymbol{x})=1 / 2\left(5 x_{1}^{2}+6 x_{1} x_{2}+5 x_{2}^{2}\right)-95 x_{1}-105 x_{2}
\]
based on:
\[
\begin{aligned}
-x_{1}-2 x_{2} & \geq-10 \\
-3 x_{1}-x_{2} & \geq-15 \\
-2 x_{1}-3 x_{2} & \geq-30 \\
15 x_{1}-13 x_{2} & \geq 0 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
\]

In this example, to illustrate the continuation processing described in Notes (f), the maximum number of evaluations nev \(=3\) is set small enough so that ierr \(=5000\) is output.
(b) Input data
(First time): \(\mathrm{n}=2, \mathrm{~m}=6\), \(\mathrm{me}=0\), \(\operatorname{lna}=11\), \(\mathrm{nev}=3\), isw \(=0\), er \(=0.0\),
arrays \(\mathrm{a}, \mathrm{b}, \mathrm{g}\) and c .
(Second and subsequent times): nev=3 and isw=1.
(For other arguments, the value obtained after the previous calculation is used directly as the input value.)
(c) Main program
```

/* C interface example for ASL_dmcqsn */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *a, *b, *g, *c, eer, *x, y, *wk;
int na, mm, nn, mme, nev, iisw, iwk[3], ierr;
int i, j, once=0,nwk;
FILE *fp;
fp = fopen("dmcqsn.dat", "r");
if(fp == NULL)
printf("file open error\n");
return -1;
}
printf(" *** ASL_dmcqsn ***\n");
printf("\n ** Input **\n");
na = 11;
fscanf('fp, "%d %d %d %lf %d %d", \&nn, \&mm, \&mme, \&eer, \&nev, \&iisw);
printf("\n\tn = %6d\tm = %6d\tme = %6d\n", nn, mm, mme);
a = (double *)malloc((size_t)(sizeof(double) * (na*mm)));
if(a == NULL)
printf("no enough memory for array a\n");
return -1;
b}=(\mathrm{ double *)malloc((size_t)(sizeof(double) * mm));
if(b == NULL)
printf("no enough memory for array b\n");
return -1;
}}=(\mathrm{ double *)malloc((size_t)(sizeof(double) * (na*nn)));
if(g == NULL)
{ g == NULL)
printf("no enough memory for array g\n");
return -1;
c = (double *)malloc((size_t)(sizeof(double) * nn));
c=((double *)
printf("no enough memory for array c\n");
return -1;
}
if(x == NULL)
printf("no enough memory for array x\n");
return -1;
}
nwk=2*nn*nn+17*nn+16*mm+16;
wk = (double *)malloc((size_t)(sizeof(double) * nwk));
if(wk == NULL)
printf("no enough memory for array wk\n");
return -1;
}
printf("\n ** Matrix a **\n\n");
for(i=0 ; i<nn ; i++)
printf("\t");
for(j=0 ; j<mm ; j++)
{ fscanf(fp, "%lf", \&a[i+na*j])
printf("%8.3g ", a[i+na*j]);
}
printf("\n");
}
printf("\n ** Vector b **\n\n");
printf("\t");
for(i=0 ; i<mm ; i++)
fscanf(fp, "%lf", \&b[i]);
printf("%8.3g ", b[i]);
}
printf("\n");
printf("\n ** Matrix g **\n\n");
for(i=0 ; i<nn ; i++)
printf("\t");

```
```

 for(j=0 ; j<nn ; j++)
 fscanf(fp, "%lf", &g[i+na*j]);
 printf("%8.3g ", g[i+na*j]);
 }
 printf("\n");
 }
 printf("\n ** Vector c **\n\n");
 printf("\t");
 for(i=0 ; i<nn ; i++)
 fscanf(fp, "%lf", &c[i]);
 printf("%8.3g ", c[i]);
 }
 printf("\n");
 ierr = ASL_dmcqsn(a, na, mm, b, g, c, nn, mme, eer, &nev, x, &y, iisw, iwk, wk);
 printf("\n ** Output **\n");
 printf("\n ** First Result (isw == 0) **\n\n");
 printf("\tierr = %6d\n", ierr);
 printf("\n ** Vector x **\n\n");
 for(i=0 ; i<nn ; i++)
 printf("\tx[%6d] = %8.3g\n", i, x[i]);
 }
 loop:
fscanf(fp, "%d %d", \&nev, \&iisw);
ierr = ASL_dmcqsn(a, na, mm, b, g, c, nn, mme, eer, \&nev, x, \&y, iisw, iwk, wk);
printf("\n ** Improved Result (isw != 0) **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\n ** Vector x **\n\n");
for(i=0 ; i<nn ; i++)
printf("\tx[%6d] = %8.3g\n", i, x[i]);
}
printf("\ty = %8.3g\n", y);
if (ierr == 5000 \&\& once==0)
once=1;
goto loop;
}
fclose(fp);
free(a);
free(b);
free(g)
free(c);
free(wk)
return 0;
}
(d) Output results

```
```

*** ASL_dmcqsn ***

```
*** ASL_dmcqsn ***
    ** Input **
    ** Input **
n = 2 m = 6 me = 0
n = 2 m = 6 me = 0
    ** Matrix a **
    ** Matrix a **
        lllrll
        lllrll
    ** Vector b **
    ** Vector b **
        -10 
        -10 
    ** Matrix g **
    ** Matrix g **
        5 % 3
        5 % 3
    ** Vector c **
    ** Vector c **
        -95 -105
        -95 -105
** Output **
```

** Output **

```
```

** First Result (isw == 0) **
ierr $=5000$
** Vector x **
$\left.\begin{array}{lll}\mathrm{x}[& 0 \\ \mathrm{x}[& 1\end{array}\right]=8 \quad 2.14$
** Improved Result (isw $!=0$) **
ierr $=0$
** Vector x **

```


\subsection*{5.7.2 ASL_dmcqlm, ASL_rmcqlm}

\section*{Minimization of a Generalized Convex Quadratic Function of Several Variables (Linear Constraints)}
(1) Function

ASL_dmcqlm or ASL_rmcqlm obtains \(\boldsymbol{x}\) that minimizes the objective function
\[
f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x}
\]
under the constraints
\[
\begin{aligned}
& \sum_{j=1}^{n} a_{i, j} x_{j}=b_{i} \quad\left(i=1, \cdots, m_{e}\right) \\
& \sum_{j=1}^{n} a_{i, j} x_{j} \geq b_{i} \quad\left(i=m_{e}+1, \cdots, m\right) \\
& x_{i} \geq 0 \quad(i=1, \cdots, n)
\end{aligned}
\]
and obtains the objective function value \(f(\boldsymbol{x})\) at that time. Where, \(G\) is an \(n \times n\) positive semidefinite matrix and \(\boldsymbol{c}^{T}=\left[c_{1}, c_{2}, \cdots, c_{n}\right]\) and \(\boldsymbol{a}_{i}^{T}=\left[a_{i, 1}, a_{i, 2}, \cdots, a_{i, n}\right]\) are \(n\) dimensional vectors \((i=1, \cdots, m)\).
(2) Usage

Double precision:
ierr \(=\) ASL_dmcqlm (a, na, n, b, m, me, g, ng, c, \&nev, x, \&y, isw, iw, w);
Single precision:
ierr \(=\) ASL_rmcqlm ( \(\mathrm{a}, \mathrm{na}, \mathrm{n}, \mathrm{b}, \mathrm{m}, \mathrm{me}, \mathrm{g}, \mathrm{ng}, \mathrm{c}, \& \mathrm{nev}, \mathrm{x}, \& \mathrm{y}, \mathrm{isw}, \mathrm{iw}, \mathrm{w})\);

\section*{(3) Arguments and Return Value}
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & Input/ Output & Contents \\
\hline 1 & a & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \(n \mathrm{n} \times \mathrm{n}\) & Input & When isw \(=0\), matrix \(A=\left(a_{i, j}\right)\) \((i=1,2, \cdots, m ; j=1,2, \cdots, n)\) corresponding to the constant coefficients of constraints. \\
\hline 2 & na & I & 1 & Input & Adjustable dimension of array a \\
\hline 3 & n & I & 1 & Input & Number of variables \(n\) \\
\hline 4 & b & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Input & \(m\) dimensional vector having the constants \(b_{i}\) on the right-hand side of the constraint conditions as components \\
\hline 5 & m & I & 1 & Input & Number of constraint conditions \(m\) \\
\hline 6 & me & I & 1 & Input & Number of equality constraint conditions \(m_{e}\) \\
\hline 7 & g & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \(\mathrm{ng} \times \mathrm{n}\) & Input & Two-dimensional coefficient matrix \(G\) of the objective function \\
\hline 8 & ng & I & 1 & Input & Adjustable dimension of array g \\
\hline 9 & c & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & n & Input & One-dimensional coefficient vector \(\boldsymbol{c}\) of the objective function \\
\hline 10 & nev & I* & 1 & Input & Maximum number of iterations (See Notes (c)) \\
\hline & & & & Output & Number of iterations required to terminate calculation \\
\hline 11 & x & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & n & Output & Optimal solution \(\boldsymbol{x}\) \\
\hline 12 & y & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Objective function value \(f(\boldsymbol{x})\) for optimal solution \(\boldsymbol{x}\) \\
\hline 13 & isw & I & 1 & Input & \begin{tabular}{l}
Processing switch (See Notes (d)) \\
0 :First processing \\
1:Continuation processing
\end{tabular} \\
\hline 14 & iw & I* & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size: \(2 \times \mathrm{n}-\mathrm{me}+\mathrm{m}+2\)
\end{tabular} \\
\hline 15 & w & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area \\
Size: \((\mathrm{n}+\mathrm{m}-\mathrm{me}+2) \times(\mathrm{n}+\mathrm{m}-\mathrm{me}) \times 2+\)
\[
(\mathrm{m}+\mathrm{me}) \times(\mathrm{n}+1)+\mathrm{n}
\]
\end{tabular} \\
\hline 16 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) na \(\geq \mathrm{m}, \mathrm{ng} \geq \mathrm{n}\)
(b) ng, na, n \(>0\)
(c) \(\mathrm{m}, \mathrm{me} \geq 0\)
(d) \(\mathrm{m} \geq \mathrm{me}\)
(e) \(n \geq m e\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & n was 1. & \multirow[t]{2}{*}{Processing continues.} \\
\hline 1500 & m was 0 . & \\
\hline 3000 & One of restrictions (a) through (e) was not satisfied. & \multirow[t]{4}{*}{Processing is aborted.} \\
\hline 3500 & No solution that satisfies the equality constraints exists. & \\
\hline 4000 & It was determined that no optimal solution exists. & \\
\hline 5000 & The solution could not be obtained within the given number of iterations. & \\
\hline
\end{tabular}
(6) Notes
(a) When isw=0, coefficients \(a_{i, j}(i=1,2, \cdots, m ; j=1,2, \cdots, n)\) corresponding to the constants of constraints must be set in array a as follows, where \(n\) is number of variables and \(m\) is number of constraints.


\section*{Remarks}
a. \(\quad \mathrm{k} \geq n\) must hold.
(b) The optimal solution is not obtained by this function if the two-dimensional coefficient matrix \(G\) of the objective function is not positive semidefinite.
(c) If a non-positive value is entered for argument nev, then nev \(=n-m-m e\) is set as the default value.
(d) If the specified number of iterations is too small and ierr=5000 is returned, perform the calculation using the information calculated up that point. To perform this processing set isw=1 and use the output values from the previous time as input values. The contents of work arrays w and iw must
be saved in advance. If the number of iterations has already reached \(n+m-m e\), no solution will be obtained even if further iterations are performed.

\section*{(7) Example}
(a) Problem

Minimize the function
\[
f(\boldsymbol{x})=\frac{1}{2}\left(5 x_{1}^{2}+6 x_{1} x_{2}+5 x_{2}^{2}\right)-95 x_{1}-105 x_{2}
\]
under the constraints
\[
\begin{aligned}
-x_{1}-2 x_{2} & \geq-10 \\
-3 x_{1}-x_{2} & \geq-15 \\
-2 x_{1}-3 x_{2} & \geq-30 \\
15 x_{1}-13 x_{2} & \geq 0 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
\]

In this example, to indicate the continuation processing described in Notes (d), set a small value \((\) nev=2) for the maximum number of evaluations so that ierr \(=5000\) will be output.
(b) Input data
(First time): \(\mathrm{n}=2, \mathrm{~m}=4\), \(\mathrm{me}=0\), \(\mathrm{na}=11\), nev \(=0\),
arrays a, b, g and c.
(Second and subsequent times): nev=0 and isw=1.
(For other values, directly set the values at the end of the previous calculation as input values.)
(c) Main program
```

/* C interface example for ASL_dmcqlm */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *a;
int na;
int n;
double *b
int m;
int me;
int ng;
nt ng;
Ouble *c
nt nev;
nt isW;
double *x
double y;
double *W
double *W
int ierr;
int i,J;;
fp = fopen("dmcqlm.dat", "r")
if(fp == NULL)
printf("file open error\n");
}
printf(" *** ASL_dmcqlm ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&na);
fscanf(fp, "%d", \&n);
fscanf(fp, "%d", \&m);
fscanf(fp, "%d", \&me);

```
```

fscanf(fp, "%d", \&ng);
fscanf(fp, "%d", \&nev);
fscanf(fp, "%d", \&isw);
a = (double *)malloc((size_t)(sizeof(double) * (na*n)));
if(a == NULL)
printf("no enough memory for array a\n");
return -1;
}
g}=(\mathrm{ double *)malloc((size_t)(sizeof(double) * (ng*n)));
if(g == NULL)
printf("no enough memory for array g\n");
return -1;
}
x = (double *)malloc((size_t)(sizeof(double) * n));
if(x == NULL)
printf("no enough memory for array x\n");
return -1;
}
c}=(\mathrm{ double *)malloc((size_t)(sizeof(double) * n));
if(c == NULL)
printf("no enough memory for array c\n");
return -1;
b}=(\mathrm{ double *)malloc((size_t)(sizeof(double) * m));
if(b == NULL)
printf("no enough memory for array b\n");
return -1;
}
W}=(\mathrm{ double *)malloc((size_t)(sizeof(double) *
(2*(n+m-me+2)*(n+m-me)+2*m*(n+1)+n)));
if((}\textrm{w}===NULL
printf("no enough memory for array w\n");
return -1;
}
iw = (int *)malloc((size_t)(sizeof(int) *
(2*n+m-me+2)));
if(iw == NULL)
printf("no enough memory for array iw\n");
}
printf("\tna = %6d ng = %6d\n", na, ng);
printf("\tn = %6d m = %6d me = %6d nev = % 6d isw = %6d\n",
n, m, me, nev, isw);
printf("\tMatrix a\n");
for(i=0 ; i<m ; i++)
printf("\t");
for(j=0 ; j<n ; j++)
{
fscanf(fp, "%lf", \&a[i+na*j]);
printf(" a(%d , %d) = %8.3g", i, j, a[i+na*j]);
}
printf("\n");
}
printf("\tVector b\n");
for(i=0 ; i<m ; i++)
fscanf(fp, "%lf", \&b[i]);
printf("\t b(%d) = %8.3g\n", i, b[i]);
}
printf("\tMatrix g\n");
for(i=0 ; i<n ; i++)
printf("\t");
for(j=0 ; j<n ; j++)
{ fscanf(fp, "%lf", \&g[i+ng*j]);
printf(" g(%d , %d) = %8.3g", i, j, g[i+ng*j]);
}
printf("\n");
}
printf("\tVector c\n");
for(i=0 ; i<n ; i++)
fscanf(fp, "%lf", \&c[i]);
printf("\t c(%d) = %8.3g\n", i, c[i]);

```

\section*{\}}
```

ierr = ASL_dmcqlm(a, na, n, b, m, me, g, ng, c, \&nev, x, \&y, isw, iw, w);

```
printf( "\n \(\quad * *\) Output \(* * \backslash n \backslash n ")\);
printf( "\n ** First Result **\n" );
printf( "\tierr = \%6d\n", ierr )
printf( "\tnev = \%6d\n", nev );
fscanf ( fp, "\%d", \&nev );
fscanf( fp, "\%d", \&isw );
fclose( fp );
ierr \(=\) ASL_dmcqlm(a, na, \(n, ~ b, ~ m, ~ m e, ~ g, ~ n g, ~ c, ~ \& n e v, ~ x, ~ \& y, ~ i s w, ~ i w, ~ w) ; ~\)
printf( "\n ** Improved Result **\n" );
printf ( "\tierr = \% 6 d\n", ierr ) ;
printf( "\tnev = \%6d\n", nev );
printf( "\tVector x\n" );
for ( \(i=0\); \(i<n\); \(i++\) )
    printf( "\t \(x(\% d)=\% 8.3 g \backslash n ", i, x[i])\);
\}
printf( "\t y = \%8.3g\n", y );
free( \(\begin{aligned} & \text { a ) ; } \\ & \text { free } \\ & \text { g })\end{aligned}\)
free ( x ) ;
free( c );
free( b );
free( w );
free( iw );
return 0;
\}
(d) Output results
```

*** ASL_dmcqlm ***
** Input **
na=
Matrix a
a(0,0) =
a(1, 0) =
-1 a(0, 1)}=\mp@code{l
a(3,0)
Vector b
b(0) =
b(2)=
Matrix g
g(0, 0) =

```

```

Vector c
c(0)= -95
** Output **
** First Result **
ierr = 5000
** Improved Result **
ierr = 0
nev =
Vector x
x(0) =
x(1) = -597

```

\subsection*{5.7.3 ASL_dmcqaz, ASL_rmcqaz}

\section*{Minimization of an Unconstrained 0-1 Quadratic Function of Several Variables (Unconstrained 0-1 Quadratic Programming Problem)}
(1) Function

ASL_dmcqaz or ASL_rmcqaz obtains the \(\boldsymbol{x}\) that minimizes a quadratic function of several variables of the \(n\) dimensional vector \(\boldsymbol{x}=\left[x_{1}, \cdots, x_{n}\right]^{T} \quad\left(x_{i} \in\{0,1\}\right)\).
\[
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}+(1 / 2) \boldsymbol{x}^{T} G \boldsymbol{x}
\]
where \(G\) is a \(n \times n\) matrix and \(\boldsymbol{c}^{T}=\left[c_{1}, c_{2}, \cdots, c_{n}\right]\) is a \(n\) dimensional vector.
(2) Usage

Double precision:
ierr \(=\) ASL_dmcqaz ( \(\mathrm{g}, \mathrm{na}, \mathrm{n}, \mathrm{c}, \& i r 1, \& i r 2, \mathrm{ipm}, \mathrm{rpm}, \mathrm{ix}, \& \mathrm{y}, \mathrm{iwk}, \mathrm{wk})\);
Single precision:
ierr \(=\) ASL_rmcqaz (g, na, n, c, \&ir1, \&ir2, ipm, rpm, ix, \&y, iwk, wk);

\section*{(3) Arguments and Return Value}
\begin{tabular}{l}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} \\
\begin{tabular}{|c|c|c|c|c|l|} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular} \\
\hline No. \\
\begin{tabular}{c} 
Argument and \\
Return Value
\end{tabular} \\
\hline 1
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{n} \leq\) na, \(0<\mathrm{n}\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 4000 & \begin{tabular}{l} 
The branch-and-bound search for the op- \\
timal solution failed because of the nu- \\
merical errors.
\end{tabular} & \begin{tabular}{l} 
The value of x and y at that time is output \\
and processing is aborted.
\end{tabular} \\
\hline 5000 & \begin{tabular}{l} 
The solution of the relaxation problem \\
could not be obtained within the given \\
number of iterations.
\end{tabular} & \\
\hline 5500 & \begin{tabular}{l} 
The number of active partial problems \\
reached the given limit.
\end{tabular} \\
\hline 5600 & \begin{tabular}{l} 
The branch-and-bound search did not \\
complete within the given number of \\
evaluations.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) ix and iy should be odd numbers.
(b) A random number sequence that continues the previously generated random number sequence can be obtained by using the output values of the previous execution for ix and iy.
(c) To search for the maximum value, perform a search for the minimum value of \(-f(\boldsymbol{x})\). At this time, the value of y is the maximum value with the sign reversed.
(d) If ierr \(=4000,5000,5500\) or 5600 is returned and you try to continue the calculation, you can perform it efficiently by using the solution obtained in the previous execution as the initial solution. To perform this processing set the integer other than 1 for ipm[0] and ipm[1] values, and use the output values of the previous execution for all other input values.
(e) When \(n\) is too large, it takes very long calculation time to search the optimal solution by the branch-and-bound method. In such a case, set the value other than 0 for ipm[5] and you can search the optimal solution only heuristically, which can be used as an approximate solution for the true optimal solution but has no guarantee for the accuracy.
(f) The accuracy of the lower bound tests for the branch-and-bound method gets better sometimes when the parameter ipm[7] is set a large value. But the calculation time for each lower bound test increases exponentially as the value of ipm[7] increases. Therefore, you should usually set 1 for the the values of it.
(g) As the value of the parameter rpm[1] increases the calculation time by the branch-and-bound method increases but the numerical stability gets better and it makes ierr harder to return 4000 or 5000 .

