ADVANCED SCIENTIFIC LIBRARY ASL User's Guide <Basic Functions Vol.2>

PROPRIETARY NOTICE

The information disclosed in this document is the property of NEC Corporation (NEC) and/or its licensors. NEC and/or its licensors, as appropriate, reserve all patent, copyright and other proprietary rights to this document, including all design, manufacturing, reproduction, use and sales rights thereto, except to extent said rights are expressly granted to others.

The information in this document is subject to change at any time, without notice.

PREFACE

This manual describes general concepts, functions, and specifications for use of the Advanced Scientific Library (ASL).

The manuals corresponding to this product consist of seven volumes, which are divided into the chapters shown below. This manual describes the basic functions, volume 2.

Basic Functions Volume 1

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Storage Mode Conversion	Explanation of algorithms, method of using, and usage example of subroutine related to storage mode conversion of array data.
3	Basic Matrix Algebra	Explanation of algorithms, method of using, and usage example of subroutine related to basic calculations involving matrices.
4	Eigenvalues and Eigenvectors	Explanation of algorithms, method of using, and usage example of subroutine related to the standard eigenvalue problem for real matrices, complex matrices, real symmetric matrices, Hermitian matrices, real sym- metric band matrices, real symmetric tridiagonal matrices, real symmetric random sparse matrices, Hermitian random sparse matrices and the generalized eigenvalue problem for real matrices, real symmetric matrices, Hermitian matrices, real symmetric band matrices.

Basic Functions Volume 2

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Simultaneous Linear Equations (Direct Method)	Explanation of algorithms, method of using, and usage exam- ple of subroutine related to simultaneous linear equations corre- sponding to real matrices, complex matrices, positive symmetric matrices, real symmetric matrices, Hermitian matrices, real band matrices, positive symmetric band matrices, real tridiagonal ma- trices, real upper triangular matrices, and real lower triangular matrices.

Basic Functions Volume 3

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Fourier Transforms and their applications	Explanation of algorithms, method of using, and usage exam- ple of subroutine related to one-, two- and three-dimensional complex Fourier transforms and real Fourier transforms, one-, two- and three-dimensional convolutions, correlations, and power spectrum analysis, wavelet transforms, and inverse Laplace transforms.

Basic Functions Volume 4

Chapter	Title	Contents
1	Introduction	Differential Equations and Their Applications item, and usage limitations.
2	Explanation of algorithms, method of using, and usage example of subroutine related to ordinary differential equations initial value problems for high-order simultaneous ordinary differential equations, implicit simultaneous ordinary differential equations, matrix type ordi-	
nary differential equations, stiff problem high-order simultane-		
ous ordinary differential equations, simultaneous ordinary dif-		
ferential equations, first-order simultaneous ordinary differential		
equations, and high-order ordinary differential equations, and		
ordinary differential equations boundary value problems		
for high-order simultaneous ordinary differential equations, first-		
order simultaneous ordinary differential equations, high-order or-		
dinary differential equations, high-order linear ordinary differen-		
tial equations, and second-order linear ordinary differential equa-		
tions, and		
integral equations for Fredholm's integral equations of second		
kind and Volterra's integral equations of first kind, and		
partial differential equations for two- and three-dimensional		
inhomogeneous Helmholtz equation.		

Basic Functions Volume 5

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Special Functions	Explanation of algorithms, method of using, and usage example of subroutine related to Bessel functions, modified Bessel func- tions, spherical Bessel functions, functions related to Bessel func- tions, Gamma functions, functions related to Gamma functions, elliptic functions, indefinite integrals of elementary functions, as- sociated Legendre functions, orthogonal polynomials, and other special functions.
3	Sorting and Ranking	Explanation and usage examples of subroutine related to sorting and ranking.
4	Roots of Equations	Explanation of algorithms, method of using, and usage example of subroutine related to roots of algebraic equations, nonlinear equations, and simultaneous nonlinear equations.
5	Extremal Problems and Optimization	Explanation of algorithms, method of using, and usage exam- ple of subroutine related to minimization of functions with no constraints, minimization of the sum of the squares of functions with no constraints, minimization of one-variable functions with constraints, minimization of multi-variable functions with con-
straints, and shortest path problem.		

Basic Functions Volume 6

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Random Number Tests	Explanation and usage examples of subroutine related to uniform random number tests, and distribution random number tests.
3	Probability Distributions	Explanation and usage examples of subroutine related to contin- uous distributions and discrete distributions.
4	Basic Statistics	Explanation and usage examples of subroutine related to basic statistics, variance-covariance and correlation.
5	Tests and Estimates	Explanation and usage examples of subroutine related to interval estimates and tests.
7	Analysis of Variance Design of Experiments	Explanation and usage examples of subroutine related to one-way layout, two-way layout, multiple-way layout, randomized block design, Greco-Latin square method, cumulative Method.
8	Nonparametric Tests	Explanation and usage examples of subroutine related to tests using χ^{2} distribution and tests using other distributions.
9	Time Series Analysis	Explanation and usage examples of subroutine related to prin- cipal component analysis, factor analysis, canonical correlation analysis, discriminant analysis, cluster analysis.
Explanation and usage examples of subroutine related to auto- correlation, cross correlation, autocovariance, cross covariance, smoothing and demand forecasting.		
10	Regression analysis	Explanation and usage examples of subroutine related to linear Regression and nonlinear Regression.

Shared Memory Parallel Functions

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Basic Matrix Algebra	Explanation of algorithms, method of using, and usage example of subroutine related to obtain the product of real matrices and complex matrices.
3	Simultaneous Linear Equations (Direct Method)	Explanation of algorithms, method of using, and usage exam- ple of subroutine related to simultaneous linear equations cor- responding to real matrices, complex matrices, real symmetric matrices, and Hermitian matrices.
4	Simultaneous Linear Equations (Iteration Method)	Explanation of algorithms, method of using, and usage exam- ple of subroutine related to simultaneous linear equations corre- sponding to real positive definite symmetric sparse matrices, real symmetric sparse matrices and real asymmetric sparse matrices.
5	Eigenvalues and Eigenvectors	Explanation of algorithms, method of using, and usage example of subroutine related to the eigenvalue problem for real symmet- ric matrices and Hermitian matrices.
6	Fourier Transforms and their applications	Explanation of algorithms, method of using, and usage example of subroutine related to one-, two- and three-dimensional com- plex Fourier transforms and real Fourier transforms, two- and
7	Sorting	three-dimensional convolutions, correlations, and power spec- trum analysis.

Document Version 3.0.0-230301 for ASL, March 2023

Remarks

(1) This manual corresponds to ASL 1.1. All functions described in this manual are program products.
(2) Proper nouns such as product names are registered trademarks or trademarks of individual manufacturers.
(3) This library was developed by incorporating the latest numerical computational techniques. Therefore, to keep up with the latest techniques, if a newly added or improved function includes the function of an existing function may be removed.

Contents

1 INTRODUCTION 1
1.1 OVERVIEW 1
1.1.1 Introduction to The Advanced Scientific Library ASL 1
1.1.2 Distinctive Characteristics of ASL 1
1.2 KINDS OF LIBRARIES 2
1.3 ORGANIZATION 3
1.3.1 Introduction 3
1.3.2 Organization of Subroutine Description 3
1.3.3 Contents of Each Item 3
1.4 SUBROUTINE NAMES 7
1.5 NOTES 9
2 SIMULTANEOUS LINEAR EQUATIONS(DIRECT METHOD) 10
2.1 INTRODUCTION 10
2.1.1 Methods of using subroutines 11
2.1.2 Notes 13
2.1.3 Algorithms Used 15
2.1.3.1 Crout Method 15
2.1.3.2 Cholesky method 16
2.1.3.3 Modified Cholesky method 16
2.1.3.4 Gauss method 17
2.1.3.5 Levinson method 18
2.1.3.6 Vandermonde matrix 19
2.1.3.7 Cyclic Reduction Method 21
2.1.3.8 Calculating the inverse matrix 27
2.1.3.9 Calculating the determinant 27
2.1.3.10 Improving the solution 27
2.1.3.11 Precise estimate of the approximate solution 28
2.1.3.12 Condition Number 28
2.1.4 Reference Bibliography 30
2.2 REAL MATRIX (TWO-DIMENSIONAL ARRAY TYPE) 31
2.2.1 DBGMSM, RBGMSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Real Matrix) 31
2.2.2 DBGMSL, RBGMSL
Simultaneous Linear Equations (Real Matrix) 35
2.2.3 DBGMLU, RBGMLU
LU Decomposition of a Real Matrix 39
2.2.4 DBGMLC, RBGMLC
LU Decomposition and Condition Number of a Real Matrix 41
2.2.5 DBGMLS, RBGMLS
Simultaneous Linear Equations (LU-Decomposed Real Matrix) 43
2.2.6 DBGMMS, RBGMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Real Matrix) 45
2.2.7 DBGMDI, RBGMDI
Determinant and Inverse Matrix of a Real Matrix 48
2.2.8 DBGMLX, RBGMLX
Improving the Solution of Simultaneous Linear Equations (Real Matrix) 50
2.3 COMPLEX MATRIX (TWO DIMENSIONAL ARRAY TYPE) (REAL ARGUMENT TYPE) 54
2.3.1 ZBGMSM, CBGMSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix) 54
2.3.2 ZBGMSL, CBGMSL
Simultaneous Linear Equations (Complex Matrix) 58
2.3.3 ZBGMLU, CBGMLU
LU Decomposition of a Complex Matrix 62
2.3.4 ZBGMLC, CBGMLC LU Decomposition and Condition Number of a Complex Matrix 64
2.3.5 ZBGMLS, CBGMLS
Simultaneous Linear Equations (LU-Decomposed Complex Matrix) 66
2.3.6 ZBGMMS, CBGMMS Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix) 68
2.3.7 ZBGMDI, CBGMDI Determinant and Inverse Matrix of a Complex Matrix 72
2.3.8 ZBGMLX, CBGMLX
Improving the Solution of Simultaneous Linear Equations (Complex Matrix) 74
2.4 COMPLEX MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (COMPLEX ARGUMENT TYPE) 76
2.4.1 ZBGNSM, CBGNSM Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix) 76
2.4.2 ZBGNSL, CBGNSL
Simultaneous Linear Equations (Complex Matrix) 79
2.4.3 ZBGNLU, CBGNLU
LU Decomposition of a Complex Matrix 82
2.4.4 ZBGNLC, CBGNLC LU Decomposition and Condition Number of a Complex Matrix 84
2.4.5 ZBGNLS, CBGNLS
Simultaneous Linear Equations (LU-Decomposed Complex Matrix) 86
2.4.6 ZBGNMS, CBGNMS Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix) 88
2.4.7 ZBGNDI, CBGNDI Determinant and Inverse Matrix of a Complex Matrix 92
2.4.8 ZBGNLX, CBGNLX
Improving the Solution of Simultaneous Linear Equations (Complex Matrix) 94
2.5 POSITIVE SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIAN- GULAR TYPE) 96
2.5.1 DBPDSL, RBPDSL Simultaneous Linear Equations (Positive Symmetric Matrix) 96
2.5.2 DBPDUU, RBPDUU L^{T} Decomposition of a Positive Symmetric Matrix 100
2.5.3 DBPDUC, RBPDUC
L^{T} Decomposition and Condition Number of a Positive Symmetric Matrix 102
2.5.4 DBPDLS, RBPDLS Simultaneous Linear Equations (LL ${ }^{\mathrm{T}}$-Decomposed Positive Symmetric Matrix) 104
2.5.5 DBPDDI, RBPDDI Determinant and Inverse Matrix of a Positive Symmetric Matrix 106
2.5.6 DBPDLX, RBPDLX Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Matrix) 108
2.6 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGU- LAR TYPE) 110
2.6.1 DBSPSL, RBSPSL
Simultaneous Linear Equations (Real Symmetric Matrix) 110
2.6.2 DBSPUD, RBSPUD LDL ${ }^{\text {T }}$ Decomposition of a Real Symmetric Matrix 114
2.6.3 DBSPUC, RBSPUC
LDL $^{\mathrm{T}}$ Decomposition and Condition Number of a Real Symmetric Matrix 116
2.6.4 DBSPLS, RBSPLS
Simultaneous Linear Equations (LDL ${ }^{T}$-Decomposed Real Symmetric Matrix) 118
2.6.5 DBSPMS, RBSPMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL $^{\mathrm{T}}$ decomposed Real Matrix) 120
2.6.6 DBSPDI, RBSPDI
Determinant and Inverse Matrix of a Real Symmetric Matrix 123
2.6.7 DBSPLX, RBSPLX Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix) 125
2.7 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGU- LAR TYPE)(NO PIVOTING) 127
2.7.1 DBSMSL, RBSMSL
Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting) 127
2.7.2 DBSMUD, RBSMUD
LDL $^{\mathrm{T}}$ Decomposition of a Real Symmetric Matrix (No Pivoting) 131
2.7.3 DBSMUC, RBSMUC
LDL $^{\mathrm{T}}$ Decomposition and Condition Number of a Real Symmetric Matrix (No Pivoting) 133
2.7.4 DBSMLS, RBSMLS
Simultaneous Linear Equations (LDL ${ }^{T}$-Decomposed Real Symmetric Matrix) (No Pivoting) 135
2.7.5 DBSMMS, RBSMMSSimultaneous Linear Equations with Multiple Right-Hand Sides (LDL T-Decomposed RealMatrix) (No Pivoting)137
2.7.6 DBSMDI, RBSMDI
Determinant and Inverse Matrix of a Real Symmetric Matrix (No Pivoting) 140
2.7.7 DBSMLX, RBSMLX
Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting) 142
2.8 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE, LOWER TRIANGU-
LAR TYPE)(NO PIVOTING) 144
2.8.1 DBSNSL, RBSNSL
Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting) 144
2.8.2 DBSNUD, RBSNUD
U^{T} DU Decomposition of a Real Symmetric Matrix (No Pivoting) 148
2.8.3 DBSNLS, RBSNLS
Simultaneous Linear Equations (U^{T} DU-Decomposed Real Symmetric Matrix) (No Pivoting) 150
2.9 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE) 152
2.9.1 ZBHPSL, CBHPSL
Simultaneous Linear Equations (Hermitian Matrix) 152
2.9.2 ZBHPUD, CBHPUD
LDL* Decomposition of a Hermitian Matrix 156
2.9.3 ZBHPUC, CBHPUC
LDL* Decomposition and Condition Number of a Hermitian Matrix 158
2.9.4 ZBHPLS, CBHPLS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) 160
2.9.5 ZBHPMS, CBHPMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Her- mitian Matrix) 162
2.9.6 ZBHPDI, CBHPDI
Determinant and Inverse Matrix of a Hermitian Matrix 165
2.9.7 ZBHPLX, CBHPLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) 167
2.10 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE) (NO PIVOTING) 169
2.10.1 ZBHRSL, CBHRSL
Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting) 169
2.10.2 ZBHRUD, CBHRUD
LDL* Decomposition of a Hermitian Matrix (No Pivoting) 173
2.10.3 ZBHRUC, CBHRUC
LDL* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting) 175
2.10.4 ZBHRLS, CBHRLS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No Pivoting) 177
2.10.5 ZBHRMS, CBHRMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Her- mitian Matrix) (No Pivoting) 179
2.10.6 ZBHRDI, CBHRDI
Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting) 182
2.10.7 ZBHRLX, CBHRLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)184
2.11 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGUMENT TYPE) 186
2.11.1 ZBHFSL, CBHFSL
Simultaneous Linear Equations (Hermitian Matrix) 186
2.11.2 ZBHFUD, CBHFUD
LDL* Decomposition of a Hermitian Matrix 190
2.11.3 ZBHFUC, CBHFUC
LDL* Decomposition and Condition Number of a Hermitian Matrix 192
2.11.4 ZBHFLS, CBHFLS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) 194
2.11.5 ZBHFMS, CBHFMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Her- mitian Matrix) 196
2.11.6 ZBHFDI, CBHFDI
Determinant and Inverse Matrix of a Hermitian Matrix 199
2.11.7 ZBHFLX, CBHFLX Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) 201
2.12 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGUMENT TYPE) (NO PIVOTING) 203
2.12.1 ZBHESL, CBHESLSimultaneous Linear Equations (Hermitian Matrix) (No Pivoting)203
2.12.2 ZBHEUD, CBHEUD
LDL* Decomposition of a Hermitian Matrix (No Pivoting) 207
2.12.3 ZBHEUC, CBHEUC
LDL* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting) 209
2.12.4 ZBHELS, CBHELS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No Pivoting) 211
2.12.5 ZBHEMS, CBHEMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Her- mitian Matrix) (No Pivoting) 213
2.12.6 ZBHEDI, CBHEDI
Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting) 216
2.12.7 ZBHELX, CBHELX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting) 218
2.13 REAL BAND MATRIX (BAND TYPE) 220
2.13.1 DBBDSL, RBBDSL
Simultaneous Linear Equations (Real Band Matrix) 220
2.13.2 DBBDLU, RBBDLU
LU Decomposition of a Real Band Matrix 225
2.13.3 DBBDLC, RBBDLC
LU Decomposition and Condition Number of a Real Band Matrix 227
2.13.4 DBBDLS, RBBDLS
Simultaneous Linear Equations (LU-Decomposed Real Band Matrix) 229
2.13.5 DBBDDI, RBBDDI Determinant of a Real Band Matrix 231
2.13.6 DBBDLX, RBBDLX
Improving the Solution of Simultaneous Linear Equations (Real Band Matrix) 233
2.14 POSITIVE SYMMETRIC BAND MATRIX (SYMMETRIC BAND TYPE) 237
2.14.1 DBBPSL, RBBPSL
Simultaneous Linear Equations (Positive Symmetric Band Matrix) 237
2.14.2 DBBPUU, RBBPUU
L^{T} Decomposition of a Positive Symmetric Band Matrix 241
2.14.3 DBBPUC, RBBPUC
L^{T} Decomposition and Condition Number of a Positive Symmetric Band Matrix 243
2.14.4 DBBPLS, RBBPLS
Simultaneous Linear Equations (LL ${ }^{T}$-Decomposed Positive Symmetric Band Matrix) 245
2.14.5 DBBPDI, RBBPDI Determinant of a Positive Symmetric Band Matrix 247
2.14.6 DBBPLX, RBBPLX
Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Band Matrix) 249
2.15 REAL TRIDIAGONAL MATRIX (VECTOR TYPE) 251
2.15.1 DBTDSL, RBTDSL
Simultaneous Linear Equations (Real Tridiagonal Matrix) 251
2.15.2 DBTPSL, RBTPSL
Simultaneous Linear Equations (Positive Symmetric Tridiagonal Matrix) 254
2.16 REAL TRIDIAGONAL MATRIX (VECTOR TYPE) 257
2.16.1 WBTDSL
Simultaneous Linear Equations (Real Tridiagonal Matrix) 257
2.16.2 WBTDLS
Simultaneous Linear Equations (Real Tridiagonal Matrix after Reduction Operations) 260
2.17 FIXED COEFFICIENT REAL TRIDIAGONAL MATRIX
(SCALAR TYPE) 263
2.17.1 WBTCSL
Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix) 263
2.17.2 WBTCLS Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix after Reduction Operations) 267
2.18 VANDERMONDE MATRIX AND TOEPLITZ MATRIX 271
2.18.1 DBTOSL, RBTOSL
Simultaneous Linear Equations (Toeplitz Matrix) 271
2.18.2 DBTSSL, RBTSSL
Simultaneous Linear Equations (Symmetric Toeplitz Matrix) 274
2.18.3 DBVMSL, RBVMSL
Simultaneous Linear Equations (Vandermonde Matrix) 277
2.19 REAL UPPER TRIANGULAR MATRIX (TWO-DIMENSIONAL ARRAY TYPE) 281
2.19.1 DBTUSL, RBTUSL Simultaneous Linear Equations (Real Upper Triangular Matrix) 281
2.19.2 DBTUCO, RBTUCO
Condition Number of a Real Upper Triangular Matrix 284
2.19.3 DBTUDI, RBTUDI Determinant and Inverse Matrix of a Real Upper Triangular Matrix 286
2.20 REAL LOWER TRIANGULAR MATRIX
(TWO-DIMENSIONAL ARRAY TYPE) 288
2.20.1 DBTLSL, RBTLSL
Simultaneous Linear Equations (Real Lower Triangular Matrix) 288
2.20.2 DBTLCO, RBTLCO Condition Number of a Real Lower Triangular Matrix 291
2.20.3 DBTLDI, RBTLDI Determinant and Inverse Matrix of a Real Lower Triangular Matrix 293
A GLOSSARY 295
B METHODS OF HANDLING ARRAY DATA 304
B. 1 Methods of handling array data corresponding to matrix 304
B. 2 Data storage modes 305
B.2.1 Real matrix (two-dimensional array type) 305
B.2.2 Complex matrix 306
B.2.3 Real symmetric matrix and positive symmetric matrix 307
B.2.4 Hermitian matrix 308
B.2.5 Real band matrix 310
B.2.6 Real symmetric band matrix and positive symmetric matrix (symmetric band type) 311
B.2.7 Real tridiagonal matrix (vector type) 312
B.2.8 Real symmetric tridiagonal matrix and positive symmetric tridiagonal matrix (vector type) 313
B.2.9 Fixed coefficient real tridiagonal matrix (scalar type) 313
B.2.10 Triangular matrix 314
B.2.11 Random sparse matrix (For symmetric matrix only) 314
B.2.12 Random sparse matrix 315
C MACHINE CONSTANTS USED IN ASL 316
C. 1 Units for Determining Error 316
C. 2 Maximum and Minimum Values of Floating Point Data 316

Chapter 1

INTRODUCTION

1.1 OVERVIEW

1.1.1 Introduction to The Advanced Scientific Library ASL

Table $1-1$ shows correspondences among product categories, functions of ASL and supported hardware platforms. In the same version of ASL, interfaces of subroutines of the same name are common among hardware platforms.

Table 1-1 Classification of functions included in ASL

Classification of Functions	Volume
Basic functions	Vol. 1-6
Shared memory parallel functions	Vol. 7

1.1.2 Distinctive Characteristics of ASL

ASL has the following distinctive characteristics.
(1) Subroutines are optimized using compiler optimization to take advantage of corresponding system hardware features.
(2) Special-purpose subroutines for handling matrices are provided so that the optimum processing can be performed according to the type of matrix (symmetric matrix, Hermitian matrix, or the like). Generally, processing performance can be increased and the amount of required memory can be conserved by using the special-purpose subroutines.
(3) Subroutines are modularized according to processing procedures to improve reliability of each component subroutine as well as the reliability and efficiency of the entire system.
(4) Error information is easy to access after a subroutine has been used since error indicator numbers have been systematically determined.

1.2 KINDS OF LIBRARIES

Table 1-2 Kinds of libraries providing ASL

Size of variable(byte)		Declaration of arguments	Kind	Kind of library
integer	real			
4	8	$\begin{aligned} & \text { INTEGER(4) } \\ & \text { REAL(8) } \end{aligned}$	32bit integer Double-precision subroutine	32bit integer library (link option: -lasl_sequential)
4	4	$\begin{aligned} & \text { INTEGER(4) } \\ & \text { REAL(4) } \end{aligned}$	32bit integer Single-precision subroutine	
8	8	$\begin{aligned} & \text { INTEGER(8) } \\ & \text { REAL(8) } \end{aligned}$	64bit integer Double-precision subroutine	64bit integer library (link option: -lasl_sequential_i64)
8	4	$\begin{aligned} & \text { INTEGER(8) } \\ & \text { REAL(4) } \end{aligned}$	64bit integer Single-precision subroutine	

(*1) Functions that appear in this documentation do not always support all of the four kinds of subroutines listed above. For those functions that do not support some of those subroutine kinds, relevant notes will appear in the corresponding subsections.
(*2) The string "(4)" that specifies 32bit (4 byte) can be omitted.

1.3 ORGANIZATION

This section describes the organization of Chapters 2 and later.

1.3.1 Introduction

The first section of each chapter is a general introduction describing such information as the effective ways of using the subroutines, techniques employed, algorithms on which the subroutines are based, and notes.

1.3.2 Organization of Subroutine Description

The second section of each chapter sequentially describes the following topics for each subroutine.
(1) Function
(2) Usage
(3) Arguments
(4) Restrictions
(5) Error indicator
(6) Notes
(7) Example

Each item is described according to the following principles.

1.3.3 Contents of Each Item

(1) Function

Function briefly describes the purpose of the ASL subroutine.
(2) Usage

Usage describes the subroutine name and the order of its arguments. In general, arguments are arranged as follows.

CALL subroutine-name (input-arguments, input/output-arguments, output-arguments, ISW, work, IERR)

ISW is an input argument for specifying the processing procedure. IERR is an error indicator. In some cases, input/output arguments precede input arguments. The following general principles also apply.

- Array are placed as far to the left as possible according to their importance.
- The dimension of an array immediately follows the array name. If multiple arrays have the same dimension, the dimension is assigned as an argument of only the first array name. It is not assigned as an argument of subsequent array names.
(3) Arguments

Arguments are explained in the order described above in paragraph (2). The explanation format is as follows.
$\frac{\text { Arguments }}{(\mathrm{a})} \quad \frac{\text { Type }}{(\mathrm{b})} \quad \frac{\text { Size }}{(\mathrm{c})} \frac{\text { Input/Output }}{(\mathrm{d})} \quad \frac{\text { Contents }}{(\mathrm{e})}$
(a) Arguments

Arguments are explained in the order they are designated in the Usage paragraph.
(b) Type

Type indicates the data type of the argument. Any of the following codes may appear as the type.
I : Integer type
D : Double precision real
R : Real
Z : Double precision complex
C : Complex
There are 64 -bit integer and 32 -bit integer for integer type arguments. In a 32 -bit (64 -bit) integer type subroutine, all the integer type arguments are 32 -bit (64-bit) integer. In other words, kinds of libraries determine the sizes of integer type arguments (Refer to 1.4). In the user program, a 32 -bit/64-bit integer type argument must be declared by INTEGER/ INTEGER (8), respectively.
(c) Size

Size indicates the required size of the specified argument. If the size is greater than 1 , the required area must be reserved in the program calling this subroutine.
1 : Indicates that argument is a variable.
$\mathrm{N} \quad$: Indicates that the argument is a vector (one-dimensional array) having N elements. The argument N indicating the size of this vector is defined immediately after the specified vector. However, if the size of a vector or array defined earlier, it is omitted following subsequently defined vectors or arrays. The size may be specified by only a numeric value or in the form of a product or sum such as $3 \times \mathrm{N}$ or $\mathrm{N}+\mathrm{M}$.
M, N : Indicates that the argument is a two-dimensional array having M rows and N columns. If M and N indicating the size of this array have not been defined before this array is specified, they are defined as arguments immediately following this array.
(d) Input/Output

Input/Output indicates whether the explanation of argument contents applies to input time or output time.
i. When only "Input" appears

When the control returns to the program using this subroutine, information when the argument is input is preserved. The user must assign input-time information unless specifically instructed otherwise.
ii. When only "Output" appears

Results calculated within the subroutine are output to the argument. No data is entered at input time.
iii. When both "Input" and "Output" appear

Argument contents change between the time control passes to the subroutine and the time control returns from the subroutine. The user must assign input-time information unless specifically instructed otherwise.
iv. When "Work" appears

Work indicates that the argument is an area used when performing calculations within the subroutine. A work area having the specified size must be reserved in the program calling this subroutine. The contents of the work area may have to be maintained so they can be passed along to the next calculation.
(e) Contents

Contents describes information held by the argument at input time or output time.

- A sample Argument description follows.

Example

The statement of the subroutine (DBGMLC, RBGMLC) that obtains the LU decomposition and the condition number of a real matrix is as follows.

Double precision:
CALL DBGMLC (A, LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL RBGMLC (A, LNA, N, IPVT, COND, W1, IERR)

The explanation of the arguments is as follows.
Table 1-3 Sample Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	$\begin{array}{l}\text { Input/ } \\ \text { Output }\end{array}$	Contents
1	A	$\begin{array}{l}\text { Note } \\ \text { D } \\ \mathrm{R}\end{array}$		LNA, N	Input
\begin{array}{l}\text { Rutput }\end{array}
$$ \begin{array}{l}The matrix A decomposed into the matrix L U

where U is a unit upper triangular matrix and

L is a lower triangular matrix.\end{array}\right\}\)

To use this subroutine, arrays A, IPVT and W1 must first be allocated in the calling program so they can be used as arguments. A is a $\left\{\begin{array}{c}\text { double-precision } \\ \text { single-precision }\end{array}\right\}$ Note real array of size (LNA, N), IPVT is an integer array of size N and W 1 is a $\left\{\begin{array}{c}\text { double-precision } \\ \text { single-precision }\end{array}\right\}$ real array of size N .
When the 64-bit integer version is used, all integer-type arguments (LNA, N, IPVT and IERR) must be declared by using INTEGER(8), not INTEGER.

Note The entries enclosed in brace $\}$ mean that the array should be declared double precision type (code D) when using subroutine DBGMLC and real type (code R) when using subroutine RBGMLC. Braces are used in this manner throughout the remainder of the text unless specifically stated otherwise.

Data must be stored in A, LNA and N before this subroutine is called. The LU decomposition and condition number of the assigned matrix are calculated with in the subroutine, and the results are stored in array A and variable COND. In addition, pivoting information is stored in IPVT for use by subsequent subroutines.

IERR is an argument used to notify the user of invalid input data or an error that may occur during processing. If processing terminates normally, IERR is set to zero.

Since W1 is a work area used only within the subroutine, its contents at input and output time have no special meaning.

(4) Restrictions

Restrictions indicate limiting ranges for subroutine arguments.

(5) Error indicator

Each subroutine has been given an error indicator as an output argument. This error indicator, which has uniformly been given the variable name IERR, is placed at the end of the arguments. If an error is detected within the subroutine, a corresponding value is output to IERR. Error indicator values are divided into five levels.

Table 1-4 Classification of Error Indicator Output Values

Level	IERR value	Meaning	Processing result
Normal	0	Processing is terminated normally.	Results are guaranteed.
Warning	$1000 \sim 2999$	Processing is terminated under cer- tain conditions.	Results are conditionally guaranteed.
Fatal	$3000 \sim 3499$	Processing is aborted since an argu- ment violated its restrictions.	Results are not guaranteed.
	$3500 \sim 3999$	Obtained results did not satisfy a cer- tain condition.	Obtained results are returned (the results are not guaranteed).
	4000 or more	A fatal error was detected during processing. Usually, processing is aborted.	Results are not guaranteed.

(6) Notes

Notes describes ambiguous items and points requiring special attention when using the subroutine.

(7) Example

Here gives an example of how to use the subroutine. Note that in some cases, multiple subroutines are combined in a single example. The output results are given in the 32 -bit integer version, and may differ within the range of rounding error if the compiler or intrinsic functions are different.
The source codes of examples in this document are included in User's Guide. Input data, if required, is also included in it. To build up an executable files by compiling these example source codes, they should be linked with this product library.

1.4 SUBROUTINE NAMES

The subroutines name of ASL basic functions consists of 〈six alphanumeric characters〉.
Figure 1-1 Subroutine Name Components

"1" in Figure 1-1 : The following eight letters are used to indicate the calculation precision.
D, W Double precision real-type calculation
R, V Single precision real-type calculation
Z, J Double precision complex-type calculation
C, I Single precision complex-type calculation

However, the complex type calculations listed above do not necessarily require complex arguments.
"2" in Figure 1-1 : Currently, the following letters lettererererere are used to indicate the application field in the ASL related products.

Letter	Application Field	Volume
A	Storage mode conversion	1
	Basic matrix algebra	1,7
B	Simultaneous linear equations (direct method)	2,7
C	Eigenvalues and eigenvectors	1,7
F	Fourier transforms and their applications	3,7
	Time series analysis	6
G	Spline function	4
H	Numeric integration	4
I	Special function	5
J	Random number tests	6
K	Ordinary differential equation (initial value problems)	4
L	Roots of equations	5
M	Extremum problems and optimization	5
N	Approximation and regression analysis	4,6
O	Ordinary differential equations (boundary value problems), integral	4
	equations and partial differential equations	4
P	Interpolation	4
Q	Numerical differentials	4
S	Sorting and ranking	5,7

Letter	Application Field	Volume
X	Basic matrix algebra	1
	Simultaneous linear equations (iterative method)	7
1	Probability distributions	6
2	Basic statics	6
3	Tests and estimates	6
4	Analysis of variance and design of experiments	6
5	Nonparametric tests	6
6	Multivariate analysis	6

"3-6" in Figure 1-1 : These characters indicate the characteristic function of the individual subroutine.

1.5 NOTES

(1) Use the subroutines of double precision version whenever possible. They not only provide higher precision solutions but also are more stable than single precision versions, in particular, for eigenvalue and eigenvector problems.
(2) To suppress compiler operation exceptions, ASL subroutines are set to so that they conform to the compiler parameter indications of a user's main program. Therefore, the main program must suppress any operation exceptions.
(3) The numerical calculation programs generally deal with operations on finite numbers of digits, so the precision of the results cannot exceed the number of operation digits being handled. For example, since the number of operation digits (in the mantissa part) for double-precision operations is on the order of 15 decimal digits, when using these floating point modes to calculate a value that mathematically becomes 1 , an error on the order of 10^{-15} may be introduced at any time. Of course, if multiple length arithmetic is emulated such as when performing operations on an arbitrary number of digits, this kind of error can be controlled. However, in this case, when constants such as π or function approximation constants, which are fixed in double-precision operations, for example, are also to be subject to calculations that depend on the length of the multiple length arithmetic operations, the calculation efficiency will be worse than for normal operations.
(4) A solution cannot be obtained for a problem for which no solution exists mathematically. For example, a solution of simultaneous linear equations having a singular (or nearly singular) matrix for its coefficient matrix theoretically cannot be obtained with good precision mathematically. Numerical calculations cannot strictly distinguish between mathematically singular and nearly singular matrices. Of course, it is always possible to consider a matrix to be singular if the calculation value for the condition number is greater than or equal to an established criterion value.
(5) Generally, if data is assigned that causes a floating point exception during calculations (such as a floating point overflow), a normal calculation result cannot be expected. However, a floating point underflow that occurs when adding residuals in an iterative calculation is an exception to this.
(6) For problems that are handled using numerical calculations (specifically, problems that use iterative techniques as the calculation method), there are cases in which a solution cannot be obtained with good precision and cases in which no solution can be obtained at all, by a special-purpose subroutine.
(7) Depending on the problem being dealt with, there may be cases when there are multiple solutions, and the execution result differs in appearance according to the compiler used or the computer or OS under which the program is executed. For example, when an eigenvalue problem is solved, the eigenvectors that are obtained may differ in appearance in this way.
(8) The mark "DEPRECATED" denotes that the subroutine will be removed in the future. Use ASL Unified Interface, the higher performance alternative practice instead.

Chapter 2

SIMULTANEOUS LINEAR EQUATIONS(DIRECT METHOD)

2.1 INTRODUCTION

This chapter describes subroutines that solve simultaneous linear equations and obtain the determinant value and inverse matrix of a matrix.
In this library, subroutines having the following functions are provided individually for each set of matrix characteristics and storage mode.
(1) Perform triangular decomposition of coefficient matrix, then solve simultaneous linear equations.
(2) Perform triangular decomposition of coefficient matrix.
(3) Perform triangular decomposition of coefficient matrix and obtain condition number.
(4) Solve simultaneous linear equations after triangular decomposition of coefficient matrix
(5) Obtain determinant value and inverse matrix.

You can freely combine the various types of subroutines (1) through (5) to suit your processing needs. This enables you to perform efficient processing by eliminating unnecessary calculation steps.

In addition, since triangular decomposition of a matrix is performed using the technique most suited to the characteristics of the matrix, the technique used differs for each type of matrix.
In addition, real tridiagonal matrices are classified into two type-real tridiagonal matrix (vector type) and fixed coefficient real tridiagonal matrix (scalar type) according to characteristics of the coefficient matrix. Subroutines having the following functions are provided for tridiagonal matrices.
(1) Solves simultaneous linear equations (performs reduction operations or Gauss method and solves the equations).
(2) Obtains solutions (only solves the equations after reduction operation).

Users can freely combine the above two subroutines to suit processing objective. This enables processing to be performed efficiently by eliminating unnecessary computations.

