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PREFACE

This manual describes general concepts, functions, and specifications for use of the Advanced
Scientific Library (ASL).

The manuals corresponding to this product consist of seven volumes, which are divided into the
chapters shown below. This manual describes the basic functions, volume 2.

Basic Functions Volume 1

Chapter Title Contents

1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.

2 Storage Mode
Conversion

Explanation of algorithms, method of using, and usage example
of subroutine related to storage mode conversion of array data.

3 Basic Matrix Algebra Explanation of algorithms, method of using, and usage example
of subroutine related to basic calculations involving matrices.

4 Eigenvalues and
Eigenvectors

Explanation of algorithms, method of using, and usage example
of subroutine related to
the standard eigenvalue problem for real matrices, complex
matrices, real symmetric matrices, Hermitian matrices, real sym-
metric band matrices, real symmetric tridiagonal matrices, real
symmetric random sparse matrices, Hermitian random sparse
matrices and
the generalized eigenvalue problem for real matrices, real
symmetric matrices, Hermitian matrices, real symmetric band
matrices.

Basic Functions Volume 2

Chapter Title Contents

1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.

2 Simultaneous Linear
Equations
(Direct Method)

Explanation of algorithms, method of using, and usage exam-
ple of subroutine related to simultaneous linear equations corre-
sponding to real matrices, complex matrices, positive symmetric
matrices, real symmetric matrices, Hermitian matrices, real band
matrices, positive symmetric band matrices, real tridiagonal ma-
trices, real upper triangular matrices, and real lower triangular
matrices.



Basic Functions Volume 3

Chapter Title Contents

1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.

2 Fourier Transforms
and their applications

Explanation of algorithms, method of using, and usage exam-
ple of subroutine related to one-, two- and three-dimensional
complex Fourier transforms and real Fourier transforms, one-,
two- and three-dimensional convolutions, correlations, and power
spectrum analysis, wavelet transforms, and inverse Laplace
transforms.

Basic Functions Volume 4

Chapter Title Contents

1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.

2 Differential Equations
and Their Applications

Explanation of algorithms, method of using, and usage example
of subroutine related to
ordinary differential equations initial value problems for
high-order simultaneous ordinary differential equations, implicit
simultaneous ordinary differential equations, matrix type ordi-
nary differential equations, stiff problem high-order simultane-
ous ordinary differential equations, simultaneous ordinary dif-
ferential equations, first-order simultaneous ordinary differential
equations, and high-order ordinary differential equations, and
ordinary differential equations boundary value problems
for high-order simultaneous ordinary differential equations, first-
order simultaneous ordinary differential equations, high-order or-
dinary differential equations, high-order linear ordinary differen-
tial equations, and second-order linear ordinary differential equa-
tions, and
integral equations for Fredholm’s integral equations of second
kind and Volterra’s integral equations of first kind, and
partial differential equations for two- and three-dimensional
inhomogeneous Helmholtz equation.

3 Numerical Differentials Explanation of algorithms, method of using, and usage example
of subroutine related to numerical differentials of one-variable
functions and multi-variable functions.

4 Numerical Integration Explanation of algorithms, method of using, and usage example
of subroutine related to numerical integration over a finite inter-
val, semi-infinite interval, fully infinite interval, two-dimensional
finite interval, and multi-dimensional finite interval.

5 Interpolations and
Approximations

Explanation of algorithms, method of using, and usage example
of subroutine related to interpolations, surface interpolations,
least squares approximations, least squares surface approxima-
tions, and Chebyshev’s approximations.

6 Spline Functions Explanation of algorithms, method of using, and usage exam-
ple of subroutine related to interpolation, smoothing, numerical
derivatives, and numerical integrals using cubic splines, bicubic
splines and B–splines.



Basic Functions Volume 5

Chapter Title Contents

1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.

2 Special Functions Explanation of algorithms, method of using, and usage example
of subroutine related to Bessel functions, modified Bessel func-
tions, spherical Bessel functions, functions related to Bessel func-
tions, Gamma functions, functions related to Gamma functions,
elliptic functions, indefinite integrals of elementary functions, as-
sociated Legendre functions, orthogonal polynomials, and other
special functions.

3 Sorting and Ranking Explanation and usage examples of subroutine related to sorting
and ranking.

4 Roots of Equations Explanation of algorithms, method of using, and usage example
of subroutine related to roots of algebraic equations, nonlinear
equations, and simultaneous nonlinear equations.

5 Extremal Problems
and Optimization

Explanation of algorithms, method of using, and usage exam-
ple of subroutine related to minimization of functions with no
constraints, minimization of the sum of the squares of functions
with no constraints, minimization of one-variable functions with
constraints, minimization of multi-variable functions with con-
straints, and shortest path problem.

Basic Functions Volume 6

Chapter Title Contents

1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.

2 Random Number Tests Explanation and usage examples of subroutine related to uniform
random number tests, and distribution random number tests.

3 Probability
Distributions

Explanation and usage examples of subroutine related to contin-
uous distributions and discrete distributions.

4 Basic Statistics Explanation and usage examples of subroutine related to basic
statistics, variance-covariance and correlation.

5 Tests and Estimates Explanation and usage examples of subroutine related to interval
estimates and tests.

6 Analysis of Variance
and
Design of Experiments

Explanation and usage examples of subroutine related to one-way
layout, two-way layout, multiple-way layout, randomized block
design, Greco-Latin square method, cumulative Method.

7 Nonparametric Tests Explanation and usage examples of subroutine related to tests
using χ2 distribution and tests using other distributions.

8 Multivariate Analysis Explanation and usage examples of subroutine related to prin-
cipal component analysis, factor analysis, canonical correlation
analysis, discriminant analysis, cluster analysis.

9 Time Series Analysis Explanation and usage examples of subroutine related to auto-
correlation, cross correlation, autocovariance, cross covariance,
smoothing and demand forecasting.

10 Regression analysis Explanation and usage examples of subroutine related to linear
Regression and nonlinear Regression.



Shared Memory Parallel Functions

Chapter Title Contents

1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.

2 Basic Matrix Algebra Explanation of algorithms, method of using, and usage example
of subroutine related to obtain the product of real matrices and
complex matrices.

3 Simultaneous Linear
Equations
(Direct Method)

Explanation of algorithms, method of using, and usage exam-
ple of subroutine related to simultaneous linear equations cor-
responding to real matrices, complex matrices, real symmetric
matrices, and Hermitian matrices.

4 Simultaneous Linear
Equations
(Iteration Method)

Explanation of algorithms, method of using, and usage exam-
ple of subroutine related to simultaneous linear equations corre-
sponding to real positive definite symmetric sparse matrices, real
symmetric sparse matrices and real asymmetric sparse matrices.

5 Eigenvalues and
Eigenvectors

Explanation of algorithms, method of using, and usage example
of subroutine related to the eigenvalue problem for real symmet-
ric matrices and Hermitian matrices.

6 Fourier Transforms
and their applications

Explanation of algorithms, method of using, and usage example
of subroutine related to one-, two- and three-dimensional com-
plex Fourier transforms and real Fourier transforms, two- and
three-dimensional convolutions, correlations, and power spec-
trum analysis.

7 Sorting Explanation and usage examples of subroutine related to sorting
and ranking.
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Remarks

(1) This manual corresponds to ASL 1.1. All functions described in this manual are program products.

(2) Proper nouns such as product names are registered trademarks or trademarks of individual manufacturers.

(3) This library was developed by incorporating the latest numerical computational techniques. Therefore,
to keep up with the latest techniques, if a newly added or improved function includes the function of an
existing function may be removed.
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Chapter 1

INTRODUCTION

1.1 OVERVIEW

1.1.1 Introduction to The Advanced Scientific Library ASL

Table 1−1 shows correspondences among product categories, functions of ASL and supported hardware platforms.

In the same version of ASL, interfaces of subroutines of the same name are common among hardware platforms.

Table 1−1 Classification of functions included in ASL

Classification of Functions Volume

Basic functions Vol. 1-6

Shared memory parallel functions Vol. 7

1.1.2 Distinctive Characteristics of ASL

ASL has the following distinctive characteristics.

(1) Subroutines are optimized using compiler optimization to take advantage of corresponding system hardware

features.

(2) Special-purpose subroutines for handling matrices are provided so that the optimum processing can be

performed according to the type of matrix (symmetric matrix, Hermitian matrix, or the like). Generally,

processing performance can be increased and the amount of required memory can be conserved by using

the special-purpose subroutines.

(3) Subroutines are modularized according to processing procedures to improve reliability of each component

subroutine as well as the reliability and efficiency of the entire system.

(4) Error information is easy to access after a subroutine has been used since error indicator numbers have been

systematically determined.
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1.2 KINDS OF LIBRARIES

Table 1−2 Kinds of libraries providing ASL

Size of variable(byte) Declaration

of arguments
Kind Kind of library

integer real

4 8 INTEGER(4) 32bit integer Double-precision
REAL(8) subroutine

32bit integer library

4 4 INTEGER(4) 32bit integer Single-precision

(link option: -lasl sequential)

REAL(4) subroutine

8 8 INTEGER(8) 64bit integer Double-precision
REAL(8) subroutine

64bit integer library

8 4 INTEGER(8) 64bit integer Single-precision

(link option: -lasl sequential i64)

REAL(4) subroutine

(∗1) Functions that appear in this documentation do not always support all of the four kinds of subroutines listed

above. For those functions that do not support some of those subroutine kinds, relevant notes will appear in the

corresponding subsections.

(∗2) The string “(4)” that specifies 32bit (4 byte) can be omitted.
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1.3 ORGANIZATION

This section describes the organization of Chapters 2 and later.

1.3.1 Introduction

The first section of each chapter is a general introduction describing such information as the effective ways of

using the subroutines, techniques employed, algorithms on which the subroutines are based, and notes.

1.3.2 Organization of Subroutine Description

The second section of each chapter sequentially describes the following topics for each subroutine.

(1) Function

(2) Usage

(3) Arguments

(4) Restrictions

(5) Error indicator

(6) Notes

(7) Example

Each item is described according to the following principles.

1.3.3 Contents of Each Item

(1) Function

Function briefly describes the purpose of the ASL subroutine.

(2) Usage

Usage describes the subroutine name and the order of its arguments. In general, arguments are arranged

as follows.

CALL subroutine-name (input-arguments, input/output-arguments, output-arguments, ISW, work, IERR)

ISW is an input argument for specifying the processing procedure. IERR is an error indicator. In some

cases, input/output arguments precede input arguments. The following general principles also apply.

• Array are placed as far to the left as possible according to their importance.

• The dimension of an array immediately follows the array name. If multiple arrays have the same

dimension, the dimension is assigned as an argument of only the first array name. It is not assigned

as an argument of subsequent array names.

(3) Arguments

Arguments are explained in the order described above in paragraph (2). The explanation format is as

follows.

Arguments Type Size Input/Output Contents

(a) (b) (c) (d) (e)
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Contents of Each Item

(a) Arguments

Arguments are explained in the order they are designated in the Usage paragraph.

(b) Type

Type indicates the data type of the argument. Any of the following codes may appear as the type.

I : Integer type

D : Double precision real

R : Real

Z : Double precision complex

C : Complex

There are 64-bit integer and 32-bit integer for integer type arguments. In a 32-bit (64-bit) integer type

subroutine, all the integer type arguments are 32-bit (64-bit) integer. In other words, kinds of libraries

determine the sizes of integer type arguments (Refer to 1.4). In the user program, a 32-bit/64-bit

integer type argument must be declared by INTEGER/ INTEGER(8), respectively.

(c) Size

Size indicates the required size of the specified argument. If the size is greater than 1, the required

area must be reserved in the program calling this subroutine.

1 : Indicates that argument is a variable.

N : Indicates that the argument is a vector (one-dimensional array) having N elements. The

argument N indicating the size of this vector is defined immediately after the specified vector.

However, if the size of a vector or array defined earlier, it is omitted following subsequently

defined vectors or arrays. The size may be specified by only a numeric value or in the form of a

product or sum such as 3×N or N +M.

M, N : Indicates that the argument is a two-dimensional array having M rows and N columns. If M

and N indicating the size of this array have not been defined before this array is specified, they

are defined as arguments immediately following this array.

(d) Input/Output

Input/Output indicates whether the explanation of argument contents applies to input time or

output time.

i. When only “Input” appears

When the control returns to the program using this subroutine, information when the argument

is input is preserved. The user must assign input-time information unless specifically instructed

otherwise.

ii. When only “Output” appears

Results calculated within the subroutine are output to the argument. No data is entered at

input time.

iii. When both “Input” and “Output” appear

Argument contents change between the time control passes to the subroutine and the time control

returns from the subroutine. The user must assign input-time information unless specifically

instructed otherwise.

iv. When “Work” appears

Work indicates that the argument is an area used when performing calculations within the

subroutine. A work area having the specified size must be reserved in the program calling this

subroutine. The contents of the work area may have to be maintained so they can be passed along

to the next calculation.
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Contents of Each Item

(e) Contents

Contents describes information held by the argument at input time or output time.

• A sample Argument description follows.

Example

The statement of the subroutine (DBGMLC, RBGMLC) that obtains the LU decomposition

and the condition number of a real matrix is as follows.

Double precision:

CALL DBGMLC (A, LNA, N, IPVT, COND, W1, IERR)

Single precision:

CALL RBGMLC (A, LNA, N, IPVT, COND, W1, IERR)

The explanation of the arguments is as follows.

Table 1−3 Sample Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A Note LNA,N Input Real matrix A(two-dimensional array){
D

R

}
Output The matrix A decomposed into the matrix LU

where U is a unit upper triangular matrix and

L is a lower triangular matrix.

2 LNA I 1 Input Adjustable dimension size of array A

3 N I 1 Input Order n of matrix A

4 IPVT I N Output Pivoting information

IPVT(i): Number of the row exchanged with

row i in the i-th step.

5 COND
{
D

R

}
1 Output Reciprocal of the condition number

6 W1
{
D

R

}
N Work Work area

7 IERR I 1 Output Error indicator

To use this subroutine, arrays A, IPVT and W1 must first be allocated in the calling program so

they can be used as arguments. A is a

{
double-precision

single-precision

}
Note real array of size (LNA , N) , IPVT is

an integer array of size N and W1 is a

{
double-precision

single-precision

}
real array of size N.

When the 64-bit integer version is used, all integer-type arguments (LNA, N, IPVT and IERR) must

be declared by using INTEGER(8), not INTEGER.

Note The entries enclosed in brace { } mean that the array should be declared double precision type (code D) when

using subroutine DBGMLC and real type (code R) when using subroutine RBGMLC. Braces are used in this

manner throughout the remainder of the text unless specifically stated otherwise.
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Contents of Each Item

Data must be stored in A, LNA and N before this subroutine is called. The LU decomposition and

condition number of the assigned matrix are calculated with in the subroutine, and the results are

stored in array A and variable COND. In addition, pivoting information is stored in IPVT for use by

subsequent subroutines.

IERR is an argument used to notify the user of invalid input data or an error that may occur during

processing. If processing terminates normally, IERR is set to zero.

Since W1 is a work area used only within the subroutine, its contents at input and output time have

no special meaning.

(4) Restrictions

Restrictions indicate limiting ranges for subroutine arguments.

(5) Error indicator

Each subroutine has been given an error indicator as an output argument. This error indicator, which

has uniformly been given the variable name IERR, is placed at the end of the arguments. If an error is

detected within the subroutine, a corresponding value is output to IERR. Error indicator values are divided

into five levels.

Table 1−4 Classification of Error Indicator Output Values

Level IERR value Meaning Processing result

Normal 0 Processing is terminated normally. Results are guaranteed.

Warning 1000∼2999 Processing is terminated under cer-

tain conditions.

Results are conditionally guaranteed.

3000∼3499 Processing is aborted since an argu-

ment violated its restrictions.

Results are not guaranteed.

Fatal 3500∼3999 Obtained results did not satisfy a cer-

tain condition.

Obtained results are returned (the

results are not guaranteed).

4000 or more A fatal error was detected during

processing. Usually, processing is

aborted.

Results are not guaranteed.

(6) Notes

Notes describes ambiguous items and points requiring special attention when using the subroutine.

(7) Example

Here gives an example of how to use the subroutine. Note that in some cases, multiple subroutines are

combined in a single example. The output results are given in the 32-bit integer version, and may differ

within the range of rounding error if the compiler or intrinsic functions are different.

The source codes of examples in this document are included in User’s Guide. Input data, if required, is

also included in it. To build up an executable files by compiling these example source codes, they should

be linked with this product library.
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1.4 SUBROUTINE NAMES

The subroutines name of ASL basic functions consists of 〈six alphanumeric characters〉.
Figure 1−1 Subroutine Name Components

1 2 3 4 5 6
� �

Characteristic function of individual subroutine

�

Indicates the numerical application

�

Indicates the calculation precision

“1” in Figure 1−1 : The following eight letters are used to indicate the calculation precision.

D, W Double precision real-type calculation

R, V Single precision real-type calculation

Z, J Double precision complex-type calculation

C, I Single precision complex-type calculation

However, the complex type calculations listed above do not necessarily require complex arguments.

“2” in Figure 1−1 : Currently, the following letters lettererererere are used to indicate the application field

in the ASL related products.

Letter Application Field Volume

A Storage mode conversion 1

Basic matrix algebra 1, 7

B Simultaneous linear equations (direct method) 2, 7

C Eigenvalues and eigenvectors 1, 7

F Fourier transforms and their applications 3, 7

Time series analysis 6

G Spline function 4

H Numeric integration 4

I Special function 5

J Random number tests 6

K Ordinary differential equation (initial value problems) 4

L Roots of equations 5

M Extremum problems and optimization 5

N Approximation and regression analysis 4, 6

O Ordinary differential equations (boundary value problems), integral

equations and partial differential equations

4

P Interpolation 4

Q Numerical differentials 4

S Sorting and ranking 5, 7
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Letter Application Field Volume

X Basic matrix algebra 1

Simultaneous linear equations (iterative method) 7

1 Probability distributions 6

2 Basic statics 6

3 Tests and estimates 6

4 Analysis of variance and design of experiments 6

5 Nonparametric tests 6

6 Multivariate analysis 6

“3–6” in Figure 1−1 : These characters indicate the characteristic function of the individual subroutine.
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1.5 NOTES

(1) Use the subroutines of double precision version whenever possible. They not only provide higher precision

solutions but also are more stable than single precision versions, in particular, for eigenvalue and eigenvector

problems.

(2) To suppress compiler operation exceptions, ASL subroutines are set to so that they conform to the compiler

parameter indications of a user’s main program. Therefore, the main program must suppress any operation

exceptions.

(3) The numerical calculation programs generally deal with operations on finite numbers of digits, so the

precision of the results cannot exceed the number of operation digits being handled. For example, since

the number of operation digits (in the mantissa part) for double-precision operations is on the order of 15

decimal digits, when using these floating point modes to calculate a value that mathematically becomes 1,

an error on the order of 10−15 may be introduced at any time. Of course, if multiple length arithmetic is

emulated such as when performing operations on an arbitrary number of digits, this kind of error can be

controlled. However, in this case, when constants such as π or function approximation constants, which are

fixed in double-precision operations, for example, are also to be subject to calculations that depend on the

length of the multiple length arithmetic operations, the calculation efficiency will be worse than for normal

operations.

(4) A solution cannot be obtained for a problem for which no solution exists mathematically. For example,

a solution of simultaneous linear equations having a singular (or nearly singular) matrix for its coefficient

matrix theoretically cannot be obtained with good precision mathematically. Numerical calculations cannot

strictly distinguish between mathematically singular and nearly singular matrices. Of course, it is always

possible to consider a matrix to be singular if the calculation value for the condition number is greater than

or equal to an established criterion value.

(5) Generally, if data is assigned that causes a floating point exception during calculations (such as a floating

point overflow), a normal calculation result cannot be expected. However, a floating point underflow that

occurs when adding residuals in an iterative calculation is an exception to this.

(6) For problems that are handled using numerical calculations (specifically, problems that use iterative tech-

niques as the calculation method), there are cases in which a solution cannot be obtained with good precision

and cases in which no solution can be obtained at all, by a special-purpose subroutine.

(7) Depending on the problem being dealt with, there may be cases when there are multiple solutions, and the

execution result differs in appearance according to the compiler used or the computer or OS under which

the program is executed. For example, when an eigenvalue problem is solved, the eigenvectors that are

obtained may differ in appearance in this way.

(8) The mark “DEPRECATED” denotes that the subroutine will be removed in the future. Use ASL Unified

Interface, the higher performance alternative practice instead.
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Chapter 2

SIMULTANEOUS LINEAR

EQUATIONS(DIRECT METHOD)

2.1 INTRODUCTION

This chapter describes subroutines that solve simultaneous linear equations and obtain the determinant value and

inverse matrix of a matrix.

In this library, subroutines having the following functions are provided individually for each set of matrix charac-

teristics and storage mode.

(1) Perform triangular decomposition of coefficient matrix, then solve simultaneous linear equations.

(2) Perform triangular decomposition of coefficient matrix.

(3) Perform triangular decomposition of coefficient matrix and obtain condition number.

(4) Solve simultaneous linear equations after triangular decomposition of coefficient matrix

(5) Obtain determinant value and inverse matrix.

You can freely combine the various types of subroutines (1) through (5) to suit your processing needs. This

enables you to perform efficient processing by eliminating unnecessary calculation steps.

In addition, since triangular decomposition of a matrix is performed using the technique most suited to the

characteristics of the matrix, the technique used differs for each type of matrix.

In addition, real tridiagonal matrices are classified into two type-real tridiagonal matrix (vector type) and fixed

coefficient real tridiagonal matrix (scalar type) according to characteristics of the coefficient matrix. Subroutines

having the following functions are provided for tridiagonal matrices.

(1) Solves simultaneous linear equations (performs reduction operations or Gauss method and solves the equa-

tions).

(2) Obtains solutions (only solves the equations after reduction operation).

Users can freely combine the above two subroutines to suit processing objective. This enables processing to be

performed efficiently by eliminating unnecessary computations.
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Methods of using subroutines

2.1.1 Methods of using subroutines

Methods of using subroutines are described below using a real matrix (two–dimensional array type) as an example.

(1) Simultaneous linear equations

(1) Using

{
DBGMSL

RBGMSL

}

CALL

{
DBGMSL

RBGMSL

}
(A, · · · , b, · · ·)

Performs a triangular decomposition of coefficient matrix A and solves Ax = b.

(2) Using

{
DBGMLU

RBGMLU

}
and

{
DBGMLS

RBGMLS

}

CALL

{
DBGMLU

RBGMLU

}
(A, · · ·)

CALL

{
DBGMLS

RBGMLS

}
(A, · · · , b, · · ·){

DBGMLU

RBGMLU

}
performs a triangular decomposition of coefficient matrix A, and

{
DBGMLS

RBGMLS

}
solves

Ax = b.

(3) Obtaining the condition number in addition to solving simultaneous linear equations

CALL

{
DBGMLC

RBGMLC

}
(A, · · ·, COND, · · ·)

CALL

{
DBGMLS

RBGMLS

}
(A, · · · , b, · · ·){

DBGMLC

RBGMLC

}
calculates the condition number and performs a triangular decomposition of coefficient

matrix A, and

{
DBGMLS

RBGMLS

}
solves Ax = b.

(2) Determinant and inverse matrix

CALL

{
DBGMLU

RBGMLU

}
(A, · · ·)

CALL

{
DBGMDI

RBGMDI

}
(A, · · ·, DET, · · ·){

DBGMLU

RBGMLU

}
performs a triangular decomposition of matrix A, and

{
DBGMDI

RBGMDI

}
obtains the determinant

and inverse matrix.

(3) Improving the solution

(1) Using

{
DBGMSL

RBGMSL

}
A2 ← A

b2 ← b

CALL

{
DBGMSL

RBGMSL

}
(A2, · · · , b2, · · ·)
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Methods of using subroutines

CALL

{
DBGMLX

RBGMLX

}
(A, · · · , A2, · · · , b, · · · , b2, · · ·)

The subroutine shown above improves the solution obtained by using

{
DBGMSL

RBGMSL

}
.

(2) Using

{
DBGMLU

RBGMLU

}
and

{
DBGMLS

RBGMLS

}
A2 ← A

b2 ← b

CALL

{
DBGMLU

RBGMLU

}
(A2, · · ·)

CALL

{
DBGMLS

RBGMLS

}
(A2, · · · , b2, · · ·)

CALL

{
DBGMLX

RBGMLX

}
(A, · · · , A2, · · · , b, · · · , b2, · · ·){

DBGMLU

RBGMLU

}
performs a triangular decomposition of matrix A,

{
DBGMLS

RBGMLS

}
solves Ax = b, and{

DBGMLX

RBGMLX

}
improves the solution.
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Notes

2.1.2 Notes

(1) To solve the simultaneous linear equations Ax = b, you could use the mathematical formula x = A−1b.

However, it would be ill–advised to solve these equations by obtaining the inverse matrix A−1 and multiplying

it by the constant vector. For example, in a real matrix (two–dimensional array type), if you compare

this method to one in which you obtain the solution by performing a triangular decomposition of the

coefficient matrix, you would find that for n variables the inverse matrix method requires approximately

n3 multiplications, while the triangular decomposition method requires approximately n3/3 multiplications.

Clearly, the triangular decomposition method is preferable. Therefore, you should obtain the inverse matrix

A−1 only if you actually need the inverse matrix itself.

(2) If you need to perform calculations many times for the same matrix such as when solving multiple sets of

simultaneous linear equations where only the constant vector differs, it is more efficient to first perform the

triangular decomposition once and then use that result repetitively thereafter.

Example :

To solve the equations:

Ax1 = b1

Ax2 = b2

execute either:

CALL

{
DBGMSL

RBGMSL

}
(A, · · · , b1, · · ·)

CALL

{
DBGMLS

RBGMLS

}
(A, · · · , b2, · · ·)

or

CALL

{
DBGMLU

RBGMLU

}
(A, · · ·)

CALL

{
DBGMLS

RBGMLS

}
(A, · · · , b1, · · ·)

CALL

{
DBGMLS

RBGMLS

}
(A, · · · , b2, · · ·){

DBGMSL

RBGMSL

}
or

{
DBGMLU

RBGMLU

}
performs the triangular decomposition of coefficient matrix A, and this

result is only referred thereafter without its contents being changed.

(3) Two subroutines are provided for performing triangular decomposition. One obtains the condition number

and the other does not. The subroutine that obtains the condition number requires many more calculations

just to obtain the condition number. For an n-dimensional matrix, it requires approximately n2 more

multiplications than the subroutine that does not obtain the condition number. Therefore, unless you

specifically need the condition number, you can save execution time by performing triangular decomposition

without obtaining the condition number.

(4) Although the array type of the input and output data of complex argument type subroutines is complex

type, the array type of the input and output data of all other subroutines is real type.

(5) Although an iterative method can be used to solve simultaneous linear equations having a sparse matrix as

the coefficient matrix, the following points should be carefully considered.
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• When solving simultaneous linear equations having a sparse matrix as the coefficient matrix, a solution

is obtained by a finite number of operations when using a direct method, regardless of the properties

of the coefficient matrix. With an iterative method, however, the solution may quickly converge or no

solution may be obtained depending on the properties of the coefficient matrix.

• When the coefficient matrix is positive symmetric or diagonally dominant, a solution generally is

obtained faster by using an iterative method subroutine.

• Even if no solution is obtained by using an iterative method, a solution may be obtained by using a

direct method.

• When the coefficient matrix is nearly singular, a precise solution may not be obtained regardless of

which method is used.

• Two subroutines are provided for performing triangular decomposition. One obtains the condition

number and the other does not. The subroutine that obtains the condition number requires many

more calculations just to obtain the condition number.

Therefore, unless you specifically need the condition number, you can save execution time by performing

triangular decomposition without obtaining the condition number.
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2.1.3 Algorithms Used

2.1.3.1 Crout Method

The Crout method decomposes coefficient matrix A into the product of the lower triangular matrix L and the

unit upper triangular matrix U .

A = LU

Matrix A

�
�
�
�
�
�
��

Matrix U

Matrix L

=⇒

Since partial pivoting is performed in this library, this actually becomes PA = LU (where P is the replacement

matrix for row exchange).

Assume A = (aij), L = (lij) and U = (uij) (i, j = 1, 2, · · · , N). Then, the algorithm is as follows.

li1 ← ai1 (i = 1, 2, · · · , N)

Partial pivoting

u1j ← a1j/l11 (j = 1, 2, · · · , N)

for k = 2, 3, · · · , N

lkk ← akk −
k−1∑
m=1

lkmumk

for i = k + 1, k + 2, · · · , N

lik ← aik −
k−1∑
m=1

limumk

Partial pivoting

for j = k + 1, k + 2, · · · , N

ukj ← (akj −
k−1∑
m=1

lkmumj)/lkk

Partial pivoting is an operation for stable decomposition that exchanges rows so that the pivot is the maximum

within the column. The operation at the m-th stage (when k = m in the algorithm shown above) is as follows.

Matrix A during decomposition
m

m

The element having the maximum absolute value within the hatched portion shown in the figure is selected, and

the row containing that element is exchanged with the m-th row.

15



Algorithms Used

2.1.3.2 Cholesky method

The Cholesky method decomposes coefficient matrix A into the product of the lower triangular matrix L and the

upper triangular matrix LT .

A = LLT

Matrix A

�
�
�
�
�
�
��

Matrix LT=⇒

Assume A = (aij), L = (lij) and LT = (l′ij) (i, j = 1, 2, · · · , N). If the Cholesky method is applied in the column

direction to the upper right triangular portion of coefficient matrix A, the algorithm is as follows.

for k = 1, 2, · · · , N
for i = 1, 2, · · · , k − 1

l′ik ← (aik −
i−1∑
m=1

l′mil
′
mk)/l

′
ii

l′kk ←
√√√√akk −

k−1∑
m=1

l′mk
2

The calculation efficiency of matrix calculations is increased by generally applying external product calculations

rather than inner product calculations and by further employing an unrolling technique to reduce the memory

access frequency.

Therefore, the Cholesky method that uses external product calculations is used for simultaneous linear equations

having a one-dimensional compressed type coefficient matrix. In addition, the data can be accessed continuously

by storing it in row-oriented format.

2.1.3.3 Modified Cholesky method

The modified Cholesky method decomposes coefficient matrix A into the product of the lower triangular matrix

L, diagonal matrix D, and upper triangular matrix LT .

A = LDLT

The diagonal matrix D consists of the reciprocals of the diagonal components of the upper triangular matrix LT .

Matrix A

�
�
�
�
�
�
��

Matrix LT=⇒

Assume A = (aij), L = (lij), D = (dij) and LT = (l′ij) (i, j = 1, 2, · · · , N). Then, the algorithm is as follows.

l′1j ← a1j (j = 1, 2, 3, · · · , N)
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for k = 2, 3, · · · , N
for i = 1, 2, · · · , k − 1

wi ← l′ik/l
′
ii

for j = k, k + 1, · · · , N

l′kj ← akj −
k−1∑
m=1

wml′mj

w indicates a work area, N areas are required.

2.1.3.4 Gauss method

The Gauss method decomposes coefficient matrix A into the product of the unit lower triangular matrix L and

the upper triangular matrix U .

A = LU

Matrix A

�
�
�
�
�
�
��

Matrix U

Matrix L

=⇒

Since partial pivoting is performed in this library, this actually becomes PA = LU (when P is the replacement

matrix for row exchange).

Assume A = (aij), L = (lij) and U = (uij) (i, j = 1, 2, · · · , N). Then, the algorithm is as follows.

for k = 1, 2, · · · , N
Partial pivoting

for i = k + 1, k + 2, · · · , N
lik ← aik/ukk

for j = k + 1, k + 2, · · · , N
uij ← aij − likukj

Partial pivoting is an operation for stable decomposition that exchanges row so that the pivot is the maximum

within the column. The operation at the m-th stage (when k = m in the algorithm shown above) is as follows.

Matrix A during decomposition
m

m

The element having the maximum absolute value within the hatched portion shown in the figure is selected, and

the m-th through N -th columns of the row containing that element are exchanged with the m-th through N -th

columns of the m-th row.
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2.1.3.5 Levinson method

When the Toeplitz matrix R is represented by:

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0 r−1 r−2 · · · r−n+2 r−n+1

r1 r0 r−1 · · · r−n+3 r−n+2

...
...

. . .
...

...
...

...
. . .

...
...

rn−2 rn−3 rn−4 · · · r0 r−1

rn−1 rn−2 rn−3 · · · r1 r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

the following simultaneous linear equations:

n∑
j=1

ri−jxj = bi (i = 1, · · · , n)

having the Toeplitz matrix as coefficient matrix can be solved as described below by considering the solutions

x
(m)
j (j = 1, · · · ,m; m = 1, 2, · · · , n) of the following kind of n simultaneous linear equations:

m∑
j=1

ri−jx
(m)
j = bi (i = 1, · · · ,m; m = 1, 2, · · · , n)

(1) Initial solution (m = 1)

x
(1)
1 =

b1
r0

g
(1)
1 =

r−1

r0

h
(1)
1 =

r1
r0

(2) For m = 2, 3, · · · , n, perform the following sequential iterative calculations.

x(nu) =

m−1∑
j=1

rm−jxj − bm

x(de) =

m−1∑
j=1

rm−jg
(m−1)
m−j − r0

x(m)
m =

x(nu)

x(de)

x
(m)
j = x

(m−1)
j − x(m)

m g
(m−1)
m−j (j = 1, 2, · · · ,m− 1)

g(nu) =

m−1∑
j=1

rj−mg
(m−1)
j − r−m

g(de) =

m−1∑
j=1

rj−mh
(m−1)
m−j − r0
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h(nu) =

m−1∑
j=1

rm−jh
(m−1)
j − rm

g(m)
m =

g(nu)

g(de)

h(m)
m =

h(nu)

x(de)

g
(m)
j = g

(m−1)
j − g(m)

m h
(m−1)
m−j (j = 1, 2, · · · ,m− 1)

h
(m)
j = h

(m−1)
j − h(m)

m g
(m−1)
m−j (j = 1, 2, · · · ,m− 1)

The solutions are obtained by letting xj = x
(n)
j . Since ri and r−i are related as follows for a symmetric Toeplitz

matrix:

ri = r−i (i = 1, 2, · · · , n)

the following relationship holds:

g
(m)
j = h

(m)
j (j = 1, 2, · · · ,m; m = 1, 2, · · · , n)

and the calculations can proceed more efficiently than for the general case. Since this method makes practical

use of the properties of the matrix, it is superior to the general Gaussian elimination method in terms of memory

usage and calculation efficiency. However, the solution may not be able to be obtained theoretically even if the

matrix is regular. For example, a solution clearly cannot be obtained by this method when r0 = 0.

2.1.3.6 Vandermonde matrix

The Vandermonde matrix V of order n consisting of n different elements vk (k = 1, 2, · · · , n) is represented as

follows.

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 v1 v21 · · · vn−2
1 vn−1

1

1 v2 v22 · · · vn−2
2 vn−1

2

...
...

. . .
...

...
...

...
. . .

...
...

1 vn−1 v2n−1 · · · vn−2
n−1 vn−1

n−1

1 vn v2n · · · vn−2
n vn−1

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let’s solve the simultaneous linear equations V x = b having the Vandermonde matrix V as coefficient matrix,

which are represented as follows.

n∑
j=1

vj−1
i xj = bi (i = 1, · · · , n)

If the polynomial P
(n)
i (x) of degree n− 1 is defined as follows:

P
(n)
i (x) =

n∏
k=1

(k �=i)

x− vk
vi − vk

=

n∑
j=1

ui,jx
j−1
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the relationship P
(n)
i (vk) = δik (where δik is the Kronecker delta) holds. Therefore, if the matrix consisting of

the coefficients of the xj−1 terms of this polynomial is represented by U = {ui,j}, the relationship UV T = E

(where E is the unit matrix), that is, V −1 = UT holds. Consequently, the solution x of the simultaneous linear

equations V x = b is obtained by calculating:

x = UTb

Now, to calculate the various coefficients of U , consider the master polynomial P (n)(x) defined by the following

equation.

P (n)(x) =

n∏
k=1

(x− vk)

Let the coefficient of the xj−1 term of the master polynomial P (n)(x) be w
(n)
n−j+1, and the master polynomial can

be represented as follows.

P (n)(x) = xn + w
(n)
1 xn−1 + · · ·+ w

(n)
n−1x+ w(n)

n

From the relationship P (i)(x) = (x − vi)P
(i−1)(x) (i = 2, 3, · · · , n), the following relationships are obtained by

comparing the coefficients for xj−1:

w
(i)
1 = w

(i−1)
1 − vi (i = 2, · · · , n)

w
(i)
j = w

(i−1)
j − viw

(i−1)
j−1 (j = i, i− 1, · · · , 2; i = 2, 3, · · · , n)

where, the following equations hold.

w
(1)
1 = −v1

w
(j−1)
j = 0 (j = 2, 3, · · · , n)

The various coefficients of the master polynomial can be calculated from the above. On the other hand, the

following relationship holds:

dP (n)(x)

dx
|x=vi =

n∏
k=1

(k �=i)

(vi − vk)

and this value can be calculated from the following:

dP (n)(x)

dx
|x=vi = nvi

n−1 + (n− 1)w
(n)
1 vi

n−2 + · · ·+ w
(n)
n−1

Also, since:

P
(n)
i (x) =

P (n)(x)

(x− vi)
dP (n)(x)

dx |x=vi

the coefficients ui,j of the xj−1 terms of this polynomial can be obtained by using synthetic division to calculate

the coefficients of the xj−1 terms of
P (n)(x)

(x − vi)
. The simultaneous linear equations having the Vandermonde matrix

as the coefficient matrix essentially are ill-conditioned, and it is difficult to obtain a solution with good precision

except when n is extremely small.
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2.1.3.7 Cyclic Reduction Method

(1) Cyclic reduction method

The cyclic reduction method is used to solve the simultaneous linear equations:

Ax = b (2.1)

having the real tridiagonal matrix A as the coefficient matrix.

If we assume that A, x, and b are as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

d1 u1 0

�2 d2 u2

· · ·
· · un−1

0 �n dn

⎤
⎥⎥⎥⎥⎥⎥⎦
,x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

·
·
xn

⎤
⎥⎥⎥⎥⎥⎥⎦
, b =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1

b2

·
·
bn

⎤
⎥⎥⎥⎥⎥⎥⎦

then:

�ixi−1 + dixi + uixi+1 = bi (2.2)

This algorithm repeatedly performs a reduction operation �LOG2(n)� times. The reduction operation

creates a set of simultaneous linear equations having a coefficient matrix with one-half the order of the

coefficient matrix before the reduction operation. Ultimately, a single linear equation is created from which

a single solution is obtained.

dx = b

x = b/d (2.3)

All of the solutions then are obtained by repeatedly performing back substitution based on this solution.

In this section, �x� represents the maximum integer that does not exceed x.

The reduction operation and back substitution of the cyclic reduction method are described below.

(a) Reduction operation

First, let’s assume n = 2m − 1.

We will eliminate xi−1 and xi+1 from three rows of (2.1) consisting of an even numbered row and the

rows before and after it. That is, we will obtain the following equation:

�′ixi−2 + d′ixi + u′
ixi+2 = b′i (2.4)⎧⎪⎪⎪⎨

⎪⎪⎪⎩
�′i = di+1�i−1�i

u′
i = di−1uiui+1

d′i = �idi+1ui−1 + �i+1di−1ui − di−1didi+1

b′i = �idi+1bi−1 + di−1uibi+1 − di−1di+1bi

from the three rows:⎧⎪⎨
⎪⎩

�i−1xi−2 + di−1xi−1 + ui−1xi = bi−1

�ixi−1 + dixi + uixi+1 = bi

�i+1xi + di+1xi+1 + ui+1xi+2 = bi+1
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where, i is an even number.

By applying (2.4) to all even numbered rows contained in (2.1) (x0 = xn+1 = 0), we obtain a set

of simultaneous linear equations having a real tridiagonal coefficient matrix of order �n/2� as the

coefficient matrix.

Next, let’s consider n = 2m. Although we could apply (2.4) to all even numbered rows when n = 2m−1,
we cannot apply (2.4) to row n− 1 and row n when n = 2m since row n− 1 is an odd numbered row.

Therefore, we will apply the following equation:

�′nxn−2 + d′nxn = b′n (2.5)⎧⎪⎨
⎪⎩

�′n = �n−1�n

d′n = �nun−1 − dndn−1

b′n = �nbn−1 − dn−1dn

which was obtained by eliminating xn−1 from the two rows:{
�n−1xn−2 + dn−1xn−1 + un−1xn = bn−1

�nxn−1 + dnxn = bn

Consequently, we can reduce the set of simultaneous linear equations to a set having a real tridiagonal

matrix of order �n/2� as the coefficient matrix regardless of the value of n.

(b) Back substitution

We can obtain the other solutions based on the solution (2.3), which we obtained by using the reduction

method. To obtain these additional solutions, we substitute previously obtained solutions back into

the various sets of simultaneous linear equations produced by the reduction method, proceeding in the

reverse order as when applying the reduction method.

If the solution has been obtained for an even numbered row, the solution for an odd numbered row is

obtained by using the following equation:

xi−1 = (bi−1 − �i−1xi−2 − ui−1xi)/di−1, i = 2, 4, 6, · · · , n+ 1

(2) Increasing the speed of the cyclic reduction method

Since the cyclic reduction method is not a successive elimination method such as the Gauss method, the

calculations are independent of one another. Although this essentially allows vectorization to be performed,

the following kind of vectorization also is carried out.

(a) Increasing the speed of the fixed coefficient type cyclic reduction method

If the fixed coefficient type cyclic reduction method, a modified version of the cyclic reduction method,

is used, the processing speed can be increased for the coefficient matrix that appears when discretizing

the Dirichlet or Neumann boundary value problem. The fixed coefficient type cyclic reduction method

is described below.

First, consider the following coefficient matrices:⎡
⎢⎢⎢⎢⎢⎢⎣

d s 0

s d s

· · ·
· · s

0 s d

⎤
⎥⎥⎥⎥⎥⎥⎦

, d 	= 0, s 	= 0 (2.6)
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⎡
⎢⎢⎢⎢⎢⎢⎣

d s 0

s d s

· · ·
· · s

0 2 · s d

⎤
⎥⎥⎥⎥⎥⎥⎦

, d 	= 0, s 	= 0 (2.7)

If we compare (2.6) with the matrix obtained by normalizing the last row of (2.7) by 2, we see that

only the last rows of these two matrices differ, and all other rows are identical. Therefore, we can

replace (2.6) and (2.7) by the following matrix (2.8).⎡
⎢⎢⎢⎢⎢⎢⎣

d s 0

s d s

· · ·
· d s

0 s e

⎤
⎥⎥⎥⎥⎥⎥⎦

, d 	= 0, s 	= 0, e 	= 0 (2.8)

Now, let’s first assume n = 2m − 1.

We will eliminate xi−1 and xi+1 from three rows of (2.7) consisting of an even numbered row and the

rows before and after it. That is, we will obtain the following equation:

s′xi−2 + d′xi + s′xi+2 = b′i (2.9)⎧⎪⎨
⎪⎩

s′ = s2

d′ = 2 · s2 − d2

b′ = s(bi−1 + bi+1)− dbi

from the three rows:⎧⎪⎨
⎪⎩

sxi−2 + dxi−1 + sxi = bi−1

sxi−1 + dxi + sxi+1 = bi

sxi + dxi+1 + sxi+2 = bi+1

where, i is an even number.

By applying (2.9) to all even numbered rows contained in (2.8) (x0 = xn+1 = 0), we obtain a set

of simultaneous linear equations having a real tridiagonal coefficient matrix of order �n/2� as the

coefficient matrix. However, for row n− 1, we have:

s′xn−3 + e′xn−1 = b′n−1 (2.10)⎧⎪⎨
⎪⎩

s′ = e · s2
e′ = e · s2 − e · d2 + d · s2
b′n−1 = e · s · bn−2 − e · d · bn−1 + d · s · bn

Next, let’s consider n = 2m. Since row n− 1 is an odd numbered row when n = 2m, we will apply the

following equation:

s′xn−2 + e′xn = bn−1 (2.11)⎧⎪⎨
⎪⎩

s′ = s2

d′ = s2 − d · e
b′n−1 = s · bn−1 − d · bn

which was obtained by eliminating xn−1 from the two rows:{
sxn−2 + dxn−1 + sxn = bn−1

sxn−1 + exn = bn
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Consequently, we can reduce the set of simultaneous linear equations to a set having a real tridiagonal

matrix of order �n/2� as the coefficient matrix regardless of the value of n. These operations are

repeatedly performed �LOG2(n)� times until, ultimately, a single linear equation is created from which

a single solution is obtained.

dx = b

x = b/d

All of the solutions then are obtained by repeatedly performing back substitution based on this solution.

If the solutions for even numbered rows have been obtained, then the solutions for odd numbered rows

are obtained from the following equation:

xi−1 = (bi−1 − s · xi−2 − s · xi)/d, i = 2, 4, 6, · · · , n+ 1

Next, consider the following coefficient matrices:⎡
⎢⎢⎢⎢⎢⎢⎣

d 2 · s 0

s d s

· · ·
· · s

0 s d

⎤
⎥⎥⎥⎥⎥⎥⎦

, d 	= 0, s 	= 0 (2.12)

⎡
⎢⎢⎢⎢⎢⎢⎣

d 2 · s 0

s d s

· · ·
· · s

0 2 · s d

⎤
⎥⎥⎥⎥⎥⎥⎦

, d 	= 0, s 	= 0 (2.13)

If we compare (2.12) with the matrix obtained by normalizing the last row of (2.13) by 2, we see that

only the last rows of these two matrices differ, and all other rows are identical. Therefore, we can

replace (2.12) and (2.13) by the following matrix (2.14).⎡
⎢⎢⎢⎢⎢⎢⎣

d 2 · s 0

s d s

· · ·
· d s

0 s e

⎤
⎥⎥⎥⎥⎥⎥⎦

, d 	= 0, s 	= 0, e 	= 0 (2.14)

This time, let’s consider the operations based on odd numbered rows instead of even numbered rows.

First, we will eliminate x2 from the first and second rows. That is, we will obtain the following equation:

(d2 − 2 · s2)x1 − 2 · s2x3 = db1 − 2sb2 (2.15)

from the two rows:{
dx1 + 2 · sx2 = b1

sx1 + dx2 + sx3 = b2

Next, we will eliminate x2i and x2i+2 from the three rows of (2.14) consisting of row 2i, row 2i + 1,

and row 2i+ 2. That is, we will obtain the following equation:

s′x2i−1 + d′x2i+1 + s′x2i+3 = b′2i+1 (2.16)⎧⎪⎨
⎪⎩

s′ = s2

d′ = 2 · s2 − d2

b′2i+1 = s · b2i − d · b2i+1 + s · b2i+2
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from the three rows:⎧⎪⎨
⎪⎩

sx2i−1 + dx2i + sx2i+1 = b2i

sx2i + dx2i+1 + sx2i+2 = b2i+1

sd2i+1 + sx2i+2 + sx2i+3 = b2i+2

This is performed for each of the values i = 1, 2, 3, · · · , m, where m is the maximum value of i that

satisfies the relationship 2i+ 1 ≤ n− 2.

Finally, for n = 2m, we obtain (2.17) by eliminating xn−2 and xn from the three rows consisting of row

n − 2, n − 1, and row n. Also, for n = 2m − 1, since row n − 1 is an even numbered row, we obtain

(2.18) by eliminating xn−1 from the two rows consisting of row n− 1 and row n.

That is, for n = 2m, we obtain the following equation:

s′xn−3 + e′xn−1 = b′n−1 (2.17)⎧⎪⎨
⎪⎩

s′ = e · s2
e′ = e · s2 − e · d2 + d · s2
b′n−1 = s · e · bn−2 − d · e · bn−1 + d · s · bn

from the three rows:⎧⎪⎨
⎪⎩

sxn−3 + dxn−2 + sxn−1 = bn−2

sxn−2 + dxn−1 + sxn = bn−1

sxn−1 + exn = bn

and for n = 2m − 1, we obtain the following equation:

s′xn−2 + e′xn = b′n (2.18)⎧⎪⎨
⎪⎩

s′ = s2

e′ = s2 − e · d
b′n = s · bn−1 − d · bn

from the two rows:{
sxn−2 + dxn−1 + sxn = bn−1

sxn−1 + exn = bn

Consequently, we can reduce the set of simultaneous linear equations to a set having a real tridiagonal

matrix of order �(n− 1)/2�+1 as the coefficient matrix regardless of the value of n. These operations

are repeatedly performed �LOG2(n− 1)� times until, ultimately, a set of equations having the following

coefficient matrix is obtained:[
d(m) 2

1 e(m)

]
, m = �(n− 1)/2�+ 1

All of the solutions then are obtained by repeatedly performing back substitution based on this solution.

(b) Reduction operation truncation

As the reduction operation is repeated, the magnitude of the diagonal elements may be increased

based on a certain assumption (sufficient but not necessary condition) and the ratio of the diagonal

element and subdiagonal element may become larger than 1/EP (EP: Units for determining error) at

an intermediate stage of the reduction operation.

Consider the following as one such assumption:

| l(k)i |, | u(k)
i |<| d(k)i /2 |, 1 ≤ i ≤ n (2.19)
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Here, l
(k)
i , d

(k)
i and u

(k)
i are the lower subdiagonal element, the diagonal element and the upper subdi-

agonal element, respectively, in the i-th row of the coefficient matrix after the k-th reduction operation.

If this assumption holds, and the coefficient matrix is normalized to:

(· · · , li(k)/di(k), 1, ui
(k)/di

(k), · · ·) (2.20)

then the subdiagonal elements may become as small as EP, and the constant vector b(k)(k: Reduction

frequency) will converge to several solutions before the reduction operation is completed.

Therefore, if the reduction frequency when convergence occurs is known before performing the reduction

operation, the reduction operation need not be performed all the way to completion. If the reduction

operation is halted before completion and the calculations switch to back substitution, efficiency can

be increased because the calculation time will be reduced. This is called truncation of the cycling

reduction operation.

To obtain the value of the reduction frequency up to truncation, we will check the lower limit for

convergence when (2.20) is satisfied.