Table 5-1 Parameter Table (Unconstrained Zero-One Quadratic Programming Problem)
\begin{tabular}{|c|c|c|}
\hline Argument name & Default value & Contents \\
\hline ipm[0] & - & \begin{tabular}{l}
Setting of default values \\
0 :Set default values of the integer parameters ipm[1-11] Other than 0:The user sets the values of the integer parameters ipm[1-11]
\end{tabular} \\
\hline ipm[1] & 1 & Initial solution setting selection switch 0 :The initial solution \(\boldsymbol{x}^{(0)}\) is set automatically Other than 0:The user sets the initial solution \(\boldsymbol{x}^{(0)}\) \\
\hline ipm[2] & 0 & \begin{tabular}{l}
Heuristic search method selection switch \\
0:Obtain the initial solution by the simulated annealing and improve it by the tabu search. \\
1:Use the simulated annealing \\
2:Use the tabu search \\
Otherwise:The heuristic search is not performed
\end{tabular} \\
\hline ipm[3] & 10000 & The evaluation number of search by the simulated annealing. (When the value less than or equal to 0 is set, the default value is used.) \\
\hline ipm[4] & 100 & The evaluation number of search by the tabu search. (When the value less than or equal to 0 is set, the default value is used.) \\
\hline ipm[5] & 0 & \begin{tabular}{l}
Selection switch if the user perform the search of the solution by the branch-and-bound method or not \\
0:Perform the search of the solution by branch-and-bound method \\
Other than 0:Does not perform the search of the solution by branch-and-bound method
\end{tabular} \\
\hline ipm[6] & ipm[4] & The length of the tabu list (When the value less than or equal to 0 is set, the default value is used.) \\
\hline ipm[7] & 1 & \begin{tabular}{l}
The number of free variables which are used for the evaluating the lower bounds of partial problems in the branch-and-bound search \\
(When the value other than 0 to 10 is set, the default value is used.)
\end{tabular} \\
\hline ipm[8] & 1 & \begin{tabular}{l}
The maximum iteration number for solving relaxation quadratic programming problems \\
(When the value less than or equal to 0 is set, the default value is used.)
\end{tabular} \\
\hline ipm[9] & See Contents & \begin{tabular}{l}
The maximum number of active partial problems in the branch-and-bound search \\
Default value:max (n,ipm[6]) \\
(When the value less than or equal to 0 is set, the default value is used.)
\end{tabular} \\
\hline
\end{tabular}

Table 5-1 Parameter Table (Unconstrained Zero-One Quadratic Programming Problem) (cont'd)
\begin{tabular}{|c|c|c|}
\hline Argument name & Default value & Contents \\
\hline ipm[10] & 1 & The depth of search for the branch-and-bound method (When the value less than or equal to 0 is set, the default value is used.) \\
\hline ipm[11] & \(100 \times n\) & \begin{tabular}{l}
The maximum evaluation number for the branch-and-bound method. \\
(When the value less than or equal to 0 is set, the default value is used.)
\end{tabular} \\
\hline \(\mathrm{rpm}[0]\) & - & \begin{tabular}{l}
Setting of default values \\
0.0:Set default values of the real parameters rpm[1-4] \\
Other than 0.0:The user sets the values of the real parameters rpm[1-4]
\end{tabular} \\
\hline \(\operatorname{rpm}[1]\) & \begin{tabular}{l}
See \\
Contents
\end{tabular} & \begin{tabular}{l}
Required precision for solving the relaxation quadratic programming problem \\
Default value: \(\sqrt{\text { Unit for determining error }}\) \\
(When the value less than or equal to 0.0 is set, the default value is used.)
\end{tabular} \\
\hline rpm[2] & 1.0 & \begin{tabular}{l}
The minimum eigen value \(\beta\) of the coefficient matrix which has been transformed into a positive definite matrix. \\
(When the value less than or equal to 0.0 is set, the default value is used.)
\end{tabular} \\
\hline rpm[3] & 50000.0 & The initial temperature \(T_{0}\) for the simulated annealing search (When the value less than 0.0 is set, the default value is used.) \\
\hline \(\operatorname{rpm}[4]\) & 0.999 & The ratio of the temperature reduction \(\alpha\) (When the value less than or equal to 0.0 or larger than 1.0 is set, the default value is used.) \\
\hline
\end{tabular}

\section*{(7) Example}
(a) Problem

Obtain the zero-one vector \(\boldsymbol{x}^{*}\) that minimize the objective function
\[
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}
\]
and the function value \(f\left(\boldsymbol{x}^{*}\right)\). where the matrix \(G\) and the vector \(\boldsymbol{c}\) are given as follows.
\[
\begin{aligned}
& G=\left(\begin{array}{rrrrrr}
1 & -2 & -1 & 3 & 2 & 0 \\
-1 & 4 & 2 & 1 & 5 & -4 \\
0 & 1 & 3 & 0 & -3 & 2 \\
2 & 5 & 0 & -3 & 1 & 3 \\
1 & 1 & 5 & 3 & -3 & 2 \\
4 & 5 & -1 & -1 & 3 & 1
\end{array}\right) \\
& \boldsymbol{c}=(1,1,1,-1,-1,-1)^{T}
\end{aligned}
\]
(b) Input data
\(\mathrm{na}=7, \mathrm{n}=6, \mathrm{ir} 1=1, \mathrm{ir} 2=1, \operatorname{ipm}[0]=0, \operatorname{rpm}[0]=0.0\), coefficient matrix \(G\) and coefficient vector \(\boldsymbol{c}\).
(c) Main program
```

/* C interface example for ASL_dmcqaz */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
double *g, *c, y, *wk, rpm[5];
int na, n, ir1, ir2, ipm[12], *ix, *iwk, ierr;
int i, j; ;
fp = fopen("dmcqaz.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
}
printf(" *** ASL_dmcqaz ***\n");
printf("\n ** Input **\n");
na = 7; =0;
rpm[0] = 0.0;
fscanf(fp, "%d", \&n);
printf("\n\tn = %6d\n", n);
fscanf(fp, "%d%d", \&ir1, \&ir2);
printf("\n\tir1 = %6d\tir2 = %6d\n", ir1, ir2);
g = (double *)malloc((size_t)(sizeof(double) * (na*n)));
if(g == NULL)
{
printf("no enough memory for array g\n");
return -1;
}}=(\mathrm{ double *
if(c == NULL)
printf("no enough memory for array c\n");
return -1;
}
ix = (int *)malloc((size_t)(sizeof(int) * n));
if(ix == NULL)
printf("no enough memory for array ix\n");
return -1;
wk = (double *)malloc((size_t)(sizeof(double) * 989));
if(wk == NULL)
printf("no enough memory for array wk\n");
return -1;
}
iwk = (int *)malloc((size_t)(sizeof(int) * 731));
if(iwk == NULL)
printf("no enough memory for array iwk\n");
return -1;
}
printf("\n ** Matrix g **\n\n");
for(i=0 ; i<n ; i++)
{ for(i=0 ; i<n ; i+
for(j=0 ; j<n ; j++)
{
fscanf(fp, "%lf", \&g[i+na*j]);
printf("%8.3g ", g[i+na*j]);
}
printf("\n");
}
printf("\n ** Vector c **\n\n");
printf("\t");
for(i=0 ; i<n ; i++)
fscanf(fp, "%lf", \&c[i]);
printf("%8.3g ", c[i]);
}
printf("\n");
ierr = ASL_dmcqaz(g, na, n, c, \&ir1, \&ir2, ipm, rpm, ix, \&y, iwk, wk);
printf("\n ** Output **\n\n");

```
```

printf("\tierr = %6d\n", ierr);
printf("\n ** Vector ix **\n\n");
for(i=0 ; i<n ; i++)
printf("\tix[%6d] = %6d\n", i, ix[i]);
}
printf("\n\ty = %8.3g\n", y);
fclose(fp);
free(g);
free(c);
free(ix)
free(iwk);
free(wk);
return 0;

```
(d) Output results
```

*** ASL_dmcqaz ***
** Input **
n = 6
ir1 = 1 ir2 = 1
** Matrix g **

1	-2	-1	3	2	0
-1	4	2	1	5	-4
0	1	3	0	-3	2
2	5	0	-3	1	3
1	1	5	3	-3	2
4	5	-1	-1	3	1

 ** Vector c **
 1 1rlllll
 ** Output **
 ierr = 0
** Vector ix **

ix	0	$=$
ix [1	=
ix	2	=
ix	3	=
x		=
ix[5	

y = -3

```

\subsection*{5.8 MINIMIZATION OF A CONSTRAINED FUNCTION OF SEVERAL VARIABLES (NONLINEAR PROGRAMMING)}

\subsection*{5.8.1 ASL_dmsqpm, ASL_rmsqpm}

Minimization of a Constrained Function of Several Variables (Nonlinear Constraints)
(1) Function

ASL_dmsqpm or ASL_rmsqpm obtains \(\boldsymbol{x}^{*}\) that locally minimizes the function \(f(\boldsymbol{x})\) of several variables under the \(m\) inequality constraints
\(g_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \cdots, m\)
and \(\ell\) equality constraints
\[
h_{j}(\boldsymbol{x})=0, \quad j=1, \cdots, \ell
\]
and obtains the function value \(f\left(\boldsymbol{x}^{*}\right)\) at that time.
(2) Usage

Double precision:
ierr \(=\) ASL_dmsqpm (f, gf, hf, m, ml, x, n, er, \&nev, \&y, iwk, wk);
Single precision:
ierr \(=\) ASL_rmsqpm (f, gf, hf, m, ml, x, n, er, \&nev, \&y, iwk, wk);

\section*{(3) Arguments and Return Value}
\[
\begin{array}{ll}
\text { D:Double precision real } & \text { Z:Double precision complex } \\
\text { R:Single precision real } & \text { C:Single precision complex }
\end{array} \quad \text { I: }\left\{\begin{array}{l}
\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|l|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & \multicolumn{1}{|c|}{ Size } & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{\(\left.\begin{array}{l}\text { Contents } \\
\mathrm{R}\end{array}\right\}\)}
\end{tabular}

\section*{(4) Restrictions}
(a) \(\mathrm{m}>0\) (except when 0 is entered in order to solve a problem with no constraints)
(b) \(\mathrm{ml} \geq 0\)
(c) \(\mathrm{n}>0\)
(d) \(\mathrm{n} \geq \mathrm{ml}\)
(e) \(\mathrm{m} \geq \mathrm{ml}\)
(f) er \(>0.0\) (except when 0.0 is entered in order to set er to the default value)
(g) nev \(\geq 0\) (except when a negative value is entered in order to set nev to the default value)
(5) Error indicator (Return Value)
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & Restriction (f) or (g) was not satisfied. & Processing is performed with the default value set for er or nev. \\
\hline 1500 & mwas 0. & Processing continues. \\
\hline 3000 & One of restrictions (a) through (e) was not satisfied. & Processing is aborted. \\
\hline 3500 & Equality constraints of the partial quadratic programming problem were not mutually independent. & \multirow[t]{7}{*}{The values of x and y at that time are output and processing is aborted. The value of \(x\) satisfies constraints.} \\
\hline 3600 & The partial quadratic programming problem was not executable. & \\
\hline 3700 & \begin{tabular}{l}
(1)A diagonal element of the matrix, which is to be QR decomposed for solving the partial quadratic programming problem, became 0.0 in the processing of decomposition. (The matrix does not have the designed rank.) \\
(2) A diagonal element of the matrix, which is to be \(L L^{T}\) decomposed for solving the partial quadratic programming problem, became less than or equal to 0.0 in the processing of decomposition. (The matrix is nearly singular.)
\end{tabular} & \\
\hline 3800 & The partial quadratic programming problem did not converge. & \\
\hline 3900 & The step-size became less than or equal to 0.0 in the processing of rectilinear search. & \\
\hline 4000 & Equality constraints of the partial quadratic programming problem were not mutually independent. & \\
\hline 4100 & The partial quadratic programming problem was not executable. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ierr value & Meaning & Processing \\
\hline 4200 & \begin{tabular}{l}
(1)A diagonal element of the matrix, which is to be QR decomposed for solving the partial quadratic programming problem, became 0.0 in the processing of decomposition. (The matrix does not have the designed rank.) \\
(2) A diagonal element of the matrix, which is to be \(\mathrm{LL}^{T}\) decomposed for solving the partial quadratic programming problem, became less than or equal to 0.0 in the processing of decomposition. (The matrix is nearly singular.)
\end{tabular} & \multirow[t]{5}{*}{The values of x and y at that time are output and processing is aborted. The value of \(x\) does not satisfy constraints.} \\
\hline 4300 & The partial quadratic programming problem did not converge. & \\
\hline 4400 & The step-size became less than or equal to 0.0 in the processing of rectilinear search. & \\
\hline 4500 & The problem could not be solved even though the given maximum number of updates of \(\boldsymbol{x}\) was reached. & \\
\hline 5000 & The problem could not be solved even though the given maximum number of updates of \(\boldsymbol{x}\) was reached. & \\
\hline
\end{tabular}
(6) Notes
(a) The functions \(f\) is created as follows.
```

double FORTRAN f(double *x)
{
return(f(*x));
}

```
(b) The functions gf and hf are created as follows.
```

void FORTRAN gf(double *x, int *n, double *g, int *mm)
{

```
```

 g[0] = g
    ```
        g[0] = g
        \vdots
        \vdots
        g[mm-1] = gmm}(\boldsymbol{x});\quad(i=0,n-1
        g[mm-1] = gmm}(\boldsymbol{x});\quad(i=0,n-1
}
}
void FORTRAN hf(double *x, int *n, double *h, int *ml)
void FORTRAN hf(double *x, int *n, double *h, int *ml)
{
```

{

```
\[
\mathrm{h}[0]=h_{1}(\boldsymbol{x})
\]
```

\vdots
h[ml - 1] = hml (x); (i=0,n-1)

```
\}

The value of argument mm here is the number of inequality constraints.
(c) If the specified maximum number of updates of \(\boldsymbol{x}\) is too small and ierr=5000 is returned, perform the calculation using the information calculated up that point. When performing this processing, use the output value of \(x\) from the previous time as the input value.

\section*{(7) Example}
(a) Problem

Minimize the function
\[
f(\boldsymbol{x})=-x_{3}
\]
under the constraints
\[
\begin{array}{r}
-x_{1}+x_{2} \leq 0 \\
x_{1}{ }^{2}+{x_{2}}^{2}+x_{3}{ }^{2}-1.0=0
\end{array}
\]
(b) Input data

Name of function that calculates the objective function value: f
Name of function that gives inequality constraints: gf
Name of function that gives equality constraints: hf
\[
\mathrm{n}=3, \mathrm{~m}=2, \mathrm{ml}=1, \mathrm{er}=1.0 \mathrm{e}-14, \mathrm{nev}=100, \mathrm{x}[0]=-0.1, \mathrm{x}[1]=1.0 \text { and } \mathrm{x}[2]=0.1 .
\]
(c) Main program
```

/* C interface example for ASL_dmsqpm */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
\#ifdef --cplusplus
{xter
\#endif
\#ifdef __STDC
double -\overline{f}(dou\overline{l}
\#else
double f(x)
double *x;
\#endif
{return -1.0 * x[2];
}
}
\#endif
\#ifdef
\#ifdef - -cplusplus
extern
\#endif
\#ifdef STDC
void --gf(doūble *x,int *n,double *g,int *mm)
\#eise gf(x,n,g,mm)
double *x;
double *g;
int *n;
int *mm;
\#endif
*g = -1.0*x[0]+1.0*x[1];
}
\#ifdef __cplusplus
}
\#endif
\#ifdef =-cplusplus

```
```

{
\#endif
\#ifdef __STDC
void hf(double *x,int *n,double *h,int *ml)
void hf(x,n,h,ml)
double *x;
double *h;
int *n;
int *ml;
\#endif
*h = x[0]*x[0] +x[1] *x[1] +x[2]*x[2]-1.0;
}
\#ifdef __cplusplus
}
\#endif
int main()
int m;
int ml;
int n;
double er;
int nev;
double y;
int *iwk;
double *wk
int ierr;
int i;
FILE *fp;
fp = fopen("dmsqpm.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
return -1;
}
printf(" *** ASL_dmsqpm ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&m);
fscanf(fp, "%d", \&ml);
fscanf(fp, "%d", \&n);
fscanf(fp, "%d", \&nev);
er=1.0e-12;
x = (double *) malloc((size_t)(sizeof(double) * n));
xf(x == NULL ()
printf("no enough memory for array x\n");
return -1;
}
wk = (double *)malloc((size_t)(sizeof(double) *
(4*n*n+21*n+108*m+2*m*n)));
if(wk == NULL)
printf("no enough memory for array wk\n");
}
iwk = (int *)malloc((size_t)(sizeof(int) * (m+3)));
if(iwk == NULL)
printf("no enough memory for array iwk\n");
return -1;
}
printf("\tm = %6d ml = %6d n = %6d nev = %6d er = %8.3g \n",
m, ml, n, nev, er);
printf("\n ** vector x **\n\n");
for(i=0 ; i<n ; i++)
fscanf(fp, "%lf", \&x[i]);
printf(" x(%6d)= %8.3g\n", i, x[i]);
}
printf("\n");
fclose(fp);
ierr = ASL_dmsqpm(f, gf, hf, m, ml, x, n, er, \&nev, \&y, iwk, wk);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n", ierr);
printf("\tnev = %6d\n", nev);
printf("\n ** vector x **\n\n");
for(i=0 ; i<n ; i++)

```
```

 printf(" x(%6d)= %8.3g\n", i, x[i]);
 printf(" y = %8.3g\n", y);
 free(x);
 free(wk);;
 return 0;
 }
    ```
(d) Output results
```

*** ASL_dmsqpm ***
** Input **
m= 2 ml = 1 n = 3 nev = 100 er = 1e-12
** vector x **
llr
** Output **
ierr =
** vector x **
M(

```

\subsection*{5.9 DISTANCE MINIMIZATION ON A GRAPH (SHORTEST PATH PROBLEM)}

\subsection*{5.9.1 ASL_dmsp1m, ASL_rmsp1m \\ Distance Minimization for a Given Node to the Other Node on a Graph}
(1) Function

On a graph that has \(n\) nodes and \(m\) branches and for which all branches have nonnegative weights, this function obtains the path \(P=\left(v_{1}, v_{2}, \cdots, v_{p}\right)\) for which the sum \(W(P)\) of the weights \(w\left(k_{j}\right)\left(v_{j}, v_{j+1}\right)\) of the branches from a given node \(v_{1}\) to the other nodes \(v_{p}\) is the minimum and this function also obtains the value of \(W(P)\) (shortest distance) at that time.
\[
\text { Objective function }: \quad W(P)=\sum_{j=1}^{p-1} w\left(k_{j}\right) \rightarrow \text { Minimum }
\]
(2) Usage