2.1.1 Methods of using subroutines

Methods of using subroutines are described below using a real matrix (two-dimensional array type) as an example.
(1) Simultaneous linear equations
(1) Using $\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}$

CALL $\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}(A, \cdots, \boldsymbol{b}, \cdots)$
Performs a triangular decomposition of coefficient matrix A and solves $A \boldsymbol{x}=\boldsymbol{b}$.
(2) Using $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}$ and $\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}$

CALL $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}(A, \cdots)$
CALL $\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}(A, \cdots, \boldsymbol{b}, \cdots)$
$\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}$ performs a triangular decomposition of coefficient matrix A, and $\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}$ solves
$A \boldsymbol{x}=\boldsymbol{b}$.
(3) Obtaining the condition number in addition to solving simultaneous linear equations

CALL $\left\{\begin{array}{l}\text { DBGMLC } \\ \text { RBGMLC }\end{array}\right\}(A, \cdots$, COND,$\cdots)$
CALL $\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}(A, \cdots, \boldsymbol{b}, \cdots)$
$\left\{\begin{array}{l}\text { DBGMLC } \\ \text { RBGMLC }\end{array}\right\}$ calculates the condition number and performs a triangular decomposition of coefficient matrix A, and $\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}$ solves $A \boldsymbol{x}=\boldsymbol{b}$.
(2) Determinant and inverse matrix

CALL $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}(A, \cdots)$
CALL $\left\{\begin{array}{l}\text { DBGMDI } \\ \text { RBGMDI }\end{array}\right\}(A, \cdots$, DET,,$\cdot)$
$\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}$ performs a triangular decomposition of matrix A, and $\left\{\begin{array}{l}\text { DBGMDI } \\ \text { RBGMDI }\end{array}\right\}$ obtains the determinant and inverse matrix.
(3) Improving the solution

$$
\begin{aligned}
& \text { (1) Using }\left\{\begin{array}{l}
\text { DBGMSL } \\
\text { RBGMSL }
\end{array}\right\} \\
& A_{2} \leftarrow A \\
& b_{2} \leftarrow \boldsymbol{b} \\
& \quad \operatorname{CALL}\left\{\begin{array}{l}
\text { DBGMSL } \\
\text { RBGMSL }
\end{array}\right\}\left(A_{2}, \cdots, \boldsymbol{b}_{2}, \cdots\right)
\end{aligned}
$$

CALL $\left\{\begin{array}{l}\text { DBGMLX } \\ \text { RBGMLX }\end{array}\right\}\left(A, \cdots, A_{2}, \cdots, \boldsymbol{b}, \cdots, \boldsymbol{b}_{2}, \cdots\right)$
The subroutine shown above improves the solution obtained by using $\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}$.
(2) Using $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}$ and $\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}$
$A_{2} \leftarrow A$
$b_{2} \leftarrow b$
CALL $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}\left(A_{2}, \cdots\right)$
CALL $\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}\left(A_{2}, \cdots, \boldsymbol{b}_{2}, \cdots\right)$
CALL $\left\{\begin{array}{l}\text { DBGMLX } \\ \text { RBGMLX }\end{array}\right\}\left(A, \cdots, A_{2}, \cdots, \boldsymbol{b}, \cdots, \boldsymbol{b}_{2}, \cdots\right)$
$\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}$ performs a triangular decomposition of matrix $A,\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}$ solves $A \boldsymbol{x}=\boldsymbol{b}$, and $\left\{\begin{array}{l}\text { DBGMLX } \\ \text { RBGMLX }\end{array}\right\}$ improves the solution.

2.1.2 Notes

(1) To solve the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$, you could use the mathematical formula $\boldsymbol{x}=A^{-1} \boldsymbol{b}$. However, it would be ill-advised to solve these equations by obtaining the inverse matrix A^{-1} and multiplying it by the constant vector. For example, in a real matrix (two-dimensional array type), if you compare this method to one in which you obtain the solution by performing a triangular decomposition of the coefficient matrix, you would find that for n variables the inverse matrix method requires approximately n^{3} multiplications, while the triangular decomposition method requires approximately $n^{3} / 3$ multiplications. Clearly, the triangular decomposition method is preferable. Therefore, you should obtain the inverse matrix A^{-1} only if you actually need the inverse matrix itself.
(2) If you need to perform calculations many times for the same matrix such as when solving multiple sets of simultaneous linear equations where only the constant vector differs, it is more efficient to first perform the triangular decomposition once and then use that result repetitively thereafter.

Example :

To solve the equations:

$$
\begin{aligned}
& A \boldsymbol{x}_{1}=\boldsymbol{b}_{1} \\
& A \boldsymbol{x}_{2}=\boldsymbol{b}_{2}
\end{aligned}
$$

execute either:
CALL $\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}\left(A, \cdots, \boldsymbol{b}_{1}, \cdots\right)$
CALL $\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}\left(A, \cdots, \boldsymbol{b}_{2}, \cdots\right)$
or
CALL $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}(A, \cdots)$
CALL $\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}\left(A, \cdots, \boldsymbol{b}_{1}, \cdots\right)$
CALL $\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}\left(A, \cdots, \boldsymbol{b}_{2}, \cdots\right)$
$\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}$ or $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}$ performs the triangular decomposition of coefficient matrix A, and this result is only referred thereafter without its contents being changed.
(3) Two subroutines are provided for performing triangular decomposition. One obtains the condition number and the other does not. The subroutine that obtains the condition number requires many more calculations just to obtain the condition number. For an n-dimensional matrix, it requires approximately n^{2} more multiplications than the subroutine that does not obtain the condition number. Therefore, unless you specifically need the condition number, you can save execution time by performing triangular decomposition without obtaining the condition number.
(4) Although the array type of the input and output data of complex argument type subroutines is complex type, the array type of the input and output data of all other subroutines is real type.
(5) Although an iterative method can be used to solve simultaneous linear equations having a sparse matrix as the coefficient matrix, the following points should be carefully considered.

- When solving simultaneous linear equations having a sparse matrix as the coefficient matrix, a solution is obtained by a finite number of operations when using a direct method, regardless of the properties of the coefficient matrix. With an iterative method, however, the solution may quickly converge or no solution may be obtained depending on the properties of the coefficient matrix.
- When the coefficient matrix is positive symmetric or diagonally dominant, a solution generally is obtained faster by using an iterative method subroutine.
- Even if no solution is obtained by using an iterative method, a solution may be obtained by using a direct method.
- When the coefficient matrix is nearly singular, a precise solution may not be obtained regardless of which method is used.
- Two subroutines are provided for performing triangular decomposition. One obtains the condition number and the other does not. The subroutine that obtains the condition number requires many more calculations just to obtain the condition number.
Therefore, unless you specifically need the condition number, you can save execution time by performing triangular decomposition without obtaining the condition number.

2.1.3 Algorithms Used

2.1.3.1 Crout Method

The Crout method decomposes coefficient matrix A into the product of the lower triangular matrix L and the unit upper triangular matrix U.

$$
A=L U
$$

Since partial pivoting is performed in this library, this actually becomes $P A=L U$ (where P is the replacement matrix for row exchange).
Assume $A=\left(a_{i j}\right), L=\left(l_{i j}\right)$ and $U=\left(u_{i j}\right)(i, j=1,2, \cdots, N)$. Then, the algorithm is as follows.

$$
l_{i 1} \leftarrow a_{i 1}(i=1,2, \cdots, N)
$$

Partial pivoting

$$
u_{1 j} \leftarrow a_{1 j} / l_{11}(j=1,2, \cdots, N)
$$

$$
\begin{array}{r}
\text { for } \quad k=2,3, \cdots, N \\
\begin{array}{l}
l_{k k} \leftarrow a_{k k}-\sum_{m=1}^{k-1} l_{k m} u_{m k} \\
\text { for } \quad i=k+1, k+2, \cdots, N \\
l_{i k} \leftarrow a_{i k}-\sum_{m=1}^{k-1} l_{i m} u_{m k}
\end{array}
\end{array}
$$

Partial pivoting

$$
\begin{array}{|l|l}
\text { for } \quad j=k+1, k+2, \cdots, N \\
\hline & u_{k j} \leftarrow\left(a_{k j}-\sum_{m=1}^{k-1} l_{k m} u_{m j}\right) / l_{k k}
\end{array}
$$

Partial pivoting is an operation for stable decomposition that exchanges rows so that the pivot is the maximum within the column. The operation at the m-th stage (when $k=m$ in the algorithm shown above) is as follows.

Matrix A during decomposition

The element having the maximum absolute value within the hatched portion shown in the figure is selected, and the row containing that element is exchanged with the m-th row.

2.1.3.2 Cholesky method

The Cholesky method decomposes coefficient matrix A into the product of the lower triangular matrix L and the upper triangular matrix L^{T}.

$$
A=L L^{T}
$$

Assume $A=\left(a_{i j}\right), L=\left(l_{i j}\right)$ and $L^{T}=\left(l_{i j}^{\prime}\right)(i, j=1,2, \cdots, N)$. If the Cholesky method is applied in the column direction to the upper right triangular portion of coefficient matrix A, the algorithm is as follows.

The calculation efficiency of matrix calculations is increased by generally applying external product calculations rather than inner product calculations and by further employing an unrolling technique to reduce the memory access frequency.

Therefore, the Cholesky method that uses external product calculations is used for simultaneous linear equations having a one-dimensional compressed type coefficient matrix. In addition, the data can be accessed continuously by storing it in row-oriented format.

2.1.3.3 Modified Cholesky method

The modified Cholesky method decomposes coefficient matrix A into the product of the lower triangular matrix L, diagonal matrix D, and upper triangular matrix L^{T}.

$$
A=L D L^{T}
$$

The diagonal matrix D consists of the reciprocals of the diagonal components of the upper triangular matrix L^{T}.

Assume $A=\left(a_{i j}\right), L=\left(l_{i j}\right), D=\left(d_{i j}\right)$ and $L^{T}=\left(l_{i j}^{\prime}\right)(i, j=1,2, \cdots, N)$. Then, the algorithm is as follows.

$$
l_{1 j}^{\prime} \leftarrow a_{1 j}(j=1,2,3, \cdots, N)
$$

w indicates a work area, N areas are required.

2.1.3.4 Gauss method

The Gauss method decomposes coefficient matrix A into the product of the unit lower triangular matrix L and the upper triangular matrix U.

$$
A=L U
$$

Since partial pivoting is performed in this library, this actually becomes $P A=L U$ (when P is the replacement matrix for row exchange).
Assume $A=\left(a_{i j}\right), L=\left(l_{i j}\right)$ and $U=\left(u_{i j}\right)(i, j=1,2, \cdots, N)$. Then, the algorithm is as follows.

Partial pivoting is an operation for stable decomposition that exchanges row so that the pivot is the maximum within the column. The operation at the m-th stage (when $k=m$ in the algorithm shown above) is as follows.

$$
\text { Matrix } A \text { during decomposition }
$$

The element having the maximum absolute value within the hatched portion shown in the figure is selected, and the m-th through N-th columns of the row containing that element are exchanged with the m-th through N-th columns of the m-th row.

2.1.3.5 Levinson method

When the Toeplitz matrix R is represented by:

$$
R=\left[\begin{array}{cccccc}
r_{0} & r_{-1} & r_{-2} & \cdots & r_{-n+2} & r_{-n+1} \\
r_{1} & r_{0} & r_{-1} & \cdots & r_{-n+3} & r_{-n+2} \\
\vdots & \vdots & \ddots & & \vdots & \vdots \\
\vdots & \vdots & & \ddots & \vdots & \vdots \\
r_{n-2} & r_{n-3} & r_{n-4} & \cdots & r_{0} & r_{-1} \\
r_{n-1} & r_{n-2} & r_{n-3} & \cdots & r_{1} & r_{0}
\end{array}\right]
$$

the following simultaneous linear equations:

$$
\sum_{j=1}^{n} r_{i-j} x_{j}=b_{i} \quad(i=1, \cdots, n)
$$

having the Toeplitz matrix as coefficient matrix can be solved as described below by considering the solutions $x_{j}^{(m)}(j=1, \cdots, m ; m=1,2, \cdots, n)$ of the following kind of n simultaneous linear equations:

$$
\sum_{j=1}^{m} r_{i-j} x_{j}^{(m)}=b_{i} \quad(i=1, \cdots, m ; m=1,2, \cdots, n)
$$

(1) Initial solution $(m=1)$

$$
\begin{aligned}
x_{1}^{(1)} & =\frac{b_{1}}{r_{0}} \\
g_{1}^{(1)} & =\frac{r_{-1}}{r_{0}} \\
h_{1}^{(1)} & =\frac{r_{1}}{r_{0}}
\end{aligned}
$$

(2) For $m=2,3, \cdots, n$, perform the following sequential iterative calculations.

$$
\begin{aligned}
& x^{(n u)}=\sum_{j=1}^{m-1} r_{m-j} x_{j}-b_{m} \\
& x^{(d e)}=\sum_{j=1}^{m-1} r_{m-j} g_{m-j}^{(m-1)}-r_{0} \\
& x_{m}^{(m)}=\frac{x^{(n u)}}{x^{(d e)}} \\
& x_{j}^{(m)}=x_{j}^{(m-1)}-x_{m}^{(m)} g_{m-j}^{(m-1)} \quad(j=1,2, \cdots, m-1) \\
& g^{(n u)}=\sum_{j=1}^{m-1} r_{j-m} g_{j}^{(m-1)}-r_{-m} \\
& g^{(d e)}=\sum_{j=1}^{m-1} r_{j-m} h_{m-j}^{(m-1)}-r_{0}
\end{aligned}
$$

$$
\begin{aligned}
& h^{(n u)}=\sum_{j=1}^{m-1} r_{m-j} h_{j}^{(m-1)}-r_{m} \\
& g_{m}^{(m)}=\frac{g^{(n u)}}{g^{(d e)}} \\
& h_{m}^{(m)}=\frac{h^{(n u)}}{x^{(d e)}} \\
& g_{j}^{(m)}=g_{j}^{(m-1)}-g_{m}^{(m)} h_{m-j}^{(m-1)} \quad(j=1,2, \cdots, m-1) \\
& h_{j}^{(m)}=h_{j}^{(m-1)}-h_{m}^{(m)} g_{m-j}^{(m-1)} \quad(j=1,2, \cdots, m-1)
\end{aligned}
$$

The solutions are obtained by letting $x_{j}=x_{j}^{(n)}$. Since r_{i} and r_{-i} are related as follows for a symmetric Toeplitz matrix:

$$
r_{i}=r_{-i} \quad(i=1,2, \cdots, n)
$$

the following relationship holds:

$$
g_{j}^{(m)}=h_{j}^{(m)} \quad(j=1,2, \cdots, m ; m=1,2, \cdots, n)
$$

and the calculations can proceed more efficiently than for the general case. Since this method makes practical use of the properties of the matrix, it is superior to the general Gaussian elimination method in terms of memory usage and calculation efficiency. However, the solution may not be able to be obtained theoretically even if the matrix is regular. For example, a solution clearly cannot be obtained by this method when $r_{0}=0$.

2.1.3.6 Vandermonde matrix

The Vandermonde matrix V of order n consisting of n different elements $v_{k}(k=1,2, \cdots, n)$ is represented as follows.

$$
V=\left[\begin{array}{cccccc}
1 & v_{1} & v_{1}^{2} & \cdots & v_{1}^{n-2} & v_{1}^{n-1} \\
1 & v_{2} & v_{2}^{2} & \cdots & v_{2}^{n-2} & v_{2}^{n-1} \\
\vdots & \vdots & \ddots & & \vdots & \vdots \\
\vdots & \vdots & & \ddots & \vdots & \vdots \\
1 & v_{n-1} & v_{n-1}^{2} & \cdots & v_{n-1}^{n-2} & v_{n-1}^{n-1} \\
1 & v_{n} & v_{n}^{2} & \cdots & v_{n}^{n-2} & v_{n}^{n-1}
\end{array}\right]
$$

Let's solve the simultaneous linear equations $V \boldsymbol{x}=\boldsymbol{b}$ having the Vandermonde matrix V as coefficient matrix, which are represented as follows.

$$
\sum_{j=1}^{n} v_{i}^{j-1} x_{j}=b_{i} \quad(i=1, \cdots, n)
$$

If the polynomial $P_{i}^{(n)}(x)$ of degree $n-1$ is defined as follows:

$$
P_{i}^{(n)}(x)=\prod_{\substack{k=1 \\ k \neq i)}}^{n} \frac{x-v_{k}}{v_{i}-v_{k}}=\sum_{j=1}^{n} u_{i, j} x^{j-1}
$$

the relationship $P_{i}^{(n)}\left(v_{k}\right)=\delta_{i k}$ (where $\delta_{i k}$ is the Kronecker delta) holds. Therefore, if the matrix consisting of the coefficients of the x^{j-1} terms of this polynomial is represented by $U=\left\{u_{i, j}\right\}$, the relationship $U V^{T}=E$ (where E is the unit matrix), that is, $V^{-1}=U^{T}$ holds. Consequently, the solution \boldsymbol{x} of the simultaneous linear equations $V \boldsymbol{x}=\boldsymbol{b}$ is obtained by calculating:

$$
\boldsymbol{x}=U^{T} \boldsymbol{b}
$$

Now, to calculate the various coefficients of U, consider the master polynomial $P^{(n)}(x)$ defined by the following equation.

$$
P^{(n)}(x)=\prod_{k=1}^{n}\left(x-v_{k}\right)
$$

Let the coefficient of the x^{j-1} term of the master polynomial $P^{(n)}(x)$ be $w_{n-j+1}^{(n)}$, and the master polynomial can be represented as follows.

$$
P^{(n)}(x)=x^{n}+w_{1}^{(n)} x^{n-1}+\cdots+w_{n-1}^{(n)} x+w_{n}^{(n)}
$$

From the relationship $P^{(i)}(x)=\left(x-v_{i}\right) P^{(i-1)}(x)(i=2,3, \cdots, n)$, the following relationships are obtained by comparing the coefficients for x^{j-1} :

$$
\begin{aligned}
& w_{1}^{(i)}=w_{1}^{(i-1)}-v_{i} \quad(i=2, \cdots, n) \\
& w_{j}^{(i)}=w_{j}^{(i-1)}-v_{i} w_{j-1}^{(i-1)} \quad(j=i, i-1, \cdots, 2 ; i=2,3, \cdots, n)
\end{aligned}
$$

where, the following equations hold.

$$
\begin{aligned}
& w_{1}^{(1)}=-v_{1} \\
& w_{j}^{(j-1)}=0 \quad(j=2,3, \cdots, n)
\end{aligned}
$$

The various coefficients of the master polynomial can be calculated from the above. On the other hand, the following relationship holds:

$$
\left.\frac{d P^{(n)}(x)}{d x}\right|_{x=v_{i}}=\prod_{\substack{k=1 \\(k \neq i)}}^{n}\left(v_{i}-v_{k}\right)
$$

and this value can be calculated from the following:

$$
\left.\frac{d P^{(n)}(x)}{d x}\right|_{x=v_{i}}=n v_{i}^{n-1}+(n-1) w_{1}^{(n)} v_{i}^{n-2}+\cdots+w_{n-1}^{(n)}
$$

Also, since:

$$
P_{i}^{(n)}(x)=\frac{P^{(n)}(x)}{\left.\left(x-v_{i}\right) \frac{d P^{(n)}(x)}{d x}\right|_{x=v_{i}}}
$$

the coefficients $u_{i, j}$ of the x^{j-1} terms of this polynomial can be obtained by using synthetic division to calculate the coefficients of the x^{j-1} terms of $\frac{P^{(n)}(x)}{\left(x-v_{i}\right)}$. The simultaneous linear equations having the Vandermonde matrix as the coefficient matrix essentially are ill-conditioned, and it is difficult to obtain a solution with good precision except when n is extremely small.

2.1.3.7 Cyclic Reduction Method

(1) Cyclic reduction method

The cyclic reduction method is used to solve the simultaneous linear equations:

$$
\begin{equation*}
A \boldsymbol{x}=\boldsymbol{b} \tag{2.1}
\end{equation*}
$$

having the real tridiagonal matrix A as the coefficient matrix.
If we assume that A, \boldsymbol{x}, and \boldsymbol{b} are as follows:

$$
A=\left[\begin{array}{ccccc}
d_{1} & u_{1} & & & 0 \\
\ell_{2} & d_{2} & u_{2} & & \\
& \cdot & \cdot & \cdot & \\
& & \cdot & \cdot & u_{n-1} \\
& 0 & & \ell_{n} & d_{n}
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
b_{n}
\end{array}\right]
$$

then:

$$
\begin{equation*}
\ell_{i} x_{i-1}+d_{i} x_{i}+u_{i} x_{i+1}=b_{i} \tag{2.2}
\end{equation*}
$$

This algorithm repeatedly performs a reduction operation $\lfloor\operatorname{LOG} 2(n)\rfloor$ times. The reduction operation creates a set of simultaneous linear equations having a coefficient matrix with one-half the order of the coefficient matrix before the reduction operation. Ultimately, a single linear equation is created from which a single solution is obtained.

$$
\begin{align*}
d x & =b \\
x & =b / d \tag{2.3}
\end{align*}
$$

All of the solutions then are obtained by repeatedly performing back substitution based on this solution. In this section, $\lfloor x\rfloor$ represents the maximum integer that does not exceed x.

The reduction operation and back substitution of the cyclic reduction method are described below.
(a) Reduction operation

First, let's assume $n=2^{m}-1$.
We will eliminate x_{i-1} and x_{i+1} from three rows of (2.1) consisting of an even numbered row and the rows before and after it. That is, we will obtain the following equation:

$$
\begin{align*}
& \ell_{i}^{\prime} x_{i-2} \tag{2.4}\\
& =d_{i}^{\prime} x_{i}+u_{i}^{\prime} x_{i+2}=b_{i}^{\prime} \\
& \left\{\begin{aligned}
\ell_{i}^{\prime} & =d_{i+1} \ell_{i-1} \ell_{i} \\
u_{i}^{\prime} & =d_{i-1} u_{i} u_{i+1} \\
d_{i}^{\prime} & =\ell_{i} d_{i+1} u_{i-1}+\ell_{i+1} d_{i-1} u_{i}-d_{i-1} d_{i} d_{i+1} \\
b_{i}^{\prime} & =\ell_{i} d_{i+1} b_{i-1}+d_{i-1} u_{i} b_{i+1}-d_{i-1} d_{i+1} b_{i}
\end{aligned}\right.
\end{align*}
$$

from the three rows:

$$
\left\{\begin{aligned}
\ell_{i-1} x_{i-2}+d_{i-1} x_{i-1} & +u_{i-1} x_{i} & & \\
\ell_{i} x_{i-1} & +d_{i} x_{i}+u_{i} x_{i+1} & & b_{i-1} \\
& & \ell_{i+1} x_{i}+d_{i+1} x_{i+1}+u_{i+1} x_{i+2} & =b_{i+1}
\end{aligned}\right.
$$

where, i is an even number.
By applying (2.4) to all even numbered rows contained in (2.1) $\left(x_{0}=x_{n+1}=0\right)$, we obtain a set of simultaneous linear equations having a real tridiagonal coefficient matrix of order $\lfloor n / 2\rfloor$ as the coefficient matrix.
Next, let's consider $n=2^{m}$. Although we could apply (2.4) to all even numbered rows when $n=2^{m}-1$, we cannot apply (2.4) to row $n-1$ and row n when $n=2^{m}$ since row $n-1$ is an odd numbered row. Therefore, we will apply the following equation:

$$
\begin{align*}
& \ell_{n}^{\prime} x_{n-2}+d_{n}^{\prime} x_{n}=b_{n}^{\prime} \tag{2.5}\\
& \left\{\begin{array}{l}
\ell_{n}^{\prime}=\ell_{n-1} \ell_{n} \\
d_{n}^{\prime} \\
=\ell_{n} u_{n-1}-d_{n} d_{n-1} \\
b_{n}^{\prime}
\end{array}=\ell_{n} b_{n-1}-d_{n-1} d_{n}\right.
\end{align*} ~ .
$$

which was obtained by eliminating x_{n-1} from the two rows:

$$
\left\{\begin{array}{rll}
\ell_{n-1} x_{n-2}+d_{n-1} x_{n-1} & +u_{n-1} x_{n} & =b_{n-1} \\
\ell_{n} x_{n-1} & +d_{n} x_{n} & =b_{n}
\end{array}\right.
$$

Consequently, we can reduce the set of simultaneous linear equations to a set having a real tridiagonal matrix of order $\lfloor n / 2\rfloor$ as the coefficient matrix regardless of the value of n.
(b) Back substitution

We can obtain the other solutions based on the solution (2.3), which we obtained by using the reduction method. To obtain these additional solutions, we substitute previously obtained solutions back into the various sets of simultaneous linear equations produced by the reduction method, proceeding in the reverse order as when applying the reduction method.
If the solution has been obtained for an even numbered row, the solution for an odd numbered row is obtained by using the following equation:

$$
x_{i-1}=\left(b_{i-1}-\ell_{i-1} x_{i-2}-u_{i-1} x_{i}\right) / d_{i-1}, \quad i=2,4,6, \cdots, n+1
$$

(2) Increasing the speed of the cyclic reduction method

Since the cyclic reduction method is not a successive elimination method such as the Gauss method, the calculations are independent of one another. Although this essentially allows vectorization to be performed, the following kind of vectorization also is carried out.
(a) Increasing the speed of the fixed coefficient type cyclic reduction method

If the fixed coefficient type cyclic reduction method, a modified version of the cyclic reduction method, is used, the processing speed can be increased for the coefficient matrix that appears when discretizing the Dirichlet or Neumann boundary value problem. The fixed coefficient type cyclic reduction method is described below.
First, consider the following coefficient matrices:

$$
\left[\begin{array}{lllll}
d & s & & & 0 \tag{2.6}\\
s & d & s & & \\
& \cdot & \cdot & \cdot & \\
& & \cdot & \cdot & s \\
0 & & & s & d
\end{array}\right] \quad, \quad d \neq 0, \quad s \neq 0
$$

$$
\left[\begin{array}{ccccc}
d & s & & & 0 \tag{2.7}\\
s & d & s & & \\
& \cdot & \cdot & \cdot & \\
& & \cdot & \cdot & s \\
0 & & & 2 \cdot s & d
\end{array}\right] \quad, \quad d \neq 0, \quad s \neq 0
$$

If we compare (2.6) with the matrix obtained by normalizing the last row of (2.7) by 2 , we see that only the last rows of these two matrices differ, and all other rows are identical. Therefore, we can replace (2.6) and (2.7) by the following matrix (2.8).

$$
\left[\begin{array}{ccccc}
d & s & & & 0 \tag{2.8}\\
s & d & s & & \\
& \cdot & \cdot & \cdot & \\
& & \cdot & d & s \\
0 & & & s & e
\end{array}\right] \quad, \quad d \neq 0, \quad s \neq 0, \quad e \neq 0
$$

Now, let's first assume $n=2^{m}-1$.
We will eliminate x_{i-1} and x_{i+1} from three rows of (2.7) consisting of an even numbered row and the rows before and after it. That is, we will obtain the following equation:

$$
\begin{align*}
& s^{\prime} x_{i-2}+d^{\prime} x_{i}+s^{\prime} x_{i+2}=b_{i}^{\prime} \tag{2.9}\\
& \left\{\begin{aligned}
s^{\prime} & =s^{2} \\
d^{\prime} & =2 \cdot s^{2}-d^{2} \\
b^{\prime} & =s\left(b_{i-1}+b_{i+1}\right)-d b_{i}
\end{aligned}\right.
\end{align*}
$$

from the three rows:

$$
\left\{\begin{array}{rlrl}
s x_{i-2}+d x_{i-1} & +s x_{i} & & \\
& =b_{i-1} \\
s x_{i-1} & +d x_{i}+s x_{i+1} & & =b_{i} \\
& & s x_{i}+d x_{i+1}+s x_{i+2} & =b_{i+1}
\end{array}\right.
$$

where, i is an even number.
By applying (2.9) to all even numbered rows contained in (2.8) $\left(x_{0}=x_{n+1}=0\right)$, we obtain a set of simultaneous linear equations having a real tridiagonal coefficient matrix of order $\lfloor n / 2\rfloor$ as the coefficient matrix. However, for row $n-1$, we have:

$$
\begin{align*}
& s^{\prime} x_{n-3}+e^{\prime} x_{n-1}=b_{n-1}^{\prime} \tag{2.10}\\
& \begin{cases}s^{\prime} & =e \cdot s^{2} \\
e^{\prime} & =e \cdot s^{2}-e \cdot d^{2}+d \cdot s^{2} \\
b_{n-1}^{\prime} & =e \cdot s \cdot b_{n-2}-e \cdot d \cdot b_{n-1}+d \cdot s \cdot b_{n}\end{cases}
\end{align*}
$$

Next, let's consider $n=2^{m}$. Since row $n-1$ is an odd numbered row when $n=2^{m}$, we will apply the following equation:

$$
\begin{align*}
& s^{\prime} x_{n-2}+e^{\prime} x_{n}=b_{n-1} \tag{2.11}\\
& \begin{cases}s^{\prime} & =s^{2} \\
d^{\prime} & =s^{2}-d \cdot e \\
b_{n-1}^{\prime} & =s \cdot b_{n-1}-d \cdot b_{n}\end{cases}
\end{align*}
$$

which was obtained by eliminating x_{n-1} from the two rows:

Consequently, we can reduce the set of simultaneous linear equations to a set having a real tridiagonal matrix of order $\lfloor n / 2\rfloor$ as the coefficient matrix regardless of the value of n. These operations are repeatedly performed $\lfloor\operatorname{LOG} 2(n)\rfloor$ times until, ultimately, a single linear equation is created from which a single solution is obtained.

$$
\begin{aligned}
d x & =b \\
x & =b / d
\end{aligned}
$$

All of the solutions then are obtained by repeatedly performing back substitution based on this solution. If the solutions for even numbered rows have been obtained, then the solutions for odd numbered rows are obtained from the following equation:

$$
x_{i-1}=\left(b_{i-1}-s \cdot x_{i-2}-s \cdot x_{i}\right) / d, \quad i=2,4,6, \cdots, n+1
$$

Next, consider the following coefficient matrices:

$$
\begin{align*}
& {\left[\begin{array}{ccccc}
d & 2 \cdot s & & & 0 \\
s & d & s & & \\
& \cdot & \cdot & \cdot & \\
& & \cdot & \cdot & s \\
0 & & & s & d
\end{array}\right] \quad, \quad d \neq 0, s \neq 0} \tag{2.12}\\
& {\left[\begin{array}{ccccc}
d & 2 \cdot s & & & 0 \\
s & d & s & & \\
& \cdot & \cdot & \cdot & \\
& & \cdot & \cdot & s \\
0 & & & 2 \cdot s & d
\end{array}\right] \quad, \quad d \neq 0, s \neq 0} \tag{2.13}
\end{align*}
$$

If we compare (2.12) with the matrix obtained by normalizing the last row of (2.13) by 2 , we see that only the last rows of these two matrices differ, and all other rows are identical. Therefore, we can replace (2.12) and (2.13) by the following matrix (2.14).

$$
\left[\begin{array}{ccccc}
d & 2 \cdot s & & & 0 \tag{2.14}\\
s & d & s & & \\
& \cdot & \cdot & \cdot & \\
& & \cdot & d & s \\
0 & & & s & e
\end{array}\right] \quad, \quad d \neq 0, \quad s \neq 0, \quad e \neq 0
$$

This time, let's consider the operations based on odd numbered rows instead of even numbered rows. First, we will eliminate x_{2} from the first and second rows. That is, we will obtain the following equation:

$$
\begin{equation*}
\left(d^{2}-2 \cdot s^{2}\right) x_{1}-2 \cdot s^{2} x_{3}=d b_{1}-2 s b_{2} \tag{2.15}
\end{equation*}
$$

from the two rows:

$$
\left\{\begin{array}{lll}
d x_{1}+2 \cdot s x_{2} & =b_{1} \\
s x_{1}+d x_{2}+s x_{3} & =b_{2}
\end{array}\right.
$$

Next, we will eliminate $x_{2 i}$ and $x_{2 i+2}$ from the three rows of (2.14) consisting of row $2 i$, row $2 i+1$, and row $2 i+2$. That is, we will obtain the following equation:

$$
\begin{align*}
& s^{\prime} x_{2 i-1}+d^{\prime} x_{2 i+1}+s^{\prime} x_{2 i+3}=b_{2 i+1}^{\prime} \tag{2.16}\\
& \begin{cases}s^{\prime} & =s^{2} \\
d^{\prime} & =2 \cdot s^{2}-d^{2} \\
b_{2 i+1}^{\prime} & =s \cdot b_{2 i}-d \cdot b_{2 i+1}+s \cdot b_{2 i+2}\end{cases}
\end{align*}
$$

from the three rows:

$$
\left\{\begin{array}{rlrl}
s x_{2 i-1}+d x_{2 i}+s x_{2 i+1} & & & =b_{2 i} \\
& s x_{2 i}+d x_{2 i+1}+s x_{2 i+2} & & =b_{2 i+1} \\
& s d_{2 i+1}+s x_{2 i+2}+s x_{2 i+3} & =b_{2 i+2}
\end{array}\right.
$$

This is performed for each of the values $i=1,2,3, \cdots, m$, where m is the maximum value of i that satisfies the relationship $2 i+1 \leq n-2$.
Finally, for $n=2^{m}$, we obtain (2.17) by eliminating x_{n-2} and x_{n} from the three rows consisting of row $n-2, n-1$, and row n. Also, for $n=2^{m}-1$, since row $n-1$ is an even numbered row, we obtain (2.18) by eliminating x_{n-1} from the two rows consisting of row $n-1$ and row n.

That is, for $n=2^{m}$, we obtain the following equation:

$$
\begin{align*}
& s^{\prime} x_{n-3}+e^{\prime} x_{n-1}=b_{n-1}^{\prime} \tag{2.17}\\
& \begin{cases}s^{\prime} & =e \cdot s^{2} \\
e^{\prime} & =e \cdot s^{2}-e \cdot d^{2}+d \cdot s^{2} \\
b_{n-1}^{\prime} & =s \cdot e \cdot b_{n-2}-d \cdot e \cdot b_{n-1}+d \cdot s \cdot b_{n}\end{cases}
\end{align*}
$$

from the three rows:

$$
\left\{\begin{array}{rlrl}
s x_{n-3}+d x_{n-2} & +s x_{n-1} & & =b_{n-2} \\
s x_{n-2} & +d x_{n-1}+s x_{n} & =b_{n-1} \\
& s x_{n-1}+e x_{n} & =b_{n}
\end{array}\right.
$$

and for $n=2^{m}-1$, we obtain the following equation:

$$
\begin{align*}
& s^{\prime} x_{n-2}+e^{\prime} x_{n}=b_{n}^{\prime} \tag{2.18}\\
& \left\{\begin{aligned}
s^{\prime} & =s^{2} \\
e^{\prime} & =s^{2}-e \cdot d \\
b_{n}^{\prime} & =s \cdot b_{n-1}-d \cdot b_{n}
\end{aligned}\right.
\end{align*}
$$

from the two rows:

$$
\left\{\begin{array}{rl}
s x_{n-2}+d x_{n-1} & +s x_{n}
\end{array}=b_{n-1}, ~=e x_{n}=b_{n}, ~ f x_{n-1}+e\right.
$$

Consequently, we can reduce the set of simultaneous linear equations to a set having a real tridiagonal matrix of order $\lfloor(n-1) / 2\rfloor+1$ as the coefficient matrix regardless of the value of n. These operations are repeatedly performed $\lfloor\operatorname{LOG} 2(n-1)\rfloor$ times until, ultimately, a set of equations having the following coefficient matrix is obtained:

$$
\left[\begin{array}{ll}
d^{(\mathrm{m})} & 2 \\
1 & e^{(\mathrm{m})}
\end{array}\right], \quad m=\lfloor(n-1) / 2\rfloor+1
$$

All of the solutions then are obtained by repeatedly performing back substitution based on this solution.
(b) Reduction operation truncation

As the reduction operation is repeated, the magnitude of the diagonal elements may be increased based on a certain assumption (sufficient but not necessary condition) and the ratio of the diagonal element and subdiagonal element may become larger than 1/EP (EP: Units for determining error) at an intermediate stage of the reduction operation.
Consider the following as one such assumption:

$$
\begin{equation*}
\left|l_{i}^{(k)}\right|,\left|u_{i}^{(k)}\right|<\left|d_{i}^{(k)} / 2\right|, \quad 1 \leq i \leq n \tag{2.19}
\end{equation*}
$$

Here, $l_{i}^{(k)}, d_{i}^{(k)}$ and $u_{i}^{(k)}$ are the lower subdiagonal element, the diagonal element and the upper subdiagonal element, respectively, in the i-th row of the coefficient matrix after the k-th reduction operation. If this assumption holds, and the coefficient matrix is normalized to:

$$
\begin{equation*}
\left(\cdots, l_{i}^{(k)} / d_{i}^{(k)}, 1, u_{i}^{(k)} / d_{i}^{(k)}, \cdots\right) \tag{2.20}
\end{equation*}
$$

then the subdiagonal elements may become as small as EP, and the constant vector $\boldsymbol{b}^{(k)}(k$: Reduction frequency) will converge to several solutions before the reduction operation is completed.
Therefore, if the reduction frequency when convergence occurs is known before performing the reduction operation, the reduction operation need not be performed all the way to completion. If the reduction operation is halted before completion and the calculations switch to back substitution, efficiency can be increased because the calculation time will be reduced. This is called truncation of the cycling reduction operation.
To obtain the value of the reduction frequency up to truncation, we will check the lower limit for convergence when (2.20) is satisfied.
First, let's obtain $\boldsymbol{e}=\max _{i}\left(l_{i}{ }^{(k)} / d_{i}{ }^{(k)}, u_{i}{ }^{(k)} / d_{i}{ }^{(k)}\right)$ and consider the matrix $(\cdots, \boldsymbol{e}, 1, \boldsymbol{e}, \cdots)$ obtained by replacing all $l_{i}(k)$ and $u_{i}(k)$ of (2.20) by \boldsymbol{e}. If also would be sufficient to consider a coefficient matrix such as $(\cdots, 1, \boldsymbol{d}, 1, \cdots)$. To determine the convergence rate, we define:

$$
\boldsymbol{\varepsilon}^{(k)}=\left|\boldsymbol{d}^{(k)}\right|-2>0
$$

where, $\boldsymbol{d}^{(k)}$ is the diagonal element computed during the k-th iteration. Let's try to measure whether $\left|\boldsymbol{d}^{(k)}\right|$ increases towards $1 / E P$ as a function of k. If we take the absolute value of:

$$
\boldsymbol{d}^{(k+1)}=2-\left[\boldsymbol{d}^{(k)}\right]^{2}
$$

then from (2.9) we get:

$$
\left|\boldsymbol{d}^{(k+1)}\right|=\left|2-\left[2+\boldsymbol{\varepsilon}^{(k)}\right]^{2}\right| \geq 2+4 \boldsymbol{\varepsilon}^{(k)}+\left[\boldsymbol{\varepsilon}^{(k)}\right]^{2}
$$

and it follows that:

$$
\begin{equation*}
\varepsilon^{(k+1)}>4 \varepsilon^{(k)}+\left[\varepsilon^{(k)}\right]^{2} \tag{2.21}
\end{equation*}
$$

From (2.21), we have:

- If $\boldsymbol{\varepsilon}^{(k)}<1$, then $\boldsymbol{\varepsilon}^{(k+1)}>4 \boldsymbol{\varepsilon}^{(k)}$
and the rate of increase is said to be at least of first order speed.
- If $\boldsymbol{\varepsilon}^{(k)}>1$, then $\boldsymbol{\varepsilon}^{(k+1)}>\left[\boldsymbol{\varepsilon}^{(k)}\right]^{2}$
and the rate of increase is said to be at least of second order speed.
Consequently, the minimum integer k for which the following relationship holds for the value of $\boldsymbol{\varepsilon}^{(k)}$ obtained from (2.21):

$$
\varepsilon^{(k)} \geq 1 / \mathrm{EP}
$$

is assumed to be the reduction frequency up to truncation. Moreover, truncation will not occur if $k \geq\lfloor\operatorname{LOG} 2(n)\rfloor$.