First, let’s obtain e = max
i

(li
(k)/di

(k), ui
(k)/di

(k)) and consider the matrix (· · · , e, 1, e, · · ·) obtained by

replacing all li(k) and ui(k) of (2.20) by e. If also would be sufficient to consider a coefficient matrix

such as (· · · , 1,d, 1, · · ·). To determine the convergence rate, we define:

ε(k) =| d(k) | −2 > 0

where, d(k) is the diagonal element computed during the k-th iteration. Let’s try to measure whether

| d(k) | increases towards 1/EP as a function of k. If we take the absolute value of:

d(k+1) = 2−
[
d(k)
]2

then from (2.9) we get:

| d(k+1) |=| 2−
[
2 + ε(k)

]2
|≥ 2 + 4ε(k) +

[
ε(k)
]2

and it follows that:

ε(k+1) > 4ε(k) +
[
ε(k)
]2

(2.21)

From (2.21), we have:

• If ε(k) < 1, then ε(k+1) > 4ε(k)

and the rate of increase is said to be at least of first order speed.

• If ε(k) > 1, then ε(k+1) >
[
ε(k)
]2

and the rate of increase is said to be at least of second order speed.

Consequently, the minimum integer k for which the following relationship holds for the value of ε(k)

obtained from (2.21):

ε(k) ≥ 1/EP

is assumed to be the reduction frequency up to truncation. Moreover, truncation will not occur if

k ≥ �LOG2(n)�.
(3) Supplementary item

• Affect on calculation time

For simultaneous linear equations having a real tridiagonal coefficient matrix that does not satisfy

condition (2.19) (that is, the magnitude of the diagonal elements is not strong), the calculation process

must determine whether or not the coefficient matrix is singular. Therefore, more calculation time is

required than for a coefficient matrix for which the magnitude of the diagonal elements is strong.
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2.1.3.8 Calculating the inverse matrix

Triangular decomposition is used to calculate the inverse matrix of matrix A.

If A is decomposed into A = LU , then L−1 or U−1 is obtained as the first step by the sweeping out method.

Next, that result is transformed as the second step to calculate A−1 = U−1L−1.

For example, since LT can be obtained by the Cholesky method as L−1A = LT , A−1 is obtained by multiplying

the transformation matrix for triangular decomposition L−1 by (LT )−1 from the right side.

Whether L−1 or U−1 is calculated as the first step differs according to the triangular decomposition method.

2.1.3.9 Calculating the determinant

The determinant is obtained as follows.

If A has been decomposed into A = LU , then

det(A) = det(L)det(U) =

n∏
i=1

lii

n∏
i=1

uii

where, L = (lij) and U = (uij).

2.1.3.10 Improving the solution

Consider improving the solution of the simultaneous linear equations Ax = b. Let x(1) be the initially obtained

solution, and assume that Ax(1) 	= b due to computational error. The following algorithm is used to improve

x(1).

(1) r(k) = b−Ax(k)

(2) Ay(k) = r(k)

(3) x(k+1) = x(k) + y(k) (k = 1, 2, · · ·)

This iterative procedure generates a rounding error in (2). Therefore, the formula in (2) actually becomes:

(A+ E)y(k) = r(k)

Using this equation together with (1) and (3) yields:

x(k+1) − x = [ I − (A+ E)−1A ]k(x(1) − x)

r(k+1) = [ I −A(A + E)−1 ]r(k)

Therefore, if ‖E‖‖A−1‖ < 1

2
, then

x(k+1) → x

r(k+1) → 0
(k →∞)

Moreover, if

‖y(k)‖∞
‖x(k+1)‖∞ >

1

2

‖y(k−1)‖∞
‖x(k)‖∞

the solution does not converge.

(See reference bibliography (6).)
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2.1.3.11 Precise estimate of the approximate solution

For the approximate solution x(k),

y(k) = (A+ E)−1(b−Ax(k)) = (I +A−1E)−1(x− x(k))

The relative error of the solution
‖x− x(k)‖∞
‖x(k)‖∞ can be replaced by

‖y(k)‖∞
‖x(k)‖∞ if the solution converges sufficiently

and matrix A is well conditioned.

2.1.3.12 Condition Number

(1) Condition numbers and their use The condition number κ(A) of matrix A is a numeric value that indicates

the degree of influence the error included in coefficient matrix A or constant vector b exerts on the solution

when solving the simultaneous linear equations Ax = b. The condition number is given by the following

formula:

κ(A) = ‖A‖‖A−1‖

If error E is contained in coefficient matrix A, the relative error between the derived solution y and real

solution x is in the range:

‖y − x‖
‖y‖ ≤ κ(A)ε

where:

ε =
‖E‖
‖A‖ .

If error e is contained in constant vector b, the relative error is in the range:

‖y − x‖
‖x‖ ≤ κ(A)ε

where:

ε =
‖e‖
‖b‖ .

Therefore, if the condition number is on the order of 10α, the precision of the derived solution may be

approximately α digits less than the precision of the original data.

This library obtain the reciprocal of the condition number and store it in the variable COND. Note that

even if solution is obtained for simultaneous linear equations having a coefficient matrix for which the COND

value is extremely small, the precision will be extremely poor. In particular, if the following decision formula

holds, the matrix is computationally singular, and the solution is unreliable.

(Singular matrix decision formula):

1.0 + COND = 1.0

(2) Calculating the condition number Although the condition number

κ(A) = ‖A‖‖A−1‖
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this library approximate ‖A−1‖ without obtaining A−1 and then multiply that value by ‖A‖.
Let A = UΣV T be a singular decomposition of A where

U, V : Orthogonal matrices

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0
. . .

. . .

. . .

0 σn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

σi : Singular value

σ1 ≥ σ2 ≥ · · · ≥ σn

Consider the system of equations Ax = y. If y is represented as:

y = ‖y‖
n∑

i=1

αiui (
∑
i

αi
2 = 1)

where ui (a column vector of U) is a basis, then, the following relationship holds:

‖A−1‖ ≥ ‖x‖‖y‖ =

[
n∑

i=1

(
αi

σi
)2

] 1
2

As long as αn is not particularly small, the size of the right side is on the order of σn
−1(= ‖A−1‖) for any

type of vector y.

This library select y so that approximate solutions get successively better.

The inequality shown above holds when y = un(αn = 1, αi = 0; i = 1, 2, · · · , n− 1). Therefore, y should be

determined so that it has un as its principle elements. Actually, for:

z =

⎛
⎜⎜⎜⎜⎝
±1
±1
...

±1

⎞
⎟⎟⎟⎟⎠

y should be obtained in ATy = z by determining the sign of each element of z so that
‖y‖
‖z‖ is maximized.

Using this y to solve Ax = y,
‖x‖
‖y‖ is the approximate value of ‖A−1‖.

The actual procedure for obtaining the condition number is as follows.

(a) Obtain ‖A‖.
(b) Perform a triangular decomposition of A into A = LU .

(c) Obtain w by determining z in UTw = z so that
‖w‖
‖z‖ is maximized.

(d) Obtain y by solving LTy = w.

(e) Obtain x by solving LUx = y.

(f) Obtain
‖y‖
‖x‖‖A‖ (reciprocal of the condition number) and store this value in the argument COND.

(See reference bibliography (3).)
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2.2 REAL MATRIX (TWO-DIMENSIONAL ARRAY TYPE)

2.2.1 DBGMSM, RBGMSM

Simultaneous Linear Equations with Multiple Right-Hand Sides (Real Ma-

trix)

(1) Function

DBGMSM or RBGMSM uses Gauss’ method to solve the simultaneous linear equations Axi = bi(i =

1, 2, · · · ,m) having real matrix A (two-dimensional array type) as coefficient matrix. That is, when the

n×m matrix B is defined by B = [b1, b2, · · · , bm], the subroutine obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL DBGMSM (AB, LNA, N, M, IPVT, IERR)

Single precision:

CALL RBGMSM (AB, LNA, N, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AB
{
D

R

}
See

Contents

Input Matrix (real matrix, two-dimensional array

type) consisting of coefficient matrix A and

right-hand side vectors bi [A, b1, b2, · · · , bm]

Size: (LNA, (N +M))

Output Matrix (real matrix, two-dimensional array

type) consisting of the factored matrix A′ of

coefficient matrix A and solution vectors xi

[A′,x1,x2, · · · ,xm] (See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array AB

3 N I 1 Input Order of matrix A

4 M I 1 Input Number of right-hand side vectors, m

5 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (a))

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(b) 0 < M
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. AB(1,N+ i)← AB(1,N+ i)/AB(1, 1)

(i = 1, 2, · · · ,M) is performed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

4000 + i The pivot became 0.0 in the i-th process-

ing step of the LU decomposition of coef-

ficient matrix A.

A is nearly singular.

(6) Notes

(a) This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix

A. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i). In addition, among the

column elements corresponding to row i and row j of matrix A, elements from column 1 to column n

actually are exchanged at this time.

(b) The unit lower triangular matrix L is stored in the lower triangular portion of array AB with the

sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However,

since the diagonal components of L always are 1.0, they are not stored in array AB. In addition, the

reciprocals of the diagonal components of U are stored.
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Figure 2−1 Storage Status of Matrices L and U

Matrix L Matrix U⎡
⎢⎢⎢⎢⎢⎢⎣

1.0 0.0 0.0 · · · 0.0

l2,1 1.0 0.0 · · · 0.0

l3,1 l3,2 1.0 · · · 0.0
...

...
...

. . .
...

l5,1 l5,2 l5,3 · · · 1.0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1,1 u1,2 u1,3 · · · u1,5

0.0 u2,2 u2,3 · · · u2,5

0.0 0.0 u3,3 · · · u3,5

...
...

...
. . .

...

0.0 0.0 0.0 · · · u5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status of array AB(LNA, K)

1/u1,1 u1,2 u1,3 · · · u1,5

−l1,2 1/u2,2 u2,3 · · · u2,5

−l1,3 −l2,3 1/u3,3 · · · u3,5

...
...

...
. . .

...

−l1,5 −l2,5 −l3,5 · · · 1/u5,5

← −−−−−−−N−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−K−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N+M ≤ K must be hold.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

2 4 −1 6

−1 −5 4 2

1 2 3 1

3 5 −1 −3

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

x4,1 x4,2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

36 11

15 0

22 7

−6 4

⎤
⎥⎥⎥⎦

(b) Input data

Array AB in which coefficient matrix A and constant vectors b1 and b2 are stored, LNA=11, N=4 and

M=2.

(c) Main program

PROGRAM BBGMSM
! *** EXAMPLE OF DBGMSM ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
PARAMETER (LMA = 5)
DIMENSION AB(LNA,LNA+LMA),IPVT(LNA)

!
READ (5,*) N
READ (5,*) M
WRITE (6,1000) N, M
DO 10 I = 1, N

READ (5,*) (AB(I,J),J=1,N)
WRITE (6,1100) (AB(I,J),J=1,N)

10 CONTINUE
WRITE (6,1200)
DO 20 I = 1, N

READ (5,*) (AB(I,N+J),J=1,M)
WRITE (6,1100) (AB(I,N+J),J=1,M)

20 CONTINUE
WRITE (6,1300)
CALL DBGMSM (AB,LNA,N,M,IPVT,IERR)
WRITE (6,1400) ’DBGMSM’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N

WRITE (6,1100) (AB(I,N+J),J=1,M)
30 CONTINUE
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STOP
!
1000 FORMAT(’ ’,/,/,&

’ *** DBGMSM ***’,/,&
2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’M =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,10(F11.4))
1200 FORMAT(6X,’CONSTANT VECTORS’)
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT(6X,’SOLUTION’)

END

(d) Output results

*** DBGMSM ***
** INPUT **

N = 4
M = 2
COEFFICIENT MATRIX

2.0000 4.0000 -1.0000 6.0000
-1.0000 -5.0000 4.0000 2.0000
1.0000 2.0000 3.0000 1.0000
3.0000 5.0000 -1.0000 -3.0000

CONSTANT VECTORS
36.0000 11.0000
15.0000 0.0000
22.0000 7.0000
-6.0000 4.0000

** OUTPUT **
IERR (DBGMSM) = 0
SOLUTION

1.0000 1.0000
2.0000 1.0000
4.0000 1.0000
5.0000 1.0000
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2.2.2 DBGMSL, RBGMSL

Simultaneous Linear Equations (Real Matrix)

(1) Function

DBGMSL or RBGMSL uses the Gauss method or the Crout method to solve the simultaneous linear

equations Ax = b having the real matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBGMSL (A, LNA, N, B, IPVT, IERR)

Single precision:

CALL RBGMSL (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A (real matrix, two-

dimensional array type)

Output Upper triangular matrix U and lower triangular

matrix L when A is decomposed into A = LU .

(See Notes (b) and (c))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution vector x

5 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (b))

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1 B(1)← B(1)/A(1, 1) is performed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step of the LU decomposition of coef-

ficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, the

solution is obtained more efficiently by directly using the subroutine 2.2.1

{
DBGMSM

RBGMSM

}
to perform

the calculations. However, when 2.2.1

{
DBGMSM

RBGMSM

}
cannot be used such as when all of the right-

hand side vectors b are not known in advance, call this subroutine only once and then call subroutine

2.2.5

{
DBGMLS

RBGMLS

}
the required number of times varying only the contents of B. This enables you to

eliminate unnecessary calculation by performing the LU decomposition of matrix A only once.

(b) This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix

A. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i). In addition, among the

column elements corresponding to row i and row j of matrix A, elements from column 1 to column n

actually are exchanged at this time.

(c) The unit lower triangular matrix L is stored in the lower triangular portion of array A with the sign

changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since

the diagonal components of L always are 1.0, they are not stored in array A. In addition, the reciprocals

of the diagonal components of U are stored.
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Matrix L Matrix U⎡
⎢⎢⎢⎢⎢⎢⎣

1.0 0.0 0.0 · · · 0.0

l2,1 1.0 0.0 · · · 0.0

l3,1 l3,2 1.0 · · · 0.0
...

...
...

. . .
...

l5,1 l5,2 l5,3 · · · 1.0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1,1 u1,2 u1,3 · · · u1,5

0.0 u2,2 u2,3 · · · u2,5

0.0 0.0 u3,3 · · · u3,5

...
...

...
. . .

...

0.0 0.0 0.0 · · · u5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status within array A(LNA, K)

1/u1,1 u1,2 u1,3 · · · u1,5

−l1,2 1/u2,2 u2,3 · · · u2,5

−l1,3 −l2,3 1/u3,3 · · · u3,5

...
...

...
. . .

...

−l1,5 −l2,5 −l3,5 · · · 1/u5,5

← −−−−−−−N−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−K−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N ≤ K must hold.

Figure 2−2 Storage Status of Matrices L and U

(7) Example

(a) Problem

Solve the following simultaneous linear equations and obtain the condition number.⎡
⎢⎢⎢⎣

2 4 −1 6

−1 −5 4 2

1 2 3 1

3 5 −1 −3

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

36

15

22

−6

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 11,N = 4, and constant vector B.

(c) Main program

PROGRAM BBGMSL
! *** EXAMPLE OF DBGMSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA),IPVT(LNA)

!
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1, N

READ (5,*) (A(I,J),J=1,N)
WRITE (6,1100) (A(I,J),J=1,N)

10 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBGMSL (A,LNA,N,B,IPVT,IERR)
WRITE (6,1400) ’DBGMSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600) (I,B(I),I=1,N)
STOP

!
1000 FORMAT(’ ’,/,/,&

’ *** DBGMSL ***’,/,&
2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,10(G11.4))
1200 FORMAT(6X,’CONSTANT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** OUTPUT **’)
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1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

*** DBGMSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX

2.000 4.000 -1.000 6.000
-1.000 -5.000 4.000 2.000
1.000 2.000 3.000 1.000
3.000 5.000 -1.000 -3.000

CONSTANT VECTOR
36.0000
15.0000
22.0000
-6.0000

** OUTPUT **
IERR (DBGMSL) = 0
SOLUTION

X( 1) = 0.1000000000D+01
X( 2) = 0.2000000000D+01
X( 3) = 0.4000000000D+01
X( 4) = 0.5000000000D+01
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2.2.3 DBGMLU, RBGMLU

LU Decomposition of a Real Matrix

(1) Function

DBGMLU or RBGMLU uses the Gauss method or the Crout method to perform an LU decomposition of

the real matrix A (two-dimensional array type).

(2) Usage

Double precision:

CALL DBGMLU (A, LNA, N, IPVT, IERR)

Single precision:

CALL RBGMLU (A, LNA, N, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real Matrix A (two-dimensional array type)

Output Unit upper triangular matrix U and lower tri-

angular matrix L when A is decomposed into

A = LU (See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (b))

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N is equal to 1 Contents of array A are not changed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step.

A is nearly singular.

(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with the sign

changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since

the diagonal components of matrix L always are 1.0, they are not stored in array A. In addition, the

reciprocals of the diagonal components of U are stored. (See Fig. 2−2 in Section 2.2.2)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by

subsequent subroutines. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i).

In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.
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2.2.4 DBGMLC, RBGMLC

LU Decomposition and Condition Number of a Real Matrix

(1) Function

DBGMLC or RBGMLC uses the Gauss method or the Crout method to perform an LU decomposition and

obtain the condition number of the real matrix A (two-dimensional array type).

(2) Usage

Double precision:

CALL DBGMLC (A, LNA, N, IPVT, COND, W1, IERR)

Single precision:

CALL RBGMLC (A, LNA, N, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real Matrix A (two-dimensional array type)

Output Unit upper triangular matrix U and lower tri-

angular matrix L when A is decomposed into

A = LU (See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (b))

5 COND
{
D

R

}
1 Output Reciprocal of the condition number

6 W1
{
D

R

}
N Work Work area

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N is equal to 1 Contents of array A are not changed and

COND ← 1.0 is performed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step.

A is nearly singular.

(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with the sign

changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since

the diagonal components of matrix L always are 1.0, they are not stored in array A. In addition, the

reciprocals of the diagonal components of U are stored. (See Fig. 2−2 in Section 2.2.2)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by

subsequent subroutines. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i).

In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.

(c) Although the condition number is defined by ‖A‖ · · · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.2.5 DBGMLS, RBGMLS

Simultaneous Linear Equations (LU-Decomposed Real Matrix)

(1) Function

DBGMLS or RBGMLS solves the simultaneous linear equations LUx = b having the real matrix A (two-

dimensional array type) which has been LU decomposed by the Gauss method or the Crout method as

coefficient matrix.

(2) Usage

Double precision:

CALL DBGMLS (A, LNA, N, B, IPVT, IERR)

Single precision:

CALL RBGMLS (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A after LU decomposition

(real matrix, two-dimensional array type) (See

Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution vector x

5 IPVT I N Input Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (c))

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N is equal to 1 B(1)← B(1)/A(1, 1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.
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(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Normally, you should

decompose matrix A by calling the 2.2.3

{
DBGMLU

RBGMLU

}
subroutine. However, if you also want to obtain

the condition number, you should use 2.2.4

{
DBGMLC

RBGMLC

}
.

In addition, if you have already used 2.2.2

{
DBGMSL

RBGMSL

}
to solve simultaneous linear equations having

the same coefficient matrix A, you can use the LU decomposition obtained as part of its output.

To solve multiple sets of simultaneous linear equations where only the constant vector b differs, the

solution is obtained more efficiently by directly using the subroutine 2.2.6

{
DBGMMS

RBGMMS

}
to perform

the calculations.

(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array A with

the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion.

However, since the diagonal components of matrix L always are 1.0, they should not be stored in array

A. In addition, the reciprocals of the diagonal components of U must be stored. (See Fig. 2−2 in

Section 2.2.2.)

(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT.

This information is given by the 2.2.3

{
DBGMLU

RBGMLU

}
, 2.2.4

{
DBGMLC

RBGMLC

}
, and 2.2.2

{
DBGMSL

RBGMSL

}
subroutines which perform LU decomposition of matrix A.
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2.2.6 DBGMMS, RBGMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-

Decomposed Real Matrix)

(1) Function

DBGMMS or RBGMMS solves the simultaneous linear equations LUx = b having the real matrix A (two-

dimensional array type) which has been LU decomposed by the Gauss method or the Crout method as

coefficient matrix. That is, when the n × m matrix B is defined by B = [b1, b2, · · · , bm], the subroutine

obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL DBGMMS (A, LNA, N, B, LNB, M, IPVT, IERR)

Single precision:

CALL RBGMMS (A, LNA, N, B, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A after LU decomposition

(real matrix, two-dimensional array type) (See

Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
LNA,N Input Matrix consisting of constant vector bi

[A′, b1, b2, · · · , bm]

Output Matrix consisting of Solution vector xi

[A′,x1,x2, · · · ,xm]

5 LNB I 1 Input Adjustable dimension of array B

6 M I 1 Input Number of right-hand side vectors, m

7 IPVT I N Input Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step (See Note (c)).

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(b) 0 < M

(c) 0 < IPVT(i) ≤ N (i = 1, . . . ,N)
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N is equal to 1 B(1, i)← B(1, i)/A(1, 1) (i = 1, 2, · · · ,M)

is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Normally, you should

decompose matrix A by calling the 2.2.3

{
DBGMLU

RBGMLU

}
subroutine. However, if you also want to obtain

the condition number, you should use 2.2.4

{
DBGMLC

RBGMLC

}
.

In addition, if you have already used 2.2.2

{
DBGMSL

RBGMSL

}
to solve simultaneous linear equations having

the same coefficient matrix A, you can use the LU decomposition obtained as part of its output.

(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array A with

the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion.

However, since the diagonal components of matrix L always are 1.0, they should not be stored in array

A. In addition, the reciprocals of the diagonal components of U must be stored. (See Fig. 2−2 in

Section 2.2.2.)

(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT.

This information is given by the 2.2.3

{
DBGMLU

RBGMLU

}
, 2.2.4

{
DBGMLC

RBGMLC

}
, and 2.2.2

{
DBGMSL

RBGMSL

}
subroutines which perform LU decomposition of matrix A.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

2 4 −1 6

−1 −5 4 2

1 2 3 1

3 5 −1 −3

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

x4,1 x4,2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

36 11

15 0

22 7

−6 4

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 10,N = 4, matrix consisting of constant vector B, LNB=B and M=2.

(c) Main program

PROGRAM BBGMSM
! *** EXAMPLE OF DBGMMS ***

IMPLICIT NONE
INTEGER LNA,LNB,N,M,I,J,IERR
PARAMETER (LNA=10,LNB=10,N=4,M=2)
INTEGER IPVT(LNA)
REAL(8) A(LNA,N),B(LNB,M)
DATA ((A(I,J),J=1,N),I=1,N)/&

2.0D0, 4.0D0, -1.0D0, 6.0D0,&
-1.0D0, -5.0D0, 4.0D0, 2.0D0,&
1.0D0, 2.0D0, 3.0D0, 1.0D0,&
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3.0D0, 5.0D0, -1.0D0, -3.0D0/
DATA ((B(I,J),J=1,M),I=1,N)/&

36.0D0, 11.0D0,&
15.0D0, 0.0D0,&
22.0D0, 7.0D0,&
-6.0D0, 4.0D0/

!
WRITE (6,1000) N, M
DO 10 I = 1, N

WRITE (6,1100) (A(I,J),J=1,N)
10 CONTINUE

WRITE (6,1200)
DO 20 I = 1, N

WRITE (6,1100) (B(I,J),J=1,M)
20 CONTINUE

WRITE (6,1300)
!

CALL DBGMLU (A,LNA,N,IPVT,IERR)
IF (IERR .GE. 3000) STOP
CALL DBGMMS (A,LNA,N,B,LNB,M,IPVT,IERR)
IF (IERR .GE. 3000) STOP

!
WRITE (6,1400) IERR
WRITE (6,1500)
DO 30 I = 1, N

WRITE (6,1100) (B(I,J),J=1,M)
30 CONTINUE

STOP
!
1000 FORMAT(1X ,/,&

1X, ’*** DBGMMS ***’ ,/,&
1X, ’ ** INPUT **’ ,/,/,&
1X, ’ N =’,I3 ,/,&
1X, ’ M =’,I3 ,/,&
1X,/,&
1X, ’ COEFFICIENT MATRIX’ )

1100 FORMAT(1X, 6X,10(F11.4) )
1200 FORMAT(1X,/,&

1X, ’ CONSTANT VECTORS’ )
1300 FORMAT(1X,/,&

1X, ’ ** OUTPUT **’ ,/)
1400 FORMAT(1X, ’ IERR =’,I5 )
1500 FORMAT(1X,/,&

1X, ’ SOLUTION’ )
END

(d) Output results

*** DBGMMS ***
** INPUT **

N = 4
M = 2

COEFFICIENT MATRIX
2.0000 4.0000 -1.0000 6.0000

-1.0000 -5.0000 4.0000 2.0000
1.0000 2.0000 3.0000 1.0000
3.0000 5.0000 -1.0000 -3.0000

CONSTANT VECTORS
36.0000 11.0000
15.0000 0.0000
22.0000 7.0000
-6.0000 4.0000

** OUTPUT **

IERR = 0

SOLUTION
1.0000 1.0000
2.0000 1.0000
4.0000 1.0000
5.0000 1.0000
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2.2.7 DBGMDI, RBGMDI

Determinant and Inverse Matrix of a Real Matrix

(1) Function

DBGMDI or RBGMDI obtains the determinant and inverse matrix of the real matrix A (two-dimensional

array type) which has been LU decomposed by the Gauss method or the Crout method.

(2) Usage

Double precision:

CALL DBGMDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)

Single precision:

CALL RBGMDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real matrix A (two-dimensional array type) af-

ter LU decomposition (See Notes (a) and (b))

Output Inverse matrix of matrix A

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IPVT I N Input Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (c))

5 DET
{
D

R

}
2 Output Determinant of matrix A (See Note (d))

6 ISW I 1 Input Processing switch

ISW > 0: Obtain determinant.

ISW = 0: Obtain determinant and inverse ma-

trix.

ISW < 0: Obtain inverse matrix.

7 W1
{
D

R

}
N Work Work area

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1 DET(1)← A(1, 1) (See Note (d))

DET(2)← 0.0

A(1, 1)← 1.0/A(1, 1).

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Use any of the 2.2.3{
DBGMLU

RBGMLU

}
, 2.2.4

{
DBGMLC

RBGMLC

}
, 2.2.2

{
DBGMSL

RBGMSL

}
subroutines to perform the decomposition.

(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array A with

the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion.

However, since the diagonal components of matrix L always are 1.0, they should not be stored in array

A. In addition, the reciprocals of the diagonal components of U must be stored. (See 2.2.2 Figure

2−2).
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This

information is given by the subroutine that performs the LU decomposition of matrix A.

(d) The determinant is given by the following expression:

det(A) = DET(1)× (10.0DET(2))

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(e) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.
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2.2.8 DBGMLX, RBGMLX

Improving the Solution of Simultaneous Linear Equations (Real Matrix)

(1) Function

DBGMLX or RBGMLX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the real matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBGMLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)

Single precision:

CALL RBGMLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A (real matrix, two-

dimensional array type)

2 LNA I 1 Input Adjustable dimension of arrays A and ALU

3 N I 1 Input Order of matrix A

4 ALU
{
D

R

}
LNA,N Input Coefficient matrix A after LU decomposition

(See Note (a))

5 B
{
D

R

}
N Input Constant vector b

6 X
{
D

R

}
N Input Approximate solution x

Output Iteratively improved solution x

7 ITOL I 1 Input Number of digits to which solution is to be im-

proved (See Note (b))

Output Approximate number of digits to which solution

was improved (See Note (c))

8 NIT I 1 Input Maximum number of iterations (See Note (d))

9 IPVT I N Input Pivoting information (See Note (a))

10 W1
{
D

R

}
N Work Work area

11 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1 The solution is not improved.

3000 Restriction (a) was not satisfied. Processing is aborted.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculating the

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.2.2

{
DBGMSL

RBGMSL

}
or 2.2.5

{
DBGMLS

RBGMLS

}
sub-

routine. Therefore, the coefficient matrix A after it has been decomposed 2.2.2

{
DBGMSL

RBGMSL

}
, 2.2.3{

DBGMLU

RBGMLU

}
or 2.2.4

{
DBGMLC

RBGMLC

}
subroutine and the pivoting information at that time must be

given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0

or

ITOL ≥ − LOG10 (2× ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
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(7) Example

(a) Problem

Solve the following simultaneous linear equations and improve the solution.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 9 8 7 6 5 4 3 2 1

9 9 8 7 6 5 4 3 2 1

8 8 8 7 6 5 4 3 2 1

7 7 7 7 6 5 4 3 2 1

6 6 6 6 6 5 4 3 2 1

5 5 5 5 5 5 4 3 2 1

4 4 4 4 4 4 4 3 2 1

3 3 3 3 3 3 3 3 2 1

2 2 2 2 2 2 2 2 2 1

1 1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6

5

4

4

4

3

2

2

2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 11,N = 10 and constant vector b.

(c) Main Program

PROGRAM BBGMLX
! *** EXAMPLE OF DBGMLX ***

IMPLICIT REAL(8)(A-H,O-Z)
PARAMETER ( LNA=11, LN=10)
DIMENSION A(LNA,LN), ALU(LNA,LN), B(LN), X(LN), W1(LN)
INTEGER IPVT(LN),NIT

!
READ(5,*) N
WRITE(6,1000) N
READ(5,*) ((A(I,J),J=1,N),I=1,N)
READ(5,*) (B(I),I=1,N)
WRITE(6,1100)
DO 10 I = 1,N

WRITE(6,1200) (A(I,J),J=1,N)
10 CONTINUE

WRITE(6,1300)
DO 20 I = 1,N

WRITE(6,1400) B(I)
20 CONTINUE

DO 40 J = 1,N
X(J) = B(J)
DO 30 I = 1,N

ALU(I,J) = A(I,J)
30 CONTINUE
40 CONTINUE

CALL DBGMSL(ALU,LNA,N,X,IPVT,IERR)
IF(IERR.GE.3000) STOP
WRITE(6,1500)
DO 50 I = 1,N

WRITE(6,1600) I,X(I)
50 CONTINUE

ITOL = 0
NIT = 0
CALL DBGMLX(A,LNA,N,ALU,B,X,ITOL,NIT,IPVT,W1,IERR)
WRITE(6,1700) IERR
WRITE(6,1800)
DO 60 I = 1,N

WRITE(6,1600) I,X(I)
60 CONTINUE

STOP
1000 FORMAT(’ ’,/,/,’ *** DBGMLX ***’,/,2X,’** INPUT **’,/,&

6X,’N = ’,I5)
1100 FORMAT(6X,’COEFFICIENT MATRIX A’)
1200 FORMAT(8X,10F7.1)
1300 FORMAT(6X,’CONSTANT VECTOR’)
1400 FORMAT(8X, F7.1)
1500 FORMAT(6X,’ORIGINAL SOLUTION’)
1600 FORMAT(8X,’X(’,I2,’) = ’,1PD18.10)
1700 FORMAT(2X,’** OUTPUT **’,/,6X,’IERR = ’,I5)
1800 FORMAT(6X,’IMPROVED SOLUTION’)

END

(d) Output results

*** DBGMLX ***
** INPUT **

N = 10
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COEFFICIENT MATRIX A
10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
9.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
8.0 8.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
7.0 7.0 7.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
6.0 6.0 6.0 6.0 6.0 5.0 4.0 3.0 2.0 1.0
5.0 5.0 5.0 5.0 5.0 5.0 4.0 3.0 2.0 1.0
4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.0 2.0 1.0
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 1.0
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

CONSTANT VECTOR
6.0
5.0
4.0
4.0
4.0
3.0
2.0
2.0
2.0
1.0

ORIGINAL SOLUTION
X( 1) = 1.0000000000D+00
X( 2) = -1.2335811385D-16
X( 3) = -1.0000000000D+00
X( 4) = -2.5376526277D-16
X( 5) = 1.0000000000D+00
X( 6) = 7.9936057773D-16
X( 7) = -1.0000000000D+00
X( 8) = -7.4014868308D-17
X( 9) = 1.0000000000D+00
X(10) = 0.0000000000D+00

** OUTPUT **
IERR = 0
IMPROVED SOLUTION

X( 1) = 1.0000000000D+00
X( 2) = -4.6838616247D-31
X( 3) = -1.0000000000D+00
X( 4) = -1.3312027776D-30
X( 5) = 1.0000000000D+00
X( 6) = -1.9721522631D-31
X( 7) = -1.0000000000D+00
X( 8) = -9.8607613153D-32
X( 9) = 1.0000000000D+00
X(10) = 0.0000000000D+00
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2.3 COMPLEX MATRIX (TWO DIMENSIONAL ARRAY TYPE)

(REAL ARGUMENT TYPE)

2.3.1 ZBGMSM, CBGMSM

Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex

Matrix)

(1) Function

ZBGMSM or CBGMSM uses Gauss’ method to solve the simultaneous linear equations Axi = bi(i =

1, 2, · · · ,m) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the

n×m matrix B is defined by B = [b1, b2, · · · , bm], the subroutine obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL ZBGMSM (ABR, ABI, LNA, N, M, IPVT, W1, IERR)

Single precision:

CALL CBGMSM (ABR, ABI, LNA, N, M, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 ABR
{
D

R

}
See

Contents

Input Real part of matrix (complex matrix, two-

dimensional array type) consisting of coeffi-

cient matrix A and right-hand side vectors bi

[A, b1, b2, · · · , bm]

Size: (LNA, (N +M))

Output Real part of matrix (complex matrix, two-

dimensional array type) consisting of the fac-

tored matrixA′ of coefficient matrixA and solu-

tion vectors xi [A′,x1,x2, · · · ,xm] (See Notes

(a) and (b)).

2 ABI
{
D

R

}
See

Contents

Input Imaginary part of matrix (complex matrix, two-

dimensional array type) consisting of coeffi-

cient matrix A and right-hand side vectors bi

[A, b1, b2, · · · , bm]

Size: (LNA, (N +M))

Output Imaginary part of matrix (complex matrix, two-

dimensional array type) consisting of the fac-

tored matrixA′ of coefficient matrixA and solu-

tion vectors xi [A′,x1,x2, · · · ,xm] (See Notes

(a) and (b))

3 LNA I 1 Input Adjustable dimension of arrays ABR and ABI
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No. Argument Type Size
Input/

Output
Contents

4 N I 1 Input Order of matrix A

5 M I 1 Input Number of right-hand side vectors, m

6 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step (See Note (a)).

7 W1
{
D

R

}
N Work Work area

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(b) 0 < M

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1 ABR(1, N+i)

← ( ABR(1, N+i) × ABR(1, 1)

+ ABI(1, N+i) × ABI(1, 1) )

/ (ABR(1, 1)2 + ABI(1, 1)2),

ABI(1, N+i)

← ( ABI(1, N+i) × ABR(1, 1)

− ABR(1, N+i) × ABI(1, 1) )

/ (ABR(1, 1)2 + ABI(1, 1)2)

(i=1, 2, · · ·, M)

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

4000 + i The pivot became 0.0 in the i-th process-

ing step of the LU decomposition of coef-

ficient matrix A.

A is nearly singular.

(6) Notes

(a) This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix

A. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i). In addition, among the
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column elements corresponding to row i and row j of matrix A, elements from column 1 to column n

actually are exchanged at this time.

(b) The unit lower triangular matrix L is stored in the lower triangular portion of array ABR and ABI

with the sign changed, and the upper triangular matrix U is stored in the upper triangular portion.

However, since the diagonal components of L always are 1.0, they are not stored in array ABR and

ABI. In addition, the reciprocals of the diagonal components of U are stored.

Figure 2−3 Storage Status of Matrices L and U

Matrix L Matrix U⎡
⎢⎢⎢⎢⎢⎢⎣

1.0 0.0 0.0 · · · 0.0

l2,1 1.0 0.0 · · · 0.0

l3,1 l3,2 1.0 · · · 0.0
...

...
...

. . .
...

l5,1 l5,2 l5,3 · · · 1.0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1,1 u1,2 u1,3 · · · u1,5

0.0 u2,2 u2,3 · · · u2,5

0.0 0.0 u3,3 · · · u3,5

...
...

...
. . .

...

0.0 0.0 0.0 · · · u5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status within array ABR(LNA, K)

�{1/u1,1} �{u1,2} �{u1,3} · · · �{u1,5}
�{−l1,2} �{1/u2,2} �{u2,3} · · · �{u2,5}
�{−l1,3} �{−l2,3} �{1/u3,3} · · · �{u3,5}

...
...

...
. . .

...

�{−l1,5} �{−l2,5} �{−l3,5} · · · �{1/u5,5}
← −−−−−−−N−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−K−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Storage status within array ABI(LNA, K)

�{1/u1,1} �{u1,2} �{u1,3} · · · �{u1,5}
�{−l1,2} �{1/u2,2} �{u2,3} · · · �{u2,5}
�{−l1,3} �{−l2,3} �{1/u3,3} · · · �{u3,5}

...
...

...
. . .

...

�{−l1,5} �{−l2,5} �{−l3,5} · · · �{1/u5,5}
← −−−−−−−N−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−K−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N+M ≤ K must be hold.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

4 + 2i 3 + 9i 4 + i 7 + 9i

6 + 7i 4i 4 + 7i 2 + 5i

9 + 3i 6 + 2i 9 + 5i 8 + 5i

1 + 5i 7 + 9i 3 + 5i 2 + 4i

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

(b) Input data

Array ABR and ABI in which coefficient matrix A, constant vectors b1, b2, b3 and b4 are stored,
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LNA=11, N=4 and M=4.

(c) Main program

PROGRAM ABGMSM
! *** EXAMPLE OF ZBGMSM ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
PARAMETER (LMA = 5)
DIMENSION ABR(LNA,LNA+LMA),ABI(LNA,LNA+LMA),IPVT(LNA),W(LNA)

!
READ (5,*) N
READ (5,*) M
WRITE (6,1000) N, M
DO 10 I = 1, N

READ (5,*) (ABR(I,J),ABI(I,J),J=1,N)
WRITE (6,1100) (ABR(I,J),ABI(I,J),J=1,N)

10 CONTINUE
WRITE (6,1200)
DO 20 I = 1, N

READ (5,*) (ABR(I,N+J),ABI(I,N+J),J=1,M)
WRITE (6,1100) (ABR(I,N+J),ABI(I,N+J),J=1,M)

20 CONTINUE
WRITE (6,1300)
CALL ZBGMSM (ABR,ABI,LNA,N,M,IPVT,W,IERR)
WRITE (6,1400) ’ZBGMSM’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N

WRITE (6,1100) (ABR(I,N+J),ABI(I,N+J),J=1,M)
30 CONTINUE

STOP
!
1000 FORMAT(’ ’,/,/,&

’ *** ZBGMSM ***’,/,&
2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’M =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,4(’(’,F8.4,’,’,F8.4,’)’))
1200 FORMAT(6X,’CONSTANT VECTORS’)
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT(6X,’SOLUTION’)

END

(d) Output results

*** ZBGMSM ***
** INPUT **

N = 4
M = 4
COEFFICIENT MATRIX
( 4.0000, 2.0000)( 3.0000, 9.0000)( 4.0000, 1.0000)( 7.0000, 9.0000)
( 6.0000, 7.0000)( 0.0000, 4.0000)( 4.0000, 7.0000)( 2.0000, 5.0000)
( 9.0000, 3.0000)( 6.0000, 2.0000)( 9.0000, 5.0000)( 8.0000, 5.0000)
( 1.0000, 5.0000)( 7.0000, 9.0000)( 3.0000, 5.0000)( 2.0000, 4.0000)
CONSTANT VECTORS
( 1.0000, 0.0000)( 0.0000, 0.0000)( 0.0000, 0.0000)( 0.0000, 0.0000)
( 0.0000, 0.0000)( 1.0000, 0.0000)( 0.0000, 0.0000)( 0.0000, 0.0000)
( 0.0000, 0.0000)( 0.0000, 0.0000)( 1.0000, 0.0000)( 0.0000, 0.0000)
( 0.0000, 0.0000)( 0.0000, 0.0000)( 0.0000, 0.0000)( 1.0000, 0.0000)

** OUTPUT **
IERR (ZBGMSM) = 0
SOLUTION
( 0.0133, -0.0730)( 0.1814, -0.2467)( -0.1840, 0.1782)( -0.1039, -0.0560)
( -0.0178, -0.0189)( -0.0680, -0.0696)( -0.0128, 0.1001)( 0.0415, -0.0657)
( -0.0353, 0.1382)( -0.0585, 0.1700)( 0.1333, -0.2410)( 0.1314, 0.0191)
( 0.0494, -0.0686)( -0.0096, 0.1300)( 0.0885, -0.0709)( -0.0462, 0.0662)
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2.3.2 ZBGMSL, CBGMSL

Simultaneous Linear Equations (Complex Matrix)

(1) Function

ZBGMSL or CBGMSL uses the Gauss method or the Crout method to solve the simultaneous linear equa-

tions Ax = b having the complex matrix A=(AR, AI) (two-dimensional array type) as coefficient matrix.

(2) Usage

Double precision:

CALL ZBGMSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)

Single precision:

CALL CBGMSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of coefficient matrix A

(complex matrix, two-dimensional array type)

Output Real parts of unit upper triangular matrix U

and low triangular matrix L when A is decom-

posed into A = LU (See Notes (b) and (c))

2 AI
{
D

R

}
LNA,N Input Imaginary part of coefficient matrix (complex

matrix, two-dimensional array type)

Output Imaginary parts of unit upper triangular ma-

trix U and lower triangular matrix L when A

is decomposed into A = LU (See Notes (b) and

(c))

3 LNA I 1 Input Adjustable dimension of arrays AR and AI

4 N I 1 Input Order of matrix A

5 BR
{
D

R

}
N Input Real part of constant vector b

Output Real part of solution x

6 BI
{
D

R

}
N Input Imaginary part of constant vector b

Output Imaginary part of solution x

7 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (b))

8 W1
{
D

R

}
N Work Work area

9 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1 BR(1)

← {BR(1)×AR(1, 1)+BI(1)×AI(1, 1)}
/ {AR(1, 1)2 +AI(1, 1)2}

BI(1)

← {BI(1)×AR(1, 1)−BR(1)×AI(1, 1)}
/ {AR(1, 1)2 +AI(1, 1)2}

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step of the LU decomposition of coef-

ficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, the

solution is obtained more efficiently by directly using the subroutine 2.3.1

{
ZBGMSM

CBGMSM

}
to perform

the calculations. However, when 2.3.1

{
ZBGMSM

CBGMSM

}
cannot be used such as when all of the right-

hand side vectors b are not known in advance, call this subroutine only once and then call subroutine

2.3.5

{
ZBGMLS

CBGMLS

}
the required number of times varying only the contents of B. This enables you to

eliminate unnecessary calculation by performing the LU decomposition of matrix A only once.

(b) This subroutine performs partial pivoting when obtaining the LU decomposition of coefficient matrix

A=(AR, AI). If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i). In addition,

among the column elements corresponding to row i and row j of matrix A, elements from column 1 to

column n actually are exchanged at this time.

(c) The unit lower triangular matrix L is stored in the lower triangular portion of array AR and AI with the

sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However,

since the diagonal components of L always are 1.0, they are not stored in array AR and AI. In addition,

the reciprocals of the diagonal components of U are stored. In Fig. 2−4, �{z} and �{z} denote a real

part and an imaginary part of a complex number z, respectively.
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Matrix L Matrix U⎡
⎢⎢⎢⎢⎢⎢⎣

1.0 0.0 0.0 · · · 0.0

l2,1 1.0 0.0 · · · 0.0

l3,1 l3,2 1.0 · · · 0.0
...

...
...

. . .
...

l5,1 l5,2 l5,3 · · · 1.0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1,1 u1,2 u1,3 · · · u1,5

0.0 u2,2 u2,3 · · · u2,5

0.0 0.0 u3,3 · · · u3,5

...
...

...
. . .

...

0.0 0.0 0.0 · · · u5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status within array AR(LNA, K)

�{1/u1,1} �{u1,2} �{u1,3} · · · �{u1,5}
�{−l1,2} �{1/u2,2} �{u2,3} · · · �{u2,5}
�{−l1,3} �{−l2,3} �{1/u3,3} · · · �{u3,5}

...
...

...
. . .

...

�{−l1,5} �{−l2,5} �{−l3,5} · · · �{1/u5,5}
← −−−−−−−−−−−−N−−−−−−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−−−−−K−−−−−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Storage status within array AI(LNA, K)

�{1/u1,1} �{u1,2} �{u1,3} · · · �{u1,5}
�{−l1,2} �{1/u2,2} �{u2,3} · · · �{u2,5}
�{−l1,3} �{−l2,3} �{1/u3,3} · · · �{u3,5}

...
...

...
. . .

...

�{−l1,5} �{−l2,5} �{−l3,5} · · · �{1/u5,5}
← −−−−−−−−−−−−N−−−−−−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−−−−−K−−−−−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N, N ≤ K must hold.

Figure 2−4 Storage Status of Matrices L and U
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(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

5 + 8i 7 + i 6 + 3i 1 + 2i

1 + i 9 + 5i 4 + i 5

4i 3 + 3i 4 + 2i 6 + 9i

7 + 8i 6 7 + 6i 10 + 4i

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

3 + 20i

−6 + 7i

−6i
13i

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix real part AR and imaginary part AI, LNA = 11,N = 4 and constant vector B.

(c) Main program

PROGRAM ABGMSL
! *** EXAMPLE OF ZBGMLC,ZBGMLS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11,LNW = 22)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),BR(LNA),BI(LNA),IPVT(LNA)
DIMENSION W1(LNW)

!
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1, N

READ (5,*) (AR(I,J),AI(I,J),J=1,N)
WRITE (6,1100) (AR(I,J),AI(I,J),J=1,N)

10 CONTINUE
READ (5,*) (BR(I),BI(I),I=1,N)
WRITE (6,1200)
DO 20 I = 1, N

WRITE (6,1300) BR(I),BI(I)
20 CONTINUE

WRITE (6,1400)
CALL ZBGMLC (AR,AI,LNA,N,IPVT,COND,W1,IERR)
WRITE (6,1500) ’ZBGMLC’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0D0/COND
CALL ZBGMLS (AR,AI,LNA,N,BR,BI,IPVT,KERR)
WRITE (6,1500) ’ZBGMLS’,KERR
WRITE (6,1600) COND
WRITE (6,1700)
DO 30 I = 1, N

WRITE (6,1800) I,BR(I),BI(I)
30 CONTINUE

STOP
!
1000 FORMAT (’ ’,/,/,’ *** ZBGMLC,ZBGMLS ***’,&

/,2X,’** INPUT **’,&
/,6X,’N =’,I3,&
/,6X,’COEFFICIENT MATRIX ( REAL, IMAGINARY )’)

1100 FORMAT (6X,4(’ (’,F5.1,’ ,’,F5.1,’ )’))
1200 FORMAT (6X,’CONSTANT VECTOR ( REAL, IMAGINARY )’)
1300 FORMAT (6X, ’ (’,F5.1,’ ,’,F5.1,’ )’)
1400 FORMAT (2X,’** OUTPUT **’)
1500 FORMAT (6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT (6X,’CONDITION NUMBER =’,D18.10)
1700 FORMAT (6X,’SOLUTION ( REAL, IMAGINARY )’)
1800 FORMAT (6X,’ X(’,I2,’) = (’,D18.10,’ ,’,D18.10,’ )’)

END

(d) Output results

*** ZBGMLC,ZBGMLS ***
** INPUT **

N = 4
COEFFICIENT MATRIX ( REAL, IMAGINARY )
( 5.0 , 8.0 ) ( 7.0 , 1.0 ) ( 6.0 , 3.0 ) ( 1.0 , 2.0 )
( 1.0 , 1.0 ) ( 9.0 , 5.0 ) ( 4.0 , 1.0 ) ( 5.0 , 0.0 )
( 0.0 , 4.0 ) ( 3.0 , 3.0 ) ( 4.0 , 2.0 ) ( 6.0 , 9.0 )
( 7.0 , 8.0 ) ( 6.0 , 0.0 ) ( 7.0 , 6.0 ) ( 10.0 , 4.0 )
CONSTANT VECTOR ( REAL, IMAGINARY )
( 3.0 , 20.0 )
( -6.0 , 7.0 )
( 0.0 , -6.0 )
( 0.0 , 13.0 )

** OUTPUT **
IERR (ZBGMLC) = 0
IERR (ZBGMLS) = 0
CONDITION NUMBER = 0.6279263302D+01
SOLUTION ( REAL, IMAGINARY )

X( 1) = ( 0.1000000000D+01 , 0.1000000000D+01 )
X( 2) = ( -0.2220446049D-15 , 0.1000000000D+01 )
X( 3) = ( 0.1000000000D+01 , -0.4996003611D-15 )
X( 4) = ( -0.1000000000D+01 , -0.1000000000D+01 )
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2.3.3 ZBGMLU, CBGMLU

LU Decomposition of a Complex Matrix

(1) Function

ZBGMLU or CBGMLU uses the Gauss method or the Crout method to perform an LU decomposition of

the complex matrix A=(AR, AI) (two-dimensional array type).

(2) Usage

Double precision:

CALL ZBGMLU (AR, AI, LNA, N, IPVT, W1, IERR)

Single precision:

CALL CBGMLU (AR, AI, LNA, N, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of coefficient matrix A

(two-dimensional array type)

Output Real parts of unit upper triangular matrix U

and low triangular matrix L when A is decom-

posed into A = LU (See Notes (a) and (b))

2 AI
{
D

R

}
LNA,N Input Imaginary part of coefficient matrix

(two-dimensional array type)

Output Imaginary parts of unit upper triangular ma-

trix U and lower triangular matrix L when A

is decomposed into A = LU (See Notes (a) and

(b))

3 LNA I 1 Input Adjustable dimension of arrays AR and AI

4 N I 1 Input Order of matrix A

5 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (b))

6 W1
{
D

R

}
N Work Work area

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array AR and AI are not

changed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step.

A is nearly singular.

(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array AR and AI with the

sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However,

since the diagonal components of L always are 1.0, they are not stored in array AR and AI. In addition,

the reciprocals of the diagonal components of U are stored. (See 2.3.2 Figure 2−4.)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by

subsequent subroutines. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i).