Double precision:
ierr \(=\) ASL_dmsp1m ( \(\mathrm{n}, \mathrm{m}\), itl, ihd, wght, init, d, ip, isw, iwk, wk);
Single precision:
ierr \(=\) ASL_rmsp1m ( \(\mathrm{n}, \mathrm{m}, \mathrm{itl}\), ihd, wght, init, d, ip, isw, iwk, wk);
(3) Arguments and Return Value
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\ \text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & n & I & 1 & Input & Number of nodes \(n\) \\
\hline 2 & m & I & 1 & Input & Number of branches \(m\) \\
\hline 3 & itl & I* & m & Input & Node number of starting point of branch k , tail(k) \\
\hline 4 & ihd & I* & m & Input & Node number of ending point of branch k , head (k) \\
\hline 5 & wght & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Input & Weight of branch \(k, w(k)\) \\
\hline 6 & init & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Node number of starting point \(v_{1}\) \\
\hline 7 & d & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & n & Output & Shortest distance from the starting point \(v_{1}\) to each node \(v_{i}\). (See Note (a)) \\
\hline 8 & ip & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & n & Output & New node number of each node \(v_{i}\) on the shortest path. (See Note (b)) \\
\hline 9 & isw & I & 1 & Input & Processing switch. (See Note (c)) isw \(=0\) :directed graph isw \(=1\) :undirected graph \\
\hline 10 & iwk & I* & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area. \\
Size: \(4 \times \mathrm{n}+2 \times \mathrm{m}\)
\end{tabular} \\
\hline 11 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \(2 \times \mathrm{m}\) & Work & Work area. \\
\hline 12 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}
(4) Restrictions
(a) \(n \geq 2\)
(b) \(\mathrm{m} \geq 1\)
(c) \(\operatorname{wght}[k-1] \geq 0.0, \quad(k=1, \cdots, \mathrm{~m})\)
(d) \(1 \leq \operatorname{itl}[k-1] \leq \mathrm{n}, \quad(k=1, \cdots, \mathrm{~m})\)
(e) \(1 \leq \operatorname{ihd}[k-1] \leq \mathrm{n}, \quad(k=1, \cdots, \mathrm{~m})\)
(f) isw \(=0\) or isw \(=1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{2}{c}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3100 & Restriction (c) was not satisfied. & \\
\hline 3200 & Restriction (d) or (e) was not satisfied. & \\
\hline 3300 & Restriction (f) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) When the value of \(D\left(v_{1}, v_{p}\right)\) is negative, no path exists from node \(v_{1}\) to node \(v_{p}\).
(b) When the series of nodes on the shortest path from node \(v_{1}\) to node \(v_{p}\) is \(\left(v_{1}, \delta, \cdots, \beta, \alpha, v_{p}\right)\), these nodes are obtained so that \(\operatorname{ip}\left[v_{p}-1\right]=\alpha, \operatorname{ip}[\alpha-1]=\beta, \cdots, \operatorname{ip}[\delta-1]=v_{1}\) sequentially from the ending point to the starting point.
(c) For an undirected graph, since each branch is automatically replaced by two directed branches within the function, the input data need not be duplicated in advance.

\section*{(7) Example}
(a) Problem

Obtain the path for which the sum of the weights of the branches from starting point \(v_{1}\) to node \(v_{p}\) on the following kind of graph is the minimum. However, assume that the weights of all branches are nonnegative.

(b) Input data
\(\mathrm{n}=9, \mathrm{~m}=16\), array wght for storing the weight of each branch, arrays itl and ihd for storing the node numbers of the branches, starting point init and isw \(=0\).
(c) Main program
/* C interface example for ASL_dmsp1m */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
```

int n;
int m;
int *itl;
int *ihd;
double *wght;
int init;
double *d
int *ip;
int isw;
int *iwk
double *wk;
int ierr;
int i;
FILE *fp;
fp = fopen("dmsp1m.dat", "r");
if(fp == NULL)
printf("file open error\n");
return -1;
}
printf(" *** ASL_dmsp1m ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&n);
fscanf(fp, "%d", \&m);
init = 1;
itl = (int *)malloc((size_t) (sizeof(int) * m));
if(itl == NULL)
printf("no enough memory for array itl\n");
return -1;
}
ihd = (int *)malloc((size_t) (sizeof(int) * m));
if(ihd == NULL)
printf("no enough memory for array ihd\n");
return -1;
}
wght = (double *)malloc((size_t) (sizeof(double) * m));
if(wght == NULL)
{
printf("no enough memory for array wght\n");
return -1;
}
ip = (int *)malloc((size_t) (sizeof(int) * n));
if(ip == NULL)
{
printf("no enough memory for array ip\n");
return -1;
}
d = (double *)malloc((size_t) (sizeof(double) * n))
if(d == NULL)
printf("no enough memory for array d\n");
return -1;
}
iwk = (int *)malloc((size_t) (sizeof(int) * (4*n+2*m)));
if(iwk == NULL)
printf("no enough memory for array iwk\n");
return -1;
}
wk = (double *)malloc((size_t) (sizeof(double) * (2*m)));
if(iwk == NULL)
printf("no enough memory for array wk\n");
}
printf("\tn = %6d \n", n);
printf("\tm = %6d \n", m);
printf("\tinit = %6d \n", init);
printf("\tisw = %6d \n", isw);
printf("\n");
printf("\t itl ihd wght\n");
for(i=0 ; i<m ; i++)
fscanf(fp, "%d %d %lf", \&itl[i], \&ihd[i], \&wght[i]);
printf("\t%6d %6d %8.3g \n", itl[i], ihd[i], wght[i]);
}

```
```

fclose(fp);
ierr = ASL_dmsp1m(n, m, itl, ihd, wght, init, d, ip, isw, iwk, wk);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n\n", ierr);
for(i=0 ; i<n ; i++)
printf("\t d(%2d) = %8.3g ip(%2d) = %6d\n",
i+1, d[i], i+1, ip[i]);
}
free(itl);
free(ihd);
free(wght)
free(ip)
free(d);
free(iwk);
free(lwk);
return 0;
(d) Output results
*** ASL_dmsp1m ***
** Input **

n	$=$	9
m	$=$	16
init	$=$	1
isw	$=$	0

itl	ihd	wght
1	2	5
2	3	2
1	4	1
1	5	3
2	5	4
5	3	1
3	6	2
4	5	2
5	6	1
4	7	1
7	5	2
5	8	3
5	9	3
6	9	4
7	8	2
8	9	1

** Output *

```

\section*{ierr \(=0\)}
```

$d(1)=$	0	ip($1)$		1
$d(2)=$	5	ip(2)		1
$d(3)=$	4	ip(3)	$=$	5
$\mathrm{d}(4)=$	1	ip(4)	$=$	1
$\mathrm{d}(5)=$	3	ip(5)		1
$\mathrm{d}(6)=$	4	ip(6)	$=$	5
$d(7)=$	2	ip(7)	$=$	4
$\mathrm{d}(8)=$	4	ip(8)	$=$	7
$\mathrm{d}(9)=$	5	ip(9)		8

```

\subsection*{5.9.2 ASL_dmspmm, ASL_rmspmm}

\section*{Distance Minimization for All Sets of Two Nodes on a Graph}

\section*{(1) Function}

On a graph that has \(n\) nodes and \(m\) branches and that satisfies the condition that it contains no branch with a negative weight when it is a nondirected graph or satisfies the condition that it contains no cycle with a negative length when it is a directed graph, this function obtains the path \(P=\left(v_{i 1}, v_{i 2}, \cdots, v_{i p}\right)\) for which the sum \(W(P)\) of the weights of the branches between two nodes \(\left(v_{i 1}, v_{i p}\right)(i=1, \cdots, n)\) is the minimum and this function also obtains the value of \(W(P)\) (distance) at that time.
\[
\text { Objective function }: \quad W(P)=\sum_{j=1}^{p-1} w\left(k_{j}\right) \rightarrow \text { Minimum }
\]
(2) Usage

Double precision: ierr \(=\) ASL_dmspmm ( \(n, m, i t l\), ihd, wght, d, ip, isw, iwk);
Single precision:
ierr \(=\) ASL_rmspmm ( \(\mathrm{n}, \mathrm{m}\), itl, ihd, wght, d, ip, isw, iwk);
(3) Arguments and Return Value
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { int as for 32bit Integer } \\
\text { long as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|l|c|l|}
\hline No. & \begin{tabular}{l} 
Argument and \\
Return Value
\end{tabular} & Type & \multicolumn{1}{|c|}{ Size } & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & n & I & 1 & Input & Number of nodes \(n\) \\
\hline 2 & m & I & 1 & Input & Number of branches \(m\) \\
\hline 3 & itl & \(\mathrm{I}^{*}\) & m & Input & \begin{tabular}{l} 
Node number of starting point of branch k, \\
tail(k)
\end{tabular} \\
\hline 4 & ihd & \(\mathrm{I}^{*}\) & m & Input & \begin{tabular}{l} 
Node number of ending point of branch k, \\
head(k)
\end{tabular} \\
\hline 5 & wght & \(\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\) & m & Input & \begin{tabular}{l} 
Weight of branch \(k, w(k)\) \\
\hline 6 \\
\hline d \\
\hline 7
\end{tabular}\(\quad\left\{\begin{array}{l}\mathrm{D} * \\
\mathrm{R} *\end{array}\right\}\)
\end{tabular}

\section*{(4) Restrictions}
(a) \(n \geq 2\)
(b) \(m \geq 1\)
(c) \(\operatorname{wght}[k-1] \geq 0.0, \quad(k=1, \cdots, \mathrm{~m})\)
(d) \(1 \leq \operatorname{itl}[k-1] \leq \mathrm{n}, \quad(k=1, \cdots, \mathrm{~m})\)
(e) \(1 \leq \operatorname{ihd}[k-1] \leq \mathrm{n}, \quad(k=1, \cdots, \mathrm{~m})\)
(f) isw \(=0\) or isw \(=1\)

\section*{(5) Error indicator (Return Value)}
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{2}{c}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3100 & Restriction (c) was not satisfied. & \multirow{3}{*}{} \\
\hline 3200 & Restriction (d) or (e) was not satisfied. & \multirow{3}{*}{} \\
\hline 3300 & Restriction (f) was not satisfied. & \\
\hline 4000 & The given graph had an negative cycle. & \\
\hline
\end{tabular}
(6) Notes
(a) When the value of \(D\left(v_{1}, v_{p}\right)\) is negative, no path exists from node \(v_{1}\) to node \(v_{p}\).
(b) When the series of nodes on the shortest path from node \(v_{1}\) to node \(v_{p}\) is \(\left(v_{1}, \delta, \cdots, \beta, \alpha, v_{p}\right)\), these nodes are obtained so that \(\operatorname{ip}\left[v_{1}-1+v_{p} * n\right]=\alpha, \operatorname{ip}\left[v_{1}-1+\alpha * n\right]=\beta, \cdots, \operatorname{ip}\left[v_{1}-1+\delta * n\right]=v_{1}\) sequentially from the ending point to the starting point.
(c) For an undirected graph, since each branch is automatically replaced by two directed branches within the function, the input data need not be duplicated in advance.

\section*{(7) Example}
(a) Problem

Obtain the path for which the sum of the weights of the branches from starting point \(v_{1}\) to node \(v_{p}\) on the following kind of graph is the minimum. However, assume that the weights of all branches are nonnegative.

(b) Input data
\(\mathrm{n}=6, \mathrm{~m}=9\), array wght for storing the weight of each branch, arrays itl and ihd for storing the node numbers of the branches, starting point init and isw \(=1\).
(c) Main program
/* C interface example for ASL_dmspmm */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>
int main()
int n ;
int m;
int *itl;
double *wght;
double *d;
int *ip;
int isw;
int *iwk;
int ierr;
int i,j;
FILE *fp;
fp = fopen( "dmspmm.dat", "r" );
if ( \(f p==\) NULL )
printf( "file open error\n" ); return -1 ;
\}
printf( " \(\quad * * *\) ASL_dmspmm \(* * * \backslash \mathrm{n} ")\);
printf( "\n ** Input **\n\n" );
fscanf( fp, "\%d", \&n );
fscanf( fp, "\%d", \&m );
isw \(=0\);
itl \(=(\) int \(*)\) malloc \(((\) size_t) (sizeof(int) \(* \mathrm{~m}))\);
if (itl == NULL )
printf( "no enough memory for array itl\n" ); return -1 ;
\}
ihd \(=(\) int * ) malloc ((size_t) (sizeof(int) * m ));
if ( ihd == NULL )
printf( "no enough memory for array ihd\n" );
\(\}\)
wght \(=(\) double \(*\) )malloc ((size_t) (sizeof(double) \(* ~ m ~)) ;\)
if ( wght == NULL )
printf( "no enough memory for array wght \(\backslash n\) " ) return -1;
\}
ip \(=(\) int \(*)\) malloc ( (size_t) (sizeof (int) * (n*n) ));
if ( ip == NULL )
printf( "no enough memory for array ip\n" ); return -1 ;
\}
\(\mathrm{d}=(\) double \(*)\) malloc \(((\) size_t) (sizeof (double) \(*(n * n))\);
\(\operatorname{if}_{\{ }(\mathrm{d}==\mathrm{NULL})\)
printf( "no enough memory for array \(d \backslash n\) " ); return -1;
\}
iwk \(=(\) int \(*)\) malloc ( (size_t) (sizeof (int) * (n*n) ));
if ( iwk == NULL )
printf( "no enough memory for array iwk\n" ); return -1 ;
\(\}\)
printf( "\tn = \%6d\n", n );
printf ( "\tm \(=\% 6 d \backslash n ", m)\);
printf ( "\tisw \(=\% 6 d\) \n", isw );
printf( "\n" );
printf ( "\t itl ihd wght\n" );
for ( i=0 ; i<m ; i++ )
fscanf( fp, "\%d \%d \%lf", \&itl[i], \&ihd[i], \&wght[i] ); printf( "\t\%6d \%6d \%8.3g \n", itl[i], ihd[i], wght[i]);
\}
```

printf("\n");
fclose(fp);
ierr = ASL_dmspmm(n, m, itl, ihd, wght, d, ip, isw, iwk);
printf("\n ** Output **\n\n");
printf("\tierr = %6d\n\n", ierr);
for(i=0 ; i<n ; i++)
for(j=0 ; j<n ; j++)
if(d[i+j*n]!=0) printf("\td(%2d,%2d) = %8.3g ip(%2d,%2d) = %6d\n",
i+1,j+1,d[i+j*n], i+1,j+1, ip[i+j*n]);
}
}
free(itl);
free(ind);
free(wght);
free(ip);
free(d);
free(iwk');
return 0;

```
\}
(d) Output results
*** ASL_dmspmm ***
** Input **
\(\begin{array}{lll}\mathrm{n} & = & 6 \\ \mathrm{~m} & = & 9 \\ \text { isw } & = & 0\end{array}\)
\begin{tabular}{rrr} 
itl & ihd & wght \\
1 & 2 & 5 \\
2 & 3 & 2 \\
1 & 4 & 1 \\
1 & 5 & 3 \\
2 & 5 & 4 \\
5 & 3 & 1 \\
3 & 6 & 2 \\
4 & 5 & 2 \\
5 & 6 & 1
\end{tabular}
** Output **
ierr \(=0\)
\begin{tabular}{llll}
\(\mathrm{d}(1,2)=\) & 5 & \(\operatorname{ip}(1,2)=\) & 1 \\
\(\mathrm{~d}(1,3)=\) & 4 & \(\operatorname{ip}(1,3)=\) & 5 \\
\(\mathrm{~d}(1,4)=\) & 1 & \(\operatorname{ip}(1,4)=\) & 1 \\
\(\mathrm{~d}(1,5)=\) & 3 & \(\operatorname{ip}(1,5)=\) & 1 \\
\(\mathrm{~d}(1,6)=\) & 4 & \(\operatorname{ip}(1,6)=\) & 5 \\
\(\mathrm{~d}(2,3)=\) & 2 & \(\operatorname{ip}(2,3)=\) & 2 \\
\(\mathrm{~d}(2,5)=\) & 4 & \(\operatorname{ip}(2,5)=\) & 2 \\
\(\mathrm{~d}(2,6)=\) & 4 & \(\operatorname{ip}(2,6)=\) & 3 \\
\(\mathrm{~d}(3,6)=\) & 2 & \(\operatorname{ip}(3,6)=\) & 3 \\
\(\mathrm{~d}(4,3)=\) & 3 & \(\operatorname{ip}(4,3)=\) & 5 \\
\(\mathrm{~d}(4,5)=\) & 2 & \(\operatorname{ip}(4,5)=\) & 4 \\
\(\mathrm{~d}(4,6)=\) & 3 & \(\operatorname{ip}(4,6)=\) & 5 \\
\(\mathrm{~d}(5,3)=\) & 1 & \(\operatorname{ip}(5,3)=\) & 5 \\
\(d(5,6)=\) & 1 & \(i p(5,6)=\) & 5
\end{tabular}

\subsection*{5.9.3 ASL_dmsp11, ASL_rmsp11}

\section*{Distance Minimization for Two Nodes on a Graph}
(1) Function

On a graph that has \(n\) nodes and \(m\) branches and for which all branches have nonnegative weights, this function obtains the path \(P=\left(v_{1}, v_{2}, \cdots, v_{i}\right)\) for which the sum \(W(P)\) of the weights \(w\left(k_{j}\right)\left(v_{j}, v_{j+1}\right)\) of the branches from a given node \(v_{1}\) to the other nodes \(v_{p}\) is the minimum and this function also obtains the value of \(W(P)\) (shortest distance) at that time.
\[
\text { Objective function : } \quad W(P)=\sum_{j=1}^{p-1} w\left(k_{j}\right) \rightarrow \text { min }
\]
(2) Usage

Double precision: ierr \(=\) ASL_dmsp11 ( \(\mathrm{n}, \mathrm{m}\), itl, ihd, wght, init, iend, \&d, ip, isw, iwk, wk);
Single precision: ierr \(=\) ASL_rmsp11 ( \(\mathrm{n}, \mathrm{m}\), itl, ihd, wght, init, iend, \&d, ip, isw, iwk, wk);
(3) Arguments and Return Value
\[
\begin{array}{ll}
\text { D:Double precision real } & \text { Z:Double precision complex } \\
\text { R:Single precision real } & \text { C:Single precision complex }
\end{array} \quad \text { I: }\left\{\begin{array}{l}
\text { int as for } 32 \text { bit Integer } \\
\text { long as for } 64 \text { bit Integer }
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument and Return Value & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & n & I & 1 & Input & Number of nodes \(n\) \\
\hline 2 & m & I & 1 & Input & Number of branches \(m\) \\
\hline 3 & itl & I* & m & Input & Node number of starting point of branch k, tail(k) \\
\hline 4 & ihd & I* & m & Input & Node number of ending point of branch k , head(k) \\
\hline 5 & wght & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & m & Input & Weight of branch \(k, w(k)\) \\
\hline 6 & init & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Node number of starting point \(v_{1}\) \\
\hline 7 & iend & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Input & Node number of ending point \(v_{p}\) \\
\hline 8 & d & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & 1 & Output & Shortest distance from the starting point \(v_{1}\) to each node \(v_{i}\). (See Note (a)) \\
\hline 9 & ip & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & n & Output & New node number of each node \(v_{i}\) on the shortest path. (See Note (b)) \\
\hline 10 & isw & I & 1 & Input & \[
\begin{aligned}
& \text { Processing switch. (See Note (c)) } \\
& \text { isw=0:directed graph } \\
& \text { isw=1:undirected graph } \\
& \hline
\end{aligned}
\] \\
\hline 11 & iwk & I* & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area. \\
Size: \(4 \times \mathrm{n}+2 \times \mathrm{m}\)
\end{tabular} \\
\hline 12 & wk & \(\left\{\begin{array}{l}\mathrm{D} * \\ \mathrm{R} *\end{array}\right\}\) & \(2 \times \mathrm{m}\) & Work & Work area. \\
\hline 13 & ierr & I & 1 & Output & Error indicator (Return Value) \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(\mathrm{n} \geq 2\)
(b) \(\mathrm{m} \geq 1\)
(c) \(\operatorname{wght}[k-1] \geq 0.0, \quad(k=1, \cdots, \mathrm{~m})\)
(d) \(1 \leq \operatorname{itl}[k-1] \leq \mathrm{n}, \quad(k=1, \cdots, \mathrm{~m})\)
(e) \(1 \leq \operatorname{ihd}[k-1] \leq \mathrm{n}, \quad(k=1, \cdots, \mathrm{~m})\)
(f) \(1 \leq\) init \(\leq \mathrm{n}\)
(g) \(1 \leq\) iend \(\leq n\)
(h) isw \(=0\) or isw \(=1\)
(5) Error indicator (Return Value)
\begin{tabular}{|c|l|l|}
\hline ierr value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{2}{c}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3100 & Restriction (c) was not satisfied. & \\
\hline 3200 & Restriction (d) or (e) was not satisfied. & \\
\hline 3300 & Restriction (f) or (g) was not satisfied. & \\
\hline 3400 & Restriction (h) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) When the value of \(D\left(v_{1}, v_{p}\right)\) is negative, no path exists from node \(v_{1}\) to node \(v_{p}\).
(b) When the series of nodes on the shortest path from node \(v_{1}\) to node \(v_{p}\) is \(\left(v_{1}, \delta, \cdots, \beta, \alpha, v_{p}\right)\), these nodes are obtained so that \(\operatorname{ip}\left[v_{p}-1\right]=\alpha, \operatorname{ip}[\alpha-1]=\beta, \cdots, \operatorname{ip}[\delta-1]=v_{1}\) sequentially from the ending point to the starting point.
(c) For an undirected graph, since each branch is automatically replaced by two directed branches within the function, the input data need not be duplicated in advance.
(7) Example
(a) Problem

Obtain the path for which the sum of the weights of the branches from starting point \(v_{1}\) to ending point \(v_{p}\) on the following kind of graph is the minimum. However, assume that the weights of all branches are nonnegative.