(3) Supplementary item

- Affect on calculation time

For simultaneous linear equations having a real tridiagonal coefficient matrix that does not satisfy condition (2.19) (that is, the magnitude of the diagonal elements is not strong), the calculation process must determine whether or not the coefficient matrix is singular. Therefore, more calculation time is required than for a coefficient matrix for which the magnitude of the diagonal elements is strong.

2.1.3.8 Calculating the inverse matrix

Triangular decomposition is used to calculate the inverse matrix of matrix A.
If A is decomposed into $A=L U$, then L^{-1} or U^{-1} is obtained as the first step by the sweeping out method. Next, that result is transformed as the second step to calculate $A^{-1}=U^{-1} L^{-1}$.
For example, since L^{T} can be obtained by the Cholesky method as $L^{-1} A=L^{T}, A^{-1}$ is obtained by multiplying the transformation matrix for triangular decomposition L^{-1} by $\left(L^{T}\right)^{-1}$ from the right side.
Whether L^{-1} or U^{-1} is calculated as the first step differs according to the triangular decomposition method.

2.1.3.9 Calculating the determinant

The determinant is obtained as follows.
If A has been decomposed into $A=L U$, then

$$
\operatorname{det}(A)=\operatorname{det}(L) \operatorname{det}(U)=\prod_{i=1}^{n} l_{i i} \prod_{i=1}^{n} u_{i i}
$$

where, $L=\left(l_{i j}\right)$ and $U=\left(u_{i j}\right)$.

2.1.3.10 Improving the solution

Consider improving the solution of the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$. Let $\boldsymbol{x}^{(1)}$ be the initially obtained solution, and assume that $A \boldsymbol{x}^{(1)} \neq \boldsymbol{b}$ due to computational error. The following algorithm is used to improve $\boldsymbol{x}^{(1)}$.
(1) $\boldsymbol{r}^{(k)}=\boldsymbol{b}-A \boldsymbol{x}^{(k)}$
(2) $A \boldsymbol{y}^{(k)}=\boldsymbol{r}^{(k)}$
(3) $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\boldsymbol{y}^{(k)}(k=1,2, \cdots)$

This iterative procedure generates a rounding error in (2). Therefore, the formula in (2) actually becomes:

$$
(A+E) \boldsymbol{y}^{(k)}=\boldsymbol{r}^{(k)}
$$

Using this equation together with (1) and (3) yields:

$$
\begin{aligned}
\boldsymbol{x}^{(k+1)}-\boldsymbol{x} & =\left[I-(A+E)^{-1} A\right]^{k}\left(\boldsymbol{x}^{(1)}-\boldsymbol{x}\right) \\
\boldsymbol{r}^{(k+1)} & =\left[I-A(A+E)^{-1}\right] \boldsymbol{r}^{(k)}
\end{aligned}
$$

Therefore, if $\|E\|\left\|A^{-1}\right\|<\frac{1}{2}$, then

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)} \rightarrow \boldsymbol{x} \\
& \boldsymbol{r}^{(k+1)} \rightarrow 0
\end{aligned} \quad(k \rightarrow \infty)
$$

Moreover, if

$$
\frac{\left\|\boldsymbol{y}^{(k)}\right\|_{\infty}}{\left\|\boldsymbol{x}^{(k+1)}\right\|_{\infty}}>\frac{1}{2} \frac{\left\|\boldsymbol{y}^{(k-1)}\right\|_{\infty}}{\left\|\boldsymbol{x}^{(k)}\right\|_{\infty}}
$$

the solution does not converge.
(See reference bibliography (6).)

2.1.3.11 Precise estimate of the approximate solution

For the approximate solution $\boldsymbol{x}^{(k)}$,

$$
\boldsymbol{y}^{(k)}=(A+E)^{-1}\left(\boldsymbol{b}-A \boldsymbol{x}^{(k)}\right)=\left(I+A^{-1} E\right)^{-1}\left(\boldsymbol{x}-\boldsymbol{x}^{(k)}\right)
$$

The relative error of the solution $\frac{\left\|\boldsymbol{x}-\boldsymbol{x}^{(k)}\right\|_{\infty}}{\left\|\boldsymbol{x}^{(k)}\right\|_{\infty}}$ can be replaced by $\frac{\left\|\boldsymbol{y}^{(k)}\right\|_{\infty}}{\left\|\boldsymbol{x}^{(k)}\right\|_{\infty}}$ if the solution converges sufficiently and matrix A is well conditioned.

2.1.3.12 Condition Number

(1) Condition numbers and their use The condition number $\kappa(A)$ of matrix A is a numeric value that indicates the degree of influence the error included in coefficient matrix A or constant vector \boldsymbol{b} exerts on the solution when solving the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$. The condition number is given by the following formula:

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

If error E is contained in coefficient matrix A, the relative error between the derived solution \boldsymbol{y} and real solution \boldsymbol{x} is in the range:

$$
\frac{\|\boldsymbol{y}-\boldsymbol{x}\|}{\|\boldsymbol{y}\|} \leq \kappa(A) \varepsilon
$$

where:

$$
\varepsilon=\frac{\|E\|}{\|A\|}
$$

If error \boldsymbol{e} is contained in constant vector \boldsymbol{b}, the relative error is in the range:

$$
\frac{\|\boldsymbol{y}-\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \kappa(A) \varepsilon
$$

where:

$$
\varepsilon=\frac{\|e\|}{\|b\|}
$$

Therefore, if the condition number is on the order of 10^{α}, the precision of the derived solution may be approximately α digits less than the precision of the original data.
This library obtain the reciprocal of the condition number and store it in the variable COND. Note that even if solution is obtained for simultaneous linear equations having a coefficient matrix for which the COND value is extremely small, the precision will be extremely poor. In particular, if the following decision formula holds, the matrix is computationally singular, and the solution is unreliable.
(Singular matrix decision formula):

$$
1.0+\mathrm{COND}=1.0
$$

(2) Calculating the condition number Although the condition number

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

this library approximate $\left\|A^{-1}\right\|$ without obtaining A^{-1} and then multiply that value by $\|A\|$.
Let $A=U \Sigma V^{T}$ be a singular decomposition of A where
$U, V \quad$: Orthogonal matrices

$$
\begin{aligned}
\Sigma= & {\left[\begin{array}{ccccc}
\sigma_{1} & & & & 0 \\
& \ddots & & & \\
& & \ddots & & \\
& & & \ddots & \\
0 & & & \sigma_{n}
\end{array}\right] } \\
& \sigma_{i}: \text { Singular value } \\
& \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}
\end{aligned}
$$

Consider the system of equations $A \boldsymbol{x}=\boldsymbol{y}$. If \boldsymbol{y} is represented as:

$$
\boldsymbol{y}=\|\boldsymbol{y}\| \sum_{i=1}^{n} \alpha_{i} u_{i} \quad\left(\sum_{i} \alpha_{i}^{2}=1\right)
$$

where u_{i} (a column vector of U) is a basis, then, the following relationship holds:

$$
\left\|A^{-1}\right\| \geq \frac{\|\boldsymbol{x}\|}{\|\boldsymbol{y}\|}=\left[\sum_{i=1}^{n}\left(\frac{\alpha_{i}}{\sigma_{i}}\right)^{2}\right]^{\frac{1}{2}}
$$

As long as α_{n} is not particularly small, the size of the right side is on the order of $\sigma_{n}{ }^{-1}\left(=\left\|A^{-1}\right\|\right)$ for any type of vector \boldsymbol{y}.
This library select \boldsymbol{y} so that approximate solutions get successively better.
The inequality shown above holds when $\boldsymbol{y}=\boldsymbol{u}_{n}\left(\alpha_{n}=1, \alpha_{i}=0 ; i=1,2, \cdots, n-1\right)$. Therefore, \boldsymbol{y} should be determined so that it has \boldsymbol{u}_{n} as its principle elements. Actually, for:

$$
\boldsymbol{z}=\left(\begin{array}{c}
\pm 1 \\
\pm 1 \\
\vdots \\
\pm 1
\end{array}\right)
$$

\boldsymbol{y} should be obtained in $A^{T} \boldsymbol{y}=\boldsymbol{z}$ by determining the sign of each element of \boldsymbol{z} so that $\frac{\|\boldsymbol{y}\|}{\|\boldsymbol{z}\|}$ is maximized. Using this \boldsymbol{y} to solve $A \boldsymbol{x}=\boldsymbol{y}, \frac{\|\boldsymbol{x}\|}{\|\boldsymbol{y}\|}$ is the approximate value of $\left\|A^{-1}\right\|$.
The actual procedure for obtaining the condition number is as follows.
(a) Obtain $\|A\|$.
(b) Perform a triangular decomposition of A into $A=L U$.
(c) Obtain \boldsymbol{w} by determining \boldsymbol{z} in $U^{T} \boldsymbol{w}=\boldsymbol{z}$ so that $\frac{\|\boldsymbol{w}\|}{\|\boldsymbol{z}\|}$ is maximized.
(d) Obtain \boldsymbol{y} by solving $L^{T} \boldsymbol{y}=\boldsymbol{w}$.
(e) Obtain \boldsymbol{x} by solving $L U \boldsymbol{x}=\boldsymbol{y}$.
(f) Obtain $\frac{\|\boldsymbol{y}\|}{\|\boldsymbol{x}\|\|A\|}$ (reciprocal of the condition number) and store this value in the argument COND.
(See reference bibliography (3).)

2.1.4 Reference Bibliography

(1) Wilkinson, J. H. and Reinsch, C. , "Handbook for Automatic Computation, vol II, Linear Algebra", Springer-Verlag, (1971).
(2) Dahlquist, G. and Björck, Å., "Numerical Methods", translated by Anderson, N. Prentice-Hall, Inc., (1974).
(3) Cline, A. K. , Moler, C. B. , Stewart, G. W. and Wilkinson, J. H. , "An estimate for the condition number of a matrix", SIAM Numerical Analysis Vol. 16, pp. 368-375, (1979).
(4) Dongarra, J. J., Moler, C. B., Bunch, J. R. and Stewart, G. W., "LINPACK Users' Guide", SIAM, (1979).
(5) Forsythe, G. E. and Moler, C. B. , "Computer Solution of Linear Algebraic Systems", Prentice-Hall, Inc., (1967).
(6) Wilkinson, J. H. , "Rounding Errors in Algebraic Processes, Notes on Applied Science No. 32", PrenticeHall, Inc., (1963).
(7) Robert, Y. and Sguazzero, P. "The LU decomposition algorithm and its efficient FORTRAN implementation on IBM3090 Vector Multiprocessor", IBM Tech. Rep., ICE-0006, (1987).
(8) Stone, Harold. S., "Parallel Tridiagonal Equation Solvers", ACM Transactions on Mathematical Software, Vol. 1, No. 4, 289, (1975).
(9) Hockney, R. W. and Jesshope, C. R. , "Parallel Computers"

2.2 REAL MATRIX (TWO-DIMENSIONAL ARRAY TYPE)

2.2.1 DBGMSM, RBGMSM

Simultaneous Linear Equations with Multiple Right-Hand Sides (Real Matrix)
(1) Function

DBGMSM or RBGMSM uses Gauss' method to solve the simultaneous linear equations $A \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}(i=$ $1,2, \cdots, m$) having real matrix A (two-dimensional array type) as coefficient matrix. That is, when the $n \times m$ matrix B is defined by $B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$, the subroutine obtains $\left[\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B$.
(2) Usage

Double precision:
CALL DBGMSM (AB, LNA, N, M, IPVT, IERR)
Single precision:
CALL RBGMSM (AB, LNA, N, M, IPVT, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER }(8) \text { as for } 64 \mathrm{bit} \text { Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	AB	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	See Contents	Input	Matrix (real matrix, two-dimensional array type) consisting of coefficient matrix A and right-hand side vectors $\boldsymbol{b}_{\boldsymbol{i}}\left[A, \boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$ Size: (LNA, (N + M))
				Output	Matrix (real matrix, two-dimensional array type) consisting of the factored matrix A^{\prime} of coefficient matrix A and solution vectors $\boldsymbol{x}_{\boldsymbol{i}}$ $\left[A^{\prime}, \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\boldsymbol{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]$ (See Notes (a) and (b))
2	LNA	I	1	Input	Adjustable dimension of array AB
3	N	I	1	Input	Order of matrix A
4	M	I	1	Input	Number of right-hand side vectors, m
5	IPVT	I	N	Output	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (a))
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(b) $0<\mathrm{M}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	$\mathrm{AB}(1, \mathrm{~N}+\mathrm{i}) \leftarrow \mathrm{AB}(1, \mathrm{~N}+\mathrm{i}) / \mathrm{AB}(1,1)$ $(i=1,2, \cdots, \mathrm{M}) \text { is performed. }$
2100	There existed the diagonal element which was close to zero in the $L U$ decomposition of the coefficient matrix A. The result may not be obtained with a good accuracy.	Processing continues.
3000	Restriction (a) was not satisfied.	Processing is aborted.
3010	Restriction (b) was not satisfied.	
$4000+i$	The pivot became 0.0 in the i-th processing step of the LU decomposition of coefficient matrix A. A is nearly singular.	

(6) Notes
(a) This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix A. If the pivot row in the $\mathrm{i}-\mathrm{th}$ step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in $\operatorname{IPVT}(\mathrm{i})$. In addition, among the column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.
(b) The unit lower triangular matrix L is stored in the lower triangular portion of array AB with the sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of L always are 1.0 , they are not stored in array AB . In addition, the reciprocals of the diagonal components of U are stored.

Figure 2-1 Storage Status of Matrices L and U
Matrix L
Matrix U

$$
\left[\begin{array}{ccccc}
1.0 & 0.0 & 0.0 & \cdots & 0.0 \\
l_{2,1} & 1.0 & 0.0 & \cdots & 0.0 \\
l_{3,1} & l_{3,2} & 1.0 & \cdots & 0.0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
l_{5,1} & l_{5,2} & l_{5,3} & \cdots & 1.0
\end{array}\right]\left[\begin{array}{ccccc}
u_{1,1} & u_{1,2} & u_{1,3} & \cdots & u_{1,5} \\
0.0 & u_{2,2} & u_{2,3} & \cdots & u_{2,5} \\
0.0 & 0.0 & u_{3,3} & \cdots & u_{3,5} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0.0 & 0.0 & 0.0 & \cdots & u_{5,5}
\end{array}\right]
$$

Remarks

a. LNA $\geq \mathrm{N}$ and $\mathrm{N}+\mathrm{M} \leq \mathrm{K}$ must be hold.
(7) Example
(a) Problem

Solve the following simultaneous linear equations.

$$
\left[\begin{array}{rrrr}
2 & 4 & -1 & 6 \\
-1 & -5 & 4 & 2 \\
1 & 2 & 3 & 1 \\
3 & 5 & -1 & -3
\end{array}\right]\left[\begin{array}{rr}
x_{1,1} & x_{1,2} \\
x_{2,1} & x_{2,2} \\
x_{3,1} & x_{3,2} \\
x_{4,1} & x_{4,2}
\end{array}\right]=\left[\begin{array}{rr}
36 & 11 \\
15 & 0 \\
22 & 7 \\
-6 & 4
\end{array}\right]
$$

(b) Input data

Array AB in which coefficient matrix A and constant vectors $\boldsymbol{b}_{\mathbf{1}}$ and $\boldsymbol{b}_{\mathbf{2}}$ are stored, LNA=11, $\mathrm{N}=4$ and $\mathrm{M}=2$.
(c) Main program

```
PROGRAM BBGMSM
EXAMPLE OF DBGMSM ***
IMPLICIT REAL (8) (A-H,O-Z)
    PARAMETER (LNA = 11)
    DIMENSION AB(LNA,LNA+LMA),IPVT (LNA)
    READ (5,*) N
    READ (5,*) M 
    WRITE (6,1000) N, M
            READ (5,*) (AB (I, J), J=1,N)
            WRITE (6,1100) (AB (I, J), J=1,N)
1 0
CONTINUE
    WRITE (6, 1200)
    DO 20 I = 1, N
            READ (5,*) (AB (I,N+J), J=1,M)
            WRITE (6,1100) (AB (I,N+J),J=1,M)
    20
    CONTINUE
    WRITE (6,1300)
    CALL DBGMSM (AB,LNA,N,M,IPVT,IERR)
    WRITE (6,1400) 'DBGMSM',IERR
    IF (IERR .GE. 3000) STOP
    WRITE (6,1600)
    DO 30 I = 1, N N WRITE (6,1100) (AB (I,N+J),J=1,M)
    3 0 ~ C O N T I N U E ~
```

STOP
1000 FORMAT(, , ,/,/,\&

> , *** DBGMSM
> $\begin{aligned} & \text { 2X,'** }, \text { INPUT } \\ & 6 \mathrm{X},{ }^{*} \mathrm{~N}=\text {, } \mathrm{I} 3, / \text {, }\end{aligned}$
> $6 \mathrm{X}, \mathrm{M}=$,', $\mathrm{I} 3, /, \&$
> 6X,'COEFFICIENT MATRIX'
> 1100 FORMAT(7X,10(F11.4)) 1200 FORMAT(6X,'CONSTANT VECTORS')
> 1300 FORMAT (2X,' ** OUTPUT ,**')
> 1400 FORMAT (6X,' IERR (',A6, ') $=$, , I5)
> 1600 FORMAT(6X,'SOLUTION')
(d) Output results

$\begin{array}{r} * * * \\ * * \end{array}$	DBGMSM ***				
	INPUT **	**			
	$\mathrm{N}=4$				
	$\mathrm{M}=2$				
	COEFFICIENT MATRIX				
		2.0000	4.0000	-1.0000	6.0000
		1.0000	-5.0000	4.0000	2.0000
		1.0000	2.0000	3.0000	1.0000
		3.0000	5.0000	-1.0000	-3.0000
	CONSTANT VECTORS				
		6.0000	11.0000		
		5.0000	0.0000		
		2.0000	7.0000		
		6.0000	4.0000		
**	OUTPUT ** ${ }^{\text {** }}$				
	IERR (D	DBGMSM)	0		
	SOLUTI				
		1.0000	1.0000		
		2.0000	1.0000		
		4.0000	1.0000		
		5.0000	1.0000		

2.2.2 DBGMSL, RBGMSL

Simultaneous Linear Equations (Real Matrix)
(1) Function

DBGMSL or RBGMSL uses the Gauss method or the Crout method to solve the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ having the real matrix A (two-dimensional array type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBGMSL (A, LNA, N, B, IPVT, IERR)
Single precision:
CALL RBGMSL (A, LNA, N, B, IPVT, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad \mathrm{I}:\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for 32bit Integer } \\ \operatorname{INTEGER}(8) \text { as for 64bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l} D \\ R \end{array}\right\}$	LNA, N	Input	Coefficient matrix A (real matrix, twodimensional array type)
				Output	Upper triangular matrix U and lower triangular matrix L when A is decomposed into $A=L U$. (See Notes (b) and (c))
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	B	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	N	Input	Constant vector \boldsymbol{b}
				Output	Solution vector \boldsymbol{x}
5	IPVT	I	N	Output	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (b))
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	$\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)$ is performed.
1000	N was equal to 1	There existed the diagonal element which was close to zero in the $L U$ decompo- sition of the coefficient matrix $A . \quad$ The result may not be obtained with a good accuracy.

(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector \boldsymbol{b} differs, the solution is obtained more efficiently by directly using the subroutine 2.2.1 $\left\{\begin{array}{l}\text { DBGMSM } \\ \text { RBGMSM }\end{array}\right\}$ to perform the calculations. However, when 2.2.1 $\left\{\begin{array}{l}\text { DBGMSM } \\ \text { RBGMSM }\end{array}\right\}$ cannot be used such as when all of the righthand side vectors \boldsymbol{b} are not known in advance, call this subroutine only once and then call subroutine $2.2 .5\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}$ the required number of times varying only the contents of B. This enables you to eliminate unnecessary calculation by performing the LU decomposition of matrix A only once.
(b) This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix A. If the pivot row in the i -th step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in IPVT(i). In addition, among the column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.
(c) The unit lower triangular matrix L is stored in the lower triangular portion of array A with the sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of L always are 1.0, they are not stored in array A. In addition, the reciprocals of the diagonal components of U are stored.

$$
\begin{aligned}
& \text { Matrix } L \\
& \text { Matrix } U \\
& {\left[\begin{array}{ccccc}
1.0 & 0.0 & 0.0 & \cdots & 0.0 \\
l_{2,1} & 1.0 & 0.0 & \cdots & 0.0 \\
l_{3,1} & l_{3,2} & 1.0 & \cdots & 0.0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
l_{5,1} & l_{5,2} & l_{5,3} & \cdots & 1.0
\end{array}\right]\left[\begin{array}{ccccc}
u_{1,1} & u_{1,2} & u_{1,3} & \cdots & u_{1,5} \\
0.0 & u_{2,2} & u_{2,3} & \cdots & u_{2,5} \\
0.0 & 0.0 & u_{3,3} & \cdots & u_{3,5} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0.0 & 0.0 & 0.0 & \cdots & u_{5,5}
\end{array}\right]}
\end{aligned}
$$

Remarks

a. \quad LNA $\geq \mathrm{N}$ and $\mathrm{N} \leq \mathrm{K}$ must hold.

Figure 2-2 Storage Status of Matrices L and U

(7) Example

(a) Problem

Solve the following simultaneous linear equations and obtain the condition number.

$$
\left[\begin{array}{rrrr}
2 & 4 & -1 & 6 \\
-1 & -5 & 4 & 2 \\
1 & 2 & 3 & 1 \\
3 & 5 & -1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
36 \\
15 \\
22 \\
-6
\end{array}\right]
$$

(b) Input data

Coefficient matrix $\mathrm{A}, \mathrm{LNA}=11, \mathrm{~N}=4$, and constant vector B .
(c) Main program

PROGRAM BBGMSL
! *** EXAMPLE OF DBGMSL ***
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (LNA = 11)
DIMENSION A (LNA, LNA) , B (LNA), IPVT (LNA)
$!$
$\operatorname{READ}(5, *) \mathrm{N}$
WRITE $(6,1000) ~ N$
DO $10 \mathrm{I}=1$, N
READ ($5, *$) (A (I, J) , J=1, N)
WRITE $(6,1100)$ (A (I, J) $, \mathrm{J}=1, \mathrm{~N})$
10
CONTINUE
READ $(5, *)(B(I), I=1, N)$
WRITE $(6,1200)$
WRITE
WALL DBGMSL (A, INA N B
WRITE $(6,1400)$ ' DBGMSL', IERR
IF (IERR, GE. 3000) STOP
$\operatorname{WRITE}(6,1600)(\mathrm{I}, \mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
WRITE
STOP
1000 FORMAT(, ', /,/,\&

1100 FORMAT (7X, 10 (G11.4))
1200 FORMAT (6X,' 'CONSTANT VECTOR' , / , (7X,F10.4))
1300 FORMAT (2X,'** OUTPUT **')

1400 FORMAT (6X, 'IERR (', A6,') $=$ ', I5)
1600 FORMAT (6X,' $\operatorname{SOLUTION',},{ }^{\prime},(8 \mathrm{X}, ' \mathrm{X}(', \mathrm{I} 2, ')=$, , D18.10)) END
(d) Output results
$\begin{array}{ll}* * * & \text { DBGMSL } \\ * * & \text { INPUT } \\ & * *\end{array}$
$\mathrm{N}=4$
COEFFICIENT MATRIX

2.000	4.000	-1.000	6.000
-1.000	-5.000	4.000	2.000
1.000	2.000	3.000	1.000
3.000	5.000	-1.000	-3.000
NSTANT VECTOR			

CONSTANT VECTOR
36.0000
15.0000
22.0000
** OUTPUT ${ }^{-6.0000}$
IERR (DBGMSL) $=0$
SOLUTION
$X(1)=0.1000000000 \mathrm{D}+01$
$X(2)=0.2000000000 \mathrm{D}+01$
$X(3)=0.4000000000 \mathrm{D}+01$
$\mathrm{X}\left(\begin{array}{l}1 \\ 4)\end{array}=0.5000000000 \mathrm{D}+01\right.$

2.2.3 DBGMLU, RBGMLU

LU Decomposition of a Real Matrix
(1) Function

DBGMLU or RBGMLU uses the Gauss method or the Crout method to perform an LU decomposition of the real matrix A (two-dimensional array type).
(2) Usage

Double precision:
CALL DBGMLU (A, LNA, N, IPVT, IERR)
Single precision:
CALL RBGMLU (A, LNA, N, IPVT, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Real Matrix A (two-dimensional array type)
		Output	Unit upper triangular matrix U and lower tri- angular matrix L when A is decomposed into $A=L U$ (See Notes (a) and (b))		
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	IPVT	I	N	Output	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (b))
5	IERR	I	1		Output
Error indicator					

(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N is equal to 1	Contents of array A are not changed. 2100 There existed the diagonal element which was close to zero in the $L U$ decompo- sition of the coefficient matrix A. The result may not be obtained with a good accuracy.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	The pivot became 0.0 in the i-th process- ing step. A is nearly singular.	

(6) Notes
(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with the sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of matrix L always are 1.0 , they are not stored in array A. In addition, the reciprocals of the diagonal components of U are stored. (See Fig. 2-2 in Section 2.2.2)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by subsequent subroutines. If the pivot row in the i -th step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in IPVT(i). In addition, among the column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.

2.2.4 DBGMLC, RBGMLC

LU Decomposition and Condition Number of a Real Matrix
(1) Function

DBGMLC or RBGMLC uses the Gauss method or the Crout method to perform an LU decomposition and obtain the condition number of the real matrix A (two-dimensional array type).
(2) Usage

Double precision:
CALL DBGMLC (A, LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL RBGMLC (A, LNA, N, IPVT, COND, W1, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad \mathrm{I}:\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	LNA, N	Input	Real Matrix A (two-dimensional array type)
				Output	Unit upper triangular matrix U and lower triangular matrix L when A is decomposed into $A=L U$ (See Notes (a) and (b))
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	IPVT	I	N	Output	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (b))
5	COND	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Reciprocal of the condition number
6	W1	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Work	Work area
7	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	Contents of array A are not changed and COND $\leftarrow 1.0$ is performed.
1000	N is equal to 1	There existed the diagonal element which was close to zero in the $L U$ decompo- sition of the coefficient matrix $A . \quad$ The result may not be obtained with a good accuracy.
2100	Processing continues.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	The pivot became 0.0 in the i-th process- ing step. A is nearly singular.	

(6) Notes
(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with the sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of matrix L always are 1.0 , they are not stored in array A. In addition, the reciprocals of the diagonal components of U are stored. (See Fig. 2-2 in Section 2.2.2)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by subsequent subroutines. If the pivot row in the i -th step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in $\operatorname{IPVT}(\mathrm{i})$. In addition, among the column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.
(c) Although the condition number is defined by $\|A\| \cdots\left\|A^{-1}\right\|$, an approximate value is obtained by this subroutine.

2.2.5 DBGMLS, RBGMLS

Simultaneous Linear Equations (LU-Decomposed Real Matrix)
(1) Function

DBGMLS or RBGMLS solves the simultaneous linear equations $L U \boldsymbol{x}=\boldsymbol{b}$ having the real matrix A (twodimensional array type) which has been LU decomposed by the Gauss method or the Crout method as coefficient matrix.
(2) Usage

Double precision:
CALL DBGMLS (A, LNA, N, B, IPVT, IERR)
Single precision:
CALL RBGMLS (A, LNA, N, B, IPVT, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER }(8) \text { as for } 64 \mathrm{bit} \text { Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Coefficient matrix A after LU decomposition (real matrix, two-dimensional array type) (See Notes (a) and (b))
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	B	\{ D	N	Input	Constant vector \boldsymbol{b}
		R $\}$		Output	Solution vector \boldsymbol{x}
5	IPVT	I	N	Input	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (c))
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N is equal to 1	$\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Normally, you should decompose matrix A by calling the 2.2.3 $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}$ subroutine. However, if you also want to obtain the condition number, you should use 2.2.4 $\left\{\begin{array}{l}\text { DBGMLC } \\ \text { RBGMLC }\end{array}\right\}$.
In addition, if you have already used 2.2.2 $\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}$ to solve simultaneous linear equations having the same coefficient matrix A, you can use the LU decomposition obtained as part of its output. To solve multiple sets of simultaneous linear equations where only the constant vector \boldsymbol{b} differs, the solution is obtained more efficiently by directly using the subroutine 2.2.6 $\left\{\begin{array}{l}\text { DBGMMS } \\ \text { RBGMMS }\end{array}\right\}$ to perform the calculations.
(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array A with the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion. However, since the diagonal components of matrix L always are 1.0, they should not be stored in array A. In addition, the reciprocals of the diagonal components of U must be stored. (See Fig. 2-2 in Section 2.2.2.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This information is given by the 2.2.3 $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}, 2.2 .4\left\{\begin{array}{l}\text { DBGMLC } \\ \text { RBGMLC }\end{array}\right\}$, and 2.2.2 $\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}$ subroutines which perform LU decomposition of matrix A.

2.2.6 DBGMMS, RBGMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LUDecomposed Real Matrix)
(1) Function

DBGMMS or RBGMMS solves the simultaneous linear equations $L U \boldsymbol{x}=\boldsymbol{b}$ having the real matrix A (twodimensional array type) which has been LU decomposed by the Gauss method or the Crout method as coefficient matrix. That is, when the $n \times m$ matrix B is defined by $B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$, the subroutine obtains $\left[\boldsymbol{x}_{\boldsymbol{1}}, \boldsymbol{x}_{\boldsymbol{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B$.
(2) Usage

Double precision:
CALL DBGMMS (A, LNA, N, B, LNB, M, IPVT, IERR)
Single precision:
CALL RBGMMS (A, LNA, N, B, LNB, M, IPVT, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	LNA, N	Input	Coefficient matrix A after LU decomposition (real matrix, two-dimensional array type) (See Notes (a) and (b))
2	LNA	1	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	B	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	LNA, N	Input	Matrix consisting of constant vector $\boldsymbol{b}_{\boldsymbol{i}}$ $\left[A^{\prime}, \boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$
				Output	Matrix consisting of Solution vector $\boldsymbol{x}_{\boldsymbol{i}}$ $\left[A^{\prime}, \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]$
5	LNB	I	1	Input	Adjustable dimension of array B
6	M	I	1	Input	Number of right-hand side vectors, m
7	IPVT	I	N	Input	Pivoting information $\operatorname{IPVT}(\mathrm{i})$: Number of row exchanged with row i in the i-th processing step (See Note (c)).
8	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(b) $0<\mathrm{M}$
(c) $0<\operatorname{IPVT}(\mathrm{i}) \leq \mathrm{N}(\mathrm{i}=1, \ldots, \mathrm{~N})$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N is equal to 1	$\mathrm{B}(1, \mathrm{i}) \leftarrow \mathrm{B}(1, \mathrm{i}) / \mathrm{A}(1,1)(i=1,2, \cdots, \mathrm{M})$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
3010	Restriction (b) was not satisfied.	
3020	Restriction (c) was not satisfied.	