In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.
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2.3.4 ZBGMLC, CBGMLC

LU Decomposition and Condition Number of a Complex Matrix

(1) Function

ZBGMLC or CBGMLC uses the Gauss method or the Crout method to perform an LU decomposition and

obtain the condition number of the complex matrix A=(AR, AI) (two-dimensional array type).

(2) Usage

Double precision:

CALL ZBGMLC (AR, AI, LNA, N, IPVT, COND, W1, IERR)

Single precision:

CALL CBGMLC (AR, AI, LNA, N, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of coefficient matrix A

(two-dimensional array type)

Output Real parts of unit upper triangular matrix U

and low triangular matrix L when A is decom-

posed into A = LU (See Notes (a) and (b))

2 AI
{
D

R

}
LNA,N Input Imaginary part of coefficient matrix

(two-dimensional array type)

Output Imaginary parts of unit upper triangular ma-

trix U and lower triangular matrix L when A

is decomposed into A = LU (See Notes (a) and

(b))

3 LNA I 1 Input Adjustable dimension of arrays AR and AI

4 N I 1 Input Order of matrix A

5 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (b))

6 COND
{
D

R

}
1 Output Reciprocal of the condition number

7 W1
{
D

R

}
2×N Work Work area

8 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array AR and AI are not

changed and COND← 1.0 is performed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step.

A is nearly singular.

(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array AR and AI with the

sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However,

since the diagonal components of L always are 1.0, they are not stored in array AR and AI. In addition,

the reciprocals of the diagonal components of U are stored. (See 2.3.2 Figure 2−4.)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by

subsequent subroutines. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i).

In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.

(c) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.3.5 ZBGMLS, CBGMLS

Simultaneous Linear Equations (LU-Decomposed Complex Matrix)

(1) Function

ZBGMLS or CBGMLS solves the simultaneous linear equations LUx = b having the complex matrix

A=(AR, AI) (two-dimensional array type) which has been LU decomposed by the Gauss method or the

Crout method as coefficient matrix.

(2) Usage

Double precision:

CALL ZBGMLS (AR, AI, LNA, N, BR, BI, IPVT, IERR)

Single precision:

CALL CBGMLS (AR, AI, LNA, N, BR, BI, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real parts of coefficient matrix A after LU de-

composition (See Notes (a) and (b))

2 AI
{
D

R

}
LNA,N Input Imaginary parts of coefficient matrixA after LU

decomposition (See Notes (a) and (b))

3 LNA I 1 Input Adjustable dimension of arrays AR and AI

4 N I 1 Input Order of matrix A

5 BR
{
D

R

}
N Input Real part of constant vector b

Output Real part of solution x

6 BI
{
D

R

}
N Input Imaginary part of constant vector b

Output Imaginary part of solution x

7 IPVT I N Input Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (c))

8 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1 BR(1)←
{BR(1)×AR(1, 1) + BI(1)×AI(1, 1)}

/{AR(1, 1)2 +AI(1, 1)2}
BI(1)←
{BI(1)×AR(1, 1)− BR(1)×AI(1, 1)}

/{AR(1, 1)2 +AI(1, 1)2}
3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A=(AR, AI) must be LU decomposed before using this subroutine. Normally,

you should decompose matrix A by calling the 2.3.3

{
ZBGMLU

CBGMLU

}
subroutine. However, if you also

want to obtain the condition number, you should use 2.3.4

{
ZBGMLC

CBGMLC

}
.

In addition, if you have already used 2.3.2

{
ZBGMSL

CBGMSL

}
to solve simultaneous linear equations having

the same coefficient matrix A, you can use the LU decomposition obtained as part of its output.

To solve multiple sets of simultaneous linear equations where only the constant vector b differs, the

solution is obtained more efficiently by directly using the subroutine 2.3.6

{
ZBGMMS

CBGMMS

}
to perform

the calculations.

(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array AR and

AI with the sign changed, and the upper triangular matrix U must be stored in the upper triangular

portion. However, since the diagonal components of L always are 1.0, they should not be stored in

array AR and AI. In addition, the reciprocals of the diagonal components of U must be stored. (See

2.3.2 Figure 2−4.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This

information is given by 2.3.3

{
ZBGMLU

CBGMLU

}
, 2.3.4

{
ZBGMLC

CBGMLC

}
, 2.3.2

{
ZBGMSL

CBGMSL

}
subroutines which

perform LU decomposition of matrix A.
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2.3.6 ZBGMMS, CBGMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-

Decomposed Complex Matrix)

(1) Function

ZBGMMS or CBGMMS uses Gauss’ method to solve the simultaneous linear equations Axi = bi(i =

1, 2, · · · ,m) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the

n×m matrix B is defined by B = [b1, b2, · · · , bm], the subroutine obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL ZBGMMS (AR, AI, LNA, N, BR, BI, LNB, M, IPVT, IERR)

Single precision:

CALL CBGMMS (AR, AI, LNA, N, BR, BI, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real parts of coefficient matrix A after LU de-

composition (See Notes (a) and (b))

2 AI
{
D

R

}
LNA,N Input Imaginary parts of coefficient matrixA after LU

decomposition (See Notes (a) and (b))

3 LNA I 1 Input Adjustable dimension of arrays AR and AI

4 N I 1 Input Order of matrix A

5 BR
{
D

R

}
LNB,M Input Real part of constant vector b

Output Real part of solution x

6 BI
{
D

R

}
LNB,M Input Imaginary part of constant vector b

Output Imaginary part of solution x

7 LNB I 1 Input Adjustable dimension of arrays AR and AI

8 M I 1 Input Order of matrix B

9 IPVT I N Input Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (c))

10 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA,LNB

(b) M > 0

(c) 0 < IPVT(i) ≤ N (i = 1, . . . ,N)

68



ZBGMMS, CBGMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix)

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. BR(1,i)←
{ BR(1,i)×AR(1,1) +BI(1,i)×AI(1,1) }

/ { AR(1,1)2+ AI(1,1)2 }
BI(1,i)←
{ BI(1,i)×AR(1,1) −BR(1,i)×AI(1,1) }

/ { AR(1,1)2+ AI(1,1)2 }
(i =1,2,· · ·,M) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

(6) Notes

(a) The coefficient matrix A=(AR, AI) must be LU decomposed before using this subroutine. Normally,

you should decompose matrix A by calling the 2.3.3

{
ZBGMLU

CBGMLU

}
subroutine. However, if you also

want to obtain the condition number, you should use 2.3.4

{
ZBGMLC

CBGMLC

}
.

In addition, if you have already used 2.3.2

{
ZBGMSL

CBGMSL

}
to solve simultaneous linear equations having

the same coefficient matrix A, you can use the LU decomposition obtained as part of its output.

(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array AR and

AI with the sign changed, and the upper triangular matrix U must be stored in the upper triangular

portion. However, since the diagonal components of L always are 1.0, they should not be stored in

array AR and AI. In addition, the reciprocals of the diagonal components of U must be stored. (See

2.3.2 Figure 2−4.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This

information is given by 2.3.3

{
ZBGMLU

CBGMLU

}
, 2.3.4

{
ZBGMLC

CBGMLC

}
, 2.3.2

{
ZBGMSL

CBGMSL

}
subroutines which

perform LU decomposition of matrix A.

(7) Example

(a) ProblemSolve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

4 + 2i 3 + 9i 4 + i 7 + 9i

6 + 7i 4i 4 + 7i 2 + 5i

9 + 3i 6 + 2i 9 + 5i 8 + 5i

1 + 5i 7 + 9i 3 + 5i 2 + 4i

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

(b) Input data

Array ABR and ABI in which coefficient matrix A, constant vectors b1, b2, b3 and b4 are stored,

LNA=11, LNB=11, N=4 and M=4.
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(c) Main program

PROGRAM ABGMMS
! *** EXAMPLE OF ZBGMMS ***

IMPLICIT NONE
INTEGER LNA,LNB,LMB
PARAMETER( LNA = 11, LNB = 11, LMB = 5 )
INTEGER N,M,IPVT(LNA),IERR
INTEGER I,J
REAL(8) AR(LNA,LNA),BR(LNB,LMB)
REAL(8) AI(LNA,LNA),BI(LNB,LMB)
REAL(8) W(LNA)

!
DATA (AR(1,J),J=1,4) / 4.0D0, 3.0D0, 4.0D0, 7.0D0 /
DATA (AR(2,J),J=1,4) / 6.0D0, 0.0D0, 4.0D0, 2.0D0 /
DATA (AR(3,J),J=1,4) / 9.0D0, 6.0D0, 9.0D0, 8.0D0 /
DATA (AR(4,J),J=1,4) / 1.0D0, 7.0D0, 3.0D0, 2.0D0 /
DATA (AI(1,J),J=1,4) / 2.0D0, 9.0D0, 1.0D0, 9.0D0 /
DATA (AI(2,J),J=1,4) / 7.0D0, 4.0D0, 7.0D0, 5.0D0 /
DATA (AI(3,J),J=1,4) / 3.0D0, 2.0D0, 5.0D0, 5.0D0 /
DATA (AI(4,J),J=1,4) / 5.0D0, 9.0D0, 5.0D0, 4.0D0 /

!
N = 4
M = 4
DO 100 J=1,M
DO 101 I=1,N

BR(I,J) = 0.0D0
BI(I,J) = 0.0D0

101 CONTINUE
100 CONTINUE

DO 110 I=1,N
BR(I,I) = 1.0D0

110 CONTINUE
!

WRITE(6,6000) N, M
DO 120 I = 1, N

WRITE(6,6010) (AR(I,J),AI(I,J),J=1,N)
120 CONTINUE

WRITE(6,6020)
DO 130 I=1,N

WRITE(6,6010) (BR(I,J),BI(I,J),J=1,M)
130 CONTINUE

!
WRITE(6,6030)
CALL ZBGMLU(AR,AI,LNA,N,IPVT,W,IERR)
IF( IERR .GE. 3000 ) THEN

WRITE(6,6040) IERR
STOP

ENDIF
CALL ZBGMMS(AR,AI,LNA,N,BR,BI,LNB,M,IPVT,IERR)
WRITE(6,6050) IERR
IF( IERR .GE. 3000 ) STOP
WRITE(6,6060)
DO 140 I=1,N

WRITE(6,6010) (BR(I,J),BI(I,J),J=1,M)
140 CONTINUE

STOP
!
6000 FORMAT(/,&

1X,’*** ZBGMMS ***’,/,/,&
1X,’ ** INPUT **’,/,/,&
1X,’ N =’,I3,/,&
1X,’ M =’,I3,/,/,&
1X,’ COEFFICIENT MATRIX ( REAL, IMAGINARY )’)

6010 FORMAT(1X,’ ’,4(’ (’,F7.4,’,’,F7.4,’)’))
6020 FORMAT(/,&

1X,’ CONSTANT VECTORS ( REAL, IMAGINARY )’)
6030 FORMAT(/,&

1X,’ ** OUTPUT **’,/)
6040 FORMAT(1X,’ IERR(ZBGMLU) =’,I5)
6050 FORMAT(1X,’ IERR =’,I5,/)
6060 FORMAT(1X,’ SOLUTION ( REAL, IMAGINARY )’)

END
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(d) Output results

*** ZBGMMS ***

** INPUT **

N = 4
M = 4

COEFFICIENT MATRIX ( REAL, IMAGINARY )
( 4.0000, 2.0000) ( 3.0000, 9.0000) ( 4.0000, 1.0000) ( 7.0000, 9.0000)
( 6.0000, 7.0000) ( 0.0000, 4.0000) ( 4.0000, 7.0000) ( 2.0000, 5.0000)
( 9.0000, 3.0000) ( 6.0000, 2.0000) ( 9.0000, 5.0000) ( 8.0000, 5.0000)
( 1.0000, 5.0000) ( 7.0000, 9.0000) ( 3.0000, 5.0000) ( 2.0000, 4.0000)

CONSTANT VECTORS ( REAL, IMAGINARY )
( 1.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000)
( 0.0000, 0.0000) ( 1.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000)
( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 1.0000, 0.0000) ( 0.0000, 0.0000)
( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 1.0000, 0.0000)

** OUTPUT **

IERR = 0

SOLUTION ( REAL, IMAGINARY )
( 0.0133,-0.0730) ( 0.1814,-0.2467) (-0.1840, 0.1782) (-0.1039,-0.0560)
(-0.0178,-0.0189) (-0.0680,-0.0696) (-0.0128, 0.1001) ( 0.0415,-0.0657)
(-0.0353, 0.1382) (-0.0585, 0.1700) ( 0.1333,-0.2410) ( 0.1314, 0.0191)
( 0.0494,-0.0686) (-0.0096, 0.1300) ( 0.0885,-0.0709) (-0.0462, 0.0662)
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2.3.7 ZBGMDI, CBGMDI

Determinant and Inverse Matrix of a Complex Matrix

(1) Function

ZBGMDI or CBGMDI obtains the determinant and inverse matrix of the complex matrix A=(AR, AI)

(two-dimensional array type) which has been LU decomposed by the Gauss method or the Crout method.

(2) Usage

Double precision:

CALL ZBGMDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)

Single precision:

CALL CBGMDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real parts of coefficient matrix A after LU de-

composition (See Notes (a) and (b))

Output Real parts of inverse matrix of matrix A

2 AI
{
D

R

}
LNA,N Input Imaginary parts of coefficient matrixA after LU

decomposition (See Notes (a) and (b))

Output Imaginary parts inverse matrix of matrix A

3 LNA I 1 Input Adjustable dimension of arrays AR and AI

4 N I 1 Input Order of matrix A

5 IPVT I N Input Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (c))

6 DET
{
D

R

}
3 Output Determinant of matrix A (See Note (d))

7 ISW I 1 Input Processing switch

ISW>0: Obtain determinant.

ISW=0: Obtain determinant and inverse ma-

trix.

ISW<0: Obtain inverse matrix.

8 W1
{
D

R

}
2×N Work Work area

9 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. DET(1)← AR(1)

DET(2)← AI(1)

DET(3)← 0.0

AR(1, 1)←
AR(1, 1)/{AR(1, 1)2 +AI(1, 1)2}
AI(1, 1)←
−AI(1, 1)/{AR(1, 1)2 +AI(1, 1)2}

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Use any of the 2.3.3{
ZBGMLU

CBGMLU

}
, 2.3.4

{
ZBGMLC

CBGMLC

}
, 2.3.2

{
ZBGMSL

CBGMSL

}
subroutines to perform the decomposition.

(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array AR and

AI with the sign changed, and the upper triangular matrix U must be stored in the upper triangular

portion. However, since the diagonal components of L always are 1.0, they should not be stored in

array AR and AI. In addition, the reciprocals of the diagonal components of U must be stored. (See

2.3.2 Figure 2−4).
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT(i).

This information is given by the subroutine that performs the LU decomposition of matrix A.

(d) The determinant is given by the following expression: �{det(A)} = DET(1)× 10DET(3)

�{det(A)} = DET(2)× 10DET(3)

Scaling is performed at this time so that:

1.0 ≤ |DET(1)|+ |DET(2)| < 10.0

(e) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.
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2.3.8 ZBGMLX, CBGMLX

Improving the Solution of Simultaneous Linear Equations (Complex Matrix)

(1) Function

ZBGMLX or CBGMLX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the complex matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage

Double precision:

CALL ZBGMLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, IPVT, W1,

IERR)
Single precision:

CALL CBGMLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, IPVT, W1,

IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real parts of coefficient matrix A

(two-dimensional array type)

2 AI
{
D

R

}
LNA,N Input Imaginary parts of coefficient matrix A

(two-dimensional array type)

3 LNA I 1 Input Adjustable dimension of array AR, AI, ALR,

and ALI

4 N I 1 Input Order of matrix A

5 ALR
{
D

R

}
LNA,N Input Real parts of coefficient matrix A after LU de-

composition (See Note (a))

6 ALI
{
D

R

}
LNA,N Input Imaginary parts of coefficient matrixA after LU

decomposition (See Note (a))

7 BR
{
D

R

}
N Input Real part of constant vector b

8 BI
{
D

R

}
N Input Imaginary part of constant vector b

9 XR
{
D

R

}
N Input Real part of approximate solution x

Output Real part of iteratively improved solution x

10 XI
{
D

R

}
N Input Imaginary part of approximate solution x

Output Imaginary part of iteratively improved solution

x
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No. Argument Type Size
Input/

Output
Contents

11 ITOL I 1 Input Number of digits to which solution is to be im-

proved (See Note (b))

Output Approximate number of digits to which solution

was improved (See Note (c))

12 NIT I 1 Input Maximum number of iterations (See Note (d))

13 IPVT I N Input Pivoting information (See Note (a))

14 W1
{
D

R

}
3×N Work Work area

15 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a) was not satisfied. Processing is aborted.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculation the

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.3.2

{
ZBGMSL

CBGMSL

}
or 2.3.5

{
ZBGMLS

CBGMLS

}
sub-

routine. Therefore, the coefficient matrix A after being decomposed by 2.3.2

{
ZBGMSL

CBGMSL

}
, 2.3.3{

ZBGMLU

CBGMLU

}
, 2.3.4

{
ZBGMLC

CBGMLC

}
subroutine and the pivoting information at that time must be

given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0

or

ITOL ≥ − LOG10 (2× ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
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(COMPLEX ARGUMENT TYPE)

2.4.1 ZBGNSM, CBGNSM

Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex

Matrix)

(1) Function

ZBGNSM or CBGNSM uses Gauss’ method to solve the simultaneous linear equations Axi = bi(i =

1, 2, · · · ,m) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the

n×m matrix B is defined by B = [b1, b2, · · · , bm], the subroutine obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL ZBGNSM (AB, LNA, N, M, IPVT, IERR)

Single precision:

CALL CBGNSM (AB, LNA, N, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AB
{
Z

C

}
See

Contents

Input Matrix (complex matrix, two-dimensional ar-

ray type) consisting of coefficient matrix A and

right-hand side vectors bi [A, b1, b2, · · · , bm]

Size: (LNA, (N +M))

Output Matrix (complex matrix, two-dimensional ar-

ray type) consisting of the factored matrix A′

of coefficient matrix A and solution vectors xi

[A′,x1,x2, · · · ,xm] (See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array AB

3 N I 1 Input Order of matrix A

4 M I 1 Input Number of right-hand side vectors, m

5 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step (See Note (a)).

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(b) 0 < M
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. AB(1,N+ i)← AB(1,N+ i)/AB(1, 1)

(i = 1, 2, · · · ,M) is performed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

4000 + i The pivot became 0.0 in the i-th process-

ing step of the LU decomposition of coef-

ficient matrix A.

A is nearly singular.

(6) Notes

(a) This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix

A. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i). In addition, among the

column elements corresponding to row i and row j of matrix A, elements from column 1 to column n

actually are exchanged at this time.

(b) The unit lower triangular matrix L is stored in the lower triangular portion of array AB with the

sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However,

since the diagonal components of L always are 1.0, they are not stored in array AB. In addition, the

reciprocals of the diagonal components of U are stored. (See Figure 2−1 in Section 2.2.1).

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

4 + 2i 3 + 9i 4 + i 7 + 9i

6 + 7i 4i 4 + 7i 2 + 5i

9 + 3i 6 + 2i 9 + 5i 8 + 5i

1 + 5i 7 + 9i 3 + 5i 2 + 4i

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

(b) Input data

Array AB in which coefficient matrix A, constant vectors b1, b2, b3 and b4 are stored, LNA=11, N=4

and M=4.
(c) Main program

PROGRAM ABGNSM
! *** EXAMPLE OF ZBGNSM ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
PARAMETER (LMA = 5)
COMPLEX(8) AB
DIMENSION AB(LNA,LNA+LMA),IPVT(LNA)

!
READ (5,*) N
READ (5,*) M
WRITE (6,1000) N, M
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DO 10 I = 1, N
READ (5,*) (AB(I,J),J=1,N)
WRITE (6,1100) (AB(I,J),J=1,N)

10 CONTINUE
WRITE (6,1200)
DO 20 I = 1, N

READ (5,*) (AB(I,N+J),J=1,M)
WRITE (6,1100) (AB(I,N+J),J=1,M)

20 CONTINUE
WRITE (6,1300)
CALL ZBGNSM (AB,LNA,N,M,IPVT,IERR)
WRITE (6,1400) ’ZBGNSM’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N

WRITE (6,1100) (AB(I,N+J),J=1,M)
30 CONTINUE

STOP
!
1000 FORMAT(1X,/,/,&

1X ,’*** ZBGNSM ***’,/,/,&
1X,1X,’** INPUT **’,/,/,&
1X,5X,’N =’,I3,/,&
1X,5X,’M =’,I3,/,&
/,1X,5X,’COEFFICIENT MATRIX’)

1100 FORMAT(1X,6X,4(’(’,F8.4,’,’,F8.4,’)’))
1200 FORMAT(/,1X,5X,’CONSTANT VECTORS’)
1300 FORMAT(/,1X,1X,’** OUTPUT **’,/)
1400 FORMAT(1X,5X,’IERR (’,A6,’) =’,I5)
1600 FORMAT(/,1X,5X,’SOLUTION’)

END

(d) Output results

*** ZBGNSM ***

** INPUT **

N = 4
M = 4

COEFFICIENT MATRIX
( 4.0000, 2.0000)( 3.0000, 9.0000)( 4.0000, 1.0000)( 7.0000, 9.0000)
( 6.0000, 7.0000)( 0.0000, 4.0000)( 4.0000, 7.0000)( 2.0000, 5.0000)
( 9.0000, 3.0000)( 6.0000, 2.0000)( 9.0000, 5.0000)( 8.0000, 5.0000)
( 1.0000, 5.0000)( 7.0000, 9.0000)( 3.0000, 5.0000)( 2.0000, 4.0000)

CONSTANT VECTORS
( 1.0000, 0.0000)( 0.0000, 0.0000)( 0.0000, 0.0000)( 0.0000, 0.0000)
( 0.0000, 0.0000)( 1.0000, 0.0000)( 0.0000, 0.0000)( 0.0000, 0.0000)
( 0.0000, 0.0000)( 0.0000, 0.0000)( 1.0000, 0.0000)( 0.0000, 0.0000)
( 0.0000, 0.0000)( 0.0000, 0.0000)( 0.0000, 0.0000)( 1.0000, 0.0000)

** OUTPUT **

IERR (ZBGNSM) = 0

SOLUTION
( 0.0133, -0.0730)( 0.1814, -0.2467)( -0.1840, 0.1782)( -0.1039, -0.0560)
( -0.0178, -0.0189)( -0.0680, -0.0696)( -0.0128, 0.1001)( 0.0415, -0.0657)
( -0.0353, 0.1382)( -0.0585, 0.1700)( 0.1333, -0.2410)( 0.1314, 0.0191)
( 0.0494, -0.0686)( -0.0096, 0.1300)( 0.0885, -0.0709)( -0.0462, 0.0662)
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2.4.2 ZBGNSL, CBGNSL

Simultaneous Linear Equations (Complex Matrix)

(1) Function

ZBGNSL or CBGNSL uses the Gauss method or the Crout method to solve the simultaneous linear equations

Ax = b having the complex matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage

Double precision:

CALL ZBGNSL (A, LNA, N, B, IPVT, IERR)

Single precision:

CALL CBGNSL (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix

(complex matrix, two-dimensional array type)

Output Upper triangular matrix U and lower triangular

matrix L when A is decomposed into A = LU

(See Notes (b) and (c))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
Z

C

}
N Input Constant vector b

Output Solution x

5 IPVT I N Output Pivoting information

IPVT(i): Number of the row exchanged with

row i in the i-th processing step. (See Note (b))

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step of the LU decomposition of coef-

ficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, the

solution is obtained more efficiently by directly using the subroutine 2.4.1

{
ZBGNSM

CBGNSM

}
to perform

the calculations. However, when 2.4.1

{
ZBGNSM

CBGNSM

}
cannot be used such as when all of the right-

hand side vectors b are not known in advance, call this subroutine only once and then call subroutine

2.4.5

{
ZBGNLS

CBGNLS

}
the required number of times varying only the contents of B. This enables you to

eliminate unnecessary calculation by performing the LU decomposition of matrix A only once.

(b) This subroutine performs partial pivoting when obtaining the LU decomposition of coefficient matrix

A. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i). In addition, among the

column elements corresponding to row i and row j of matrix A, elements from column 1 to column n

actually are exchanged at this time.

(c) The unit lower triangular matrix L is stored in the lower triangular portion of array A with a minus sign

added to each element, and the upper triangular matrix U is stored in the upper triangular portion.

However, since the diagonal components of L always are 1.0, they are not stored in array A. Also,

reciprocals are stored for the diagonal components of U . (See Figure 2−2 in Section 2.2.2).

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

5 + 8i 7 + i 6 + 3i 1 + 2i

1 + i 9 + 5i 4 + i 5

4i 3 + 3i 4 + 2i 6 + 9i

7 + 8i 6 7 + 6i 10 + 4i

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

3 + 20i

−6 + 7i

−6i
13i

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 11,N = 4 and constant vector b.
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(c) Main program

PROGRAM ABGNSL
! *** EXAMPLE OF ZBGNLC,ZBGNLS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11,LNW = 22)
COMPLEX(8) A(LNA,LNA),B(LNA),W1(LNW)
DIMENSION IPVT(LNA)

!
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1, N

READ (5,*) (A(I,J),J=1,N)
WRITE (6,1100) (A(I,J),J=1,N)

10 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200)
DO 20 I = 1, N

WRITE (6,1300) B(I)
20 CONTINUE

WRITE (6,1400)
CALL ZBGNLC (A,LNA,N,IPVT,COND,W1,IERR)
WRITE (6,1500) ’ZBGNLC’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0D0/COND
CALL ZBGNLS (A,LNA,N,B,IPVT,KERR)
WRITE (6,1500) ’ZBGNLS’,KERR
WRITE (6,1600) COND
WRITE (6,1700)
DO 30 I = 1, N

WRITE (6,1800) I,B(I)
30 CONTINUE

STOP
!
1000 FORMAT (’ ’,/,/,’ *** ZBGNLC,ZBGNLS ***’,&

/,2X,’** INPUT **’,&
/,6X,’N =’,I3,&
/,6X,’COEFFICIENT MATRIX ( REAL, IMAGINARY )’)

1100 FORMAT (6X,4(’ (’,F5.1,’ ,’,F5.1,’ )’))
1200 FORMAT (6X,’CONSTANT VECTOR ( REAL, IMAGINARY )’)
1300 FORMAT (6X, ’ (’,F5.1,’ ,’,F5.1,’ )’)
1400 FORMAT (2X,’** OUTPUT **’)
1500 FORMAT (6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT (6X,’CONDITION NUMBER =’,D18.10)
1700 FORMAT (6X,’SOLUTION ( REAL, IMAGINARY )’)
1800 FORMAT (6X,’ X(’,I2,’) = (’,D18.10,’ ,’,D18.10,’ )’)

END

(d) Output results

*** ZBGNLC,ZBGNLS ***
** INPUT **

N = 4
COEFFICIENT MATRIX ( REAL, IMAGINARY )
( 5.0 , 8.0 ) ( 7.0 , 1.0 ) ( 6.0 , 3.0 ) ( 1.0 , 2.0 )
( 1.0 , 1.0 ) ( 9.0 , 5.0 ) ( 4.0 , 1.0 ) ( 5.0 , 0.0 )
( 0.0 , 4.0 ) ( 3.0 , 3.0 ) ( 4.0 , 2.0 ) ( 6.0 , 9.0 )
( 7.0 , 8.0 ) ( 6.0 , 0.0 ) ( 7.0 , 6.0 ) ( 10.0 , 4.0 )
CONSTANT VECTOR ( REAL, IMAGINARY )
( 3.0 , 20.0 )
( -6.0 , 7.0 )
( 0.0 , -6.0 )
( 0.0 , 13.0 )

** OUTPUT **
IERR (ZBGNLC) = 0
IERR (ZBGNLS) = 0
CONDITION NUMBER = 0.5807863993D+01
SOLUTION ( REAL, IMAGINARY )

X( 1) = ( 0.1000000000D+01 , 0.1000000000D+01 )
X( 2) = ( -0.1665334537D-15 , 0.1000000000D+01 )
X( 3) = ( 0.1000000000D+01 , -0.2775557562D-15 )
X( 4) = ( -0.1000000000D+01 , -0.1000000000D+01 )
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2.4.3 ZBGNLU, CBGNLU

LU Decomposition of a Complex Matrix

(1) Function

ZBGNLU or CBGNLU uses the Gauss method or the Crout method to perform an LU decomposition of

the complex matrix A (two-dimensional array type).

(2) Usage

Double precision:

CALL ZBGNLU (A, LNA, N, IPVT, IERR)

Single precision:

CALL CBGNLU (A, LNA, N, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Complex matrix A (two-dimensional array

type)

Output Upper triangular matrix U and lower triangular

matrix L when A is decomposed into A = LU .

(See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IPVT I N Output Pivoting information

IPVT(i): Number of the row exchanged with

row i in the i-th processing step. (See Note (b))

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The contents of array A are unchanged.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step.

A is nearly singular.

(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with a minus sign

added to each element, and the upper triangular matrix U is stored in the upper triangular portion.

However, since the diagonal components of L always are 1.0, they are not stored in array A. Also,

reciprocals are stored for the diagonal components of U . (See Fig. 2−2 in Section 2.2.2.)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by

subsequent subroutines. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i).

In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.
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2.4.4 ZBGNLC, CBGNLC

LU Decomposition and Condition Number of a Complex Matrix

(1) Function

ZBGNLC or CBGNLC uses the Gauss method or the Crout method to perform an LU decomposition and

obtain the condition number of the complex matrix A (two-dimensional array type).

(2) Usage

Double precision:

CALL ZBGNLC (A, LNA, N, IPVT, COND, W1, IERR)

Single precision:

CALL CBGNLC (A, LNA, N, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Complex matrix (two-dimensional array type)

Output Upper triangular matrix U and lower triangular

matrix L when A is decomposed into A = LU

(See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IPVT I N Output Pivoting information

IPVT(i): Number of the row exchanged with

row i in the i-th processing step. (See Note (b))

5 COND
{
D

R

}
1 Output Reciprocal of the condition number

6 W1
{
Z

C

}
N Work Work area

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The contents of array A are unchanged.

COND← 1.0 is performed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step.

A is nearly singular.

Processing is aborted. The condition

number is not obtained.

(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with a minus sign

added to each element, and the upper triangular matrix U is stored in the upper triangular portion.

However, since the diagonal components of L always are 1.0, they are not stored in array A. Also,

reciprocals are stored for the diagonal components of U . (See Fig. 2−2 in Section 2.2.2.)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by

subsequent subroutines. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i).

In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.

(c) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.4.5 ZBGNLS, CBGNLS

Simultaneous Linear Equations (LU-Decomposed Complex Matrix)

(1) Function

ZBGNLS or CBGNLS solves the simultaneous linear equations LUx = b having the complex matrix A

(two-dimensional array type) which has been LU decomposed by the Gauss method or the Crout method

as coefficient matrix.

(2) Usage

Double precision:

CALL ZBGNLS (A, LNA, N, B, IPVT, IERR)

Single precision:

CALL CBGNLS (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix after LU decomposition

(complex matrix, two-dimensional array type)

(See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
Z

C

}
N Input Constant vector b

Output Solution x

5 IPVT I N Output Pivoting information

IPVT(i): Number of the row exchanged with

row i in the i-th processing step. (See Note (c))

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.
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(6) Notes

(a) The coefficient matrix A must be LU decomposed before using the ZBGNLS or CBGNLS subroutine.

Normally, you should decompose matrix A by calling the 2.4.3

{
ZBGNLU

CBGNLU

}
subroutine. However, if

you also want to obtain the condition number, you should use 2.4.4

{
ZBGNLC

CBGNLC

}
. In addition, if you

have already used 2.4.2

{
ZBGNSL

CBGNSL

}
to solve simultaneous linear equations having the same coefficient

matrix A, you can use the LU decomposition obtained as part of its output. To solve multiple sets of

simultaneous linear equations where only the constant vector b differs, the solution is obtained more

efficiently by directly using the subroutine 2.4.6

{
ZBGNMS

CBGNMS

}
to perform the calculations.

(b) The unit lower triangular matrix L is stored in the lower triangular portions of array A with a minus

sign added to each element, and the unit upper triangular matrix U is stored in the upper triangular

portion. However, since the diagonal components of U always are 1.0, they are not stored in array A.

Also, reciprocals must be stored for the diagonal components of U . (See Fig. 2−2 in Section 2.2.2.)

(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This

information is given by the 2.4.3

{
ZBGNLU

CBGNLU

}
, 2.4.4

{
ZBGNLC

CBGNLC

}
, 2.4.2

{
ZBGNSL

CBGNSL

}
subroutines

which perform LU decomposition of matrix A.
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2.4.6 ZBGNMS, CBGNMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-

Decomposed Complex Matrix)

(1) Function

ZBGMSM or CBGNMS uses Gauss’ method to solve the simultaneous linear equations Axi = bi(i =

1, 2, · · · ,m) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the

n×m matrix B is defined by B = [b1, b2, · · · , bm], the subroutine obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL ZBGNMS (A, LNA, N, B, LNB, M, IPVT, IERR)

Single precision:

CALL CBGNMS (A, LNA, N, B, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix after LU decomposition

(complex matrix, two-dimensional array type)

(See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
Z

C

}
LNB,M Input Constant vector b

Output Solution x

5 LNB I 1 Input Adjustable dimension of array B

6 M I 1 Input Order of matrix B

7 IPVT I N Input Pivoting information

IPVT(i): Number of the row exchanged with

row i in the i-th processing step. (See Note (c))

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA,LNB

(b) M > 0

(c) 0 < IPVT(i) ≤ N (i = 1, . . . ,N)
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1 B(1,i)← B(1,i)/A(1,1) (i =1,2,· · ·,M) is

performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using the ZBGNLS or CBGNLS subroutine.

Normally, you should decompose matrix A by calling the 2.4.3

{
ZBGNLU

CBGNLU

}
subroutine. However, if

you also want to obtain the condition number, you should use 2.4.4

{
ZBGNLC

CBGNLC

}
. In addition, if you

have already used 2.4.2

{
ZBGNSL

CBGNSL

}
to solve simultaneous linear equations having the same coefficient

matrix A, you can use the LU decomposition obtained as part of its output.

(b) The unit lower triangular matrix L is stored in the lower triangular portions of array A with a minus

sign added to each element, and the unit upper triangular matrix U is stored in the upper triangular

portion. However, since the diagonal components of U always are 1.0, they are not stored in array A.

Also, reciprocals must be stored for the diagonal components of U . (See Fig. 2−2 in Section 2.2.2.)

(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This

information is given by the 2.4.3

{
ZBGNLU

CBGNLU

}
, 2.4.4

{
ZBGNLC

CBGNLC

}
, 2.4.2

{
ZBGNSL

CBGNSL

}
subroutines

which perform LU decomposition of matrix A.

(7) Example

(a) ProblemSolve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

4 + 2i 3 + 9i 4 + i 7 + 9i

6 + 7i 4i 4 + 7i 2 + 5i

9 + 3i 6 + 2i 9 + 5i 8 + 5i

1 + 5i 7 + 9i 3 + 5i 2 + 4i

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, constant vectors b1, b2, b3 and b4 are stored, LNA=11, LNB=11, N=4 and

M=4.
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(c) Main program

PROGRAM ABGNMS
! *** EXAMPLE OF ZBGNMS ***

IMPLICIT NONE
INTEGER LNA,LNB,LMB
PARAMETER( LNA = 11, LNB = 11, LMB = 5 )
INTEGER N,M,IPVT(LNA),IERR
INTEGER I,J
COMPLEX(8) A(LNA,LNA),B(LNB,LMB)

!
DATA (A(1,J),J=1,4)&
/ (4.0D0,2.0D0),(3.0D0,9.0D0),(4.0D0,1.0D0),(7.0D0,9.0D0) /
DATA (A(2,J),J=1,4)&
/ (6.0D0,7.0D0),(0.0D0,4.0D0),(4.0D0,7.0D0),(2.0D0,5.0D0) /
DATA (A(3,J),J=1,4)&
/ (9.0D0,3.0D0),(6.0D0,2.0D0),(9.0D0,5.0D0),(8.0D0,5.0D0) /
DATA (A(4,J),J=1,4)&
/ (1.0D0,5.0D0),(7.0D0,9.0D0),(3.0D0,5.0D0),(2.0D0,4.0D0) /

!
N = 4
M = 4
DO 100 J=1,M
DO 101 I=1,N

B(I,J) = (0.0D0,0.0D0)
101 CONTINUE
100 CONTINUE

DO 110 I=1,N
B(I,I) = (1.0D0,0.0D0)

110 CONTINUE
!

WRITE(6,6000) N, M
DO 120 I = 1, N

WRITE(6,6010) (A(I,J),J=1,N)
120 CONTINUE

WRITE(6,6020)
DO 130 I = 1, N

WRITE(6,6010) (B(I,J),J=1,M)
130 CONTINUE

!
WRITE(6,6030)
CALL ZBGNLU(A,LNA,N,IPVT,IERR)
IF( IERR .GE. 3000 ) THEN

WRITE(6,6040) IERR
STOP

ENDIF
CALL ZBGNMS(A,LNA,N,B,LNB,M,IPVT,IERR)
WRITE(6,6050) IERR
IF( IERR .GE. 3000 ) STOP
WRITE(6,6060)
DO 140 I = 1, N

WRITE(6,6010) (B(I,J),J=1,M)
140 CONTINUE

STOP
!
6000 FORMAT(/,&

1X,’*** ZBGNMS ***’,/,/,&
1X,’ ** INPUT **’,/,/,&
1X,’ N =’,I3,/,&
1X,’ M =’,I3,/,/,&
1X,’ COEFFICIENT MATRIX ( REAL, IMAGINARY )’)

6010 FORMAT(1X,’ ’,4(’ (’,F7.4,’,’,F7.4,’)’))
6020 FORMAT(/,&

1X,’ CONSTANT VECTORS ( REAL, IMAGINARY )’)
6030 FORMAT(/,&

1X,’ ** OUTPUT **’,/)
6040 FORMAT(1X,’ IERR(ZBGNLU) =’,I5)
6050 FORMAT(1X,’ IERR =’,I5,/)
6060 FORMAT(1X,’ SOLUTION ( REAL, IMAGINARY )’)

END

(d) Output results

*** ZBGNMS ***

** INPUT **

N = 4
M = 4

COEFFICIENT MATRIX ( REAL, IMAGINARY )
( 4.0000, 2.0000) ( 3.0000, 9.0000) ( 4.0000, 1.0000) ( 7.0000, 9.0000)
( 6.0000, 7.0000) ( 0.0000, 4.0000) ( 4.0000, 7.0000) ( 2.0000, 5.0000)
( 9.0000, 3.0000) ( 6.0000, 2.0000) ( 9.0000, 5.0000) ( 8.0000, 5.0000)
( 1.0000, 5.0000) ( 7.0000, 9.0000) ( 3.0000, 5.0000) ( 2.0000, 4.0000)

CONSTANT VECTORS ( REAL, IMAGINARY )
( 1.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000)
( 0.0000, 0.0000) ( 1.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000)
( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 1.0000, 0.0000) ( 0.0000, 0.0000)
( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 1.0000, 0.0000)

** OUTPUT **
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IERR = 0

SOLUTION ( REAL, IMAGINARY )
( 0.0133,-0.0730) ( 0.1814,-0.2467) (-0.1840, 0.1782) (-0.1039,-0.0560)
(-0.0178,-0.0189) (-0.0680,-0.0696) (-0.0128, 0.1001) ( 0.0415,-0.0657)
(-0.0353, 0.1382) (-0.0585, 0.1700) ( 0.1333,-0.2410) ( 0.1314, 0.0191)
( 0.0494,-0.0686) (-0.0096, 0.1300) ( 0.0885,-0.0709) (-0.0462, 0.0662)
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2.4.7 ZBGNDI, CBGNDI

Determinant and Inverse Matrix of a Complex Matrix

(1) Function

ZBGNDI or CBGNDI obtains the determinant and inverse matrix of the complex matrix A (two-dimensional

array type) which has been LU decomposed by the Gauss method or the Crout method.

(2) Usage

Double precision:

CALL ZBGNDI (A, LNA, N, IPVT, CDET, DET, ISW, W1, IERR)

Single precision:

CALL CBGNDI (A, LNA, N, IPVT, CDET, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Complex matrix A (two-dimensional array

type) after LU decomposition (See Notes (a)

and (b))

Output Inverse matrix of matrix A

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IPVT I N Input Pivoting information

IPVT(i): Number of the row exchanged with

row i in the i-th processing step of the LU de-

composition. (See Note (c))

5 CDET
{
Z

C

}
1 Output Determinant of matrix A (See Note (d))

6 DET
{
D

R

}
1 Output Determinant of matrix A (See Note (d))

7 ISW I 1 Input Processing switch

ISW > 0: Obtain determinant.

ISW = 0: Obtain determinant and inverse ma-

trix.

ISW < 0: Obtain inverse matrix.

8 W1
{
Z

C

}
N Work Work area

9 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. CDET← A(1, 1)

DET← 0.0 (See Note (d)) and

A(1, 1)← 1.0/A(1, 1) are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using the ZBGNDI or CBGNDI subroutine.

Use any of the subroutines 2.4.3

{
ZBGNLU

CBGNLU

}
, 2.4.4

{
ZBGNLC

CBGNLC

}
, 2.4.2

{
ZBGNSL

CBGNSL

}
to perform the

decomposition.

(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array A with

the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion.

However, since the diagonal components of matrix L always are 1.0, they should not be stored in array

A. In addition, the reciprocals of the diagonal components of U must be stored. (See 2.2.2 Figure

2−2).
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This

information is given by the 2.4.3

{
ZBGNLU

CBGNLU

}
, 2.4.4

{
ZBGNLC

CBGNLC

}
, 2.4.2

{
ZBGNSL

CBGNSL

}
subroutines

which perform LU decomposition of matrix A.

(d) The determinant is given by the following expression:

det(A) = CDET× 10DET

Scaling is performed at this time so that:

1.0 ≤ |�{CDET}|+ |�{CDET}| < 10.0

where, the notation � and � mean that the real and imaginary parts of the complex number are to be

taken, respectively.

(e) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.
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2.4.8 ZBGNLX, CBGNLX

Improving the Solution of Simultaneous Linear Equations (Complex Matrix)

(1) Function

ZBGNLX or CBGNLX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the complex matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage

Double precision:

CALL ZBGNLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)

Single precision:

CALL CBGNLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix A

(complex matrix, two-dimensional array type)

2 LNA I 1 Input Adjustable dimension of arrays A and ALU

3 N I 1 Input Order of matrix A

4 ALU
{
Z

C

}
LNA,N Input Coefficient matrix A after LU decomposition

(See Note (a))

5 B
{
Z

C

}
N Input Constant vector b

6 X
{
Z

C

}
N Input Approximate solution x

Output Iteratively improved solution x

7 ITOL I 1 Input Approximate number of digits to which solution

was improved (See Note (d))

Output Approximate number of digits to which solution

was improved. (See Note (c))

8 NIT I 1 Input Maximum number of iterations (See Note (d))

9 IPVT I N Input Pivoting information (See Note (a))

10 W1
{
Z

C

}
N Work Work area

11 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a) was not satisfied. Processing is aborted.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculating the

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.4.2

{
ZBGNSL

CBGNSL

}
or 2.4.5

{
ZBGNLS

CBGNLS

}
sub-

routine. Therefore, the coefficient matrix A after being decomposed by 2.4.2

{
ZBGNSL

CBGNSL

}
, 2.4.3{

ZBGNLU

CBGNLU

}
, or 2.4.4

{
ZBGNLC

CBGNLC

}
subroutine and the pivoting information at that time must be

given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0

or

ITOL ≥ − LOG10 (2× ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

95



2.5 POSITIVE SYMMETRICMATRIX (TWO-DIMENSIONAL AR-

RAY TYPE) (UPPER TRIANGULAR TYPE)

2.5.1 DBPDSL, RBPDSL

Simultaneous Linear Equations (Positive Symmetric Matrix)

(1) Function

DBPDSL or RBPDSL uses the Cholesky method to solve the simultaneous linear equations Ax = b having

the positive symmetric matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBPDSL (A, LNA, N, B, IERR)

Single precision:

CALL RBPDSL (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A (positive symmetric ma-

trix, two-dimensional array type, upper trian-

gular type)

Output Upper triangular matrix LT when A is decom-

posed into A = LLT (See Note (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution x

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1 A(1, 1)←√A(1, 1) and

B(1)← B(1)/A(1, 1)

2100 There existed the diagonal element which

was close to zero in the LLT decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became less than or

equal to 0.0 in the i-th processing step.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, call

this subroutine only once and then call subroutine 2.5.4

{
DBPDLS

RBPDLS

}
required number of times varying

only the contents of B. This enables you to eliminate unnecessary calculations by performing the LLT

decomposition of matrix A only once.

(b) The upper triangular matrix LT is stored in the upper triangular portion of array A. Since the lower

triangular matrix L is calculated from LT , it is not stored in array A. this subroutine uses only the

upper triangular portion of array A.
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Matrix LT⎡
⎢⎢⎢⎢⎢⎢⎣

l1,1 l2,1 l3,1 · · · l5,1

0.0 l2,2 l3,2 · · · l5,2

0.0 0.0 l3,3 · · · l5,3
...

...
...

. . .
...

0.0 0.0 0.0 · · · l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status within array A(LNA, K)

l1,1 l2,1 l3,1 · · · l5,1

∗ l2,2 l3,2 · · · l5,2

∗ ∗ l3,3 · · · l5,3
...

...
...

. . .
...

∗ ∗ ∗ · · · l5,5

← −−−−−−−N−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−K−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N ≤ K must hold.

b. Input time values of elements indicated by asterisks (∗) are not guaranteed.

Figure 2−5 Storage status of Matrix LT

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

5 7 6 5

7 10 8 7

6 8 10 9

5 7 9 10

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

23

32

33

31

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 11,N = 4, and constant vector b.

(c) Main program

PROGRAM BBPDSL
! *** EXAMPLE OF DBPDSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA)

!
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1, N

READ (5,*) (A(I,J),J=I,N)
WRITE (6,1100) (A(J,I),J=1,I-1),(A(I,J),J=I,N)

10 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBPDSL (A,LNA,N,B,IERR)
WRITE (6,1400) ’DBPDSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1500) (I,B(I),I=1,N)
STOP

!
1000 FORMAT(’ ’,/,/,&

’ *** DBPDSL ***’,/,&
2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,10(G11.4))
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1200 FORMAT(6X,’CONSTANT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

*** DBPDSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX

5.000 7.000 6.000 5.000
7.000 10.00 8.000 7.000
6.000 8.000 10.00 9.000
5.000 7.000 9.000 10.00

CONSTANT VECTOR
23.0000
32.0000
33.0000
31.0000

** OUTPUT **
IERR (DBPDSL) = 0
SOLUTION

X( 1) = 0.1000000000D+01
X( 2) = 0.1000000000D+01
X( 3) = 0.1000000000D+01
X( 4) = 0.1000000000D+01

99



DBPDUU, RBPDUU
LLT Decomposition of a Positive Symmetric Matrix

2.5.2 DBPDUU, RBPDUU

LLT Decomposition of a Positive Symmetric Matrix

(1) Function

DBPDUU or RBPDUU uses the Cholesky method to perform an LLT decomposition of the positive sym-

metric matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL DBPDUU (A, LNA, N, IERR)

Single precision:

CALL RBPDUU (A, LNA, N, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Positive symmetric matrix A

(two-dimensional array type) (upper triangular

type)

Output Upper triangular matrix LT when A is decom-

posed into A = LLT (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. A(1, 1)←√A(1, 1) is performed.

2100 There existed the diagonal element which

was close to zero in the LLT decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became less than or

equal to 0.0 in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix LT is stored in the upper triangular portion of array A. Since the lower

triangular matrix L is calculated from LT , it is not stored in array A. This subroutine uses only the

upper triangular portion of array A. (See Section 2.5.1, Figure 2−5)
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2.5.3 DBPDUC, RBPDUC

LLT Decomposition and Condition Number of a Positive Symmetric Matrix

(1) Function

DBPDUC or RBPDUC uses the Cholesky method to perform an LLT decomposition and obtain the con-

dition number of the positive symmetric matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL DBPDUC (A, LNA, N, COND, W1, IERR)

Single precision:

CALL RBPDUC (A, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Positive symmetric matrix A

(two-dimensional array type) (upper triangular

type)

Output Upper triangular matrix LT when A is decom-

posed into A = LLT (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 COND
{
D

R

}
1 Output Reciprocal of the condition number

5 W1
{
D

R

}
N Work Work area

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. A(1, 1)←√A(1, 1) and

COND← 1.0 are performed.

2100 There existed the diagonal element which

was close to zero in the LLT decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became less than or

equal to 0.0 in the i-th processing step.

A is nearly singular.

Processing is aborted.

The condition number is not obtained.

(6) Notes

(a) The upper triangular matrix LT is stored in the upper triangular portion of array A. Since the lower

triangular matrix L is calculated from LT , it is not stored in array A. This subroutine uses only the

upper triangular portion of array A. (See Section 2.5.1, Figure 2−5).
(b) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.5.4 DBPDLS, RBPDLS

Simultaneous Linear Equations (LLT-Decomposed Positive Symmetric Ma-

trix)

(1) Function

DBPDLS or RBPDLS solves the simultaneous linear equations LLTx = b having the positive symmetric

matrix A (two-dimensional array type) (upper triangular type) which has been LLT decomposed by the

Cholesky method as coefficient matrix.

(2) Usage

Double precision:

CALL DBPDLS (A, LNA, N, B, IERR)

Single precision:

CALL RBPDLS (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A after LLT decomposition

(positive symmetric matrix, two-dimensional

array type, upper triangular type) (See Notes

(a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution x

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1)2 is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.
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(6) Notes

(a) The coefficient matrix A must be LLT decomposed before using this subroutine. Normally, you should

decompose matrix A by calling the 2.5.2

{
DBPDUU

RBPDUU

}
subroutine. However, if you also want to obtain

the condition number, you should use 2.5.3

{
DBPDUC

RBPDUC

}
. In addition, if you have already used 2.5.1{

DBPDSL

RBPDSL

}
to solve simultaneous linear equations having the same coefficient matrix A, you can use

the LLT decomposition obtained as part of its output.