(b) Input data
\(\mathrm{n}=9, \mathrm{~m}=16\), array wght for storing the weight of each branch, arrays itl and ihd for storing the node numbers of the branches, starting point init \(=1\), ending point iend \(=8\) and isw \(=0\).
(c) Main program
```

/* C interface example for ASL_dmsp11 */
\#include <stdio.h>
\#include <stdlib.h>
\#include <asl.h>

```
```

int main()
int n;
nt m;
int *itl;
int *ihd;
double *wght;
int init;
int iend;
double d;
int *ip;
int isw;
int *iwk;
double *wk;
int ierr;
int i;
FILE *fp;
fp = fopen("dmsp11.dat", "r");
if(fp == NULL)
{
printf("file open error\n");
return -1;
}
printf(" *** ASL_dmsp11 ***\n");
printf("\n ** Input **\n\n");
fscanf(fp, "%d", \&n);
fscanf(fp, "%d", \&m);
init = 1;
iend = 8;
isw = 0;
itl = (int *)malloc((size_t) (sizeof(int) * m));
if(itl == NULL)
printf("no enough memory for array itl\n");
return -1;
}
ihd = (int *)malloc((size_t) (sizeof(int) * m));
if(ihd == NULL)
printf("no enough memory for array ihd\n");
return -1
}
wght = (double *)malloc((size_t) (sizeof(double) * m));
if(wght == NULL)
{
printf("no enough memory for array wght\n");
return -1;
}
ip = (int *)malloc((size_t) (sizeof(int) * n));
if(ip == NULL)
printf("no enough memory for array ip\n");
return -1;
}
iwk = (int *)malloc((size_t) (sizeof(int) * (4*n+2*m)));
if(iwk == NULL)
printf("no enough memory for array iwk\n");
return -1;
}
wk = (double *)malloc((size_t) (sizeof(double) * (n+2*m)));
if(iwk == NULL)
printf("no enough memory for array wk\n");
return -1;
}
printf("\tn = %6d \n", n);
printf("\tm = %6d \n", m);
printf("\tinit = %6d \n", init);
printf("\tiend = %6d \n", iend);
printf("\tisw = %6d \n", isw);
printf("\n");
printf("\t itl ihd wght\n");
for(i=0 ; i<m ; i++)
fscanf(fp, "%d %d %lf", \&itl[i], \&ihd[i], \&wght[i]);
printf("\t%6d %6d %8.3g \n", itl[i], ihd[i], wght[i]);
}

```
```

 fclose(fp);
 ierr = ASL_dmsp11(n, m, itl, ihd, wght, init, iend, &d, ip, isw, iwk, wk);
 printf("\n ** Output **\n\n");
 printf("\tierr = %6d \n\n", ierr);
 printf("\td = %8.3g \n\n", d);
 for(i=0 ; i<n ; i++)
 printf("\tip(%2d) = %6d\n", i+1, ip[i]);
 }
 free(itl);
 free(ihd);
 free(wght)
 free(ip);
 free(iwk);
 free(wk);
 return 0;
}
(d) Output results

```
```

*** ASL_dmsp11 ***

```
*** ASL_dmsp11 ***
    ** Input **
    ** Input **
llr
llr
    itl 
    itl 
** Output **
** Output **
ierr = 0
ierr = 0
d =
d =
4
4
ip( 1) = 0
ip( 1) = 0
ip( 2) = 1
ip( 2) = 1
ip( 3) = 5
ip( 3) = 5
ip( 4) = 1
ip( 4) = 1
ip( 5) = 1
ip( 5) = 1
ip(6) = 5
ip(6) = 5
ip(7) = 4
ip(7) = 4
ip( 8) = 7
ip( 8) = 7
ip(9) = 5
```

ip(9) = 5

```

\section*{Appendix A}

\section*{GLOSSARY}

\section*{(1) Graph}

For the finite set of points denoted by \(V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}\) and the set of pairs of points belonging to \(V\) denoted by \(V \times V=\left\{\left(v_{i}, v_{j}\right) \mid v_{i} \in V, v_{j} \in V\right\}\), the combination of \(E \subseteq V \times V\) and \(V\) is called a graph, which is denoted by \(G=(V, E)\).

\section*{(2) Vertex and Edge}

For a given graph \(G=(V, E)\), an element of \(V\) is called a vertex of graph \(G\) and an element of \(E\) is called an edge of graph \(G\).
Note: The following is a list of synonyms which have been used in the literature, not always with the indicated pairs:
\begin{tabular}{cccccc} 
vertex & point & node & junction & 0 -simplex & element \\
edge & line & arc & branch & 1-simplex & element
\end{tabular}
(3) Directed edge

For graph \(G=(V, E)\), if the elements of \(E\) are handled so that \(\left(v_{i}, v_{j}\right)\) and \(\left(v_{j}, v_{i}\right)\left(v_{i} \in V, v_{j} \in V\right)\) are differentiated, each element of \(E\) is called a directed edge. For the directed edge denoted by \(e=\left(v_{i}, v_{j}\right)\), \(\operatorname{tail}(e)=v_{i}\) and \(\operatorname{head}(e)=v_{j}\).
(4) Circuit

For graph \(G=(V, E)\), if the collection of elements of \(V\) denoted by \(p=\left(v_{j_{1}}, v_{j_{2}}, \cdots, v_{j_{m}}\right)\) satisfies \(\left(v_{j_{k}}, v_{j_{k+1}}\right) \in E\) for an arbitrary \(1 \leq k \leq m-1, p\) is called a path on graph \(G\). In particular, the path for which \(v_{j_{1}}=v_{j_{m}}\) is called a circuit.
(5) Tree

A graph containing no circuits is called a tree.
(6) Network

If two types of real numbers called the cost coefficient \(c(e)\) and capacity \(u(e)\) and two elements of \(V\) called the tail of the edge \(s\) and head of the edge \(t\) are given for each edge \(e \in E\) of graph \(G=(V, E)\), the combination of \(G\) and \(c, u, s\), and \(t\) is called a network, which is denoted by \(N=(G, c, u, s, t)\). Even when dealing with only some of \(c, u, s\), and \(t\), it is still called a network. For example, when dealing with a problem in which the tail of each edge \(s\) and head of each edge \(t\) have not specifically been fixed, the network is represented by \(N=(G, c, u)\).

\section*{(7) Flow}

The vector \(x(e)\) satisfying \(0 \leq x(e) \leq u(e)\) for each edge \(e \in E\) of a network is called the flow on network \(N\).
(8) Minimal-cost flow problem

When real numbers \(b(v)\) are given for each vertex \(v \in V\) of a given network \(N\) and the following relationships hold:
\[
\sum_{\operatorname{tail}(e)=v} x(e)-\sum_{\operatorname{head}(e)=v} x(e)=b(v)
\]
\[
\sum_{v \in V} b(v)=0
\]
the problem of obtaining flows \(x(e)\) that minimize:
\[
\sum_{e \in E} c(e) x(e)
\]
is called the minimal-cost flow problem.

\section*{Appendix B}

\section*{MACHINE CONSTANTS USED IN ASL C INTERFACE}

\section*{B. 1 Units for Determining Error}

The table below shows values in ASL C interface as units for determining error in floating point calculations. The units shown in the table are numeric values determined by the internal representation of floating point data. ASL C interface uses these units for determining convergence and zeros.

Table B-1 Units for Determining Error
\begin{tabular}{|c|c|}
\hline Single-precision & Double-precision \\
\hline \(2^{-23}\left(\simeq 1.19 \times 10^{-7}\right)\) & \(2^{-52}\left(\simeq 2.22 \times 10^{-16}\right)\) \\
\hline
\end{tabular}

Remark: The unit for determining error \(\varepsilon\), which is also called the machine \(\varepsilon\), is usually defined as the smallest positive constant for which the calculation result of \(1+\varepsilon\) differs from 1 in the corresponding floating point mode. Therefore, seeing the unit for determining error enables you to know the maximum number of significant digits of an operation (on the mantissa) in that floating point mode.

\section*{B. 2 Maximum and Minimum Values of Floating Point Data}

The table below shows maximum and minimum values of floating point data defined within ASL C interface. Note that the maximum and minimum values shown below may differ from the maximum and minimum values that are actually used by the hardware for each floating point mode.

Table B-2 Maximum and Minimum Values of Floating Point Data
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{1}{|c|}{ Single-precision } & \multicolumn{1}{|c|}{ Double-precision } \\
\hline Maximum value & \(2^{127}\left(2-2^{-23}\right)\left(\simeq 3.40 \times 10^{38}\right)\) & \(2^{1023}\left(2-2^{-52}\right)\left(\simeq 1.80 \times 10^{308}\right)\) \\
\hline \begin{tabular}{l} 
Positive \\
minimum value
\end{tabular} & \(2^{-126}\left(\simeq 1.17 \times 10^{-38}\right)\) & \(2^{-1022}\left(\simeq 2.23 \times 10^{-308}\right)\) \\
\hline \begin{tabular}{l} 
Negative \\
maximum value
\end{tabular} & \(-2^{-126}\left(\simeq-1.17 \times 10^{-38}\right)\) & \(-2^{-1022}\left(\simeq-2.23 \times 10^{-308}\right)\) \\
\hline Minimum value & \(-2^{127}\left(2-2^{-23}\right)\left(\simeq-3.40 \times 10^{38}\right)\) & \(-2^{1023}\left(2-2^{-52}\right)\left(\simeq-1.80 \times 10^{308}\right)\) \\
\hline
\end{tabular}

\section*{Index}
ASL_cam1hh : Vol.1, 106
ASL_cam1hm : Vol.1, 101
ASL_cam1mh : Vol.1, 96
ASL_cam1mm : Vol.1, 91
ASL_can1hh : Vol.1, 123
ASL_can1hm : Vol.1, 119
ASL_can1mh : Vol.1, 115
ASL_can1mm : Vol.1, 111
ASL_canvj1 : Vol.1, 155
ASL_cargjm : Vol.1, 44
ASL_carsjd : Vol.1, 38
ASL_cbgmdi : Vol.2, 80
ASL_cbgmlc : Vol.2, 72
ASL_cbgmls : Vol.2, 74
ASL_cbgmlu : Vol.2, 70
ASL_cbgmlx : Vol.2, 82
ASL_cbgmms : Vol.2, 76
ASL_cbgmsl : Vol.2, 64
ASL_cbgmsm : Vol.2, 59
ASL_cbgndi : Vol.2, 102
ASL_cbgnlc : Vol.2, 94
ASL_cbgnls : Vol.2, 96
ASL_cbgnlu : Vol.2, 92
ASL_cbgnlx : Vol.2, 104
ASL_cbgnms : Vol.2, 98
ASL_cbgnsl : Vol.2, 88
ASL_cbgnsm : Vol.2, 84
ASL_cbhedi : Vol.2, 239
ASL_cbhels : Vol.2, 233
ASL_cbhelx : Vol.2, 241
ASL_cbhems : Vol.2, 235
ASL_cbhesl : Vol.2, 224
ASL_cbheuc : Vol.2, 231
ASL_cbheud : Vol.2, 229
ASL_cbhfdi : Vol.2, 220
ASL_cbhfls : Vol.2, 214
ASL_cbhflx : Vol.2, 222
ASL_cbhfms : Vol.2, 216
ASL_cbhfsl : Vol.2, 205
ASL_cbhfuc : Vol.2, 212
ASL_cbhfud : Vol.2, 210
ASL_cbhpdi : Vol.2, 182
ASL_cbhpls : Vol.2, 176
ASL_cbhplx : Vol.2, 184
ASL_cbhpms : Vol.2, 178

ASL_cam1hm : Vol.1, 101
ASL_cam1mh : Vol.1, 96
_cam1mm : Vol.1, 91

ASL_can1hm : Vol.1, 119
ASL_can1mh : Vol.1, 115
ASL_can1mm : Vol.1, 111

ASL_carsjd : Vol.1, 38
ASL_cbgmdi : Vol.2, 80
ASL_cbgmlc : Vol.2, 72
ASL_cbgmls : Vol.2, 74

ASL_cbgmlx : Vol.2, 82
ASL_cbgmms : Vol.2, 76
ASL_cbgmsl : Vol.2, 64
ASL_cbgmsm : Vol.2, 59
ASL_cbgnlc : Vol.2, 94
ASL_cbgnls : Vol.2, 96
ASL_cbgnlu : Vol.2, 92
ASL_cbgnlx : Vol.2, 104
ASL_Cbgnms : Vol.2, 98
ASL_cbgnsm : Vol.2, 84
ASL_cbhedi : Vol.2, 239
ASL_cbhels : Vol.2, 233
ASL_cbhelx : Vol.2, 241
Vol.2, 235

ASL_cbheuc : Vol.2, 231
ASL_cbheud : Vol.2, 229
ASL_cbhfdi : Vol.2, 220
ASL_cbhfls : Vol.2, 214
ASL_cbhflx : Vol.2, 222

ASL_cbhfsl : Vol.2, 205
ASL_cbhfuc : Vol.2, 212
ASL_cbhfud : Vol.2, 210
ASL_cbhpdi : Vol.2, 182
ASL_cbhplx : Vol.2, 184
ASL_cbhpms : Vol.2, 178
\begin{tabular}{l} 
ASL_cbhpsl : Vol.2, 167 \\
ASL_cbhpuc : Vol.2, 174 \\
ASL_cbhpud : Vol.2, 172 \\
ASL_cbhrdi : Vol.2, 201 \\
ASL_cbhrls : Vol.2, 195 \\
ASL_cbhrlx : Vol.2, 203 \\
ASL_cbhrms : Vol.2, 197 \\
ASL_cbhrsl : Vol.2, 186 \\
ASL_cbhruc : Vol.2, 193 \\
ASL_cbhrud : Vol.2, 191 \\
ASL_ccgeaa : Vol.1, 191 \\
ASL_ccgean : Vol.1, 196 \\
ASL_ccghaa : Vol.1, 379 \\
ASL_ccghan : Vol.1, 384 \\
ASL_ccgjaa : Vol.1, 386 \\
ASL_ccgjan : Vol.1, 391 \\
ASL_ccgkaa : Vol.1, 393 \\
ASL_ccgkan : Vol.1, 398 \\
ASL_ccgnaa : Vol.1, 198 \\
ASL_ccgnan : Vol.1, 202 \\
ASL_ccgraa : Vol.1, 372 \\
ASL_ccgran : Vol.1, 377 \\
ASL_ccheaa : Vol.1, 244 \\
\hline ASL_cchean : Vol.1, 248 \\
ASL_ccheee : Vol.1, 257 \\
ASL_ccheen : Vol.1, 262 \\
ASL_cchesn : Vol.1, 255 \\
ASL_cchess : Vol.1, 250 \\
ASL_cchjss : Vol.1, 320 \\
ASL_cchraa : Vol.1, 224 \\
ASL_cchran : Vol.1, 228 \\
ASL_cchree : Vol.1, 237 \\
ASL_cchren : Vol.1, 242 \\
ASL_cchrsn : Vol.1, 235 \\
ASL_cchrss : Vol.1, 230 \\
ASL_cfc1bf : Vol.3, 61 \\
ASL_cfc1fb : Vol.3, 57 \\
ASL_cfc2bf : Vol.3, 127 \\
ASL_cfc2fb : Vol.3, 123 \\
ASL_cfc3bf : Vol.3, 157 \\
ASL_cfc3fb : Vol.3, 153 \\
ASL_cfcmbf : Vol.3, 93 \\
ASL_cfcmfb : Vol.3, 89 \\
ASL_cibh1n : Vol.5, 159 \\
ASL_cibh2n : Vol.5, 162
\end{tabular}

ASL_cbhpuc : Vol.2, 174
ASL_cbhpud : Vol.2, 172
ASL_cbhrdi : Vol.2, 201
ASL_cbhrls : Vol.2, 103
ASL_cbhrms : Vol.2, 197
ASL_cbhrsl : Vol.2, 186
ASL_cbhruc : Vol.2, 193
ASL_cbhrud : Vol.2, 191
ASL_ccgeaa : Vol.1, 191
ASL_ccgean : Vol.1, 196
ASL_ccghaa : Vol.1, 379
ccghan:Vol.1, 384
ASL_ccgjan : Vol.1, 391
ASL_ccgkaa : Vol.1, 393
ASL_ccgkan : Vol.1, 398
ASL_ccgnaa : Vol.1, 198
ASL_ccgnan : Vol.1, 202
ASL_ccgraa : Vol.1, 372
ASL_ccheaa : Vol.1, 244
ASL_cchean : Vol.1, 248
ASL_ccheee : Vol.1, 257
ASL_ccheen : Vol.1, 262

ASL_cchess : Vol.1, 250
ASL_cchjss : Vol.1, 320
ASL_cchraa : Vol.1, 224
ASL_cchran : Vol.1, 228
ASL_cchren : Vol.1, 242
ASL_cchrsn : Vol.1, 235
ASL_cchrss : Vol.1, 230
Cfclbf:Vol.3, 61

ASL_cfc2bf : Vol.3, 127
ASL_cfc2fb : Vol.3, 123
ASL_cfc3bf : Vol.3, 157
ASL_cfc3fb : Vol.3, 153
ASL_cfcmbf : Vol.3, 93