(6) Notes
(a) The coefficient matrix A must be LU decomposed before using this subroutine. Normally, you should decompose matrix A by calling the 2.2.3 $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}$ subroutine. However, if you also want to obtain the condition number, you should use 2.2.4 $\left\{\begin{array}{l}\text { DBGMLC } \\ \text { RBGMLC }\end{array}\right\}$.
In addition, if you have already used 2.2.2 $\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}$ to solve simultaneous linear equations having the same coefficient matrix A, you can use the LU decomposition obtained as part of its output.
(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array A with the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion. However, since the diagonal components of matrix L always are 1.0, they should not be stored in array A. In addition, the reciprocals of the diagonal components of U must be stored. (See Fig. 2-2 in Section 2.2.2.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This information is given by the 2.2.3 $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}, 2.2 .4\left\{\begin{array}{l}\text { DBGMLC } \\ \text { RBGMLC }\end{array}\right\}$, and 2.2.2 $\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}$ subroutines which perform LU decomposition of matrix A.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.
$\left[\begin{array}{rrrr}2 & 4 & -1 & 6 \\ -1 & -5 & 4 & 2 \\ 1 & 2 & 3 & 1 \\ 3 & 5 & -1 & -3\end{array}\right]\left[\begin{array}{ll}x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \\ x_{3,1} & x_{3,2} \\ x_{4,1} & x_{4,2}\end{array}\right]=\left[\begin{array}{rr}36 & 11 \\ 15 & 0 \\ 22 & 7 \\ -6 & 4\end{array}\right]$
(b) Input data

Coefficient matrix $\mathrm{A}, \mathrm{LNA}=10, \mathrm{~N}=4$, matrix consisting of constant vector $B, \mathrm{LNB}=\mathrm{B}$ and $\mathrm{M}=2$.
(c) Main program

```
PROGRAM BBGMSM
! *** EXAMPLE OF DBGMMS ***
    IMPLICIT NONE
        INTEGER LNA,LNB,N,M,I,J,IERR
        INTEGER LNA,LNB,N,M,I,J,IERR 
        INTEGER IPVT(LNA)
        REAL (8) A (LNA,N),B(LNB,M)
            2.ODO, 4.0DO, -1.ODO, 6.0DO,&
            -1.0DO, -5.0DO, 4.0DO, 2.0DO,&
            1.0DO, 2.0DO, 3.0DO, 1.0DO,&
```



```
            TA ( \((\mathrm{B}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{M}), \mathrm{I}=1, \mathrm{~N}) / \&\)
                    36.0DO, 11.ODO,\&
                    15.0DO, 0.0DO,\&
                    22.0DO, 7.0DO,\&
                    -6.0DO, 4.0DO"
\(!\)
            WRITE \((6,1000) \mathrm{N}, \mathrm{M}\)
            DO \(10 \mathrm{I}=1, \mathrm{~N}\)
            WRITE \((6,1100)(A(I, J), J=1, N)\)
    10 CONTINUE
            WRITE \((6,1200)\)
            DO 20 I = 1,
            WRITE \((6,1100)(B(I, J), J=1, M)\)
    20 CONTINUE
            WRITE \((6,1300)\)
            CALL DBGMLU (A,LNA,N,IPVT,IERR)
            IF (IERR .GE. 3000) STOP
            CALL DBGMMS (A,LNA, N, B, LNB , M, IPVT, IERR)
            IF (IERR .GE. 3000) STOP
            WRITE \((6,1400)\) IERR
            WRITE \((6,1500)\)
            DO \(30 \mathrm{I}=(1, \mathrm{~N}\) WRITE \((6,1100)(B(I, J), J=1, M)\)
    30 CONTINUE
            STOP
1000 FORMAT (1X
                1X, ',*** DBGMMS ***'
                \(\begin{array}{ll}\text { 1X, }, \quad{ }^{* * *} & \text { DBGMMS } \\ \text { 1X, } \\ \text { 1X, } & * * \\ \text { INPUT }\end{array}\)
                1X, , \(\quad \stackrel{\text { INPUT }}{\mathrm{N}=,}\), I3 \({ }^{*}\)
```



```
                    X, , \({ }^{2}\) COEFFICIENT MATRIX, ',
1100 FORMAT (1X, 6X,10(F11.4)
1200 FORMAT (1X,/,, \& CONSTANT VECTORS, )
1300 FORMAT (1X, /, \&
1400 FORMAT (1X, , \({ }^{1 \times}\) **
1500 FORMAT (1X,
END
```

(d) Output results

```
*** DBGMMS ***
    N=4
    COEFFICIENT MATRIX
\begin{tabular}{rrrr}
2.0000 & 4.0000 & -1.0000 & 6.0000 \\
-1.0000 & -5.0000 & 4.0000 & 2.0000 \\
1.0000 & 2.0000 & 3.0000 & 1.0000 \\
3.0000 & 5.0000 & -1.0000 & -3.0000
\end{tabular}
CONSTANT VECTORS
    36.0000 11.0000
    15.0000 0.0000
    22.0000 7.0000
-6.0000 4.0000
** OUTPUT **
    IERR = 0
    SOLUTION
\begin{tabular}{ll}
1.0000 & 1.0000 \\
2.0000 & 1.0000 \\
4.0000 & 1.0000 \\
5.0000 & 1.0000
\end{tabular}
```


2.2.7 DBGMDI, RBGMDI

Determinant and Inverse Matrix of a Real Matrix

(1) Function

DBGMDI or RBGMDI obtains the determinant and inverse matrix of the real matrix A (two-dimensional array type) which has been LU decomposed by the Gauss method or the Crout method.
(2) Usage

Double precision:
CALL DBGMDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)
Single precision:
CALL RBGMDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l} D \\ R \end{array}\right\}$	LNA, N	Input	Real matrix A (two-dimensional array type) after LU decomposition (See Notes (a) and (b))
				Output	Inverse matrix of matrix A
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	1	1	Input	Order of matrix A
4	IPVT	I	N	Input	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (c))
5	DET	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	2	Output	Determinant of matrix A (See Note (d))
6	ISW	I	1	Input	Processing switch ISW > 0: Obtain determinant. ISW $=0:$ Obtain determinant and inverse matrix. ISW <0 : Obtain inverse matrix.
7	W1	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Work	Work area
8	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1	$\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1)$ (See Note (d))
		$\mathrm{DET}(2) \leftarrow 0.0$
		$\mathrm{~A}(1,1) \leftarrow 1.0 / \mathrm{A}(1,1)$.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Use any of the 2.2.3 $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}, 2.2 .4\left\{\begin{array}{l}\text { DBGMLC } \\ \text { RBGMLC }\end{array}\right\}, 2.2 .2\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}$ subroutines to perform the decomposition.
(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array A with the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion. However, since the diagonal components of matrix L always are 1.0, they should not be stored in array A. In addition, the reciprocals of the diagonal components of U must be stored. (See 2.2.2 Figure $2-2$).
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This information is given by the subroutine that performs the LU decomposition of matrix A.
(d) The determinant is given by the following expression:

$$
\operatorname{det}(A)=\operatorname{DET}(1) \times\left(10.0^{\operatorname{DET}(2)}\right)
$$

Scaling is performed at this time so that:

$$
1.0 \leq|\operatorname{DET}(1)|<10.0
$$

(e) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form $A^{-1} \boldsymbol{b}$ or $A^{-1} B$ in the numerical calculations, it must be calculated by solving the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ for the vector \boldsymbol{x} or by solving the simultaneous linear equations with multiple right-hand sides $A X=B$ for the matrix X, respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

2.2.8 DBGMLX, RBGMLX

Improving the Solution of Simultaneous Linear Equations (Real Matrix)
(1) Function

DBGMLX or RBGMLX uses an iterative method to improve the solution of the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ having the real matrix A (two-dimensional array type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBGMLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)
Single precision:
CALL RBGMLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 \mathrm{bit} Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Coefficient matrix A (real matrix, twodimensional array type)
2	LNA	I	1	Input	Adjustable dimension of arrays A and ALU
3	N	I	1	Input	Order of matrix A
4	ALU	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	LNA, N	Input	Coefficient matrix A after LU decomposition (See Note (a))
5	B	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Input	Constant vector \boldsymbol{b}
6	X	\{ D$\}$	N	Input	Approximate solution \boldsymbol{x}
		R $\}$		Output	Iteratively improved solution \boldsymbol{x}
7	ITOL	I	1	Input	Number of digits to which solution is to be improved (See Note (b))
				Output	Approximate number of digits to which solution was improved (See Note (c))
8	NIT	I	1	Input	Maximum number of iterations (See Note (d))
9	IPVT	I	N	Input	Pivoting information (See Note (a))
10	W1	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	N	Work	Work area
11	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1	The solution is not improved.
3000	Restriction (a) was not satisfied.	Processing is aborted.
5000	The solution did not converge within the maximum number of iterations.	Processing is aborted after calculating the ITOL output value.
6000	The solution could not be improved.	

(6) Notes

(a) This subroutine improves the solution obtained by the 2.2.2 $\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}$ or 2.2.5 $\left\{\begin{array}{l}\text { DBGMLS } \\ \text { RBGMLS }\end{array}\right\}$ subroutine. Therefore, the coefficient matrix A after it has been decomposed 2.2.2 $\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}$, 2.2.3 $\left\{\begin{array}{l}\text { DBGMLU } \\ \text { RBGMLU }\end{array}\right\}$ or 2.2.4 $\left\{\begin{array}{l}\text { DBGMLC } \\ \text { RBGMLC }\end{array}\right\}$ subroutine and the pivoting information at that time must be given as input.
(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.

$$
\mathrm{ITOL} \leq 0
$$

or

$$
\text { ITOL } \geq- \text { LOG10 }(2 \times \varepsilon) \quad(\varepsilon: \text { Unit for determining error })
$$

(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

(7) Example

(a) Problem

Solve the following simultaneous linear equations and improve the solution.
$\left[\begin{array}{rrrrrrrrrr}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ 9 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ 8 & 8 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ 7 & 7 & 7 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ 6 & 6 & 6 & 6 & 6 & 5 & 4 & 3 & 2 & 1 \\ 5 & 5 & 5 & 5 & 5 & 5 & 4 & 3 & 2 & 1 \\ 4 & 4 & 4 & 4 & 4 & 4 & 4 & 3 & 2 & 1 \\ 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ x_{7} \\ x_{8} \\ x_{9} \\ x_{10}\end{array}\right]=\left[\begin{array}{l}6 \\ 5 \\ 4 \\ 4 \\ 4 \\ 3 \\ 2 \\ 2 \\ 2 \\ 1\end{array}\right]$
(b) Input data

Coefficient matrix $A, L N A=11, \mathrm{~N}=10$ and constant vector \boldsymbol{b}.
(c) Main Program

PROGRAM BBGMLX
EXAMPLE OF DBGMLX ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PARAMETER (LNA=11, LN=10)
DIMENSION A(LNA,LN), ALU(LNA,LN), B(LN), X(LN), W1(LN)
INTEGER IPVT(LN), NIT
$!$
READ (5,*) N
$\operatorname{WRITE}(6,1000) N$
$\operatorname{READ}(5, *)((A(I, J), J=1, N), I=1, N)$
$\operatorname{READ}(5, *)(B(I), I=1, N)$
$\operatorname{WRITE}(6,1100)$
$\operatorname{DO} 10 I=1, \mathrm{~N}$
WRITE $(6,1200)(A(I, J), J=1, N)$
10 CONTINUE
$\operatorname{WRITE}(6,1300)$
DO
WRITE $(6,1400) \quad B(I)$
20 CONTINUE
DO $\begin{array}{rl}40 & \mathrm{~J} \\ \mathrm{X}(\mathrm{J}) & =1, \mathrm{~N}\end{array}$
DO $30 \mathrm{I}=1, \mathrm{~N}$
DO $30 \mathrm{IL}=1, N(I, J) \stackrel{N}{=} A(I, J)$
30
CONTINU

CONTINUE
CALL DBGMSL (ALU, LNA , N, X , IPVT , IERR)
IF (IERR.GE.3000) STOP
WRITE $(6,1500)$
DO $50 \mathrm{I}=1$, N
WRITE $(6,1600) \mathrm{I}, \mathrm{X}(\mathrm{I})$
50 CONTINUE
ITOL $=0$
NIT $=0$
CALL DBGMLX (A,LNA,N, ALU, B, X,ITOL,NIT, IPVT,W1, IERR)
WRITE $(6,1700)$ IERR
$\operatorname{WRITE}(6,1800)$
DO $60 I=1, \mathrm{~N}$
WRITE $(6,1600) \mathrm{I}, \mathrm{X}(\mathrm{I})$
60 CONTINU

1100 FORMAT (6X,'COEFFICIENT MATRIX A')
1200 FORMAT (8X, 10F7.1)
1300 FORMAT (6X,'CONSTANT VECTOR')
1500 FORMAT (6X, 'ORIGINAL SOLUTION')
1600 FORMAT (8X, 'X (', I2,') $=$, , 1PD18.10)
1700 FORMAT (2X,' $* *$ OUTPUT **', $/, 6 \mathrm{X},{ }^{1}$ IERR $=$, , I5)
1800 FORMAT (6X,' IMPROVED SOLUTION')
END
(d) Output results

COEFFICIENT MATRIX A									
10.0	9.0	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0
9.0	9.0	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0
8.0	8.0	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0
7.0	7.0	7.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0
6.0	6.0	6.0	6.0	6.0	5.0	4.0	3.0	2.0	1.0
5.0	5.0	5.0	5.0	5.0	5.0	4.0	3.0	2.0	1.0
4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	2.0	1.0
3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	1.0
2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.0
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
CONSTANT VECTOR 1.0 1.0 1.0 1.0 1.0									
6.0									
5.0									
4.0									
4.0									
4.0									
3.0									
2.0									
2.0									
2.0									
1.0									
ORIGINAL SOLUTION									
$\mathrm{X}(3)=-1.0000000000 \mathrm{D}+00$									
$\mathrm{X}(4)=-2.5376526277 \mathrm{D}-16$$\mathrm{X}(5)=1.0000000000 \mathrm{D}+00$									
$\mathrm{X}(6)=7.9936057773 \mathrm{D}-16$									
$\mathrm{X}(7)=-1.0000000000 \mathrm{D}+00$									
$\mathrm{X}(8)=-7.4014868308 \mathrm{D}-17$									
$\mathrm{X}(9)=1.0000000000 \mathrm{D}+00$									
$\underset{* * ~}{\text { X }(10) ~}=0.0000000000 \mathrm{D}+00$									
** OUTPUT **									
$\begin{aligned} & \text { IERR = } \quad 0 \\ & \text { IMPROVED SOLUTION } \end{aligned}$									
$\mathrm{X}(1)=1.0000000000 \mathrm{D}+00$$\mathrm{X}(2)=-4.6838616247 \mathrm{D}-31$									
$\mathrm{X}(3)=-1.0000000000 \mathrm{D}+00$									
$\mathrm{X}(4)=-1.3312027776 \mathrm{D}-30$									
$\mathrm{X}(5)=1.0000000000 \mathrm{D}+00$									
$\mathrm{X}(\mathrm{6})=-1.9721522631 \mathrm{D}-31$$\mathrm{X}(7)=-1.000000000 \mathrm{D}+00$									
$\mathrm{x}(8)=-9.8607613153 \mathrm{D}-32$									
$\mathrm{X}(9)=1.0000000000 \mathrm{D}+00$									
$\mathrm{X}(10)=$	0.00000	00000							

2.3 COMPLEX MATRIX (TWO DIMENSIONAL ARRAY TYPE) (REAL ARGUMENT TYPE)

2.3.1 ZBGMSM, CBGMSM

Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix)

(1) Function

ZBGMSM or CBGMSM uses Gauss' method to solve the simultaneous linear equations $A \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}(i=$ $1,2, \cdots, m$) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the $n \times m$ matrix B is defined by $B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$, the subroutine obtains $\left[\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B$.
(2) Usage

Double precision:
CALL ZBGMSM (ABR, ABI, LNA, N, M, IPVT, W1, IERR)
Single precision:
CALL CBGMSM (ABR, ABI, LNA, N, M, IPVT, W1, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for 32bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	$\left.\begin{array}{l}\text { ABR Contents } \\ \mathrm{R}\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
4	N	I	1	Input	Order of matrix A
5	M	I	1	Input	Number of right-hand side vectors, m
6	IPVT	I	N	Output	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step (See Note (a)).
7	W1	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	N	Work	Work area
8	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}$
(b) $0<\mathrm{M}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1	$\begin{aligned} & \operatorname{ABR}(1, \mathrm{~N}+\mathrm{i}) \\ & \leftarrow(\operatorname{ABR}(1, \mathrm{~N}+\mathrm{i}) \times \operatorname{ABR}(1,1) \\ & \quad+\operatorname{ABI}(1, \mathrm{~N}+\mathrm{i}) \times \operatorname{ABI}(1,1)) \\ & /\left(\operatorname{ABR}(1,1)^{2}+\operatorname{ABI}(1,1)^{2}\right) \\ & \\ & \operatorname{ABI}(1, \mathrm{~N}+\mathrm{i}) \\ & \leftarrow(\operatorname{ABI}(1, \mathrm{~N}+\mathrm{i}) \times \operatorname{ABR}(1,1) \\ & \quad-\operatorname{ABR}(1, \mathrm{~N}+\mathrm{i}) \times \operatorname{ABI}(1,1)) \\ & /\left(\operatorname{ABR}(1,1)^{2}+\operatorname{ABI}(1,1)^{2}\right) \\ & (\mathrm{i}=1,2, \cdots, \mathrm{M}) \end{aligned}$
2100	There existed the diagonal element which was close to zero in the $L U$ decomposition of the coefficient matrix A. The result may not be obtained with a good accuracy.	Processing continues.
3000	Restriction (a) was not satisfied.	Processing is aborted.
3010	Restriction (b) was not satisfied.	
$4000+i$	The pivot became 0.0 in the i-th processing step of the LU decomposition of coefficient matrix A. A is nearly singular.	

(6) Notes
(a) This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix A. If the pivot row in the i -th step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in $\operatorname{IPVT}(\mathrm{i})$. In addition, among the
column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.
(b) The unit lower triangular matrix L is stored in the lower triangular portion of array ABR and ABI with the sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of L always are 1.0 , they are not stored in array ABR and ABI. In addition, the reciprocals of the diagonal components of U are stored.

Figure 2-3 Storage Status of Matrices L and U
Matrix $L \quad$ Matrix U
$\left[\begin{array}{ccccc}1.0 & 0.0 & 0.0 & \cdots & 0.0 \\ l_{2,1} & 1.0 & 0.0 & \cdots & 0.0 \\ l_{3,1} & l_{3,2} & 1.0 & \cdots & 0.0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{5,1} & l_{5,2} & l_{5,3} & \cdots & 1.0\end{array}\right] \underset{\Downarrow}{\left[\begin{array}{ccccc}u_{1,1} & u_{1,2} & u_{1,3} & \cdots & u_{1,5} \\ 0.0 & u_{2,2} & u_{2,3} & \cdots & u_{2,5} \\ 0.0 & 0.0 & u_{3,3} & \cdots & u_{3,5} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0.0 & 0.0 & 0.0 & \cdots & u_{5,5}\end{array}\right]}$

Storage status within array ABR(LNA, K)

Remarks

a. $\quad \mathrm{LNA} \geq \mathrm{N}$ and $\mathrm{N}+\mathrm{M} \leq \mathrm{K}$ must be hold.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

$$
\left[\begin{array}{rrrr}
4+2 i & 3+9 i & 4+i & 7+9 i \\
6+7 i & 4 i & 4+7 i & 2+5 i \\
9+3 i & 6+2 i & 9+5 i & 8+5 i \\
1+5 i & 7+9 i & 3+5 i & 2+4 i
\end{array}\right]\left[\begin{array}{llll}
x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\
x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\
x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\
x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) Input data

Array ABR and ABI in which coefficient matrix A, constant vectors $\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \boldsymbol{b}_{\mathbf{3}}$ and $\boldsymbol{b}_{\mathbf{4}}$ are stored,
$\mathrm{LNA}=11, \mathrm{~N}=4$ and $\mathrm{M}=4$.
(c) Main program

```
    PROGRAM ABGMSM
! *** EXAMPLE OF ZBGMSM ***
    IMPLICIT REAL (8) (A-H, \(0-Z\) )
    PARAMETER (LNA = 11)
    PARAMETER (LMA = 5 )
    DIMENSION ABR (LNA, LNA+LMA), ABI (LNA,LNA+LMA), IPVT (LNA), W (LNA)
!
    \(\begin{array}{ll}\text { READ }(5, *) & \mathrm{N} \\ \text { READ } & (5, *)\end{array}\)
    WRITE ( 6,1000 ) N, M
    DO 10 I \(=1, \mathrm{~N}\)
            \(\operatorname{READ}(5, *)(\operatorname{ABR}(I, J), A B I(I, J), J=1, N)\)
            WRITE \((6,1100)(\operatorname{ABR}(\mathrm{I}, \mathrm{J}), \mathrm{ABI}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{~N})\)
    10 CONTINUE
        WRITE \((6,1200)\)
        DO 20 I \(=1\),
            READ ( \(5, *\) ) (ABR ( \(\mathrm{I}, \mathrm{N}+\mathrm{J}), \operatorname{ABI}(\mathrm{I}, \mathrm{N}+\mathrm{J}), \mathrm{J}=1, \mathrm{M})\)
            WRITE \((6,1100)(\operatorname{ABR}(I, N+J), A B I(I, N+J), J=1, M)\)
    20 CONTINUE
        WRITE \((6,1300)\)
        CALL ZBGMSM (ABR, ABI, LNA, N,M, IPVT,W, IERR)
        WRITE \((6,1400)\) ' ZBGMSM', IERR
        IF (IERR, GE. 3000) STOP
        WRITE ( 6,1600 )
        DO \(30 \mathrm{I}=1\)
            WRITE \((6,1100)(A B R(I, N+J), A B I(I, N+J), J=1, M)\)
    30 CONTINUE
    STOP
1000 FORMAT (' , ,/,/,\&
        2X, \({ }^{* * *}\) Z
        2X,', ** INPUT
        6X, \({ }_{M}=,, 13,1, \&\)
```



```
    100 FORMAT(7X,4('(',F8.4,',',F8.4,')'))
1200 FORMAT (6X, 'CONSTANT VECTORS')
1300 FORMAT ( \(2 \mathrm{X},{ }^{\prime} * *\) OUTPUT \({ }^{* *}\) ')
1400 FORMAT (6X,' IERR (',A6,') =',I5)
1600 FORMAT(6X,'SOLUTION')
    END
```

(d) Output results

```
***
    ZBGMSM **
    INPUT
    N=4
    COEFFICIENT MATRIX
```



```
    IERR (ZBGMSM)
    SOLUTION
        (0.0133,-0.0730)( 0.1814, -0.2467)( -0.1840, 0.1782)( -0.1039, -0.0560)
        (-0.0178, -0.0189)( (-0.0680, -0.0696)( -0.0128, 0.1001)( 0.0415, -0.0657)
    (-0.0353, 0.1382)( -0.0585, 0.1700)( 0.1333, -0.2410)( 0.1314, 0.0191)
```


2.3.2 ZBGMSL, CBGMSL

Simultaneous Linear Equations (Complex Matrix)

(1) Function

ZBGMSL or CBGMSL uses the Gauss method or the Crout method to solve the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ having the complex matrix $A=(\mathrm{AR}, \mathrm{AI})$ (two-dimensional array type) as coefficient matrix.
(2) Usage

Double precision:
CALL ZBGMSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)
Single precision:
CALL CBGMSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	AR	$\left\{\begin{array}{l} D \\ R \end{array}\right\}$	LNA, N	Input	Real part of coefficient matrix A (complex matrix, two-dimensional array type)
				Output	Real parts of unit upper triangular matrix U and low triangular matrix L when A is decomposed into $A=L U$ (See Notes (b) and (c))
2	AI	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	LNA, N	Input	Imaginary part of coefficient matrix (complex matrix, two-dimensional array type)
				Output	Imaginary parts of unit upper triangular matrix U and lower triangular matrix L when A is decomposed into $A=L U$ (See Notes (b) and (c))
3	LNA	I	1	Input	Adjustable dimension of arrays AR and AI
4	N	I	1	Input	Order of matrix A
5	BR	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Input	Real part of constant vector \boldsymbol{b}
				Output	Real part of solution \boldsymbol{x}
6	BI	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	N	Input	Imaginary part of constant vector \boldsymbol{b}
				Output	Imaginary part of solution \boldsymbol{x}
7	IPVT	I	N	Output	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (b))
8	W1	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	N	Work	Work area
9	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1	$\begin{aligned} & \mathrm{BR}(1) \\ & \leftarrow\{\operatorname{BR}(1) \times \operatorname{AR}(1,1)+\operatorname{BI}(1) \times \operatorname{AI}(1,1)\} \\ & \quad /\left\{\operatorname{AR}(1,1)^{2}+\operatorname{AI}(1,1)^{2}\right\} \\ & \operatorname{BI}(1) \\ & \leftarrow\{\operatorname{BI}(1) \times \operatorname{AR}(1,1)-\operatorname{BR}(1) \times \operatorname{AI}(1,1)\} \\ & \quad /\left\{\operatorname{AR}(1,1)^{2}+\operatorname{AI}(1,1)^{2}\right\} \\ & \hline \end{aligned}$
2100	There existed the diagonal element which was close to zero in the $L U$ decomposition of the coefficient matrix A. The result may not be obtained with a good accuracy.	Processing continues.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	The pivot became 0.0 in the i-th processing step of the LU decomposition of coefficient matrix A. A is nearly singular.	

(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector \boldsymbol{b} differs, the solution is obtained more efficiently by directly using the subroutine 2.3.1 $\left\{\begin{array}{l}\text { ZBGMSM } \\ \text { CBGMSM }\end{array}\right\}$ to perform the calculations. However, when 2.3.1 $\left\{\begin{array}{l}\text { ZBGMSM } \\ \text { CBGMSM }\end{array}\right\}$ cannot be used such as when all of the righthand side vectors \boldsymbol{b} are not known in advance, call this subroutine only once and then call subroutine 2.3.5 $\left\{\begin{array}{l}\text { ZBGMLS } \\ \text { CBGMLS }\end{array}\right\}$ the required number of times varying only the contents of B. This enables you to eliminate unnecessary calculation by performing the LU decomposition of matrix A only once.
(b) This subroutine performs partial pivoting when obtaining the LU decomposition of coefficient matrix $A=(\mathrm{AR}, \mathrm{AI})$. If the pivot row in the i -th step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in $\operatorname{IPVT}(\mathrm{i})$. In addition, among the column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.
(c) The unit lower triangular matrix L is stored in the lower triangular portion of array AR and AI with the sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of L always are 1.0 , they are not stored in array AR and AI. In addition, the reciprocals of the diagonal components of U are stored. In Fig. 2-4, $\Re\{z\}$ and $\Im\{z\}$ denote a real part and an imaginary part of a complex number z, respectively.

Remarks

a. \quad LNA $\geq \mathrm{N}, \mathrm{N} \leq \mathrm{K}$ must hold.

Figure 2-4 Storage Status of Matrices L and U

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

$$
\left[\begin{array}{cccc}
5+8 i & 7+i & 6+3 i & 1+2 i \\
1+i & 9+5 i & 4+i & 5 \\
4 i & 3+3 i & 4+2 i & 6+9 i \\
7+8 i & 6 & 7+6 i & 10+4 i
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
3+20 i \\
-6+7 i \\
-6 i \\
13 i
\end{array}\right]
$$

(b) Input data

Coefficient matrix real part AR and imaginary part $\mathrm{AI}, \mathrm{LNA}=11, \mathrm{~N}=4$ and constant vector B .
(c) Main program

```
PROGRAM ABGMSI
*** EXAMPLE OF ZBGMLC, ZBGMLS ***
IMPLICIT REAL (8) (A-H, O-Z)
    PARAMETER (LNA \(=11\), LNW \(=22\) )
    DIMENSION AR (LNA, LNA ), AI (LNA, LNA) , BR (LNA) ,BI (LNA), IPVT (LNA)
    DIMENSION W1 (LNW)
\(!\)
    READ (5,*) N
    WRITE \((6,1000) \mathrm{N}\)
    DO \(10 \mathrm{I}=1, \mathrm{~N}\)
            READ ( \(5, \dot{*}\) ) (AR(I, J), AI (I, J) , J=1, N)
            WRITE ( 6,1100 ) (AR (I, J) , AI (I, J\(), \mathrm{J}=1, \mathrm{~N}\) )
    10 CONTINUE
            READ ( \(5, *\) ) ( \(\mathrm{BR}(\mathrm{I}), \mathrm{BI}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})\)
            WRITE \((6,1200)\)
            WRITE \((6,1300)\) BR(I), BI (I)
    20
        CONTINUE
            WRITE \((6,1400)\)
            CALL ZBGMLC (AR,AI,LNA,N,IPVT,COND,W1,IERR)
            WRITE \((6,1500)\) ' ZBGMLC', IERR
            IF (IERR. GE. 3000) STOP
            COND \(=1.0 \mathrm{DO} / \mathrm{COND}\)
            CALL ZBGMLS (AR,AI,LNA,N,BR,BI,IPVT,KERR)
            WRITE \((6,1500)\) ' ZBGMLS ', KERR
            WRITE \((6,1600)\) COND
            WRITE ( 6,1700 )
            WRITE \((6,1800) \mathrm{I}, \mathrm{BR}(\mathrm{I}), \mathrm{BI}(\mathrm{I})\)
    30
        CONTINUE
STOP
    STOP
1000 FORMAT (, ', /, /,', *** ZBGMLC, ZBGMLS \(* * *\), \&
                    /, 2X,' \({ }^{* *}\) INPUT \({ }^{* *}\), , \&
                    /,6X,' COEFFI ICIENT MATRIX ( REAL, IMAGINARY )')
    1100 FORMAT ('6X,4(' (',F5.1,' ','F5.1,' )'))
200 FORMAT (6X,'CONSTANT VECTOR ( REAL, IMAGINARY )')
1300 FORMAT (6X,', (',F5.1,' ,', F5.1,'')')
1400 FORMAT
1500 FORMAT
1600 FORMAT
1700 FORMAT (6X,'CONDITIÓN NUMBER \(=\) ', D18.10)
1700 FORMAT (6X,' 'SOLUTION ( REAL, IMAGINARY )')
```


(d) Output results

```
*** ZBGMLC,ZBGMLS ***
** INPUT **
\(\mathrm{N}=4\)
COEFFICIENT MATRIX ( REAL, IMAGINARY)
```



```
    ( \(3.0,20.0\) )
    \(\left(\begin{array}{r}-6.0, \\ 0.0, \\ 0.0\end{array}\right)\)
    \(\left(\begin{array}{ll}0.0,-6.0) \\ 0.0,13.0)\end{array}\right.\)
** OUTPUT **
    IERR \((\) ZBGMLC \()=0\)
IERR \((Z B G M L S)=0\)
    CONDITION NUMBER \(=0.6279263302 \mathrm{D}+01\)
    COLUTION ( REAL, IMAGINARY \({ }^{\text {S }}\)
            \(\mathrm{X}(1)=(0.1000000000 \mathrm{D}+01,0.1000000000 \mathrm{D}+01)\)
            \(x(2)=\left(\begin{array}{r}0.1000000000 \mathrm{D}+01, \\ -0.2220446049 \mathrm{D}-15, \\ 0.1000000000 \mathrm{D}+01\end{array}\right)\)
            \begin{tabular}{l}
\(X(2)=\left(\begin{array}{r}-0.2220446049 D-15 \\
X(3) \\
0.1000000000 D+01\end{array},-0.1000000000 \mathrm{D}+01\right)\) \\
\hline \(0.4996003611 \mathrm{D}-15)\)
\end{tabular}
            \(X(3)=\left(\begin{array}{r}0.100000000 D+01\end{array},-0.4996003611 \mathrm{D}-15\right)\)
\(X(4)=(-0.1000000000 D+01,-0.1000000000 \mathrm{D}+011\)
```


2.3.3 ZBGMLU, CBGMLU

LU Decomposition of a Complex Matrix

(1) Function

ZBGMLU or CBGMLU uses the Gauss method or the Crout method to perform an LU decomposition of the complex matrix $A=(\mathrm{AR}, \mathrm{AI})$ (two-dimensional array type).
(2) Usage

Double precision:
CALL ZBGMLU (AR, AI, LNA, N, IPVT, W1, IERR)
Single precision:
CALL CBGMLU (AR, AI, LNA, N, IPVT, W1, IERR)
(3) Arguments

| D:Double precision real
 R:Single precision real | Z:Double precision complex
 C:Single precision complex |
| :--- | :--- |\quad I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) as for 32 \mathrm{bit} Integer

\operatorname{INTEGER}(8) as for 64 \mathrm{bit} Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	AR	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	LNA, N	Input	Real part of coefficient matrix A (two-dimensional array type)
				Output	Real parts of unit upper triangular matrix U and low triangular matrix L when A is decomposed into $A=L U$ (See Notes (a) and (b))
2	AI	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	LNA, N	Input	Imaginary part of coefficient matrix (two-dimensional array type)
				Output	Imaginary parts of unit upper triangular matrix U and lower triangular matrix L when A is decomposed into $A=L U$ (See Notes (a) and (b))
3	LNA	I	1	Input	Adjustable dimension of arrays AR and AI
4	N	I	1	Input	Order of matrix A
5	IPVT	I	N	Output	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (b))
6	W1	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Work	Work area
7	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	Contents of array AR and AI are not changed.
1000	N was equal to 1.	There existed the diagonal element which was close to zero in the $L U$ decompo- sition of the coefficient matrix A. The result may not be obtained with a good accuracy.
2100	Restriction (a) was not satisfied.	Processing is aborted.
3000	The pivot became 0.0 in the i-th process- ing step. A is nearly singular.	
$4000+i$		

(6) Notes
(a) The unit lower triangular matrix L is stored in the lower triangular portion of array AR and AI with the sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of L always are 1.0, they are not stored in array AR and AI. In addition, the reciprocals of the diagonal components of U are stored. (See 2.3.2 Figure 2-4.)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by subsequent subroutines. If the pivot row in the i -th step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in $\operatorname{IPVT}(\mathrm{i})$. In addition, among the column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.

2.3.4 ZBGMLC, CBGMLC

LU Decomposition and Condition Number of a Complex Matrix

(1) Function

ZBGMLC or CBGMLC uses the Gauss method or the Crout method to perform an LU decomposition and obtain the condition number of the complex matrix $A=(\mathrm{AR}, \mathrm{AI})$ (two-dimensional array type).
(2) Usage

Double precision:
CALL ZBGMLC (AR, AI, LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL CBGMLC (AR, AI, LNA, N, IPVT, COND, W1, IERR)
(3) Arguments

D:Double precision real R:Single precision real	Z:Double precision complex
C:Single precision complex	

\operatorname{INTEGER}(8) as for 64 \mathrm{bit} Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	AR	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	LNA, N	Input	Real part of coefficient matrix A (two-dimensional array type)
				Output	Real parts of unit upper triangular matrix U and low triangular matrix L when A is decomposed into $A=L U$ (See Notes (a) and (b))
2	AI	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	LNA, N	Input	Imaginary part of coefficient matrix (two-dimensional array type)
				Output	Imaginary parts of unit upper triangular matrix U and lower triangular matrix L when A is decomposed into $A=L U$ (See Notes (a) and (b))
3	LNA	I	1	Input	Adjustable dimension of arrays AR and AI
4	N	I	1	Input	Order of matrix A
5	IPVT	I	N	Output	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (b))
6	COND	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Reciprocal of the condition number
7	W1	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	$2 \times \mathrm{N}$	Work	Work area
8	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	Contents of array AR and AI are not changed and COND $\leftarrow 1.0$ is performed.
2100	There existed the diagonal element which was close to zero in the $L U$ decomposition of the coefficient matrix A. The result may not be obtained with a good accuracy.	Processing continues.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	The pivot became 0.0 in the i-th processing step. A is nearly singular.	

(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array AR and AI with the sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of L always are 1.0 , they are not stored in array AR and AI. In addition, the reciprocals of the diagonal components of U are stored. (See 2.3.2 Figure 2-4.)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by subsequent subroutines. If the pivot row in the i -th step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in IPVT(i). In addition, among the column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.
(c) Although the condition number is defined by $\|A\| \cdot\left\|A^{-1}\right\|$, an approximate value is obtained by this subroutine.

2.3.5 ZBGMLS, CBGMLS

Simultaneous Linear Equations (LU-Decomposed Complex Matrix)

(1) Function

ZBGMLS or CBGMLS solves the simultaneous linear equations $L U \boldsymbol{x}=\boldsymbol{b}$ having the complex matrix $A=(\mathrm{AR}, \mathrm{AI})$ (two-dimensional array type) which has been LU decomposed by the Gauss method or the Crout method as coefficient matrix.
(2) Usage

Double precision:
CALL ZBGMLS (AR, AI, LNA, N, BR, BI, IPVT, IERR)
Single precision:
CALL CBGMLS (AR, AI, LNA, N, BR, BI, IPVT, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1	$\operatorname{BR}(1) \leftarrow$
		$\{\operatorname{BR}(1) \times \operatorname{AR}(1,1)+\mathrm{BI}(1) \times \operatorname{AI}(1,1)\}$
		$/\left\{\operatorname{AR}(1,1)^{2}+\operatorname{AI}(1,1)^{2}\right\}$
		$\operatorname{BI}(1) \leftarrow$
		$\{\operatorname{BI}(1) \times \operatorname{AR}(1,1)-\mathrm{BR}(1) \times \operatorname{AI}(1,1)\}$
		$/\left\{\operatorname{AR}(1,1)^{2}+\operatorname{AI}(1,1)^{2}\right\}$
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) The coefficient matrix $A=(\mathrm{AR}, \mathrm{AI})$ must be LU decomposed before using this subroutine. Normally, you should decompose matrix A by calling the 2.3.3 $\left\{\begin{array}{l}\text { ZBGMLU } \\ \text { CBGMLU }\end{array}\right\}$ subroutine. However, if you also want to obtain the condition number, you should use 2.3.4 $\left\{\begin{array}{l}\text { ZBGMLC } \\ \text { CBGMLC }\end{array}\right\}$.
In addition, if you have already used 2.3.2 $\left\{\begin{array}{c}\text { ZBGMSL } \\ \text { CBGMSL }\end{array}\right\}$ to solve simultaneous linear equations having the same coefficient matrix A, you can use the LU decomposition obtained as part of its output. To solve multiple sets of simultaneous linear equations where only the constant vector \boldsymbol{b} differs, the solution is obtained more efficiently by directly using the subroutine 2.3.6 $\left\{\begin{array}{l}\text { ZBGMMS } \\ \text { CBGMMS }\end{array}\right\}$ to perform the calculations.
(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array AR and AI with the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion. However, since the diagonal components of L always are 1.0 , they should not be stored in array AR and AI. In addition, the reciprocals of the diagonal components of U must be stored. (See 2.3.2 Figure 2-4.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This information is given by 2.3.3 $\left\{\begin{array}{l}\text { ZBGMLU } \\ \text { CBGMLU }\end{array}\right\}, 2.3 .4\left\{\begin{array}{l}\text { ZBGMLC } \\ \text { CBGMLC }\end{array}\right\}, 2.3 .2\left\{\begin{array}{l}\text { ZBGMSL } \\ \text { CBGMSL }\end{array}\right\}$ subroutines which perform LU decomposition of matrix A.