(b) The upper triangular matrix LT must be stored in the upper triangular portion of array A. Since the

lower triangular matrix L is calculated from LT , it need not be stored in array A. This subroutine uses

only the upper triangular portion of array A. (See Section 2.5.1, Figure 2−5).
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2.5.5 DBPDDI, RBPDDI

Determinant and Inverse Matrix of a Positive Symmetric Matrix

(1) Function

DBPDDI or RBPDDI obtains the determinant and inverse matrix of the positive symmetric matrix A

(two-dimensional array type) (upper triangular type) which has been LLT decomposed by the Cholesky

method.

(2) Usage

Double precision:

CALL DBPDDI (A, LNA, N, DET, ISW, IERR)

Single precision:

CALL RBPDDI (A, LNA, N, DET, ISW, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Positive symmetric matrix A

(two-dimensional array type) (upper triangular

type) after LLT decomposition (See Notes (a)

and (b))

Output Inverse matrix of matrix A (See Note (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 DET
{
D

R

}
2 Output Determinant of matrix A (See Note (c))

5 ISW I 1 Input Processing switch

ISW > 0: Obtain determinant.

ISW = 0: Obtain determinant and inverse ma-

trix.

ISW < 0: Obtain inverse matrix.

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1 DET(1)← A(1, 1)2

DET(2)← 1.0

A(1, 1)← 1.0/A(1, 1)2

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LLT decomposed before using this subroutine. Use any of the 2.5.2{
DBPDUU

RBPDUU

}
, 2.5.3

{
DBPDUC

RBPDUC

}
, 2.5.1

{
DBPDSL

RBPDSL

}
subroutines to perform the decomposition.

(b) The upper triangular matrix LT must be stored in the upper triangular portion of array A. Since

the lower triangular matrix L is calculated from LT , it need not be stored in array A. Since the

inverse matrix A−1 is a symmetric matrix, only its upper triangular portion is stored in array A. This

subroutine uses only the upper triangular portion of array A. (See Section 2.5.1, Figure 2−5).
(c) The determinant is given by the following expression:

det(A) = DET(1)× 10DET(2)

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(d) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.
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2.5.6 DBPDLX, RBPDLX

Improving the Solution of Simultaneous Linear Equations (Positive Symmet-

ric Matrix)

(1) Function

DBPDLX or RBPDLX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the positive symmetric matrix A (two-dimensional array type) (upper triangular type) as

coefficient matrix.

(2) Usage

Double precision:

CALL DBPDLX (A, LNA, N, ALL, B, X, ITOL, NIT, W1, IERR)

Single precision:

CALL RBPDLX (A, LNA, N, ALL, B, X, ITOL, NIT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A (positive symmetric ma-

trix, two-dimensional array type, upper trian-

gular type)

2 LNA I 1 Input Adjustable dimension of array A and ALL

3 N I 1 Input Order of matrix A

4 ALL
{
D

R

}
LNA,N Input Coefficient matrix A after LLT decomposition

(See Note (a))

5 B
{
D

R

}
N Input Constant vector b

6 X
{
D

R

}
N Input Approximate solution x

Output Iteratively improved solution x

7 ITOL I 1 Input Number of digits to which solution is to be im-

proved. (See Note (b))

Output Approximate number of digits to which solution

was improved. (See Note (c))

8 NIT I 1 Input Maximum number of iterations. (See Note (d))

9 W1
{
D

R

}
N Work Work area

10 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a) was not satisfied. Processing is aborted.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculating

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.5.1

{
DBPDSL

RBPDSL

}
or 2.5.4

{
DBPDLS

RBPDLS

}
sub-

routine. Therefore, the coefficient matrix A after it has been decomposed 2.5.1

{
DBPDSL

RBPDSL

}
, 2.5.2{

DBPDUU

RBPDUU

}
, or 2.5.3

{
DBPDUC

RBPDUC

}
subroutine must be given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0

or

ITOL ≥ − LOG10 (2× ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
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2.6.1 DBSPSL, RBSPSL

Simultaneous Linear Equations (Real Symmetric Matrix)

(1) Function

DBSPSL or RBSPSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having the real symmetric matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage

Double precision:

CALL DBSPSL (A, LNA, N, B, IPVT, WK, IERR)

Single precision:

CALL RBSPSL (A, LNA, N, B, IPVT, WK, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A (real symmetric matrix,

two-dimensional array type, upper triangular

type)

Output Upper triangular matrix LT when A is decom-

posed into A = LDLT (See Note (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution x

5 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (c))

6 WK
{
D

R

}
N Work Work Area

7 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step of the LDLT

decomposition of coefficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call

this subroutine only once and then call subroutine 2.6.4

{
DBSPLS

RBSPLS

}
you to eliminate unnecessary

calculations by performing the LDLT decomposition of matrix A only once.

(b) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from LT , they are not stored in array A. The matrix L is the

transpose of matrix LT , and the matrix D is a diagonal matrix having the reciprocals of the diagonal

elements of matrix LT as components.

This subroutine uses only the upper triangular portion of array A.
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Matrix LT⎡
⎢⎢⎢⎢⎢⎢⎣

l1,1 l2,1 l3,1 · · · l5,1

0.0 l2,2 l3,2 · · · l5,2

0.0 0.0 l3,3 · · · l5,3
...

...
...

. . .
...

0.0 0.0 0.0 · · · l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

Matrix D⎡
⎢⎢⎢⎢⎢⎢⎣

1/l1,1 0.0 0.0 · · · 0.0

0.0 1/l2,2 0.0 · · · 0.0

0.0 0.0 1/l3,3 · · · 0.0
...

...
...

. . .
...

0.0 0.0 0.0 · · · 1/l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status within array A(LNA, K)

l1,1 l2,1 l3,1 · · · l5,1

∗ l2,2 l3,2 · · · l5,2

∗ ∗ l3,3 · · · l5,3
...

...
...

. . .
...

∗ ∗ ∗ · · · l5,5

← −−−−−−−N−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−K−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N ≤ K must hold.

b. Input time values of elements indicated by asterisks (∗) are not guaranteed.

Figure 2−6 Storage Status of Matrix LT and Contents of Matrix D

(c) This subroutine performs partial pivoting when obtaining the LDLT decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

5 4 1 1

4 5 1 1

1 1 4 2

1 1 2 4

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1

−1
4

−4

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 11,N = 4 and constant vector b.

(c) Main program

PROGRAM BBSPSL
! *** EXAMPLE OF DBSPSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA),W1(LNA),IPVT(LNA)

!
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1, N

READ (5,*) (A(I,J),J=I,N)
WRITE (6,1100) (A(J,I),J=1,I-1),(A(I,J),J=I,N)

10 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBSPSL (A,LNA,N,B,IPVT,W1,IERR)
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WRITE (6,1400) ’DBSPSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1500) (I,B(I),I=1,N)
STOP

!
1000 FORMAT(’ ’,/,/,&

’ *** DBSPSL ***’,/,&
2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,10(G11.4))
1200 FORMAT(6X,’COEFFICIENT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

*** DBSPSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX

5.000 4.000 1.000 1.000
4.000 5.000 1.000 1.000
1.000 1.000 4.000 2.000
1.000 1.000 2.000 4.000

COEFFICIENT VECTOR
1.0000
-1.0000
4.0000
-4.0000

** OUTPUT **
IERR (DBSPSL) = 0
SOLUTION

X( 1) = 0.1000000000D+01
X( 2) = -0.1000000000D+01
X( 3) = 0.2000000000D+01
X( 4) = -0.2000000000D+01
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2.6.2 DBSPUD, RBSPUD

LDLT Decomposition of a Real Symmetric Matrix

(1) Function

DBSPUD or RBSPUD uses the modified Cholesky method to perform an LDLT decomposition of the real

symmetric matrix A (two-dimensional array type).

(2) Usage

Double precision:

CALL DBSPUD (A, LNA, N, IPVT, WK, IERR)

Single precision:

CALL RBSPUD (A, LNA, N, IPVT, WK, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real symmetric matrix A (two-dimensional ar-

ray type) (upper triangular type)

Output Upper triangular matrix LT when A is decom-

posed into A = LDLT (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (b))

5 WK
{
D

R

}
N Work Work area

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

2100 There existed the diagonal element which

was close to zero in the LU decomposi-

tion of the coefficient matrix A. The re-

sult may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from LT , they are not stored in array A. (See Section 2.6.1, Figure

2−6.)
(b) This subroutine performs partial pivoting when obtaining the LDLT decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.
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2.6.3 DBSPUC, RBSPUC

LDLT Decomposition and Condition Number of a Real Symmetric Matrix

(1) Function

DBSPUC or RBSPUC uses the modified Cholesky method to perform an LDLT decomposition and obtain

the condition number of the real symmetric matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL DBSPUC (A, LNA, N, IPVT, COND, WK, IERR)

Single precision:

CALL RBSPUC (A, LNA, N, IPVT, COND, WK, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real symmetric matrix A (two-dimensional ar-

ray type) (upper triangular type)

Output Upper triangular matrix LT when A is decom-

posed into A = LDLT (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (b))

5 COND
{
D

R

}
1 Output Reciprocal of the condition number

6 WK
{
D

R

}
N Work Work area

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

COND← 1.0 is performed.

2100 There existed the diagonal element which

was close to zero in the LU decomposi-

tion of the coefficient matrix A. The re-

sult may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

Processing is aborted.

The condition number is not obtained.

(6) Notes

(a) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from LT , they are not stored in array A. (See Section 2.6.1, Figure

2−6.)
(b) This subroutine performs partial pivoting when obtaining the LDLT decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

(c) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.6.4 DBSPLS, RBSPLS

Simultaneous Linear Equations (LDLT-Decomposed Real Symmetric Matrix)

(1) Function

DBSPLS or RBSPLS solves the simultaneous linear equations having the real symmetric matrix A (two-

dimensional array type) which has been LDLT decomposed by the modified Cholesky method as coefficient

matrix.

(2) Usage

Double precision:

CALL DBSPLS (A, LNA, N, B, IPVT, IERR)

Single precision:

CALL RBSPLS (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A after LDLT decomposition

(real symmetric matrix, two-dimensional array

type, upper triangular type) (See Notes (a) and

(b))

2 LNA I 1 Input Adjustable dimension af array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution x

5 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (c))

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LDLT decomposed before using this subroutine. Normally, you

should decompose matrix A by calling the 2.6.2

{
DBSPUD

RBSPUD

}
subroutine. However, if you also want

to obtain the condition number, you should use 2.6.3

{
DBSPUC

RBSPUC

}
subroutine. In addition, if you

have already used 2.6.1

{
DBSPSL

RBSPSL

}
to solve simultaneous linear equations having the same coefficient

matrix A, you can use the LDLT decomposition obtained as part of its output. To solve multiple sets

of simultaneous linear equations where only the constant vector b differs, the solution is obtained more

efficiently by directly using the subroutine 2.6.5

{
DBSPMS

RBSPMS

}
to perform the calculations.

(b) The upper triangular matrix LT must be stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from LT , they need not be stored in array A. This subroutine uses

only the upper triangular portion of array A. (See Section 2.6.1, Figure 2−6.)
(c) This subroutine performs partial pivoting when obtaining the LDLT decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.
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2.6.5 DBSPMS, RBSPMS

Simultaneous Linear Equations with Multiple Right-Hand Sides ( LDLT de-

composed Real Matrix )

(1) Function

DBSPMS or RBSPMS solves the simultaneous linear equations LDLTx = b having the real matrix A (two-

dimensional array type) which has been LDLT decomposed by the Gauss method or the Crout method as

coefficient matrix. That is, when the n ×m matrix B is defined by B = [b1, b2, · · · , bm], the subroutine

obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL DBSPMS (A, LNA, N, B, LNB, M, IPVT, IERR)

Single precision:

CALL RBSPMS (A, LNA, N, B, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A after LDLT decomposition

(real symmetric matrix, two-dimensional array

type, upper triangular type) (See Notes (a) and

(b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
LNA,N Input Matrix consisting of constant vector bi

[A′, b1, b2, · · · , bm]

Output Matrix consisting of Solution vector xi

[A′,x1,x2, · · · ,xm]

5 LNB I 1 Input Adjustable dimension of array B

6 M I 1 Input Number of right-hand side vectors, m

7 IPVT I N Input Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step. (See Note (c))

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(b) 0 < M

(c) 0 < IPVT(i) ≤ N (i = 1, . . . ,N)
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N is equal to 1 B(1, i) ← B(1, i)/A(1, 1) (i = 1, 2, · · · ,M)

is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

(6) Notes

(a) The coefficient matrix A must be LDLT decomposed before using this subroutine. Normally, you

should decompose matrix A by calling the 2.6.2

{
DBSPUD

RBSPUD

}
subroutine. However, if you also want

to obtain the condition number, you should use 2.6.3

{
DBSPUC

RBSPUC

}
.

In addition, if you have already used 2.6.1

{
DBSPSL

RBSPSL

}
to solve simultaneous linear equations having

the same coefficient matrix A, you can use the LDLT decomposition obtained as part of its output.

(b) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from LT , they are not stored in array A. (See Section 2.6.1, Figure

2−6.)
(c) Information about partial pivoting performed during LDLT decomposition must be stored in IPVT.

This information is given by the 2.6.2

{
DBSPUD

RBSPUD

}
, 2.6.3

{
DBSPUC

RBSPUC

}
, and 2.6.1

{
DBSPSL

RBSPSL

}
sub-

routines which perform LDLT decomposition of matrix A.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

5 4 1 1

4 5 1 1

1 1 4 2

1 1 2 4

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

x4,1 x4,2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 −2
−1 1

4 9

−4 13

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 10,N = 4, matrix consisting of constant vector B, LNB=B and M=2.

(c) Main program

PROGRAM BBSPMS
! *** EXAMPLE OF DBSPMS ***

IMPLICIT NONE
INTEGER LNA,LNB,N,M,I,J,IERR
PARAMETER (LNA=10,LNB=10,N=4,M=2)
INTEGER IPVT(LNA)
REAL(8) A(LNA,N),B(LNB,M),WK(LNA)
DATA ((A(I,J),J=1,N),I=1,N)/&

5.0D0, 4.0D0, 1.0D0, 1.0D0,&
4.0D0, 5.0D0, 1.0D0, 1.0D0,&
1.0D0, 1.0D0, 4.0D0, 2.0D0,&
1.0D0, 1.0D0, 2.0D0, 4.0D0/

DATA ((B(I,J),J=1,M),I=1,N)/&
1.0D0, -2.0D0,&
-1.0D0, 1.0D0,&
4.0D0, 9.0D0,&
-4.0D0, 13.0D0/
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!
WRITE (6,1000) N, M
DO 10 I = 1, N

WRITE (6,1100) (A(I,J),J=1,N)
10 CONTINUE

WRITE (6,1200)
DO 20 I = 1, N

WRITE (6,1100) (B(I,J),J=1,M)
20 CONTINUE

WRITE (6,1300)
!

CALL DBSPUD (A,LNA,N,IPVT,WK,IERR)
IF (IERR .GE. 3000) STOP
CALL DBSPMS (A,LNA,N,B,LNB,M,IPVT,IERR)
IF (IERR .GE. 3000) STOP

!
WRITE (6,1400) IERR
WRITE (6,1500)
DO 30 I = 1, N

WRITE (6,1100) (B(I,J),J=1,M)
30 CONTINUE

STOP
!
1000 FORMAT(1X ,/,&

1X, ’*** DBSPMS ***’ ,/,&
1X, ’ ** INPUT **’ ,/,/,&
1X, ’ N =’,I3 ,/,&
1X, ’ M =’,I3 ,/,&
1X,/,&
1X, ’ COEFFICIENT MATRIX’ )

1100 FORMAT(1X, 6X,10(F11.4) )
1200 FORMAT(1X,/,&

1X, ’ CONSTANT VECTORS’ )
1300 FORMAT(1X,/,&

1X, ’ ** OUTPUT **’ ,/)
1400 FORMAT(1X, ’ IERR =’,I5 )
1500 FORMAT(1X,/,&

1X, ’ SOLUTION’ )
END

(d) Output results

*** DBSPMS ***
** INPUT **

N = 4
M = 2

COEFFICIENT MATRIX
5.0000 4.0000 1.0000 1.0000
4.0000 5.0000 1.0000 1.0000
1.0000 1.0000 4.0000 2.0000
1.0000 1.0000 2.0000 4.0000

CONSTANT VECTORS
1.0000 -2.0000
-1.0000 1.0000
4.0000 9.0000
-4.0000 13.0000

** OUTPUT **

IERR = 0

SOLUTION
1.0000 -2.0000
-1.0000 1.0000
2.0000 1.0000
-2.0000 3.0000
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2.6.6 DBSPDI, RBSPDI

Determinant and Inverse Matrix of a Real Symmetric Matrix

(1) Function

DBSPDI or RBSPDI obtains the determinant and inverse matrix of the real symmetric matrix A (two-

dimensional array type) (upper triangular type) which has been LDLT decomposed by the modified Cholesky

method.

(2) Usage

Double precision:

CALL DBSPDI (A, LNA, N, IPVT, DET, ISW, WK, IERR)

Single precision:

CALL RBSPDI (A, LNA, N, IPVT, DET, ISW, WK, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real symmetric matrix A (two-dimensional ar-

ray type) (upper triangular type) after LDLT

decomposition (See Notes (a) and (b))

Output Inverse matrix of matrix A (See Note (b))

2 LNA I 1 Input Adjustable dimensional pf array A

3 N I 1 Input Order of matrix A

4 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (c))

5 DET
{
D

R

}
2 Output Determinant of matrix A (See Note (c))

6 ISW I 1 Input Processing switch

ISW > 0: Obtain determinant.

ISW = 0: Obtain determinant and inverse ma-

trix.

ISW < 0: Obtain inverse matrix.

7 WK
{
D

R

}
N Work Work area

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. DET(1)← A(1, 1), DET(2)← 0.0

A(1, 1)← 1.0/A(1, 1)

are performed. (See Note (c))

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LDLT decomposed before using this subroutine. Use any of the 2.6.2{
DBSPUD

RBSPUD

}
, 2.6.3

{
DBSPUC

RBSPUC

}
, 2.6.1

{
DBSPSL

RBSPSL

}
subroutines to perform the decomposition.

(b) The upper triangular matrix LT must be stored in array A at input time. Since the diagonal matrix

D and the lower triangular matrix L are calculated from LT , they need not be stored in array A. Since

the inverse matrix A−1 is a symmetric matrix, only its upper triangular portion is stored in array A.

This subroutine uses only the upper triangular portion of array A. (See Section 2.6.1, Figure 2−6.)
(c) This subroutine performs partial pivoting when obtaining the LDLT decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

(d) The determinant is given by the following expression:

det(A) = DET(1)× 10DET(2)

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(e) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.
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2.6.7 DBSPLX, RBSPLX

Improving the Solution of Simultaneous Linear Equations (Real Symmetric

Matrix)

(1) Function

DBSPLX or RBSPLX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the real symmetric Matrix A (two-dimensional array type) (upper triangular type) as

coefficient matrix.

(2) Usage

Double precision:

CALL DBSPLX (A, LNA, N, ALD, B, X, ITOL, NIT, IPVT, WK, IERR)

Single precision:

CALL RBSPLX (A, LNA, N, ALD, B, X, ITOL, NIT, IPVT, WK, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A (real symmetric matrix,

two-dimensional array type, upper triangular

type)

2 LNA I 1 Input Adjustable dimension of array A and ALD

3 N I 1 Input Order of matrix A

4 ALD
{
D

R

}
LNA,N Input Coefficient matrix A after LDLT decomposition

(See Note (a))

5 B
{
D

R

}
N Input Constant vector b

6 X
{
D

R

}
N Input Approximate solution x

Output Iteratively improved solution x

7 ITOL I 1 Input Number of digits to which solution is to be im-

proved (See Note (b))

Output Approximate number of digits to which solution

was improved (See Note (c))

8 NIT I 1 Input Maximum number of iterations (See Note (d))

9 IPVT I N Output Pivoting information. (See Note (a))

10 WK
{
D

R

}
N Work Work area

11 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a) was not satisfied. Processing is aborted.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculation the

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.6.1

{
DBSPSL

RBSPSL

}
or 2.6.4

{
DBSPLS

RBSPLS

}
sub-

routine. Therefore, the coefficient matrix A after it has been decomposed by the 2.6.1

{
DBSPSL

RBSPSL

}
,

2.6.2

{
DBSPUD

RBSPUD

}
, or 2.6.3

{
DBSPUC

RBSPUC

}
subroutine and the pivoting information at that time must

be given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0

or

ITOL ≥ − LOG10 (2× ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
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2.7.1 DBSMSL, RBSMSL

Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

(1) Function

DBSMSL or RBSMSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having the real symmetric matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage

Double precision:

CALL DBSMSL (A, LNA, N, B, W1, IERR)

Single precision:

CALL RBSMSL (A, LNA, N, B, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A (real symmetric matrix,

two-dimensional array type, upper triangular

type)

Output Upper triangular matrix LT when A is decom-

posed into A = LDLT (See Note (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution x

5 W1
{
D

R

}
N Work Work Area

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

2100 There existed the diagonal element which

was close to zero in the LDLT decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step of the LDLT

decomposition of coefficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call

this subroutine only once and then call subroutine 2.7.4

{
DBSMLS

RBSMLS

}
you to eliminate unnecessary

calculations by performing the LDLT decomposition of matrix A only once.

(b) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from LT , they are not stored in array A. The matrix L is the

transpose of matrix LT , and the matrix D is a diagonal matrix having the reciprocals of the diagonal

elements of matrix LT as components.

This subroutine uses only the upper triangular portion of array A.

128



DBSMSL, RBSMSL
Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

Matrix LT⎡
⎢⎢⎢⎢⎢⎢⎣

l1,1 l2,1 l3,1 · · · l5,1

0.0 l2,2 l3,2 · · · l5,2

0.0 0.0 l3,3 · · · l5,3
...

...
...

. . .
...

0.0 0.0 0.0 · · · l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

Matrix D⎡
⎢⎢⎢⎢⎢⎢⎣

1/l1,1 0.0 0.0 · · · 0.0

0.0 1/l2,2 0.0 · · · 0.0

0.0 0.0 1/l3,3 · · · 0.0
...

...
...

. . .
...

0.0 0.0 0.0 · · · 1/l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status within array A(LNA, K)

l1,1 l2,1 l3,1 · · · l5,1

∗ l2,2 l3,2 · · · l5,2

∗ ∗ l3,3 · · · l5,3
...

...
...

. . .
...

∗ ∗ ∗ · · · l5,5

← −−−−−−−N−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−K−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N ≤ K must hold.

b. Input time values of elements indicated by asterisks (∗) are not guaranteed.

Figure 2−7 Storage Status of Matrix LT and Contents of Matrix D
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(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

5 4 1 1

4 5 1 1

1 1 4 2

1 1 2 4

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1

−1
4

−4

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 11,N = 4 and constant vector b.

(c) Main program

PROGRAM BBSMSL
! *** EXAMPLE OF DBSMSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA),W1(LNA)

!
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1, N

READ (5,*) (A(I,J),J=I,N)
WRITE (6,1100) (A(J,I),J=1,I-1),(A(I,J),J=I,N)

10 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBSMSL (A,LNA,N,B,W1,IERR)
WRITE (6,1400) ’DBSMSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1500) (I,B(I),I=1,N)
STOP

!
1000 FORMAT(’ ’,/,/,&

’ *** DBSMSL ***’,/,&
2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,10(G11.4))
1200 FORMAT(6X,’COEFFICIENT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

*** DBSMSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX

5.000 4.000 1.000 1.000
4.000 5.000 1.000 1.000
1.000 1.000 4.000 2.000
1.000 1.000 2.000 4.000

COEFFICIENT VECTOR
1.0000
-1.0000
4.0000
-4.0000

** OUTPUT **
IERR (DBSMSL) = 0
SOLUTION

X( 1) = 0.1000000000D+01
X( 2) = -0.1000000000D+01
X( 3) = 0.2000000000D+01
X( 4) = -0.2000000000D+01
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2.7.2 DBSMUD, RBSMUD

LDLT Decomposition of a Real Symmetric Matrix (No Pivoting)

(1) Function

DBSMUD or RBSMUD uses the modified Cholesky method to perform an LDLT decomposition of the real

symmetric matrix A (two-dimensional array type).

(2) Usage

Double precision:

CALL DBSMUD (A, LNA, N, W1, IERR)

Single precision:

CALL RBSMUD (A, LNA, N, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real symmetric matrix A (two-dimensional ar-

ray type) (upper triangular type)

Output Upper triangular matrix LT when A is decom-

posed into A = LDLT (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 W1
{
D

R

}
N Work Work area

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

2100 There existed the diagonal element which

was close to zero in the LDLT decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from LT , they are not stored in array A. (See Section 2.7.1, Figure

2−7.)
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2.7.3 DBSMUC, RBSMUC

LDLT Decomposition and Condition Number of a Real Symmetric Matrix

(No Pivoting)

(1) Function

DBSMUC or RBSMUC uses the modified Cholesky method to perform an LDLT decomposition and obtain

the condition number of the real symmetric matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL DBSMUC (A, LNA, N, COND, W1, IERR)

Single precision:

CALL RBSMUC (A, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real symmetric matrix A (two-dimensional ar-

ray type) (upper triangular type)

Output Upper triangular matrix LT when A is decom-

posed into A = LDLT (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 COND
{
D

R

}
1 Output Reciprocal of the condition number

5 W1
{
D

R

}
N Work Work area

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

COND← 1.0 is performed.

2100 There existed the diagonal element which

was close to zero in the LDLT decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

Processing is aborted.

The condition number is not obtained.

(6) Notes

(a) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from LT , they are not stored in array A. (See Section 2.7.1, Figure

2−7.)
(b) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.7.4 DBSMLS, RBSMLS

Simultaneous Linear Equations (LDLT-Decomposed Real Symmetric Matrix)

(No Pivoting)

(1) Function

DBSMLS or RBSMLS solves the simultaneous linear equations having the real symmetric matrix A (two-

dimensional array type) which has been LDLT decomposed by the modified Cholesky method as coefficient

matrix.

(2) Usage

Double precision:

CALL DBSMLS (A, LNA, N, B, IERR)

Single precision:

CALL RBSMLS (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A after LDLT decomposition

(real symmetric matrix, two-dimensional array

type, upper triangular type) (See Notes (a) and

(b))

2 LNA I 1 Input Adjustable dimension af array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution x

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.
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(6) Notes

(a) The coefficient matrix A must be LDLT decomposed before using this subroutine. Normally, you

should decompose matrix A by calling the 2.7.2

{
DBSMUD

RBSMUD

}
subroutine. However, if you also want

to obtain the condition number, you should use 2.7.3

{
DBSMUC

RBSMUC

}
subroutine. In addition, if you

have already used 2.7.1

{
DBSMSL

RBSMSL

}
to solve simultaneous linear equations having the same coefficient

matrix A, you can use the LDLT decomposition obtained as part of its output. To solve multiple sets

of simultaneous linear equations where only the constant vector b differs, the solution is obtained more

efficiently by directly using the subroutine 2.7.5

{
DBSMMS

RBSMMS

}
to perform the calculations.

(b) The upper triangular matrix LT must be stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from LT , they need not be stored in array A. This subroutine uses

only the upper triangular portion of array A. (See Section 2.7.1, Figure 2−7.)
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2.7.5 DBSMMS, RBSMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides ( LDLT -

Decomposed Real Matrix ) ( No Pivoting )

(1) Function

DBSMMS or RBSMMS solves the simultaneous linear equations LDLTx = b having the real matrix A

(two-dimensional array type) which has been LDLT decomposed by the Gauss method or the Crout method

as coefficient matrix. That is, when the n×m matrix B is defined by B = [b1, b2, · · · , bm], the subroutine

obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL DBSMMS (A, LNA, N, B, LNB, M, IERR)

Single precision:

CALL RBSMMS (A, LNA, N, B, LNB, M, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A after LDLT decomposition

(real symmetric matrix, two-dimensional array

type, upper triangular type) (See Notes (a) and

(b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
LNA,N Input Matrix consisting of constant vector bi

[A′, b1, b2, · · · , bm]

Output Matrix consisting of Solution vector xi

[A′,x1,x2, · · · ,xm]

5 LNB I 1 Input Adjustable dimension of array B

6 M I 1 Input Number of right-hand side vectors, m

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(b) 0 < M
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N is equal to 1 B(1, i) ← B(1, i)/A(1, 1) (i = 1, 2, · · · ,M)

is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

(6) Notes

(a) The coefficient matrix A must be LDLT decomposed before using this subroutine. Normally, you

should decompose matrix A by calling the 2.7.2

{
DBSMUD

RBSMUD

}
subroutine. However, if you also want

to obtain the condition number, you should use 2.7.3

{
DBSMUC

RBSMUC

}
.

In addition, if you have already used 2.7.1

{
DBSMSL

RBSMSL

}
to solve simultaneous linear equations having

the same coefficient matrix A, you can use the LDLT decomposition obtained as part of its output.

(b) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from LT , they are not stored in array A. (See Section 2.7.1, Figure

2−7.)

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

5 4 1 1

4 5 1 1

1 1 4 2

1 1 2 4

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

x4,1 x4,2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 −2
−1 1

4 9

−4 13

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 10,N = 4, matrix consisting of constant vector B, LNB=B and M=2.

(c) Main program

PROGRAM BBSMMS
! *** EXAMPLE OF DBSMMS ***

IMPLICIT NONE
INTEGER LNA,LNB,N,M,I,J,IERR
PARAMETER (LNA=10,LNB=10,N=4,M=2)
REAL(8) A(LNA,N),B(LNB,M),WK(LNA)
DATA ((A(I,J),J=1,N),I=1,N)/&

5.0D0, 4.0D0, 1.0D0, 1.0D0,&
4.0D0, 5.0D0, 1.0D0, 1.0D0,&
1.0D0, 1.0D0, 4.0D0, 2.0D0,&
1.0D0, 1.0D0, 2.0D0, 4.0D0/

DATA ((B(I,J),J=1,M),I=1,N)/&
1.0D0, -2.0D0,&
-1.0D0, 1.0D0,&
4.0D0, 9.0D0,&
-4.0D0, 13.0D0/

!
WRITE (6,1000) N, M
DO 10 I = 1, N

WRITE (6,1100) (A(I,J),J=1,N)
10 CONTINUE

WRITE (6,1200)
DO 20 I = 1, N

WRITE (6,1100) (B(I,J),J=1,M)
20 CONTINUE

WRITE (6,1300)
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!
CALL DBSMUD (A,LNA,N,WK,IERR)
IF (IERR .GE. 3000) STOP
CALL DBSMMS (A,LNA,N,B,LNB,M,IERR)
IF (IERR .GE. 3000) STOP

!
WRITE (6,1400) IERR
WRITE (6,1500)
DO 30 I = 1, N

WRITE (6,1100) (B(I,J),J=1,M)
30 CONTINUE

STOP
!
1000 FORMAT(1X ,/,&

1X, ’*** DBSMMS ***’ ,/,&
1X, ’ ** INPUT **’ ,/,/,&
1X, ’ N =’,I3 ,/,&
1X, ’ M =’,I3 ,/,&
1X,/,&
1X, ’ COEFFICIENT MATRIX’ )

1100 FORMAT(1X, 6X,10(F11.4) )
1200 FORMAT(1X,/,&

1X, ’ CONSTANT VECTORS’ )
1300 FORMAT(1X,/,&

1X, ’ ** OUTPUT **’ ,/)
1400 FORMAT(1X, ’ IERR =’,I5 )
1500 FORMAT(1X,/,&

1X, ’ SOLUTION’ )
END

(d) Output results

*** DBSMMS ***
** INPUT **

N = 4
M = 2

COEFFICIENT MATRIX
5.0000 4.0000 1.0000 1.0000
4.0000 5.0000 1.0000 1.0000
1.0000 1.0000 4.0000 2.0000
1.0000 1.0000 2.0000 4.0000

CONSTANT VECTORS
1.0000 -2.0000

-1.0000 1.0000
4.0000 9.0000

-4.0000 13.0000

** OUTPUT **

IERR = 0

SOLUTION
1.0000 -2.0000

-1.0000 1.0000
2.0000 1.0000

-2.0000 3.0000
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2.7.6 DBSMDI, RBSMDI

Determinant and Inverse Matrix of a Real Symmetric Matrix (No Pivoting)

(1) Function

DBSMDI or RBSMDI obtains the determinant and inverse matrix of the real symmetric matrix A (two-

dimensional array type) (upper triangular type) which has been LDLT decomposed by the modified Cholesky

method.

(2) Usage

Double precision:

CALL DBSMDI (A, LNA, N, DET, ISW, W1, IERR)

Single precision:

CALL RBSMDI (A, LNA, N, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real symmetric matrix A (two-dimensional ar-

ray type) (upper triangular type) after LDLT

decomposition (See Notes (a) and (b))

Output Inverse matrix of matrix A (See Note (b))

2 LNA I 1 Input Adjustable dimensional pf array A

3 N I 1 Input Order of matrix A

4 DET
{
D

R

}
2 Output Determinant of matrix A (See Note (c))

5 ISW I 1 Input Processing switch

ISW > 0: Obtain determinant.

ISW = 0: Obtain determinant and inverse ma-

trix.

ISW < 0: Obtain inverse matrix.

6 W1
{
D

R

}
N Work Work area

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. DET(1)← A(1, 1), DET(2)← 0.0

A(1, 1)← 1.0/A(1, 1)

are performed. (See Note (c))

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LDLT decomposed before using this subroutine. Use any of the 2.7.2{
DBSMUD

RBSMUD

}
, 2.7.3

{
DBSMUC

RBSMUC

}
, 2.7.1

{
DBSMSL

RBSMSL

}
subroutines to perform the decomposition.

(b) The upper triangular matrix LT must be stored in array A at input time. Since the diagonal matrix

D and the lower triangular matrix L are calculated from LT , they need not be stored in array A. Since

the inverse matrix A−1 is a symmetric matrix, only its upper triangular portion is stored in array A.

This subroutine uses only the upper triangular portion of array A. (See Section 2.7.1, Figure 2−7.)
(c) The determinant is given by the following expression:

det(A) = DET(1)× 10DET(2)

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(d) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.
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2.7.7 DBSMLX, RBSMLX

Improving the Solution of Simultaneous Linear Equations (Real Symmetric

Matrix) (No Pivoting)

(1) Function

DBSMLX or RBSMLX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the real symmetric Matrix A (two-dimensional array type) (upper triangular type) as

coefficient matrix.

(2) Usage

Double precision:

CALL DBSMLX (A, LNA, N, ALD, B, X, ITOL, NIT, W1, IERR)

Single precision:

CALL RBSMLX (A, LNA, N, ALD, B, X, ITOL, NIT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A (real symmetric matrix,

two-dimensional array type, upper triangular

type)

2 LNA I 1 Input Adjustable dimension of array A and ALD

3 N I 1 Input Order of matrix A

4 ALD
{
D

R

}
LNA,N Input Coefficient matrix A after LDLT decomposition

(See Note (a))

5 B
{
D

R

}
N Input Constant vector b

6 X
{
D

R

}
N Input Approximate solution x

Output Iteratively improved solution x

7 ITOL I 1 Input Number of digits to which solution is to be im-

proved (See Note (b))

Output Approximate number of digits to which solution

was improved (See Note (c))

8 NIT I 1 Input Maximum number of iterations (See Note (d))

9 W1
{
D

R

}
N Work Work area

10 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

142



DBSMLX, RBSMLX
Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a) was not satisfied. Processing is aborted.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculation the

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.7.1

{
DBSMSL

RBSMSL

}
or 2.7.4

{
DBSMLS

RBSMLS

}
sub-

routine. Therefore, the coefficient matrix A after it has been decomposed by the 2.7.1

{
DBSMSL

RBSMSL

}
,

2.7.2

{
DBSMUD

RBSMUD

}
, or 2.7.3

{
DBSMUC

RBSMUC

}
subroutine must be given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0

or

ITOL ≥ − LOG10 (2× ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
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2.8 REAL SYMMETRICMATRIX (TWO-DIMENSIONAL ARRAY

TYPE, LOWER TRIANGULAR TYPE)(NO PIVOTING)

2.8.1 DBSNSL, RBSNSL

Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

(1) Function

DBSNSL or RBSNSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having the real symmetric matrix A (two-dimensional array type, lower triangular type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBSNSL (A, LNA, N, B, IERR)

Single precision:

CALL RBSNSL (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A (real symmetric matrix,

two-dimensional array type, lower triangular

type)

Output lower triangular matrix UT when A is decom-

posed into A = UTDU (See Note (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution x

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

2100 There existed the diagonal element which

was close to zero in the UTDU decom-

position of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step of the UTDU

decomposition of coefficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call

this subroutine only once and then call subroutine 2.8.3

{
DBSNLS

RBSNLS

}
you to eliminate unnecessary

calculations by performing the UTDU decomposition of matrix A only once.

(b) The lower triangular matrix UT is stored in array A. For the diagonal components of UT , their recipro-

cals are stored in array A with the sign changed. Since the diagonal matrix D and the upper triangular

matrix U are calculated from UT , they are not stored in array A. The matrix U is the transpose of

matrix UT , and the matrix D is a diagonal matrix having the reciprocals of the diagonal elements of

matrix UT as components.

This subroutine uses only the lower triangular portion of array A.
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Matrix UT⎡
⎢⎢⎢⎢⎢⎢⎣

u1,1 0.0 0.0 · · · 0.0

u2,1 u2,2 0.0 · · · 0.0

u3,1 u3,2 u3,3 · · · 0.0
...

...
...

. . .
...

u5,1 u5,2 u5,3 · · · u5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

Matrix D⎡
⎢⎢⎢⎢⎢⎢⎣

1/u1,1 0.0 0.0 · · · 0.0

0.0 1/u2,2 0.0 · · · 0.0

0.0 0.0 1/u3,3 · · · 0.0
...

...
...

. . .
...

0.0 0.0 0.0 · · · 1/u5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status within array A(LNA, K)

−1/u1,1 ∗ ∗ · · · ∗
u2,1 −1/u2,2 ∗ · · · ∗
u3,1 u3,2 −1/u3,3 · · · ∗
...

...
...

. . .
...

u5,1 u5,2 u5,3 · · · −1/u5,5

← −−−−−−−N−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−K−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N ≤ K must hold.

b. Input time values of elements indicated by asterisks (∗) are not guaranteed.

Figure 2−8 Storage Status of Matrix UT and Contents of Matrix D
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(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

5 4 1 1

4 5 1 1

1 1 4 2

1 1 2 4

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1

−1
4

−4

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 11,N = 4, and constant vector b.

(c) Main program

PROGRAM BBSNSL
! *** EXAMPLE OF DBSNSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA)

!
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1, N

READ (5,*) (A(I,J),J=1,I)
10 CONTINUE

DO 20 I = 1, N
WRITE (6,1100) (A(I,J),J=1,I),(A(J,I),J=I+1,N)

20 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBSNSL (A,LNA,N,B,IERR)
WRITE (6,1400) ’DBSNSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1500) (I,B(I),I=1,N)
STOP

!
1000 FORMAT(’ ’,/,/,’ *** DBSNSL ***’,/,&

2X,’** INPUT **’,/,6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,10(G11.4))
1200 FORMAT(6X,’COEFFICIENT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

*** DBSNSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX

5.000 4.000 1.000 1.000
4.000 5.000 1.000 1.000
1.000 1.000 4.000 2.000
1.000 1.000 2.000 4.000

COEFFICIENT VECTOR
1.0000
-1.0000
4.0000
-4.0000

** OUTPUT **
IERR (DBSNSL) = 0
SOLUTION

X( 1) = 0.1000000000D+01
X( 2) = -0.1000000000D+01
X( 3) = 0.2000000000D+01
X( 4) = -0.2000000000D+01
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2.8.2 DBSNUD, RBSNUD

UTDU Decomposition of a Real Symmetric Matrix (No Pivoting)

(1) Function

DBSNUD or RBSNUD uses the modified Cholesky method to perform an UTDU decomposition of the real

symmetric matrix A (two-dimensional array type) (lower triangular type).

(2) Usage

Double precision:

CALL DBSNUD (A, LNA, N, IERR)

Single precision:

CALL RBSNUD (A, LNA, N, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real symmetric matrix A (two-dimensional ar-

ray type) (lower triangular type)

Output Lower triangular matrix UT when A is decom-

posed into A = UTDU (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

148



DBSNUD, RBSNUD
UTDU Decomposition of a Real Symmetric Matrix (No Pivoting)

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

2100 There existed the diagonal element which

was close to zero in the UTDU decom-

position of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The lower triangular matrix UT is stored in array A. For the diagonal components of UT , their re-

ciprocals are stored in array A with the sign changed. Since the diagonal matrix D and the upper

triangular matrix U are calculated from UT , they are not stored in array A. (See Section 2.8.1, Figure

2−8.)
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2.8.3 DBSNLS, RBSNLS

Simultaneous Linear Equations (UTDU-Decomposed Real Symmetric Matrix)

(No Pivoting)

(1) Function

DBSNLS or RBSNLS solves the simultaneous linear equations having the real symmetric matrix A (two-

dimensional array type, lower triangular type) which has been UTDU decomposed by the modified Cholesky

method as coefficient matrix.

(2) Usage

Double precision:

CALL DBSNLS (A, LNA, N, B, IERR)

Single precision:

CALL RBSNLS (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A after UTDU decomposi-

tion (real symmetric matrix, two-dimensional

array type, lower triangular type) (See Notes

(a) and (b))

2 LNA I 1 Input Adjustable dimension af array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution x

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.
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(6) Notes

(a) The coefficient matrix A must be UTDU decomposed before using this subroutine. Normally, you

should decompose matrix A by calling the 2.8.2

{
DBSNUD

RBSNUD

}
subroutine. In addition, if you have

already used 2.8.1

{
DBSNSL

RBSNSL

}
to solve simultaneous linear equations having the same coefficient

matrix A, you can use the UTDU decomposition obtained as part of its output.

(b) The lower triangular matrix UT must be stored in array A. Since the diagonal matrix D and the upper

triangular matrix U are calculated from UT , they need not be stored in array A. This subroutine uses

only the lower triangular portion of array A. (See Section 2.8.1, Figure 2−8.)
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2.9 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY

TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT

TYPE)

2.9.1 ZBHPSL, CBHPSL

Simultaneous Linear Equations (Hermitian Matrix)

(1) Function

ZBHPSL or CBHPSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having a Hermitian matrix (two-dimensional array type) (upper triangular type) as coefficient matrix.

(2) Usage

Double precision:

CALL ZBHPSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)

Single precision:

CALL CBHPSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of coefficient matrix A (Hermitian

matrix, two-dimensional array type, upper tri-

angular type)

Output Real part of upper triangular matrix L∗ when

A is decomposed into A = LDL∗ (See Note (b))
2 AI

{
D

R

}
LNA,N Input Imaginary part of coefficient matrix A (Hermi-

tian matrix, two-dimensional array type, upper

triangular type)

Output Imaginary part of upper triangular matrix L∗

when A is decomposed into A = LDL∗ (See

Note (b))

3 LNA I 1 Input Adjustable dimension of arrays AR and AI

4 N I 1 Input Order of matrix A

5 BR
{
D

R

}
N Input Real part of constant vector b

Output Real part of solution x

6 BI
{
D

R

}
N Input Imaginary part of constant vector b

Output Imaginary part of solution x
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No. Argument Type Size
Input/

Output
Contents

7 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (c))

8 W1
{
D

R

}
N Work Work area

9 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of arrays AR and AI are not

changed.

B(1)← B(1)/AR(1, 1) is performed.

2100 There existed the diagonal element which

was close to zero in the LDL∗ decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step of the LDL∗

decomposition of coefficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, call

this subroutine only once and then call subroutine 2.9.4

{
ZBHPLS

CBHPLS

}
the required number of times

varying only the contents of B. This enables you to eliminate unnecessary calculation by performing

the LDL∗ decomposition of matrix A only once.

(b) The upper triangular matrix L∗ is stored in the upper triangular portions of arrays AR and AI. Since

the diagonal matrix D and the lower triangular matrix L are calculated from L∗, they are not stored

in arrays AR and AI. The matrix L is the adjoint matrix of the matrix L∗, and the matrix D is a

diagonal matrix having the reciprocals of the diagonal elements of the matrix L∗ as its components.

This subroutine uses only the upper triangular portions of arrays AR and AI.
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Matrix L∗⎡
⎢⎢⎢⎢⎢⎢⎣

l1,1 l2,1 l3,1 · · · l5,1

0.0 l2,2 l3,2 · · · l5,2

0.0 0.0 l3,3 · · · l5,3
...

...
...

. . .
...

0.0 0.0 0.0 · · · l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

Matrix D⎡
⎢⎢⎢⎢⎢⎢⎣

1/l1,1 0.0 0.0 · · · 0.0

0.0 1/l2,2 0.0 · · · 0.0

0.0 0.0 1/l3,3 · · · 0.0
...

...
...

. . .
...

0.0 0.0 0.0 · · · 1/l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status within array AR(LNA, K)

l1,1 �{l2,1} �{l3,1} · · · �{l5,1}
∗ l2,2 �{l3,2} · · · �{l5,2}
∗ ∗ l3,3 · · · �{l5,3}
...

...
...

. . .
...

∗ ∗ ∗ · · · l5,5

← −−−−−−−−−−−N−−−−−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−−−−−K−−−−−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Storage status within array AI(LNA, K)

0.0 �{l2,1} �{l3,1} · · · �{l5,1}
∗ 0.0 �{l3,2} · · · �{l5,2}
∗ ∗ 0.0 · · · �{l5,3}
...

...
...

. . .
...

∗ ∗ ∗ · · · 0.0

← −−−−−−−−−N−−−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−−K−−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N ≤ K must hold.

b. Input time values of elements indicated by asterisks (∗) are not guaranteed.

Figure 2−9 Storage Status of Matrix L∗ and Contents of Matrix D

(c) This subroutine performs partial pivoting when obtaining the LDL∗ decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

9 7 + 3i 2 + 5i 1 + i

7− 3i 10 3 + 2i 2 + 4i

2− 5i 3− 2i 8 5 + i

1− i 2− 4i 5− i 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

10 + 6i

11 + 2i

4 + 6i

4 + 6i

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix real part AR and Imaginary part AI, LNA = 11,N = 4 and constant vector B.
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(c) Main program

PROGRAM ABHPSL
! *** EXAMPLE OF ZBHPSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11,LNW = 22)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),BR(LNA),BI(LNA),W1(LNW)
DIMENSION IPVT(LNA)

!
CHARACTER*50 FMT(4)

!
DATA FMT /’(6X, 4(1X,A1,F5.1,1X,A1,F5.1,1X,A1))’,&

’(6X, 16X, 3(1X,A1,F5.1,1X,A1,F5.1,1X,A1))’,&
’(6X,2(16X),2(1X,A1,F5.1,1X,A1,F5.1,1X,A1))’,&
’(6X,3(16X), 1X,A1,F5.1,1X,A1,F5.1,1X,A1 )’/

!
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1, N

READ (5,*) (AR(I,J),AI(I,J),J=I,N)
WRITE (6,FMT(I)) (’(’,AR(I,J),’,’,AI(I,J),’)’,J=I,N)

10 CONTINUE
READ (5,*) (BR(I),BI(I),I=1,N)
WRITE (6,1100)
DO 20 I = 1, N
WRITE (6,1200) BR(I),BI(I)

20 CONTINUE
WRITE (6,1300)
CALL ZBHPSL (AR,AI,LNA,N,BR,BI,IPVT,W1,IERR)
WRITE (6,1400) ’ZBHPSL’,IERR
WRITE (6,1600)
DO 30 I = 1, N
WRITE (6,1700) I,BR(I),BI(I)

30 CONTINUE
STOP

!
1000 FORMAT (’ ’,/,/,’ *** ZBHPSL ***’,/,2X,’** INPUT **’,&

/,6X,’N =’,I3,&
/,6X,’COEFFICIENT MATRIX ( REAL, IMAGINARY )’)

1100 FORMAT (6X,’CONSTANT VECTOR ( REAL, IMAGINARY )’)
1200 FORMAT (6X,’ (’,F5.1,’ ,’,F5.1,’ )’)
1300 FORMAT (2X,’** OUTPUT **’)
1400 FORMAT (6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT (6X,’SOLUTION ( REAL, IMAGINARY )’)
1700 FORMAT (10X,’X(’,I2,’) = (’,D18.10,’ ,’,D18.10,’ )’)

END

(d) Output results

*** ZBHPSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX ( REAL, IMAGINARY )
( 9.0 , 0.0 ) ( 7.0 , 3.0 ) ( 2.0 , 5.0 ) ( 1.0 , 1.0 )

( 10.0 , 0.0 ) ( 3.0 , 2.0 ) ( 2.0 , 4.0 )
( 8.0 , 0.0 ) ( 5.0 , 1.0 )

( 6.0 , 0.0 )
CONSTANT VECTOR ( REAL, IMAGINARY )
( 10.0 , 6.0 )
( 11.0 , 2.0 )
( 4.0 , 6.0 )
( 4.0 , 6.0 )

** OUTPUT **
IERR (ZBHPSL) = 0
SOLUTION ( REAL, IMAGINARY )

X( 1) = ( 0.1000000000D+01 , 0.0000000000D+00 )
X( 2) = ( 0.1000000000D+01 , 0.8881784197D-16 )
X( 3) = ( -0.4971147871D-16 , 0.1000000000D+01 )
X( 4) = ( -0.4170837849D-16 , 0.1000000000D+01 )
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2.9.2 ZBHPUD, CBHPUD

LDL∗ Decomposition of a Hermitian Matrix

(1) Function

ZBHPUD or CBHPUD uses the modified Cholesky method to perform an LDL∗ decomposition of the

Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL ZBHPUD (AR, AI, LNA, N, IPVT, W1, IERR)

Single precision:

CALL CBHPUD (AR, AI, LNA, N, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output Real part of upper triangular matrix L∗ when

A is decomposed into A = LDL∗ (See Note (a))
2 AI

{
D

R

}
LNA,N Input Imaginary part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output Imaginary part of upper triangular matrix L∗

when A is decomposed into A = LDL∗ (See

Note (a))

3 LNA I 1 Input Adjustable dimension of array AR and AI

4 N I 1 Input Order of matrix A

5 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (b))

6 W1
{
D

R

}
2×N Work Work area

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of arrays AR and AI are not

changed.