ASL_cibh1n : Vol.5, 159
ASL_cibh2n : Vol.5, 162
ASL_cibinz : Vol.5, 141
ASL_cibjnz : Vol.5, 96
ASL_cibknz : Vol.5, 144
ASL_cibynz : Vol.5, 99
ASL_cigamz : Vol.5, 205
ASL_ciglgz : Vol.5, 207
ASL_clacha : Vol.5, 392
ASL_clncis : Vol.5, 410
ASL_d1cdbn : Vol.6, 79
ASL_d1cdbt : Vol.6, 123
ASL_d1cdcc : Vol.6, 160
ASL_d1cdch : Vol.6, 83
ASL_d1cdex : Vol.6, 145
ASL_d1cdfb : Vol.6, 109
ASL_d1cdgm : Vol.6, 116
ASL_d1cdgu : Vol.6, 148
ASL_d1cdib : Vol.6, 127
ASL_d1cdic : Vol.6, 86
ASL_d1cdif : Vol.6, 113
ASL_d1cdig : Vol.6, 120
ASL_d1cdin : Vol.6, 76
ASL_d1cdis : Vol.6, 106
ASL_d1cdit : Vol.6, 99
ASL_d1cdix : Vol.6, 93
ASL_d1cdld : Vol.6, 151
ASL_d1cdlg : Vol.6, 157
ASL_d1cdln : Vol.6, 154
ASL_d1cdnc : Vol.6, 89
ASL_d1cdno : Vol.6, 73
ASL_d1cdnt : Vol.6, 102
ASL_d1cdpa : Vol.6, 137
ASL_d1cdtb : Vol.6, 96
ASL_d1cdtr : Vol.6, 134
ASL_d1cduf : Vol.6, 131
ASL_d1cdwe : Vol.6, 141
ASL_d1ddbp : Vol.6, 164
ASL_d1ddgo : Vol.6, 168
ASL_d1ddhg : Vol.6, 174
ASL_d1ddhn : Vol.6, 177
ASL_d1ddpo : Vol.6, 171
ASL_d2ba1t : Vol.6, 188
ASL_d2ba2s : Vol.6, 195
ASL_d2bagm : Vol.6, 210
ASL_d2bahm : Vol.6, 219
ASL_d2bamo : Vol.6, 215
ASL_d2bams : Vol.6, 204
ASL_d2basm : Vol.6, 223
ASL_d2ccma : Vol.6, 249
ASL_d2ccmt : Vol.6, 243
ASL_d2ccpr : Vol.6, 256
ASL_d2vcgr : Vol.6, 233
ASL_d2vcmt : Vol.6, 227
ASL_d3iecd : Vol.6, 337
ASL_d3ieme : Vol.6, 322

ASL_cibjnz : Vol.5, 96
ASL_cibknz : Vol.5, 144
ASL_cibynz : Vol.5, 99
ASL_cigamz : Vol.5, 205
ASL_ciglgz : Vol.5, 207
ASL_Clacha : Vol.5, 392
ASL_clncis : Vol.5, 410

ASL_d1cdbt : Vol.6, 123
ASL_d1cdcc : Vol.6, 160
ASL_d1cdch : Vol.6, 83
ASL_d1cdex : Vol.6, 145

ASL_d1cdgm : Vol.6, 116
ASL_d1cdgu : Vol.6, 148
ASL_d1cdib : Vol.6, 127
Vol.6, 86

ASL_d1cdig : Vol.6, 120
ASL_d1cdin : Vol.6, 76
ASL_d1cdis : Vol.6, 106
ASL_d1cdit : Vol.6, 99
ASL_d1cdix : Vol.6, 93

ASL_d1cdlg : Vol.6, 157
ASL_d1cdln : Vol.6, 154
ASL_d1cdnc : Vol.6, 89
ASL_d1cdno : Vol.6, 73
ASL_d1cdnt : Vol.6, 102

ASL_d1cdtb : Vol.6, 96
ASL_d1cdtr : Vol.6, 134
ASL_d1cduf : Vol.6, 131
ASL_d1cdwe : Vol.6, 141

ASL_d1ddgo : Vol.6, 168
ASL_d1ddhg : Vol.6, 174
ASL_d1ddhn : Vol.6, 177
ASL_d1ddpo : Vol.6, 171
_d2ba1t : Vol.6, 188

ASL_d2bagm : Vol.6, 210
ASL_d2bahm : Vol.6, 219
ASL_d2bamo : Vol.6, 215
ASL_d2bams : Vol.6, 204

ASL_d2ccma : Vol.6, 249
ASL_d2ccmt : Vol.6, 243
ASL_d2ccpr : Vol.6, 256
ASL_d2vcgr : Vol.6, 233

ASL_d3iecd : Vol.6, 337
ASL_d3ieme : Vol.6, 322

ASL_d3iera : Vol.6, 319
ASL_d3iesr : Vol.6, 342
ASL_d3iesu : Vol.6, 326
ASL_d3ietc : Vol.6, 333
ASL_d3ieva : Vol.6, 330
ASL_d3tscd : Vol.6, 380
ASL_d3tsme : Vol.6, 357
ASL_d3tsra : Vol.6, 348
ASL_d3tsrd : Vol.6, 352
ASL_d3tssr : Vol.6, 383
ASL_d3tssu : Vol.6, 362
ASL_d3tstc : Vol.6, 373
ASL_d3tsva : Vol.6, 369
ASL_d41wr1 : Vol.6, 397
ASL_d42wr1 : Vol.6, 417
ASL_d42wrm : Vol.6, 409
ASL_d42wrn : Vol.6, 403
ASL_d4bi01 : Vol.6, 477
ASL_d4gl01 : Vol.6, 472
ASL_d4mu01 : Vol.6, 452
ASL_d4mwrf : Vol.6, 426
ASL_d4mwrm : Vol.6, 439
ASL_d4rb01 : Vol.6, 468
ASL_d5chef : Vol.6, 486
ASL_d5chmd : Vol.6, 497
ASL_d5chmn : Vol.6, 493
ASL_d5chtt : Vol.6, 490
ASL_d5temh : Vol.6, 509
ASL_d5tesg : Vol.6, 501
ASL_d5tesp : Vol.6, 513
ASL_d5tewl : Vol.6, 505
ASL_d6clan : Vol.6, 571
ASL_d6clda : Vol.6, 576
ASL_d6clds : Vol.6, 565
ASL_d6cpcc : Vol.6, 526
ASL_d6cpsc : Vol.6, 528
ASL_d6cvan : Vol.6, 543
ASL_d6cvsc : Vol.6, 546
ASL_d6dafn : Vol.6, 553
ASL_d6dasc : Vol.6, 557
ASL_d6fald : Vol.6, 535
ASL_d6favr : Vol.6, 537
ASL_dabmcs : Vol.1, 13
ASL_dabmel : Vol.1, 17
ASL_dam1ad : Vol.1, 55
ASL_dam1mm : Vol.1, 75
ASL_dam1ms : Vol.1, 65
ASL_dam1mt : Vol.1, 79
ASL_dam1mu : Vol.1, 61
ASL_dam1sb : Vol.1, 58
ASL_dam1tm : Vol.1, 83
ASL_dam1tp : Vol.1, 136
ASL_dam1tt : Vol.1, 87
ASL_dam1vm : Vol.1, 127

ASL_dam3tp : Vol.1, 139
ASL_dam3vm : Vol.1, 130
ASL_dam4vm : Vol.1, 133
ASL_damt1m : Vol.1, 69
ASL_damvj1 : Vol.1, 143
ASL_damvj3 : Vol.1, 147
ASL_damvj4 : Vol.1, 151
ASL_dargjm : Vol.1, 32
ASL_darsjd : Vol.1, 26
ASL_dasbcs : Vol.1, 20
ASL_dasbel : Vol.1, 23
ASL_datm1m : Vol.1, 72
ASL_dbbddi : Vol.2, 255
ASL_dbbdlc : Vol.2, 250
ASL_dbbdls : Vol.2, 253
ASL_dbbdlu : Vol.2, 248
ASL_dbbdlx : Vol.2, 257
ASL_dbbdsl : Vol.2, 243
ASL_dbbpdi : Vol.2, 272
ASL_dbbpls : Vol.2, 270
ASL_dbbplx : Vol.2, 274
ASL_dbbpsl : Vol.2, 262
ASL_dbbpuc : Vol.2, 268
ASL_dbbpuu : Vol.2, 266
ASL_dbgmdi : Vol.2, 52
ASL_dbgmlc : Vol.2, 44
ASL_dbgmls : Vol.2, 46
ASL_dbgmlu : Vol.2, 42
ASL_dbgmlx : Vol.2, 54
ASL_dbgmms : Vol.2, 48
ASL_dbgmsl : Vol.2, 37
ASL_dbgmsm : Vol.2, 32
ASL_dbpddi : Vol.2, 116
ASL_dbpdls : Vol.2, 114
ASL_dbpdlx : Vol.2, 118
ASL_dbpdsl : Vol.2, 106
ASL_dbpduc : Vol.2, 112
ASL_dbpduu : Vol.2, 110
ASL_dbsmdi : Vol.2, 154
ASL_dbsmls : Vol.2, 148
ASL_dbsmlx : Vol.2, 156
ASL_dbsmms : Vol.2, 150
ASL_dbsmsl : Vol.2, 139
ASL_dbsmuc : Vol.2, 146
ASL_dbsmud : Vol.2, 144
ASL_dbsnls : Vol.2, 165
ASL_dbsnsl : Vol.2, 158
ASL_dbsnud : Vol.2, 163
ASL_dbspdi : Vol.2, 135
ASL_dbspls : Vol.2, 129
ASL_dbsplx : Vol.2, 137
ASL_dbspms : Vol.2, 131
ASL_dbspsl : Vol.2, 120
ASL_dbspuc : Vol.2, 127

ASL_dbspud : Vol.2, 125
ASL_dbtdsl : Vol.2, 276
ASL_dbtlco : Vol.2, 324
ASL_dbtldi : Vol.2, 326
ASL_dbtlsl : Vol.2, 321
ASL_dbtosl : Vol.2, 302
ASL_dbtpsl : Vol.2, 280
ASL_dbtssl : Vol.2, 306
ASL_dbtuco : Vol.2, 317
ASL_dbtudi : Vol.2, 319
ASL_dbtusl : Vol.2, 314
ASL_dbvmsl : Vol.2, 310
ASL_dcgbff : Vol.1, 400
ASL_dcgeaa : Vol.1, 177
ASL_dcgean : Vol.1, 183
ASL_dcggaa : Vol.1, 328
ASL_dcggan : Vol.1, 335
ASL_dcgjaa : Vol.1, 360
ASL_dcgjan : Vol.1, 364
ASL_dcgkaa : Vol.1, 366
ASL_dcgkan : Vol.1, 370
ASL_dcgnaa : Vol.1, 185
ASL_dcgnan : Vol.1, 189
ASL_dcgsaa : Vol.1, 337
ASL_dcgsan : Vol.1, 342
ASL_dcgsee : Vol.1, 352
ASL_dcgsen : Vol.1, 358
ASL_dcgssn : Vol.1, 350
ASL_dcgsss : Vol.1, 344
ASL_dcsbaa : Vol.1, 264
ASL_dcsban : Vol.1, 268
ASL_dcsbff : Vol.1, 277
ASL_dcsbsn : Vol.1, 275
ASL_dcsbss : Vol.1, 270
ASL_dcsjss : Vol.1, 311
ASL_dcsmaa : Vol.1, 204
ASL_dcsman : Vol.1, 208
ASL_dcsmee : Vol.1, 217
ASL_dcsmen : Vol.1, 222
ASL_dcsmsn : Vol.1, 215
ASL_dcsmss : Vol.1, 210
ASL_dcsrss : Vol.1, 303
ASL_dcstaa : Vol.1, 283
ASL_dcstan : Vol.1, 287
ASL_dcstee : Vol.1, 296
ASL_dcsten : Vol.1, 301
ASL_dcstsn : Vol.1, 294
ASL_dcstss : Vol.1, 289
ASL_dfasma : Vol.6, 285
ASL_dfc1bf : Vol.3, 50
ASL_dfc1fb : Vol.3, 46
ASL_dfc2bf : Vol.3, 117
ASL_dfc2fb : Vol.3, 113
ASL_dfc3bf : Vol.3, 146
\begin{tabular}{|c|c|}
\hline & ol.3, 14 \\
\hline df & 3, 81 \\
\hline df & 3, 77 \\
\hline ASL_dfcn & , \\
\hline ASL_df cn & 3, 187 \\
\hline _df & 3, 195 \\
\hline df & ol.3, \\
\hline df & 3, 216 \\
\hline ASL_dfc & ol.3, 224 \\
\hline ASL dff & l.6, 283 \\
\hline ASL dfc & 6, 281 \\
\hline ASL df & 1.6, 279 \\
\hline ASL_df & 1.6, 274 \\
\hline & 1.6, 269 \\
\hline L_dfdp & 6, \\
\hline L_dfdp & l.6, \\
\hline L_dfdp & 1.6, 294 \\
\hline 12 & ol.3, 273 \\
\hline ASL_dfla & ol.3, 267 \\
\hline L_dfps & 1.3, 235 \\
\hline L_dfp & ol.3, 24 \\
\hline _dfps & ol.3, 252 \\
\hline ASL_dfr & l.3, 71 \\
\hline ASL_df & l.3, 67 \\
\hline ASL_dfr & l.3, 136 \\
\hline ASL_df & l.3, 132 \\
\hline df & l.3, 169 \\
\hline _df & l.3, 164 \\
\hline ASL_df & 3, 106 \\
\hline L_dfr & ol.3, 101 \\
\hline df & 1.3, 306 \\
\hline _dfw & 1.3, 308 \\
\hline df & -1.3, 277 \\
\hline ASL_df & 1.3, 289 \\
\hline ASL_d & 1.3, 296 \\
\hline ASL_df & 1.3, 280 \\
\hline df & ol.3, 284 \\
\hline df & l.3, 292 \\
\hline df & 1.3, 301 \\
\hline df & l.3, 303 \\
\hline L_dgic & ol.4, 513 \\
\hline L_dgic & ol.4, 537 \\
\hline _dgi & ol.4, 483 \\
\hline dgi & -1.4, 486 \\
\hline _dgic & 1.4, 478 \\
\hline L_dgic & Vol.4, 469 \\
\hline _dgi & 4, 471 \\
\hline L_dgi & Vol.4, 473 \\
\hline _dgic & 1.4, 475 \\
\hline L_dgic & ol.4, 480 \\
\hline SL_dgid & Vol.4, 517 \\
\hline dgid & 1.4, 492 \\
\hline _dgidm & Vol.4, 445 \\
\hline & \\
\hline
\end{tabular}
ASL_dfc3fb : Vol.3, 142
ASL_dfcmbf : Vol.3, 81
Vol.3, 77
ASL_dfcn2d : Vol.3, 187
ASL_dfcn3d : Vol.3, 195
AsL_dfcr1d:Vol.3, 206
ASL_dfcr3d : Vol.3, 224
ASL_dfcrcs : Vol.6, 283
ASL_dfcrcz : Vol.6, 281
ASL_dfcrsc : Vol.6, 279
Vol.6, 274
ASL_dfdped : Vol.6, 291
ASL_dfdpes : Vol.6, 289
ASL_dfdpet : Vol.6, 294
ASL_dflage : Vol.3, 273
ASL_dfps1d : Vol.3, 235
ASL_dfps2d : Vol.3, 243
ASL_dfps3d : Vol.3, 252
ASL_dfr1bf : Vol.3, 71
ASL_dfr2bf : Vol.3, 136
ASL_dfr2fb : Vol.3, 132
ASL_dfr3bf : Vol.3, 169
ASL_dfr3fb : Vol.3, 164
ASL_dfrmbf :Vol.3, 106
ASL_dfwtff : Vol.3, 306
ASL_dfwtft : Vol.3, 308
ASL_dfwth1 : Vol.3, 277
ASL_dfwth2 : Vol.3, 289
ASL_dfwthr : Vol.3, 280
ASL_dfwths : Vol.3, 284
ASL_dfwtht : Vol.3, 292
ASL_dfwtmf : Vol.3, 301
ASL_dgicbp: Vol.4, 513
ASL_dgicbs : Vol.4, 537
ASL_dgiccm : Vol.4, 483
ASL_dgiccn : Vol.4, 486
ASL_dgicco : Vol.4, 478
ASL_dgiccq: Vol.4, 471
ASL_dgiccr : Vol.4, 473
ASL_dgiccs : Vol.4, 475
ASL_dgicct : Vol.4, 480
ASL_dgidby : Vol.4, 517
ASL_dgidmc : Vol.4, 445
ASL_dgidpc : Vol.4, 432

ASL_dgidsc : Vol.4, 438
ASL_dgidyb : Vol.4, 503
ASL_dgiibz : Vol.4, 519
ASL_dgiicz: Vol.4, 495
ASL_dgiimc : Vol.4, 463
ASL_dgiipc : Vol.4, 452
ASL_dgiisc : Vol.4, 457
ASL_dgiizb : Vol.4, 509
ASL_dgisbx : Vol.4, 515
ASL_dgiscx : Vol.4, 490
ASL_dgisi1 : Vol.4, 540
ASL_dgisi2 : Vol.4, 545
ASL_dgisi3 : Vol.4, 554
ASL_dgismc : Vol.4, 426
ASL_dgispc : Vol.4, 416
ASL_dgispo : Vol.4, 521
ASL_dgispr : Vol.4, 525
ASL_dgiss1 : Vol.4, 561
ASL_dgiss2 : Vol.4, 566
ASL_dgiss3 : Vol.4, 574
ASL_dgissc : Vol.4, 420
ASL_dgisso : Vol.4, 529
ASL_dgissr : Vol.4, 533
ASL_dgisxb : Vol.4, 497
ASL_dh2int : Vol.4, 299
ASL_dhbdfs : Vol.4, 264
ASL_dhbsfc : Vol.4, 267
ASL_dhemnh : Vol.4, 270
ASL_dhemni : Vol.4, 287
ASL_dhemnl : Vol.4, 223
ASL_dhnanl : Vol.4, 259
ASL_dhnefl : Vol.4, 235
ASL_dhnenh : Vol.4, 279
ASL_dhnenl : Vol.4, 250
ASL_dhnfml : Vol.4, 317
ASL_dhnfnm : Vol.4, 307
ASL_dhnifl : Vol.4, 240
ASL_dhninh : Vol.4, 283
ASL_dhnini : Vol.4, 295
ASL_dhninl : Vol.4, 255
ASL_dhnofh : Vol.4, 274
ASL_dhnofi : Vol.4, 291
ASL_dhnofl : Vol.4, 230
ASL_dhnpnl : Vol.4, 245
ASL_dhnrml : Vol.4, 312
ASL_dhnrnm : Vol.4, 302
ASL_dhnsnl : Vol.4, 227
ASL_dibaid : Vol.5, 189
ASL_dibaix : Vol.5, 185
ASL_dibbei : Vol.5, 167
ASL_dibber : Vol.5, 165
ASL_dibbid : Vol.5, 191
ASL_dibbix : Vol.5, 187
ASL_dibimx : Vol.5, 135
\begin{tabular}{|c|c|}
\hline & Vol.5, 129 \\
\hline ASL_dibjmx & , 90 \\
\hline ASL_dibjn & Vol.5, 84 \\
\hline ASL_dibkei & Vol.5, 171 \\
\hline & Vol.5, 169 \\
\hline m & Vol.5, 138 \\
\hline ASL_dibknx & Vol.5, 132 \\
\hline ASL_dibs & Vol.5, 153 \\
\hline ASL_dibsjn & Vol.5, 147 \\
\hline SL_dibskn & Vol.5, 156 \\
\hline & 0 \\
\hline bym & Vol.5, 93 \\
\hline ibyn & Vol.5, 87 \\
\hline ASL_dieii1 & Vol.5, 221 \\
\hline ASL_dieii2 & Vol \\
\hline SL_dieii3 & Vol.5, 226 \\
\hline SL_dieii4 & Vol.5, 228 \\
\hline ASL_digig1 & Vo \\
\hline igig & Vol \\
\hline SL_diicos & Vol.5, 261 \\
\hline ASL_diierf & Vol.5, \\
\hline ASL_diisin & Vol.5, 259 \\
\hline , & Vol.5, 285 \\
\hline L_dileg2 & Vol.5, 288 \\
\hline mtce & Vol.5, 306 \\
\hline dimtse & Vol.5, 309 \\
\hline _diopc2 & Vol.5, 302 \\
\hline SL_diopch & Vol.5, 300 \\
\hline - & Vol.5, \\
\hline diop & Vol.5, 298 \\
\hline _diopla & Vol.5, 296 \\
\hline SL_diople & Vol.5, 291 \\
\hline ixeps & Vol.5, 324 \\
\hline SL_dizbs0 & Vol.5, 102 \\
\hline SL_dizbs1 & Vol.5, 105 \\
\hline izbsl & Vol.5, 11 \\
\hline izbsn & Vol.5, 108 \\
\hline L_dizbyn & Vol.5, 111 \\
\hline _dizglw & Vol.5, 293 \\
\hline _djtecc & Vol.6, 33 \\
\hline SL_djteex & Vol.6, 29 \\
\hline SL_djtegm & Vol.6, 45 \\
\hline SL_djtegu & Vol.6, 37 \\
\hline djtelg & Vol.6, 49 \\
\hline L_djteno & Vol.6, 25 \\
\hline SL_djteun & Vol.6, 20 \\
\hline SL_djtewe & Vol.6, 41 \\
\hline L_dkfncs & Vol.4, 72 \\
\hline L_dkhncs & Vol.4, 78 \\
\hline L_dkinct & Vol.4, 55 \\
\hline SL_dkmncn & Vol.4, 84 \\
\hline SL_dksnca & Vol.4, 49 \\
\hline SL_dksncs & Vol.4, 43 \\
\hline SL_dkssca & Vol.4, 65 \\
\hline
\end{tabular}