2.3.6 ZBGMMS, CBGMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LUDecomposed Complex Matrix)

(1) Function

ZBGMMS or CBGMMS uses Gauss' method to solve the simultaneous linear equations $A \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}(i=$ $1,2, \cdots, m$) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the $n \times m$ matrix B is defined by $B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$, the subroutine obtains $\left[\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B$.
(2) Usage

Double precision:
CALL ZBGMMS (AR, AI, LNA, N, BR, BI, LNB, M, IPVT, IERR)
Single precision:
CALL CBGMMS (AR, AI, LNA, N, BR, BI, LNB, M, IPVT, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\text { INTEGER(4) as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	AR	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Real parts of coefficient matrix A after LU decomposition (See Notes (a) and (b))
2	AI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Imaginary parts of coefficient matrix A after LU decomposition (See Notes (a) and (b))
3	LNA	I	1	Input	Adjustable dimension of arrays AR and AI
4	N	I	1	Input	Order of matrix A
5	BR	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	LNB, M	Input	Real part of constant vector \boldsymbol{b}
				Output	Real part of solution \boldsymbol{x}
6	BI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	LNB, M	Input	Imaginary part of constant vector \boldsymbol{b}
				Output	Imaginary part of solution \boldsymbol{x}
7	LNB	I	1	Input	Adjustable dimension of arrays AR and AI
8	M	I	1	Input	Order of matrix B
9	IPVT	I	N	Input	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (c))
10	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA, LNB
(b) $\mathrm{M}>0$
(c) $0<\operatorname{IPVT}(\mathrm{i}) \leq \mathrm{N}(\mathrm{i}=1, \ldots, \mathrm{~N})$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	$\begin{aligned} & \mathrm{BR}(1, i) \leftarrow \\ & \{\operatorname{BR}(1, i) \times \operatorname{AR}(1,1)+\mathrm{BI}(1, i) \times \operatorname{AI}(1,1)\} \\ & \quad /\left\{\operatorname{AR}(1,1)^{2}+\operatorname{AI}(1,1)^{2}\right\} \\ & \mathrm{BI}(1, i) \leftarrow \\ & \{\mathrm{BI}(1, i) \times \operatorname{AR}(1,1)-\mathrm{BR}(1, i) \times \operatorname{AI}(1,1)\} \\ & \quad /\left\{\operatorname{AR}(1,1)^{2}+\operatorname{AI}(1,1)^{2}\right\} \\ & (i=1,2, \cdots, \mathrm{M}) \text { is performed. } \end{aligned}$
3000	Restriction (a) was not satisfied.	Processing is aborted.
3010	Restriction (b) was not satisfied.	
3020	Restriction (c) was not satisfied.	

(6) Notes

(a) The coefficient matrix $A=(\mathrm{AR}, \mathrm{AI})$ must be LU decomposed before using this subroutine. Normally, you should decompose matrix A by calling the 2.3.3 $\left\{\begin{array}{l}\text { ZBGMLU } \\ \text { CBGMLU }\end{array}\right\}$ subroutine. However, if you also want to obtain the condition number, you should use 2.3.4 $\left\{\begin{array}{l}\text { ZBGMLC } \\ \text { CBGMLC }\end{array}\right\}$. In addition, if you have already used 2.3.2 $\left\{\begin{array}{l}\text { ZBGMSL } \\ \text { CBGMSL }\end{array}\right\}$ to solve simultaneous linear equations having the same coefficient matrix A, you can use the LU decomposition obtained as part of its output.
(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array AR and AI with the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion. However, since the diagonal components of L always are 1.0 , they should not be stored in array AR and AI. In addition, the reciprocals of the diagonal components of U must be stored. (See 2.3.2 Figure 2-4.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This information is given by 2.3.3 $\left\{\begin{array}{l}\text { ZBGMLU } \\ \text { CBGMLU }\end{array}\right\}$, 2.3.4 $\left\{\begin{array}{l}\text { ZBGMLC } \\ \text { CBGMLC }\end{array}\right\}, 2.3 .2\left\{\begin{array}{l}\text { ZBGMSL } \\ \text { CBGMSL }\end{array}\right\}$ subroutines which perform LU decomposition of matrix A.

(7) Example

(a) ProblemSolve the following simultaneous linear equations.

$$
\left[\begin{array}{rrrr}
4+2 i & 3+9 i & 4+i & 7+9 i \\
6+7 i & 4 i & 4+7 i & 2+5 i \\
9+3 i & 6+2 i & 9+5 i & 8+5 i \\
1+5 i & 7+9 i & 3+5 i & 2+4 i
\end{array}\right]\left[\begin{array}{llll}
x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\
x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\
x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\
x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) Input data

Array ABR and ABI in which coefficient matrix A, constant vectors $\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \boldsymbol{b}_{\mathbf{3}}$ and $\boldsymbol{b}_{\mathbf{4}}$ are stored, $\mathrm{LNA}=11, \mathrm{LNB}=11, \mathrm{~N}=4$ and $\mathrm{M}=4$.
(c) Main program

PROGRAM ABGMMS
! *** EXAMPLE OF ZBGMMS ***
IMPLICIT NONE
IMPLICIT NONE
INTEGER LNA,LNB,LMB, LNB $=11, L M B=5$)
PARAMETER (LNA $=11$, LNB
INTEGER N,M,
INTEGER I, J
REAL (8) AR (LNA, LNA) , BR (LNB, LMB)
REAL (8) AI (LNA, LNA) , BI (LNB, LMB)
REAL (8) W (LNA)
$!$
DATA (AR $(1, J), J=1,4) / 4.0 \mathrm{DO}, 3.0 \mathrm{DO}, 4.0 \mathrm{DO}, 7.0 \mathrm{DO} /$
DATA (AR $(2, J), J=1,4) / 6.0 D 0$, 0.0DO, 4.0DO, 2.0D0 /
DATA (AR $(3, J), J=1,4) / 9.0 D 0,6.0 D 0,9.0 D 0, ~ 8.0 D 0 /$
DATA (AR $(4, J), J=1,4) / 1.0 D 0,7.0 D 0,3.0 D 0,2.0 D 0 /$
DATA (AI $(1, J), J=1,4) / 2.0 D 0,9.0 D 0,11.0 D 0$, 9.0DO /

DATA (AI $(4, J), \mathrm{J}=1,4) / 5.0 D 0,9.0 D 0,5.0 D 0,4.0 D 0$ /
$!$
$N=4$
$M=4$
DO $100 \mathrm{~J}=1$, M
$\mathrm{BR}(\mathrm{I}, \mathrm{J})=0.0 \mathrm{DO}$
$\mathrm{BR}(\mathrm{I}, \mathrm{J})=0.0 \mathrm{DO}$
101 CONTINUE
101 CONTINUE
DO $110 \mathrm{I}=1, \mathrm{~N}$
110 CONTINUE
$\operatorname{WRITE}(6,6000) \mathrm{N}, \mathrm{M}$
DO $\left.\begin{array}{l}120 ~ \\ \operatorname{WRITE}(6,1, \\ 6010\end{array}\right) \quad(\operatorname{AR}(I, J), \operatorname{AI}(I, J), J=1, N)$
120 CONTINUE
WRITE $(6,6020)$
DO $130 \quad \mathrm{I}=1$, N
$\operatorname{WRITE}(6,6010)(B R(I, J), B I(I, J), J=1, M)$
130 CONTINUE
WRITE $(6,6030)$
CALL ZBGMLU (AR,AI,LNA,N,IPVT,W,IERR)
IF (IERR . GE. 3000) THEN
WRITE $(6,6040)$ IERR
ENDIF
CALL ZBGMMS (AR, AI , LNA , N, BR , BI , LNB , M, IPVT, IERR)
WRITE $(6,6050)$ IERR
WRITE(6,6050) IERR
IF (IERR . GE. 3000) STOP
IF IERR ITE $(6,6060)$
WRITE $140 \quad \mathrm{I}=1, \mathrm{~N}$
$\operatorname{WRITE}(6,6010)(B R(I, J), B I(I, J), J=1, M)$
140 CONTINUE
STOP
6000 FORMAT (/, \&
$\begin{array}{lll}\text { 'X }^{\&}, ', * * * & \text { ZBGMMS } & * * *,, /, /, \& \\ \text { 1X,', } & * * & \text { INPUT }\end{array}$
INPUT
$\mathrm{N}=,, \mathrm{I} 3, /,{ }^{*}, /, 1$
1X, $\quad M=,, I 3, l, /, \&$

(d) Output results

```
*** ZBGMMS ***
** INPUT **
    N = 4
    COEFFICIENT MATRIX ( REAL, IMAGINARY )
        (4.0000, 2.0000) (3.0000, 9.0000) (4.0000, 1.0000) (7.0000, 9.0000)
        (6.0000, 7.0000) ( 0.0000, 4.0000) (4.0000, 7.0000) ( 2.0000, 5.0000)
        9.0000, 3.0000) ( 6.0000, 2.0000) ( 9.0000, 5.0000) ( 8.0000, 5.0000)
        1.0000, 5.0000) ( 7.0000, 9.0000) ( 3.0000, 5.0000) ( 2.0000, 4.0000)
    CONSTANT VECTORS ( REAL, IMAGINARY )
    *)
    *)
        0.0000,0.0000) (0.0000,0.0000) ( 1.0000, 0.0000) ( 0.0000, 0.0000)
** OUTPUT **
    IERR = 0
    SOLUTION ( REAL, IMAGINARY )
    (0.0133,-0.0730) (0.1814,-0.2467) (-0.1840, 0.1782) (-0.1039,-0.0560)
    (-0.0178,-0.0189) (-0.0680,-0.0696) (-0.0128, 0.1001) (0.0415,-0.0657)
    (-0.0353, 0.1382) (-0.0585, 0.1700) (0.1333,-0.2410) (0.1314, 0.0191)
```


2.3.7 ZBGMDI, CBGMDI

Determinant and Inverse Matrix of a Complex Matrix

(1) Function

ZBGMDI or CBGMDI obtains the determinant and inverse matrix of the complex matrix $A=(\mathrm{AR}, \mathrm{AI})$ (two-dimensional array type) which has been LU decomposed by the Gauss method or the Crout method.
(2) Usage

Double precision:
CALL ZBGMDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)
Single precision:
CALL CBGMDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	AR	$\left\{\begin{array}{l} D \\ R \end{array}\right\}$	LNA, N	Input	Real parts of coefficient matrix A after LU decomposition (See Notes (a) and (b))
				Output	Real parts of inverse matrix of matrix A
2	AI	$\left\{\begin{array}{l} D \\ R \end{array}\right\}$	LNA, N	Input	Imaginary parts of coefficient matrix A after LU decomposition (See Notes (a) and (b))
				Output	Imaginary parts inverse matrix of matrix A
3	LNA	I	1	Input	Adjustable dimension of arrays AR and AI
4	N	I	1	Input	Order of matrix A
5	IPVT	I	N	Input	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (c))
6	DET	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	3	Output	Determinant of matrix A (See Note (d))
7	ISW	I	1	Input	Processing switch ISW >0 : Obtain determinant. ISW $=0$: Obtain determinant and inverse matrix. ISW <0 : Obtain inverse matrix.
8	W1	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	$2 \times \mathrm{N}$	Work	Work area
9	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	$\mathrm{DET}(1) \leftarrow \mathrm{AR}(1)$
		$\mathrm{DET}(2) \leftarrow \mathrm{AI}(1)$
		$\mathrm{DET}(3) \leftarrow 0.0$
		$\operatorname{AR}(1,1) \leftarrow$
		$\operatorname{AR}(1,1) /\left\{\operatorname{AR}(1,1)^{2}+\mathrm{AI}(1,1)^{2}\right\}$
		$\operatorname{AI}(1,1) \leftarrow$
		$-\operatorname{AI}(1,1) /\left\{\operatorname{AR}(1,1)^{2}+\mathrm{AI}(1,1)^{2}\right\}$
3000	Restriction (a) was not satisfied.	$\operatorname{Processing}$ is aborted.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Use any of the 2.3.3 $\left\{\begin{array}{l}\text { ZBGMLU } \\ \text { CBGMLU }\end{array}\right\}, 2.3 .4\left\{\begin{array}{c}\text { ZBGMLC } \\ \text { CBGMLC }\end{array}\right\}, 2.3 .2\left\{\begin{array}{l}\text { ZBGMSL } \\ \text { CBGMSL }\end{array}\right\}$ subroutines to perform the decomposition.
(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array AR and AI with the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion. However, since the diagonal components of L always are 1.0 , they should not be stored in array AR and AI. In addition, the reciprocals of the diagonal components of U must be stored. (See 2.3.2 Figure 2-4).
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT(i). This information is given by the subroutine that performs the LU decomposition of matrix A.
(d) The determinant is given by the following expression: $\Re\{\operatorname{det}(A)\}=\operatorname{DET}(1) \times 10^{\mathrm{DET}(3)}$
$\Im\{\operatorname{det}(A)\}=\operatorname{DET}(2) \times 10^{\mathrm{DET}(3)}$
Scaling is performed at this time so that:

$$
1.0 \leq|\operatorname{DET}(1)|+|\operatorname{DET}(2)|<10.0
$$

(e) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form $A^{-1} \boldsymbol{b}$ or $A^{-1} B$ in the numerical calculations, it must be calculated by solving the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ for the vector \boldsymbol{x} or by solving the simultaneous linear equations with multiple right-hand sides $A X=B$ for the matrix X, respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

2.3.8 ZBGMLX, CBGMLX

Improving the Solution of Simultaneous Linear Equations (Complex Matrix)

(1) Function

ZBGMLX or CBGMLX uses an iterative method to improve the solution of the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ having the complex matrix A (two-dimensional array type) as coefficient matrix.
(2) Usage

Double precision:

```
CALL ZBGMLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, IPVT, W1,
                                    IERR)
Single precision:
CALL CBGMLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, IPVT, W1, IERR)
```

(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{|c|c|c|c|l|}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
11	ITOL	I	1	Input	Number of digits to which solution is to be im- proved (See Note (b))
				Output	Approximate number of digits to which solution was improved (See Note (c))
12	NIT	I	1	Input	Maximum number of iterations (See Note (d))
13	IPVT	I	N	Input	Pivoting information (See Note (a))
14	W1	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	$3 \times \mathrm{N}$	Work	Work area
15	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	The solution is not improved.
3000	Restriction (a) was not satisfied.	Processing is aborted.
5000	The solution did not converge within the maximum number of iterations.	Processing is aborted after calculation the ITOL output value.
6000	The solution could not be improved.	

(6) Notes
(a) This subroutine improves the solution obtained by the 2.3.2 $\left\{\begin{array}{l}\text { ZBGMSL } \\ \text { CBGMSL }\end{array}\right\}$ or 2.3.5 $\left\{\begin{array}{l}\text { ZBGMLS } \\ \text { CBGMLS }\end{array}\right\}$ subroutine. Therefore, the coefficient matrix A after being decomposed by 2.3.2 $\left\{\begin{array}{l}\text { ZBGMSL } \\ \text { CBGMSL }\end{array}\right\}$, 2.3.3 $\left\{\begin{array}{l}\text { ZBGMLU } \\ \text { CBGMLU }\end{array}\right\}$, 2.3.4 $\left\{\begin{array}{l}\text { ZBGMLC } \\ \text { CBGMLC }\end{array}\right\}$ subroutine and the pivoting information at that time must be given as input.
(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.

$$
\mathrm{ITOL} \leq 0
$$

or

$$
\text { ITOL } \geq- \text { LOG10 }(2 \times \varepsilon)(\varepsilon: \text { Unit for determining error })
$$

(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

2.4 COMPLEX MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (COMPLEX ARGUMENT TYPE)

2.4.1 ZBGNSM, CBGNSM

Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix)

(1) Function

ZBGNSM or CBGNSM uses Gauss' method to solve the simultaneous linear equations $A \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}(i=$ $1,2, \cdots, m$) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the $n \times m$ matrix B is defined by $B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$, the subroutine obtains $\left[\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B$.
(2) Usage

Double precision:
CALL ZBGNSM (AB, LNA, N, M, IPVT, IERR)
Single precision:
CALL CBGNSM (AB, LNA, N, M, IPVT, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	AB	$\left\{\begin{array}{l} \mathrm{Z} \\ \mathrm{C} \end{array}\right\}$	See Contents	Input	Matrix (complex matrix, two-dimensional array type) consisting of coefficient matrix A and right-hand side vectors $\boldsymbol{b}_{\boldsymbol{i}}\left[A, \boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$ Size: (LNA, (N + M))
				Output	Matrix (complex matrix, two-dimensional array type) consisting of the factored matrix A^{\prime} of coefficient matrix A and solution vectors $\boldsymbol{x}_{\boldsymbol{i}}$ $\left[A^{\prime}, \boldsymbol{x}_{\boldsymbol{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]$ (See Notes (a) and (b))
2	LNA	I	1	Input	Adjustable dimension of array AB
3	N	I	1	Input	Order of matrix A
4	M	I	1	Input	Number of right-hand side vectors, m
5	IPVT	I	N	Output	Pivoting information $\operatorname{IPVT}(\mathrm{i})$: Number of row exchanged with row i in the i-th processing step (See Note (a)).
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(b) $0<\mathrm{M}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	$\mathrm{AB}(1, \mathrm{~N}+\mathrm{i}) \leftarrow \mathrm{AB}(1, \mathrm{~N}+\mathrm{i}) / \mathrm{AB}(1,1)$ $(i=1,2, \cdots, \mathrm{M})$ is performed.
1000	N was equal to 1.	Processing continues. was close to zero in the $L U$ decompo- sition of the coefficient matrix $A . \quad$ The result may not be obtained with a good accuracy.
2100	There existed the diagonal element which	
3000	Restriction (a) was not satisfied.	Processing is aborted.
3010	Restriction (b) was not satisfied.	
$4000+i$	The pivot became 0.0 in the i-th process- ing step of the LU decomposition of coef- ficient matrix A. A is nearly singular.	

(6) Notes
(a) This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix A. If the pivot row in the $\mathrm{i}-\mathrm{th}$ step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in $\operatorname{IPVT}(\mathrm{i})$. In addition, among the column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.
(b) The unit lower triangular matrix L is stored in the lower triangular portion of array AB with the sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of L always are 1.0 , they are not stored in array AB . In addition, the reciprocals of the diagonal components of U are stored. (See Figure 2-1 in Section 2.2.1).

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

$$
\left[\begin{array}{rrrr}
4+2 i & 3+9 i & 4+i & 7+9 i \\
6+7 i & 4 i & 4+7 i & 2+5 i \\
9+3 i & 6+2 i & 9+5 i & 8+5 i \\
1+5 i & 7+9 i & 3+5 i & 2+4 i
\end{array}\right]\left[\begin{array}{llll}
x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\
x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\
x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\
x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) Input data

Array AB in which coefficient matrix A, constant vectors $\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \boldsymbol{b}_{\mathbf{3}}$ and $\boldsymbol{b}_{\mathbf{4}}$ are stored, LNA=11, N=4 and $M=4$.
(c) Main program

PROGRAM ABGNSM

! *** EXAMPLE OF ZBGNSM ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PAPLICIT REAL (8) (A-H
PARAMETER $($ LNA $=11)$
PARAMETER $(L M A=5)$
PARAMETER (LMA
COMPLEX (8) AB
DIMENSION AB (LNA, LNA+LMA), IPVT (LNA)
$!$

```
READ (5,*) N
    READ (5,*) M
    WRITE (6,1000) N, M
```

```
            DO 10 I = 1, N
            READ (5,*) (AB(I, J), J=1,N)
            WRITE (6,1100) (AB(I, J),J=1,N)
    10 CONTINUE
    WRITE (6,1200)
    DO 20 I = 1,N
        READ (5,*) (AB (I,N+J) , J=1,M)
        WRITE (6,1100) (AB(I,N+J),J=1,M)
    20 CONTINUE
    WRITE (6,1300)
    CALL ZBGNSM (AB,LNA,N,M,IPVT,IERR)
    WRITE (6,1400) 'ZBGNSM',IERR
    IF(IERR .GE. 3000) STOP
    WRITE (6,1600)
        WRITE (6,1100) (AB(I,N+J),J=1,M)
    CONTINUE
    STOP
1000 FORMAT(1X,/,/,&
        1X,''*** ZBGNSM ***',/,/,&
        1X,5X,'N =',I3,/,&
```



```
1100 FORMAT (1X,6X,4('(',F8.4,',',F8.4,')'))
1200 FORMAT (/,1X,5X,'CONSTANT VECTORS')
1300 FORMAT (/,1X,1X,'** 0UTPUT **',/)
1400 FORMAT (1X,5X,'IERR (',A6,') =',I5)
1600 FORMAT(/,1X,5X,'SOLUTION')
END
```

(d) Output results

```
*** ZBGNSM ***
** INPUT **
    N = 4
    COEFFICIENT MATRIX
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline 4.0000, 2.0000 7.0000) & 3.0000,
0.0000, & 4.0000) & 4.0000,
4.0000 & 00)( & 2.0000, & 5.0000 \\
\hline \(9.0000,3.0000)(\) & 6.0000,', & 2.0000)( & 9.0000, & 5.0000)( & 8.0000, & \(5.0000)\) \\
\hline 1.0000, 5.0000)( & 7.0000, & 9.0000)( & 3.0000, & 5.0000)( & 2.0000, & 4.0000) \\
\hline \multicolumn{7}{|l|}{CONSTANT VECTORS} \\
\hline 1.0000, 0.0000) ( & 0.0000, & \(0.0000)(\) & 0.0000, & \(0.0000)(\) & 0.0000, & \(0.0000)\) \\
\hline 0.0000, 0.0000) ( & 1.0000, & \(0.0000)(\) & 0.0000, & \(0.0000)(\) & 0.0000, & \(0.0000)\) \\
\hline \(0.0000,0.0000)(\) & 0.0000, & \(0.0000)(\) & 1.0000, & \(0.0000)(\) & 0.0000, & 0.0000 \\
\hline \(0.0000,0.0000)(\) & 0.0000, & 0.0000)( & 0.0000, & 0.0000)( & 1.0000, & 0.0000 \\
\hline
\end{tabular}
** OUTPUT **
    IERR (ZBGNSM) =
    SOLUTION
        M,
```


2.4.2 ZBGNSL, CBGNSL

Simultaneous Linear Equations (Complex Matrix)
(1) Function

ZBGNSL or CBGNSL uses the Gauss method or the Crout method to solve the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ having the complex matrix A (two-dimensional array type) as coefficient matrix.
(2) Usage

Double precision:
CALL ZBGNSL (A, LNA, N, B, IPVT, IERR)
Single precision:
CALL CBGNSL (A, LNA, N, B, IPVT, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER(4)} \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$		LNA, N	Input
			Output	Coefficient matrix (complex matrix, two-dimensional array type)	

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	$\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)$ is performed.
1000	N was equal to 1.	There existed the diagonal element which was close to zero in the $L U$ decompo- sition of the coefficient matrix A. The result may not be obtained with a good accuracy.
2100	Processing continues.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	The pivot became 0.0 in the i-th process- ing step of the LU decomposition of coef- ficient matrix A. A is nearly singular.	

(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector \boldsymbol{b} differs, the solution is obtained more efficiently by directly using the subroutine 2.4.1 $\left\{\begin{array}{l}\text { ZBGNSM } \\ \text { CBGNSM }\end{array}\right\}$ to perform the calculations. However, when 2.4.1 $\left\{\begin{array}{l}\text { ZBGNSM } \\ \text { CBGNSM }\end{array}\right\}$ cannot be used such as when all of the righthand side vectors \boldsymbol{b} are not known in advance, call this subroutine only once and then call subroutine 2.4.5 $\left\{\begin{array}{l}\text { ZBGNLS } \\ \text { CBGNLS }\end{array}\right\}$ the required number of times varying only the contents of B. This enables you to eliminate unnecessary calculation by performing the LU decomposition of matrix A only once.
(b) This subroutine performs partial pivoting when obtaining the LU decomposition of coefficient matrix A. If the pivot row in the i -th step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in IPVT(i). In addition, among the column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.
(c) The unit lower triangular matrix L is stored in the lower triangular portion of array A with a minus sign added to each element, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of L always are 1.0, they are not stored in array A. Also, reciprocals are stored for the diagonal components of U. (See Figure 2-2 in Section 2.2.2).

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

$$
\left[\begin{array}{cccc}
5+8 i & 7+i & 6+3 i & 1+2 i \\
1+i & 9+5 i & 4+i & 5 \\
4 i & 3+3 i & 4+2 i & 6+9 i \\
7+8 i & 6 & 7+6 i & 10+4 i
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
3+20 i \\
-6+7 i \\
-6 i \\
13 i
\end{array}\right]
$$

(b) Input data

Coefficient matrix A, LNA $=11, \mathrm{~N}=4$ and constant vector \boldsymbol{b}.
(c) Main program

```
PROGRAM ABGNSL
*** EXAMPLE OF ZBGNLC,ZBGNLS ***
IMPLICIT REAL (8) (A-H,O-Z)
PARAMETER \(\quad(\mathrm{LNA}=11, \mathrm{LNW}=22)\)
COMPLEX (8) A(LNA,LNA), B(LNA), W1 (LNW)
DIMENSION IPVT(LNA)
READ \((5, *)\) N
WRITE \((6,1000) \mathrm{N}\)
DO \(10 \mathrm{I}=1, \mathrm{~N}\)
READ \((5, *)(A(I, J), J=1, N)\)
WRITE \((6,1100)(A(I, J), J=1, N)\)
    10 CONTINUE
READ ( \(5, *\) ) ( \(\mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N}\) )
WRITE \((6,1200)\)
DO \(20 \mathrm{I}=1\), N
WRITE \((6,1300)\) B(I)
    20 CONTINUE
    WRITE \((6,1400)\)
            CALL ZBGNLC (A,LNA,N,IPVT,COND,W1,IERR)
            WRITE \((6,1500)\) 'ZBGNLC', IERR
            IF (IERR .GE. 3000) STOP
            COND \(=1.0 \mathrm{DO} / \mathrm{COND}\)
            CALL ZBGNLS (A,LNA,N,B,IPVT,KERR)
            WRITE \((6,1500)\) ' ZBGNLS', KERR
            WRITE \((6,1600)\) COND
            WRITE (6,1700)
            DO \(30 \mathrm{I}=1, \mathrm{~N}\) )
        30 CONTINUE
            STOP
1000 FORM
```



```
            /,6X', 'COEFFICIENT MATRIX (, REAL, IMAGINARY )')
    100 FORMAT ( \(6 \mathrm{X}, 4\left(\prime\right.\) (', F5.1,' ,', F5.1, ' \({ }^{\prime}\) ') )
    200 FORMAT (6X,' CONSTAANT VECTÓR ( REAL, IMAGINARY )')
    1300 FORMAT (6X, , (',F5.1,' ,',F5.1,' ')')
    400 FORMAT
    1500 FORMAT (6X,' IERR ( \(\left.{ }^{\prime}, A 6, '\right)=\prime\), I5)
    600 FORMAT (6X,' 'CONDITIÓN NUMBER \(\stackrel{\text { ' }}{=}\),D18.10)
    1700 FORMAT (6X,'SOLUTION ( REAL, IMAGINARY )')
    1800 FORMAT (6X,' X(',I2,') = (',D18.10,' ,',D18.10,' )')
```

(d) Output results

```
*** ZBGNLC,ZBGNLS ***
** INPUT **
    N = = 4 
        (a)
    CONSTANT'VECTOR ( 6.0 , 0.0) ( 7.0 7.0 6.0 ) ( 10.0, 9.0}4.
    ( 3.0, 20.0)
        (-6.0, 7.0 ( )
    ** OUTPUT **
    INRR (ZBGNLC) = 0
    IERR (ZBGNLS)
    CONDITION NUMBER = IMAGINARY )
        X( 1) = ( O.1000000000D+01 , 0.1000000000D+01 )
        X( 2)=( -0.1665334537D-15 , 0.10000000000D+01 )
        X ( 3) = ( }\begin{array}{r}{0.1000000000D+01,}\end{array},-0.2775557562D+1
        x(4)=( -0.1000000000D+01 , -0.1000000000D+01 )
```


2.4.3 ZBGNLU, CBGNLU

LU Decomposition of a Complex Matrix

(1) Function

ZBGNLU or CBGNLU uses the Gauss method or the Crout method to perform an LU decomposition of the complex matrix A (two-dimensional array type).
(2) Usage

Double precision:
CALL ZBGNLU (A, LNA, N, IPVT, IERR)
Single precision:
CALL CBGNLU (A, LNA, N, IPVT, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	LNA, N	Input	Complex matrix A (two-dimensional array type)
		Output	Upper triangular matrix U and lower triangular matrix L when A is decomposed into $A=L U$. (See Notes (a) and (b))		
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	IPVT	I	N	Output	Pivoting information IPVT(i): Number of the row exchanged with row in the i-th processing step. (See Note (b))
5	IERR	I	1		Output

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	The contents of array A are unchanged.
2100	There existed the diagonal element which was close to zero in the $L U$ decompo- sition of the coefficient matrix A. The result may not be obtained with a good accuracy.	Processing continues.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	The pivot became 0.0 in the i-th process- ing step. A is nearly singular.	

(6) Notes
(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with a minus sign added to each element, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of L always are 1.0, they are not stored in array A. Also, reciprocals are stored for the diagonal components of U. (See Fig. 2-2 in Section 2.2.2.)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by subsequent subroutines. If the pivot row in the i -th step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in IPVT(i$)$. In addition, among the column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.

2.4.4 ZBGNLC, CBGNLC

LU Decomposition and Condition Number of a Complex Matrix

(1) Function

ZBGNLC or CBGNLC uses the Gauss method or the Crout method to perform an LU decomposition and obtain the condition number of the complex matrix A (two-dimensional array type).
(2) Usage

Double precision:
CALL ZBGNLC (A, LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL CBGNLC (A, LNA, N, IPVT, COND, W1, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 \mathrm{bit} Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l} \mathrm{Z} \\ \mathrm{C} \end{array}\right\}$	LNA, N	Input	Complex matrix (two-dimensional array type)
				Output	Upper triangular matrix U and lower triangular matrix L when A is decomposed into $A=L U$ (See Notes (a) and (b))
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	IPVT	I	N	Output	Pivoting information IPVT(i): Number of the row exchanged with row i in the i-th processing step. (See Note (b))
5	COND	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Reciprocal of the condition number
6	W1	$\left\{\begin{array}{l}\text { Z } \\ \text { C }\end{array}\right\}$	N	Work	Work area
7	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	The contents of array A are unchanged. COND $\leftarrow 1.0$ is performed.
1000	N was equal to 1.	There existed the diagonal element which was close to zero in the $L U$ decompo- sition of the coefficient matrix $A . \quad$ The result may not be obtained with a good accuracy.
2100	Restriction (a) was not satisfied.	Processing is aborted.
3000	The pivot became 0.0 in the i-th process- ing step. A is nearly singular.	Processing is aborted. The condition number is not obtained.
$4000+i$		

(6) Notes
(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with a minus sign added to each element, and the upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of L always are 1.0 , they are not stored in array A. Also, reciprocals are stored for the diagonal components of U. (See Fig. 2-2 in Section 2.2.2.)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by subsequent subroutines. If the pivot row in the i -th step is row $\mathrm{j}(\mathrm{i} \leq \mathrm{j})$, then j is stored in $\operatorname{IPVT}(\mathrm{i})$. In addition, among the column elements corresponding to row i and row j of matrix A, elements from column 1 to column n actually are exchanged at this time.
(c) Although the condition number is defined by $\|A\| \cdot\left\|A^{-1}\right\|$, an approximate value is obtained by this subroutine.

2.4.5 ZBGNLS, CBGNLS

Simultaneous Linear Equations (LU-Decomposed Complex Matrix)

(1) Function

ZBGNLS or CBGNLS solves the simultaneous linear equations $L U \boldsymbol{x}=\boldsymbol{b}$ having the complex matrix A (two-dimensional array type) which has been LU decomposed by the Gauss method or the Crout method as coefficient matrix.
(2) Usage

Double precision:
CALL ZBGNLS (A, LNA, N, B, IPVT, IERR)
Single precision:
CALL CBGNLS (A, LNA, N, B, IPVT, IERR)
(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	LNA, N	Input	Coefficient matrix after LU decomposition (complex matrix, two-dimensional array type) (See Notes (a) and (b))
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	1	1	Input	Order of matrix A
4	B	(Z	N	Input	Constant vector \boldsymbol{b}
		C $\}$		Output	Solution \boldsymbol{x}
5	IPVT	I	N	Output	Pivoting information IPVT(i): Number of the row exchanged with row i in the i-th processing step. (See Note (c))
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	$\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using the ZBGNLS or CBGNLS subroutine. Normally, you should decompose matrix A by calling the 2.4.3 $\left\{\begin{array}{l}\text { ZBGNLU } \\ \text { CBGNLU }\end{array}\right\}$ subroutine. However, if you also want to obtain the condition number, you should use 2.4.4 $\left\{\begin{array}{l}\text { ZBGNLC } \\ \text { CBGNLC }\end{array}\right\}$. In addition, if you have already used 2.4.2 $\left\{\begin{array}{l}\text { ZBGNSL } \\ \text { CBGNSL }\end{array}\right\}$ to solve simultaneous linear equations having the same coefficient matrix A, you can use the LU decomposition obtained as part of its output. To solve multiple sets of simultaneous linear equations where only the constant vector \boldsymbol{b} differs, the solution is obtained more efficiently by directly using the subroutine 2.4.6 $\left\{\begin{array}{l}\text { ZBGNMS } \\ \text { CBGNMS }\end{array}\right\}$ to perform the calculations.
(b) The unit lower triangular matrix L is stored in the lower triangular portions of array A with a minus sign added to each element, and the unit upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of U always are 1.0, they are not stored in array A. Also, reciprocals must be stored for the diagonal components of U. (See Fig. 2-2 in Section 2.2.2.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This information is given by the 2.4.3 $\left\{\begin{array}{l}\text { ZBGNLU } \\ \text { CBGNLU }\end{array}\right\}$, 2.4.4 $\left\{\begin{array}{l}\text { ZBGNLC } \\ \text { CBGNLC }\end{array}\right\}, 2.4 .2\left\{\begin{array}{l}\text { ZBGNSL } \\ \text { CBGNSL }\end{array}\right\}$ subroutines which perform LU decomposition of matrix A.

2.4.6 ZBGNMS, CBGNMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LUDecomposed Complex Matrix)

(1) Function

ZBGMSM or CBGNMS uses Gauss' method to solve the simultaneous linear equations $A \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}(i=$ $1,2, \cdots, m$) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the $n \times m$ matrix B is defined by $B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$, the subroutine obtains $\left[\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B$.
(2) Usage

Double precision:
CALL ZBGNMS (A, LNA, N, B, LNB, M, IPVT, IERR)
Single precision:
CALL CBGNMS (A, LNA, N, B, LNB, M, IPVT, IERR)
(3) Arguments

D:Double precision real | Z:Double precision complex |
| :--- |
| R:Single precision real | C:Single precision complex I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA, LNB
(b) $\mathrm{M}>0$
(c) $0<\operatorname{IPVT}(\mathrm{i}) \leq \mathrm{N}(\mathrm{i}=1, \ldots, \mathrm{~N})$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1	$\mathrm{B}(1, \mathrm{i}) \leftarrow \mathrm{B}(1, \mathrm{i}) / \mathrm{A}(1,1) \quad(i=1,2, \cdots, \mathrm{M})$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
3010	Restriction (b) was not satisfied.	
3020	Restriction (c) was not satisfied.	

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using the ZBGNLS or CBGNLS subroutine. Normally, you should decompose matrix A by calling the 2.4.3 $\left\{\begin{array}{l}\text { ZBGNLU } \\ \text { CBGNLU }\end{array}\right\}$ subroutine. However, if you also want to obtain the condition number, you should use 2.4.4 $\left\{\begin{array}{l}\text { ZBGNLC } \\ \text { CBGNLC }\end{array}\right\}$. In addition, if you have already used 2.4.2 $\left\{\begin{array}{l}\text { ZBGNSL } \\ \text { CBGNSL }\end{array}\right\}$ to solve simultaneous linear equations having the same coefficient matrix A, you can use the LU decomposition obtained as part of its output.
(b) The unit lower triangular matrix L is stored in the lower triangular portions of array A with a minus sign added to each element, and the unit upper triangular matrix U is stored in the upper triangular portion. However, since the diagonal components of U always are 1.0, they are not stored in array A. Also, reciprocals must be stored for the diagonal components of U. (See Fig. 2-2 in Section 2.2.2.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This information is given by the 2.4.3 $\left\{\begin{array}{l}\text { ZBGNLU } \\ \text { CBGNLU }\end{array}\right\}$, 2.4.4 $\left\{\begin{array}{l}\text { ZBGNLC } \\ \text { CBGNLC }\end{array}\right\}, 2.4 .2\left\{\begin{array}{l}\text { ZBGNSL } \\ \text { CBGNSL }\end{array}\right\}$ subroutines which perform LU decomposition of matrix A.