2100 There existed the diagonal element which

was close to zero in the LDL∗ decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix L∗ is stored in the upper triangular portions of arrays AR and AI. Since

the diagonal matrix D and the lower triangular matrix L are calculated from L∗, they are not stored

in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI.

(See Sections 2.9.1 Figure 2−9.)
(b) This subroutine performs partial pivoting when obtaining the LDL∗ decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.
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2.9.3 ZBHPUC, CBHPUC

LDL∗ Decomposition and Condition Number of a Hermitian Matrix

(1) Function

ZBHPUC or CBHPUC uses the modified Cholesky method to perform an LDL∗ decomposition and obtain

the condition number of the Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL ZBHPUC (AR, AI, LNA, N, IPVT, COND, W1, IERR)

Single precision:

CALL CBHPUC (AR, AI, LNA, N, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output Real part of upper triangular matrix L∗ when

A is decomposed into A = LDL∗ (See Note (a))
2 AI

{
D

R

}
LNA,N Input Imaginary part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output Imaginary part of upper triangular matrix L∗

when A is decomposed into A = LDL∗ (See

Note (a))

3 LNA I 1 Input Adjustable dimension of arrays AR and AI

4 N I 1 Input Order of matrix A

5 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (b))

6 COND
{
D

R

}
1 Output Reciprocal of the condition number

7 W1
{
D

R

}
2×N Work Work area

8 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of arrays AR and AI are not

changed.

COND← 1.0 is performed.

2100 There existed the diagonal element which

was close to zero in the LDL∗ decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

Processing is aborted.

The condition number is not obtained.

(6) Notes

(a) The upper triangular matrix L∗ is stored in the upper triangular portions of arrays AR and AI. Since

the diagonal matrix D and the lower triangular matrix L are calculated from L∗, they are not stored

in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI.

(See 2.9.1 Figure 2−9.)
(b) This subroutine performs partial pivoting when obtaining the LDL∗ decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

(c) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.9.4 ZBHPLS, CBHPLS

Simultaneous Linear Equations (LDL∗-Decomposed Hermitian Matrix)

(1) Function

ZBHPLS or CBHPLS solves the simultaneous linear equations LDL∗x = b having the Hermitian matrix

A (two-dimensional array type) (upper triangular type) which has been LDL∗ decomposed by the modified

Cholesky method as coefficient matrix.

(2) Usage

Double precision:

CALL ZBHPLS (AR, AI, LNA, N, BR, BI, IPVT, IERR)

Single precision:

CALL CBHPLS (AR, AI, LNA, N, BR, BI, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of coefficient matrix A after

LDL∗ decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)

(See Notes (a) and (b))

2 AI
{
D

R

}
LNA,N Input Imaginary part of coefficient matrix A after

LDL∗ decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)

(See Notes (a) and (b))

3 LNA I 1 Input Adjustable dimension of array AR and AI

4 N I 1 Input Order of matrix A

5 BR
{
D

R

}
N Input Real part of constant vector b

Output Real part of solution x

6 BI
{
D

R

}
N Input Imaginary part of constant vector b

Output Imaginary part of solution x

7 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (c))

8 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/AR(1, 1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LDL∗ decomposed before using this subroutine. Normally, you

should decompose matrix A by calling the 2.9.2

{
ZBHPUD

CBHPUD

}
. However, if you also want to obtain

the condition number, you should use 2.9.3

{
ZBHPUC

CBHPUC

}
. In addition, if you have already used 2.9.1{

ZBHPSL

CBHPSL

}
to solve simultaneous linear equations having the same coefficient matrix A, you can use

the LDL∗ decomposition obtained as part of its output. To solve multiple sets of simultaneous linear

equations where only the constant vector b differs, the solution is obtained more efficiently by directly

using the subroutine 2.9.5

{
ZBHPMS

CBHPMS

}
to perform the calculations.

(b) The upper triangular matrix L∗ must be stored in the upper triangular portion of array A. Since the

diagonal matrix D and the lower triangular matrix L are calculated from L∗, they need not be stored

in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI.

(See 2.9.1 Figure 2−9.)
(c) Information about partial pivoting performed during LDL∗ decomposition must be stored in IPVT.

This information is given by the subroutines which perform LDL∗ decomposition of matrix A.
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2.9.5 ZBHPMS, CBHPMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL∗-
Decomposed Hermitian Matrix)

(1) Function

ZBHPMS or CBHPMS solves the simultaneous linear equations LDL∗xi = bi (i = 1, 2, · · · ,m) having the

Hermitian matrix A (two-dimensional array type) (upper triangular type) which has been LDL∗ decomposed

by the modified Cholesky method as coefficient matrix. That is, when the n ×m matrix B is defined by

B = [b1, b2, · · · , bm], the subroutine obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL ZBHPMS (AR, AI, LNA, N, BR, BI, LNB, M, IPVT, IERR)

Single precision:

CALL CBHPMS (AR, AI, LNA, N, BR, BI, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of Coefficient matrix A after

LDL∗ decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)

(See Notes (a) and (b))

2 AI
{
D

R

}
LNA,N Input Imaginary part of Coefficient matrix A after

LDL∗ decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)

(See Notes (a) and (b))

3 LNA I 1 Input Adjustable dimension of array AR and AI

4 N I 1 Input Order of matrix A

5 BR
{
D

R

}
LNB,M Input Real part of Constant vector bi

(i = 1, 2, · · · ,m)

Output Real part of Solution xi(i = 1, 2, · · · ,m)

6 BI
{
D

R

}
LNB,M Input Imaginary part of Constant vector bi

(i = 1, 2, · · · ,m)

Output Imaginary part of Solution xi

(i = 1, 2, · · · ,m)

7 LNB I 1 Input Adjustable dimension of array BR and BI

8 M I 1 Input Number of right-hand side vectors, m

9 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row (column) i in the i-th pro-

cessing step. (See Note (c))

10 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA,LNB

(b) M > 0

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. BR(1, i)← BR(1, i)/AR(1, 1),

BI(1, i)← BI(1, i)/AR(1, 1)

(i= 1, 2, · · · ,m) are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

(6) Notes

(a) The coefficient matrix A must be LDL∗ decomposed before using this subroutine. Normally, you should

decompose matrix A by calling the 2.9.2

{
ZBHPUD

CBHPUD

}
subroutine. However, if you also want to obtain

the condition number, you should use 2.9.3

{
ZBHPUC

CBHPUC

}
. In addition, if you have already used 2.9.1{

ZBHPSL

CBHPSL

}
to solve simultaneous linear equations having the same coefficient matrix A, you can use

the LDL∗ decomposition obtained as part of its output.

(b) The upper triangular matrix L∗ must be stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from L∗, they need not be stored in array A. (See Fig. 2−9 in

Section 2.9.1)

(c) Information about partial pivoting performed during LDL∗ decomposition must be stored in IPVT.

This information is given by the subroutines which perform LDL∗ decomposition of matrix A.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

9 7 + 3i 2 + 5i 1 + 1i

7− 3i 10 3 + 2i 2 + 4i

2− 5i 3− 2i 8 5 + 1i

1− 1i 2− 4i 5− 1i 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

10 + 6i 8 + 18i 22i 2 + 10i

11 + 2i 12 + 11i 8 + 23i 7 + 14i

4 + 6i 15 + 5i 20 + 6i 9 + 7i

4 + 6i 8 + 2i 16 + 2i 12 + 6i

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A which has been LDL∗ decomposed by the modified Cholesky method, LNA =

11,N = 4, constant vectors bi(i = 1, 2, · · · ,m), LNB=11 and M=4.
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(c) Main program

PROGRAM ABHPMS
! *** EXAMPLE OF ZBHPUD, ZBHPMS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),&

BR(LNA,LNA),BI(LNA,LNA),WK(LNA),IPVT(LNA)
!

READ (5,*) N
READ (5,*) M
WRITE (6,1000) N, M
DO 10 I = 1, N

READ (5,*) (AR(I,J),AI(I,J),J=I,N)
10 CONTINUE

DO 15 I = 1, N
WRITE(6,1100) (AR(J,I),-AI(J,I), J=1, I-1),&

(AR(I,J), AI(I,J), J=I, N)
15 CONTINUE

WRITE (6,1200)
DO 20 J = 1, M

READ (5,*) (BR(I,J),BI(I,J),I=1,N)
20 CONTINUE

DO 25 I = 1, N
WRITE (6,1100) (BR(I,J),BI(I,J),J=1,M)

25 CONTINUE
WRITE (6,1300)
CALL ZBHPUD (AR,AI,LNA,N,IPVT,WK,IERR)
WRITE (6,1400) ’ZBHPUD’,IERR
CALL ZBHPMS (AR,AI,LNA,N,BR,BI,LNA,M,IPVT,JERR)
WRITE (6,1400) ’ZBHPMS’,JERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N

WRITE (6,1100) (BR(I,J),BI(I,J),J=1,M)
30 CONTINUE

STOP
!
1000 FORMAT(1X,/,/,&

1X ,’*** ZBHPUD, ZBHPMS ***’,/,/,&
1X,1X,’** INPUT **’,/,/,&
1X,5X,’N =’,I3,/,&
1X,5X,’M =’,I3,/,&
/,1X,5X,’COEFFICIENT MATRIX’)

1100 FORMAT(1X,6X,4(’(’,F8.4,’,’,F8.4,’)’))
1200 FORMAT(/,1X,5X,’CONSTANT VECTORS’)
1300 FORMAT(/,1X,1X,’** OUTPUT **’,/)
1400 FORMAT(1X,5X,’ERR (’,A6,’) =’,I5)
1600 FORMAT(/,1X,5X,’SOLUTION’)

END

(d) Output results

*** ZBHPUD, ZBHPMS ***

** INPUT **

N = 4
M = 4

COEFFICIENT MATRIX
( 9.0000, 0.0000)( 7.0000, 3.0000)( 2.0000, 5.0000)( 1.0000, 1.0000)
( 7.0000, -3.0000)( 10.0000, 0.0000)( 3.0000, 2.0000)( 2.0000, 4.0000)
( 2.0000, -5.0000)( 3.0000, -2.0000)( 8.0000, 0.0000)( 5.0000, 1.0000)
( 1.0000, -1.0000)( 2.0000, -4.0000)( 5.0000, -1.0000)( 6.0000, 0.0000)

CONSTANT VECTORS
( 10.0000, 6.0000)( 8.0000, 18.0000)( 0.0000, 22.0000)( 2.0000, 10.0000)
( 11.0000, 2.0000)( 12.0000, 11.0000)( 8.0000, 23.0000)( 7.0000, 14.0000)
( 4.0000, 6.0000)( 15.0000, 5.0000)( 20.0000, 6.0000)( 9.0000, 7.0000)
( 4.0000, 6.0000)( 8.0000, 2.0000)( 16.0000, 2.0000)( 12.0000, 6.0000)

** OUTPUT **

ERR (ZBHPUD) = 0
ERR (ZBHPMS) = 0

SOLUTION
( 1.0000, 0.0000)( -0.0000, 1.0000)( 0.0000, 1.0000)( 1.0000, 0.0000)
( 1.0000, 0.0000)( 1.0000, -0.0000)( -0.0000, 1.0000)( 0.0000, 1.0000)
( -0.0000, 1.0000)( 1.0000, -0.0000)( 1.0000, 0.0000)( 0.0000, 1.0000)
( -0.0000, 1.0000)( 0.0000, 1.0000)( 1.0000, -0.0000)( 1.0000, -0.0000)

164



ZBHPDI, CBHPDI
Determinant and Inverse Matrix of a Hermitian Matrix

2.9.6 ZBHPDI, CBHPDI

Determinant and Inverse Matrix of a Hermitian Matrix

(1) Function

ZBHPDI or CBHPDI obtains the determinant and inverse matrix of the Hermitian matrix A (two-dimensional

array type) (upper triangular type) which has been LDL∗ decomposed by the modified Cholesky method.

(2) Usage

Double precision:

CALL ZBHPDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)

Single precision:

CALL CBHPDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

after LDL∗ decomposition (See Notes (a) and

(b))

Output Real part of the Inverse matrix of matrix A (See

Note (b))

2 AI
{
D

R

}
LNA,N Input Imaginary part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

after LDL∗ decomposition (See Notes (a) and

(b))

Output Imaginary part of the Inverse matrix of matrix

A (See Note (b))

3 LNA I 1 Input Adjustable dimension of array AR and AI

4 N I 1 Input Order of matrix A

5 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (d))

6 DET
{
D

R

}
2 Output Determinant of matrix A (See Note (c))

7 ISW I 1 Input Processing switch

ISW>0:Obtain determinant.

ISW=0:Obtain determinant and inverse ma-

trix.

ISW<0:Obtain inverse matrix.
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No. Argument Type Size
Input/

Output
Contents

8 W1
{
D

R

}
N Work Work area

9 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. DET(1)← A(1, 1)

DET(2)← 0.0

AR(1, 1)← 1.0/AR(1, 1) are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LDL∗ decomposed before using this subroutine. Use any of the 2.9.2{
ZBHPUD

CBHPUD

}
, 2.9.3

{
ZBHPUC

CBHPUC

}
, 2.9.1

{
ZBHPSL

CBHPSL

}
subroutines to perform the decomposition.

(b) The upper triangular matrix L∗ must be stored in arrays AR and AI. Since the diagonal matrix D and

the lower triangular matrix L are calculated from L∗, they should not be stored in arrays AR and AI.

Since the inverse matrix A−1 is a Hermitian matrix, only its upper triangular portion is stored in A.

This subroutine uses only the upper triangular portions of arrays AR and AI. (See 2.9.1 Figure 2−9.)
(c) The determinant is given by the following expression:

det(A) = DET(1)× (10.0DET(2))

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(d) Information about partial pivoting performed during LDL∗ decomposition must be stored in IPVT.

This information is given by the subroutines which perform LDL∗ decomposition of matrix A.

(e) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.
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2.9.7 ZBHPLX, CBHPLX

Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)

(1) Function

ZBHPLX or CBHPLX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage

Double precision:

CALL ZBHPLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, IPVT, W1,

IERR)
Single precision:

CALL CBHPLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, IPVT, W1,

IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of coefficient matrix A (Hermitian

matrix, two-dimensional array type, upper tri-

angular type)

2 AI
{
D

R

}
LNA,N Input Imaginary part of coefficient matrix A (Hermi-

tian matrix, two-dimensional array type, upper

triangular type)

3 LNA I 1 Input Adjustable dimension of arrays AR, AI, ALR

and ALI

4 N I 1 Input Order of matrix A

5 ALR
{
D

R

}
LNA,N Input Real part of coefficient matrix A after LDL∗

decomposition (See Note (a))

6 ALI
{
D

R

}
LNA,N Input Imaginary part of coefficient matrix A after

LDL∗ decomposition (See Note (a))

7 BR
{
D

R

}
N Input Real part of constant vector b

8 BI
{
D

R

}
N Input Imaginary part of constant vector b

9 XR
{
D

R

}
N Input Real part of approximate solution x

Output Real part of iteratively improved solution x

10 XI
{
D

R

}
N Input Imaginary part of approximate solution x

Output Imaginary part of iteratively improved solution

x

167



ZBHPLX, CBHPLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)

No. Argument Type Size
Input/

Output
Contents

11 ITOL I 1 Input Number of digits to which solution is to be im-

proved (See Note (b))

Output Approximate number of digits to which solution

was improved (See Note (c))

12 NIT I 1 Input Maximum number of iterations (See Note (d))

13 IPVT I N Output Pivoting information. (See Note (a))

14 W1
{
D

R

}
3×N Work Work area

15 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a) was not satisfied. Processing is aborted.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculating the

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.9.1

{
ZBHPSL

CBHPSL

}
or 2.9.4

{
ZBHPLS

CBHPLS

}
sub-

routine. Therefore, the coefficient matrix A after it has been decomposed by the 2.9.1

{
ZBHPSL

CBHPSL

}
,

2.9.2

{
ZBHPUD

CBHPUD

}
, or 2.9.3

{
ZBHPUC

CBHPUC

}
subroutines and the pivoting information at that time must

be given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0 or ITOL ≥ −LOG10(2× ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
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2.10 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY

TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT

TYPE) (NO PIVOTING)

2.10.1 ZBHRSL, CBHRSL

Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

(1) Function

ZBHRSL or CBHRSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having a Hermitian matrix (two-dimensional array type) (upper triangular type) as coefficient matrix.

(2) Usage

Double precision:

CALL ZBHRSL (AR, AI, LNA, N, BR, BI, W1, IERR)

Single precision:

CALL CBHRSL (AR, AI, LNA, N, BR, BI, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of coefficient matrix A (Hermitian

matrix, two-dimensional array type, upper tri-

angular type)

Output Real part of upper triangular matrix L∗ when

A is decomposed into A = LDL∗ (See Note (b))
2 AI

{
D

R

}
LNA,N Input Imaginary part of coefficient matrix A (Hermi-

tian matrix, two-dimensional array type, upper

triangular type)

Output Imaginary part of upper triangular matrix L∗

when A is decomposed into A = LDL∗ (See

Note (b))

3 LNA I 1 Input Adjustable dimension of arrays AR and AI

4 N I 1 Input Order of matrix A

5 BR
{
D

R

}
N Input Real part of constant vector b

Output Real part of solution x

6 BI
{
D

R

}
N Input Imaginary part of constant vector b

Output Imaginary part of solution x
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No. Argument Type Size
Input/

Output
Contents

7 W1
{
D

R

}
2×N Work Work area

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of arrays AR and AI are not

changed.

B(1)← B(1)/AR(1, 1) is performed.

2100 There existed the diagonal element which

was close to zero in the LDL∗ decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step of the LDL∗

decomposition of coefficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, call

this subroutine only once and then call subroutine 2.10.4

{
ZBHRLS

CBHRLS

}
the required number of times

varying only the contents of B. This enables you to eliminate unnecessary calculation by performing

the LDL∗ decomposition of matrix A only once.

(b) The upper triangular matrix L∗ is stored in the upper triangular portions of arrays AR and AI. Since

the diagonal matrix D and the lower triangular matrix L are calculated from L∗, they are not stored

in arrays AR and AI. The matrix L is the adjoint matrix of the matrix L∗, and the matrix D is a

diagonal matrix having the reciprocals of the diagonal elements of the matrix L∗ as its components.

This subroutine uses only the upper triangular portions of arrays AR and AI (See Fig. 2−10).
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Matrix L∗⎡
⎢⎢⎢⎢⎢⎢⎣

l1,1 l2,1 l3,1 · · · l5,1

0.0 l2,2 l3,2 · · · l5,2

0.0 0.0 l3,3 · · · l5,3
...

...
...

. . .
...

0.0 0.0 0.0 · · · l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

Matrix D⎡
⎢⎢⎢⎢⎢⎢⎣

1/l1,1 0.0 0.0 · · · 0.0

0.0 1/l2,2 0.0 · · · 0.0

0.0 0.0 1/l3,3 · · · 0.0
...

...
...

. . .
...

0.0 0.0 0.0 · · · 1/l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status within array AR(LNA, K)

l1,1 �{l2,1} �{l3,1} · · · �{l5,1}
∗ l2,2 �{l3,2} · · · �{l5,2}
∗ ∗ l3,3 · · · �{l5,3}
...

...
...

. . .
...

∗ ∗ ∗ · · · l5,5

← −−−−−−−−−N−−−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−−K−−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Storage status within array AI(LNA, K)

0.0 �{l2,1} �{l3,1} · · · �{l5,1}
∗ 0.0 �{l3,2} · · · �{l5,2}
∗ ∗ 0.0 · · · �{l5,3}
...

...
...

. . .
...

∗ ∗ ∗ · · · 0.0

← −−−−−−−−−N−−−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−−K−−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N ≤ K must hold.

b. Input time values of elements indicated by asterisks (∗) are not guaranteed.

Figure 2−10 Storage Status of Matrix L∗ and Contents of Matrix D

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

9 7 + 3i 2 + 5i 1 + i

7− 3i 10 3 + 2i 2 + 4i

2− 5i 3− 2i 8 5 + i

1− i 2− 4i 5− i 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

10 + 6i

11 + 2i

4 + 6i

4 + 6i

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix real part AR and Imaginary part AI, LNA = 11,N = 4 and constant vector B.

(c) Main program

PROGRAM ABHRSL
! *** EXAMPLE OF ZBHRUC,ZBHRLS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11,LNW = 22)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),BR(LNA),BI(LNA),W1(LNW)

!
CHARACTER*50 FMT(4)
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!
DATA FMT /’(6X, 4(1X,A1,F5.1,1X,A1,F5.1,1X,A1))’,&

’(6X, 16X, 3(1X,A1,F5.1,1X,A1,F5.1,1X,A1))’,&
’(6X,2(16X),2(1X,A1,F5.1,1X,A1,F5.1,1X,A1))’,&
’(6X,3(16X), 1X,A1,F5.1,1X,A1,F5.1,1X,A1 )’/

!
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1, N
READ (5,*) (AR(I,J),AI(I,J),J=I,N)
WRITE (6,FMT(I)) (’(’,AR(I,J),’,’,AI(I,J),’)’,J=I,N)

10 CONTINUE
READ (5,*) (BR(I),BI(I),I=1,N)
WRITE (6,1100)
DO 20 I = 1, N
WRITE (6,1200) BR(I),BI(I)

20 CONTINUE
WRITE (6,1300)
CALL ZBHRUC (AR,AI,LNA,N,COND,W1,IERR)
WRITE (6,1400) ’ZBHRUC’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0D0/COND
CALL ZBHRLS (AR,AI,LNA,N,BR,BI,KERR)
WRITE (6,1400) ’ZBHRLS’,KERR
WRITE (6,1500) COND
WRITE (6,1600)
DO 30 I = 1, N
WRITE (6,1700) I,BR(I),BI(I)

30 CONTINUE
STOP

!
1000 FORMAT (’ ’,/,/,’ *** ZBHRUC,ZBHRLS ***’,/,2X,’** INPUT **’,&

/,6X,’N =’,I3,&
/,6X,’COEFFICIENT MATRIX ( REAL, IMAGINARY )’)

1100 FORMAT (6X,’CONSTANT VECTOR ( REAL, IMAGINARY )’)
1200 FORMAT (6X,’ (’,F5.1,’ ,’,F5.1,’ )’)
1300 FORMAT (2X,’** OUTPUT **’)
1400 FORMAT (6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT (6X,’CONDITION NUMBER =’,D18.10)
1600 FORMAT (6X,’SOLUTION ( REAL, IMAGINARY )’)
1700 FORMAT (10X,’X(’,I2,’) = (’,D18.10,’ ,’,D18.10,’ )’)

END

(d) Output results

*** ZBHRUC,ZBHRLS ***
** INPUT **

N = 4
COEFFICIENT MATRIX ( REAL, IMAGINARY )
( 9.0 , 0.0 ) ( 7.0 , 3.0 ) ( 2.0 , 5.0 ) ( 1.0 , 1.0 )

( 10.0 , 0.0 ) ( 3.0 , 2.0 ) ( 2.0 , 4.0 )
( 8.0 , 0.0 ) ( 5.0 , 1.0 )

( 6.0 , 0.0 )
CONSTANT VECTOR ( REAL, IMAGINARY )
( 10.0 , 6.0 )
( 11.0 , 2.0 )
( 4.0 , 6.0 )
( 4.0 , 6.0 )

** OUTPUT **
IERR (ZBHRUC) = 0
IERR (ZBHRLS) = 0
CONDITION NUMBER = 0.2998721749D+02
SOLUTION ( REAL, IMAGINARY )

X( 1) = ( 0.1000000000D+01 , 0.0000000000D+00 )
X( 2) = ( 0.1000000000D+01 , 0.5464378949D-16 )
X( 3) = ( -0.1022363649D-15 , 0.1000000000D+01 )
X( 4) = ( -0.4170837849D-16 , 0.1000000000D+01 )
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2.10.2 ZBHRUD, CBHRUD

LDL∗ Decomposition of a Hermitian Matrix (No Pivoting)

(1) Function

ZBHRUD or CBHRUD uses the modified Cholesky method to perform an LDL∗ decomposition of the

Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL ZBHRUD (AR, AI, LNA, N, W1, IERR)

Single precision:

CALL CBHRUD (AR, AI, LNA, N, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output Real part of upper triangular matrix L∗ when

A is decomposed into A = LDL∗ (See Note (a))
2 AI

{
D

R

}
LNA,N Input Imaginary part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output Imaginary part of upper triangular matrix L∗

when A is decomposed into A = LDL∗ (See

Note (a))

3 LNA I 1 Input Adjustable dimension of array AR and AI

4 N I 1 Input Order of matrix A

5 W1
{
D

R

}
2×N Work Work area

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of arrays AR and AI are not

changed.

2100 There existed the diagonal element which

was close to zero in the LDL∗ decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix L∗ is stored in the upper triangular portions of arrays AR and AI. Since

the diagonal matrix D and the lower triangular matrix L are calculated from L∗, they are not stored

in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI

(See Fig. 2−10 in Section 2.10.1).
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2.10.3 ZBHRUC, CBHRUC

LDL∗ Decomposition and Condition Number of a Hermitian Matrix (No

Pivoting)

(1) Function

ZBHRUC or CBHRUC uses the modified Cholesky method to perform an LDL∗ decomposition and obtain

the condition number of the Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL ZBHRUC (AR, AI, LNA, N, COND, W1, IERR)

Single precision:

CALL CBHRUC (AR, AI, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output Real part of upper triangular matrix L∗ when

A is decomposed into A = LDL∗ (See Note (a))
2 AI

{
D

R

}
LNA,N Input Imaginary part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output Imaginary part of upper triangular matrix L∗

when A is decomposed into A = LDL∗ (See

Note (a))

3 LNA I 1 Input Adjustable dimension of arrays AR and AI

4 N I 1 Input Order of matrix A

5 COND
{
D

R

}
1 Output Reciprocal of the condition number

6 W1
{
D

R

}
2×N Work Work area

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of arrays AR and AI are not

changed.

COND← 1.0 is performed.

2100 There existed the diagonal element which

was close to zero in the LDL∗ decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

Processing is aborted.

The condition number is not obtained.

(6) Notes

(a) The upper triangular matrix L∗ is stored in the upper triangular portions of arrays AR and AI. Since

the diagonal matrix D and the lower triangular matrix L are calculated from L∗, they are not stored

in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI

(See Fig. 2−10 in Section 2.10.1).

(b) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.10.4 ZBHRLS, CBHRLS

Simultaneous Linear Equations (LDL∗-Decomposed Hermitian Matrix) (No

Pivoting)

(1) Function

ZBHRLS or CBHRLS solves the simultaneous linear equations LDL∗x = b having the Hermitian matrix

A (two-dimensional array type) (upper triangular type) which has been LDL∗ decomposed by the modified

Cholesky method as coefficient matrix.

(2) Usage

Double precision:

CALL ZBHRLS (AR, AI, LNA, N, BR, BI, IERR)

Single precision:

CALL CBHRLS (AR, AI, LNA, N, BR, BI, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of coefficient matrix A after

LDL∗ decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)

(See Notes (a) and (b))

2 AI
{
D

R

}
LNA,N Input Imaginary part of coefficient matrix A after

LDL∗ decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)

(See Notes (a) and (b))

3 LNA I 1 Input Adjustable dimension of array AR and AI

4 N I 1 Input Order of matrix A

5 BR
{
D

R

}
N Input Real part of constant vector b

Output Real part of solution x

6 BI
{
D

R

}
N Input Imaginary part of constant vector b

Output Imaginary part of solution x

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/AR(1, 1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LDL∗ decomposed before using this subroutine. Normally, you

should decompose matrix A by calling the 2.10.2

{
ZBHRUD

CBHRUD

}
. However, if you also want to obtain

the condition number, you should use 2.10.3

{
ZBHRUC

CBHRUC

}
. In addition, if you have already used 2.10.1{

ZBHRSL

CBHRSL

}
to solve simultaneous linear equations having the same coefficient matrix A, you can use

the LDL∗ decomposition obtained as part of its output. To solve multiple sets of simultaneous linear

equations where only the constant vector b differs, the solution is obtained more efficiently by directly

using the subroutine 2.10.5

{
ZBHRMS

CBHRMS

}
to perform the calculations.

(b) The upper triangular matrix L∗ must be stored in the upper triangular portion of array A. Since the

diagonal matrix D and the lower triangular matrix L are calculated from L∗, they need not be stored

in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI

(See Fig. 2−10 in Section 2.10.1).

178



ZBHRMS, CBHRMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL∗-Decomposed Hermitian Matrix) (No

Pivoting)

2.10.5 ZBHRMS, CBHRMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL∗-
Decomposed Hermitian Matrix) (No Pivoting)

(1) Function

ZBHRMS or CBHRMS solves the simultaneous linear equations LDL∗xi = bi(i = 1, 2, · · · ,m having the

Hermitian matrix A (two-dimensional array type) (upper triangular type) which has been LDL∗ decomposed

by the modified Cholesky method as coefficient matrix. That is, when the n ×m matrix B is defined by

B = [b1, b2, · · · , bm], the subroutine obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL ZBHRMS (AR, AI, LNA, N, BR, BI, LNB, M, IERR)

Single precision:

CALL CBHRMS (AR, AI, LNA, N, BR, BI, LNB, M, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of Coefficient matrix A after

LDL∗ decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)

(See Notes (a) and (b))

2 AI
{
D

R

}
LNA,N Input Imaginary part of Coefficient matrix A after

LDL∗ decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)

(See Notes (a) and (b))

3 LNA I 1 Input Adjustable dimension of array AR and AI

4 N I 1 Input Order of matrix A

5 BR
{
D

R

}
LNB,M Input Real part of Constant vector bi

(i = 1, 2, · · · ,m)

Output Real part of Solution xi

(i = 1, 2, · · · ,m)

6 BI
{
D

R

}
LNB,M Input Imaginary part of Constant vector bi

(i = 1, 2, · · · ,m)

Output Imaginary part of Solution xi

(i = 1, 2, · · · ,m)

7 LNB I 1 Input Adjustable dimension of array BR and BI

8 M I 1 Input Number of right-hand side vectors, m

9 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA,LNB

(b) M > 0

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. BR(1, i)← BR(1, i)/AR(1, 1),

BI(1, i)← BI(1, i)/AR(1, 1)

(i= 1, 2, · · · ,m) are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

(6) Notes

(a) The coefficient matrix A must be LDL∗ decomposed before using this subroutine. Normally, you

should decompose matrix A by calling the 2.10.2

{
ZBHRUD

CBHRUD

}
subroutine. However, if you also want

to obtain the condition number, you should use 2.10.3

{
ZBHRUC

CBHRUC

}
. In addition, if you have already

used 2.10.1

{
ZBHRSL

CBHRSL

}
to solve simultaneous linear equations having the same coefficient matrix A,

you can use the LDL∗ decomposition obtained as part of its output.

(b) The upper triangular matrix L∗ must be stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from L∗, they need not be stored in array A (See Fig. 2−10 in

Section 2.10.1).

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

9 7 + 3i 2 + 5i 1 + 1i

7− 3i 10 3 + 2i 2 + 4i

2− 5i 3− 2i 8 5 + 1i

1− 1i 2− 4i 5− 1i 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

10 + 6i 8 + 18i 22i 2 + 10i

11 + 2i 12 + 11i 8 + 23i 7 + 14i

4 + 6i 15 + 5i 20 + 6i 9 + 7i

4 + 6i 8 + 2i 16 + 2i 12 + 6i

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A which has been LDL∗ decomposed by the modified Cholesky method, LNA =

11,N = 4, constant vectors bi(i = 1, 2, · · · ,m), LNB=11 and M=4.

(c) Main program

PROGRAM ABHRMS
! *** EXAMPLE OF ZBHRUD, ZBHRMS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),&

BR(LNA,LNA),BI(LNA,LNA),WK(2*LNA)
!

READ (5,*) N
READ (5,*) M
WRITE (6,1000) N, M
DO 10 I = 1, N
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READ (5,*) (AR(I,J),AI(I,J),J=I,N)
10 CONTINUE

DO 15 I = 1, N
WRITE(6,1100) (AR(J,I),-AI(J,I), J=1, I-1),&

(AR(I,J), AI(I,J), J=I, N)
15 CONTINUE

WRITE (6,1200)
DO 20 J = 1, M

READ (5,*) (BR(I,J),BI(I,J),I=1,N)
20 CONTINUE

DO 25 I = 1, N
WRITE (6,1100) (BR(I,J),BI(I,J),J=1,M)

25 CONTINUE
WRITE (6,1300)
CALL ZBHRUD (AR,AI,LNA,N,WK,IERR)
WRITE (6,1400) ’ZBHRUD’,IERR
CALL ZBHRMS (AR,AI,LNA,N,BR,BI,LNA,M,JERR)
WRITE (6,1400) ’ZBHRMS’,JERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N

WRITE (6,1100) (BR(I,J),BI(I,J),J=1,M)
30 CONTINUE

STOP
!
1000 FORMAT(1X,/,/,&

1X ,’*** ZBHRUD, ZBHRMS ***’,/,/,&
1X,1X,’** INPUT **’,/,/,&
1X,5X,’N =’,I3,/,&
1X,5X,’M =’,I3,/,&
/,1X,5X,’COEFFICIENT MATRIX’)

1100 FORMAT(1X,6X,4(’(’,F8.4,’,’,F8.4,’)’))
1200 FORMAT(/,1X,5X,’CONSTANT VECTORS’)
1300 FORMAT(/,1X,1X,’** OUTPUT **’,/)
1400 FORMAT(1X,5X,’ERR (’,A6,’) =’,I5)
1600 FORMAT(/,1X,5X,’SOLUTION’)

END

(d) Output results

*** ZBHRUD, ZBHRMS ***

** INPUT **

N = 4
M = 4

COEFFICIENT MATRIX
( 9.0000, 0.0000)( 7.0000, 3.0000)( 2.0000, 5.0000)( 1.0000, 1.0000)
( 7.0000, -3.0000)( 10.0000, 0.0000)( 3.0000, 2.0000)( 2.0000, 4.0000)
( 2.0000, -5.0000)( 3.0000, -2.0000)( 8.0000, 0.0000)( 5.0000, 1.0000)
( 1.0000, -1.0000)( 2.0000, -4.0000)( 5.0000, -1.0000)( 6.0000, 0.0000)

CONSTANT VECTORS
( 10.0000, 6.0000)( 8.0000, 18.0000)( 0.0000, 22.0000)( 2.0000, 10.0000)
( 11.0000, 2.0000)( 12.0000, 11.0000)( 8.0000, 23.0000)( 7.0000, 14.0000)
( 4.0000, 6.0000)( 15.0000, 5.0000)( 20.0000, 6.0000)( 9.0000, 7.0000)
( 4.0000, 6.0000)( 8.0000, 2.0000)( 16.0000, 2.0000)( 12.0000, 6.0000)

** OUTPUT **

ERR (ZBHRUD) = 0
ERR (ZBHRMS) = 0

SOLUTION
( 1.0000, 0.0000)( -0.0000, 1.0000)( 0.0000, 1.0000)( 1.0000, 0.0000)
( 1.0000, 0.0000)( 1.0000, -0.0000)( -0.0000, 1.0000)( 0.0000, 1.0000)
( -0.0000, 1.0000)( 1.0000, -0.0000)( 1.0000, 0.0000)( -0.0000, 1.0000)
( -0.0000, 1.0000)( 0.0000, 1.0000)( 1.0000, -0.0000)( 1.0000, -0.0000)
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2.10.6 ZBHRDI, CBHRDI

Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)

(1) Function

ZBHRDI or CBHRDI obtains the determinant and inverse matrix of the Hermitian matrixA (two-dimensional

array type) (upper triangular type) which has been LDL∗ decomposed by the modified Cholesky method.

(2) Usage

Double precision:

CALL ZBHRDI (AR, AI, LNA, N, DET, ISW, W1, IERR)

Single precision:

CALL CBHRDI (AR, AI, LNA, N, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

after LDL∗ decomposition (See Notes (a) and

(b))

Output Real part of the Inverse matrix of matrix A (See

Note (b))

2 AI
{
D

R

}
LNA,N Input Imaginary part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

after LDL∗ decomposition (See Notes (a) and

(b))

Output Imaginary part of the Inverse matrix of matrix

A (See Note (b))

3 LNA I 1 Input Adjustable dimension of array AR and AI

4 N I 1 Input Order of matrix A

5 DET
{
D

R

}
2 Output Determinant of matrix A (See Note (c))

6 ISW I 1 Input Processing switch

ISW>0:Obtain determinant.

ISW=0:Obtain determinant and inverse ma-

trix.

ISW<0:Obtain inverse matrix.

7 W1
{
D

R

}
N Work Work area

8 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. DET(1)← A(1, 1)

DET(2)← 0.0

AR(1, 1)← 1.0/AR(1, 1) are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LDL∗ decomposed before using this subroutine. Use any of the 2.10.2{
ZBHRUD

CBHRUD

}
, 2.10.3

{
ZBHRUC

CBHRUC

}
, 2.10.1

{
ZBHRSL

CBHRSL

}
subroutines to perform the decomposition.

(b) The upper triangular matrix L∗ must be stored in arrays AR and AI. Since the diagonal matrix D

and the lower triangular matrix L are calculated from L∗, they should not be stored in arrays AR and

AI. Since the inverse matrix A−1 is a Hermitian matrix, only its upper triangular portion is stored in

A. This subroutine uses only the upper triangular portions of arrays AR and AI (See Fig. 2−10 in

Section 2.10.1).

(c) The determinant is given by the following expression:

det(A) = DET(1)× (10.0DET(2))

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(d) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.
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2.10.7 ZBHRLX, CBHRLX

Improving the Solution of Simultaneous Linear Equations (Hermitian Ma-

trix) (No Pivoting)

(1) Function

ZBHRLX or CBHRLX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage

Double precision:

CALL ZBHRLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, W1, IERR)

Single precision:

CALL CBHRLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 AR
{
D

R

}
LNA,N Input Real part of coefficient matrix A (Hermitian

matrix, two-dimensional array type, upper tri-

angular type)

2 AI
{
D

R

}
LNA,N Input Imaginary part of coefficient matrix A (Hermi-

tian matrix, two-dimensional array type, upper

triangular type)

3 LNA I 1 Input Adjustable dimension of arrays AR, AI, ALR

and ALI

4 N I 1 Input Order of matrix A

5 ALR
{
D

R

}
LNA,N Input Real part of coefficient matrix A after LDL∗

decomposition (See Note (a))

6 ALI
{
D

R

}
LNA,N Input Imaginary part of coefficient matrix A after

LDL∗ decomposition (See Note (a))

7 BR
{
D

R

}
N Input Real part of constant vector b

8 BI
{
D

R

}
N Input Imaginary part of constant vector b
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No. Argument Type Size
Input/

Output
Contents

9 XR
{
D

R

}
N Input Real part of approximate solution x

Output Real part of iteratively improved solution x

10 XI
{
D

R

}
N Input Imaginary part of approximate solution x

Output Imaginary part of iteratively improved solution

x

11 ITOL I 1 Input Number of digits to which solution is to be im-

proved (See Note (b))

Output Approximate number of digits to which solution

was improved (See Note (c))

12 NIT I 1 Input Maximum number of iterations (See Note (d))

13 W1
{
D

R

}
3×N Work Work area

14 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a) was not satisfied. Processing is aborted.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculating the

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.10.1

{
ZBHRSL

CBHRSL

}
or 2.10.4

{
ZBHRLS

CBHRLS

}
sub-

routine. Therefore, the coefficient matrix A after it has been decomposed by the 2.10.1

{
ZBHRSL

CBHRSL

}
,

2.10.2

{
ZBHRUD

CBHRUD

}
, or 2.10.3

{
ZBHRUC

CBHRUC

}
subroutines must be given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0 or ITOL ≥ −LOG10(2 × ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
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TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGU-

MENT TYPE)

2.11.1 ZBHFSL, CBHFSL

Simultaneous Linear Equations (Hermitian Matrix)

(1) Function

ZBHFSL or CBHFSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient matrix.

(2) Usage

Double precision:

CALL ZBHFSL (A, LNA, N, B, IPVT, W1, IERR)

Single precision:

CALL CBHFSL (A, LNA, N, B, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix A (Hermitian matrix, two-

dimensional array type, upper triangular type)

Output Upper triangular matrix L∗ when A is decom-

posed into A = LDL∗ (See Note (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
Z

C

}
N Input Constant vector b

Output Solution x

5 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (c))

6 W1
{
D

R

}
N Work Work area

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

B(1)← B(1)/A(1, 1) is performed.

2100 There existed the diagonal element which

was close to zero in the LDL∗ decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step of the LDL∗

decomposition of coefficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, call

this subroutine only once and then call subroutine 2.11.4

{
ZBHFLS

CBHFLS

}
the required number of times

varying only the contents of B. This enables you to eliminate unnecessary calculations by performing

the LDL∗ decomposition of matrix A only once.

(b) The upper triangular matrix L∗ is stored in the upper triangular portion of array A. Since the diagonal

matrix D and the lower triangular matrix L are calculated from L∗, they are not stored in array A.

The matrix L is the adjoint matrix of the matrix L∗, and the matrix D is a diagonal matrix having

the reciprocals of the diagonal elements of the matrix L∗ as its components.
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Matrix L∗⎡
⎢⎢⎢⎢⎢⎢⎣

l1,1 l2,1 l3,1 · · · l5,1

0.0 l2,2 l3,2 · · · l5,2

0.0 0.0 l3,3 · · · l5,3
...

...
...

. . .
...

0.0 0.0 0.0 · · · l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

Matrix D⎡
⎢⎢⎢⎢⎢⎢⎣

1/l1,1 0.0 0.0 · · · 0.0

0.0 1/l2,2 0.0 · · · 0.0

0.0 0.0 1/l3,3 · · · 0.0
...

...
...

. . .
...

0.0 0.0 0.0 · · · 1/l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status within array A(LNA, K)

l1,1 l2,1 l3,1 · · · l5,1

∗ l2,2 l3,2 · · · l5,2

∗ ∗ l3,3 · · · l5,3
...

...
...

. . .
...

∗ ∗ ∗ · · · l5,5

← −−−−−−−N−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−K−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N ≤ K must hold.

b. Input time values of elements indicated by asterisks (∗) are not guaranteed.

Figure 2−11 Storage Status of Matrix L∗ and Contents of Matrix D

(c) This subroutine performs partial pivoting when obtaining the LDL∗ decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

9 7 + 3i 2 + 5i 1 + i

7− 3i 10 3 + 2i 2 + 4i

2− 5i 3− 2i 8 5 + i

1− i 2− 4i 5− i 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

10 + 6i

11 + 2i

4 + 6i

4 + 6i

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 11,N = 4 and constant vector b.

(c) Main program

PROGRAM ABHFSL
! *** EXAMPLE OF ZBHFSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11,LNW = 22)
COMPLEX(8) A(LNA,LNA),B(LNA),W1(LNW)
INTEGER IPVT(LNA)

!
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1, N
READ (5,*) (A(I,J),J=I,N)

10 CONTINUE
WRITE (6,2000) (A(1,J),J=1,N)
WRITE (6,2100) (A(2,J),J=2,N)
WRITE (6,2200) (A(3,J),J=3,N)
WRITE (6,2300) (A(4,J),J=4,N)
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READ (5,*) (B(I),I=1,N)
WRITE (6,1100)
DO 20 I = 1, N
WRITE (6,1200) B(I)

20 CONTINUE
WRITE (6,1300)
CALL ZBHFSL (A,LNA,N,B,IPVT,W1,IERR)
WRITE (6,1400) ’ZBHFSL’,IERR
WRITE (6,1600)
DO 30 I = 1, N
WRITE (6,1700) I,B(I)

30 CONTINUE
STOP

!
1000 FORMAT (’ ’,/,/,’ *** ZBHFSL ***’,/,2X,’** INPUT **’,&

/,6X,’N =’,I3,&
/,6X,’COEFFICIENT MATRIX ( REAL, IMAGINARY )’)

1100 FORMAT (6X,’CONSTANT VECTOR ( REAL, IMAGINARY )’)
1200 FORMAT (6X,’ (’,F5.1,’ ,’,F5.1,’ )’)
1300 FORMAT (2X,’** OUTPUT **’)
1400 FORMAT (6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT (6X,’SOLUTION ( REAL, IMAGINARY )’)
1700 FORMAT (10X,’X(’,I2,’) = (’,D18.10,’ ,’,D18.10,’ )’)
2000 FORMAT (6X, 4(1X,’(’,F5.1,’ ,’,F5.1,1X,’)’))
2100 FORMAT (6X, 16X, 3(1X,’(’,F5.1,’ ,’,F5.1,1X,’)’))
2200 FORMAT (6X,2(16X),2(1X,’(’,F5.1,’ ,’,F5.1,1X,’)’))
2300 FORMAT (6X,3(16X), 1X,’(’,F5.1,’ ,’,F5.1,1X,’)’ )

END

(d) Output results

*** ZBHFSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX ( REAL, IMAGINARY )
( 9.0 , 0.0 ) ( 7.0 , 3.0 ) ( 2.0 , 5.0 ) ( 1.0 , 1.0 )

( 10.0 , 0.0 ) ( 3.0 , 2.0 ) ( 2.0 , 4.0 )
( 8.0 , 0.0 ) ( 5.0 , 1.0 )

( 6.0 , 0.0 )
CONSTANT VECTOR ( REAL, IMAGINARY )
( 10.0 , 6.0 )
( 11.0 , 2.0 )
( 4.0 , 6.0 )
( 4.0 , 6.0 )

** OUTPUT **
IERR (ZBHFSL) = 0
SOLUTION ( REAL, IMAGINARY )

X( 1) = ( 0.1000000000D+01 , 0.0000000000D+00 )
X( 2) = ( 0.1000000000D+01 , 0.8881784197D-16 )
X( 3) = ( -0.4971147871D-16 , 0.1000000000D+01 )
X( 4) = ( -0.4170837849D-16 , 0.1000000000D+01 )
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2.11.2 ZBHFUD, CBHFUD

LDL∗ Decomposition of a Hermitian Matrix

(1) Function

ZBHFUD or CBHFUD uses the modified Cholesky method to perform an LDL∗ decomposition of the

Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL ZBHFUD (A, LNA, N, IPVT, W1, IERR)

Single precision:

CALL CBHFUD (A, LNA, N, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Hermitian matrix A (two-dimensional array

type, upper triangular type)

Output Upper triangular matrix L∗ when A is decom-

posed into A = LDL∗ (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (b))

5 W1
{
D

R

}
N Work Work area

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

2100 There existed the diagonal element which

was close to zero in the LDL∗ decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix L∗ is stored in the upper triangular portion of array A. Since the diagonal

matrix D and the lower triangular matrix L are calculated from L∗, they are not stored in array A.

This subroutine uses only the upper triangular portion of array A. (See Fig. 2−11 in Section 2.11.1)

(b) This subroutine performs partial pivoting when obtaining the LDL∗ decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.
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2.11.3 ZBHFUC, CBHFUC

LDL∗ Decomposition and Condition Number of a Hermitian Matrix

(1) Function

ZBHFUC or CBHFUC uses the modified Cholesky method to perform an LDL∗ decomposition and obtain

the condition number of the Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL ZBHFUC (A, LNA, N, IPVT, COND, W1, IERR)

Single precision:

CALL CBHFUC (A, LNA, N, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Hermitian matrix A (two-dimensional array

type, upper triangular type)

Output Upper triangular matrix L∗ when A is decom-

posed into A = LDL∗ (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (b))

5 COND
{
D

R

}
1 Output Reciprocal of the condition number

6 W1
{
Z

C

}
N Work Work area

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

COND← 1.0 is performed.

2100 There existed the diagonal element which

was close to zero in the LDL∗ decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

Processing is aborted.

The condition number is not obtained.

(6) Notes

(a) The upper triangular matrix L∗ is stored in the upper triangular portion of array A. Since the diagonal

matrix D and the lower triangular matrix L are calculated from L∗, they are not stored in array A.

(See Fig. 2−11 in Section 2.11.1)

(b) This subroutine performs partial pivoting when obtaining the LDL∗ decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

(c) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.11.4 ZBHFLS, CBHFLS

Simultaneous Linear Equations (LDL∗-Decomposed Hermitian Matrix)

(1) Function

ZBHFLS or CBHFLS solves the simultaneous linear equations LDL∗x = b having the Hermitian matrix

A (two-dimensional array type) (upper triangular type) which has been LDL∗ decomposed by the modified

Cholesky method as coefficient matrix.

(2) Usage

Double precision:

CALL ZBHFLS (A, LNA, N, B, IPVT, IERR)

Single precision:

CALL CBHFLS (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix A after LDL∗ decomposition

(Hermitian matrix, two-dimensional array type,

upper triangular type) (See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
Z

C

}
N Input Constant vector b

Output Solution x

5 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (c))

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.
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(6) Notes

(a) The coefficient matrix A must be LDL∗ decomposed before using this subroutine. Normally, you should

decompose matrix A by calling the 2.11.2

{
ZBHFUD

CBHFUD

}
subroutine. However, if you also want to obtain

the condition number, you should use 2.11.3

{
ZBHFUC

CBHFUC

}
. In addition, if you have already used 2.11.1{

ZBHFSL

CBHFSL

}
to solve simultaneous linear equations having the same coefficient matrix A, you can use

the LDL∗ decomposition obtained as part of its output. To solve multiple sets of simultaneous linear

equations where only the constant vector b differs, the solution is obtained more efficiently by directly

using the subroutine 2.11.5

{
ZBHFMS

CBHFMS

}
to perform the calculations.

(b) The upper triangular matrix L∗ must be stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from L∗, they need not be stored in array A. (See Fig. 2−11 in

Section 2.11.1)

(c) Information about partial pivoting performed during LDL∗ decomposition must be stored in IPVT.