ASL_dibjmx : Vol.5, 90
ASL_dibjnx : Vol.5, 84
ASL_dibkei : Vol.5, 171
ASL_dibker : Vol.5, 169
ASL_dibkmx : Vol.5, 138
ASL_dibknx : Vol.5, 132
SL_dibsin : Vol.5, 153

ASL_dibskn : Vol.5, 156
ASL_dibsyn : Vol.5, 150
ASL_dibymx : Vol.5, 93
ASL_dibynx : Vol.5, 87

ASL_dieii2 : Vol.5, 223
ASL_dieii3 : Vol.5, 226
ASL_dieii4 : Vol.5, 228
ASL_digig1 : Vol.5, 199
SL_digig2 : Vol.5, 202

ASL_diierf : Vol.5, 281
ASL_diisin : Vol.5, 259
ASL_dileg1 : Vol.5, 285
SL_dileg2 : Vol.5, 288
ASL_dimtce : Vol.5, 306

ASL_diopc2 : Vol.5, 302
ASL_diopch : Vol.5, 300
Vol.5, 304

ASL_diopla : Vol.5, 296
ASL_diople : Vol.5, 291
ASL_dixeps : Vol.5, 324
ASL_dizbs0 : Vol.5, 102
ASL_dizbs1 : Vol.5, 105
. Vol.5, 114

ASL_dizbsn : Vol.5, 108
ASL_dizglw : Vol.5, 293
ASL_djtecc : Vol.6, 33
_djteex : Vol.6, 29

ASL_djtegu : Vol.6, 37
ASL_djtelg : Vol.6, 49
ASL_djteno : Vol.6, 25
ASL_djteun : Vol.6, 20

ASL_dkfncs : Vol.4, 72
ASL_dkhncs : Vol.4, 78
ASL_dkinct : Vol.4, 55
Vol.4, 84

ASL_dksncs : Vol.4, 43
ASL_dkssca : Vol.4, 65
\begin{tabular}{|c|c|}
\hline & , \\
\hline ASL_dlnrds & 96 \\
\hline ASL_dlnris & Vol.5, 400 \\
\hline & Vol.5, \\
\hline ASL_dlnrss & 403 \\
\hline ASL_dlsrds & Vol \\
\hline ASL_dlsris & \\
\hline ASL_dmclaf & Vol.5, 490 \\
\hline & Vol.5, 517 \\
\hline & Vol \\
\hline ASL_dmclmz & Vol.5, 502 \\
\hline ASL_dmclsn & 483 \\
\hline & 4 \\
\hline - & 4 \\
\hline dmcql & Vol.5, 538 \\
\hline , & 1 \\
\hline ASL_dmcusn & Vol.5, 479 \\
\hline Sp11 & Vol.5, 567 \\
\hline Spl & Vol.5, 558 \\
\hline _dmspm & Vol.5, 563 \\
\hline ASL_dmsqpm & Vo \\
\hline ¢ & Vol.5, 469 \\
\hline & Vol.5, 465 \\
\hline ASL_dmussn & O1.5, \\
\hline ASL_dmuusn & Vol.5, 462 \\
\hline cbpo & Vol.4, \\
\hline SL_dndaao & Vol.4, 362 \\
\hline ASL_dndanl & 372 \\
\hline SL_dndapo & Vol.4, 367 \\
\hline L_dngap & Vol.4, 386 \\
\hline ASL_dnlnma & Vol. 6 \\
\hline __dnlnrg & Vol.6, 592 \\
\hline _d & Vol.6, 598 \\
\hline SL_dnnlgf & Vol.6, 6 \\
\hline SL_dnnlp & Vol.6, 611 \\
\hline SL_dnrap & Vol.4, 379 \\
\hline SL_dofnnf & Vol.4, \\
\hline SL_dofnnv & Vol.4, 108 \\
\hline v & Vol.4, 136 \\
\hline SL_dohnnf & Vol.4, 129 \\
\hline L_dohn & Vol.4, 122 \\
\hline _doief2 & Vol.4, 149 \\
\hline _doiev1 & Vol.4, 153 \\
\hline L_dolnlv & Vol.4, 143 \\
\hline SL_dopdh2 & Vol.4, 157 \\
\hline SL_dopdh3 & Vol.4, 165 \\
\hline L_dosnnf & Vol.4, 100 \\
\hline _dosnnv & Vol.4, 91 \\
\hline SL_dpdapn & Vol.4, 347 \\
\hline dpdopl & Vol.4, 343 \\
\hline SL_dpgopl & Vol.4, 358 \\
\hline SL_dplopl & Vol.4, 351 \\
\hline L_dqfodx & Vol.4, 182 \\
\hline SL_dqmog & Vol.4, 186 \\
\hline
\end{tabular}

ASL_dlnrds : Vol.5, 396
ASL_dlnris : Vol.5, 400
ASL_dlnrsa : Vol.5, 406
ASL_dlnrss : Vol.5, 403
ASL_dlsrds : Vol.5, 414
ASL_dlsris : Vol.5, 421

ASL_dmclcp : Vol.5, 517
ASL_dmclmc : Vol.5, 511
ASL_dmclmz : Vol.5, 502
ASL_dmclsn : Vol.5, 483
ASL_dmcltp : Vol.5, 524
ASL_dmcqaz . Vol.5, 544

ASL_dmcqsn : Vol.5, 531
ASL_dmcusn : Vol.5, 479
ASL_dmsp11 : Vol.5, 567
L_dmsp1m : Vol.5, 558

ASL_dmsqpm : Vol.5, 551
ASL_dmumqg : Vol.5, 469
ASL_dmumqn : Vol.5, 465
ASL_dmussn : Vol.5, 474
ASL_dmuusn : Vol.5, 462

ASL_dndaao : Vol.4, 362
ASL_dndanl : Vol.4, 372
ASL_dndapo : Vol.4, 367
Ledngapl :Vol.4, 386

ASL_dnlnrg : Vol.6, 592
ASL_dnlnrr : Vol.6, 598
ASL_dnnlgf : Vol.6, 617
ASL_dnnlpo : Vol.6, 611

ASL_dofnnf : Vol.4, 115
ASL_dofnnv : Vol.4, 108
ASL_dohnlv : Vol.4, 136
ASL_dohnnf : Vol.4, 129
Vol.4, 122

ASL_doiev1 : Vol.4, 153
ASL_dolnlv : Vol.4, 143
ASL_dopdh2 : Vol.4, 157
ASL_dopdh3 : Vol.4, 165

ASL_dosnnv : Vol.4, 91
ASL_dpdapn : Vol.4, 347
ASL_dpdopl : Vol.4, 343
ASL_dpgopl : Vol.4, 358
Vol.4, 351

ASL_dqmogx : Vol.4, 186
\begin{tabular}{|c|c|}
\hline ASL_dqmo & Vol.4, 190 \\
\hline ASL_dqmoj & Vol.4, 194 \\
\hline ASL_dsmgo & Vol.5, 348 \\
\hline ASL_dsmgp & Vol.5, 352 \\
\hline ASL_dssta & Vol.5, 331 \\
\hline ASL_dssta & Vol.5, 335 \\
\hline ASL_dsstp & Vol.5, 344 \\
\hline ASL_dsstr & Vol.5, 340 \\
\hline ASL_dxa00 & Vol.1, 47 \\
\hline ASL_gam1 & SMP Functions \({ }^{(*)}\) \\
\hline ASL_gam1 & SMP Functions, 44 \\
\hline ASL_gam1m & SMP Functions, 39 \\
\hline ASL_gam1m & SMP Functions, 34 \\
\hline ASL_gan1 & SMP Functions, 66 \\
\hline ASL_gan1 & SMP Functions, 62 \\
\hline ASL_gan1m & SMP Functions, 58 \\
\hline ASL_gan1m & SMP Functions, 54 \\
\hline ASL_gbhes & SMP Functions, 156 \\
\hline ASL_gbheu & SMP Functions, 161 \\
\hline ASL_gbhfs & SMP Functions, 149 \\
\hline ASL_gbhfu & SMP Functions, 154 \\
\hline ASL_gbhps & SMP Functions, 133 \\
\hline ASL_gbhpu & SMP Functions, 139 \\
\hline ASL_gbhrs & SMP Functions, 141 \\
\hline ASL_gbhru & SMP Functions, 147 \\
\hline ASL_gcgj & SMP Functions, 302 \\
\hline ASL_gcgj & SMP Functions, 307 \\
\hline ASL_gcgka & SMP Functions, 309 \\
\hline ASL_gcgk & SMP Functions, 314 \\
\hline ASL_gcgr & SMP Functions, 294 \\
\hline ASL_gcgran & SMP Functions, 299 \\
\hline ASL_gchea & SMP Functions, 249 \\
\hline ASL_gchea & SMP Functions, 253 \\
\hline ASL_gches & SMP Functions, 261 \\
\hline ASL_gches & SMP Functions, 255 \\
\hline ASL_gchra & SMP Functions, 233 \\
\hline ASL_gchra & SMP Functions, 238 \\
\hline ASL_gchrs & SMP Functions, 246 \\
\hline ASL_gchrs & SMP Functions, 240 \\
\hline ASL_gfc2b & SMP Functions, 371 \\
\hline ASL_gfc2f & SMP Functions, 367 \\
\hline ASL_gfc3b & SMP Functions, 401 \\
\hline ASL_gfc3 & SMP Functions, 397 \\
\hline ASL_gf cmb & SMP Functions, 338 \\
\hline ASL_gf cmf & SMP Functions, 334 \\
\hline ASL_ham1h & SMP Functions, 49 \\
\hline ASL_ham1h & SMP Functions, 44 \\
\hline ASL_ham1m & SMP Functions, 39 \\
\hline ASL_ham1m & SMP Functions, 34 \\
\hline ASL_han1h & SMP Functions, 66 \\
\hline ASL_han1h & SMP Functions, 62 \\
\hline
\end{tabular}

\footnotetext{
\(\overline{(*)}\) SMP Functions \(=\) Shared Memory Parallel Processing Functions
}

ASL_han1mh : SMP Functions, 58
ASL_han1mm : SMP Functions, 54
ASL_hbgmlc : SMP Functions, 105
ASL_hbgmlu : SMP Functions, 103
ASL_hbgmsl : SMP Functions, 98
ASL_hbgmsm : SMP Functions, 92
ASL_hbgnlc : SMP Functions, 117
ASL_hbgnlu : SMP Functions, 115
ASL_hbgnsl : SMP Functions, 111
ASL_hbgnsm : SMP Functions, 107
ASL_hbhesl : SMP Functions, 156
ASL_hbheud : SMP Functions, 161
ASL_hbhfsl : SMP Functions, 149
ASL_hbhfud : SMP Functions, 154
ASL_hbhpsl : SMP Functions, 133
ASL_hbhpud : SMP Functions, 139
ASL_hbhrsl : SMP Functions, 141
ASL_hbhrud : SMP Functions, 147
ASL_hcgjaa : SMP Functions, 302
ASL_hcgjan : SMP Functions, 307
ASL_hcgkaa : SMP Functions, 309
ASL_hcgkan : SMP Functions, 314
ASL_hcgraa : SMP Functions, 294
ASL_hcgran : SMP Functions, 299
ASL_hcheaa : SMP Functions, 249
ASL_hchean : SMP Functions, 253
ASL_hchesn : SMP Functions, 261
ASL_hchess : SMP Functions, 255
ASL_hchraa : SMP Functions, 233
ASL_hchran : SMP Functions, 238
ASL_hchrsn : SMP Functions, 246
ASL_hchrss : SMP Functions, 240
ASL_hfc2bf : SMP Functions, 371
ASL_hfc2fb : SMP Functions, 367
ASL_hfc3bf : SMP Functions, 401
ASL_hfc3fb : SMP Functions, 397
ASL_hfcmbf : SMP Functions, 338
ASL_hfcmfb : SMP Functions, 334
ASL_iiierf : Vol.5, 283
ASL_jiierf : Vol.5, 283
ASL_pam1mm : SMP Functions, 18
ASL_pam1mt : SMP Functions, 22
ASL_pam1mu : SMP Functions, 14
ASL_pam1tm : SMP Functions, 26
ASL_pam1tt : SMP Functions, 30
ASL_pbsnsl : SMP Functions, 126
ASL_pbsnud : SMP Functions, 131
ASL_pbspsl : SMP Functions, 119
ASL_pbspud : SMP Functions, 124
ASL_pcgjaa : SMP Functions, 282
ASL_pcgjan : SMP Functions, 286
ASL_pcgkaa : SMP Functions, 288
ASL_pcgkan : SMP Functions, 292
ASL_pcgsaa : SMP Functions, 264
\begin{tabular}{l} 
ASL_pcgsan : SMP Functions, 270 \\
ASL_pcgssn : SMP Functions, 279 \\
ASL_pcgsss : SMP Functions, 272 \\
ASL_pcsmaa : SMP Functions, 220 \\
ASL_pcsman : SMP Functions, 224 \\
ASL_pcsmsn : SMP Functions, 231 \\
ASL_pcsmss : SMP Functions, 226 \\
ASL_pfc2bf : SMP Functions, 362 \\
ASL_pfc2fb : SMP Functions, 358 \\
ASL_pfc3bf : SMP Functions, 390 \\
ASL_pfc3fb : SMP Functions, 386 \\
ASL_pfcmbf : SMP Functions, 326 \\
ASL_pfcmfb : SMP Functions, 322 \\
ASL_pfcn2d : SMP Functions, 419 \\
ASL_pfcn3d : SMP Functions, 427 \\
ASL_pfcr2d : SMP Functions, 437 \\
ASL_pfcr3d : SMP Functions, 445 \\
ASL_pfps2d : SMP Functions, 456 \\
ASL_pfps3d : SMP Functions, 465 \\
ASL_pfr2bf : SMP Functions, 380 \\
ASL_pfr2fb : SMP Functions, 376 \\
ASL_pfr3bf : SMP Functions, 412 \\
ASL_pfr3fb : SMP Functions, 408 \\
ASL_pfrmbf : SMP Functions, 350 \\
ASL_pfrmfb : SMP Functions, 346 \\
ASL_pssta1 : SMP Functions, 484 \\
\hline ASL_pssta2 : SMP Functions, 488 \\
ASL_pxe010 : SMP Functions, 174 \\
ASL_pxe020 : SMP Functions, 183 \\
ASL_pxe030 : SMP Functions, 192 \\
ASL_pxe040 : SMP Functions, 202
\end{tabular}

ASL_pcgssn : SMP Functions, 279
ASt_pcgsss SMP Functions, 272

ASL_pcsman : SMP Functions, 224
ASL_pcsmsn : SMP Functions, 231
ASL_pcsmss : SMP Functions, 226
ASL_pfc2bf : SMP Functions, 362

ASL_pfc3bf : SMP Functions, 390
ASL_pfc3fb : SMP Functions, 386
ASL_pfcmbf : SMP Functions, 326
ASL_pfcmfb : SMP Functions, 322
ASL_pfen2d : SMP Functions, 41
ASL_pfcr2d : SMP Functions, 437
ASL_pfcr3d : SMP Functions, 445
ASL_pfps2d : SMP Functions, 456
ASL_pfps3d: SMP Functions, 465

ASL_pfr2fb : SMP Functions, 376
ASL_pfr3bf : SMP Functions, 412
ASL_pfr3fb : SMP Functions, 408
SMP Functions, 350

ASL_pssta1 : SMP Functions, 484
ASL_pssta2 : SMP Functions, 488
ASL_pxe010 : SMP Functions, 174
ASL_pxe020 : SMP Functions, 183
SMP Functions, 192

ASL_qam1mm : SMP Functions, 18
ASL_qam1mt : SMP Functions, 22
ASL_qam1mu : SMP Functions, 14

ASL_qbgmlc : SMP Functions, 90
ASL_qbgmlu : SMP Functions, 88
ASL_qbgmsl : SMP Functions, 83
_qbgms

ASL_qbsnud : SMP Functions, 131
ASL_qbspsl : SMP Functions, 119
ASL_qbspud : SMP Functions, 124
ASL_qcgjaa : SMP Functions, 282
ASL_qcgjan : SMP Functions, 286
ASL_qcgkaa : SMP Functions, 288
ASL_qcgsaa : SMP Functions, 264
ASL_qcgsan : SMP Functions, 270
ASL_qcgssn : SMP Functions, 279
ASL_qcsmaa : SMP Functions, 220
ASL_qcsman : SMP Functions, 224