(7) Example

(a) ProblemSolve the following simultaneous linear equations.

$$
\left[\begin{array}{rrrr}
4+2 i & 3+9 i & 4+i & 7+9 i \\
6+7 i & 4 i & 4+7 i & 2+5 i \\
9+3 i & 6+2 i & 9+5 i & 8+5 i \\
1+5 i & 7+9 i & 3+5 i & 2+4 i
\end{array}\right]\left[\begin{array}{llll}
x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\
x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\
x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\
x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) Input data

Coefficient matrix A, constant vectors $\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \boldsymbol{b}_{\mathbf{3}}$ and $\boldsymbol{b}_{\mathbf{4}}$ are stored, LNA=11, LNB=11, N=4 and $\mathrm{M}=4$.
(c) Main program

- PROGRAM ABGNMS
! *** EXAMPLE OF ZBGNMS ***
IMPLICIT NONE
INPLICIT NONE
PARAMETER (LNA $=11$, LNB $=11, \operatorname{LMB}=5$)
PARAMETER (LNA $=11$, LNB $=$
INTEGER N, M, IPVT (LNA) , IERR
INTEGER N,M,
INTEGER I,J
COMPLEX (8) A (LNA , LNA) , B (LNB , LMB)
$!$
DATA (A $(1, J), J=1,4)$ \&
/ (4.0DO,2.ODO), (3.0D0,9.0D0), (4.0DO,1.0D0), (7.0DO,9.0D0) /
DATA (A $(2, J), J=1,4) \&$
/ (6.0DO,7.ODO) ${ }^{(0.0 D 0,4.0 D 0),(4.0 D 0,7.0 D 0),(2.0 D O, 5.0 D 0) ~ / ~}$
DATA $(A(3, J), J=1,4) \&$
/ (9.0DO,3.ODO), (6.0DO,2.0DO), (9.0D0,5.0DO), (8.0DO,5.0D0) /
DATA (A $(4, J), J=1,4)$ \&
/ (1.0DO,5.0DO) $,(7.0 \mathrm{DO}, 9.0 \mathrm{DO}),(3.0 \mathrm{DO}, 5.0 \mathrm{OD}),(2.0 \mathrm{DO}, 4.0 \mathrm{DO}) /$
$!$
$N=4$
$M=4$
DO $100 \mathrm{~J}=1, \mathrm{M}$
DO
$101 \mathrm{I}=1, \mathrm{~N}$ $B(I, J)=(0.0 D 0,0.0 D 0)$
101 CONTINUE
100 CONTINUE
DO $110 \mathrm{I}=1, \mathrm{~N}$
$B(I, I)=(1.0 \mathrm{DO}, 0.0 \mathrm{DO})$
110 CONTINUE
$\operatorname{WRITE}(6,6000) \mathrm{N}, \mathrm{M}$
DO $120 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{WRITE}(6,6010)(A(I, J), J=1, N)$
120
CONTINUE
WRITE $(6,6020)$
DO $130 \mathrm{I}=1, \mathrm{~N}$
WRITE $(6,6010)(B(I, J), J=1, M)$
130 CONTINUE
!
WRITE $(6,6030)$
CALL ZBGNLU (A , LNA , N , IPVT, IERR)
IF (IERR . GE. 3000) THEN
WRITE $(6,6040)$ IERR
STOP
ENDIF
CALL ZBGNMS (A, LNA , N , B , LNB , M, IPVT , IERR)
WRITE $(6,6050)$ IERR
IF (IERR. GE. 3000) STOP
WRITE (6,6060)
DO $140 \mathrm{I}=1$, N
$\operatorname{WRITE}(6,6010)(B(I, J), J=1, M)$
140 CONTINUE
6000 FORMAT (/, \&

	$1 \mathcal{X}^{\infty},{ }^{*} * *$	
	1X,' **	
	1X,',	$\mathrm{N}=$ ', $\mathrm{I} 3,1, \&$
	1X,'	
	1X,'	COEFFICIENT MATRIX (REAL, IMAGINARY)')
6010	FORMAT (1X,	',4(' (',F7.4,', ', F7.4,')'))
6020	FORMAT (/, \&	
	- $1 \mathrm{X},{ }^{\text {, }}$	CONSTANT VECTORS (REAL, IMAGINARY)')
6030	FORMAT (/, \&	
	1X,' **	OUTPUT **', /)
6040	FORMAT (1X,	IERR (ZBGNLU) $=$, , I5)
6050	FORMAT (1X,	IERR = ', I5, /)
6060	FORMAT (1X,	SOLUTION (REAL, IMAGINARY)')

(d) Output results

```
*** ZBGNMS ***
** INPUT **
    N=4
```


IERR =

SOLUTION (R	GINARY)		
(0.0133, -0.0730)	(0.1814, -0.2467)	(-0.1840, 0.1782)	(-0.1039, -0.0560)
(-0.0178, -0.0189)	(-0.0680, -0.0696)	(-0.0128, 0.1001)	($0.0415,-0.0657)$
(-0.0353, 0.1382)	(-0.0585, 0.1700)	(0.1333, -0.2410)	0.1314, 0.0191)
0.0494,-0.0686)	(-0.0096, 0.1300)	(0.0885, -0.0709)	$(-0.0462,0.0662)$

2.4.7 ZBGNDI, CBGNDI

Determinant and Inverse Matrix of a Complex Matrix

(1) Function

ZBGNDI or CBGNDI obtains the determinant and inverse matrix of the complex matrix A (two-dimensional array type) which has been LU decomposed by the Gauss method or the Crout method.
(2) Usage

Double precision:
CALL ZBGNDI (A, LNA, N, IPVT, CDET, DET, ISW, W1, IERR)
Single precision:
CALL CBGNDI (A, LNA, N, IPVT, CDET, DET, ISW, W1, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l} \mathrm{Z} \\ \mathrm{C} \end{array}\right\}$	LNA, N	Input	Complex matrix A (two-dimensional array type) after LU decomposition (See Notes (a) and (b))
				Output	Inverse matrix of matrix A
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	IPVT	I	N	Input	Pivoting information IPVT(i): Number of the row exchanged with row i in the i-th processing step of the LU decomposition. (See Note (c))
5	CDET	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Output	Determinant of matrix A (See Note (d))
6	DET	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Determinant of matrix A (See Note (d)
7	ISW	I	1	Input	Processing switch ISW > 0: Obtain determinant. ISW $=0:$ Obtain determinant and inverse matrix. ISW <0 : Obtain inverse matrix.
8	W1	$\left\{\begin{array}{l}\text { Z } \\ \text { C }\end{array}\right\}$	N	Work	Work area
9	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	$\mathrm{CDET} \leftarrow \mathrm{A}(1,1)$
		$\mathrm{DET} \leftarrow 0.0$ (See Note (d)) and
		$\mathrm{A}(1,1) \leftarrow 1.0 / \mathrm{A}(1,1)$ are performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) The coefficient matrix A must be LU decomposed before using the ZBGNDI or CBGNDI subroutine. Use any of the subroutines 2.4.3 $\left\{\begin{array}{c}\text { ZBGNLU } \\ \text { CBGNLU }\end{array}\right\}, 2.4 .4\left\{\begin{array}{l}\text { ZBGNLC } \\ \text { CBGNLC }\end{array}\right\}, 2.4 .2\left\{\begin{array}{l}\text { ZBGNSL } \\ \text { CBGNSL }\end{array}\right\}$ to perform the decomposition.
(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array A with the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion. However, since the diagonal components of matrix L always are 1.0, they should not be stored in array A. In addition, the reciprocals of the diagonal components of U must be stored. (See 2.2.2 Figure $2-2)$.
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This information is given by the 2.4.3 $\left\{\begin{array}{l}\text { ZBGNLU } \\ \text { CBGNLU }\end{array}\right\}$, 2.4.4 $\left\{\begin{array}{l}\text { ZBGNLC } \\ \text { CBGNLC }\end{array}\right\}, 2.4 .2\left\{\begin{array}{l}\text { ZBGNSL } \\ \text { CBGNSL }\end{array}\right\}$ subroutines which perform LU decomposition of matrix A.
(d) The determinant is given by the following expression:

$$
\operatorname{det}(A)=\mathrm{CDET} \times 10^{\mathrm{DET}}
$$

Scaling is performed at this time so that:

$$
1.0 \leq|\Re\{\mathrm{CDET}\}|+|\Im\{\mathrm{CDET}\}|<10.0
$$

where, the notation \Re and \Im mean that the real and imaginary parts of the complex number are to be taken, respectively.
(e) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form $A^{-1} \boldsymbol{b}$ or $A^{-1} B$ in the numerical calculations, it must be calculated by solving the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ for the vector \boldsymbol{x} or by solving the simultaneous linear equations with multiple right-hand sides $A X=B$ for the matrix X, respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

2.4.8 ZBGNLX, CBGNLX
 Improving the Solution of Simultaneous Linear Equations (Complex Matrix)

(1) Function

ZBGNLX or CBGNLX uses an iterative method to improve the solution of the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ having the complex matrix A (two-dimensional array type) as coefficient matrix.
(2) Usage

Double precision:
CALL ZBGNLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)
Single precision:
CALL CBGNLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	LNA, N	Input	Coefficient matrix A (complex matrix, two-dimensional array type)
2	LNA	I	1	Input	Adjustable dimension of arrays A and ALU
3	N	I	1	Input	Order of matrix A
4	ALU	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	LNA, N	Input	Coefficient matrix A after LU decomposition (See Note (a))
5	B	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	N	Input	Constant vector \boldsymbol{b}
6	X	\{ Z	N	Input	Approximate solution \boldsymbol{x}
		C $\}$		Output	Iteratively improved solution \boldsymbol{x}
7	ITOL	I	1	Input	Approximate number of digits to which solution was improved (See Note (d))
				Output	Approximate number of digits to which solution was improved. (See Note (c))
8	NIT	I	1	Input	Maximum number of iterations (See Note (d))
9	IPVT	I	N	Input	Pivoting information (See Note (a))
10	W1	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	N	Work	Work area
11	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	The solution is not improved.
3000	Restriction (a) was not satisfied.	Processing is aborted.
5000	The solution did not converge within the maximum number of iterations.	Processing is aborted after calculating the ITOL output value.
6000	The solution could not be improved.	

(6) Notes

(a) This subroutine improves the solution obtained by the 2.4.2 $\left\{\begin{array}{l}\text { ZBGNSL } \\ \text { CBGNSL }\end{array}\right\}$ or 2.4.5 $\left\{\begin{array}{l}\text { ZBGNLS } \\ \text { CBGNLS }\end{array}\right\}$ subroutine. Therefore, the coefficient matrix A after being decomposed by 2.4.2 $\left\{\begin{array}{l}\text { ZBGNSL } \\ \text { CBGNSL }\end{array}\right\}$, 2.4.3 $\left\{\begin{array}{l}\text { ZBGNLU } \\ \text { CBGNLU }\end{array}\right\}$, or 2.4.4 $\left\{\begin{array}{l}\text { ZBGNLC } \\ \text { CBGNLC }\end{array}\right\}$ subroutine and the pivoting information at that time must be given as input.
(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.

$$
\mathrm{ITOL} \leq 0
$$

or

$$
\text { ITOL } \geq-\operatorname{LOG10}(2 \times \varepsilon) \quad(\varepsilon: \text { Unit for determining error })
$$

(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

2.5 POSITIVE SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE)

2.5.1 DBPDSL, RBPDSL

Simultaneous Linear Equations (Positive Symmetric Matrix)
(1) Function

DBPDSL or RBPDSL uses the Cholesky method to solve the simultaneous linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ having the positive symmetric matrix A (two-dimensional array type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBPDSL (A, LNA, N, B, IERR)
Single precision:
CALL RBPDSL (A, LNA, N, B, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	$\mathrm{A}(1,1) \leftarrow \sqrt{\mathrm{A}(1,1)}$ and $\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)$
1000	N was equal to 1	Processing continues.
2100	There existed the diagonal element which was close to zero in the $L L^{T}$ decompo- sition of the coefficient matrix $A . \quad$ The result may not be obtained with a good accuracy.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	A diagonal element became less than or equal to 0.0 in the i-th processing step. A is nearly singular.	

(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector \boldsymbol{b} differs, call this subroutine only once and then call subroutine 2.5.4 $\left\{\begin{array}{l}\text { DBPDLS } \\ \text { RBPDLS }\end{array}\right\}$ required number of times varying only the contents of B. This enables you to eliminate unnecessary calculations by performing the L^{T} decomposition of matrix A only once.
(b) The upper triangular matrix L^{T} is stored in the upper triangular portion of array A. Since the lower triangular matrix L is calculated from L^{T}, it is not stored in array A. this subroutine uses only the upper triangular portion of array A.

\[

\]

Remarks

a. LNA $\geq \mathrm{N}$ and $\mathrm{N} \leq \mathrm{K}$ must hold.
b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2-5 Storage status of Matrix L^{T}

(7) Example

(a) Problem

Solve the following simultaneous linear equations.
$\left[\begin{array}{rrrr}5 & 7 & 6 & 5 \\ 7 & 10 & 8 & 7 \\ 6 & 8 & 10 & 9 \\ 5 & 7 & 9 & 10\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}23 \\ 32 \\ 33 \\ 31\end{array}\right]$
(b) Input data

Coefficient matrix $A, \mathrm{LNA}=11, \mathrm{~N}=4$, and constant vector \boldsymbol{b}.
(c) Main program

PROGRAM BBPDSL

$\begin{aligned}!* * * & \text { EXAMPLE OF DBPDSL } * * * \\ & \text { IMPLICIT REAL (8) (A-H,0-Z) } \\ & \text { PARAMETER (LNA }=11)\end{aligned}$
PARAMETER (LNA = 11)
DIMENSION A(LNA , LNA) , B(LNA)
! $\operatorname{READ}(5, *) \mathrm{N}$
WRITE $(6,1000) \mathrm{N}$
DO $10 \mathrm{I}=1$, N
$\operatorname{READ}(5, *)(A(I, J), J=I, N)$
WRITE $(6,1100)(A(J, I), J=1, I-1),(A(I, J), J=I, N)$
10 CONTINUE
$\operatorname{READ}(5, *)(B(I), I=1, N)$
WRITE $(6,1200)(B(I), I=1, N)$
WRITE $(6,1300)$
CALL DBPDSL (A,LNA,N,B,IERR)
WRITE $(6,1400)$ 'DBPDSL', IERR
IF (IERR . GE. 3000) STOP
WRITE $(6,1500)(I, B(I), I=1, N)$
STOP
1000 FORMAT (, , ,/,/,\&

6X,'N = , , I3, /,
6X,', COEFFICIENT MATRIX')
1100 FORMAT(7X,10(G11.4))

1200 FORMAT (6X , 'CONSTANT VECTOR' , /, (7X,F10.4))
1300 FORMAT (2X,' '** OUTPUT , **')
1400 FORMAT (6X', 'IERR (', A6 ,') =', I5)
1500 FORMAT (6X', 'SOLUTION', $, \dot{\prime},(8 \mathrm{X}, ' \mathrm{X}(', \mathrm{I} 2, ')=$ ', D18.10)) END
(d) Output results
*** DBPDSL ***
** INPUT **
COEFFICIENT MATRI

COEFFICIENT	MATRIX		
5.000	7.000	6.000	5.000
7.000	10.00	8.000	7.000
6.000	8.000	10.00	9.000
5.000	7.000	9.000	10.00
CONSTANT	VECTOR		

* OUTPUT ${ }^{31.0000}$

IERR (DBPDSL) = 0
SOLUTION
$X(1)=0.1000000000 \mathrm{D}+01$
$X(2)=0.1000000000 \mathrm{D}+01$
$X(3)=0.1000000000 \mathrm{D}+01$
$X(4)=0.1000000000 \mathrm{D}+01$

2.5.2 DBPDUU, RBPDUU

L^{T} Decomposition of a Positive Symmetric Matrix

(1) Function

DBPDUU or RBPDUU uses the Cholesky method to perform an $L L^{T}$ decomposition of the positive symmetric matrix A (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL DBPDUU (A, LNA, N, IERR)
Single precision:
CALL RBPDUU (A, LNA, N, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 \mathrm{bit} Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Positive symmetric matrix A (two-dimensional array type) (upper triangular type)
			Output	Upper triangular matrix L^{T} when A is decom- posed into $A=L L^{T}$ (See Note (a))	
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	$\mathrm{A}(1,1) \leftarrow \sqrt{\mathrm{A}(1,1)}$ is performed.
1000	N was equal to 1.	There existed the diagonal element which was close to zero in the $L L^{T}$ decompo- sition of the coefficient matrix A. The result may not be obtained with a good accuracy.
2100	Processing continues.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	A diagonal element became less than or equal to 0.0 in the i-th processing step. A is nearly singular.	

(6) Notes

(a) The upper triangular matrix L^{T} is stored in the upper triangular portion of array A. Since the lower triangular matrix L is calculated from L^{T}, it is not stored in array A. This subroutine uses only the upper triangular portion of array A. (See Section 2.5.1, Figure 2-5)

2.5.3 DBPDUC, RBPDUC

L^{T} Decomposition and Condition Number of a Positive Symmetric Matrix

(1) Function

DBPDUC or RBPDUC uses the Cholesky method to perform an $L L^{T}$ decomposition and obtain the condition number of the positive symmetric matrix A (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL DBPDUC (A, LNA, N, COND, W1, IERR)
Single precision:
CALL RBPDUC (A, LNA, N, COND, W1, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Positive symmetric matrix A (two-dimensional array type) (upper triangular type)
			Output	Upper triangular matrix L^{T} when A is decom- posed into $A=L L^{T}$ (See Note (a))	
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	COND	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Output	Reciprocal of the condition number
5	W1	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	N	Work	Work area
6	IERR	I	1		

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	$\mathrm{A}(1,1) \leftarrow \sqrt{\mathrm{A}(1,1)}$ and $\mathrm{COND} \leftarrow 1.0$ are performed.
1000	N was equal to 1.	There existed the diagonal element which was close to zero in the $L L^{T}$ decompo- sition of the coefficient matrix $A . \quad$ The
2100	result may not be obtained with a good accuracy.	Processing is aborted. 3000
Restriction (a) was not satisfied.	A diagonal element became less than or equal to 0.0 in the i-th processing step. A is nearly singular.	The condition number is not obtained.
$4000+i$		

(6) Notes
(a) The upper triangular matrix L^{T} is stored in the upper triangular portion of array A. Since the lower triangular matrix L is calculated from L^{T}, it is not stored in array A. This subroutine uses only the upper triangular portion of array A. (See Section 2.5.1, Figure 2-5).
(b) Although the condition number is defined by $\|A\| \cdot\left\|A^{-1}\right\|$, an approximate value is obtained by this subroutine.

2.5.4 DBPDLS, RBPDLS

Simultaneous Linear Equations (LL ${ }^{T}$-Decomposed Positive Symmetric Matrix)

(1) Function

DBPDLS or RBPDLS solves the simultaneous linear equations $L L^{T} \boldsymbol{x}=\boldsymbol{b}$ having the positive symmetric matrix A (two-dimensional array type) (upper triangular type) which has been $L L^{T}$ decomposed by the Cholesky method as coefficient matrix.
(2) Usage

Double precision:
CALL DBPDLS (A, LNA, N, B, IERR)
Single precision:
CALL RBPDLS (A, LNA, N, B, IERR)
(3) Arguments

D:Double precision real Z:Double precision complex R:Single precision real C:Single precision complex					$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Coefficient matrix A after $L L^{T}$ decomposition (positive symmetric matrix, two-dimensional array type, upper triangular type) (See Notes (a) and (b))
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	B	(D	N	Input	Constant vector \boldsymbol{b}
		R $\}$		Output	Solution \boldsymbol{x}
5	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	$\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)^{2}$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be $L L^{T}$ decomposed before using this subroutine. Normally, you should decompose matrix A by calling the 2.5.2 $\left\{\begin{array}{l}\text { DBPDUU } \\ \text { RBPDUU }\end{array}\right\}$ subroutine. However, if you also want to obtain the condition number, you should use 2.5.3 $\left\{\begin{array}{l}\text { DBPDUC } \\ \operatorname{RBPDUC}\end{array}\right\}$. In addition, if you have already used 2.5.1 $\left\{\begin{array}{l}\text { DBPDSL } \\ \text { RBPDSL }\end{array}\right\}$ to solve simultaneous linear equations having the same coefficient matrix A, you can use the $L L^{T}$ decomposition obtained as part of its output.
(b) The upper triangular matrix L^{T} must be stored in the upper triangular portion of array A. Since the lower triangular matrix L is calculated from L^{T}, it need not be stored in array A. This subroutine uses only the upper triangular portion of array A. (See Section 2.5.1, Figure 2-5).

2.5.5 DBPDDI, RBPDDI

Determinant and Inverse Matrix of a Positive Symmetric Matrix

(1) Function

DBPDDI or RBPDDI obtains the determinant and inverse matrix of the positive symmetric matrix A (two-dimensional array type) (upper triangular type) which has been $L L^{T}$ decomposed by the Cholesky method.
(2) Usage

Double precision:
CALL DBPDDI (A, LNA, N, DET, ISW, IERR)
Single precision:
CALL RBPDDI (A, LNA, N, DET, ISW, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1	$\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1)^{2}$
		$\mathrm{DET}(2) \leftarrow 1.0$
		$\mathrm{~A}(1,1) \leftarrow 1.0 / \mathrm{A}(1,1)^{2}$
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) The coefficient matrix A must be $L L^{T}$ decomposed before using this subroutine. Use any of the 2.5.2 $\left\{\begin{array}{l}\mathrm{DBPDUU} \\ \text { RBPDUU }\end{array}\right\}, 2.5 .3\left\{\begin{array}{l}\mathrm{DBPDUC} \\ \mathrm{RBPDUC}\end{array}\right\}, 2.5 .1\left\{\begin{array}{l}\text { DBPDSL } \\ \text { RBPDSL }\end{array}\right\}$ subroutines to perform the decomposition.
(b) The upper triangular matrix L^{T} must be stored in the upper triangular portion of array A. Since the lower triangular matrix L is calculated from L^{T}, it need not be stored in array A. Since the inverse matrix A^{-1} is a symmetric matrix, only its upper triangular portion is stored in array A. This subroutine uses only the upper triangular portion of array A. (See Section 2.5.1, Figure 2-5).
(c) The determinant is given by the following expression:

$$
\operatorname{det}(A)=\operatorname{DET}(1) \times 10^{\operatorname{DET}(2)}
$$

Scaling is performed at this time so that:

$$
1.0 \leq|\operatorname{DET}(1)|<10.0
$$

(d) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form $A^{-1} \boldsymbol{b}$ or $A^{-1} B$ in the numerical calculations, it must be calculated by solving the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ for the vector \boldsymbol{x} or by solving the simultaneous linear equations with multiple right-hand sides $A X=B$ for the matrix X, respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

2.5.6 DBPDLX, RBPDLX

Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Matrix)

(1) Function

DBPDLX or RBPDLX uses an iterative method to improve the solution of the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ having the positive symmetric matrix A (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBPDLX (A, LNA, N, ALL, B, X, ITOL, NIT, W1, IERR)
Single precision:
CALL RBPDLX (A, LNA, N, ALL, B, X, ITOL, NIT, W1, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER }(8) \text { as for } 64 \mathrm{bit} \text { Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Coefficient matrix A (positive symmetric matrix, two-dimensional array type, upper triangular type)
2	LNA	1	1	Input	Adjustable dimension of array A and ALL
3	N	I	1	Input	Order of matrix A
4	ALL	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Coefficient matrix A after $L L^{T}$ decomposition (See Note (a))
5	B	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Input	Constant vector b
6	X	(D)	N	Input	Approximate solution \boldsymbol{x}
		R $\}$		Output	Iteratively improved solution \boldsymbol{x}
7	ITOL	I	1	Input	Number of digits to which solution is to be improved. (See Note (b))
				Output	Approximate number of digits to which solution was improved. (See Note (c))
8	NIT	I	1	Input	Maximum number of iterations. (See Note (d))
9	W1	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Work	Work area
10	IERR	I	1	Output	Error indicator

(4) Restrictions

(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	The solution is not improved.
3000	Restriction (a) was not satisfied.	Processing is aborted.
5000	The solution did not converge within the maximum number of iterations.	Processing is aborted after calculating ITOL output value.
6000	The solution could not be improved.	

(6) Notes

(a) This subroutine improves the solution obtained by the 2.5.1 $\left\{\begin{array}{l}\text { DBPDSL } \\ \text { RBPDSL }\end{array}\right\}$ or 2.5.4 $\left\{\begin{array}{l}\text { DBPDLS } \\ \text { RBPDLS }\end{array}\right\}$ subroutine. Therefore, the coefficient matrix A after it has been decomposed 2.5.1 $\left\{\begin{array}{l}\text { DBPDSL } \\ \text { RBPDSL }\end{array}\right\}, 2.5 .2$ $\left\{\begin{array}{l}\mathrm{DBPDUU} \\ \text { RBPDUU }\end{array}\right\}$, or 2.5.3 $\left\{\begin{array}{l}\mathrm{DBPDUC} \\ \text { RBPDUC }\end{array}\right\}$ subroutine must be given as input.
(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.

$$
\mathrm{ITOL} \leq 0
$$

or

$$
\text { ITOL } \geq- \text { LOG10 }(2 \times \varepsilon) \quad(\varepsilon: \text { Unit for determining error })
$$

(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

2.6 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE)

2.6.1 DBSPSL, RBSPSL

Simultaneous Linear Equations (Real Symmetric Matrix)

(1) Function

DBSPSL or RBSPSL uses the modified Cholesky method to solve the simultaneous linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ having the real symmetric matrix A (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBSPSL (A, LNA, N, B, IPVT, WK, IERR)
Single precision:
CALL RBSPSL (A, LNA, N, B, IPVT, WK, IERR)
(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Coefficient matrix A (real symmetric matrix, two-dimensional array type, upper triangular type)
				Output	Upper triangular matrix L^{T} when A is decomposed into $A=L D L^{T}$ (See Note (b))
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	B		N	Input	Constant vector \boldsymbol{b}
				Output	Solution \boldsymbol{x}
5	IPVT	I	N	Output	Pivoting information IPVT(i): Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (c))
6	WK	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	N	Work	Work Area
7	IERR	I	1	Output	Error indicator

(4) Restrictions

(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	$\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)$ is performed.
1000	N was equal to 1.	There existed the diagonal element which was close to zero in the $L U$ decompo- sition of the coefficient matrix $A . \quad$ The result may not be obtained with a good accuracy.
2100	Processing continues. 3000	Restriction (a) was not satisfied. A diagonal element became equal to 0.0 in the i-th processing step of the $L D L^{T}$ decomposition of coefficient matrix A. A is nearly singular.
$4000+i$		

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call this subroutine only once and then call subroutine 2.6.4 $\left\{\begin{array}{l}\text { DBSPLS } \\ \text { RBSPLS }\end{array}\right\}$ you to eliminate unnecessary calculations by performing the $\mathrm{LDL}^{\mathrm{T}}$ decomposition of matrix A only once.
(b) The upper triangular matrix L^{T} is stored in array A. Since the diagonal matrix D and the lower triangular matrix L are calculated from L^{T}, they are not stored in array A. The matrix L is the transpose of matrix L^{T}, and the matrix D is a diagonal matrix having the reciprocals of the diagonal elements of matrix L^{T} as components.
This subroutine uses only the upper triangular portion of array A.

Matrix L^{T}

$$
\left[\begin{array}{ccccc}
l_{1,1} & l_{2,1} & l_{3,1} & \cdots & l_{5,1} \\
0.0 & l_{2,2} & l_{3,2} & \cdots & l_{5,2} \\
0.0 & 0.0 & l_{3,3} & \cdots & l_{5,3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0.0 & 0.0 & 0.0 & \cdots & l_{5,5}
\end{array}\right]\left[\begin{array}{ccccc}
1 / l_{1,1} & 0.0 & 0.0 & \cdots & 0.0 \\
0.0 & 1 / l_{2,2} & 0.0 & \cdots & 0.0 \\
0.0 & 0.0 & 1 / l_{3,3} & \cdots & 0.0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0.0 & 0.0 & 0.0 & \cdots & 1 / l_{5,5}
\end{array}\right]
$$

Remarks

a. \quad LNA $\geq \mathrm{N}$ and $\mathrm{N} \leq \mathrm{K}$ must hold.
b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2-6 Storage Status of Matrix L^{T} and Contents of Matrix D
(c) This subroutine performs partial pivoting when obtaining the $\mathrm{LDL}^{\mathrm{T}}$ decomposition of coefficient matrix A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column) in the i -th step is row (column) $\mathrm{j}(\mathrm{i}<\mathrm{j})$, then j is stored in IPVT(i). In addition, among the column(row) elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row) i to column(row) N actually are exchanged at this time.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

$$
\left[\begin{array}{llll}
5 & 4 & 1 & 1 \\
4 & 5 & 1 & 1 \\
1 & 1 & 4 & 2 \\
1 & 1 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
4 \\
-4
\end{array}\right]
$$

(b) Input data

Coefficient matrix $A, L N A=11, \mathrm{~N}=4$ and constant vector \boldsymbol{b}.
(c) Main program

PROGRAM BBSPSL

! *** EXAMPLE OF DBSPSL ***
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA), B(LNA),W1 (LNA), IPVT(LNA)
READ ($5, *$) N
WRITE $(6,1000) \mathrm{N}$
DO $10 \mathrm{I}=1, \mathrm{~N}$
READ (5,*) (A (I, J) , J=I , N)
WRITE $(6,1100)(A(J, I), J=1, I-1),(A(I, J), J=I, N)$
10
CONTINUE
READ
$(5, *)(B(I), I=1, N)$
$\operatorname{WRITE}(6,1200)(\mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
WRITE (6,1300)
CALL DBSPSL (A,LNA,N,B,IPVT,W1, IERR)

```
        WRITE \((6,1400)\) 'DBSPSL', IERR
        IF (IERR .GE. 3000) STOP
        \(\underset{\operatorname{STITE}}{\operatorname{WRI}}(6,1500)(\mathrm{I}, \mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})\)
        STOP
1000 FORMAT (, , ,/,/,\&
```



```
        6X,' COEFFICIENT MATRIX')
    100 FORMAT (7X,10(G11.4))
    200 FORMAT (6X,',COEFFICIENT VECTOR',/,(7X,F10.4))
    1300 FORMAT (2X,'** OUTPUT ,**')
1400 FORMAT (6X,' IERR (, A6,') \(=\) ', I5)
```



```
    END
```

(d) Output results

```
*** DBSPSL ***
    ** INPUT *
    NOEFFICIENT MATRIX
        5.000 4.000 1.000 1.000 1.000
        llll
        1.000 1.000 2.000 4.000
    COEFFICIENT VECTOR
        1.0000
        -1.0000
        -1.0000
        4.0000
    ** OUTPUT -4.0000
    IERR (DBSPSL)
    IERR (DBSPSL) =
    SOLUTION
        X( 1) = 0.1000000000D+01
        X( 2) = -0.1000000000D D+01
        X( 3)}=0.12000000000D+0
        X( 4)= 0.2000000000DD+01
```


2.6.2 DBSPUD, RBSPUD

LDL $^{\mathrm{T}}$ Decomposition of a Real Symmetric Matrix

(1) Function

DBSPUD or RBSPUD uses the modified Cholesky method to perform an LDL ${ }^{\mathrm{T}}$ decomposition of the real symmetric matrix A (two-dimensional array type).
(2) Usage

Double precision:
CALL DBSPUD (A, LNA, N, IPVT, WK, IERR)
Single precision:
CALL RBSPUD (A, LNA, N, IPVT, WK, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	LNA, N	Input	Real symmetric matrix A (two-dimensional array type) (upper triangular type)
				Output	Upper triangular matrix L^{T} when A is decomposed into $A=L D L^{T}$ (See Note (a))
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	IPVT	I	N	Output	Pivoting information IPVT(i): Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (b))
5	WK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Work	Work area
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	Contents of array A are not changed.
2100	There existed the diagonal element which was close to zero in the LU decomposi- tion of the coefficient matrix A. The re- sult may not be obtained with a good accuracy.	Processing continues.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	A diagonal element became equal to 0.0 in the i-th processing step. A is nearly singular.	

(6) Notes
(a) The upper triangular matrix L^{T} is stored in array A. Since the diagonal matrix D and the lower triangular matrix L are calculated from L^{T}, they are not stored in array A. (See Section 2.6.1, Figure 2-6.)
(b) This subroutine performs partial pivoting when obtaining the $\mathrm{LDL}^{\mathrm{T}}$ decomposition of coefficient matrix A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column) in the i -th step is row(column) $\mathrm{j}(\mathrm{i}<\mathrm{j})$, then j is stored in $\operatorname{IPVT}(\mathrm{i})$. In addition, among the column(row) elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row) i to column(row) N actually are exchanged at this time.

2.6.3 DBSPUC, RBSPUC

LDL $^{\mathrm{T}}$ Decomposition and Condition Number of a Real Symmetric Matrix

(1) Function

DBSPUC or RBSPUC uses the modified Cholesky method to perform an LDL $^{\mathrm{T}}$ decomposition and obtain the condition number of the real symmetric matrix A (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL DBSPUC (A, LNA, N, IPVT, COND, WK, IERR)
Single precision:
CALL RBSPUC (A, LNA, N, IPVT, COND, WK, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	LNA, N	Input	Real symmetric matrix A (two-dimensional array type) (upper triangular type)
				Output	Upper triangular matrix L^{T} when A is decomposed into $A=L D L^{T}$ (See Note (a))
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	IPVT	I	N	Output	Pivoting information $\operatorname{IPVT}(\mathrm{i}):$ Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (b))
5	COND	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Output	Reciprocal of the condition number
6	WK	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	N	Work	Work area
7	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	Contents of array A are not changed. COND $\leftarrow 1.0$ is performed.
1000	N was equal to 1.	Processing continues. was close to zero in the LU decomposi- tion of the coefficient matrix A. The re- sult may not be obtained with a good accuracy.
2100	Restriction (a) was not satisfied.	Processing is aborted.
3000	A diagonal element became equal to 0.0 in the i-th processing step. A is nearly singular.	Processing is aborted. The condition number is not obtained.
$4000+i$		

(6) Notes
(a) The upper triangular matrix L^{T} is stored in array A. Since the diagonal matrix D and the lower triangular matrix L are calculated from L^{T}, they are not stored in array A. (See Section 2.6.1, Figure 2-6.)
(b) This subroutine performs partial pivoting when obtaining the $\mathrm{LDL}^{\mathrm{T}}$ decomposition of coefficient matrix A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column) in the i -th step is row (column) $\mathrm{j}(\mathrm{i}<\mathrm{j})$, then j is stored in $\operatorname{IPVT}(\mathrm{i})$. In addition, among the column(row) elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row) i to column(row) N actually are exchanged at this time.
(c) Although the condition number is defined by $\|A\| \cdot\left\|A^{-1}\right\|$, an approximate value is obtained by this subroutine.

2.6.4 DBSPLS, RBSPLS

Simultaneous Linear Equations (LDL ${ }^{\text {T}}$-Decomposed Real Symmetric Matrix)

(1) Function

DBSPLS or RBSPLS solves the simultaneous linear equations having the real symmetric matrix A (twodimensional array type) which has been LDL $^{\mathrm{T}}$ decomposed by the modified Cholesky method as coefficient matrix.
(2) Usage

Double precision:
CALL DBSPLS (A, LNA, N, B, IPVT, IERR)
Single precision:
CALL RBSPLS (A, LNA, N, B, IPVT, IERR)
(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER (4) as for } 32 \text { bit Integer } \\ \text { INTEGER (8) as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	LNA, N	Input	Coefficient matrix A after LDL ${ }^{\mathrm{T}}$ decomposition (real symmetric matrix, two-dimensional array type, upper triangular type) (See Notes (a) and (b))
2	LNA	I	1	Input	Adjustable dimension af array A
3	N	I	1	Input	Order of matrix A
4	B	(D)	N	Input	Constant vector \boldsymbol{b}
		R $\}$		Output	Solution \boldsymbol{x}
5	IPVT	I	N	Output	Pivoting information IPVT(i): Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (c))
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	$\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) The coefficient matrix A must be LDL ${ }^{\mathrm{T}}$ decomposed before using this subroutine. Normally, you should decompose matrix A by calling the 2.6.2 $\left\{\begin{array}{l}\text { DBSPUD } \\ \text { RBSPUD }\end{array}\right\}$ subroutine. However, if you also want to obtain the condition number, you should use 2.6.3 $\left\{\begin{array}{l}\text { DBSPUC } \\ \operatorname{RBSPUC}\end{array}\right\}$ subroutine. In addition, if you have already used 2.6.1 $\left\{\begin{array}{l}\text { DBSPSL } \\ \text { RBSPSL }\end{array}\right\}$ to solve simultaneous linear equations having the same coefficient matrix A, you can use the LDL $^{\mathrm{T}}$ decomposition obtained as part of its output. To solve multiple sets of simultaneous linear equations where only the constant vector \boldsymbol{b} differs, the solution is obtained more efficiently by directly using the subroutine 2.6.5 $\left\{\begin{array}{l}\text { DBSPMS } \\ \text { RBSPMS }\end{array}\right\}$ to perform the calculations.
(b) The upper triangular matrix L^{T} must be stored in array A. Since the diagonal matrix D and the lower triangular matrix L are calculated from L^{T}, they need not be stored in array A. This subroutine uses only the upper triangular portion of array A. (See Section 2.6.1, Figure 2-6.)
(c) This subroutine performs partial pivoting when obtaining the $\mathrm{LDL}^{\mathrm{T}}$ decomposition of coefficient matrix A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column) in the i -th step is row (column) $\mathrm{j}(\mathrm{i}<\mathrm{j}$), then j is stored in IPVT(i$)$. In addition, among the column(row) elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row) i to column(row) N actually are exchanged at this time.