This information is given by the subroutines 2.11.2

{
ZBHFUD

CBHFUD

}
, 2.11.3

{
ZBHFUC

CBHFUC

}
or 2.11.1{

ZBHFSL

CBHFSL

}
which perform LDL∗ decomposition of matrix A.
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2.11.5 ZBHFMS, CBHFMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL∗-
Decomposed Hermitian Matrix)

(1) Function

ZBHFMS or CBHFMS solves the simultaneous linear equations LDL∗xi = bi(i = 1, 2, · · · ,m having the

Hermitian matrix A (two-dimensional array type) (upper triangular type) which has been LDL∗ decomposed

by the modified Cholesky method as coefficient matrix. That is, when the n ×m matrix B is defined by

B = [b1, b2, · · · , bm], the subroutine obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL ZBHFMS (A, LNA, N, B, LNB, M, IPVT, IERR)

Single precision:

CALL CBHFMS (A, LNA, N, B, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix A after LDL∗ decomposition

(Hermitian matrix, two-dimensional array type,

upper triangular type) (See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
Z

C

}
LNB,M Input Constant vector bi(i = 1, 2, · · · ,m)

Output Solution xi(i = 1, 2, · · · ,m)

5 LNB I 1 Input Adjustable dimension of array B

6 M I 1 Input Number of right-hand side vectors, m

7 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (c))

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA,LNB

(b) M > 0
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1, i) ← B(1, i)/A(1, 1) (i= 1, 2, · · · ,m)

are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

(6) Notes

(a) The coefficient matrix A must be LDL∗ decomposed before using this subroutine. Normally, you

should decompose matrix A by calling the 2.11.2

{
ZBHFUD

CBHFUD

}
subroutine. However, if you also want

to obtain the condition number, you should use 2.11.3

{
ZBHFUC

CBHFUC

}
. In addition, if you have already

used 2.11.1

{
ZBHFSL

CBHFSL

}
to solve simultaneous linear equations having the same coefficient matrix A,

you can use the LDL∗ decomposition obtained as part of its output.

(b) The upper triangular matrix L∗ must be stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from L∗, they need not be stored in array A. (See Fig. 2−11 in

Section 2.11.1)

(c) Information about partial pivoting performed during LDL∗ decomposition must be stored in IPVT.

This information is given by the subroutines 2.11.2

{
ZBHFUD

CBHFUD

}
, 2.11.3

{
ZBHFUC

CBHFUC

}
or 2.11.1{

ZBHFSL

CBHFSL

}
which perform LDL∗ decomposition of matrix A.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

9 7 + 3i 2 + 5i 1 + 1i

7− 3i 10 3 + 2i 2 + 4i

2− 5i 3− 2i 8 5 + 1i

1− 1i 2− 4i 5− 1i 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

10 + 6i 8 + 18i 22i 2 + 10i

11 + 2i 12 + 11i 8 + 23i 7 + 14i

4 + 6i 15 + 5i 20 + 6i 9 + 7i

4 + 6i 8 + 2i 16 + 2i 12 + 6i

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A which has been LDL∗ decomposed by the modified Cholesky method, LNA =

11,N = 4, constant vectors bi(i = 1, 2, · · · ,m), LNB=11 and M=4.
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(c) Main program

PROGRAM ABHFMS
! *** EXAMPLE OF ZBHFUD, ZBHFMS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
COMPLEX(8) A, B
DIMENSION A(LNA,LNA),B(LNA,LNA),IPVT(LNA),WK(LNA)

!
READ (5,*) N
READ (5,*) M
WRITE (6,1000) N, M
DO 10 I = 1, N

READ (5,*) (A(I,J),J=I,N)
10 CONTINUE

DO 15 I = 1, N
WRITE(6,1100) (DCONJG(A(J,I)), J=1, I-1), (A(I,J), J=I, N)

15 CONTINUE
WRITE (6,1200)
DO 20 J = 1, M

READ (5,*) (B(I,J),I=1,N)
20 CONTINUE

DO 25 I = 1, N
WRITE (6,1100) (B(I,J),J=1,M)

25 CONTINUE
WRITE (6,1300)
CALL ZBHFUD (A,LNA,N,IPVT,WK,IERR)
WRITE (6,1400) ’ZBHFUD’,IERR
CALL ZBHFMS (A,LNA,N,B,LNA,M,IPVT,JERR)
WRITE (6,1400) ’ZBHFMS’,JERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N

WRITE (6,1100) (B(I,J),J=1,M)
30 CONTINUE

STOP
!
1000 FORMAT(1X,/,/,&

1X ,’*** ZBHFUD, ZBHFMS ***’,/,/,&
1X,1X,’** INPUT **’,/,/,&
1X,5X,’N =’,I3,/,&
1X,5X,’M =’,I3,/,&
/,1X,5X,’COEFFICIENT MATRIX’)

1100 FORMAT(1X,6X,4(’(’,F8.4,’,’,F8.4,’)’))
1200 FORMAT(/,1X,5X,’CONSTANT VECTORS’)
1300 FORMAT(/,1X,1X,’** OUTPUT **’,/)
1400 FORMAT(1X,5X,’ERR (’,A6,’) =’,I5)
1600 FORMAT(/,1X,5X,’SOLUTION’)

END

(d) Output results

*** ZBHFUD, ZBHFMS ***

** INPUT **

N = 4
M = 4

COEFFICIENT MATRIX
( 9.0000, 0.0000)( 7.0000, 3.0000)( 2.0000, 5.0000)( 1.0000, 1.0000)
( 7.0000, -3.0000)( 10.0000, 0.0000)( 3.0000, 2.0000)( 2.0000, 4.0000)
( 2.0000, -5.0000)( 3.0000, -2.0000)( 8.0000, 0.0000)( 5.0000, 1.0000)
( 1.0000, -1.0000)( 2.0000, -4.0000)( 5.0000, -1.0000)( 6.0000, 0.0000)

CONSTANT VECTORS
( 10.0000, 6.0000)( 8.0000, 18.0000)( 0.0000, 22.0000)( 2.0000, 10.0000)
( 11.0000, 2.0000)( 12.0000, 11.0000)( 8.0000, 23.0000)( 7.0000, 14.0000)
( 4.0000, 6.0000)( 15.0000, 5.0000)( 20.0000, 6.0000)( 9.0000, 7.0000)
( 4.0000, 6.0000)( 8.0000, 2.0000)( 16.0000, 2.0000)( 12.0000, 6.0000)

** OUTPUT **

ERR (ZBHFUD) = 0
ERR (ZBHFMS) = 0

SOLUTION
( 1.0000, 0.0000)( -0.0000, 1.0000)( 0.0000, 1.0000)( 1.0000, 0.0000)
( 1.0000, 0.0000)( 1.0000, -0.0000)( -0.0000, 1.0000)( 0.0000, 1.0000)
( -0.0000, 1.0000)( 1.0000, -0.0000)( 1.0000, 0.0000)( 0.0000, 1.0000)
( -0.0000, 1.0000)( 0.0000, 1.0000)( 1.0000, -0.0000)( 1.0000, -0.0000)
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2.11.6 ZBHFDI, CBHFDI

Determinant and Inverse Matrix of a Hermitian Matrix

(1) Function

ZBHFDI or CBHFDI obtains the determinant and inverse matrix of the Hermitian matrix A (two-dimensional

array type) (upper triangular type) which has been LDL∗ decomposed by the modified Cholesky method.

(2) Usage

Double precision:

CALL ZBHFDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)

Single precision:

CALL CBHFDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Hermitian matrix A (two-dimensional array

type) (upper triangular type) after LDL∗ de-

composition (See Notes (a) and (b))

Output Inverse matrix of matrix A (See Note (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IPVT I N Output Pivoting information

IPVT(i): Number of the row(column) ex-

changed with row(column) i in the i-th process-

ing step. (See Note (d))

5 DET
{
D

R

}
2 Output Determinant of matrix A (See Note (c))

6 ISW I 1 Input Processing switch

ISW>0:Obtain determinant.

ISW=0:Obtain determinant and inverse ma-

trix.

ISW<0:Obtain inverse matrix.

7 W1
{
Z

C

}
N Work Work area

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. DET(1)← A(1, 1)

DET(2)← 0.0

A(1, 1)← 1.0/A(1, 1) are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LDL∗ decomposed before using this subroutine. Use any of the sub-

routines 2.11.2

{
ZBHFUD

CBHFUD

}
, 2.11.3

{
ZBHFUC

CBHFUC

}
, 2.11.1

{
ZBHFSL

CBHFSL

}
to perform the decomposition.

(b) The upper triangular matrix L∗ must be stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from L∗, they need not be stored in array A. Since the inverse

matrix A−1 is a Hermitian matrix, only its upper triangular portion is stored in A. (See Fig. 2−11 in

Section 2.11.1)

(c) The determinant is given by the following expression:

det(A) = DET(1)× (10.0DET(2))

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(d) Information about partial pivoting performed during LDL∗ decomposition must be stored in IPVT.

This information is given by the subroutines which perform LDL∗ decomposition of matrix A.

(e) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.
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2.11.7 ZBHFLX, CBHFLX

Improving the Solution of Simultaneous Linear Equations (Hermitian Ma-

trix)

(1) Function

ZBHFLX or CBHFLX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage

Double precision:

CALL ZBHFLX (A, LNA, N, AL, B, X, ITOL, NIT, IPVT, W1, IERR)

Single precision:

CALL CBHFLX (A, LNA, N, AL, B, X, ITOL, NIT, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix A (Hermitian matrix, two-

dimensional array type, upper triangular type)

2 LNA I 1 Input Adjustable dimension of array A and AL

3 N I 1 Input Order of matrix A

4 AL
{
Z

C

}
LNA,N Input Coefficient matrix A after LDL∗ decomposition

(See Note (a))

5 B
{
Z

C

}
N Input Constant vector b

6 X
{
Z

C

}
N Input Approximate solution x

Output Iteratively improved solution x

7 ITOL I 1 Input Number of digits to which solution is to be im-

proved (See Note (b))

Output Approximate number of digits to which solution

was improved (See Note (c))

8 NIT I 1 Input Maximum number of iterations (See Note (d))

9 IPVT I N Output Pivoting information. (See Note (a))

10 W1
{
Z

C

}
N Work Work area

11 IERR I 1 Output Error indicator
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(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a) was not satisfied. Processing is aborted.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculating the

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.11.1

{
ZBHFSL

CBHFSL

}
or 2.11.4

{
ZBHFLS

CBHFLS

}

subroutine. Therefore, the coefficient matrixA after it has been decomposed by the 2.11.1

{
ZBHFSL

CBHFSL

}
,

2.11.2

{
ZBHFUD

CBHFUD

}
, or 2.11.3

{
ZBHFUC

CBHFUC

}
subroutines and the pivoting information at that time

must be given as input.

(b) Solution improvement is repreated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0

or

ITOL ≥ −LOG10(2× ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
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TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGU-

MENT TYPE) (NO PIVOTING)

2.12.1 ZBHESL, CBHESL

Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

(1) Function

ZBHESL or CBHESL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient matrix.

(2) Usage

Double precision:

CALL ZBHESL (A, LNA, N, B, IERR)

Single precision:

CALL CBHESL (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix A (Hermitian matrix, two-

dimensional array type, upper triangular type)

Output Upper triangular matrix L∗ when A is decom-

posed into A = LDL∗ (See Note (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
Z

C

}
N Input Constant vector b

Output Solution x

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

B(1)← B(1)/A(1, 1) is performed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step of the LDL∗

decomposition of coefficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, call

this subroutine only once and then call subroutine 2.12.4

{
ZBHELS

CBHELS

}
the required number of times

varying only the contents of B. This enables you to eliminate unnecessary calculations by performing

the LDL∗ decomposition of matrix A only once.

(b) The upper triangular matrix L∗ is stored in the upper triangular portion of array A. Since the diagonal

matrix D and the lower triangular matrix L are calculated from L∗, they are not stored in array A.

The matrix L is the adjoint matrix of the matrix L∗, and the matrix D is a diagonal matrix having

the reciprocals of the diagonal elements of the matrix L∗ as its components.
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Matrix L∗⎡
⎢⎢⎢⎢⎢⎢⎣

l1,1 l2,1 l3,1 · · · l5,1

0.0 l2,2 l3,2 · · · l5,2

0.0 0.0 l3,3 · · · l5,3
...

...
...

. . .
...

0.0 0.0 0.0 · · · l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

Matrix D⎡
⎢⎢⎢⎢⎢⎢⎣

1/l1,1 0.0 0.0 · · · 0.0

0.0 1/l2,2 0.0 · · · 0.0

0.0 0.0 1/l3,3 · · · 0.0
...

...
...

. . .
...

0.0 0.0 0.0 · · · 1/l5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

⇓
Storage status within array A(LNA, K)

l1,1 l2,1 l3,1 · · · l5,1

∗ l2,2 l3,2 · · · l5,2

∗ ∗ l3,3 · · · l5,3
...

...
...

. . .
...

∗ ∗ ∗ · · · l5,5

← −−−−−−−N−−−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−−−K−−−−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N ≤ K must hold.

b. Input time values of elements indicated by asterisks (∗) are not guaranteed.

Figure 2−12 Storage Status of Matrix L∗ and Contents of Matrix D

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

9 7 + 3i 2 + 5i 1 + i

7− 3i 10 3 + 2i 2 + 4i

2− 5i 3− 2i 8 5 + i

1− i 2− 4i 5− i 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

10 + 6i

11 + 2i

4 + 6i

4 + 6i

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 11,N = 4 and constant vector b.

(c) Main program

PROGRAM ABHESL
! *** EXAMPLE OF ZBHEUC,ZBHELS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11,LNW = 22)
COMPLEX(8) A(LNA,LNA),B(LNA),W1(LNW)

!
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1, N

READ (5,*) (A(I,J),J=I,N)
10 CONTINUE

WRITE (6,2000) (A(1,J),J=1,N)
WRITE (6,2100) (A(2,J),J=2,N)
WRITE (6,2200) (A(3,J),J=3,N)
WRITE (6,2300) (A(4,J),J=4,N)

READ (5,*) (B(I),I=1,N)
WRITE (6,1100)
DO 20 I = 1, N
WRITE (6,1200) B(I)

20 CONTINUE
WRITE (6,1300)
CALL ZBHEUC (A,LNA,N,COND,W1,IERR)
WRITE (6,1400) ’ZBHEUC’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0D0/COND
CALL ZBHELS (A,LNA,N,B,KERR)
WRITE (6,1400) ’ZBHELS’,KERR
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WRITE (6,1500) COND
WRITE (6,1600)
DO 30 I = 1, N
WRITE (6,1700) I,B(I)

30 CONTINUE
STOP

!
1000 FORMAT (’ ’,/,/,’ *** ZBHEUC,ZBHELS ***’,/,2X,’** INPUT **’,&

/,6X,’N =’,I3,&
/,6X,’COEFFICIENT MATRIX ( REAL, IMAGINARY )’)

1100 FORMAT (6X,’CONSTANT VECTOR ( REAL, IMAGINARY )’)
1200 FORMAT (6X,’ (’,F5.1,’ ,’,F5.1,’ )’)
1300 FORMAT (2X,’** OUTPUT **’)
1400 FORMAT (6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT (6X,’CONDITION NUMBER =’,D18.10)
1600 FORMAT (6X,’SOLUTION ( REAL, IMAGINARY )’)
1700 FORMAT (10X,’X(’,I2,’) = (’,D18.10,’ ,’,D18.10,’ )’)
2000 FORMAT (6X, 4(1X,’(’,F5.1,’ ,’,F5.1,1X,’)’))
2100 FORMAT (6X, 16X, 3(1X,’(’,F5.1,’ ,’,F5.1,1X,’)’))
2200 FORMAT (6X,2(16X),2(1X,’(’,F5.1,’ ,’,F5.1,1X,’)’))
2300 FORMAT (6X,3(16X), 1X,’(’,F5.1,’ ,’,F5.1,1X,’)’ )

END

(d) Output results

*** ZBHEUC,ZBHELS ***
** INPUT **

N = 4
COEFFICIENT MATRIX ( REAL, IMAGINARY )
( 9.0 , 0.0 ) ( 7.0 , 3.0 ) ( 2.0 , 5.0 ) ( 1.0 , 1.0 )

( 10.0 , 0.0 ) ( 3.0 , 2.0 ) ( 2.0 , 4.0 )
( 8.0 , 0.0 ) ( 5.0 , 1.0 )

( 6.0 , 0.0 )
CONSTANT VECTOR ( REAL, IMAGINARY )
( 10.0 , 6.0 )
( 11.0 , 2.0 )
( 4.0 , 6.0 )
( 4.0 , 6.0 )

** OUTPUT **
IERR (ZBHEUC) = 0
IERR (ZBHELS) = 0
CONDITION NUMBER = 0.2998721749D+02
SOLUTION ( REAL, IMAGINARY )

X( 1) = ( 0.1000000000D+01 , 0.9868649108D-16 )
X( 2) = ( 0.1000000000D+01 , 0.9367506770D-16 )
X( 3) = ( -0.1022363649D-15 , 0.1000000000D+01 )
X( 4) = ( -0.0000000000D+00 , 0.1000000000D+01 )
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2.12.2 ZBHEUD, CBHEUD

LDL∗ Decomposition of a Hermitian Matrix (No Pivoting)

(1) Function

ZBHEUD or CBHEUD uses the modified Cholesky method to perform an LDL∗ decomposition of the

Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL ZBHEUD (A, LNA, N, IERR)

Single precision:

CALL CBHEUD (A, LNA, N, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Hermitian matrix A (two-dimensional array

type, upper triangular type)

Output Upper triangular matrix L∗ when A is decom-

posed into A = LDL∗ (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix L∗ is stored in the upper triangular portion of array A. Since the diagonal

matrix D and the lower triangular matrix L are calculated from L∗, they are not stored in array A.

This subroutine uses only the upper triangular portion of array A. (See Fig. 2−12 in Section 2.12.1)

208



ZBHEUC, CBHEUC
LDL∗ Decomposition and Condition Number of a Hermitian Matrix (No Pivoting)

2.12.3 ZBHEUC, CBHEUC

LDL∗ Decomposition and Condition Number of a Hermitian Matrix (No

Pivoting)

(1) Function

ZBHEUC or CBHEUC uses the modified Cholesky method to perform an LDL∗ decomposition and obtain

the condition number of the Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage

Double precision:

CALL ZBHEUC (A, LNA, N, COND, W1, IERR)

Single precision:

CALL CBHEUC (A, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Hermitian matrix A (two-dimensional array

type, upper triangular type)

Output Upper triangular matrix L∗ when A is decom-

posed into A = LDL∗ (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 COND
{
D

R

}
1 Output Reciprocal of the condition number

5 W1
{
Z

C

}
N Work Work area

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

COND← 1.0 is performed.

2100 There existed the diagonal element which

was close to zero in the LU decompo-

sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

Processing is aborted.

The condition number is not obtained.

(6) Notes

(a) The upper triangular matrix L∗ is stored in the upper triangular portion of array A. Since the diagonal

matrix D and the lower triangular matrix L are calculated from L∗, they are not stored in array A.

(See Fig. 2−12 in Section 2.12.1)

(b) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.12.4 ZBHELS, CBHELS

Simultaneous Linear Equations (LDL∗-Decomposed Hermitian Matrix) (No

Pivoting)

(1) Function

ZBHELS or CBHELS solves the simultaneous linear equations LDL∗x = b having the Hermitian matrix

A (two-dimensional array type) (upper triangular type) which has been LDL∗ decomposed by the modified

Cholesky method as coefficient matrix.

(2) Usage

Double precision:

CALL ZBHELS (A, LNA, N, B, IERR)

Single precision:

CALL CBHELS (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix A after LDL∗ decomposition

(Hermitian matrix, two-dimensional array type,

upper triangular type) (See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
Z

C

}
N Input Constant vector b

Output Solution x

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.
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(6) Notes

(a) The coefficient matrix Amust be LDL∗ decomposed before using this subroutine. Normally, you should

decompose matrix A by calling the 2.12.2

{
ZBHEUD

CBHEUD

}
subroutine. However, if you also want to obtain

the condition number, you should use 2.12.3

{
ZBHEUC

CBHEUC

}
. In addition, if you have already used 2.12.1{

ZBHESL

CBHESL

}
to solve simultaneous linear equations having the same coefficient matrix A, you can use

the LDL∗ decomposition obtained as part of its output. To solve multiple sets of simultaneous linear

equations where only the constant vector b differs, the solution is obtained more efficiently by directly

using the subroutine 2.12.5

{
ZBHEMS

CBHEMS

}
to perform the calculations.

(b) The upper triangular matrix L∗ must be stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from L∗, they need not be stored in array A. (See Fig. 2−12 in

Section 2.12.1)
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2.12.5 ZBHEMS, CBHEMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL∗-
Decomposed Hermitian Matrix) (No Pivoting)

(1) Function

ZBHEMS or CBHEMS solves the simultaneous linear equations LDL∗xi = bi(i = 1, 2, · · · ,m having the

Hermitian matrix A (two-dimensional array type) (upper triangular type) which has been LDL∗ decomposed

by the modified Cholesky method as coefficient matrix. That is, when the n ×m matrix B is defined by

B = [b1, b2, · · · , bm], the subroutine obtains [x1,x2, · · · ,xm] = A−1B.

(2) Usage

Double precision:

CALL ZBHEMS (A, LNA, N, B, LNB, M, IERR)

Single precision:

CALL CBHEMS (A, LNA, N, B, LNB, M, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix A after LDL∗ decomposition

(Hermitian matrix, two-dimensional array type,

upper triangular type) (See Notes (a) and (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
Z

C

}
LNB,M Input Constant vector bi(i = 1, 2, · · · ,m)

Output Solution xi(i = 1, 2, · · · ,m)

5 LNB I 1 Input Adjustable dimension of array B

6 M I 1 Input Number of right-hand side vectors, m

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA,LNB

(b) M > 0

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1, i) ← B(1, i)/A(1, 1) (i= 1, 2, · · · ,m)

is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.
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(6) Notes

(a) The coefficient matrix A must be LDL∗ decomposed before using this subroutine. Normally, you

should decompose matrix A by calling the 2.12.2

{
ZBHEUD

CBHEUD

}
subroutine. However, if you also want

to obtain the condition number, you should use 2.12.3

{
ZBHEUC

CBHEUC

}
. In addition, if you have already

used 2.12.1

{
ZBHESL

CBHESL

}
to solve simultaneous linear equations having the same coefficient matrix A,

you can use the LDL∗ decomposition obtained as part of its output.

(b) The upper triangular matrix L∗ must be stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from L∗, they need not be stored in array A. (See Fig. 2−12 in

Section 2.12.1)

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

9 7 + 3i 2 + 5i 1 + 1i

7− 3i 10 3 + 2i 2 + 4i

2− 5i 3− 2i 8 5 + 1i

1− 1i 2− 4i 5− 1i 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

10 + 6i 8 + 18i 22i 2 + 10i

11 + 2i 12 + 11i 8 + 23i 7 + 14i

4 + 6i 15 + 5i 20 + 6i 9 + 7i

4 + 6i 8 + 2i 16 + 2i 12 + 6i

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A which has been LDL∗ decomposed by the modified Cholesky method,

LNA = 11, N = 4, constant vectors bi(i = 1, 2, · · · ,m), LNB=11 and M=4.

(c) Main program

PROGRAM ABHEMS
! *** EXAMPLE OF ZBHEUD, ZBHEMS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
COMPLEX(8) A, B
DIMENSION A(LNA,LNA),B(LNA,LNA)

!
READ (5,*) N
READ (5,*) M
WRITE (6,1000) N, M
DO 10 I = 1, N

READ (5,*) (A(I,J),J=I,N)
10 CONTINUE

DO 15 I = 1, N
WRITE(6,1100) (DCONJG(A(J,I)), J=1, I-1), (A(I,J), J=I, N)

15 CONTINUE
WRITE (6,1200)
DO 20 J = 1, M

READ (5,*) (B(I,J),I=1,N)
20 CONTINUE

DO 25 I = 1, N
WRITE (6,1100) (B(I,J),J=1,M)

25 CONTINUE
WRITE (6,1300)
CALL ZBHEUD (A,LNA,N,IERR)
WRITE (6,1400) ’ZBHEUD’,IERR
CALL ZBHEMS (A,LNA,N,B,LNA,M,JERR)
WRITE (6,1400) ’ZBHEMS’,JERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N

WRITE (6,1100) (B(I,J),J=1,M)
30 CONTINUE

STOP
!
1000 FORMAT(1X,/,/,&

1X ,’*** ZBHEUD, ZBHEMS ***’,/,/,&
1X,1X,’** INPUT **’,/,/,&
1X,5X,’N =’,I3,/,&
1X,5X,’M =’,I3,/,&
/,1X,5X,’COEFFICIENT MATRIX’)
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1100 FORMAT(1X,6X,4(’(’,F8.4,’,’,F8.4,’)’))
1200 FORMAT(/,1X,5X,’CONSTANT VECTORS’)
1300 FORMAT(/,1X,1X,’** OUTPUT **’,/)
1400 FORMAT(1X,5X,’ERR (’,A6,’) =’,I5)
1600 FORMAT(/,1X,5X,’SOLUTION’)

END

(d) Output results

*** ZBHEUD, ZBHEMS ***

** INPUT **

N = 4
M = 4

COEFFICIENT MATRIX
( 9.0000, 0.0000)( 7.0000, 3.0000)( 2.0000, 5.0000)( 1.0000, 1.0000)
( 7.0000, -3.0000)( 10.0000, 0.0000)( 3.0000, 2.0000)( 2.0000, 4.0000)
( 2.0000, -5.0000)( 3.0000, -2.0000)( 8.0000, 0.0000)( 5.0000, 1.0000)
( 1.0000, -1.0000)( 2.0000, -4.0000)( 5.0000, -1.0000)( 6.0000, 0.0000)

CONSTANT VECTORS
( 10.0000, 6.0000)( 8.0000, 18.0000)( 0.0000, 22.0000)( 2.0000, 10.0000)
( 11.0000, 2.0000)( 12.0000, 11.0000)( 8.0000, 23.0000)( 7.0000, 14.0000)
( 4.0000, 6.0000)( 15.0000, 5.0000)( 20.0000, 6.0000)( 9.0000, 7.0000)
( 4.0000, 6.0000)( 8.0000, 2.0000)( 16.0000, 2.0000)( 12.0000, 6.0000)

** OUTPUT **

ERR (ZBHEUD) = 0
ERR (ZBHEMS) = 0

SOLUTION
( 1.0000, 0.0000)( 0.0000, 1.0000)( -0.0000, 1.0000)( 1.0000, 0.0000)
( 1.0000, 0.0000)( 1.0000, -0.0000)( -0.0000, 1.0000)( 0.0000, 1.0000)
( -0.0000, 1.0000)( 1.0000, -0.0000)( 1.0000, 0.0000)( 0.0000, 1.0000)
( 0.0000, 1.0000)( 0.0000, 1.0000)( 1.0000, -0.0000)( 1.0000, -0.0000)
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2.12.6 ZBHEDI, CBHEDI

Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)

(1) Function

ZBHEDI or CBHEDI obtains the determinant and inverse matrix of the Hermitian matrix A (two-dimensional

array type) (upper triangular type) which has been LDL∗ decomposed by the modified Cholesky method.

(2) Usage

Double precision:

CALL ZBHEDI (A, LNA, N, DET, ISW, W1, IERR)

Single precision:

CALL CBHEDI (A, LNA, N, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Hermitian matrix A (two-dimensional array

type) (upper triangular type) after LDL∗ de-

composition (See Notes (a) and (b))

Output Inverse matrix of matrix A (See Note (b))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 DET
{
D

R

}
2 Output Determinant of matrix A (See Note (c))

5 ISW I 1 Input Processing switch

ISW>0:Obtain determinant.

ISW=0:Obtain determinant and inverse ma-

trix.

ISW<0:Obtain inverse matrix.

6 W1
{
Z

C

}
N Work Work area

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. DET(1)← A(1, 1)

DET(2)← 0.0

A(1, 1)← 1.0/A(1, 1) are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LDL∗ decomposed before using this subroutine. Use any of the sub-

routines 2.12.2

{
ZBHEUD

CBHEUD

}
, 2.12.3

{
ZBHEUC

CBHEUC

}
, 2.12.1

{
ZBHESL

CBHESL

}
to perform the decomposition.

(b) The upper triangular matrix L∗ must be stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from L∗, they need not be stored in array A. Since the inverse

matrix A−1 is a Hermitian matrix, only its upper triangular portion is stored in A. (See Fig. 2−12 in

Section 2.12.1)

(c) The determinant is given by the following expression:

det(A) = DET(1)× (10.0DET(2))

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(d) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.
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2.12.7 ZBHELX, CBHELX

Improving the Solution of Simultaneous Linear Equations (Hermitian Ma-

trix) (No Pivoting)

(1) Function

ZBHELX or CBHELX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage

Double precision:

CALL ZBHELX (A, LNA, N, AL, B, X, ITOL, NIT, W1, IERR)

Single precision:

CALL CBHELX (A, LNA, N, AL, B, X, ITOL, NIT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
Z

C

}
LNA,N Input Coefficient matrix A (Hermitian matrix, two-

dimensional array type, upper triangular type)

2 LNA I 1 Input Adjustable dimension of array A and AL

3 N I 1 Input Order of matrix A

4 AL
{
Z

C

}
LNA,N Input Coefficient matrix A after LDL∗ decomposition

(See Note (a))

5 B
{
Z

C

}
N Input Constant vector b

6 X
{
Z

C

}
N Input Approximate solution x

Output Iteratively improved solution x

7 ITOL I 1 Input Number of digits to which solution is to be im-

proved (See Note (b))

Output Approximate number of digits to which solution

was improved (See Note (c))

8 NIT I 1 Input Maximum number of iterations (See Note (d))

9 W1
{
Z

C

}
N Work Work area

10 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a) was not satisfied. Processing is aborted.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculating the

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.12.1

{
ZBHESL

CBHESL

}
or 2.12.4

{
ZBHELS

CBHELS

}

subroutine. Therefore, the coefficient matrix A after being decomposed by the 2.12.3

{
ZBHEUC

CBHEUC

}
,

2.12.1

{
ZBHESL

CBHESL

}
or 2.12.2

{
ZBHEUD

CBHEUD

}
subroutine must be given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0

or

ITOL ≥ −LOG10(2 × ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
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2.13.1 DBBDSL, RBBDSL

Simultaneous Linear Equations (Real Band Matrix)

(1) Function

DBBDSL or RBBDSL uses the Gauss method to solve the simultaneous linear equations Ax = b having a

real band matrix (band type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBBDSL (A, LMA, N, MU, ML, B, IPVT, IERR)

Single precision:

CALL RBBDSL (A, LMA, N, MU, ML, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Coefficient matrix A (real band matrix, band

type) (See Appendix B)

Output Upper triangular matrix U and unit lower tri-

angular matrix L when A is decomposed into

A = LU (See Note (b))

2 LMA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 MU I 1 Input Upper band width of matrix A

5 ML I 1 Input Lower band width of matrix A

6 B
{
D

R

}
N Input Constant vector b

Output Solution x

7 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step

(See Note (b))

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0

(b) 0 ≤MU ≤ N− 1

0 ≤ML ≤ N− 1

(c) min(2 ×ML+MU+ 1,N+ML) ≤ LMA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

B(1)← B(1)/A(1, 1) is performed.

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step of the LU decomposition of coef-

ficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call

this subroutine only once and then call subroutine 2.13.4

{
DBBDLS

RBBDLS

}
the required number of times

varying only the contents of B. This enables you to eliminate unnecessary calculations by performing

the LU decomposition of matrix A only once.

(b) This subroutine performs partial pivoting when obtaining the LU decomposition of coefficient matrix

A. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i). In addition, since

columns i through N in rows i and j of matrix A actually are exchanged at this time, the storage area

of array A increases only by size ML×N. Therefore, if N < 2ML+MU+ 1, less memory is required to

use the subroutine for real matrices.
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Storage status within array A(LMA, K)

∗ a2,1 a3,2 a4,3 a5,4

a1,1 a2,2 a3,3 a4,4 a5,5

a1,2 a2,3 a3,4 a4,5 ∗
a1,3 a2,4 a3,5 ∗ ∗
– – ∗ ∗ ∗
← −−−−−N−−−−− →

LMA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
2×ML+MU+1

⇓
Storage status within array A(LMA, K)

∗ l2,1 l3,2 l4,3 l5,4

u1,1 u2,2 u3,3 u4,4 u5,5

u1,2 u2,3 u3,4 u4,5 ∗
u1,3 u2,4 u3,5 ∗ ∗
u1,4 u2,5 ∗ ∗ ∗
← −−−−−N−−−−− →

LMA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
2×ML+MU+1

Remarks

a. Input time values of elements indicated by asterisks (∗) are guaranteed.

b. u1,4, u2,5 is set when corresponding rows are actually exchanged by partial pivoting.

c. MU is the upper band width and ML is the lower band width.

d. LMA ≥ 2 × ML+MU+1 and K ≥ N must hold.

Figure 2−13 Storage Status of Array A before and after LU Decomposition
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(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

1 −2 0 0

−1 3 2 0

1 −1 4 −2
0 1 −1 7

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

X1

X2

X3

X4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

3

−7
1

13

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A,LMA = 11,N = 4,MU = 1,ML = 2 and constant vector B.

(c) Main program

PROGRAM BBBDSL
! *** EXAMPLE OF DBBDLC,DBBDLS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LMA = 11)
DIMENSION A(LMA,LMA),B(LMA),W1(LMA),IPVT(LMA)
CHARACTER*50 FMT(4)

!
DATA FMT /’(7X,2(A11),2(G11.4))’,&

’(7X, A11, 3(G11.4))’,&
’(7X, 4(G11.4))’,&
’(7X, 3(G11.4),A11)’/

!
READ (5,*) N,MU,ML
WRITE (6,1000) N,MU,ML
DO 10 I = 1, MU+ML+1

IJ = I - ML - 1
IF (IJ .LE. 0) THEN

READ (5,*) (A(I,J),J=ML-I+2,N)
WRITE (6,FMT(I)) (’ ’,J=1,ML-I+1),(A(I,J),J=ML-I+2,N)

ELSE
READ (5,*) (A(I,J),J=1,N-IJ)
WRITE (6,FMT(I)) (A(I,J),J=1,N-IJ),(’ ’,J=N-IJ+1,N)

ENDIF
10 CONTINUE

READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBBDLC (A,LMA,N,MU,ML,IPVT,COND,W1,IERR)
WRITE (6,1400) ’DBBDLC’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0D0/COND
CALL DBBDLS (A,LMA,N,MU,ML,B,IPVT,KERR)
WRITE (6,1400) ’DBBDLS’,KERR
WRITE (6,1500) COND
WRITE (6,1600) (I,B(I),I=1,N)
STOP

!
1000 FORMAT(’ ’,/,/,&

’ *** DBBDLC,DBBDLS ***’,/,&
2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’UPPER BAND WIDTH =’,I3,/,&
6X,’LOWER BAND WIDTH =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1200 FORMAT(6X,’CONSTANT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT(6X,’CONDITION NUMBER =’,D18.10)
1600 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

*** DBBDLC,DBBDLS ***
** INPUT **

N = 4
UPPER BAND WIDTH = 1
LOWER BAND WIDTH = 2
COEFFICIENT MATRIX

1.000 1.000
-1.000 -1.000 -1.000

1.000 3.000 4.000 7.000
-2.000 2.000 -2.000

CONSTANT VECTOR
3.0000
-7.0000
1.0000
13.0000

** OUTPUT **
IERR (DBBDLC) = 0
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IERR (DBBDLS) = 0
CONDITION NUMBER = 0.1245000000D+03
SOLUTION

X( 1) = -0.2900000000D+02
X( 2) = -0.1600000000D+02
X( 3) = 0.6000000000D+01
X( 4) = 0.5000000000D+01
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2.13.2 DBBDLU, RBBDLU

LU Decomposition of a Real Band Matrix

(1) Function

DBBDLU or RBBDLU uses the Gauss method to perform an LU decomposition of the real band matrix A

(band type).

(2) Usage

Double precision:

CALL DBBDLU (A, LMA, N, MU, ML, IPVT, IERR)

Single precision:

CALL RBBDLU (A, LMA, N, MU, ML, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Real band matrix A (band type) (See Appendix

B)

Output Upper triangular matrix U and unit lower tri-

angular matrix L when A is decomposed into

A = LU (See Notes (a) and (b))

2 LMA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 MU I 1 Input Upper band width of matrix A

5 ML I 1 Input Lower band width of matrix A

6 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step

(See Note (b))

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0

(b) 0 ≤ MU ≤ N− 1

0 ≤ ML ≤ N− 1

(c) min(2×ML+MU+ 1,N+ML) ≤ LMA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step.

A is nearly singular.

(6) Notes

(a) The unit lower triangular matrix L and the upper triangular matrix U are stored in band format in

array A. However, since the diagonal elements of L always are 1.0, they are not stored in array A. (See

Section 2.13.1 Figure 2−13.)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by

subsequent subroutine. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i). In

addition, since columns i through N in rows i and j of matrix A actually are exchanged at this time,

the storage area within array A increases only by size ML×N. Therefore, if N < 2ML +MU + 1, less

memory is required to use the subroutine for real matrices. (See Section 2.13.1 Figure 2−13.)
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2.13.3 DBBDLC, RBBDLC

LU Decomposition and Condition Number of a Real Band Matrix

(1) Function

DBBDLC or RBBDLC uses the Gauss method to perform an LU decomposition and obtain the condition

number of the real band matrix A (band type).

(2) Usage

Double precision:

CALL DBBDLC (A, LMA, N, MU, ML, IPVT, COND, W1, IERR)

Single precision:

CALL RBBDLC (A, LMA, N, MU, ML, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Real band matrix A (band type) (See Appendix

B )

Output Upper triangular matrix U and unit lower tri-

angular matrix L when A is decomposed into

A = LU (See Notes (a) and (b))

2 LMA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 MU I 1 Input Upper band width of matrix A

5 ML I 1 Input Lower band width of matrix A

6 IPVT I N Output Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step

(See Note (b))

7 COND
{
D

R

}
1 Output Reciprocal of the condition number

8 W1
{
D

R

}
N Work Work area

9 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0

(b) 0 ≤ MU ≤ N− 1

0 ≤ ML ≤ N− 1

(c) min(2×ML+MU+ 1,N+ML) ≤ LMA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step.

A is nearly singular.

Processing is aborted.

The condition number is not obtained.

(6) Notes

(a) The unit lower triangular matrix L and the upper triangular matrix U are stored in band format in

array A. However, since the diagonal elements of L always are 1.0, they are not stored in array A. (See

2.13.1 Figure 2−13.)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by

subsequent subroutine. If the pivot row in the i-th step is row j (i ≤ j), then j is stored in IPVT(i). In

addition, since columns i through N in rows i and j of matrix A actually are exchanged at this time,

the storage area within array A increases only by size ML×N. Therefore, if N < 2ML +MU + 1, less

memory is required to use the subroutine for real matrices. (See 2.13.1 Figure 2−13.)
(c) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.13.4 DBBDLS, RBBDLS

Simultaneous Linear Equations (LU-Decomposed Real Band Matrix)

(1) Function

DBBDLS or RBBDLS solves the simultaneous linear equations LUx = b having the real band matrix A

(band type) which has been LU decomposed by the Gauss method as coefficient matrix.

(2) Usage

Double precision:

CALL DBBDLS (A, LMA, N, MU, ML, B, IPVT, IERR)

Single precision:

CALL RBBDLS (A, LMA, N, MU, ML, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Coefficient matrix A after LU decomposition

(real band matrix, band type) (See Appendix

B) (See Notes (a) and (b))

2 LMA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 MU I 1 Input Upper band width of matrix A

5 ML I 1 Input Lower band width of matrix A

6 B
{
D

R

}
N Input Constant vector b

Output Solution x

7 IPVT I N Input Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step

(See Note (c))

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0

(b) 0 ≤ MU ≤ N− 1

0 ≤ ML ≤ N− 1

(c) min(2×ML+MU+ 1,N+ML) ≤ LMA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.

4000 + i L has a 0.0 diagonal element.

i is the number of the first 0.0 diagonal

element.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Normally you should

decompose matrix A by calling the 2.13.2

{
DBBDLU

RBBDLU

}
subroutine. However, if you also want to

obtain the condition number, you should use 2.13.3

{
DBBDLC

RBBDLC

}
. In addition, if you have already

used 2.13.1

{
DBBDSL

RBBDSL

}
to solve simultaneous linear equations having the same coefficient matrix A,

you can use the LU decomposition obtained as part of its output.

(b) The unit lower triangular matrix L and the upper triangular matrix U must be stored in band format

in array A. However, since the diagonal elements of L always are 1.0, they should not be stored in

array A. (See 2.13.1 Figure 2−13.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This

information is given by the 2.13.2

{
DBBDLU

RBBDLU

}
, 2.13.3

{
DBBDLC

RBBDLC

}
, 2.13.1

{
DBBDSL

RBBDSL

}
subroutines

which perform LU decomposition of matrix A.
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2.13.5 DBBDDI, RBBDDI

Determinant of a Real Band Matrix

(1) Function

DBBDDI or RBBDDI obtains the determinant of the real band matrix A (band type) which has been LU

decomposed by the Gauss method.

(2) Usage

Double precision:

CALL DBBDDI (A, LMA, N, MU, ML, IPVT, DET, IERR)

Single precision:

CALL RBBDDI (A, LMA, N, MU, ML, IPVT, DET, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Real band matrix A (band type) (See Appendix

B) after LU decomposition (See Notes (a) and

(b))

2 LMA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 MU I 1 Input Upper band width of matrix A

5 ML I 1 Input Lower band width of matrix A

6 IPVT I N Input Pivoting information

IPVT(i): Number of row exchanged with row i

in the i-th processing step

(See Note (c))

7 DET
{
D

R

}
2 Output Determinant of matrix A (See Note (d))

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0

(b) 0 ≤ MU ≤ N− 1

0 ≤ ML ≤ N− 1

(c) min(2×ML+MU+ 1,N+ML) ≤ LMA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. DET(1)← A(1, 1)

DET(2)← 0.0 (See Note (d))

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Use any of the 2.13.2{
DBBDLU

RBBDLU

}
, 2.13.3

{
DBBDLC

RBBDLC

}
, 2.13.1

{
DBBDSL

RBBDSL

}
subroutines to perform the decomposition.

(b) The unit lower triangular matrix L and the upper triangular matrix U must be stored in band format

in array A. However, since the diagonal elements of L always are 1.0, they need not be stored in array

A. (See 2.13.1 Figure 2−13.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This

information is given by the subroutine that performs the LU decomposition of matrix A.

(d) The determinant is given by the following expression:

det(A) = DET(1)× (10.0DET(2))

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(e) Since the inverse matrix of a band matrix generally is a dense matrix, it is not obtained in this

subroutine.
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2.13.6 DBBDLX, RBBDLX

Improving the Solution of Simultaneous Linear Equations (Real Band Ma-

trix)

(1) Function

DBBDLX or RBBDLX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the real band matrix A (band type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBBDLX (A, LMA, N, MU, ML, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)

Single precision:

CALL RBBDLX (A, LMA, N, MU, ML, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Coefficient matrix A (real band matrix, band

type) (See Appendix B)

2 LMA I 1 Input Adjustable dimension of arrays A and ALU

3 N I 1 Input Order of matrix A

4 MU I 1 Input Upper band width of matrix A

5 ML I 1 Input Lower band width of matrix A

6 ALU
{
D

R

}
LMA,N Input Coefficient matrix A after LU decomposition

(See Note (a))

7 B
{
D

R

}
N Input Constant vector b

8 X
{
D

R

}
N Input Approximate solution x

Output Iteratively improved solution x

9 ITOL I 1 Input Number of digits to which solution is to be im-

proved (See Note (b))

Output Approximate number of digits to which solution

was improved (See Note (c))

10 NIT I 1 Input Maximum number of iterations (See Note (d))

11 IPVT I N Input Pivoting information

(See Note (a))

12 W1
{
D

R

}
N Work Work area

13 IERR I 1 Output Error indicator
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(4) Restrictions

(a) N > 0

(b) 0 ≤MU ≤ N− 1

0 ≤ML ≤ N− 1

(c) min(2 ×ML+MU+ 1,N+ML) ≤ LMA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.

4000 + i The i-th diagonal element of ALU was

equal to 0.0.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculating the

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.13.1

{
DBBDSL

RBBDSL

}
or 2.13.4

{
DBBDLS

RBBDLS

}
sub-

routine. Therefore, the coefficient matrix A after it has been decomposed by the 2.13.1

{
DBBDSL

RBBDSL

}
,

2.13.2

{
DBBDLU

RBBDLU

}
or 2.13.3

{
DBBDLC

RBBDLC

}
subroutine and the pivoting information at that time must

be given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0

or

ITOL ≥ −LOG10(2× ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
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(7) Example

(a) Problem

Solve the following simultaneous linear equations and improve the solution.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 9 8 7 6 0 0 0 0 0

9 9 8 7 6 5 0 0 0 0

8 8 8 7 6 5 4 0 0 0

7 7 7 7 6 5 4 3 0 0

6 6 6 6 6 5 4 3 2 0

0 5 5 5 5 5 4 3 2 1

0 0 4 4 4 4 4 3 2 1

0 0 0 3 3 3 3 3 2 1

0 0 0 0 2 2 2 2 2 1

0 0 0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8

7

2

2

4

−2
−2
2

2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 21,N = 10,MU = 4,ML = 4 and constant vector B.

(c) Main program

PROGRAM BBBDLX
! *** EXAMPLE OF DBBDLX ***

IMPLICIT REAL(8)(A-H,O-Z)
PARAMETER ( LNA=21, LN=10)
DIMENSION A(LNA,LN), ALU(LNA,LN), B(LN), X(LN), W1(LN)
INTEGER IPVT(LN)

!
READ(5,*) N,MU,ML
WRITE(6,1000) N,MU,ML
READ(5,*) ((A(I,J),J=1,N),I=1,MU+ML+1)
READ(5,*) (B(I),I=1,N)
WRITE(6,1100)
DO 10 I = 1,MU+ML+1

WRITE(6,1200) (A(I,J),J=1,N)
10 CONTINUE

WRITE(6,1300)
DO 20 I = 1,N

WRITE(6,1400) B(I)
20 CONTINUE

DO 40 J = 1,N
X(J) = B(J)
DO 30 I = 1,MU+ML+1

ALU(I,J) = A(I,J)
30 CONTINUE
40 CONTINUE

CALL DBBDSL(ALU,LNA,N,MU,ML,X,IPVT,IERR)
IF(IERR.GE.3000) STOP
WRITE(6,1500)
DO 50 I = 1,N

WRITE(6,1600) I,X(I)
50 CONTINUE

ITOL = 0
CALL DBBDLX(A,LNA,N,MU,ML,ALU,B,X,ITOL,0,IPVT,W1,IERR)
WRITE(6,1700) IERR
WRITE(6,1800)
DO 60 I = 1,N

WRITE(6,1600) I,X(I)
60 CONTINUE

STOP
1000 FORMAT(’ ’,/,/,’ *** DBBDLX ***’,/,2X,’** INPUT **’,/,&

6X,’N = ’,I5,/,6X,’MU = ’,I4,/,6X,’ML = ’,I4)
1100 FORMAT(6X,’COEFFICIENT MATRIX A’)
1200 FORMAT(8X,10F7.1)
1300 FORMAT(6X,’CONSTANT VECTOR’)
1400 FORMAT(8X, F7.1)
1500 FORMAT(6X,’ORIGINAL SOLUTION’)
1600 FORMAT(8X,’X(’,I2,’) = ’,1PD18.10)
1700 FORMAT(2X,’** OUTPUT **’,/,6X,’IERR = ’,I5)
1800 FORMAT(6X,’IMPROVED SOLUTION’)

END

(d) Output results

*** DBBDLX ***
** INPUT **

N = 10
MU = 4
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ML = 4
COEFFICIENT MATRIX A

0.0 0.0 0.0 0.0 6.0 5.0 4.0 3.0 2.0 1.0
0.0 0.0 0.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
0.0 0.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
0.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0
8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0.0
7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0.0 0.0
6.0 5.0 4.0 3.0 2.0 1.0 0.0 0.0 0.0 0.0

CONSTANT VECTOR
8.0
7.0
2.0
2.0
4.0
-2.0
-2.0
2.0
2.0
0.0

ORIGINAL SOLUTION
X( 1) = 1.0000000000D+00
X( 2) = 0.0000000000D+00
X( 3) = -1.0000000000D+00
X( 4) = 0.0000000000D+00
X( 5) = 1.0000000000D+00
X( 6) = -3.7848512203D-17
X( 7) = -1.0000000000D+00
X( 8) = -6.2883389974D-16
X( 9) = 1.0000000000D+00
X(10) = 4.8805302754D-16

** OUTPUT **
IERR = 0
IMPROVED SOLUTION

X( 1) = 1.0000000000D+00
X( 2) = 7.8886090522D-32
X( 3) = -1.0000000000D+00
X( 4) = -6.5738408768D-32
X( 5) = 1.0000000000D+00
X( 6) = -4.9303806576D-32
X( 7) = -1.0000000000D+00
X( 8) = 9.8607613153D-32
X( 9) = 1.0000000000D+00
X(10) = 2.9582283946D-31
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2.14 POSITIVE SYMMETRIC BAND MATRIX (SYMMETRIC

BAND TYPE)

2.14.1 DBBPSL, RBBPSL

Simultaneous Linear Equations (Positive Symmetric Band Matrix)

(1) Function

DBBPSL or RBBPSL uses the Cholesky method to solve the simultaneous linear equations Ax = b having

the positive symmetric band matrix A (symmetric band type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBBPSL (A, LMA, N, MB, B, IERR)

Single precision:

CALL RBBPSL (A, LMA, N, MB, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Positive symmetric band matrix A

(symmetric band type) (See Appendix B)

Output Upper triangular matrix LT when A is decom-

posed into A = LLT (See Note (b))

2 LMA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 MB I 1 Input Band width of matrix A

5 B
{
D

R

}
N Input Constant vector b

Output Solution x

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0

(b) 0 ≤ MB ≤ N− 1

(c) MB+ 1 ≤ LMA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. A(1, 1)←√A(1, 1) and

B(1)← B(1)/A(1, 1) are performed.

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.