ASL_qcsmsn : SMP Functions, 231
ASL_qcsmss : SMP Functions, 226
ASL_qfc2bf : SMP Functions, 362
ASL_qfc2fb : SMP Functions, 358
ASL_qfc3bf : SMP Functions, 390
ASL_qfc3fb : SMP Functions, 386
ASL_qfcmbf : SMP Functions, 326
ASL_qfcmfb : SMP Functions, 322
ASL_qfcn2d : SMP Functions, 419
ASL_qfcn3d : SMP Functions, 427
ASL_qfcr2d : SMP Functions, 437
ASL_qfcr3d : SMP Functions, 445
ASL_qfps2d : SMP Functions, 456
ASL_qfps3d : SMP Functions, 465
ASL_qfr2bf : SMP Functions, 380
ASL_qfr2fb : SMP Functions, 376
ASL_qfr3bf : SMP Functions, 412
ASL_qfr3fb : SMP Functions, 408
ASL_qfrmbf : SMP Functions, 350
ASL_qfrmfb : SMP Functions, 346
ASL_qssta1 : SMP Functions, 484
ASL_qssta2 : SMP Functions, 488
ASL_qxe010 : SMP Functions, 174
ASL_qxe020 : SMP Functions, 183
ASL_qxe030 : SMP Functions, 192
ASL_qxe040 : SMP Functions, 202
ASL_r1cdbn : Vol.6, 79
ASL_r1cdbt : Vol.6, 123
ASL_r1cdcc : Vol.6, 160
ASL_r1cdch : Vol.6, 83
ASL_r1cdex : Vol.6, 145
ASL_r1cdfb : Vol.6, 109
ASL_r1cdgm : Vol.6, 116
ASL_r1cdgu : Vol.6, 148
ASL_r1cdib : Vol.6, 127
ASL_r1cdic : Vol.6, 86
ASL_r1cdif : Vol.6, 113
ASL_r1cdig : Vol.6, 120
ASL_r1cdin : Vol.6, 76
ASL_r1cdis : Vol.6, 106
ASL_r1cdit : Vol.6, 99
ASL_r1cdix : Vol.6, 93
ASL_r1cdld : Vol.6, 151
ASL_r1cdlg : Vol.6, 157
ASL_r1cdln : Vol.6, 154
ASL_r1cdnc : Vol.6, 89
ASL_r1cdno : Vol.6, 73
ASL_r1cdnt : Vol.6, 102
ASL_r1cdpa : Vol.6, 137
ASL_r1cdtb : Vol.6, 96
ASL_r1cdtr : Vol.6, 134
ASL_r1cduf : Vol.6, 131
ASL_r1cdwe : Vol.6, 141
ASL_r1ddbp : Vol.6, 164
\begin{tabular}{|c|c|}
\hline & \\
\hline ASL_r1ddhg & Vol.6, 174 \\
\hline & Vol.6, 177 \\
\hline ASL_r1ddpo & Vol.6, 171 \\
\hline ASL_r2ba1t & Vol.6, 188 \\
\hline ba & Vol.6, 195 \\
\hline & , \\
\hline & Vol.6, 219 \\
\hline SL_r2bamo & Vol.6, 215 \\
\hline ams & Vo \\
\hline basm & Vol.6, 22 \\
\hline SL_r2ccma & Vol.6, 249 \\
\hline SL_r2ccmt & Vol \\
\hline & Vol.6, \\
\hline SL_r2vcgr & Vo \\
\hline SL_r2vcmt & Vo \\
\hline -_3i & Vol.6, 337 \\
\hline SL_r3ieme & Vol.6, \\
\hline SL_r3iera & Vo \\
\hline L_r3iesr & Vol.6, \\
\hline \(3 i e s u\) & Vol.6, \\
\hline SL_r3ietc & Vol.6, \\
\hline SL_r3ieva & Vol.6, \\
\hline ASL_r3tscd & Vol.6, \\
\hline t & Vol.6, \\
\hline ASL_r3tsra & Vol.6, \\
\hline ASL_r3tsrd & Vol.6, 352 \\
\hline L_r3ts & Vol.6, \\
\hline t & Vol.6, \\
\hline c & Vol.6, 373 \\
\hline t & Vol.6, 369 \\
\hline SLr41 & Vol.6, 3 \\
\hline L_r42wr1 & Vol.6, \\
\hline L_r42 & Vol.6, 40 \\
\hline L_r42w & Vol.6, 403 \\
\hline ASL_r4bi01 & Vol.6, 4 \\
\hline , & Vol.6, \\
\hline SL_r4mu01 & Vol.6, 452 \\
\hline ASL_r4mwrf & Vol.6, 426 \\
\hline ASL_r4mwrm & Vol.6, 439 \\
\hline _r4rb01 & Vol.6, 468 \\
\hline r5chef & Vol.6, 48 \\
\hline d & Vol.6, 49 \\
\hline c & Vol.6, 493 \\
\hline L_r5ch & Vol.6, 490 \\
\hline L_r5tem & Vol.6, 509 \\
\hline 5tesg & Vol.6, 501 \\
\hline L_r5tesp & Vol.6, 513 \\
\hline L_r5t & Vol.6, 505 \\
\hline r6clan & Vol.6, 57 \\
\hline _r6cld & Vol.6, 576 \\
\hline L_r6clds & Vol.6, 565 \\
\hline SL_r6cpcc & Vol.6, 526 \\
\hline c & Vol.6, 52 \\
\hline
\end{tabular}

ASL_r1ddhg : Vol.6, 174
ASL_r1ddhn : Vol.6, 177
ASL_r1ddpo : Vol.6, 171
ASL_r2ba1t : Vol.6, 188
ASL_r2ba2s : Vol.6, 195
ASL_r2bagm : Vol.6, 210
ASL_r2bahm : Vol.6, 219

ASL_r2bams : Vol.6, 204
ASL_r2basm : Vol.6, 223
ASL_r2ccma : Vol.6, 249
r2ccmt Vol.6, 243

ASL_r2vcgr : Vol.6, 233
ASL_r2vcmt : Vol.6, 227
ASL_r3iecd : Vol.6, 337
ASL_r3ieme : Vol.6, 322
ASL_r3iera : Vol.6, 319

ASL_r3iesu : Vol.6, 326
ASL_r3ietc : Vol.6, 333
ASL_r3ieva : Vol.6, 330
ASL_r3tscd : Vol.6, 380
ASL_r3tsra : Vol.6, 348
ASL_r3tsrd : Vol.6, 352
ASL_r3tssr : Vol.6, 383
ASL_r3tssu : Vol.6, 362
ASL_r3tstc : Vol.6, 373

ASL_r41wr1 : Vol.6, 397
ASL_r42wr1 : Vol.6, 417
ASL_r42wrm : Vol.6, 409
ASL_r42wrn : Vol.6, 403

ASL_r4gl01 : Vol.6, 472
ASL_r4mu01 : Vol.6, 452
ASL_r4mwrf : Vol.6, 426
r4mwrm :Vol.6, 439

ASL_r5chef : Vol.6, 486
ASL_r5chmd : Vol.6, 497
ASL_r5chmn : Vol.6, 493
ASL_r5chtt : Vol.6, 490
ASL_r5temh : Vol.6, 509

ASL_r5tesp : Vol.6, 513
ASL_r5tewl : Vol.6, 505
ASL_r6clan : Vol.6, 571
ASL_r6clda : Vol.6, 576

ASL_r6cpcc : Vol.6, 526
ASL_r6cpsc : Vol.6, 528

ASL_r6cvan : Vol.6, 543
ASL_r6cvsc : Vol.6, 546
ASL_r6dafn : Vol.6, 553
ASL_r6dasc : Vol.6, 557
ASL_r6fald : Vol.6, 535
ASL_r6favr : Vol.6, 537
ASL_rabmcs : Vol.1, 13
ASL_rabmel : Vol.1, 17
ASL_ram1ad : Vol.1, 55
ASL_ram1mm : Vol.1, 75
ASL_ram1ms : Vol.1, 65
ASL_ram1mt : Vol.1, 79
ASL_ram1mu : Vol.1, 61
ASL_ram1sb : Vol.1, 58
ASL_ram1tm : Vol.1, 83
ASL_ram1tp : Vol.1, 136
ASL_ram1tt : Vol.1, 87
ASL_ram1vm : Vol.1, 127
ASL_ram3tp : Vol.1, 139
ASL_ram3vm : Vol.1, 130
ASL_ram4vm : Vol.1, 133
ASL_ramt1m : Vol.1, 69
ASL_ramvj1 : Vol.1, 143
ASL_ramvj3 : Vol.1, 147
ASL_ramvj4 : Vol.1, 151
ASL_rargjm : Vol.1, 32
ASL_rarsjd : Vol.1, 26
ASL_rasbcs : Vol.1, 20
ASL_rasbel : Vol.1, 23
ASL_ratm1m : Vol.1, 72
ASL_rbbddi : Vol.2, 255
ASL_rbbdlc : Vol.2, 250
ASL_rbbdls : Vol.2, 253
ASL_rbbdlu : Vol.2, 248
ASL_rbbdlx : Vol.2, 257
ASL_rbbdsl : Vol.2, 243
ASL_rbbpdi : Vol.2, 272
ASL_rbbpls : Vol.2, 270
ASL_rbbplx : Vol.2, 274
ASL_rbbpsl : Vol.2, 262
ASL_rbbpuc : Vol.2, 268
ASL_rbbpuu : Vol.2, 266
ASL_rbgmdi : Vol.2, 52
ASL_rbgmlc : Vol.2, 44
ASL_rbgmls : Vol.2, 46
ASL_rbgmlu : Vol.2, 42
ASL_rbgmlx : Vol.2, 54
ASL_rbgmms : Vol.2, 48
ASL_rbgmsl : Vol.2, 37
ASL_rbgmsm : Vol.2, 32
ASL_rbpddi : Vol.2, 116
ASL_rbpdls : Vol.2, 114
ASL_rbpdlx : Vol.2, 118
ASL_rbpdsl : Vol.2, 106
\begin{tabular}{l} 
ASL_rbpduc : Vol.2, 112 \\
ASL_rbpduu : Vol.2, 110 \\
ASL_rbsmdi : Vol.2, 154 \\
ASL_rbsmls : Vol.2, 148 \\
ASL_rbsmlx : Vol.2, 156 \\
ASL_rbsmms : Vol.2, 150 \\
ASL_rbsmsl : Vol.2, 139 \\
ASL_rbsmuc : Vol.2, 146 \\
ASL_rbsmud : Vol.2, 144 \\
ASL_rbsnls : Vol.2, 165 \\
ASL_rbsnsl : Vol.2, 158 \\
ASL_rbsnud : Vol.2, 163 \\
ASL_rbspdi : Vol.2, 135 \\
ASL_rbspls : Vol.2, 129 \\
ASL_rbsplx : Vol.2, 137 \\
ASL_rbspms : Vol.2, 131 \\
ASL_rbspsl : Vol.2, 120 \\
ASL_rbspuc : Vol.2, 127 \\
ASL_rbspud : Vol.2, 125 \\
ASL_rbtdsl : Vol.2, 276 \\
ASL_rbtlco : Vol.2, 324 \\
ASL_rbtldi : Vol.2, 326 \\
ASL_rbtlsl : Vol.2, 321 \\
\hline ASL_rbtosl : Vol.2, 302 \\
ASL_rbtpsl : Vol.2, 280 \\
ASL_rbtssl : Vol.2, 306 \\
ASL_rbtuco : Vol.2, 317 \\
ASL_rbtudi : Vol.2, 319 \\
ASL_rbtusl : Vol.2, 314 \\
ASL_rbvmsl : Vol.2, 310 \\
ASL_rcgbff : Vol.1, 400 \\
ASL_rcgeaa : Vol.1, 177 \\
ASL_rcgean : Vol.1, 183 \\
ASL_rcggaa : Vol.1, 328 \\
ASL_rcggan : Vol.1, 335 \\
ASL_rcgjaa : Vol.1, 360 \\
ASL_rcgjan : Vol.1, 364 \\
ASL_rcgkaa : Vol.1, 366 \\
ASL_rcgkan : Vol.1, 370 \\
ASL_rcgnaa : Vol.1, 185 \\
ASL_rcgnan : Vol.1, 189 \\
ASL_rcgsaa : Vol.1, 337 \\
ASL_rcgsan : Vol.1, 342 \\
ASL_rcgsee : Vol.1, 352 \\
ASL_rcgsen : Vol.1, 358 \\
ASL_rcgssn : Vol.1, 350 \\
ASL_rcgsss : Vol.1, 344 \\
ASL_rcsbaa : Vol.1, 264 \\
ASL_rcsban : Vol.1, 268 \\
ASL_rcsbff : Vol.1, 277 \\
ASL_rcsbsn : Vol.1, 275 \\
ASL_rcsbss : Vol.1, 270 \\
ASLe Vol.1, 311 \\
\hline
\end{tabular}

ASL_rbpduu : Vol.2, 110
ASL_rbsmdi : Vol.2, 154
ASL_rbsmls : Vol.2, 148
ASL_rbsmlx : Vol.2, 156
ASL_rbsmms : Vol.2, 150
ASL_rbsmsl : Vol.2, 139
AS_rbsmuc : Vol.2, 146

ASL_rbsnls : Vol.2, 165
ASL_rbsnsl : Vol.2, 158
ASL_rbsnud : Vol.2, 163
ASL_rbspdi : Vol.2, 135
ASL_rbspls : Vol.2, 129
ASL_rbspms : Vol.2, 131
ASL_rbspsl : Vol.2, 120
ASL_rbspuc : Vol.2, 127
ASL_rbspud : Vol.2, 125
AS_rbtasl: Vol.2, 276
ASL_rbtldi : Vol.2, 326
ASL_rbtlsl : Vol.2, 321
ASL_rbtosl : Vol.2, 302

ASL_rbtssl : Vol.2, 306
ASL_rbtuco : Vol.2, 317
ASL_rbtudi : Vol.2, 319
ASL_rbtusl : Vol.2, 314
ASLrbvms1 : Vol.2, 310

ASL_rcgeaa : Vol.1, 177
ASL_rcgean : Vol.1, 183
ASL_rcggaa : Vol.1, 328
ASL_rcggan : Vol.1, 335
ASL_rcgjaa : Vol.1, 360
ASL_rcgkaa : Vol.1, 366
ASL_rcgkan : Vol.1, 370
Vol.1, 185

ASL_rcgsaa : Vol.1, 337
ASL_rcgsan : Vol.1, 342
ASL_rcgsee : Vol.1, 352
ASL_rcgsen : Vol.1, 358
ASL_rcgssn : Vol.1, 350
ASL_rcgsss : Vol.1, 344
ASL_rcsban : Vol.1, 268
ASL_rcsbff : Vol.1, 277
ASL_rcsbsn : Vol.1, 275

ASL_rcsjss : Vol.1, 311
ASL_rcsmaa : Vol.1, 204
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { ASL_rcsme } \\
& \text { ASL_rcsme }
\end{aligned}
\] & \\
\hline rcs & 222 \\
\hline L_resi & 1, 215 \\
\hline L & 1, 210 \\
\hline L_rcsr & 1, 303 \\
\hline L_rc & 283 \\
\hline L_rcs & 1, 287 \\
\hline L_ & 1, 296 \\
\hline L_ & l.1, 301 \\
\hline L_rcst & ol.1, 294 \\
\hline L_rcst & l.1, 289 \\
\hline rf & l.6, 285 \\
\hline ASL_rfc & 1.3, 50 \\
\hline L_rf & 1.3, 46 \\
\hline L_rfc2b & ol.3, 117 \\
\hline L_rfc2f & ol.3, 113 \\
\hline L_rf & 1.3, \\
\hline L_r & .1.3, 142 \\
\hline L_rfcmb & ol.3, 81 \\
\hline L_rfcmf & Vol.3, 77 \\
\hline L_rfcn & ol.3, 177 \\
\hline rf & l.3, 187 \\
\hline L_rfon & ol.3, 195 \\
\hline L_rfcr & ol.3, 206 \\
\hline SL_rfcr2d & -1.3, 216 \\
\hline SL_rfcr & ol.3, 224 \\
\hline L_r & l.6, 283 \\
\hline L_r & ol.6, 281 \\
\hline L_rfcr & ol.6, 279 \\
\hline L_rfcv & ol.6, 274 \\
\hline L_ & , 6, 269 \\
\hline SL_rfdped & l.6, 291 \\
\hline SL_rfdpe & ol.6, 289 \\
\hline SL_rfdpe & ol.6, 294 \\
\hline SL_rflag & l.3, 273 \\
\hline L_rfla & 1.3, \\
\hline SL_rfps1 & ol.3, 235 \\
\hline SL_rfps2 & ol.3, 243 \\
\hline SL_rfps3 & ol.3, 252 \\
\hline L_rfr1 & ol.3, 71 \\
\hline L_rfr1f & Vol.3, 67 \\
\hline SL_rfr2b & Vol.3, 136 \\
\hline L_rfr2 & Vol.3, 132 \\
\hline L_rfr3 & Vol.3, 169 \\
\hline SL_rfr3 & l.3, 164 \\
\hline SL_rfrmb & Vol.3, 106 \\
\hline SL_rfrmf & ol.3, 101 \\
\hline SL_rfwtf & Vol.3, 306 \\
\hline S_rfwt & Vol.3, 308 \\
\hline SL_rfwth & ol.3, 277 \\
\hline ASL_rfwth & Vol.3, 289 \\
\hline _rfw & Vol.3, 296 \\
\hline L_rfw & .3, 280 \\
\hline
\end{tabular}
\begin{tabular}{l} 
ASL_rfwths : Vol.3, 284 \\
ASL_rfwtht : Vol.3, 292 \\
ASL_rfwtmf : Vol.3, 301 \\
ASL_rfwtmt : Vol.3, 303 \\
ASL_rgicbp : Vol.4, 513 \\
ASL_rgicbs : Vol.4, 537 \\
ASL_rgiccm : Vol.4, 483 \\
ASL_rgiccn : Vol.4, 486 \\
ASL_rgicco : Vol.4, 478 \\
ASL_rgiccp : Vol.4, 469 \\
ASL_rgiccq : Vol.4, 471 \\
ASL_rgiccr : Vol.4, 473 \\
ASL_rgiccs : Vol.4, 475 \\
ASL_rgicct : Vol.4, 480 \\
ASL_rgidby : Vol.4, 517 \\
ASL_rgidcy : Vol.4, 492 \\
ASL_rgidmc : Vol.4, 445 \\
ASL_rgidpc : Vol.4, 432 \\
ASL_rgidsc : Vol.4, 438 \\
ASL_rgidyb : Vol.4, 503 \\
ASL_rgiibz : Vol.4, 519 \\
ASL_rgiicz : Vol.4, 495 \\
ASL_rgiimc : Vol.4, 463 \\
ASL_rgiipc : Vol.4, 452 \\
ASL_rgiisc : Vol.4, 457 \\
ASL_rgiizb : Vol.4, 509 \\
ASL_rgisbx : Vol.4, 515 \\
ASL_rgiscx : Vol.4, 490 \\
ASL_rgisi1 : Vol.4, 540 \\
ASL_rgisi2 : Vol.4, 545 \\
ASL_rgisi3 : Vol.4, 554 \\
ASL_rgismc : Vol.4, 426 \\
ASL_rgispc : Vol.4, 416 \\
ASL_rgispo : Vol.4, 521 \\
ASL_rgispr : Vol.4, 525 \\
ASL_rgiss1 : Vol.4, 561 \\
ASL_rgiss2 : Vol.4, 566 \\
ASL_rgiss3 : Vol.4, 574 \\
ASL_rgissc : Vol.4, 420 \\
ASL_rgisso : Vol.4, 529 \\
ASL_rgissr : Vol.4, 533 \\
ASL_rgisxb : Vol.4, 497 \\
ASL_rh2int : Vol.4, 299 \\
ASL_rhbdfs : Vol.4, 264 \\
ASL_rhbsfc : Vol.4, 267 \\
ASL_rhemnh : Vol.4, 270 \\
ASL_rhemni : Vol.4, 287 \\
ASL_rhemnl : Vol.4, 223 \\
ASL_rhnanl : Vol.4, 259 \\
ASL_rhnefl : Vol.4, 235 \\
ASL_rhnenh : Vol.4, 279 \\
AShnenl : Vol.4, 250 \\
\hline
\end{tabular}

ASL_rfwtht : Vol.3, 292
ASL_rfwtmf : Vol.3, 301
ASL_rfwtmt : Vol.3, 303
ASL_rgicbp : Vol.4, 513
ASL_rgicbs : Vol.4, 537
ASL_rgiccm : Vol.4, 483
ASL_rgiccn : Vol.4, 486

ASL_rgiccp : Vol.4, 469
ASL_rgiccq : Vol.4, 471
ASL_rgiccr : Vol.4, 473
ASL_rgiccs : Vol.4, 475
ASL_rgicct : Vol.4, 480
ASL_rgidcy : Vol.4, 492
ASL_rgidmc : Vol.4, 445
ASL_rgidpc : Vol.4, 432
ASL_rgidsc: Vol.4, 438

ASL_rgiibz : Vol.4, 519
ASL_rgiicz : Vol.4, 495
ASL_rgiimc : Vol.4, 463
ASL_rgiipc : Vol.4, 452
ASL_rgiizb : Vol.4, 509
ASL_rgisbx : Vol.4, 515
ASL_rgiscx : Vol.4, 490
ASL_rgisi1 : Vol.4, 540
ASL_rgisi2 : Vol.4, 545

ASL_rgismc : Vol.4, 426
ASL_rgispc : Vol.4, 416
ASL_rgispo : Vol.4, 521
ASL_rgispr : Vol.4, 525
ASL_rgiss1 : Vol.4, 561
ASL_rgiss3 : Vol.4, 574
ASL_rgissc : Vol.4, 420
ASLrgisso Vol.4, 529