2.6.5 DBSPMS, RBSPMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL ${ }^{\mathrm{T}}$ decomposed Real Matrix)

(1) Function

DBSPMS or RBSPMS solves the simultaneous linear equations $L D L^{T} \boldsymbol{x}=\boldsymbol{b}$ having the real matrix A (twodimensional array type) which has been $\mathrm{LDL}^{\mathrm{T}}$ decomposed by the Gauss method or the Crout method as coefficient matrix. That is, when the $n \times m$ matrix B is defined by $B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$, the subroutine obtains $\left[\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B$.
(2) Usage

Double precision:
CALL DBSPMS (A, LNA, N, B, LNB, M, IPVT, IERR)
Single precision:
CALL RBSPMS (A, LNA, N, B, LNB, M, IPVT, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 \mathrm{bit} Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	LNA, N	Input	Coefficient matrix A after LDL $^{\mathrm{T}}$ decomposition (real symmetric matrix, two-dimensional array type, upper triangular type) (See Notes (a) and (b))
2	LNA	1	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	B	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	LNA, N	Input	Matrix consisting of constant vector $\boldsymbol{b}_{\boldsymbol{i}}$ $\left[A^{\prime}, \boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$
				Output	Matrix consisting of Solution vector $\boldsymbol{x}_{\boldsymbol{i}}$ $\left[A^{\prime}, \boldsymbol{x}_{1}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]$
5	LNB	I	1	Input	Adjustable dimension of array B
6	M	I	1	Input	Number of right-hand side vectors, m
7	IPVT	I	N	Input	Pivoting information IPVT(i): Number of row exchanged with row i in the i-th processing step. (See Note (c))
8	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}$
(b) $0<\mathrm{M}$
(c) $0<\operatorname{IPVT}(\mathrm{i}) \leq \mathrm{N}(\mathrm{i}=1, \ldots, \mathrm{~N})$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N is equal to 1	$\mathrm{B}(1, \mathrm{i}) \leftarrow \mathrm{B}(1, \mathrm{i}) / \mathrm{A}(1,1)(i=1,2, \cdots, \mathrm{M})$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
3010	Restriction (b) was not satisfied.	

(6) Notes

(a) The coefficient matrix A must be LDL $^{\mathrm{T}}$ decomposed before using this subroutine. Normally, you should decompose matrix A by calling the 2.6.2 $\left\{\begin{array}{l}\text { DBSPUD } \\ \text { RBSPUD }\end{array}\right\}$ subroutine. However, if you also want to obtain the condition number, you should use 2.6.3 $\left\{\begin{array}{l}\text { DBSPUC } \\ \text { RBSPUC }\end{array}\right\}$. In addition, if you have already used 2.6.1 $\left\{\begin{array}{l}\text { DBSPSL } \\ \operatorname{RBSPSL}\end{array}\right\}$ to solve simultaneous linear equations having the same coefficient matrix A, you can use the $\operatorname{LDL}^{\mathrm{T}}$ decomposition obtained as part of its output.
(b) The upper triangular matrix L^{T} is stored in array A. Since the diagonal matrix D and the lower triangular matrix L are calculated from L^{T}, they are not stored in array A. (See Section 2.6.1, Figure 2-6.)
(c) Information about partial pivoting performed during LDL $^{\mathrm{T}}$ decomposition must be stored in IPVT. This information is given by the 2.6.2 $\left\{\begin{array}{l}\text { DBSPUD } \\ \text { RBSPUD }\end{array}\right\}, 2.6 .3\left\{\begin{array}{l}\text { DBSPUC } \\ \text { RBSPUC }\end{array}\right\}$, and 2.6.1 $\left\{\begin{array}{l}\text { DBSPSL } \\ \text { RBSPSL }\end{array}\right\}$ subroutines which perform $\mathrm{LDL}^{\mathrm{T}}$ decomposition of matrix A.
(7) Example
(a) Problem

Solve the following simultaneous linear equations.
$\left[\begin{array}{llll}5 & 4 & 1 & 1 \\ 4 & 5 & 1 & 1 \\ 1 & 1 & 4 & 2 \\ 1 & 1 & 2 & 4\end{array}\right]\left[\begin{array}{ll}x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \\ x_{3,1} & x_{3,2} \\ x_{4,1} & x_{4,2}\end{array}\right]=\left[\begin{array}{rr}1 & -2 \\ -1 & 1 \\ 4 & 9 \\ -4 & 13\end{array}\right]$
(b) Input data

Coefficient matrix $\mathrm{A}, \mathrm{LNA}=10, \mathrm{~N}=4$, matrix consisting of constant vector $B, \mathrm{LNB}=\mathrm{B}$ and $\mathrm{M}=2$.
(c) Main program
INTEGER IPVT (LNA)
REAL (8) A(LNA,N) , B (LNB , M) , WK (LNA)
REAL (8) A (LNA , N) , B(LNB ,M) , WK (LNA
DATA $((A(I, J), J=1, N), I=1, N) / \&$
5.0DO, 4.0DO, 1.ODO, 1.ODO,\&
$\begin{array}{llll}\text { 5.0DO, } & \text { 4.0DO, } & \text { 1.0DO, } & \text { 1.0DO, \& } \\ \text { 4.0DO, } & \text { 5.0DO, } & \text { 1.0DO, } & \text { 1.0DO, \& }\end{array}$
4.0D0, $\quad 5.0 \mathrm{DO}, \quad 1.0 \mathrm{DO}, \quad 1.0 \mathrm{DO}, \&$
1.0D0, $1.0 \mathrm{DO}, \quad 4.0 \mathrm{DO}, \quad 2.0 \mathrm{DO}$,
DATA $\stackrel{1}{((B)(I, J), ~} \mathrm{J}=1, \mathrm{M}), \mathrm{I}=1, \mathrm{~N}) / \&$
1.ODO, -2.0 DO , \&
1.ODO,
-1.ODO, $1.0 D 0, \&$
4.0DO, 9.0DO,\&
-4.0DO, 13.0DO/

```
        WRITE \((6,1000) \mathrm{N}, \mathrm{M}\)
        DO \(10 \mathrm{I}=1, \mathrm{~N}\)
            WRITE \((6,1100)(A(I, J), J=1, N)\)
        10 CONTINUE
            WRITE \((6,1200)\)
            DO \(20 \mathrm{I}=1, \mathrm{~N}\)
            WRITE \((6,1100)(B(I, J), J=1, M)\)
    20 CONTINUE
        WRITE \((6,1300)\)
        CALL DBSPUD (A,LNA,N,IPVT,WK,IERR)
        IF (IERR .GE. 3000) STOP
        CALL DBSPMS (A,LNA,N, B,LNB,M,IPVT , IERR)
        IF (IERR . GE. 3000) STOP
            WRITE \((6,1400)\) IERR
            WRITE \((6,1500)\)
            WRITE \((6,1100)(B(I, J), J=1, M)\)
        30 CONTINUE
    STOP
1000 FORMAT (1X
            \(1 \mathrm{X}, \quad, * * *\)
            X, , \({ }^{* * *}\) DBSP
            \(\mathrm{IX}^{\mathrm{X}},{ }^{2} \mathrm{IN}_{\mathrm{N}=,}^{\mathrm{INPUT}}{ }^{* *}\),
            \(\begin{array}{ll}1 \mathrm{X}, & \mathrm{N}=, \mathrm{I}, \mathrm{I} \\ 1 \mathrm{X}, \mathrm{l}, \& & \mathrm{M}=, \mathrm{I} 3\end{array}\)
            1X, , \& COEFFICIENT MATRIX, )
(1X, 6X, 10(F11.4)
    1100 FORMAT(1X, 6X, 10(F11.4)
    1200 FORMAT (1X,/,\& 1 X, CONSTANT VECTORS, )
    1300 FORMAT (1X,/,\& \({ }^{1 X},{ }^{* *}\) OUTPUT \(* *\), /)
```



```
    1500 FORMAT (1X,/,\& SOLUTION,
    END
```

(d) Output results
$* * *$ DBSPMS
$* * * *$
** $N=4$
$M=2$ COEFFICIENT MATRIX

5.0000	4.0000	1.0000	1.0000
4.0000	5.0000	1.0000	1.0000
1.0000	1.0000	4.0000	2.0000

 CONSTANT VECTORS
 | 1.0000 | -2.0000 |
| ---: | ---: |
| -1.0000 | 1.0000 |
| 4.0000 | 9.0000 |
| -4.0000 | 13.0000 |

** OUTPUT **
IERR $=0$
SOLUTION

1.0000	-2.0000
-1.0000	1.0000
2.0000	1.0000
-2.0000	3.0000

2.6.6 DBSPDI, RBSPDI

Determinant and Inverse Matrix of a Real Symmetric Matrix
(1) Function

DBSPDI or RBSPDI obtains the determinant and inverse matrix of the real symmetric matrix A (twodimensional array type) (upper triangular type) which has been LDL $^{\mathrm{T}}$ decomposed by the modified Cholesky method.
(2) Usage

Double precision:
CALL DBSPDI (A, LNA, N, IPVT, DET, ISW, WK, IERR)
Single precision:
CALL RBSPDI (A, LNA, N, IPVT, DET, ISW, WK, IERR)
(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER }(8) \text { as for } 64 \mathrm{bit} \text { Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	LNA, N	Input	Real symmetric matrix A (two-dimensional array type) (upper triangular type) after LDL ${ }^{\mathrm{T}}$ decomposition (See Notes (a) and (b))
				Output	Inverse matrix of matrix A (See Note (b))
2	LNA	I	1	Input	Adjustable dimensional pf array A
3	N	I	1	Input	Order of matrix A
4	IPVT	I	N	Output	Pivoting information IPVT(i): Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (c))
5	DET	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	2	Output	Determinant of matrix A (See Note (c))
6	ISW	I	1	Input	Processing switch ISW > 0: Obtain determinant. ISW $=0:$ Obtain determinant and inverse matrix. ISW <0 : Obtain inverse matrix.
7	WK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Work	Work area
8	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	$\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1), \mathrm{DET}(2) \leftarrow 0.0$
		$\mathrm{~A}(1,1) \leftarrow 1.0 / \mathrm{A}(1,1)$
		are performed. (See Note (c))
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) The coefficient matrix A must be LDL ${ }^{\mathrm{T}}$ decomposed before using this subroutine. Use any of the 2.6.2 $\left\{\begin{array}{l}\text { DBSPUD } \\ \text { RBSPUD }\end{array}\right\}$, 2.6.3 $\left\{\begin{array}{l}\text { DBSPUC } \\ \text { RBSPUC }\end{array}\right\}, 2.6 .1\left\{\begin{array}{l}\text { DBSPSL } \\ \text { RBSPSL }\end{array}\right\}$ subroutines to perform the decomposition.
(b) The upper triangular matrix L^{T} must be stored in array A at input time. Since the diagonal matrix D and the lower triangular matrix L are calculated from L^{T}, they need not be stored in array A. Since the inverse matrix A^{-1} is a symmetric matrix, only its upper triangular portion is stored in array A . This subroutine uses only the upper triangular portion of array A. (See Section 2.6.1, Figure 2-6.)
(c) This subroutine performs partial pivoting when obtaining the $\mathrm{LDL}^{\mathrm{T}}$ decomposition of coefficient matrix A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column) in the i -th step is row (column) $\mathrm{j}(\mathrm{i}<\mathrm{j})$, then j is stored in IPVT(i). In addition, among the column(row) elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row) i to column(row) N actually are exchanged at this time.
(d) The determinant is given by the following expression:

$$
\operatorname{det}(A)=\operatorname{DET}(1) \times 10^{\operatorname{DET}(2)}
$$

Scaling is performed at this time so that:

$$
1.0 \leq|\operatorname{DET}(1)|<10.0
$$

(e) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form $A^{-1} \boldsymbol{b}$ or $A^{-1} B$ in the numerical calculations, it must be calculated by solving the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ for the vector \boldsymbol{x} or by solving the simultaneous linear equations with multiple right-hand sides $A X=B$ for the matrix X, respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

2.6.7 DBSPLX, RBSPLX

Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix)

(1) Function

DBSPLX or RBSPLX uses an iterative method to improve the solution of the simultaneous linear equations $A \boldsymbol{x}=\boldsymbol{b}$ having the real symmetric Matrix A (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBSPLX (A, LNA, N, ALD, B, X, ITOL, NIT, IPVT, WK, IERR)
Single precision:
CALL RBSPLX (A, LNA, N, ALD, B, X, ITOL, NIT, IPVT, WK, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	LNA, N	Input	Coefficient matrix A (real symmetric matrix, two-dimensional array type, upper triangular type)
2	LNA	I	1	Input	Adjustable dimension of array A and ALD
3	N	I	1	Input	Order of matrix A
4	ALD	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Coefficient matrix A after LDL ${ }^{\mathrm{T}}$ decomposition (See Note (a))
5	B	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Input	Constant vector \boldsymbol{b}
6	X	\{D	N	Input	Approximate solution \boldsymbol{x}
		R $\}$		Output	Iteratively improved solution \boldsymbol{x}
7	ITOL	I	1	Input	Number of digits to which solution is to be improved (See Note (b))
				Output	Approximate number of digits to which solution was improved (See Note (c))
8	NIT	I	1	Input	Maximum number of iterations (See Note (d))
9	IPVT	I	N	Output	Pivoting information. (See Note (a))
10	WK	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	N	Work	Work area
11	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	The solution is not improved.
3000	Restriction (a) was not satisfied.	Processing is aborted.
5000	The solution did not converge within the maximum number of iterations.	Processing is aborted after calculation the ITOL output value.
6000	The solution could not be improved.	

(6) Notes
(a) This subroutine improves the solution obtained by the 2.6.1 $\left\{\begin{array}{l}\text { DBSPSL } \\ \text { RBSPSL }\end{array}\right\}$ or 2.6.4 $\left\{\begin{array}{l}\text { DBSPLS } \\ \text { RBSPLS }\end{array}\right\}$ subroutine. Therefore, the coefficient matrix A after it has been decomposed by the 2.6.1 $\left\{\begin{array}{l}\text { DBSPSL } \\ \text { RBSPSL }\end{array}\right\}$, 2.6.2 $\left\{\begin{array}{l}\text { DBSPUD } \\ \text { RBSPUD }\end{array}\right\}$, or 2.6.3 $\left\{\begin{array}{l}\text { DBSPUC } \\ \text { RBSPUC }\end{array}\right\}$ subroutine and the pivoting information at that time must be given as input.
(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.

$$
\mathrm{ITOL} \leq 0
$$

Or

$$
\text { ITOL } \geq-\operatorname{LOG10}(2 \times \varepsilon) \quad(\varepsilon: \text { Unit for determining error })
$$

(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

2.7 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE)(NO PIVOTING)

2.7.1 DBSMSL, RBSMSL

Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)
(1) Function

DBSMSL or RBSMSL uses the modified Cholesky method to solve the simultaneous linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ having the real symmetric matrix A (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBSMSL (A, LNA, N, B, W1, IERR)
Single precision:
CALL RBSMSL (A, LNA, N, B, W1, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	$\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)$ is performed.
2100	There existed the diagonal element which was close to zero in the $\mathrm{LDL}^{\mathrm{T}}$ decompo- sition of the coefficient matrix $A . \quad$ The result may not be obtained with a good accuracy.	Processing continues.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	A diagonal element became equal to 0.0 in the i-th processing step of the LDL decomposition of coefficient matrix A. A is nearly singular.	

(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call this subroutine only once and then call subroutine 2.7.4 $\left\{\begin{array}{l}\text { DBSMLS } \\ \text { RBSMLS }\end{array}\right\}$ you to eliminate unnecessary calculations by performing the $\mathrm{LDL}^{\mathrm{T}}$ decomposition of matrix A only once.
(b) The upper triangular matrix L^{T} is stored in array A. Since the diagonal matrix D and the lower triangular matrix L are calculated from L^{T}, they are not stored in array A. The matrix L is the transpose of matrix L^{T}, and the matrix D is a diagonal matrix having the reciprocals of the diagonal elements of matrix L^{T} as components.
This subroutine uses only the upper triangular portion of array A.
Matrix L^{T}
Matrix D
$\left[\begin{array}{ccccc}l_{1,1} & l_{2,1} & l_{3,1} & \cdots & l_{5,1} \\ 0.0 & l_{2,2} & l_{3,2} & \cdots & l_{5,2} \\ 0.0 & 0.0 & l_{3,3} & \cdots & l_{5,3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0.0 & 0.0 & 0.0 & \cdots & l_{5,5}\end{array}\right]\left[\begin{array}{ccccc}1 / l_{1,1} & 0.0 & 0.0 & \cdots & 0.0 \\ 0.0 & 1 / l_{2,2} & 0.0 & \cdots & 0.0 \\ 0.0 & 0.0 & 1 / l_{3,3} & \cdots & 0.0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0.0 & 0.0 & 0.0 & \cdots & 1 / l_{5,5}\end{array}\right]$
\Downarrow

Remarks

a. \quad LNA $\geq \mathrm{N}$ and $\mathrm{N} \leq \mathrm{K}$ must hold.
b. Input time values of elements indicated by asterisks $(*)$ are not guaranteed.

Figure 2-7 Storage Status of Matrix L^{T} and Contents of Matrix D

(7) Example

(a) Problem

Solve the following simultaneous linear equations.
$\left[\begin{array}{llll}5 & 4 & 1 & 1 \\ 4 & 5 & 1 & 1 \\ 1 & 1 & 4 & 2 \\ 1 & 1 & 2 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{r}1 \\ -1 \\ 4 \\ -4\end{array}\right]$
(b) Input data

Coefficient matrix A, LNA $=11, \mathrm{~N}=4$ and constant vector \boldsymbol{b}.
(c) Main program

PROGRAM BBSMSL
EXAMPLE OF DBSMSL
IMPLICIT REAL (8) (A-H,
(A-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA), B(LNA),W1 (LNA)
$!$
READ $(5, *) \mathrm{N}$
WRITE $(6,1000) \mathrm{N}$
DO $10 I=1, N$
$\operatorname{READ}(5, *)(A(I, J), J=I, N)$
WRITE $(6,1100)(A(J, I), J=1, I-1),(A(I, J), J=I, N)$
10 CONTINUE
$\operatorname{READ}(5, *)(B(I), I=1, N)$
WRITE $(6,1200)(B(I), I=1, N)$
WRITE $(6,1300)$
CALL DBSMSL (A,LNA,N,B,W1,IERR)
WRITE $(6,1400)$ 'DBSMSL', IERR
IF (IERR. .GE. 3000) STOP
WRITE $(6,1500)(I, B(I), I=1, N)$
!
1000 FORMAT(, , /, /, \&
, *** DBSMSL
$2 \mathrm{X},{ }^{\prime} * *$ INPUT $* * ', /, \&$
6X,', $\mathrm{N}=$ =', I3,/, \& \quad MATRIX')
1100 FORMAT (7X, 10(G11.4))
1200 FORMAT (6X,'COEFFICIENT VECTOR', /, (7X,F10.4))
1300 FORMAT (2X,', $* *$ OUTPUT $* *$ ')
1400 FORMAT (6X,', IERR (', A6, ') $=$ ', I5)
1400 FORMAT (6X,''IERR (',A6,') =', I5)
1500 FORMAT (6X,'SOLUTION', $l,(8 \mathrm{X}, \mathrm{X}(', \mathrm{I} 2, ')=,, \mathrm{D} 18.10))$
END
(d) Output results
*** DBSMSL ***
** INPUT ${ }_{\mathrm{N}}^{\boldsymbol{*}}{ }^{* *}$
COEFFICIENT MATRIX

2.7.2 DBSMUD, RBSMUD

LDL $^{\mathrm{T}}$ Decomposition of a Real Symmetric Matrix (No Pivoting)

(1) Function

DBSMUD or RBSMUD uses the modified Cholesky method to perform an LDL ${ }^{\mathrm{T}}$ decomposition of the real symmetric matrix A (two-dimensional array type).
(2) Usage

Double precision:
CALL DBSMUD (A, LNA, N, W1, IERR)
Single precision:
CALL RBSMUD (A, LNA, N, W1, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$		LNA, N	Input
			Real symmetric matrix A (two-dimensional ar- ray type) (upper triangular type)		
2	LNA	I	1	Upper triangular matrix L^{T} when A is decom- posed into $A=L D L^{T}$ (See Note (a))	
3	N	I	1	Input	Adjustable dimension of array A
4	W1	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	N	Input	Order of matrix A
5	IERR	I	1	Work	Work area

(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	Contents of array A are not changed.
2100	There existed the diagonal element which was close to zero in the LDL T decompo- sition of the coefficient matrix A. The result may not be obtained with a good accuracy.	Processing continues.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	A diagonal element became equal to 0.0 in the i-th processing step. A is nearly singular.	

(6) Notes
(a) The upper triangular matrix L^{T} is stored in array A. Since the diagonal matrix D and the lower triangular matrix L are calculated from L^{T}, they are not stored in array A. (See Section 2.7.1, Figure $2-7$.)

2.7.3 DBSMUC, RBSMUC

LDL $^{\mathrm{T}}$ Decomposition and Condition Number of a Real Symmetric Matrix (No Pivoting)

(1) Function

DBSMUC or RBSMUC uses the modified Cholesky method to perform an LDL $^{\mathrm{T}}$ decomposition and obtain the condition number of the real symmetric matrix A (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL DBSMUC (A, LNA, N, COND, W1, IERR)
Single precision:
CALL RBSMUC (A, LNA, N, COND, W1, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :---: |
| C:Single precision complex |

$\left.\begin{array}{|c|c|c|c|l|}\hline \text { No. } & \text { Argument } & \text { Type } & \text { Size } & \begin{array}{l}\text { Input/ } \\
\text { Output }\end{array} \\
\hline 1 & \text { A } & \left\{\begin{array}{l}\text { D } \\
\text { INTEGER(8) as for 64bit Integer }\end{array}\right\} \\
\text { R }\end{array}\right\}$
(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	Contents of array A are not changed. COND $\leftarrow 1.0$ is performed.
1000	N was equal to 1.	Processing continues. There existed the diagonal element which was close to zero in the LDL T decompo- sition of the coefficient matrix $A . \quad$ The result may not be obtained with a good accuracy.
3100	Restriction (a) was not satisfied.	Processing is aborted.
$4000+i$	A diagonal element became equal to 0.0 in the i-th processing step. A is nearly singular.	Processing is aborted. The condition number is not obtained.

(6) Notes
(a) The upper triangular matrix L^{T} is stored in array A. Since the diagonal matrix D and the lower triangular matrix L are calculated from L^{T}, they are not stored in array A. (See Section 2.7.1, Figure $2-7$.
(b) Although the condition number is defined by $\|A\| \cdot\left\|A^{-1}\right\|$, an approximate value is obtained by this subroutine.

2.7.4 DBSMLS, RBSMLS

Simultaneous Linear Equations (LDL ${ }^{T}$-Decomposed Real Symmetric Matrix) (No Pivoting)
(1) Function

DBSMLS or RBSMLS solves the simultaneous linear equations having the real symmetric matrix A (twodimensional array type) which has been LDL $^{\mathrm{T}}$ decomposed by the modified Cholesky method as coefficient matrix.
(2) Usage

Double precision:
CALL DBSMLS (A, LNA, N, B, IERR)
Single precision:
CALL RBSMLS (A, LNA, N, B, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	LNA, N	Input	Coefficient matrix A after LDL ${ }^{\mathrm{T}}$ decomposition (real symmetric matrix, two-dimensional array type, upper triangular type) (See Notes (a) and (b))
2	LNA	I	1	Input	Adjustable dimension af array A
3	N	I	1	Input	Order of matrix A
4	B	(D	N	Input	Constant vector \boldsymbol{b}
		R $\}$		Output	Solution \boldsymbol{x}
5	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	$\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) The coefficient matrix A must be LDL $^{\mathrm{T}}$ decomposed before using this subroutine. Normally, you should decompose matrix A by calling the 2.7.2 $\left\{\begin{array}{l}\text { DBSMUD } \\ \text { RBSMUD }\end{array}\right\}$ subroutine. However, if you also want to obtain the condition number, you should use 2.7.3 $\left\{\begin{array}{l}\text { DBSMUC } \\ \text { RBSMUC }\end{array}\right\}$ subroutine. In addition, if you have already used 2.7.1 $\left\{\begin{array}{l}\text { DBSMSL } \\ \text { RBSMSL }\end{array}\right\}$ to solve simultaneous linear equations having the same coefficient matrix A, you can use the $\mathrm{LDL}^{\mathrm{T}}$ decomposition obtained as part of its output. To solve multiple sets of simultaneous linear equations where only the constant vector \boldsymbol{b} differs, the solution is obtained more efficiently by directly using the subroutine 2.7.5 $\left\{\begin{array}{l}\text { DBSMMS } \\ \text { RBSMMS }\end{array}\right\}$ to perform the calculations.
(b) The upper triangular matrix L^{T} must be stored in array A. Since the diagonal matrix D and the lower triangular matrix L are calculated from L^{T}, they need not be stored in array A. This subroutine uses only the upper triangular portion of array A. (See Section 2.7.1, Figure 2-7.)

2.7.5 DBSMMS, RBSMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL T Decomposed Real Matrix) (No Pivoting)

(1) Function

DBSMMS or RBSMMS solves the simultaneous linear equations $L D L^{T} \boldsymbol{x}=\boldsymbol{b}$ having the real matrix A (two-dimensional array type) which has been LDL ${ }^{\mathrm{T}}$ decomposed by the Gauss method or the Crout method as coefficient matrix. That is, when the $n \times m$ matrix B is defined by $B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$, the subroutine obtains $\left[\boldsymbol{x}_{\boldsymbol{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B$.
(2) Usage

Double precision:
CALL DBSMMS (A, LNA, N, B, LNB, M, IERR)
Single precision:
CALL RBSMMS (A, LNA, N, B, LNB, M, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	LNA, N	Input	Coefficient matrix A after LDL ${ }^{\mathrm{T}}$ decomposition (real symmetric matrix, two-dimensional array type, upper triangular type) (See Notes (a) and (b))
2	LNA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Order of matrix A
4	B	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	LNA, N	Input	Matrix consisting of constant vector $\boldsymbol{b}_{\boldsymbol{i}}$ $\left[A^{\prime}, \boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]$
				Output	Matrix consisting of Solution vector $\boldsymbol{x}_{\boldsymbol{i}}$ $\left[A^{\prime}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]$
5	LNB	I	1	Input	Adjustable dimension of array B
6	M	I	1	Input	Number of right-hand side vectors, m
7	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq$ LNA
(b) $0<\mathrm{M}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N is equal to 1	$\mathrm{B}(1, \mathrm{i}) \leftarrow \mathrm{B}(1, \mathrm{i}) / \mathrm{A}(1,1)(i=1,2, \cdots, \mathrm{M})$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
3010	Restriction (b) was not satisfied.	

(6) Notes
(a) The coefficient matrix A must be LDL $^{\mathrm{T}}$ decomposed before using this subroutine. Normally, you should decompose matrix A by calling the 2.7.2 $\left\{\begin{array}{l}\text { DBSMUD } \\ \text { RBSMUD }\end{array}\right\}$ subroutine. However, if you also want to obtain the condition number, you should use 2.7.3 $\left\{\begin{array}{l}\text { DBSMUC } \\ \text { RBSMUC }\end{array}\right\}$.
In addition, if you have already used 2.7.1 $\left\{\begin{array}{l}\text { DBSMSL } \\ \text { RBSMSL }\end{array}\right\}$ to solve simultaneous linear equations having the same coefficient matrix A, you can use the $\operatorname{LDL}^{\mathrm{T}}$ decomposition obtained as part of its output.
(b) The upper triangular matrix L^{T} is stored in array A. Since the diagonal matrix D and the lower triangular matrix L are calculated from L^{T}, they are not stored in array A. (See Section 2.7.1, Figure $2-7$.)

(7) Example

(a) Problem

Solve the following simultaneous linear equations.
$\left[\begin{array}{llll}5 & 4 & 1 & 1 \\ 4 & 5 & 1 & 1 \\ 1 & 1 & 4 & 2 \\ 1 & 1 & 2 & 4\end{array}\right]\left[\begin{array}{ll}x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \\ x_{3,1} & x_{3,2} \\ x_{4,1} & x_{4,2}\end{array}\right]=\left[\begin{array}{rr}1 & -2 \\ -1 & 1 \\ 4 & 9 \\ -4 & 13\end{array}\right]$
(b) Input data

Coefficient matrix $\mathrm{A}, \mathrm{LNA}=10, \mathrm{~N}=4$, matrix consisting of constant vector $B, \mathrm{LNB}=\mathrm{B}$ and $\mathrm{M}=2$.
(c) Main program

PROGRAM BBSMMS
EXAMPLE OF DBSMMS ***
IMPLICIT NONE
INTEGER LNA, LNB , N , M, I , J , IERR
PARAMETER (LNA $=10, L N B=10, N=4, M=2)$
REAL (8) A (LNA, N) , B (LNB , M), WK (LNA)
DATA ($(A(I, J), J=1, N), I=1, N) / \&$
$\begin{array}{ll}\text { 5.0DO, } & 4.0 D 0, \\ 1.0 D 0, & 1.0 D O, \&\end{array}$
4.0DO, 5.0DO, 1.0DO, 1.0DO,\&
1.0DO, $\quad 1.0 \mathrm{DO}, \quad 4.0 \mathrm{DO}, \quad 2.0 \mathrm{DO}, \&$

DATA $\left.\left({ }^{(} \mathrm{B}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{M}\right), \mathrm{I}=1, \mathrm{~N}\right) / \&$
1.ODO, -2.ODO,\&
$\begin{aligned}-1.0 D O, & \text { 1.ODO,\& } \\ \text { 4.0DO, } & \text { 9.0DO,\& }\end{aligned}$
-4.0D0, 13.0DO/
$!$
WRITE $(6,1000)$
DO $10 ~$
I M
WRITE $(6,1100)(A(I, J), J=1, N)$
10 CONTINUE
WRITE $(6,1200)$
DO $20 \mathrm{I}=1, \mathrm{~N} \quad(\mathrm{WRITE}(6,1100) \quad(\mathrm{B}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{M})$
20 CONTINUE
WRITE $(6,1300)$

```
            CALL DBSMUD (A,LNA,N,WK,IERR)
IF (IERR .GE. 3000) STOP
            CALL DBSMMS (A,LNA,N,B,LNB,M,IERR)
            IF (IERR .GE. 3000) STOP
            WRITE \((6,1400)\) IERR
            WRITE \((6,1500)\)
            DO \(30 \mathrm{I}=1\), 1
            WRITE \((6,1100)(B(I, J), J=1, M)\)
    30 CONTINUE
            STOP
! 1000 FORMAT(1X
```



```
(d) Output results
```

5.0000	4.0000	1.0000	1.0000
4.0000	5.0000	1.0000	1.0000
1.0000	1.0000	4.0000	2.0000
1.0000	1.0000	2.0000	4.0000

1.0000	-2.0000
-1.0000	1.0000
4.0000	9.0000
-4.0000	13.0000

1.0000	-2.0000
-1.0000	1.0000
2.0000	1.0000
-2.0000	3.0000

```
```

*** DBSMMS ***

```
*** DBSMMS ***
    N=4
    N=4
    COEFFICIENT MATRIX
    COEFFICIENT MATRIX
    CONSTANT VECTORS
    CONSTANT VECTORS
** OUTPUT **
** OUTPUT **
    IERR = 0
    IERR = 0
    SOLUTION
```

 SOLUTION
    ```

\subsection*{2.7.6 DBSMDI, RBSMDI}

Determinant and Inverse Matrix of a Real Symmetric Matrix (No Pivoting)
(1) Function

DBSMDI or RBSMDI obtains the determinant and inverse matrix of the real symmetric matrix \(A\) (twodimensional array type) (upper triangular type) which has been LDL \(^{\mathrm{T}}\) decomposed by the modified Cholesky method.
(2) Usage

Double precision:
CALL DBSMDI (A, LNA, N, DET, ISW, W1, IERR)
Single precision:
CALL RBSMDI (A, LNA, N, DET, ISW, W1, IERR)
(3) Arguments
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\
\operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & \multicolumn{1}{|c|}{ Size } & \(\begin{array}{l}\text { Input/ } \\
\text { Output }\end{array}\) & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & LNA, N & Input & \(\begin{array}{l}\text { Real symmetric matrix } A \text { (two-dimensional ar- } \\
\text { ray type) (upper triangular type) after LDL }\end{array}\) \\
decomposition (See Notes (a) and (b))
\end{tabular}\(\}\)
(4) Restrictions
(a) \(0<\mathrm{N} \leq \mathrm{LNA}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1), \mathrm{DET}(2) \leftarrow 0.0\) \\
& & \(\mathrm{~A}(1,1) \leftarrow 1.0 / \mathrm{A}(1,1)\) \\
& & are performed. (See Note (c)) \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be \(\mathrm{LDL}^{\mathrm{T}}\) decomposed before using this subroutine. Use any of the 2.7.2 \(\left\{\begin{array}{l}\text { DBSMUD } \\ \text { RBSMUD }\end{array}\right\}, 2.7 .3\left\{\begin{array}{l}\text { DBSMUC } \\ \text { RBSMUC }\end{array}\right\}, 2.7 .1\left\{\begin{array}{l}\text { DBSMSL } \\ \text { RBSMSL }\end{array}\right\}\) subroutines to perform the decomposition.
(b) The upper triangular matrix \(L^{T}\) must be stored in array A at input time. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{T}\), they need not be stored in array A. Since the inverse matrix \(A^{-1}\) is a symmetric matrix, only its upper triangular portion is stored in array A. This subroutine uses only the upper triangular portion of array A. (See Section 2.7.1, Figure 2-7.)
(c) The determinant is given by the following expression:
\[
\operatorname{det}(A)=\operatorname{DET}(1) \times 10^{\operatorname{DET}(2)}
\]

Scaling is performed at this time so that:
\[
1.0 \leq|\operatorname{DET}(1)|<10.0
\]
(d) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form \(A^{-1} \boldsymbol{b}\) or \(A^{-1} B\) in the numerical calculations, it must be calculated by solving the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) for the vector \(\boldsymbol{x}\) or by solving the simultaneous linear equations with multiple right-hand sides \(A X=B\) for the matrix \(X\), respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

\subsection*{2.7.7 DBSMLX, RBSMLX}

\section*{Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)}

\section*{(1) Function}

DBSMLX or RBSMLX uses an iterative method to improve the solution of the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having the real symmetric Matrix \(A\) (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBSMLX (A, LNA, N, ALD, B, X, ITOL, NIT, W1, IERR)
Single precision:
CALL RBSMLX (A, LNA, N, ALD, B, X, ITOL, NIT, W1, IERR)