4000 + i A diagonal element became less than or

equal to 0.0 in the i-th processing step of

the LLT decomposition of coefficient ma-

trix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call this

subroutine only once and then call subroutine 2.14.4

{
DBBPLS

RBBPLS

}
the required number of times varying

only the contents of B. This enables you to eliminate unnecessary calculations by performing the LLT

decomposition of matrix A only once.

(b) Only the upper triangular matrix LT is stored in array A. Since the lower triangular matrix L is

calculated from LT , it is not stored in array A.
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Matrix LT⎡
⎢⎢⎢⎢⎢⎣

l1,1 l1,2 l1,3 0 0

0 l2,2 l2,3 l2,4 0

0 0 l3,3 l3,4 l3,5

0 0 0 l4,4 l4,5

0 0 0 0 l5,5

⎤
⎥⎥⎥⎥⎥⎦

⇓
Storage status within array A(LMA, K)

∗ ∗ l1,3 l2,4 l3,5

∗ l1,2 l2,3 l3,4 l4,5

l1,1 l2,2 l3,3 l4,4 l5,5

← −−−−−N−−−−− →
LMA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐#MB+1

Remarks

a. Input time values of elements indicated by asterisks (∗) are guaranteed.

b. MB is the band width.

c. LMA ≥ MB+1 and K ≥ N must hold.

Figure 2−14 Storage Status of Matrix LT

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

10 −2 1 0

−2 9 −1 2

1 −1 8 −3
0 2 −3 7

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

72

9

62

−4

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LMA = 11,N = 4,MB = 2 and constant vector B.

(c) Main program

PROGRAM BBBPSL
! *** EXAMPLE OF DBBPUC,DBBPLS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LMA = 11)
DIMENSION A(LMA,LMA),B(LMA),W1(LMA)

!
CHARACTER*50 FMT(3)

!
DATA FMT /’(7X,2(A11),2(G11.4))’,&

’(7X, A11, 3(G11.4))’,&
’(7X, 4(G11.4))’ /

!
READ (5,*) N,MB
WRITE (6,1000) N,MB
DO 10 I = 1, MB+1

READ (5,*) (A(I,J),J=MB-I+2,N)
WRITE (6,FMT(I)) (’ ’,J=1,MB-I+1),(A(I,J),J=MB-I+2,N)

10 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBBPUC (A,LMA,N,MB,COND,W1,IERR)
WRITE (6,1400) ’DBBPUC’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0D0/COND
CALL DBBPLS (A,LMA,N,MB,B,KERR)
WRITE (6,1400) ’DBBPLS’,KERR
WRITE (6,1500) COND
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WRITE (6,1600) (I,B(I),I=1,N)
STOP

!
1000 FORMAT(’ ’,/,/,&

’ *** DBBPUC,DBBPLS ***’,/,&
2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’BAND WIDTH =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1200 FORMAT(6X,’CONSTANT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT(6X,’CONDITION NUMBER =’,D18.10)
1600 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

*** DBBPUC,DBBPLS ***
** INPUT **

N = 4
BAND WIDTH = 2
COEFFICIENT MATRIX

1.000 2.000
-2.000 -1.000 -3.000

10.00 9.000 8.000 7.000
CONSTANT VECTOR

72.0000
9.0000
62.0000
-4.0000

** OUTPUT **
IERR (DBBPUC) = 0
IERR (DBBPLS) = 0
CONDITION NUMBER = 0.3234671497D+01
SOLUTION

X( 1) = 0.7000000000D+01
X( 2) = 0.3000000000D+01
X( 3) = 0.8000000000D+01
X( 4) = 0.2000000000D+01
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2.14.2 DBBPUU, RBBPUU

LLT Decomposition of a Positive Symmetric Band Matrix

(1) Function

DBBPUU or RBBPUU uses the Cholesky method to perform an LLT decomposition of the positive sym-

metric band matrix A (symmetric band type).

(2) Usage

Double precision:

CALL DBBPUU (A, LMA, N, MB, IERR)

Single precision:

CALL RBBPUU (A, LMA, N, MB, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Positive symmetric band matrix A

(symmetric band type) (See Appendix B)

Output Upper triangular matrix LT when A is decom-

posed into A = LLT (See Note (a))

2 LMA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 MB I 1 Input Band width of matrix A

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0

(b) 0 ≤ MB ≤ N− 1

(c) MB+ 1 ≤ LMA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. A(1, 1)←√A(1, 1)

is performed.

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.

4000 + i A diagonal element became less than or

equal to 0.0 in the i-th processing step.

(6) Notes

(a) The upper triangular matrix LT is stored in array A. Since the lower triangular matrix L is calculated

from LT , it is not stored in array A. (See 2.14.1 Figure 2−14.)
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2.14.3 DBBPUC, RBBPUC

LLT Decomposition and Condition Number of a Positive Symmetric Band

Matrix

(1) Function

DBBPUC or RBBPUC uses the Cholesky method to perform an LLT decomposition and obtain the condition

number of the positive symmetric band matrix A (symmetric band type).

(2) Usage

Double precision:

CALL DBBPUC (A, LMA, N, MB, COND, W1, IERR)

Single precision:

CALL RBBPUC (A, LMA, N, MB, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Positive symmetric band matrix A

(symmetric band type) (See Appendix B)

Output Upper triangular matrix LT when A is decom-

posed into A = LLT (See Note (a))

2 LMA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 MB I 1 Input Band width of matrix A

5 COND
{
D

R

}
1 Output Reciprocal of the condition number

6 W1
{
D

R

}
N Work Work area

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0

(b) 0 ≤ MB ≤ N− 1

(c) MB+ 1 ≤ LMA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. A(1, 1)←√A(1, 1) and

COND← 1.0 are performed.

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.

4000 + i A diagonal element became less than or

equal to 0.0 in the i-th processing step.

Processing is aborted.

The condition number is not obtained.

(6) Notes

(a) The upper triangular matrix LT is stored in array A. Since the lower triangular matrix L is calculated

from LT , it is not stored in array A. (See 2.14.1 Figure 2−14.)
(b) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.14.4 DBBPLS, RBBPLS

Simultaneous Linear Equations (LLT-Decomposed Positive Symmetric Band

Matrix)

(1) Function

DBBPLS or RBBPLS solves the simultaneous linear equations LLTx = b having the positive symmet-

ric band matrix A (symmetric band type) which has been LLT decomposed by the Cholesky method as

coefficient matrix.

(2) Usage

Double precision:

CALL DBBPLS (A, LMA, N, MB, B, IERR)

Single precision:

CALL RBBPLS (A, LMA, N, MB, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Coefficient matrix A after LLT decomposition

(positive symmetric band matrix, symmetric

band type) (See Appendix B) (See Notes (a)

and (b))

2 LMA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 MB I 1 Input Band width of matrix A

5 B
{
D

R

}
N Input Constant vector b

Output Solution x

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0

(b) 0 ≤ MB ≤ N− 1

(c) MB+ 1 ≤ LMA

245



DBBPLS, RBBPLS
Simultaneous Linear Equations (LLT-Decomposed Positive Symmetric Band Matrix)

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1)2 is performed.

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.

4000 + i LT has a diagonal element that is less

than or equal to 0.0.

i is the number of the first diagonal ele-

ment that is less than or equal to 0.0.

(6) Notes

(a) The coefficient matrix A must be LLT decomposed before using this subroutine. Normally, you should

decompose matrix A by calling the 2.14.2

{
DBBPUU

RBBPUU

}
subroutine. However, if you also want to

obtain the condition number, you should use 2.14.3

{
DBBPUC

RBBPUC

}
. In addition, if you have already

used 2.14.1

{
DBBPSL

RBBPSL

}
to solve simultaneous linear equations having the same coefficient matrix A,

you can use the LLT decomposition obtained as part of its output.

(b) The upper triangular matrix LT must be stored in array A. Since the lower triangular matrix L is

calculated from LT , it should not be stored in array A. (See 2.14.1 Figure 2−14.)
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2.14.5 DBBPDI, RBBPDI

Determinant of a Positive Symmetric Band Matrix

(1) Function

DBBPDI or RBBPDI obtains the determinant of the positive symmetric band matrix A (symmetric band

type) which has been LLT decomposed by the Cholesky method.

(2) Usage

Double precision:

CALL DBBPDI (A, LMA, N, MB, DET, IERR)

Single precision:

CALL RBBPDI (A, LMA, N, MB, DET, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Upper triangular matrix LT after LLT decom-

position (See Notes (a) and (b))

2 LMA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 MB I 1 Input Band width of matrix A

5 DET
{
D

R

}
2 Output Determinant of matrix A (See Note (c))

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0

(b) 0 ≤ MB ≤ N− 1

(c) MB+ 1 ≤ LMA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. DET(1)← A(1, 1)

DET(2)← 0.0 (See Note (c))

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.
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(6) Notes

(a) The coefficient matrix A must be LLT decomposed before using this subroutine. Use any of the 2.14.1{
DBBPSL

RBBPSL

}
, 2.14.2

{
DBBPUU

RBBPUU

}
, 2.14.3

{
DBBPUC

RBBPUC

}
subroutines to perform the decomposition.

(b) The upper triangular matrix LT must be stored in array A. Since the lower triangular matrix L is

calculated from LT , it should not be stored in array A. (See 2.14.1 Figure 2−14.)
(c) The determinant is given by the following expression:

det(A) = DET(1)× (10.0DET(2))

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(d) Since the inverse matrix of a positive symmetric band matrix generally is a dense matrix, it is not

obtained in this subroutine.
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2.14.6 DBBPLX, RBBPLX

Improving the Solution of Simultaneous Linear Equations (Positive Sym-

metric Band Matrix)

(1) Function

DBBPLX or RBBPLX uses an iterative method to improve the solution of the simultaneous linear equations

Ax = b having the positive symmetric band matrix A (symmetric band type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBBPLX (A, LMA, N, MB, ALL, B, X, ITOL, NIT, W1, IERR)

Single precision:

CALL RBBPLX (A, LMA, N, MB, ALL, B, X, ITOL, NIT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LMA,N Input Coefficient matrix A (positive symmetric band

matrix, symmetric band type) (See Appendix

B)

2 LMA I 1 Input Adjustable dimension of arrays A and ALL

3 N I 1 Input Order of matrix A

4 MB I 1 Input Band width of matrix A

5 ALL
{
D

R

}
LMA,N Input Coefficient matrix A after LLT decomposition

(See Note (a))

6 B
{
D

R

}
N Input Constant vector b

7 X
{
D

R

}
N Input Approximate solution x

Output Iteratively improved solution x

8 ITOL I 1 Input Number of digits to which solution is to be im-

proved (See Note (b))

Output Approximate number of digits to which solution

was improved (See Note (c))

9 NIT I 1 Input Maximum number of iterations (See Note (d))

10 W1
{
D

R

}
N Work Work area

11 IERR I 1 Output Error indicator
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(4) Restrictions

(a) N > 0

(b) 0 ≤MB ≤ N− 1

(c) MB+ 1 ≤ LMA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a), (b) or (c) was not

satisfied.

Processing is aborted.

4000 + i The i-th diagonal element of array ALL

was less than or equal to 0.0.

5000 The solution did not converge within the

maximum number of iterations.

Processing is aborted after calculating the

ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a) This subroutine improves the solution obtained by the 2.14.1

{
DBBPSL

RBBPSL

}
or 2.14.4

{
DBBPLS

RBBPLS

}

subroutine. Therefore, the coefficient matrix A after it has been decomposed by the 2.14.1

{
DBBPSL

RBBPSL

}
,

2.14.2

{
DBBPUU

RBBPUU

}
or 2.14.3

{
DBBPUC

RBBPUC

}
subroutine must be given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.

ITOL ≤ 0

or

ITOL ≥ −LOG10(2× ε) (ε : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
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2.15.1 DBTDSL, RBTDSL

Simultaneous Linear Equations (Real Tridiagonal Matrix)

(1) Function

DBTDSL or RBTDSL uses the Gauss method to solve the simultaneous linear equations Ax = b having a

real tridiagonal matrix A (vector type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBTDSL (SDL, D, SDU, N, B, IERR)

Single precision:

CALL RBTDSL (SDL, D, SDU, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 SDL
{
D

R

}
N Input Lower subdiagonal component of coefficient

matrix A (real tridiagonal matrix, vector type)

(See Appendix B)

Output Input-time contents are not saved.

2 D
{
D

R

}
N Input Diagonal component of coefficient matrix A

(real tridiagonal matrix, vector type) (See Ap-

pendix B)

Output Input-time contents are not saved.

3 SDU
{
D

R

}
N Input Upper subdiagonal component of coefficient

matrix A (real tridiagonal matrix, vector type)

(See Appendix B)

Output Input-time contents are not saved.

4 N I 1 Input Order of matrix A

5 B
{
D

R

}
N Input Constant vector b

Output Solution x

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/D(1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The pivot became 0.0 in the i-th process-

ing step.

A is nearly singular.

(6) Notes

(a) This subroutine performs partial pivoting.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

2 3 0 0

1 2 3 0

0 1 2 3

0 0 1 2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

8

14

20

11

⎤
⎥⎥⎥⎦

(b) Input data

Lower subdiagonal component SDL, diagonal component D, upper subdiagonal component SDU, N = 4

and constant vector B.
(c) Main program

PROGRAM BBTDSL
! *** EXAMPLE OF DBTDSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (NN = 10)
DIMENSION SDL(NN),D(NN),SDU(NN),B(NN)

!
READ (5,*) N
WRITE (6,1000) N
READ (5,*) (SDL(I),I=2,N),(D(I),I=1,N),(SDU(I),I=1,N-1)
WRITE (6,1110) (SDL(I),I=2,N)
WRITE (6,1100) (D(I),I=1,N)
WRITE (6,1120) (SDU(I),I=1,N-1)
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBTDSL (SDL,D,SDU,N,B,IERR)
WRITE (6,1400) IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1500) (I,B(I),I=1,N)
STOP

!
1000 FORMAT(’ ’,/,/,&

’ *** DBTDSL ***’,/,&
2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,4(G11.4))
1110 FORMAT(7X,’ ’,3(G11.4))
1120 FORMAT(7X,3(G11.4),’ ’)
1200 FORMAT(6X,’CONSTANT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR =’,I5)
1500 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

*** DBTDSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX
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1.000 1.000 1.000
2.000 2.000 2.000 2.000
3.000 3.000 3.000

CONSTANT VECTOR
8.0000
14.0000
20.0000
11.0000

** OUTPUT **
IERR = 0
SOLUTION

X( 1) = 0.1000000000D+01
X( 2) = 0.2000000000D+01
X( 3) = 0.3000000000D+01
X( 4) = 0.4000000000D+01
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2.15.2 DBTPSL, RBTPSL

Simultaneous Linear Equations (Positive Symmetric Tridiagonal Matrix)

(1) Function

DBTPSL or RBTPSL uses the Gauss method to solve the simultaneous linear equations Ax = b having a

positive symmetric tridiagonal matrix A (vector type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBTPSL (D, SD, N, B, IERR)

Single precision:

CALL RBTPSL (D, SD, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 D
{
D

R

}
N Input Diagonal component of coefficient matrix A

(positive symmetric tridiagonal matrix, vector

type) (See Appendix B)

Output Input-time contents are not saved.

2 SD
{
D

R

}
N Input Subdiagonal component of coefficient matrix A

(positive symmetric tridiagonal matrix, vector

type) (See Appendix B)

Output Input-time contents are not saved.

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution x

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/D(1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 The diagonal component became 0.0 dur-

ing processing.

A is nearly singular.

(6) Notes

(a) This subroutine performs Gaussian elimination concurrently from both ends of the diagonal of matrix

A. Therefore, both forward elimination and back substitution are performed repeatedly along the

diagonal.

Figure 2−15 Operations for a Positive Symmetric Tridiagonal Matrix

Forward elimination Back substitution

�
a a
a a a
a a a
a a a
a a a
a a a
a a

�

a a
a a a
a a a
a a a
a a a
a a a
a a

a a

�

�

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣
−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−1
0

0

0

⎤
⎥⎥⎥⎦

(b) Input data

Diagonal component D, subdiagonal component SD, N = 4 and constant vector B.

(c) Main program

PROGRAM BBTPSL
! *** EXAMPLE OF DBTPSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (NN = 10)
DIMENSION D(NN),SD(NN),B(NN)

!
READ (5,*) N
WRITE (6,1000) N
READ (5,*) (D(I),I=1,N),(SD(I),I=1,N-1)
WRITE (6,1100) (D(I),I=1,N)
WRITE (6,1110) (SD(I),I=1,N-1)
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBTPSL (D,SD,N,B,IERR)
WRITE (6,1400) IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1500) (I,B(I),I=1,N)
STOP

!
1000 FORMAT(’ ’,/,/,&

’ *** DBTPSL ***’,/,&
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2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,4(G11.4))
1110 FORMAT(7X,3(G11.4),’ ’)
1200 FORMAT(6X,’CONSTANT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR =’,I5)
1500 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

*** DBTPSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX

-2.000 -2.000 -2.000 -2.000
1.000 1.000 1.000

CONSTANT VECTOR
-1.0000
0.0000
0.0000
0.0000

** OUTPUT **
IERR = 0
SOLUTION

X( 1) = 0.8000000000D+00
X( 2) = 0.6000000000D+00
X( 3) = 0.4000000000D+00
X( 4) = 0.2000000000D+00
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2.16.1 WBTDSL

Simultaneous Linear Equations (Real Tridiagonal Matrix)

(1) Function

WBTDSL uses the cyclic reduction method to solve the simultaneous linear equations Ax = b having the

real tridiagonal matrix A (vector type) as coefficient matrix.

(2) Usage

Double precision:

CALL WBTDSL (SDL, D, SDU, N, B, IW, W1, IERR)

Single precision:

Nothing

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 SDL D N Input Lower subdiagonal components of coefficient

matrix A (real tridiagonal matrix, vector type)

(See Appendix B.)

Output Input-time contents are not retained.

2 D D N Input Diagonal components of coefficient matrix A

(real tridiagonal matrix, vector type) (See Ap-

pendix B.)

Output Input-time contents are not retained.

3 SDU D N Input Upper subdiagonal components of coefficient

matrix A (real tridiagonal matrix, vector type)

(See Appendix B.)

Output Input-time contents are not retained.

4 N I 1 Input Order of matrix A

5 B D N Input Constant vector b

Output Solution vector x

6 IW I See

Contents

Work Work area (See Note (a))

Size: 3× �log2(N)�+ 1

7 W1 D 4×N Work Work area

8 IERR I 1 Output Error indicator
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(4) Restrictions

(a) N > 0

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N = 1 B(1)← B(1)/D(1)

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 A is nearly singular.

(6) Notes

(a) �log2(N)� is the value obtained by truncating the fractional part of log2(N).

(b) The single-precision version of the subroutine is not supported.

(7) Example

(a) Problem

Solve ⎡
⎢⎢⎢⎣

6 2 0 0

1 6 2 0

0 1 6 2

0 0 1 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

10

19

28

27

⎤
⎥⎥⎥⎦

(b) Input data

Lower subdiagonal components SDL, diagonal components D, upper subdiagonal components SDU,

N = 4 and constant vector b.

(c) Main program

PROGRAM EBTDSL
! *** EXAMPLE OF WBTDSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (NN = 10)
DIMENSION SDL(NN),D(NN),SDU(NN),B(NN),DWK(4*NN),IW(10)

!
READ (5,*) N
WRITE (6,1000) N
READ (5,*) (SDL(I),I=2,N),(D(I),I=1,N),(SDU(I),I=1,N-1)
WRITE (6,1600) (SDL(I),I=2,N)
WRITE (6,1100) (D(I),I=1,N)
WRITE (6,1700) (SDU(I),I=1,N-1)
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL WBTDSL (SDL,D,SDU,N,B,IW,DWK,IERR)
WRITE (6,1400) IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1500) (I,B(I),I=1,N)
STOP

!
1000 FORMAT (’ ’,/,/,’ *** WBTDSL ***’,/,2X,’** INPUT **’,/,&

6X,’N =’,I3,/,6X,’COEFFICIENT MATRIX’)
1100 FORMAT (7X,4(G11.4))
1200 FORMAT (6X,’CONSTANT VECTOR’,/,(7X,F10.4))
1300 FORMAT (2X,’** OUTPUT **’)
1400 FORMAT (6X,’IERR =’,I5)
1500 FORMAT (6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))
1600 FORMAT (18X,3(G11.4))
1700 FORMAT (7X,3(G11.4),1X)

END
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(d) Output results

*** WBTDSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX

1.000 1.000 1.000
6.000 6.000 6.000 6.000
2.000 2.000 2.000

CONSTANT VECTOR
10.0000
19.0000
28.0000
27.0000

** OUTPUT **
IERR = 0
SOLUTION

X( 1) = 0.1000000000D+01
X( 2) = 0.2000000000D+01
X( 3) = 0.3000000000D+01
X( 4) = 0.4000000000D+01
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2.16.2 WBTDLS

Simultaneous Linear Equations (Real Tridiagonal Matrix after Reduction

Operations)

(1) Function

WBTDLS uses the cyclic reduction method to solve the simultaneous linear equations Ax = b having the

real tridiagonal matrix A (vector type) after reduction operations have been performed as coefficient matrix.

(2) Usage

Double precision:

CALL WBTDLS (SDL, D, SDU, N, B, IW, W1, IERR)

Single precision:

Nothing

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 SDL D N Input Lower subdiagonal components of coefficient

matrix A after reduction operations (real tridi-

agonal matrix, vector type) (See Appendix B.)

(See Note (a))

2 D D N Input Diagonal components of coefficient matrix A af-

ter reduction operations (real tridiagonal ma-

trix, vector type) (See Appendix B.) (See Note

(a))

3 SDU D N Input Upper subdiagonal components of coefficient

matrix A after reduction operations (real tridi-

agonal matrix, vector type) (See Appendix B.)

(See Note (a))

4 N I 1 Input Order of matrix A

5 B D N Input Constant vector b

Output Solution vector x

6 IW I See

Contents

Input Reduction operation information (See Notes (a)

and (b))

Size: 3× �log2(N)� + 1

7 W1 D 4×N Input Reduction operation information (See Note (a))

8 IERR I 1 Output Error indicator
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(4) Restrictions

(a) N > 0

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N = 1 B(1)← B(1)/D(1)

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 A is nearly singular (Only when N = 1)

(6) Notes

(a) This subroutine can be used to solve multiple sets of simultaneous linear equations having the same

coefficient matrix but different constant vectors. First, use 2.16.1 WBTDSL to perform reduction

operations for the coefficient matrix and obtain solutions.

Then, repeatedly use this subroutine to only obtain solutions for the different constant vectors. The

contents of arguments SDL, D, SDU, IW, and W1 from this subroutine must be retained since they

become input values for this subroutine 2.16.1 WBTDSL.

(b) �log2(N)� is the value obtained by truncating the fractional part of log2(N).

(c) The single-precision version of the subroutine is not supported.

(7) Example

(a) Problem

Solve simultaneous linear equations Ax = b1 and Ay = b2 with unknowns x and y where,

A =

⎡
⎢⎢⎢⎣

6 2 0 0

1 6 2 0

0 1 6 2

0 0 1 6

⎤
⎥⎥⎥⎦ , b1 =

⎡
⎢⎢⎢⎣

10

19

28

27

⎤
⎥⎥⎥⎦ , b2 =

⎡
⎢⎢⎢⎣

30

26

17

8

⎤
⎥⎥⎥⎦

(b) Input data

Lower subdiagonal components SDL, diagonal components D, upper subdiagonal components SDU,

N = 4 and constant vectors b1 and b2.

(c) Main program

PROGRAM EBTDLS
! *** EXAMPLE OF WBTDLS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (NN = 10)
DIMENSION SDL(NN),D(NN),SDU(NN),B1(NN),B2(NN),DWK(4*NN),IW(10)

!
READ (5,*) N
WRITE (6,1000) N
READ (5,*) (SDL(I),I=2,N),(D(I),I=1,N),(SDU(I),I=1,N-1)
WRITE (6,1700) (SDL(I),I=2,N)
WRITE (6,1100) (D(I),I=1,N)
WRITE (6,1800) (SDU(I),I=1,N-1)
READ (5,*) (B1(I),I=1,N)
READ (5,*) (B2(I),I=1,N)
WRITE (6,1200) (B1(I),B2(I),I=1,N)
WRITE (6,1300)
CALL WBTDSL (SDL,D,SDU,N,B1,IW,DWK,KERR)
CALL WBTDLS (SDL,D,SDU,N,B2,IW,DWK,IERR)
WRITE (6,1400) IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1500) (I,B1(I),I=1,N)
WRITE (6,1600) (I,B2(I),I=1,N)
STOP

!
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1000 FORMAT (’ ’,/,/,’ *** WBTDLS ***’,/,2X,’** INPUT **’,/,&
6X,’N =’,I3,/,6X,’COEFFICIENT MATRIX’)

1100 FORMAT (7X,4(G11.4))
1200 FORMAT (6X,’CONSTANT VECTOR’,/,(7X,F10.4,4X,F10.4))
1300 FORMAT (2X,’** OUTPUT **’)
1400 FORMAT (6X,’IERR =’,I5)
1500 FORMAT (6X,’SOLUTION X’,/,(8X,’X(’,I2,’) =’,D18.10))
1600 FORMAT (6X,’SOLUTION Y’,/,(8X,’Y(’,I2,’) =’,D18.10))
1700 FORMAT (18X,3(G11.4))
1800 FORMAT (7X,3(G11.4),1X)

END

(d) Output results

*** WBTDLS ***
** INPUT **

N = 4
COEFFICIENT MATRIX

1.000 1.000 1.000
6.000 6.000 6.000 6.000
2.000 2.000 2.000

CONSTANT VECTOR
10.0000 30.0000
19.0000 26.0000
28.0000 17.0000
27.0000 8.0000

** OUTPUT **
IERR = 0
SOLUTION X

X( 1) = 0.1000000000D+01
X( 2) = 0.2000000000D+01
X( 3) = 0.3000000000D+01
X( 4) = 0.4000000000D+01

SOLUTION Y
Y( 1) = 0.4000000000D+01
Y( 2) = 0.3000000000D+01
Y( 3) = 0.2000000000D+01
Y( 4) = 0.1000000000D+01
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(SCALAR TYPE)

2.17.1 WBTCSL

Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix)

(1) Function

WBTCSL uses the cyclic reduction method to solve the simultaneous linear equations Ax = b having the

fixed coefficient real tridiagonal matrix A (scalar type) as coefficient matrix.

(2) Usage

Double precision:

CALL WBTCSL ( D, SD, N, B, ISW, IW, W1, IERR)

Single precision:

Nothing

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 D D 1 Input Diagonal components of coefficient matrix A

(fixed coefficient real tridiagonal matrix, scalar

type) (See Note (a))

Output Input-time contents are not retained.

2 SD D 1 Input Subdiagonal components of coefficient matrix A

(fixed coefficient real tridiagonal matrix, scalar

type) (See Note (a))

Output Input-time contents are not retained.

3 N I 1 Input Order of matrix A

4 B D N Input Constant vector b

Output Solution vector x

5 ISW I 1 Input Specifies the type of coefficient matrix A. (See

Note (a)) ISW=1, 2, 3 or 4

6 IW I See

Contents

Work Work area (See Note (b))

Size: 3× �log2(N)�+ 1

7 W1 D See

Contents

Work Work area

Size: N + 3× �log2(N)�+ 2

8 IERR I 1 Output Error indicator
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(4) Restrictions

(a) N > 0

(b) ISW ∈ {1, 2, 3, 4}

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N = 1 B(1)← B(1)/D(1)

3000 Restriction (a) or (b) was not satisfied. Processing is aborted.

4000 A is nearly singular.

(6) Notes

(a) Coefficient matrix A is a fixed coefficient real tridiagonal matrix of the types shown below corresponding

to ISW = 1, 2, 3, and 4.

For ISW = 1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D SD 0

SD D SD

SD D SD

· · ·
· · ·

0 · D SD

SD D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,D 	= 0, SD 	= 0

For ISW = 2⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D SD 0

SD D SD

SD D SD

· · ·
· · ·

0 · D SD

2× SD D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,D 	= 0, SD 	= 0

For ISW = 3⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 2× SD 0

SD D SD

SD D SD

· · ·
· · ·

0 · D SD

SD D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,D 	= 0, SD 	= 0
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For ISW = 4⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 2× SD 0

SD D SD

SD D SD

· · ·
· · ·

0 · D SD

2× SD D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,D 	= 0, SD 	= 0

Coefficient matrices of the types shown above appear when discretizing the Dirichlet or Neumann

boundary value problem.

(b) �log2(N)� is the value obtained by truncating the fractional part of log2(N).

(c) The single-precision version of the subroutine is not supported.

(7) Example

(a) Problem

Solve ⎡
⎢⎢⎢⎣

6 2 0 0

2 6 2 0

0 2 6 2

0 0 2 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

8

10

10

8

⎤
⎥⎥⎥⎦

(b) Input data

Diagonal components D, subdiagonal components SD, N = 4, ISW = 1, and constant vector b.

(c) Main program

PROGRAM EBTCSL
! *** EXAMPLE OF WBTCSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (NN = 10)
DIMENSION SDL(NN),D(NN),SDU(NN),B(NN),DWK(21),IW(10)

!
READ (5,*) N,ISW
WRITE (6,1000) N,ISW
READ (5,*) (SDL(I),I=2,N),(D(I),I=1,N),(SDU(I),I=1,N-1)
WRITE (6,1600) (SDL(I),I=2,N)
WRITE (6,1100) (D(I),I=1,N)
WRITE (6,1700) (SDU(I),I=1,N-1)
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
DD = D(1)
SD = SDL(2)
CALL WBTCSL (DD,SD,N,B,ISW,IW,DWK,IERR)
WRITE (6,1400) IERR
IF (IERR .GE. 2000) STOP
WRITE (6,1500) (I,B(I),I=1,N)
STOP

!
1000 FORMAT (’ ’,/,/,’ *** WBTCSL ***’,/,2X,’** INPUT **’,/,&

6X,’N =’,I3,/,6X,’ISW =’,I3,/,6X,’COEFFICIENT MATRIX’)
1100 FORMAT (7X,4(G11.4))
1200 FORMAT (6X,’CONSTANT VECTOR’,/,(7X,F10.4))
1300 FORMAT (2X,’** OUTPUT **’)
1400 FORMAT (6X,’IERR =’,I5)
1500 FORMAT (6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))
1600 FORMAT (18X,3(G11.4))
1700 FORMAT (7X,3(G11.4),1X)

END

(d) Output results

*** WBTCSL ***
** INPUT **

N = 4
ISW = 1
COEFFICIENT MATRIX

2.000 2.000 2.000
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6.000 6.000 6.000 6.000
2.000 2.000 2.000

CONSTANT VECTOR
8.0000
10.0000
10.0000
8.0000

** OUTPUT **
IERR = 0
SOLUTION

X( 1) = 0.1000000000D+01
X( 2) = 0.1000000000D+01
X( 3) = 0.1000000000D+01
X( 4) = 0.1000000000D+01
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2.17.2 WBTCLS

Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix

after Reduction Operations)

(1) Function

WBTCLS uses the cyclic reduction method to solve the simultaneous linear equations Ax = b having the

fixed coefficient real tridiagonal matrix A (scalar type) after reduction operations have been performed as

coefficient matrix.

(2) Usage

Double precision:

CALL WBTCLS (D, SD, N, B, ISW, IW, W1, IERR)

Single precision:

Nothing

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 D D 1 Input Diagonal components of coefficient matrix A af-

ter reduction operations (fixed coefficient real

tridiagonal matrix, scalar type)(See Notes (a)

and (b))

2 SD D 1 Input Subdiagonal components of coefficient matrix

A after reduction operations (fixed coefficient

real tridiagonal matrix, scalar type)(See Notes

(a) and (b))

3 N I 1 Input Order of matrix A

4 B D N Input Constant vector b

Output Solution vector x

5 ISW I 1 Input Specifies the type of coefficient matrix A (See

Note (b)) ISW=1, 2, 3 or 4

6 IW I See

Contents

Input Reduction operation information (See Notes (a)

and (c))

Size: 3× �log2(N)�+ 1

7 W1 D See

Contents

Input Reduction operation information (See Notes (a)

and (c))

Size: N + 3× �log2(N)�+ 2

8 IERR I 1 Output Error indicator

(4) Restrictions

(a) N > 0

(b) ISW ∈ {1, 2, 3, 4}
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N = 1 B(1)← B(1)/D(1)

3000 Restriction (a) or (b) was not satisfied. Processing is aborted.

4000 A is nearly singular. (Only when N = 1)

(6) Notes

(a) This subroutine can be used to solve multiple sets of simultaneous linear equations having the same

coefficient matrix but different constant vectors. First, use 2.17.1 WBTCSL to perform reduction

operations for the coefficient matrix and obtain solutions. Then, repeatedly use this subroutine to only

obtain solutions for the different constant vectors. The contents of arguments D, SD, IW, and W1

from 2.17.1 WBTCSL must be retained since they become input values for this subroutine.

(b) Coefficient matrix A is a fixed coefficient real tridiagonal matrix of the types shown below corresponding

to ISW = 1, 2, 3, and 4.

For ISW = 1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D SD 0

SD D SD

SD D SD

· · ·
· · ·

0 · D SD

SD D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,D 	= 0, SD 	= 0

For ISW = 2⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D SD 0

SD D SD

SD D SD

· · ·
· · ·

0 · D SD

2× SD D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,D 	= 0, SD 	= 0

For ISW = 3⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 2× SD 0

SD D SD

SD D SD

· · ·
· · ·

0 · D SD

SD D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,D 	= 0, SD 	= 0
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For ISW = 4⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 2× SD 0

SD D SD

SD D SD

· · ·
· · ·

0 · D SD

2× SD D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,D 	= 0, SD 	= 0

Coefficient matrices of the types shown above appear when discretizing the Dirichlet or Neumann

boundary value problem.

(c) �log2(N)� is the value obtained by truncating the fractional part of log2(N).

(d) The single-precision version of the subroutine is not supported.

(7) Example

(a) Problem

Solve simultaneous linear equations Ax = b1 and Ay = b2 with unknowns x and y. Where,

A =

⎡
⎢⎢⎢⎣

6 2 0 0

2 6 2 0

0 2 6 2

0 0 2 6

⎤
⎥⎥⎥⎦ , b1 =

⎡
⎢⎢⎢⎣

8

10

10

8

⎤
⎥⎥⎥⎦ , b2 =

⎡
⎢⎢⎢⎣

10

20

30

30

⎤
⎥⎥⎥⎦

(b) Input data

Diagonal components D, subdiagonal components SD, N = 4, ISW = 1 and constant vectors b1 and

b2.

(c) Main program

PROGRAM EBTCLS
! *** EXAMPLE OF WBTCLS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (NN = 10)
DIMENSION B1(NN),B2(NN),DWK(21),IW(10)

!
READ (5,*) N,ISW
WRITE (6,1000) N,ISW
READ (5,*) DD,SD
WRITE (6,1100) DD
WRITE (6,1100) SD
READ (5,*) (B1(I),I=1,N)
READ (5,*) (B2(I),I=1,N)
WRITE (6,1200) (B1(I),B2(I),I=1,N)
WRITE (6,1300)
CALL WBTCSL (DD,SD,N,B1,ISW,IW,DWK,KERR)
CALL WBTCLS (DD,SD,N,B2,ISW,IW,DWK,IERR)
WRITE (6,1400) IERR
IF (IERR .GE. 2000) STOP
WRITE (6,1500) (I,B1(I),I=1,N)
WRITE (6,1600) (I,B2(I),I=1,N)
STOP

!
1000 FORMAT (’ ’,/,/,’ *** WBTCLS ***’,/,2X,’** INPUT **’,/,&

6X,’N =’,I3,/,6X,’ISW =’,I3,/,6X,’COEFFICIENT MATRIX’)
1100 FORMAT (16X,G11.4)
1200 FORMAT (6X,’CONSTANT VECTOR’,/,(7X,F10.4,4X,F10.4))
1300 FORMAT (2X,’** OUTPUT **’)
1400 FORMAT (6X,’IERR =’,I5)
1500 FORMAT (6X,’SOLUTION X’,/,(8X,’X(’,I2,’) =’,D18.10))
1600 FORMAT (6X,’SOLUTION Y’,/,(8X,’Y(’,I2,’) =’,D18.10))

END

(d) Output results

*** WBTCLS ***
** INPUT **

N = 4
ISW = 1
COEFFICIENT MATRIX
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6.000
2.000

CONSTANT VECTOR
8.0000 10.0000
10.0000 20.0000
10.0000 30.0000
8.0000 30.0000

** OUTPUT **
IERR = 0
SOLUTION X

X( 1) = 0.1000000000D+01
X( 2) = 0.1000000000D+01
X( 3) = 0.1000000000D+01
X( 4) = 0.1000000000D+01

SOLUTION Y
Y( 1) = 0.1000000000D+01
Y( 2) = 0.2000000000D+01
Y( 3) = 0.3000000000D+01
Y( 4) = 0.4000000000D+01
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2.18.1 DBTOSL, RBTOSL

Simultaneous Linear Equations (Toeplitz Matrix)

(1) Function

The Toeplitz matrix R of order n consisting of 2 × n − 1 elements rk (k = −n + 1,−n + 2, · · · , n − 1) is

represented as follows.

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0 r−1 r−2 · · · r−n+2 r−n+1

r1 r0 r−1 · · · r−n+3 r−n+2

...
...

. . .
...

...
...

...
. . .

...
...

rn−2 rn−3 rn−4 · · · r0 r−1

rn−1 rn−2 rn−3 · · · r1 r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The DBTOSL or RBTOSL solves the following simultaneous linear equations Rx = b having this Toeplitz

matrix R as coefficient matrix:

n∑
j=1

ri−jxj = bi (i = 1, · · · , n)

or the following simultaneous linear equations RTx = b having the matrix RT as coefficient matrix:

n∑
j=1

rj−ixj = bi (i = 1, · · · , n)

(2) Usage

Double precision:

CALL DBTOSL (R, N, B, X, W, ISW, IERR)

Single precision:

CALL RBTOSL (R, N, B, X, W, ISW, IERR)
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(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 R
{
D

R

}
2×N− 1 Input Components rk (k = −n+1,−n+2, · · · , n− 1)

of Toeplitz matrix R

2 N I 1 Input Order of matrix R

3 B
{
D

R

}
N Input Constant vector b

4 X
{
D

R

}
N Output Solution vector x

5 W
{
D

R

}
2×N Work Work area

6 ISW I 1 Input Processing switch

1: Solve Rx = b

2: Solve RTx = b

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) ISW ∈ {1, 2}
(b) N > 0

(c) R(N) 	= 0

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1 X(1)← B(1)/R(N) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

4000 The divisor x(de) was zero.

4010 The divisor g(de) was zero.

(6) Notes

(a) Since this subroutine makes practical use of the properties of the matrix, it is superior to 2.2.2{
DBGMSL

RBGMSL

}
in terms of memory usage and calculation efficiency. However, the solution may not be

obtained theoretically even if the matrix is regular. In particular, if x(de) or g(de), which are divisors,

are close to zero during the calculation process, the reliability of the solution obtained will not be

guaranteed. (See Section 2.1.3 “Algorithms Used”.)
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(7) Example

(a) ProblemSolve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

r0 r−1 r−2 r−3

r1 r0 r−1 r−2

r2 r1 r0 r−1

r3 r2 r1 r0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2

b3

b4

⎤
⎥⎥⎥⎦

(b) Input data

Array R = {r−3, r−2, r−1, r0, r1, r2, r3} in which matrix R components are stored, N=4, ISW=1 and

constant vector b.

NoteThe same problem can be solved by storing matrixR components as R = {r3, r2, r1, r0, r−1, r−2, r−3}
and setting ISW=2.

(c) Main program

PROGRAM BBTOSL
! *** EXAMPLE OF DBTOSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 4)
DIMENSION R(2*LNA-1)
DIMENSION B(LNA),X(LNA),W(2*LNA)

!
READ (5,*) ISW
READ (5,*) N
WRITE (6,1000) ISW, N
READ (5,*) (R(I),I=1,2*N-1)
DO 10 I = 1, N

WRITE (6,1100) (R(N+I-J),J=1,N)
10 CONTINUE

WRITE (6,1200)
DO 20 I = 1, N

READ (5,*) B(I)
WRITE (6,1100) B(I)

20 CONTINUE
WRITE (6,1300)
CALL DBTOSL (R, N, B, X, W, ISW, IERR)
WRITE (6,1400) ’DBTOSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N

WRITE (6,1100) X(I)
30 CONTINUE

STOP
!
1000 FORMAT(’ ’,/,/,&

’ *** DBTOSL ***’,/,&
2X,’** INPUT **’,/,&
6X,’ISW =’,I3,/,&
6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,10(F11.4))
1200 FORMAT(6X,’CONSTANT VECTOR’)
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT(6X,’SOLUTION’)

END

(d) Output results

*** DBTOSL ***
** INPUT **

ISW = 1
N = 4
COEFFICIENT MATRIX

1.0000 -2.0000 -3.0000 -4.0000
2.0000 1.0000 -2.0000 -3.0000
3.0000 2.0000 1.0000 -2.0000
4.0000 3.0000 2.0000 1.0000

CONSTANT VECTOR
-8.0000
-2.0000
4.0000

10.0000
** OUTPUT **

IERR (DBTOSL) = 0
SOLUTION

1.0000
1.0000
1.0000
1.0000
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2.18.2 DBTSSL, RBTSSL

Simultaneous Linear Equations (Symmetric Toeplitz Matrix)

(1) Function

The symmetric Toeplitz matrix R of order n consisting of n elements rk (k = 0, 1, · · · , n− 1) is represented

as follows.

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0 r1 r2 · · · rn−2 rn−1

r1 r0 r1 · · · rn−3 rn−2

...
...

. . .
...

...
...

...
. . .

...
...

rn−2 rn−3 rn−4 · · · r0 r1

rn−1 rn−2 rn−3 · · · r1 r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

DBTSSL or RBTSSL solves the following simultaneous linear equations Rx = b having this symmetric

Toeplitz matrix R as coefficient matrix:

n∑
j=1

r|i−j|xj = bi (i = 1, · · · , n)

(2) Usage

Double precision:

CALL DBTSSL (R, N, B, X, W, IERR)

Single precision:

CALL RBTSSL (R, N, B, X, W, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 R
{
D

R

}
N Input Components rk (k = 0, 1, · · · , n−1) of symmet-

ric Toeplitz matrix R

2 N I 1 Input Order of matrix R

3 B
{
D

R

}
N Input Constant vector b

4 X
{
D

R

}
N Output Solution vector x

5 W
{
D

R

}
N Work Work area

6 IERR I 1 Output Error indicator
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(4) Restrictions

(a) N > 0

(b) R(1) 	= 0

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1 X(1)← B(1)/R(1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

4000 The divisor x(de) was zero.

(6) Notes

(a) Since this subroutine makes practical use of the properties of the matrix, it is superior to 2.2.2{
DBGMSL

RBGMSL

}
in terms of memory usage and calculation efficiency. However, the solution may not be

obtained theoretically even if the matrix is regular. In particular, if x(de), which is divisor, is close to

zero during the calculation process, the reliability of the solution obtained will not be guaranteed. (See

Section 2.1.3 “Algorithms Used”).

(7) Example

(a) ProblemSolve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

r0 r1 r2 r3

r1 r0 r1 r2

r2 r1 r0 r1

r3 r2 r1 r0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2

b3

b4

⎤
⎥⎥⎥⎦

(b) Input data

Array R = {r0, r1, r2, r3} in which matrix R components are stored, N=4 and constant vector b.

(c) Main program

PROGRAM BBTSSL
! *** EXAMPLE OF DBTSSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 4)
DIMENSION R(LNA)
DIMENSION B(LNA),X(LNA),W(LNA)

!
READ (5,*) N
WRITE (6,1000) N
READ (5,*) (R(I),I=1,N)
DO 10 I = 1, N

WRITE (6,1100) (R(1+ABS(I-J)),J=1,N)
10 CONTINUE

WRITE (6,1200)
DO 20 I = 1, N

READ (5,*) B(I)
WRITE (6,1100) B(I)

20 CONTINUE
WRITE (6,1300)
CALL DBTSSL (R, N, B, X, W, IERR)
WRITE (6,1400) ’DBTSSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N

WRITE (6,1100) X(I)
30 CONTINUE

STOP
!
1000 FORMAT(’ ’,/,/,&
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’ *** DBTSSL ***’,/,&
2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,10(F11.4))
1200 FORMAT(6X,’CONSTANT VECTOR’)
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT(6X,’SOLUTION’)

END

(d) Output results

*** DBTSSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX

1.0000 2.0000 3.0000 4.0000
2.0000 1.0000 2.0000 3.0000
3.0000 2.0000 1.0000 2.0000
4.0000 3.0000 2.0000 1.0000

CONSTANT VECTOR
10.0000
8.0000
8.0000
10.0000

** OUTPUT **
IERR (DBTSSL) = 0
SOLUTION

1.0000
1.0000
1.0000
1.0000
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2.18.3 DBVMSL, RBVMSL

Simultaneous Linear Equations (Vandermonde Matrix)

(1) Function

The Vandermonde matrix V of order n consisting of n different elements vk (k = 1, 2, · · · , n) is represented
as follows.

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 v1 v21 · · · vn−2
1 vn−1

1

1 v2 v22 · · · vn−2
2 vn−1

2

...
...

. . .
...

...
...

...
. . .

...
...

1 vn−1 v2n−1 · · · vn−2
n−1 vn−1

n−1

1 vn v2n · · · vn−2
n vn−1

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

DBVMSL or RBVMSL solves the following simultaneous linear equations V x = b having this Vandermonde

matrix V as coefficient matrix:

n∑
j=1

vj−1
i xj = bi (i = 1, · · · , n)

or the following simultaneous linear equations V Tx = b having the matrix V T as coefficient matrix:

n∑
j=1

vi−1
j xj = bi (i = 1, · · · , n)

The simultaneous linear equations having the Vandermonde matrix as the coefficient matrix

essentially are ill-conditioned, and it is difficult to obtain a solution with good precision except

when n is extremely small (See Note (a)).

(2) Usage

Double precision:

CALL DBVMSL (V, N, B, X, W, ISW, IERR)

Single precision:

CALL RBVMSL (V, N, B, X, W, ISW, IERR)
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(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 V
{
D

R

}
N Input Components vk (k = 1, 2, · · · , n) of Vander-

monde matrix V

2 N I 1 Input Order n of matrix V

3 B
{
D

R

}
N Input Constant vector b

4 X
{
D

R

}
N Output Solution vector x

5 W
{
D

R

}
N Work Work area (See Note (b))

6 ISW I 1 Input Processing switch

1: Solve V x = b

2: Solve V Tx = b

7 IERR I 1 Output Error indicator

(4) Restrictions

(a) ISW ∈ {1, 2}
(b) N > 0

(c) V(i) 	= 0 (i = 1, . . . ,N)

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N = 1 is specified. X(1)← B(1) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

4000 A division by zero occurred during an

operation.
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(6) Notes

(a) Since this subroutine makes practical use of the properties of the matrix, it is superior to 2.2.2{
DBGMSL

RBGMSL

}
in terms of memory usage. However, the part that obtains the solution via the inverse

matrix without performing pivoting may be inferior in terms of calculation precision. In any event, the

simultaneous linear equations having the Vandermonde matrix as the coefficient matrix essentially are

ill-conditioned, and it is difficult to obtain a solution with good precision except when N is extremely

small. When double precision subroutine is used, the maximum value of N, which is the size of the

problem for which solutions can be obtained, is about 15. Also, the simultaneous linear equations

having V T as coefficient matrix usually has better properties than the simultaneous linear equations

having V as coefficient matrix.

(b) The coefficients wj of the terms of the master polynomial P (x) defined by the following equation are

stored in Work area W.

P (x) =

n∏
k=1

(x − vk) = xn + w1x
n−1 + · · ·+ wn−1x+ wn

(7) Example

(a) ProblemSolve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

1 v1 v21 v31
1 v2 v22 v32
1 v3 v23 v33
1 v4 v24 v34

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2

b3

b4

⎤
⎥⎥⎥⎦

(b) Input data

Array V = {v1, v2, v3, v4} in which matrix V components are stored, N=4, ISW=1 and constant vector

b.

(c) Main program

PROGRAM BBVMSL
! *** EXAMPLE OF DBVMSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 4)
DIMENSION V(LNA)
DIMENSION B(LNA),X(LNA),W(LNA)

!
READ (5,*) ISW
READ (5,*) N
WRITE (6,1000) ISW, N
READ (5,*) (V(I),I=1,N)
DO 10 I = 1, N

WRITE (6,1100) (V(I)**(J-1),J=1,N)
10 CONTINUE

WRITE (6,1200)
DO 20 I = 1, N

READ (5,*) B(I)
WRITE (6,1100) B(I)

20 CONTINUE
WRITE (6,1300)
CALL DBVMSL (V, N, B, X, W, ISW, IERR)
WRITE (6,1400) ’DBVMSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N

WRITE (6,1100) X(I)
30 CONTINUE

STOP
!
1000 FORMAT(’ ’,/,/,&

’ *** DBVMSL ***’,/,&
2X,’** INPUT **’,/,&
6X,’ISW =’,I3,/,&
6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)
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1100 FORMAT(7X,10(F11.4))
1200 FORMAT(6X,’CONSTANT VECTOR’)
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT(6X,’SOLUTION’)

END

(d) Output results

*** DBVMSL ***
** INPUT **

ISW = 1
N = 4
COEFFICIENT MATRIX

1.0000 2.0000 4.0000 8.0000
1.0000 3.0000 9.0000 27.0000
1.0000 4.0000 16.0000 64.0000
1.0000 5.0000 25.0000 125.0000

CONSTANT VECTOR
15.0000
40.0000
85.0000
156.0000

** OUTPUT **
IERR (DBVMSL) = 0
SOLUTION

1.0000
1.0000
1.0000
1.0000
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2.19 REAL UPPER TRIANGULAR MATRIX

(TWO-DIMENSIONAL ARRAY TYPE)

2.19.1 DBTUSL, RBTUSL

Simultaneous Linear Equations (Real Upper Triangular Matrix)

(1) Function

DBTUSL or RBTUSL solves the simultaneous linear equations Ax = b having a real upper triangular

matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBTUSL (A, LNA, N, B, IERR)

Single precision:

CALL RBTUSL (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A (real upper triangular ma-

trix, two-dimensional array type)

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution x

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1, 1) is performed.