ASL_rgisxb : Vol.4, 497
ASL_rh2int : Vol.4, 299
ASL_rhbdfs : Vol.4, 264
ASL_rhbsfc : Vol.4, 267
Vol.4, 270

ASL_rhemnl : Vol.4, 223
ASL_rhnanl : Vol.4, 259
ASL_rhnefl : Vol.4, 235
ASL_rhnenh : Vol.4, 279
ASL_rhnfml : Vol.4, 317
ASL_rhnfnm : Vol.4, 307

ASL_rhnifl : Vol.4, 240
ASL_rhninh : Vol.4, 283
ASL_rhnini : Vol.4, 295
ASL_rhninl : Vol.4, 255
ASL_rhnofh : Vol.4, 274
ASL_rhnofi : Vol.4, 291
ASL_rhnofl : Vol.4, 230
ASL_rhnpnl : Vol.4, 245
ASL_rhnrml : Vol.4, 312
ASL_rhnrnm : Vol.4, 302
ASL_rhnsnl : Vol.4, 227
ASL_ribaid : Vol.5, 189
ASL_ribaix : Vol.5, 185
ASL_ribbei : Vol.5, 167
ASL_ribber : Vol.5, 165
ASL_ribbid : Vol.5, 191
ASL_ribbix : Vol.5, 187
ASL_ribimx : Vol.5, 135
ASL_ribinx : Vol.5, 129
ASL_ribjmx : Vol.5, 90
ASL_ribjnx : Vol.5, 84
ASL_ribkei : Vol.5, 171
ASL_ribker : Vol.5, 169
ASL_ribkmx : Vol.5, 138
ASL_ribknx : Vol.5, 132
ASL_ribsin : Vol.5, 153
ASL_ribsjn : Vol.5, 147
ASL_ribskn : Vol.5, 156
ASL_ribsyn : Vol.5, 150
ASL_ribymx : Vol.5, 93
ASL_ribynx : Vol.5, 87
ASL_rieii1 : Vol.5, 221
ASL_rieii2 : Vol.5, 223
ASL_rieii3 : Vol.5, 226
ASL_rieii4 : Vol.5, 228
ASL_rigig1 : Vol.5, 199
ASL_rigig2 : Vol.5, 202
ASL_riicos : Vol.5, 261
ASL_riierf : Vol.5, 281
ASL_riisin : Vol.5, 259
ASL_rileg1: Vol.5, 285
ASL_rileg2 : Vol.5, 288
ASL_rimtce : Vol.5, 306
ASL_rimtse : Vol.5, 309
ASL_riopc2 : Vol.5, 302
ASL_riopch : Vol.5, 300
ASL_riopgl : Vol.5, 304
ASL_riophe : Vol.5, 298
ASL_riopla : Vol.5, 296
ASL_riople : Vol.5, 291
ASL_rixeps : Vol.5, 324
ASL_rizbs0 : Vol.5, 102
ASL_rizbs1 : Vol.5, 105
ASL_rizbsl : Vol.5, 114
ASL_rizbsn : Vol.5, 108
ASL_rizbyn : Vol.5, 111
ASL_rizglw : Vol.5, 293
ASL_rjtebi : Vol.6, 53
ASL_rjtecc : Vol.6, 33
ASL_rjteex : Vol.6, 29
ASL_rjtegm : Vol.6, 45
ASL_rjtegu : Vol.6, 37
ASL_rjtelg : Vol.6, 49
ASL_rjteng : Vol.6, 57
ASL_rjteno : Vol.6, 25
ASL_rjtepo : Vol.6, 61
ASL_rjteun : Vol.6, 20
ASL_rjtewe : Vol.6, 41
ASL_rkfncs : Vol.4, 72
ASL_rkhncs : Vol.4, 78
ASL_rkinct : Vol.4, 55
ASL_rkmncn : Vol.4, 84
ASL_rksnca : Vol.4, 49
ASL_rksncs : Vol.4, 43
ASL_rkssca : Vol.4, 65
ASL_rlarha : Vol.5, 388
ASL_rlnrds : Vol.5, 396
ASL_rlnris : Vol.5, 400
ASL_rlnrsa : Vol.5, 406
ASL_rlnrss : Vol.5, 403
ASL_rlsrds : Vol.5, 414
ASL_rlsris : Vol.5, 421
ASL_rmclaf : Vol.5, 490
ASL_rmclcp : Vol.5, 517
ASL_rmclmc : Vol.5, 511
ASL_rmclmz : Vol.5, 502
ASL_rmclsn : Vol.5, 483
ASL_rmcltp : Vol.5, 524
ASL_rmcqaz : Vol.5, 544
ASL_rmcqlm : Vol.5, 538
ASL_rmcqsn : Vol.5, 531
ASL_rmcusn : Vol.5, 479
ASL_rmsp11 : Vol.5, 567
ASL_rmsp1m : Vol.5, 558
ASL_rmspmm : Vol.5, 563
ASL_rmsqpm : Vol.5, 551
ASL_rmumqg : Vol.5, 469
ASL_rmumqn : Vol.5, 465
ASL_rmussn : Vol.5, 474
ASL_rmuusn : Vol.5, 462
ASL_rncbpo : Vol.4, 392
ASL_rndaao : Vol.4, 362
ASL_rndanl : Vol.4, 372
ASL_rndapo : Vol.4, 367
ASL_rngapl : Vol.4, 386
ASL_rnlnma : Vol.6, 605
ASL_rnlnrg : Vol.6, 592
ASL_rnlnrr : Vol.6, 598
ASL_rizbyn : Vol.5, 111
ASL_rizglw : Vol.5, 293
ASL_rjtebi : Vol.6, 53
ASL_rjtecc : Vol.6, 33
ASL_rjteex : Vol.6, 29
ASL_rjtegm : Vol.6, 45
ASL_rjtelg : Vol.6, 49
ASL_rjteng : Vol.6, 57
ASL_rjteno : Vol.6, 25
ASL_rjtepo : Vol.6, 61
ASL_rjtewe : Vol.6, 41
ASL_rkfncs : Vol.4, 72
ASL_rkhncs : Vol.4, 78
ASL_rkinct : Vol.4, 55
Vol.4, 84
ASL_rksncs : Vol.4, 43
ASL_rkssca : Vol.4, 65
ASL_rlarha : Vol.5, 388
ASL_rlnrds : Vol.5, 396
ASL_rlnris : Vol.5, 400
ASL_rlnrss : Vol.5, 403
ASL_rlsrds : Vol.5, 414
ASL_rlsris : Vol.5, 421
ASL_rmclcp : Vol.5, 517
ASL_rmclmc : Vol.5, 511
ASL_rmclmz : Vol.5, 502
ASL_rmclsn : Vol.5, 483
ASL_rmcltp : Vol.5, 524
ASL_rmcqlm : Vol.5, 538
ASL_rmcqsn : Vol.5, 531
ASL_rmcusn : Vol.5, 479
ASL_rmsp11 : Vol.5, 567
ASL_rmspmm : Vol.5, 563
ASL_rmsqpm : Vol.5, 551
ASL_rmumqg : Vol.5, 469
ASL_rmumqn : Vol.5, 465
ASL_rmussn : Vol.5, 474
ASL_rmuusn : Vol.5, 462
ASL_rncbpo : Vol.4, 392
ASL_rndaao : Vol.4, 362
ASL_rndanl : Vol.4, 372
ASL_rndapo : Vol.4, 367
ASL_rngapl : Vol.4, 386
ASL_rnlnrg : Vol.6, 592
ASL_rnlnrr : Vol.6, 598
\begin{tabular}{|c|c|}
\hline ASL_rnn & Vol.6, 617 \\
\hline SL & 4, 379 \\
\hline L & Vol.4, 115 \\
\hline ASL_rof & 8 \\
\hline ASL_roh & Vol.4, 136 \\
\hline ASL_roh & Vol.4, 129 \\
\hline ASL_roh & ,ol \\
\hline ASL_ro & \\
\hline ASL_ro & O \\
\hline ASL_rol & Vol.4, 143 \\
\hline ASL_rop & Vol.4, 157 \\
\hline _rop & Vol \\
\hline L_rosn & Vol \\
\hline & \\
\hline _rpd & Vol.4, \\
\hline rpdo & Vo \\
\hline L_rpgo & Vo \\
\hline ASL_rplop & Vo \\
\hline rqf & Vo \\
\hline L_rqmo & Vo \\
\hline _rqm & Vol. \\
\hline rqmo & Vol. 4 \\
\hline ASL_rsmg & Vol.5, \\
\hline SL_rsmg & Vol.5, \\
\hline ASL rss & Vol \\
\hline ASL_rss & Vol.5, \\
\hline ASL_rss & Vol.5, \\
\hline ASL_rss & Vol.5, \\
\hline ASL_rx & Vol \\
\hline ASL_vib & Vol. 5 \\
\hline ASL vib & Vol.5, \\
\hline ASL_vibh & Vol.5, \\
\hline ASL_vibh & Vol.5, \\
\hline & Vol.5, \\
\hline ASL_ & Vol.5, \\
\hline , & l.5, \\
\hline ASL_vib & Vol.5, \\
\hline & Vol.5, \\
\hline ASL_vibk & Vol.5, \\
\hline _vib & Vol.5, \\
\hline ASL_viby & Vol.5, \\
\hline _vid & Vol.5, \\
\hline ASL_vie & Vol.5, \\
\hline ASL_vieci & Vol.5, \\
\hline ASL_vie & Vol.5, \\
\hline ASL_viej & Vol.5, \\
\hline ASL_viej & Vol \\
\hline _vie & Vol.5, \\
\hline SL_vie & Vol.5, \\
\hline ASL_viep & Vol.5, \\
\hline ASL_vie & Vol.5, \\
\hline _vie & Vol.5, \\
\hline L_vie & Vol.5, 238 \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \\
\hline ASL_vigdig & \\
\hline ASL_viglgx & Vol.5, 196 \\
\hline ASL_viicnc & , \\
\hline & Vol.5, 270 \\
\hline aw & Vol.5, 268 \\
\hline & Vol.5, 253 \\
\hline & Vol.5, 265 \\
\hline & Vol.5, 263 \\
\hline ASL_viilog & Vol.5, 256 \\
\hline & Vol.5, 316 \\
\hline SL_vixsla & Vol.5, 319 \\
\hline ASL_vixsps & Vol.5, 312 \\
\hline & Vol.5, \\
\hline SL_wbtcls & Vol.2, 297 \\
\hline SL_wbtcsl & Vol.2, 292 \\
\hline wbtdls & Vol.2, 288 \\
\hline L_wbtdsl & Vol.2, \\
\hline SL_wibh0x & Vol.5, \\
\hline & Vol.5, \\
\hline _-wibhyo & Vol.5, \\
\hline SL_wibhy1 & Vol.5, \\
\hline 0x & Vol.5, \\
\hline & Vol.5, \\
\hline SL_wibj0x & Vol \\
\hline SL_wibj1x & 8 \\
\hline ASL_wibk0x & Vol.5, 120 \\
\hline SL_wibk1x & Vo \\
\hline ASL_wiby0x & Vol.5, 75 \\
\hline ASL_wiby1x & 5, 81 \\
\hline dbey & Vol.5, \\
\hline SL_wieci1 & Vol.5, \\
\hline SL_wieci2 & , 218 \\
\hline c & Vol \\
\hline ASL_wiejep & Vol.5, 244 \\
\hline 尤 & Vol.5, 247 \\
\hline SL_wiejzt & Vol.5, \\
\hline ASL_wienmq & Vol.5, 234 \\
\hline ep & Vol.5, 250 \\
\hline L_wierfc & Vol.5, 278 \\
\hline wier & Vol.5, 275 \\
\hline ie & Vol.5, 238 \\
\hline L_wigamx & Vol.5, 193 \\
\hline igbet & Vol.5, 212 \\
\hline L_wigdig & Vol.5, 209 \\
\hline L_wiglgx & Vol.5, 196 \\
\hline ASL_wiicnc & Vol.5, 272 \\
\hline & Vol.5, 27 \\
\hline L_Wiidaw & Vol.5, 268 \\
\hline _Wilexp & Vol.5, 253 \\
\hline ASL_wiifco & Vol.5, 265 \\
\hline ASL_wiifsi & Vol.5, 263 \\
\hline L_wiilog & Vol.5, 256 \\
\hline SLWinplg & Vol.5, 316 \\
\hline
\end{tabular}

ASL_vigdig : Vol.5, 209
ASL_viglgx : Vol.5, 196
ASL_viicnc : Vol.5, 272
ASL_viicnd : Vol.5, 270
ASL_viidaw : Vol.5, 268
ASL_viiexp : Vol.5, 253
ASL_Viifco:Vol.5, 265

ASL_viilog : Vol.5, 256
ASL_vinplg : Vol.5, 316
ASL_vixsla : Vol.5, 319
ASL_vixsps : Vol.5, 312
ASL_Vixzta . Vol.5, 321
ASL_wbtcsl : Vol.2, 292
ASL_wbtdls : Vol.2, 288
ASL_wbtdsl : Vol.2, 284
ASL_Wibh0x : Vol.5, 173

ASL_wibhy0 : Vol.5, 179
ASL_wibhy1 : Vol.5, 182
ASL_wibiOx : Vol.5, 117
ASL_Wibilx : Vol.5, 123

ASL_wibj1x : Vol.5, 78
ASL_wibk0x : Vol.5, 120
ASL_wibk1x : Vol.5, 126
: Vol.5, 75

ASL_widbey : Vol.5, 314
ASL_wieci1 : Vol.5, 215
ASL_wieci2 : Vol.5, 218
ASL_wiejac : Vol.5, 230

ASL_wiejzt : Vol.5, 241
ASL_wienmq : Vol.5, 234
ASL_wiepai : Vol.5, 250
Vol.5, 278

ASL_wiethe : Vol.5, 238
ASL_wigamx : Vol.5, 193
ASL_wigbet : Vol.5, 212
ASL_wigdig : Vol.5, 209
ASL_wiglgx : Vol.5, 196

ASL_wiicnd : Vol.5, 270
ASL_wiidaw : Vol.5, 268
ASL_wiiexp : Vol.5, 253
ASL_wiifco : Vol.5, 265

ASL_wiilog : Vol.5, 256
ASL_winplg : Vol.5, 316

ASL_wixsla : Vol.5, 319
ASL_wixsps : Vol.5, 312
ASL_wixzta : Vol.5, 321
ASL_zam1hh : Vol.1, 106
ASL_zam1hm : Vol.1, 101
ASL_zam1mh : Vol.1, 96
ASL_zam1mm : Vol.1, 91
ASL_zan1hh : Vol.1, 123
ASL_zan1hm : Vol.1, 119
ASL_zan1mh : Vol.1, 115
ASL_zan1mm : Vol.1, 111
ASL_zanvj1 : Vol.1, 155
ASL_zargjm : Vol.1, 44
ASL_zarsjd : Vol.1, 38
ASL_zbgmdi : Vol.2, 80
ASL_zbgmlc : Vol.2, 72
ASL_zbgmls : Vol.2, 74
ASL_zbgmlu : Vol.2, 70
ASL_zbgmlx : Vol.2, 82
ASL_zbgmms : Vol.2, 76
ASL_zbgmsl : Vol.2, 64
ASL_zbgmsm : Vol.2, 59
ASL_zbgndi : Vol.2, 102
ASL_zbgnlc : Vol.2, 94
ASL_zbgnls : Vol.2, 96
ASL_zbgnlu : Vol.2, 92
ASL_zbgnlx : Vol. 2,104
ASL_zbgnms : Vol.2, 98
ASL_zbgnsl : Vol.2, 88
ASL_zbgnsm : Vol.2, 84
ASL_zbhedi : Vol.2, 239
ASL_zbhels : Vol.2, 233
ASL_zbhelx : Vol.2, 241
ASL_zbhems : Vol.2, 235
ASL_zbhesl : Vol.2, 224
ASL_zbheuc : Vol.2, 231
ASL_zbheud : Vol.2, 229
ASL_zbhfdi : Vol.2, 220
ASL_zbhfls : Vol.2, 214
ASL_zbhflx : Vol.2, 222
ASL_zbhfms : Vol. 2,216
ASL_zbhfsl : Vol.2, 205
ASL_zbhfuc : Vol.2, 212
ASL_zbhfud : Vol.2, 210
ASL_zbhpdi : Vol.2, 182
ASL_zbhpls : Vol.2, 176
ASL_zbhplx : Vol.2, 184
ASL_zbhpms : Vol.2, 178
ASL_zbhpsl : Vol.2, 167
ASL_zbhpuc : Vol.2, 174
ASL_zbhpud : Vol.2, 172
ASL_zbhrdi : Vol.2, 201
ASL_zbhrls : Vol.2, 195
ASL_zbhrlx : Vol.2, 203
```

ASL_zbhrms : Vol.2, 197
ASL_zbhrsl : Vol.2, 186
ASL_zbhruc : Vol.2, 193
ASL_zbhrud : Vol.2, 191
ASL_zcgeaa : Vol.1, 191
ASL_zcgean : Vol.1, 196
ASL_zcghaa : Vol.1, 379
ASL_zcghan : Vol.1, 384
ASL_zcgjaa : Vol.1, 386
ASL_zcgjan : Vol.1, 391
ASL_zcgkaa : Vol.1, 393
ASL_zcgkan : Vol.1, 398
ASL_zcgnaa : Vol.1, 198
ASL_zcgnan : Vol.1, 202
ASL_zcgraa : Vol.1, 372
ASL_zcgran : Vol.1, 377
ASL_zcheaa : Vol.1, 244
ASL_zchean : Vol.1, 248
ASL_zcheee : Vol.1, 257
ASL_zcheen : Vol.1, 262
ASL_zchesn : Vol.1, 255
ASL_zchess : Vol.1, 250
ASL_zchjss : Vol.1, 320
ASL_zchraa : Vol.1, 224
ASL_zchran : Vol.1, 228
ASL_zchree : Vol.1, 237
ASL_zchren : Vol.1, 242
ASL_zchrsn : Vol.1, 235
ASL_zchrss : Vol.1, 230
ASL_zfc1bf : Vol.3, 61
ASL_zfc1fb : Vol.3, 57
ASL_zfc2bf : Vol.3, 127
ASL_zfc2fb : Vol.3, 123
ASL_zfc3bf : Vol.3, 157
ASL_zfc3fb : Vol.3, 153
ASL_zfcmbf : Vol.3, 93
ASL_zfcmfb : Vol.3, }8
ASL_zibh1n : Vol.5, 159
ASL_zibh2n : Vol.5, 162
ASL_zibinz : Vol.5, 141
ASL_zibjnz : Vol.5, 96
ASL_zibknz : Vol.5, 144
ASL_zibynz : Vol.5, 99
ASL_zigamz : Vol.5, 205
ASL_ziglgz : Vol.5, 207
ASL_zlacha : Vol.5, 392
ASL_zlncis : Vol.5, 410

```
```


[^0]: ** Output **
 ierr $=0$
 Value of $I O(x)$

 | $\mathrm{xo}=$ | 1 |
 | :--- | ---: |
 | $\mathrm{xo}=$ | 1 |
 | $\mathrm{xo}=$ | 1.01 |
 | xo $=$ | 1.02 |
 | xo $=$ | 1.04 |
 | xo $=$ | 1.06 |
 | xo $=$ | 1.09 |
 | xo $=$ | 1.13 |
 | xo $=$ | 1.17 |
 | xo $=$ | 1.21 |

[^1]: ierr $=0$
 Value of $g l g x(x)$
 $\mathrm{xo}=\quad 2.25$
 $\begin{array}{rr}\mathrm{xo}= & 1.52 \\ \mathrm{xo}= & 1.1\end{array}$
 $\mathrm{xo}=0.797$
 $\mathrm{xo}=0.572$
 $\mathrm{xo}=0.398$
 $\mathrm{xo}=0.261$
 $\mathrm{xo}=0.152$
 $\begin{array}{ll}\mathrm{xo}= & 0.0664 \\ \mathrm{xo}= & 0\end{array}$