2100 There existed the diagonal element which

was close to zero in the coefficient matrix

A. The result may not be obtained with

a good accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The coefficient matrix A has a 0.0 diago-

nal element.

A is singular.

(6) Notes

None

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

1 2 −3 4

0 4 −1 1

0 0 5 −1
0 0 0 8

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−10
−9
−3
−16

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 11,N = 4 and constant vector b.

(c) Main program

PROGRAM BBTUSL
! *** EXAMPLE OF DBTUCO,DBTULS ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA),W1(LNA)

!
READ (5,*) N
WRITE (6,1000) N
DO 20 I = 1, N

DO 10 J = 1, N
A(I,J) = 0.0D0

10 CONTINUE
20 CONTINUE

DO 30 I = 1, N
READ (5,*) (A(I,J),J=I,N)
WRITE (6,1100) (A(I,J),J=1,N)

30 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBTUCO (A,LNA,N,COND,W1,IERR)
WRITE (6,1400) ’DBTUCO’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0D0/COND
CALL DBTUSL (A,LNA,N,B,KERR)
WRITE (6,1400) ’DBTUSL’,KERR
WRITE (6,1500) COND
WRITE (6,1600) (I,B(I),I=1,N)
STOP

!
1000 FORMAT(’ ’,/,/,&

’ *** DBTUCO,DBTUSL ***’,/,&
2X,’** INPUT **’,/,&
6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,4(F11.4))
1200 FORMAT(6X,’CONSTANT VECTOR’,/,(7X,F10.4))
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1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT(6X,’CONDITION NUMBER =’,D18.10)
1600 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

*** DBTUCO,DBTUSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX

1.0000 2.0000 -3.0000 4.0000
0.0000 4.0000 -1.0000 1.0000
0.0000 0.0000 5.0000 -1.0000
0.0000 0.0000 0.0000 8.0000

CONSTANT VECTOR
-10.0000
-9.0000
-3.0000
-16.0000

** OUTPUT **
IERR (DBTUCO) = 0
IERR (DBTUSL) = 0
CONDITION NUMBER = 0.1074561404D+02
SOLUTION

X( 1) = -0.1000000000D+01
X( 2) = -0.2000000000D+01
X( 3) = -0.1000000000D+01
X( 4) = -0.2000000000D+01
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2.19.2 DBTUCO, RBTUCO

Condition Number of a Real Upper Triangular Matrix

(1) Function

DBTUCO or RBTUCO obtains the condition number of the real upper triangular matrix A (two-dimensional

array type).

(2) Usage

Double precision:

CALL DBTUCO (A, LNA, N, COND, W1, IERR)

Single precision:

CALL RBTUCO (A, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real upper triangular matrix A

(two-dimensional array type)

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 COND
{
D

R

}
1 Output Reciprocal of the condition number

5 W1
{
D

R

}
N Work Work area

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

284



DBTUCO, RBTUCO
Condition Number of a Real Upper Triangular Matrix

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. COND← 1.0 is performed.

2100 There existed the diagonal element which

was close to zero in the coefficient matrix

A. The result may not be obtained with

a good accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i Matrix A has a 0.0 diagonal element.

i is the number of the first 0.0 diagonal

element.

(6) Notes

(a) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.19.3 DBTUDI, RBTUDI

Determinant and Inverse Matrix of a Real Upper Triangular Matrix

(1) Function

DBTUDI or RBTUDI obtains the determinant and inverse matrix of the real upper triangular matrix A

(two-dimensional array type).

(2) Usage

Double precision:

CALL DBTUDI (A, LNA, N, DET, ISW, IERR)

Single precision:

CALL RBTUDI (A, LNA, N, DET, ISW, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real upper triangular matrix A

(two-dimensional array type)

Output inverse matrix of matrix A (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 DET
{
D

R

}
2 Output Determinant of matrix A((See Note (b))

5 ISW I 1 Input Processing switch

ISW>0:Obtain determinant.

ISW=0:Obtain determinant and inverse ma-

trix.

ISW<0:Obtain inverse matrix.

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. DET(1)← A(1, 1)

DET(2)← 0.0

A(1, 1)← 1.0/A(1, 1) are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.
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(6) Notes

(a) Since the inverse matrix of an upper triangular matrix is an upper triangular matrix, the inverse matrix

A−1 is stored only in the upper triangular portion of array A.

Inverse matrix A−1⎡
⎢⎢⎢⎢⎢⎢⎣

ã1,1 ã1,2 ã1,3 · · · ã1,5

0.0 ã2,2 ã2,3 · · · ã2,5

0.0 0.0 ã3,3 · · · ã3,5

...
...

...
. . .

...

0.0 0.0 0.0 · · · ã5,5

⎤
⎥⎥⎥⎥⎥⎥⎦
⇒

Storage status within array A(LNA, K)

ã1,1 ã1,2 ã1,3 · · · ã1,5

∗ ã2,2 ã2,3 · · · ã2,5

∗ ∗ ã3,3 · · · ã3,5

...
...

...
. . .

...

∗ ∗ ∗ · · · ã5,5

← −−−−−N−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N ≤ K must hold.

b. Input time values of elements indicated by asterisks (∗) are not guaranteed.

Figure 2−16 Storage Status of the Inverse Matrix (Upper Triangular Matrix)

(b) The determinant is given by the following expression:

det(A) = DET(1)× (10.0DET(2))

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(c) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.
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(TWO-DIMENSIONAL ARRAY TYPE)

2.20.1 DBTLSL, RBTLSL

Simultaneous Linear Equations (Real Lower Triangular Matrix)

(1) Function

DBTLSL or RBTLSL solves the simultaneous linear equations Ax = b having a real lower triangular matrix

A (two-dimensional array type) as coefficient matrix.

(2) Usage

Double precision:

CALL DBTLSL (A, LNA, N, B, IERR)

Single precision:

CALL RBTLSL (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Coefficient matrix A (real lower triangular ma-

trix, two-dimensional array type)

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 B
{
D

R

}
N Input Constant vector b

Output Solution x

5 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. B(1)← B(1)/A(1) is performed.

2100 There existed the diagonal element which

was close to zero in the coefficient matrix

A. The result may not be obtained with

a good accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i The coefficient matrix A has a 0.0 diago-

nal element.

i is the number of the first 0.0 diagonal

element.

The matrix A is singular.

(6) Notes

None

(7) Example

(a) Problem

Solve the following simultaneous linear equations.⎡
⎢⎢⎢⎣

5 0 0 0

−1 4 0 0

2 1 2 0

3 2 7 10

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

5

3

5

22

⎤
⎥⎥⎥⎦

(b) Input data

Coefficient matrix A, LNA = 11,N = 4 and constant vector B.

(c) Main program

PROGRAM BBTLSL
! *** EXAMPLE OF DBTLCO,DBTLSL ***

IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA),W1(LNA)

!
READ (5,*) N
WRITE (6,1000) N
DO 20 I = 1, N

DO 10 J = 1, N
A(I,J) = 0.0D0

10 CONTINUE
20 CONTINUE

DO 30 I = 1, N
READ (5,*) (A(I,J),J=1,I)
WRITE (6,1100) (A(I,J),J=1,N)

30 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBTLCO (A,LNA,N,COND,W1,IERR)
WRITE (6,1400) ’DBTLCO’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0D0/COND
CALL DBTLSL (A,LNA,N,B,KERR)
WRITE (6,1400) ’DBTLSL’,KERR
WRITE (6,1500) COND
WRITE (6,1600) (I,B(I),I=1,N)
STOP

!
1000 FORMAT(’ ’,/,/,&

’ *** DBTLCO,DBTLSL ***’,/,&
2X,’** INPUT **’,/,&
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6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX ’)

1100 FORMAT(4X,4(F11.4))
1200 FORMAT(6X,’CONSTANT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT(6X,’CONDITION NUMBER =’,D18.10)
1600 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

*** DBTLCO,DBTLSL ***
** INPUT **

N = 4
COEFFICIENT MATRIX

5.0000 0.0000 0.0000 0.0000
-1.0000 4.0000 0.0000 0.0000
2.0000 1.0000 2.0000 0.0000
3.0000 2.0000 7.0000 10.0000

CONSTANT VECTOR
5.0000
3.0000
5.0000
22.0000

** OUTPUT **
IERR (DBTLCO) = 0
IERR (DBTLSL) = 0
CONDITION NUMBER = 0.6966071429D+01
SOLUTION

X( 1) = 0.1000000000D+01
X( 2) = 0.1000000000D+01
X( 3) = 0.1000000000D+01
X( 4) = 0.1000000000D+01
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2.20.2 DBTLCO, RBTLCO

Condition Number of a Real Lower Triangular Matrix

(1) Function

DBTLCO or RBTLCO obtains the condition number of the real lower triangular matrix A (two-dimensional

array type).

(2) Usage

Double precision:

CALL DBTLCO (A, LNA, N, COND, W1, IERR)

Single precision:

CALL RBTLCO (A, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real lower triangular matrix A

(two-dimensional array type)

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 COND
{
D

R

}
1 Output Reciprocal of the condition number

5 W1
{
D

R

}
N Work Work area

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA
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(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. COND← 1.0 is performed.

2100 There existed the diagonal element which

was close to zero in the coefficient matrix

A. The result may not be obtained with

a good accuracy.

Processing continues.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + i Matrix A has a 0.0 diagonal element.

i is the number of the first 0.0 diagonal

element.

(6) Notes

(a) Although the condition number is defined by ‖A‖ · ‖A−1‖, an approximate value is obtained by this

subroutine.
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2.20.3 DBTLDI, RBTLDI

Determinant and Inverse Matrix of a Real Lower Triangular Matrix

(1) Function

DBTLDI or RBTLDI obtains the determinant and inverse matrix of the real lower triangular matrix A

(two-dimensional array type).

(2) Usage

Double precision:

CALL DBTLDI (A, LNA, N, DET, ISW, IERR)

Single precision:

CALL RBTLDI (A, LNA, N, DET, ISW, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex
I:

{
INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer

}

No. Argument Type Size
Input/

Output
Contents

1 A
{
D

R

}
LNA,N Input Real lower triangular matrix A

(two-dimensional array type)

Output Inverse matrix of matrix A (See Note (a))

2 LNA I 1 Input Adjustable dimension of array A

3 N I 1 Input Order of matrix A

4 DET
{
D

R

}
2 Output Determinant of matrix A((See Note (b))

5 ISW I 1 Input Processing switch

ISW>0:Obtain determinant

ISW=0:Obtain determinant and inverse matrix

ISW<0:Obtain inverse matrix

6 IERR I 1 Output Error indicator

(4) Restrictions

(a) 0 < N ≤ LNA

(5) Error indicator

IERR value Meaning Processing

0 Normal termination.

1000 N was equal to 1. DET(1)← A(1, 1)

DET(2)← 0.0

A(1, 1)← 1.0/A(1, 1) are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.
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(6) Notes

(a) Since the inverse matrix of an lower triangular matrix is an lower triangular matrix, the inverse matrix

A−1 is stored only in the lower triangular portion of array A.

Inverse matrix A−1⎡
⎢⎢⎢⎢⎢⎢⎣

ã1,1 0.0 0.0 · · · 0.0

ã2,1 ã2,2 0.0 · · · 0.0

ã3,1 ã3,2 ã3,3 · · · 0.0
...

...
...

. . .
...

ã5,1 ã5,2 ã5,3 · · · ã5,5

⎤
⎥⎥⎥⎥⎥⎥⎦
⇒

Storage status within array A(LNA, K)

ã1,1 ∗ ∗ · · · ∗
ã2,1 ã2,2 ∗ · · · ∗
ã3,1 ã3,2 ã3,3 · · · ∗
...

...
...

. . .
...

ã5,1 ã5,2 ã5,3 · · · ã5,5

← −−−−−N−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and N ≤ K must hold.

b. Input time values of elements indicated by asterisks (∗) are not guaranteed.

Figure 2−17 Storage Status of the Inverse Matrix (Lower Triangular Matrix)

(b) The determinant is given by the following expression:

det(A) = DET(1)× (10.0DET(2))

Scaling is performed at this time so that:

1.0 ≤ |DET(1)| < 10.0

(c) The inverse matrix should not be calculated, except the inverse matrix itself is required,

or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix

appears in the form A−1b or A−1B in the numerical calculations, it must be calculated by solving the

simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations

with multiple right-hand sides AX = B for the matrix X , respectively. Mathematically, solving these

kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the

inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical

calculations, these are usually extremely different. The calculation efficiency for obtaining inverse

matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

294



Appendix A

GLOSSARY

(1) Matrix

An m × n matrix A is rectangular array of m × n elements ai,j (i = 1, 2, · · · ,m; j = 1, 2, · · · , n) as shown
below.⎡

⎢⎢⎢⎢⎣
a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

⎤
⎥⎥⎥⎥⎦

The element ai,j is called the (i, j)-th element of matrix A. The elements of a matrix are considered to

be complex or real numbers. In particular, a matrix having complex numbers as its elements is called a

complex matrix, and a matrix having real numbers as its elements is called a real matrix. Also, if m = n,

the matrix A is called square matrix.

The matrix A is sometimes denotes as (aij). In this manual, (ai,j) is used for distinguishing between the

row subscript i and column subscript j as necessary.

(2) (Number) vector

1 x n matrix is called a row vector of size n, and an m x 1 matrix is called a column vector of size m.

Unless it is specifically necessary to distinguish between them, both of these are simply called vectors.

Mathematically, a vector is defined as a more abstract concept. The “vector” described here is called a

number vector. For the definition of an abstract vector, see the explanation of “vector space.”

(3) Matrix product

The matrix product AB = (ci,l) of the two matrices A = (ai,j) and B = (bk,l) is defined as follows

ci,l =
∑
j

ai,j · bj,l

only when the number of columns in matrix A is equal to the number of rows in matrix B.

(4) Matrix-vector product

If the matrix B in the matrix product AB is a column vector x, then the product Ax is called the matrix-

vector product.

(5) Transpose of matrix

The matrix A′ = (aj,i) formed by interchanging the rows and columns in m × n matrix A = (ai,j) (i =

1, 2, · · · ,m; j = 1, 2, · · · , n) is called the transpose of matrix A and is represented by AT . The transpose

may be also represented as tA.

(6) (Main) diagonal of a matrix

The list of elements ai,i (i = 1, 2, · · · , n) in an n×n square matrix A = (ai,j) (i, j = 1, 2, · · · , n) is called the

(main) diagonal, and the elements are called the (main) diagonal elements. Also, a matrix having nonzero

elements only on the diagonal is called a diagonal matrix.
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(7) Unit matrix

An n× n matrix A = (ai,j) (i, j = 1, 2, · · · , n) in which all the diagonal elements ai,i (i = 1, 2, · · · , n) are 1

and all the non-diagonal elements are 0 is called a unit matrix and is represented using the symbol E or I.

This satisfies AE = EA = A for any matrix A.

(8) Inverse matrix

For a square matrix A, if a square matrix B exist that satisfies AB = BA = E (where E is the unit matrix),

then the matrix B is called the inverse matrix of matrix A and is represented by the symbol A−1.

(9) General inverse matrix

For an m× n matrix A, an n×m matrix X that satisfies the following relationships exists uniquely. This

matrix X , which is called the (Moore-Penrose) general inverse matrix of matrix A, is represented by the

symbol A†.

• AXA = A

• XAX = X

• (AX)T = AX

• (XA)T = XA

(10) Lower triangle and upper triangle of a matrix

The collection of elements ai,j (i > j) in an n× n square matrix A = (ai,j) (i, j = 1, 2, · · · , n) is called the

lower triangle and the collection of elements ai,j (i < j) is called the upper triangle. The diagonal may also

be included in the definition of the upper and lower triangles. A matrix having nonzero elements only in the

lower triangle that includes the diagonal is called a lower triangular matrix, and a matrix having nonzero

elements only in the upper triangle that includes the diagonal is called an upper triangular matrix.

(11) Conjugate transpose matrix

The transpose of a matrix having the complex conjugates of the elements of a complex matrix A as elements

is called conjugate transpose matrix and is represented by the symbol A∗. If the elements of a matrix are

real numbers, then A∗ = AT .

(12) Symmetric matrix

A square matrix for which A = AT holds is called a symmetric matrix. In a symmetric matrix, ai,j = aj,i.

(13) Hermitian matrix

A square matrix for which A = A∗ holds is called a Hermitian matrix. In a Hermitian matrix, ai,j and aj,i

are complex conjugates.

(14) Unitary matrix

The square matrix U for which UU∗ = I (I is the unit matrix) holds is called the unitary matrix.

(15) Orthogonal matrix

The real square matrix A for which AAT = I (I is the unit matrix) holds is called the orthogonal matrix.

(16) Subdiagonal of a matrix

The list of elements ai,i+p (i = 1, 2, · · · , n − p) in an n × n square matrix A = (ai,j) (i, j = 1, 2, · · · , n)
is called the p-th upper subdiagonal, and the list of elements ai+q,i (i = 1, 2, · · · , n − q) is called the q-th

lower subdiagonal. The elements are called the p-th upper subdiagonal elements and q-th lower subdiagonal

elements, respectively. Also, both of these collectively may be referred to simply as subdiagonal elements.
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(17) Band matrix

A matrix having nonzero elements only on the main diagonal and in several upper and lower subdiagonals

near the main diagonal in an n × n square matrix A = (ai,j) (i, j = 1, 2, · · · , n) is called a band matrix.

If the subdiagonals containing nonzero elements that are furthest from the diagonal are the u-th upper

subdiagonal and l-th lower subdiagonal, the values u and l are called the upper bandwidth and lower

bandwidth, respectively. if u = l, this is simply called the bandwidth.

(18) Tridiagonal matrix

A matrix in which the upper and lower bandwidths are both 1 is called a tridiagonal matrix.

(19) Hessenberg matrix

A matrix in which all lower triangle elements except the first lower subdiagonal are zero in an n×n square

matrix A = (ai,j) (i, j = 1, 2, · · · , n) is called a Hessenberg matrix. To obtain the eigenvalues of a matrix, a

general matrix is converted to this kind of matrix.

(20) Quasi-upper triangular matrix

An n × n square matrix A = (ai,j) (i, j = 1, 2, · · · , n) for which at least one of every two consecutive

subdiagonal elements of the first lower subdiagonal is 0 and all lower triangular elements excluding the first

lower subdiagonal are 0 is called a quasi-upper triangular matrix. This is a special case of a Hessenberg

matrix.

(21) Sparse matrix

In general, a matrix in which the number of nonzero elements is relatively small compared to the total

number of elements is called a sparse matrix. If the arrangement of the elements within a sparse matrix has

some kind of regularity and an effective method of solving a problem is created by making practical use of

this regularity, this matrix is called a regular sparse matrix. A sparse matrix that is not a regular sparse

matrix is called an irregular sparse matrix. For example, a band matrix having a small bandwidth is a type

of regular sparse matrix.

(22) Regular and singular matrices

If a square matrix A has an inverse matrix, the matrix A is said to be regular. A matrix that is not

regular is said to be singular. The solutions of system of simultaneous linear equations having a regular

matrix as coefficients are uniquely determined. However, since calculations are actually performed using

a finite number of digits, the effects of rounding errors cannot be avoided, and the distinction between

a regular and singular matrix becomes ambiguous. For example, solutions may apparently be obtained

even when a system of simultaneous linear equations is solved numerically using a mathematically singular

matrix. Therefore, when solving a system of simultaneous linear equations having a nearly singular matrix

as coefficients, sufficient testing is required concerning the appropriateness of solutions that are apparently

obtained.

(23) LU decomposition

To use a direct method to solve the system of simultaneous linear equations Ax = b, first decompose the

coefficient matrix A into the product A = LU of the lower triangular matrix L and upper triangular matrix

U . This decomposition is called an LU decomposition, If this kind of decomposition is performed, the

solution x of the system of simultaneous linear equations is obtained by sequentially solving the following

equations:

Ly = b

Ux = y
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Since the coefficient matrix of these two simultaneous linear equations is a triangular matrix, they can

be easily solved by using forward-substitution and backward-substitution. If the matrix A is regular, for

example, if the diagonal elements of matrix L are fixed at 1, the LU decomposition of the matrix A is uniquely

determined. Also, when solving a system of simultaneous linear equations, since LU decomposition generally

is performed while performing partial pivoting, if P is a row exchange matrix due to pivoting, triangular

matrices L and U for which PA = LU is satisfied are obtained, respectively.

(24) UTDU decomposition

If the coefficient matrix of a system of simultaneous linear equations is a symmetric matrix, the relationship

L = UTD holds between the lower triangular matrix L and upper triangular matrix U obtained by perform-

ing an LU decomposition without performing pivoting. Here, D is a diagonal matrix. Therefore, the system

of simultaneous linear equations can be solved by explicitly obtaining only D and one of L and U . The

decomposition that explicitly obtains U and D from coefficient matrix is called the UTDU decomposition.

(25) U∗DU decomposition

If the coefficient matrix of a system of simultaneous linear equations is a Hermitian matrix, the relationship

L = U∗D holds between the lower triangular matrix L and upper triangular matrix U obtained by performing

an LU decomposition without performing pivoting. Here, D is a diagonal matrix. Therefore, the system

of simultaneous linear equations can be solved by explicitly obtaining only D and one of L and U . The

decomposition that explicitly obtains U and D from coefficient matrix is called the U∗DU decomposition.

(26) Positive definite

If a real symmetric matrix or Hermitian matrix A satisfies x∗Ax > 0 for an arbitrary vector x (x 	= 0), it

is said to be positive (definite). If it satisfies x∗Ax < 0, it is said to be negative. The fact that the matrix

A is a positive definite matrix is equivalent to the following two condition.

(a) All of the eigenvalues of matrix A are positive.

(b) All principal minors of matrix A are positive.

Although, mathematically, an LU decomposition can be performed for a positive definite matrix without

performing pivoting, if pivoting is not actually performed, an LU decomposition may not be able to be

performed numerically with stability.

(27) Real eigenvalue

The eigenvalue of a real square matrix are all real if and only if the matrix is a product of two real

symmetric matrices. Also, the eigenvalue of a complex square matrix are all real if and only if the matrix

is a product of two Hermitian matrices.

(28) Diagonally dominant

If the following holds for an n× n square matrix A = (ai,j) (i, j = 1, 2, · · · , n)

|ai,i| >
n∑

j=1

j �=i

|ai,j | (i = 1, 2, · · · , n)

matrix A is called a diagonally dominant matrix. Although, mathematically, an LU decomposition can

be performed for a diagonally dominant matrix without performing pivoting, if pivoting is not actually

performed, an LU decomposition may not be able to be performed numerically with stability.
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(29) Fill-in

When an LU decomposition of a sparse matrix is performed, changing elements that had originally been

zero to nonzero values due to the calculation is called fill-in.

(30) Envelope method

When performing a UTDU decomposition of an n × n symmetric sparse matrix A, the envelope method

executes the decomposition by selecting the first nonzero element of each row of matrix A and the diagonal

elements as an envelope and considering only the elements within the envelope. This technique uses the

fact that fill-in occurs only within the envelope when UTDU decomposition of the matrix is performed.

The envelope method performs the decomposition by considering the lower triangular portion of the sym-

metric matrix. A technique that performs a similar decomposition by considering the upper triangular

portion is known as the skyline method.

(31) Vector space

If the set V satisfies conditions (a) and (b) V is called a vector space and its elements are called vectors.

(a) The sum a + b of two elements a and b of V is uniquely determined as an element of V and satisfies

the following properties.

i. (a+ b) + c = a+ (b+ c) (associative law)

Where, a, b and c are arbitrary elements of V .

ii. a+ b = b+ a (commutative law)

Where, a and b are arbitrary elements of V .

iii. An element 0 of V , which is called the zero vector, exists and satisfies a+ 0 = a for an arbitrary

element a of V .

iv. For an arbitrary element a of V , exactly one element b of V exists for which a + b = 0. This

element b is represented as −a.
(b) For an arbitrary element a of V and complex number c, ca (the c multiple of a) is uniquely determined

as an element of V and satisfies the following properties (scalar multiple).

i. c(a+ b) = ca+ cb (vector distributive law)

ii. (c+ d)a = ca+ da (scalar distributive law)

iii. (cd)a = c(da)

iv. 1a = a

(32) Linear combination, linearly independent and linearly dependent

The vector

c1a1 + · · ·+ ckak

created from the k vectors a1, · · · , ak of vector space V and complex numbers c1, · · · , ck is called the linear

combination of a1, · · · , ak, and c1, · · · , ck are called its coefficients. For certain coefficients c1, · · · , ck

that are not all zero, the set of vectors {a1, · · · , ak} is said to be linearly dependent if

c1a1 + · · ·+ ckak = 0

and is said to be linearly independent otherwise.
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(33) Basis

Let S be an arbitrary subset of vector space V , and let a collection of linearly independent vectors contained

in S be {a1, · · · , ak}. For an arbitrary vector b of S, if {a1, · · · , ak, b} is linearly dependent, {a1, · · · , ak}
is said to be the maximum set in S. When the vector space V itself is taken as S, this collection of linearly

independent vectors is called the basis of vector space V . The number of vectors constituting the basis

of V is called the dimension of V . Also, if we let an arbitrary basis of an n-dimensional vector space Vn

be {u1, · · · , un}, then an arbitrary vector a of Vn is represented uniquely as a linear combination of

{u1, · · · , un}.

(34) (Vector) subspace

A subset L of vector space V is called a (vector) subspace of V if the following conditions (a) and (b) are

satisfied.

(a) If a, b ∈ L, then a+ b ∈ L

(b) If a ∈ L and c is a complex number, ca ∈ L

(35) Linear transformation

Let Vn and Vm be n-dimensional andm-dimensional vector spaces, respectively. If the mappingA : Vn → Vm

that associates each element x of Vn with an element A(x) of Vm satisfies the following two conditions, A

is said to be a linear transformation from Vn to Vm.

(a) A(x1 + x2) = A(x1) +A(x1) x1, x2 ∈ Vn

(b) A(cx) = cA(x) x ∈ Vn and c : a complex number

If we let a single basis of Vn and Vm, respectively, be {u1, · · · , un} and {v1, · · · , vm}, then A(x) is

determined for an arbitrary x ∈ Vn according to the coefficient matrix A = (ai,j) of

A(uj) =

m∑
i=1

ai,jvi (j = 1, · · · , n)

The matrix A is called the representation matrix of the linear transformation A related to this basis. Also,

if A(x) = x for x ∈ Vn, it defines the linear transformation E : Vn → Vn, which is called the identity

transformation. The representation matrix of the identity transformation always is the unit matrix E

regardless of how the basis is taken.

(36) Eigenvalue and eigenvector

For a linear transformation A within an n-dimensional vector space Vn, if there exists a number λ and a

vector x (x 	= 0) such that

A(x) = λx, that is, (A− λE)(x) = 0

is satisfied, then λ is called an eigenvalue of A and x is called the eigenvector belonging to the eigenvalue

λ. Here, E is the identity transformation. If we fix a single basis within Vn, let the representation matrix

of the linear transformation A be A, and let the number vector corresponding to the eigenvector x be x̂,

then the eigenvalue λ and x̂ satisfy the following equation.

Ax̂ = λx̂
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Here, x̂ is represented using the components x1, · · · , xn of x as

x̂ =

⎡
⎢⎢⎣

x1

...

xn

⎤
⎥⎥⎦

Normally, λ and x̂ are called the eigenvalue and eigenvector of matrix A, respectively. These terms are

also used in this manual. Also, no distinction is made between the number vector and vector, which are

represented as x. Since the collection of all the vectors belonging to eigenvalue λ of the linear transformation

A : Vn → Vn together with the zero vector 0 form a single vector space, this is called the eigenvector space

belonging to the eigenvalue λ of A.

(37) Invariant subspace

For the linear transformation A within the vector space Vn, if the subspace U of Vn has the property

A(U) ⊆ U

that is, if Ax ∈ U for an arbitrary vector x, then U is said to be invariant relative to A. In particular,

the eigenvector space of A is invariant relative to A. An invariant subvector space is called an invariant

subspace.

(38) Plane rotation

The orthogonal transformation specified by the following kind of matrix Sk:l(θ) is called a plane rotation.

Skl(θ) =

⎡
⎢⎣ E1:k−1 O1:k−1,k:l O1:k−1,l:n

Ok:l,1:k−1 Tk:l(θ) Ok:l,l:n

Ol:n,1:k−1 Ol:n,k:l El:n

⎤
⎥⎦

Here, Tk:l(θ) is defined as follows:

Tk:l(θ) =

⎡
⎢⎣ cos θ Ok:k,k+1:l−1 − sin θ

Ok+1:l−1,k:k Ek+1:l−1 Ok+1:l−1,l:l

sin θ Ol:l,k+1:l−1 cos θ

⎤
⎥⎦

Ep:q is the q − p+ 1-dimensional unit matrix shown below:

Ep:q =

⎡
⎢⎢⎢⎢⎣

1 0

1
. . .

0 1

⎤
⎥⎥⎥⎥⎦

(p

(p+ 1
...

(q

and Op:r,q:s is the r − p+ 1× s− q + 1-dimensional zero matrix shown below:

q
�

q+1
� · · · s

�

Op:r,q:s =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎦

(p

(p+ 1
...

(r
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Now, if the submatrix Ap:r,q:s of A = (ai,j) (i = 1, 2, · · · , n; j = 1, 2, · · · , n) is defined as follows:

Ap:r,q:s =

⎡
⎢⎢⎢⎢⎣

ap,q ap,q+1 · · · ap,s

ap+1,q ap+1,q+1 · · · ap+1,s

...
...

. . .
...

ar,q ar,q+1 · · · ar,s

⎤
⎥⎥⎥⎥⎦

the matrix A is represented as follows:

A =

⎡
⎢⎣ A1:k−1,1:k−1 A1:k−1,k:l A1:k−1,l+1:n

Ak:l,1:k−1 Ak:l,k:l Ak:l,l+1:n

Al+1:n,1:k−1 Al+1:n,k:l Al+1:n,l+1:n

⎤
⎥⎦

At this time, since Sk:l(θ)A and Tk:l(θ)Ak:l,q:s are as follows:

Sk:l(θ)A =

⎡
⎢⎣ A1:k−1,1:k−1 A1:k−1,k:l A1:k−1,l+1:n

Tk:l(θ)Ak:l,1:k−1 Tk:l(θ)Ak:l,k:l Tk:l(θ)Ak:l,l+1:n

Al+1:n,1:k−1 Al+1:n,k:l Al+1:n,l+1:n

⎤
⎥⎦

Tk:l(θ)Ak:l,q:s =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θak,q − sin θal,q · · · cos θak,r − sin θal,s

ak+1,q · · · ak+1,r

... · · · ...

al−1,q · · · al−1,r

sin θak,q + cos θal,q · · · sin θak,r + cos θal,s

⎤
⎥⎥⎥⎥⎥⎥⎦

if θ is determined so that tan θ =
al,i

ak,i
or tan θ = − al,i

ak,i
(i = q, · · · , s) is satisfied, then an arbitrary element

among the elements of column k and column l of Sk:l(θ)A can be set to zero. Now, since the following

relationship holds:

ASk:l(−θ) =

⎡
⎢⎣ A1:k−1,1:k−1 A1:k−1,k:lTk:l(−θ) A1:k−1,l+1:n

Ak:l,1:k−1 Ak:l,k:lTk:l(−θ) Ak:l,l+1:n

Al+1:n,1:k−1 Al+1:n,k:lTk:l(−θ) Al+1:n,l+1:n

⎤
⎥⎦

Ap:r,k:lTk:l(−θ) =

⎡
⎢⎢⎣

cos θap,k − sin θap,l ap,k+1 · · · ap,l−1 sin θap,k + cos θap,l
...

...
...

...
...

cos θar,k − sin θar,l ar,k+1 · · · ar,l−1 sin θar,k + cos θar,l

⎤
⎥⎥⎦

if θ is determined so that tan θ =
ai,l

ai,k
or tan θ = − ai,l

ai,k
(i = p, · · · , r) is satisfied, then an arbitrary element

among the elements of column k and column l of ASk:l(−θ) can be set to zero. Now, since the following

relationship holds:

Sk:l(−θ) = Sk:l(θ)
T

and since Ã = Sk:l(θ)ASk:l(−θ) is as follows:

Ã = Sk:l(θ)ASk:l(−θ) =

⎡
⎢⎣ A1:k−1,1:k−1 A1:k−1,k:lTk:l(−θ) A1:k−1,l+1:n

Tk:l(θ)Ak:l,1:k−1 Tk:l(θ)Ak:l,k:lTk:l(−θ) Tk:l(θ)Ak:l,l+1:n

Al+1:n,1:k−1 Al+1:n,k:lTk:l(−θ) Al+1:n,l+1:n

⎤
⎥⎦
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if matrix A is a symmetric matrix, then by adjusting θ, either:

ãk,j = ãj,k = 0

or

ãl,j = ãj,l = 0

can be set for some j(j 	= k, j 	= l), where the elements of Ã = Sk:l(θ)ASk:l(−θ) are represented by (ãi,j).
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Appendix B

METHODS OF HANDLING ARRAY DATA

B.1 Methods of handling array data corresponding to matrix

Since the ASL subroutine library uses array data corresponding to matrix, this section describes various methods

of handling arrays.

To call a subroutine that uses array data, you must declare that array in advance in the calling program. If

the declared array is A(LNA, K), then n× n matrix A = (ai,j) (i = 1, 2, · · · , n; j = 1, 2, · · · , n) is stored in array

A as shown in the figure below.

Matrix Storage Mode Within an Array A

a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n

...
...

...
. . .

...

an,1 an,2 an,3 · · · an,n

← −−−−−− n−−−−−− →
LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
n

Remarks

a. LNA ≥ n and K ≥ n must hold.

b. Matrix element ai,j corresponds to the array element A(i, j).

Figure B−1 Matrix Storage Mode Within an Array A()

LNA is called an adjustable dimension. If a two-dimensional array is used as an argument, the adjustable must

be passed to the subroutine as an argument in addition to the array name and order of the array. The matrix

elements ai,j (i = 1, 2, · · · ,LNA; j = 1, 2, · · · ,K) must correspond to the array element A(i, j) (i = 1, 2, · · · ,LNA; j =

1, 2, · · · ,K) , as follows on the main memory.

a1,1 a2,1 · · · aLNA,1 a1,2 a2,2 · · ·
� � · · · � � � · · ·

A(1, 1) A(2, 1) · · · A(LNA, 1) A(1, 2) A(2, 2) · · ·

Example DAM1AD (Real matrix addition)

Add 3×2 matrices A and B placing the sum in matrix C. If you declare arrays of size (5, 4), the declaration

and CALL statements are as follows.

REAL(8) A(5, 4), B(5, 4), C(5, 4)

INTEGER IERR

C

CALL DAM1AD(A, 5, 3, 2, B, 5, C, 5, IERR)

Data is stored in A as follows. Data are stored in B and C in the same way.
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a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

← −− 2−− →5

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−− 4−−−− →

!⏐⏐⏐⏐#3

Figure B−2 Matrix Storage Mode Within an Array A

If you will be manipulating several arrays having different orders as data, you can prepare one array having

LNA equal to the largest order and use that array successively for each array. However, you must always assign

the LNA value as an adjustable dimension.

B.2 Data storage modes

Matrix data storage modes differ according to the matrix type. Storage modes for each type of matrix are shown

below.

B.2.1 Real matrix (two-dimensional array type)

Matrix to be stored

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

⇒

Storage status within array A(LNA, K)

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

← −−−−−−N−−−−− →
LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐# ← −−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and K ≥ N must hold.

Figure B−3 Real Matrix (Two-Dimensional Array Type) Storage Mode
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Complex matrix

B.2.2 Complex matrix

(1) Two-dimensional array type, real argument type

Real and imaginary parts are stored in separate arrays.

Matrix to be stored

a1,1 + b1,1i a1,2 + b1,2i a1,3 + b1,3i

a2,1 + b2,1i a2,2 + b2,2i a2,3 + b2,3i

a3,1 + b3,1i a3,2 + b3,2i a3,3 + b3,3i

⇓

Storage status within array AR(LNA, K)

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

← −−−N−−→LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−K−−−−→

!⏐⏐⏐⏐⏐#N
Storage status within array AI(LNA, K)

b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

← −−−N−− →LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−K−−−− →

!⏐⏐⏐⏐⏐#N

Remarks

a. LNA ≥ N and K ≥ N must hold.

Figure B−4 Complex Matrix (Two-dimensional Array Type) (Real Argument Type) Storage Mode

(2) Two-dimensional array type, complex argument type

Matrix to be stored

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

⇒

Storage status within array A(LNA, K)

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

← −−−−−−N−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐# ← −−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. LNA ≥ N and K ≥ N must hold.

Figure B−5 Complex Matrix (Two-dimensional Array Type)(Complex Argument Type) Storage Mode
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Real symmetric matrix and positive symmetric matrix

B.2.3 Real symmetric matrix and positive symmetric matrix

(1) Two-dimensional array type, upper triangular type

Matrix to be stored

a1,1 a1,2 a1,3 a1,4 a1,5

a1,2 a2,2 a2,3 a2,4 a2,5

a1,3 a2,3 a3,3 a3,4 a3,5

a1,4 a2,4 a3,4 a4,4 a4,5

a1,5 a2,5 a3,5 a4,5 a5,5

⇒

Storage status within array A(LNA, K)

a1,1 a1,2 a1,3 a1,4 a1,5

∗ a2,2 a2,3 a2,4 a2,5

∗ ∗ a3,3 a3,4 a3,5

∗ ∗ ∗ a4,4 a4,5

∗ ∗ ∗ ∗ a5,5

← −−−−−−N−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐# ← −−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. The asterisk (∗) indicates an arbitrary value.

b. LNA ≥ N and K ≥ N must hold.

Figure B−6 Real Symmetric Matrix (Two-dimensional Array Type) (Upper Triangular Type) Storage mode

(2) Two-dimensional array type, lower triangular type

Matrix to be stored

a1,1 a1,2 a1,3 a1,4 a1,5

a1,2 a2,2 a2,3 a2,4 a2,5

a1,3 a2,3 a3,3 a3,4 a3,5

a1,4 a2,4 a3,4 a4,4 a4,5

a1,5 a2,5 a3,5 a4,5 a5,5

⇒

Storage status within array A(LNA, K)

a1,1 ∗ ∗ ∗ ∗
a1,2 a2,2 ∗ ∗ ∗
a1,3 a2,3 a3,3 ∗ ∗
a1,4 a2,4 a3,4 a4,4 ∗
a1,5 a2,5 a3,5 a4,5 a5,5

← −−−−−−N−−−−− →

LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐# ← −−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. The asterisk (∗) indicates an arbitrary value.

b. LNA ≥ N and K ≥ N must hold.

Figure B−7 Real Symmetric Matrix (Two-dimensional Array Type, Lower Triangular Type) Storage mode
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Hermitian matrix

B.2.4 Hermitian matrix

(1) Two-dimensional array type, real argument type, upper triangular type

Upper triangular portions of the real and imaginary parts are stored in separate arrays.

Matrix to be stored

a1,1 a1,2 + b1,2i a1,3 + b1,3i

a2,1 − b2,1i a2,2 a2,3 + b2,3i

a3,1 − b3,1i a3,2 − b3,2i a3,3

⇓

Storage status within array AR(LNA, K)

a1,1 a1,2 a1,3

∗ a2,2 a2,3

∗ ∗ a3,3

← −−−N−−− →LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−K−−−− →

!⏐⏐⏐⏐⏐#N
Storage status within array AI(LNA, K)

0.0 b1,2 b1,3

∗ 0.0 b2,3

∗ ∗ 0.0

← −−−N−−− →LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−K−−−− →

!⏐⏐⏐⏐⏐#N

Remarks

a. The asterisk (∗) indicates an arbitrary value.

b. LNA ≥ N and K ≥ N must hold.

Figure B−8 Hermitian Matrix (Two-dimensional Array Type) (Real Argument Type) (Upper Triangular Type)

Storage Mode
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Hermitian matrix

(2) Two-dimensional array type, complex argument type, upper triangular type

Matrix to be stored

a1,1 a1,2 a1,3 a1,4 a1,5

a1,2 a2,2 a2,3 a2,4 a2,5

a1,3 a2,3 a3,3 a3,4 a3,5

a1,4 a2,4 a3,4 a4,4 a4,5

a1,5 a2,5 a3,5 a4,5 a5,5

⇓

Storage status within array A(LNA, K)

a1,1 a1,2 a1,3 a1,4 a1,5

∗ a2,2 a2,3 a2,4 a2,5

∗ ∗ a3,3 a3,4 a3,5

∗ ∗ ∗ a4,4 a4,5

∗ ∗ ∗ ∗ a5,5

← −−−−−−N−−−−− →
LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐# ← −−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. The x indicates the complex conjugate of x.

b. The asterisk ∗ indicates an arbitrary value.

c. LNA ≥ N and K ≥ N must hold.

Figure B−9 Hermitian Matrix (Two-dimensional Array Type) (Complex Argument Type) (Upper Triangular

Type) Storage Mode
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Real band matrix

B.2.5 Real band matrix

Matrix to be stored

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3 a2,4
0

a3,2 a3,3 a3,4 a3,5

a4,3 a4,4 a4,5
0

a5,4 a5,5

⇓

Storage status within array A(LNA, K)

∗ a2,1 a3,2 a4,3 a5,4

a1,1 a2,2 a3,3 a4,4 a5,5

a1,2 a2,3 a3,4 a4,5 ∗
a1,3 a2,4 a3,5 ∗ ∗
– – ∗ ∗ ∗

← −−−−−−N−−−−− →
LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐# ← −−−−−−−K−−−−−−−−→

!⏐⏐⏐⏐⏐⏐⏐⏐⏐#
2×ML+MU+1

Remarks

a. The asterisk ∗ indicates an arbitrary value.

b. The area indicated by dashes (–) is required for an LU decomposition of the matrix.

c. MU is the upper band width and ML is the lower band width.

d. LNA ≥ 2 × ML+MU+ 1 and K ≥ N must hold. (However, if no LU decomposition is to be performed,

LNA ≥ ML+MU+ 1 and K ≥ N is sufficient.)

Figure B−10 Real Band Matrix (Band Type) Storage Mode
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Real symmetric band matrix and positive symmetric matrix (symmetric band type)

B.2.6 Real symmetric band matrix and positive symmetric matrix (symmetric band

type)

Matrix to be stored

a1,1 a1,2 a1,3

a1,2 a2,2 a2,3 a2,4
0

a1,3 a2,3 a3,3 a3,4 a3,5

a2,4 a3,4 a4,4 a4,5
0

a3,5 a4,5 a5,5

⇓

Storage status within array A(LNA, K)

∗ ∗ a1,3 a2,4 a3,5

∗ a1,2 a2,3 a3,4 a4,5

a1,1 a2,2 a3,3 a4,4 a5,5

← −−−−−−N−−−−− →LNA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#
← −−−−−−−K−−−−−−− →

!⏐⏐⏐⏐⏐#MB+1

Remarks

a. The asterisk ∗ indicates an arbitrary value.

b. MB is the band width.

c. LNA ≥ MB+ 1 and K ≥ N must hold.

Figure B−11 Real Symmetric Band Matrix (Symmetric Band Type) Storage Mode
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Real tridiagonal matrix (vector type)

B.2.7 Real tridiagonal matrix (vector type)

Matrix to be stored

a1,1 a1,2

a2,1 a2,2 a2,3
0

a3,2 a3,3 a3,4

a4,3 a4,4 a4,5
0

a5,4 a5,5

⇓

Storage status within arrays SDL(NA)

(lower subdiagonal component),

D(NA)(diagonal component) and

SDU(NA)(upper subdiagonal component)

NA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#

∗ a1,1 a1,2

a2,1 a2,2 a2,3

a3,2 a3,3 a3,4

a4,3 a4,4 a4,5

a5,4 a5,5 ∗

SDL D SDU

!⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. The asterisk ∗ indicates an arbitrary value.

b. NA ≥ N must hold.

Figure B−12 Real Tridiagonal Matrix (Vector Type) Storage Mode
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Real symmetric tridiagonal matrix and positive symmetric tridiagonal matrix (vector type)

B.2.8 Real symmetric tridiagonal matrix and positive symmetric tridiagonal matrix

(vector type)

Matrix to be stored

a1,1 a1,2

a1,2 a2,2 a2,3
0

a2,3 a3,3 a3,4

a3,4 a4,4 a4,5
0

a4,5 a5,5

⇓

Storage status within arrays D(NA)

(diagonal component) and SD(NA)

(subdiagonal component)

NA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#

a1,1 a1,2

a2,2 a2,3

a3,3 a3,4

a4,4 a4,5

a5,5 ∗

D SD

!⏐⏐⏐⏐⏐⏐⏐⏐⏐#
N

Remarks

a. The asterisk ∗ indicates an arbitrary value.

b. NA ≥ N must hold.

Figure B−13 Real Symmetric Tridiagonal Matrix (Vector Type) Storage Mode

B.2.9 Fixed coefficient real tridiagonal matrix (scalar type)

Matrix to be stored (a)

d s

s d s
0

s d s

s d s
0

s d

Matrix to be stored (b)

d s

s d s
0

s d s

s d s
0

2× s d

Matrix to be stored (c)

d 2× s

s d s
0

s d s

s d s
0

s d

Matrix to be stored (d)

d 2× s

s d s
0

s d s

s d s
0

2× s d

⇓

Storage status within variables D

(diagonal component) and SD

(subdiagonal component)

d s

D SD

Figure B−14 Fixed Coefficient Real Tridiagonal Matrix (Scalar Type)
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Triangular matrix

B.2.10 Triangular matrix

(1) Two-dimensional array type

The storage mode is the same as for a real symmetric matrix (two-dimensional array type) (upper triangular

type) or a real symmetric matrix (two-dimensional array type) (lower triangular type).

B.2.11 Random sparse matrix (For symmetric matrix only)

(1) Sparse format (Symmetric case)

Matrix A to be stored

a1,1 0.0 a1,3 a1,4 a1,5 0.0

0.0 a2,2 0.0 a2,4 0.0 0.0

a1,3 0.0 a3,3 0.0 a3,5 0.0

a1,4 a2,4 0.0 a4,4 0.0 a4,6

a1,5 0.0 a3,5 0.0 a5,5 0.0

0.0 0.0 0.0 a4,6 0.0 a6,6

⇓

Storage status of arrays AVAL(NA),JCN(NA) and IA(N)

NA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#

a1,1 1

a1,3 3

a1,4 4

a1,5 5

a2,2 2

a2,4 4

a3,3 3

a3,5 5

a4,4 4

a4,6 6

a5,5 5

a6,6 6

AVAL JCN

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#

M N

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#

1

5

7

9

11

12

IA

Remarks

a. M is the number of nonzero elements in the upper triangular part of the original matrix A including the diagonal.

b. Array AVAL contains the nonzero upper triangular elements of the original matrix A, stored sequentially begin-

ning with the first row.

c. Array JCN contains the column numbers in the original matrix A of the elements stored in array AVAL.

d. Array IA contains values equal to the positions in array AVAL of the diagonal elements.

e. N ≤ M < NA must hold.

Figure B−15 Storage of Random Symmetric Sparse Matrix (Sparse format)
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Random sparse matrix

B.2.12 Random sparse matrix

(1) Sparse format

Matrix A to be stored

a1,1 0.0 a1,3 a1,4 a1,5 0.0

a2,1 a2,2 0.0 a2,4 0.0 0.0

0.0 a3,2 a3,3 0.0 a3,5 0.0

a4,1 a4,2 0.0 a4,4 0.0 a4,6

a5,1 0.0 a5,3 a5,4 a5,5 0.0

a6,1 0.0 a6,3 0.0 a6,5 a6,6

⇓

Storage status of arrays AVAL(NA), JCN(NA) and IA(N)

NA

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#

a1,1 1

a1,3 3

a1,4 4

a1,5 5

a2,1 1

a2,2 2

a2,4 4
...

...

a6,1 1

a6,3 3

a6,5 5

a6,6 6

AVAL JCN

N

!⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐#

1

5

8

11

15

19

IA

Remarks

a. NA is the number of nonzero elements of the original matrix A.

b. Array AVAL contains the nonzero elements of the original matrix A, stored sequentially beginning with the first

row.

c. Array JCN contains the column indices in the original matrix A of the elements stored in array AVAL.

d. Array IA contains values equal to the positions in array AVAL of the first nonzero element in each row.

e. N < NA must hold.

Figure B−16 Storage of Real Asymmetric Random Sparse Matrix (Sparse Format)
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Appendix C

MACHINE CONSTANTS USED IN ASL

C.1 Units for Determining Error

The table below shows values in ASL as units for determining error in floating point calculations. The units

shown in the table are numeric values determined by the internal representation of floating point data. ASL uses

these units for determining convergence and zeros.

Table C−1 Units for Determining Error

Single-precision Double-precision

2−23(� 1.19× 10−7) 2−52(� 2.22× 10−16)

Remark: The unit for determining error ε, which is also called the machine ε, is usually defined as the smallest positive

constant for which the calculation result of 1+ ε differs from 1 in the corresponding floating point mode. Therefore, seeing

the unit for determining error enables you to know the maximum number of significant digits of an operation (on the

mantissa) in that floating point mode.

C.2 Maximum and Minimum Values of Floating Point Data

The table below shows maximum and minimum values of floating point data defined within ASL. Note that the

maximum and minimum values shown below may differ from the maximum and minimum values that are actually

used by the hardware for each floating point mode.

Table C−2 Maximum and Minimum Values of Floating Point Data

Single-precision Double-precision

Maximum value 2127(2 − 2−23) (� 3.40× 1038) 21023(2 − 2−52) (� 1.80× 10308)

Positive

minimum value
2−126 (� 1.17× 10−38) 2−1022 (� 2.23× 10−308)

Negative

maximum value
−2−126 (� −1.17× 10−38) −2−1022 (� −2.23× 10−308)

Minimum value −2127(2− 2−23) (� −3.40× 1038) −21023(2− 2−52) (� −1.80× 10308)
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