\section*{(3) Arguments}
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\
\operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & LNA, N & Input & Coefficient matrix \(A\) (real symmetric matrix, two-dimensional array type, upper triangular type) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A and ALD \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & ALD & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & LNA, N & Input & Coefficient matrix \(A\) after LDL \(^{\mathrm{T}}\) decomposition (See Note (a)) \\
\hline 5 & B & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & N & Input & Constant vector \(\boldsymbol{b}\) \\
\hline 6 & X & (D) & N & Input & Approximate solution \(\boldsymbol{x}\) \\
\hline & & R \(\}\) & & Output & Iteratively improved solution \(\boldsymbol{x}\) \\
\hline 7 & ITOL & I & 1 & Input & Number of digits to which solution is to be improved (See Note (b)) \\
\hline & & & & Output & Approximate number of digits to which solution was improved (See Note (c)) \\
\hline 8 & NIT & I & 1 & Input & Maximum number of iterations (See Note (d)) \\
\hline 9 & W1 & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & N & Work & Work area \\
\hline 10 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & The solution is not improved. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 5000 & \begin{tabular}{l} 
The solution did not converge within the \\
maximum number of iterations.
\end{tabular} & \begin{tabular}{l} 
Processing is aborted after calculation the \\
ITOL output value.
\end{tabular} \\
\hline 6000 & The solution could not be improved. & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) This subroutine improves the solution obtained by the 2.7.1 \(\left\{\begin{array}{l}\text { DBSMSL } \\ \text { RBSMSL }\end{array}\right\}\) or 2.7.4 \(\left\{\begin{array}{l}\text { DBSMLS } \\ \text { RBSMLS }\end{array}\right\}\) subroutine. Therefore, the coefficient matrix \(A\) after it has been decomposed by the 2.7.1 \(\left\{\begin{array}{l}\text { DBSMSL } \\ \text { RBSMSL }\end{array}\right\}\), 2.7.2 \(\left\{\begin{array}{l}\text { DBSMUD } \\ \text { RBSMUD }\end{array}\right\}\), or 2.7.3 \(\left\{\begin{array}{l}\text { DBSMUC } \\ \text { RBSMUC }\end{array}\right\}\) subroutine must be given as input.
(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.
\[
\mathrm{ITOL} \leq 0
\]
or
\[
\text { ITOL } \geq-\operatorname{LOG} 10(2 \times \varepsilon) \quad(\varepsilon: \text { Unit for determining error })
\]
(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

\subsection*{2.8 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE, LOWER TRIANGULAR TYPE)(NO PIVOTING)}

\subsection*{2.8.1 DBSNSL, RBSNSL}

Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)
(1) Function

DBSNSL or RBSNSL uses the modified Cholesky method to solve the simultaneous linear equations \(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\) having the real symmetric matrix \(A\) (two-dimensional array type, lower triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBSNSL (A, LNA, N, B, IERR)
Single precision:
CALL RBSNSL (A, LNA, N, B, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & LNA, N & Input & Coefficient matrix \(A\) (real symmetric matrix, two-dimensional array type, lower triangular type) \\
\hline & & & & Output & lower triangular matrix \(U^{T}\) when \(A\) is decomposed into \(A=U^{T} D U\) (See Note (b)) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & B & (D & N & Input & Constant vector b \\
\hline & & R \(\}\) & & Output & Solution \(\boldsymbol{x}\) \\
\hline 5 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|c|c|}
\hline IERR value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)\) is performed. \\
\hline 2100 & There existed the diagonal element which was close to zero in the \(\mathrm{U}^{\mathrm{T}} \mathrm{DU}\) decomposition of the coefficient matrix \(A\). The result may not be obtained with a good accuracy. & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & A diagonal element became equal to 0.0 in the \(i\)-th processing step of the \(\mathrm{U}^{\mathrm{T}} \mathrm{DU}\) decomposition of coefficient matrix \(A\). \(A\) is nearly singular. & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call this subroutine only once and then call subroutine 2.8.3 \(\left\{\begin{array}{l}\text { DBSNLS } \\ \text { RBSNLS }\end{array}\right\}\) you to eliminate unnecessary calculations by performing the \(\mathrm{U}^{\mathrm{T}} \mathrm{DU}\) decomposition of matrix \(A\) only once.
(b) The lower triangular matrix \(U^{T}\) is stored in array A. For the diagonal components of \(U^{T}\), their reciprocals are stored in array A with the sign changed. Since the diagonal matrix \(D\) and the upper triangular matrix \(U\) are calculated from \(U^{T}\), they are not stored in array A. The matrix \(U\) is the transpose of matrix \(U^{T}\), and the matrix \(D\) is a diagonal matrix having the reciprocals of the diagonal elements of matrix \(U^{T}\) as components.
This subroutine uses only the lower triangular portion of array A.
\[
\begin{aligned}
& \text { Matrix } U^{T} \quad \text { Matrix } D \\
& {\left[\begin{array}{ccccc}
u_{1,1} & 0.0 & 0.0 & \cdots & 0.0 \\
u_{2,1} & u_{2,2} & 0.0 & \cdots & 0.0 \\
u_{3,1} & u_{3,2} & u_{3,3} & \cdots & 0.0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
u_{5,1} & u_{5,2} & u_{5,3} & \cdots & u_{5,5}
\end{array}\right]\left[\begin{array}{ccccc}
1 / u_{1,1} & 0.0 & 0.0 & \cdots & 0.0 \\
0.0 & 1 / u_{2,2} & 0.0 & \cdots & 0.0 \\
0.0 & 0.0 & 1 / u_{3,3} & \cdots & 0.0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0.0 & 0.0 & 0.0 & \cdots & 1 / u_{5,5}
\end{array}\right]}
\end{aligned}
\]

\section*{Remarks}
a. \(\quad\) LNA \(\geq \mathrm{N}\) and \(\mathrm{N} \leq \mathrm{K}\) must hold.
b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2-8 Storage Status of Matrix \(U^{T}\) and Contents of Matrix \(D\)
(7) Example
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{llll}
5 & 4 & 1 & 1 \\
4 & 5 & 1 & 1 \\
1 & 1 & 4 & 2 \\
1 & 1 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
4 \\
-4
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(A, \mathrm{LNA}=11, \mathrm{~N}=4\), and constant vector \(\boldsymbol{b}\).
(c) Main program
```

PROGRAM BBSNSL
! *** EXAMPLE OF DBSNSL ***
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER $(\mathrm{LNA}=11)$ (
DIMENSION A(LNA,LNA), B (LNA)
$\operatorname{READ}(5, *) \mathrm{N}$
WRITE $(6,1000) \mathrm{N}$
DO $10 \mathrm{I}=1$, N
$\underset{\text { READ }}{ }(5, *)(A(I, J), J=1, I)$
10 CONTINUE
DO $20 \mathrm{I}=1, \mathrm{~N}$
WRITE $(6,1100)(A(I, J), J=1, I),(A(J, I), J=I+1, N)$
20 CONTINUE
$\operatorname{READ}(5, *) \quad(B(I), I=1, N)$
WRITE $(6,1200)(B(I), I=1, N)$
WRITE $(6,1300)$
CALL DBSNSL (A,LNA,N,B,IERR)
WRITE $(6,1400)$ 'DBSNSL', IERR
IF (IERR . GE. 3000) STOP
WRITE $(6,1500)(I, B(I), I=1, N)$
STOP
1000 FORMAT(', ,/,/,' *** DBSNSL ***',/,\&
2X,'** INPUT ${ }^{* *}, /, 6 \mathrm{X},{ }^{\prime} \mathrm{N}=$ ’, $\mathrm{I} 3, /, \&$
2X,' $* *$ INPUT **', $/, 6 \mathrm{X}$,
6X,'COEFFICIENT MATRIX')
1100 FORMAT (7X,10(G11.4)
1300 FORMAT (2X,' $* *$ OUTPUT **')
1300 FORMAT (2X,',** OUTPUT ,**')

```

```

 END
 (d) Output results

```
\(* * *\)
\(* *\)
DNSNST
\(* *\)
** INPUT
COEFFICIENT MATRIX
\begin{tabular}{crrr}
5.000 & 4.000 & 1.000 & 1.000 \\
4.000 & 5.000 & 1.000 & 1.000 \\
1.000 & 1.000 & 4.000 & 2.000 \\
1.000 & 1.000 & 2.000 & 4.000
\end{tabular}

COEFFICIENT VECTOR
1.0000
\(-1.0000\)
4.0000
** OUTPU'
IERR (DBSNSL) \(=0\)
SOLUTION
\(X(1)=0.1000000000 \mathrm{D}+01\)
\(X(2)=-0.1000000000 D+01\)
\(X(3)=0.2000000000 \mathrm{D}+01\)
\(\mathrm{X}(4)=-0.2000000000 \mathrm{D}+01\)

\subsection*{2.8.2 DBSNUD, RBSNUD}
\(\mathrm{U}^{\mathrm{T}}\) DU Decomposition of a Real Symmetric Matrix (No Pivoting)
(1) Function

DBSNUD or RBSNUD uses the modified Cholesky method to perform an \(U^{\mathrm{T}}\) DU decomposition of the real symmetric matrix \(A\) (two-dimensional array type) (lower triangular type).
(2) Usage

Double precision:
CALL DBSNUD (A, LNA, N, IERR)
Single precision:

> CALL RBSNUD (A, LNA, N, IERR)
(3) Arguments
D:Double precision real
R:Single precision real \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular} I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\
\text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{l|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & LNA, N & Input & \begin{tabular}{l} 
Real symmetric matrix \(A\) (two-dimensional ar- \\
ray type) (lower triangular type)
\end{tabular} \\
\hline & & & Output & \begin{tabular}{l} 
Lower triangular matrix \(U^{T}\) when \(A\) is decom- \\
posed into \(A=U^{T} D U\) (See Note (a))
\end{tabular} \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & Contents of array A are not changed. \\
\hline 2100 & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the UT DU decom- \\
position of the coefficient matrix \(A\). The \\
result may not be obtained with a good \\
accuracy.
\end{tabular} & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
in the \(i\)-th processing step. \\
\(A\) is nearly singular.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) The lower triangular matrix \(U^{T}\) is stored in array A. For the diagonal components of \(U^{T}\), their reciprocals are stored in array A with the sign changed. Since the diagonal matrix \(D\) and the upper triangular matrix \(U\) are calculated from \(U^{T}\), they are not stored in array A. (See Section 2.8.1, Figure \(2-8\).)

\subsection*{2.8.3 DBSNLS, RBSNLS}

\section*{Simultaneous Linear Equations ( \(\mathrm{U}^{\mathrm{T}}\) DU-Decomposed Real Symmetric Matrix) (No Pivoting)}

\section*{(1) Function}

DBSNLS or RBSNLS solves the simultaneous linear equations having the real symmetric matrix \(A\) (twodimensional array type, lower triangular type) which has been \(\mathrm{U}^{\mathrm{T}} \mathrm{DU}\) decomposed by the modified Cholesky method as coefficient matrix.
(2) Usage

Double precision:
CALL DBSNLS (A, LNA, N, B, IERR)
Single precision:
CALL RBSNLS (A, LNA, N, B, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & LNA, N & Input & Coefficient matrix \(A\) after \(\mathrm{U}^{\mathrm{T}} \mathrm{DU}\) decomposition (real symmetric matrix, two-dimensional array type, lower triangular type) (See Notes (a) and (b)) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension af array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & B & D & N & Input & Constant vector \(\boldsymbol{b}\) \\
\hline & & R \({ }^{\text {d }}\) & & Output & Solution \(\boldsymbol{x}\) \\
\hline 5 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq \mathrm{LNA}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)\) is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) The coefficient matrix \(A\) must be \(\mathrm{U}^{\mathrm{T}} \mathrm{DU}\) decomposed before using this subroutine. Normally, you should decompose matrix \(A\) by calling the 2.8.2 \(\left\{\begin{array}{l}\text { DBSNUD } \\ \text { RBSNUD }\end{array}\right\}\) subroutine. In addition, if you have already used 2.8.1 \(\left\{\begin{array}{l}\text { DBSNSL } \\ \text { RBSNSL }\end{array}\right\}\) to solve simultaneous linear equations having the same coefficient matrix \(A\), you can use the \(\mathrm{U}^{\mathrm{T}} \mathrm{DU}\) decomposition obtained as part of its output.
(b) The lower triangular matrix \(U^{T}\) must be stored in array A. Since the diagonal matrix \(D\) and the upper triangular matrix \(U\) are calculated from \(U^{T}\), they need not be stored in array A. This subroutine uses only the lower triangular portion of array A. (See Section 2.8.1, Figure 2-8.)

\subsection*{2.9 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE)}

\subsection*{2.9.1 ZBHPSL, CBHPSL}

\section*{Simultaneous Linear Equations (Hermitian Matrix)}
(1) Function

ZBHPSL or CBHPSL uses the modified Cholesky method to solve the simultaneous linear equations \(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\) having a Hermitian matrix (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL ZBHPSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)
Single precision:
CALL CBHPSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)
(3) Arguments
D:Double precision real \begin{tabular}{l} 
Z:Double precision complex \\
R:Single precision real
\end{tabular} C:Single precision complex I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\
\text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 7 & IPVT & I & N & Output & \begin{tabular}{l} 
Pivoting information \\
IPVT(i): Number of the row(column) ex- \\
changed with row(column) i in the i-th process- \\
ing step. (See Note (c))
\end{tabular} \\
\hline 8 & W1 & \(\left\{\begin{array}{l}\text { D } \\
\text { R }\end{array}\right\}\) & N & Work & Work area \\
\hline 9 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l} 
Nontents of arrays AR and AI are not \\
changed. \\
\(\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{AR}(1,1)\) is performed.
\end{tabular} \\
\hline 1000 & N was equal to 1. & Processing continues. \\
\hline 2100 & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the LDL* decompo- \\
sition of the coefficient matrix \(A . \quad\) The \\
result may not be obtained with a good \\
accuracy.
\end{tabular} & \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
in the \(i\)-th processing step of the LDL* \\
decomposition of coefficient matrix \(A\). \\
\(A\) is nearly singular.
\end{tabular} & \multicolumn{3}{|c|}{} \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) To solve multiple sets of simultaneous linear equations where only the constant vector \(\boldsymbol{b}\) differs, call this subroutine only once and then call subroutine 2.9.4 \(\left\{\begin{array}{l}\text { ZBHPLS } \\ \text { CBHPLS }\end{array}\right\}\) the required number of times varying only the contents of B . This enables you to eliminate unnecessary calculation by performing the LDL* decomposition of matrix \(A\) only once.
(b) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portions of arrays AR and AI. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in arrays AR and AI. The matrix \(L\) is the adjoint matrix of the matrix \(L^{*}\), and the matrix \(D\) is a diagonal matrix having the reciprocals of the diagonal elements of the matrix \(L^{*}\) as its components. This subroutine uses only the upper triangular portions of arrays AR and AI.

Matrix \(L^{*}\)
\[
\begin{aligned}
& {\left[\begin{array}{ccccc}
l_{1,1} & l_{2,1} & l_{3,1} & \cdots & l_{5,1} \\
0.0 & l_{2,2} & l_{3,2} & \cdots & l_{5,2} \\
0.0 & 0.0 & l_{3,3} & \cdots & l_{5,3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0.0 & 0.0 & 0.0 & \cdots & l_{5,5}
\end{array}\right]\left[\begin{array}{ccccc}
1 / l_{1,1} & 0.0 & 0.0 & \cdots & 0.0 \\
0.0 & 1 / l_{2,2} & 0.0 & \cdots & 0.0 \\
0.0 & 0.0 & 1 / l_{3,3} & \cdots & 0.0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0.0 & 0.0 & 0.0 & \cdots & 1 / l_{5,5}
\end{array}\right]} \\
& \Downarrow
\end{aligned}
\]


\section*{Remarks}
a. \(\quad\) LNA \(\geq \mathrm{N}\) and \(\mathrm{N} \leq \mathrm{K}\) must hold.
b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2-9 Storage Status of Matrix \(L^{*}\) and Contents of Matrix \(D\)
(c) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix \(A\). The permutation of rows and columns is symmetrical for row and column. If the pivot row(column) in the i -th step is row (column) \(\mathrm{j}(\mathrm{i}<\mathrm{j})\), then j is stored in \(\operatorname{IPVT}(\mathrm{i})\). In addition, among the column(row) elements corresponding to row(column) i and row(column) j of matrix \(A\), elements from column(row) i to column(row) N actually are exchanged at this time.

\section*{(7) Example}
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{cccc}
9 & 7+3 i & 2+5 i & 1+i \\
7-3 i & 10 & 3+2 i & 2+4 i \\
2-5 i & 3-2 i & 8 & 5+i \\
1-i & 2-4 i & 5-i & 6
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
10+6 i \\
11+2 i \\
4+6 i \\
4+6 i
\end{array}\right]
\]
(b) Input data

Coefficient matrix real part AR and Imaginary part AI, LNA \(=11, \mathrm{~N}=4\) and constant vector B .
(c) Main program
```

PROGRAM ABHPSL
*** EXAMPLE OF ZBHPSL ***
IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11, LNW = 22)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),BR(LNA),BI(LNA),W1(LNW)
DIMENSION IPVT(LNA)
CHARACTER*50 FMT(4)
DATA FMT /'(6X, 4(1X,A1,F5.1,1X,A1,F5.1,1X,A1))',\&
((6X, 16X, 3(1X,A1,F5.1,1X,A1,F5.1,1X,A1))','\&
'(6X,2(16X),2(1X,A1,F5.1,1X,A1,F5.1,1X,A1))','\&
READ (5,*) N
WRITE (6,1000) N
DO 10 I = 1,N
READ (5,*) (AR(I, J),AI (I , J) ,J=I,N)
RNRITE (G,FMT(I))'('(',AR'(I,J),',',,AI(I,J),')',J=I,N)
10 CONTINU
READ (5,*) (BR(I) , BI (I), I=1,N)
WRITE (6,1100)
DO 20 I = 1,N
WRITE (6,1200) BR(I),BI(I)
20 CONTINUE
WRITE (6,1300)
CALL ZBHPSL (AR,AI,LNA,N,BR,BI,IPVT,W1,IERR)
WRITE (6,1400) 'ZBHPSL',IERR
WRITE (6,1600)
DO 30 I = 1
WRITE (6,1700) I,BR(I),BI(I)
30 CONTINUE
STOP
1000 FORMAT (',',/,/,',*** ZBHPSL ***',/,2X,'** INPUT **',\&
/,6X,'N=',13,\&
/',6X','COEFFICIENT MATRIX (REAL, IMAGINARY)')
1100
1100
FORMAT (6X,'CONSTANT VECTOR (REAL, IMAGINARY)')
1200 FORMAT (6X,', (',F5.1,' ,',F5.1,')')
1300 FORMAT (2X,'*** OUTPUT '**')
1400 FORMAT (6X','IERR (',A6,') =',I5)
1600 FORMAT (6X,''SOLUTION ('REAL,'IMAGINARY)')
1700 FORMAT (10X,'X(',I2,') =(',D18.10,',',D18.10,')')
END

```
(d) Output results
```

*** ZBHPSL ***
** INPUT **
N}=
COEFFICIENT MATRIX (REAL, IMAGINARY)

```

```

 CONSTANT VECTOR (REAL, IMAGINARY)
 (10.0, 6.0)
 (\begin{array}{r}{4.0,}\\{4.0, 6.0)}\\{(4.0,}\end{array})
 ** OUTPUT ***
 IERR (ZBHPSL) =
 SOLUTION (REAL, IMAGINARY)
 X(1) =(0.1000000000D+01 , 0.0000000000D+00)
 X(2) = (0.1000000000D+01 , 0.8881784197D-16
 X(3)=(-0.4971147871D-16 , 0.1000000000D+01)
    ```

\subsection*{2.9.2 ZBHPUD, CBHPUD}

\section*{LDL* Decomposition of a Hermitian Matrix}
(1) Function

ZBHPUD or CBHPUD uses the modified Cholesky method to perform an LDL* decomposition of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL ZBHPUD (AR, AI, LNA, N, IPVT, W1, IERR)
Single precision:
CALL CBHPUD (AR, AI, LNA, N, IPVT, W1, IERR)
(3) Arguments
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\
\operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{AR} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} \\
\mathrm{R}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Real part of Hermitian matrix \(A\) (twodimensional array type) (upper triangular type) \\
\hline & & & & Output & Real part of upper triangular matrix \(L^{*}\) when \(A\) is decomposed into \(A=L D L^{*}\) (See Note (a)) \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{AI} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} \\
\mathrm{R}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Imaginary part of Hermitian matrix \(A\) (twodimensional array type) (upper triangular type) \\
\hline & & & & Output & Imaginary part of upper triangular matrix \(L^{*}\) when \(A\) is decomposed into \(A=L D L^{*}\) (See Note (a)) \\
\hline 3 & LNA & I & 1 & Input & Adjustable dimension of array AR and AI \\
\hline 4 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 5 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (b))
\end{tabular} \\
\hline 6 & W1 & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & \(2 \times \mathrm{N}\) & Work & Work area \\
\hline 7 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l} 
Contents of arrays AR and AI are not \\
changed.
\end{tabular} \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the LDL* decompo- \\
sition of the coefficient matrix \(A\). The \\
result may not be obtained with a good \\
accuracy.
\end{tabular} \\
\hline 2100 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 3000 & \begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
in the \(i\)-th processing step. \\
\(A\) is nearly singular.
\end{tabular} & \\
\hline \(4000+i\) &
\end{tabular}
(6) Notes
(a) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portions of arrays AR and AI. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI. (See Sections 2.9.1 Figure 2-9.)
(b) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix \(A\). The permutation of rows and columns is symmetrical for row and column. If the pivot row(column) in the i -th step is row (column) \(\mathrm{j}(\mathrm{i}<\mathrm{j})\), then j is stored in \(\operatorname{IPVT}(\mathrm{i})\). In addition, among the column(row) elements corresponding to row(column) i and row(column) j of matrix \(A\), elements from column(row) i to column(row) N actually are exchanged at this time.

\subsection*{2.9.3 ZBHPUC, CBHPUC}

\section*{LDL* Decomposition and Condition Number of a Hermitian Matrix}
(1) Function

ZBHPUC or CBHPUC uses the modified Cholesky method to perform an LDL* decomposition and obtain the condition number of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL ZBHPUC (AR, AI, LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL CBHPUC (AR, AI, LNA, N, IPVT, COND, W1, IERR)
(3) Arguments
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\
\text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & Input/ Output & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{AR} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} \\
\mathrm{R}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Real part of Hermitian matrix \(A\) (twodimensional array type) (upper triangular type) \\
\hline & & & & Output & Real part of upper triangular matrix \(L^{*}\) when \(A\) is decomposed into \(A=L D L^{*}\) (See Note (a)) \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{AI} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
D \\
R
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Imaginary part of Hermitian matrix \(A\) (twodimensional array type) (upper triangular type) \\
\hline & & & & Output & Imaginary part of upper triangular matrix \(L^{*}\) when \(A\) is decomposed into \(A=L D L^{*}\) (See Note (a)) \\
\hline 3 & LNA & I & 1 & Input & Adjustable dimension of arrays AR and AI \\
\hline 4 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 5 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
\(\operatorname{IPVT}(\mathrm{i})\) : Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (b))
\end{tabular} \\
\hline 6 & COND & \(\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}\) & 1 & Output & Reciprocal of the condition number \\
\hline 7 & W1 & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & \(2 \times \mathrm{N}\) & Work & Work area \\
\hline 8 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l} 
Contents of arrays AR and AI are not \\
changed. \\
COND \(\leftarrow 1.0\) is performed.
\end{tabular} \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l} 
Processing continues. \\
\hline 2100 \\
\end{tabular} \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the LDL* decompo- \\
sition of the coefficient matrix \(A\). The \\
result may not be obtained with a good \\
accuracy.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
in the \(i\)-th processing step. \\
\(A\) is nearly singular.
\end{tabular} & \begin{tabular}{l} 
Processing is aborted. \\
The condition number is not obtained.
\end{tabular} \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portions of arrays AR and AI. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI. (See 2.9.1 Figure 2-9.)
(b) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix \(A\). The permutation of rows and columns is symmetrical for row and column. If the pivot row(column) in the i -th step is row (column) \(\mathrm{j}(\mathrm{i}<\mathrm{j})\), then j is stored in \(\operatorname{IPVT}(\mathrm{i})\). In addition, among the column(row) elements corresponding to row(column) i and row(column) j of matrix \(A\), elements from column(row) i to column(row) N actually are exchanged at this time.
(c) Although the condition number is defined by \(\|A\| \cdot\left\|A^{-1}\right\|\), an approximate value is obtained by this subroutine.

\subsection*{2.9.4 ZBHPLS, CBHPLS \\ Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix)}
(1) Function

ZBHPLS or CBHPLS solves the simultaneous linear equations \(L D L^{*} \boldsymbol{x}=\boldsymbol{b}\) having the Hermitian matrix A (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method as coefficient matrix.
(2) Usage

Double precision:
CALL ZBHPLS (AR, AI, LNA, N, BR, BI, IPVT, IERR)
Single precision:
CALL CBHPLS (AR, AI, LNA, N, BR, BI, IPVT, IERR)
(3) Arguments
\begin{tabular}{ll}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} & \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for } 32 \mathrm{bit} \text { Integer } \\
\text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & AR & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & LNA, N & Input & Real part of coefficient matrix \(A\) after LDL* decomposition (Hermitian matrix, twodimensional array type, upper triangular type) (See Notes (a) and (b)) \\
\hline 2 & AI & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & LNA, N & Input & Imaginary part of coefficient matrix \(A\) after LDL* decomposition (Hermitian matrix, twodimensional array type, upper triangular type) (See Notes (a) and (b)) \\
\hline 3 & LNA & I & 1 & Input & Adjustable dimension of array AR and AI \\
\hline 4 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{BR} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} \\
\mathrm{R}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{N} & Input & Real part of constant vector \(\boldsymbol{b}\) \\
\hline & & & & Output & Real part of solution \(\boldsymbol{x}\) \\
\hline \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{BI} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} \\
\mathrm{R}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{N} & Input & Imaginary part of constant vector \(\boldsymbol{b}\) \\
\hline & & & & Output & Imaginary part of solution \(\boldsymbol{x}\) \\
\hline 7 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (c))
\end{tabular} \\
\hline 8 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{AR}(1,1)\) is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Normally, you should decompose matrix \(A\) by calling the 2.9.2 \(\left\{\begin{array}{l}\text { ZBHPUD } \\ \text { CBHPUD }\end{array}\right\}\). However, if you also want to obtain the condition number, you should use 2.9.3 \(\left\{\begin{array}{l}\text { ZBHPUC } \\ \text { CBHPUC }\end{array}\right\}\). In addition, if you have already used 2.9.1 \(\left\{\begin{array}{l}\text { ZBHPSL } \\ \text { CBHPSL }\end{array}\right\}\) to solve simultaneous linear equations having the same coefficient matrix \(A\), you can use the LDL* decomposition obtained as part of its output. To solve multiple sets of simultaneous linear equations where only the constant vector \(\boldsymbol{b}\) differs, the solution is obtained more efficiently by directly using the subroutine 2.9.5 \(\left\{\begin{array}{l}\text { ZBHPMS } \\ \text { CBHPMS }\end{array}\right\}\) to perform the calculations.
(b) The upper triangular matrix \(L^{*}\) must be stored in the upper triangular portion of array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they need not be stored in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI. (See 2.9.1 Figure 2-9.)
(c) Information about partial pivoting performed during LDL* decomposition must be stored in IPVT. This information is given by the subroutines which perform LDL* decomposition of matrix \(A\).

\subsection*{2.9.5 ZBHPMS, CBHPMS}

\section*{Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*Decomposed Hermitian Matrix)}

\section*{(1) Function}

ZBHPMS or CBHPMS solves the simultaneous linear equations \(L D L^{*} \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}(i=1,2, \cdots, m)\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method as coefficient matrix. That is, when the \(n \times m\) matrix \(B\) is defined by \(B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]\), the subroutine obtains \(\left[\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B\).
(2) Usage

Double precision:
CALL ZBHPMS (AR, AI, LNA, N, BR, BI, LNB, M, IPVT, IERR)
Single precision:
CALL CBHPMS (AR, AI, LNA, N, BR, BI, LNB, M, IPVT, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & Input/ Output & Contents \\
\hline 1 & AR & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & LNA, N & Input & Real part of Coefficient matrix \(A\) after LDL* decomposition (Hermitian matrix, twodimensional array type, upper triangular type) (See Notes (a) and (b)) \\
\hline 2 & AI & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & LNA, N & Input & Imaginary part of Coefficient matrix \(A\) after LDL* decomposition (Hermitian matrix, twodimensional array type, upper triangular type) (See Notes (a) and (b)) \\
\hline 3 & LNA & I & 1 & Input & Adjustable dimension of array AR and AI \\
\hline 4 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 5 & BR & \(\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}\) & LNB, M & Input & Real part of Constant vector \(\boldsymbol{b}_{\boldsymbol{i}}\) \((i=1,2, \cdots, m)\) \\
\hline & & & & Output & Real part of Solution \(\boldsymbol{x}_{\boldsymbol{i}}(i=1,2, \cdots, m)\) \\
\hline 6 & BI & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & LNB, M & Input & Imaginary part of Constant vector \(\boldsymbol{b}_{\boldsymbol{i}}\) \((i=1,2, \cdots, m)\) \\
\hline & & & & Output & Imaginary part of Solution \(\boldsymbol{x}_{\boldsymbol{i}}\) \((i=1,2, \cdots, m)\) \\
\hline 7 & LNB & I & 1 & Input & Adjustable dimension of array BR and BI \\
\hline 8 & M & I & 1 & Input & Number of right-hand side vectors, \(m\) \\
\hline 9 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of the row(column) exchanged with row (column) i in the i-th processing step. (See Note (c))
\end{tabular} \\
\hline 10 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA, LNB
(b) \(\mathrm{M}>0\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{BR}(1, \mathrm{i}) \leftarrow \mathrm{BR}(1, \mathrm{i}) / \mathrm{AR}(1,1)\), \\
& & \begin{tabular}{l}
\(\mathrm{BI}(1, \mathrm{i}) \leftarrow \mathrm{BI}(1, \mathrm{i}) / \mathrm{AR}(1,1)\) \\
\((\mathrm{i}=1,2, \cdots, m)\) are performed.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 3010 & Restriction (b) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Normally, you should decompose matrix \(A\) by calling the 2.9.2 \(\left\{\begin{array}{l}\text { ZBHPUD } \\ \text { CBHPUD }\end{array}\right\}\) subroutine. However, if you also want to obtain the condition number, you should use 2.9.3 \(\left\{\begin{array}{l}\text { ZBHPUC } \\ \text { CBHPUC }\end{array}\right\}\). In addition, if you have already used 2.9.1 \(\left\{\begin{array}{l}\text { ZBHPSL } \\ \text { CBHPSL }\end{array}\right\}\) to solve simultaneous linear equations having the same coefficient matrix \(A\), you can use
the LDL* decomposition obtained as part of its output.
(b) The upper triangular matrix \(L^{*}\) must be stored in array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they need not be stored in array A. (See Fig. 2-9 in Section 2.9.1)
(c) Information about partial pivoting performed during LDL* decomposition must be stored in IPVT. This information is given by the subroutines which perform LDL* decomposition of matrix \(A\).

\section*{(7) Example}
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{rrrr}
9 & 7+3 i & 2+5 i & 1+1 i \\
7-3 i & 10 & 3+2 i & 2+4 i \\
2-5 i & 3-2 i & 8 & 5+1 i \\
1-1 i & 2-4 i & 5-1 i & 6
\end{array}\right]\left[\begin{array}{rlll}
x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\
x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\
x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\
x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4}
\end{array}\right]=\left[\begin{array}{rrr}
10+6 i & 8+18 i & 22 i \\
11+2 i & 12+11 i & 8+23 i \\
7+14 i \\
4+6 i & 15+5 i & 20+6 i \\
4+6 i & 8+7 i \\
4 i & 16+2 i & 12+6 i
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(A\) which has been LDL* decomposed by the modified Cholesky method, LNA \(=\) \(11, \mathrm{~N}=4\), constant vectors \(\boldsymbol{b}_{\boldsymbol{i}}(i=1,2, \cdots, m), \mathrm{LNB}=11\) and \(\mathrm{M}=4\).
(c) Main program
! *** PROGRAM ABHPMS
! *** EXAMPLE OF ZBHPUD, ZBHPMS ***
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (LNA = 11)
DIMENSION AR(LNA,LNA),AI (LNA,LNA),\&
BR(LNA,LNA), BI (LNA, LNA) ,WK (LNA) , IPVT (LNA)
!
READ (5,*) N
READ (5,*) M
WRITE \((6,1000)\)
DO \(10 \mathrm{I}, \mathrm{M}\)
DO \(\underset{R E A D}{ }(5, *)(\operatorname{NR}(I, J), A I(I, J), J=I, N)\)
10 CONTINUE
DO \(15 \mathrm{I}=1\), N
\(\operatorname{WRITE}(6,1100)(\operatorname{AR}(J, I),-\operatorname{AI}(J, I), J=1, I-1), \&\)
15 CONTINUE
WRITE \((6,1200)\)
DO \(20 \mathrm{~J}=1, \mathrm{M}\)
\(\operatorname{READ}(5, *)(B R(I, J), B I(I, J), I=1, N)\)
CONTINUE
DO \(25 \mathrm{I}=1\), N
WRITE \((6,1100)(B R(I, J), B I(I, J), J=1, M)\)
25 CONTINUE
WRITE \((6,1300)\)
CALL ZBHPUD (AR, AI, LNA, N, IPVT, WK, IERR)
WRITE \((6,1400)\) 'ZBHPUD', IERR
CALL ZBHPMS (AR,AI,LNA,N,BR,BI,LNA,M,IPVT,JERR)
WRITE \((6,1400)\) ' ZBHPMS ', JERR
IF (IERR .GE. 3000) STOP
WRITE \((6,1600)\)
WRITE \((6,1100)(B R(I, J), B I(I, J), J=1, M)\)
30 CONTINUE
STOP
1000 FORMAT (1X,/,/,\&
1X,\({ }^{\prime} * * *\)
1X, \(1 \mathrm{X},{ }^{*} * *\)
ZBHPUD,
INPUT
\(* *\)
1X, \(5 \mathrm{X}, ' \mathrm{~N}=\), \(, \mathrm{I} 3, /\), \&
1X,5X,'M =','I3, /',\&
1,1X,5X,' 'COEFFICIENT MATRIX')
\(1100 \operatorname{FORMAT}(1 \mathrm{X}, 6 \mathrm{X}, 4(\) (' (',F8.4,',',F8.4,')'))
1200 FORMAT (/,1X,5X, 'CONSTANT VECCTORS')
1300 FORMAT (/, 1X, 1X,' \(* *\), OUTPUT **',/)
1400 FORMAT (1X,5X,'ERR 1600 FORMAT(/,1X,5X, 'SOLUTION')
END
(d) Output results
```

*** ZBHPUD, ZBHPMS ***
** INPUT **
N = 4
COEFFICIENT MATRIX

```

```

 CONSTANT VECTORS
 (10.0000, 6.0000)(8.0000, 18.0000)(0.0000, 22.0000)(2.0000, 10.0000)
 (11.0000, 2.0000)(12.0000, 11.0000)(8.0000, 23.0000)(7.0000, 14.0000)
 (4.0000, 6.0000)(15.0000, 5.0000)(20.0000, 6.0000)((9.0000, 7.0000)
 ** OUTPUT **
ERR (ZBHPUD) = 0
ERR (ZBHPMS) =
0
SOLUTION

```


\subsection*{2.9.6 ZBHPDI, CBHPDI}

\section*{Determinant and Inverse Matrix of a Hermitian Matrix}
(1) Function

ZBHPDI or CBHPDI obtains the determinant and inverse matrix of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method.
(2) Usage

Double precision:
CALL ZBHPDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)
Single precision:
CALL CBHPDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{AR} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
D \\
R
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Real part of Hermitian matrix \(A\) (twodimensional array type) (upper triangular type) after LDL* decomposition (See Notes (a) and (b)) \\
\hline & & & & Output & Real part of the Inverse matrix of matrix \(A\) (See Note (b)) \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{AI} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
D \\
R
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Imaginary part of Hermitian matrix \(A\) (twodimensional array type) (upper triangular type) after LDL* decomposition (See Notes (a) and (b)) \\
\hline & & & & Output & Imaginary part of the Inverse matrix of matrix A (See Note (b)) \\
\hline 3 & LNA & I & 1 & Input & Adjustable dimension of array AR and AI \\
\hline 4 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 5 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (d))
\end{tabular} \\
\hline 6 & DET & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & 2 & Output & Determinant of matrix \(A\) (See Note (c) ) \\
\hline 7 & ISW & I & 1 & Input & \begin{tabular}{l}
Processing switch \\
ISW \(>0\) :Obtain determinant. \\
ISW \(=0\) :Obtain determinant and inverse matrix. \\
ISW \(<0\) :Obtain inverse matrix.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & Contents \\
\hline 8 & W1 & \(\left\{\begin{array}{l}\text { D } \\
R\end{array}\right\}\) & N & Work & Work area \\
\hline 9 & IERR & I & 1 & & \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1)\) \\
& & \(\mathrm{DET}(2) \leftarrow 0.0\) \\
& & \(\mathrm{AR}(1,1) \leftarrow 1.0 / \mathrm{AR}(1,1)\) are performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Use any of the 2.9.2 \(\left\{\begin{array}{l}\text { ZBHPUD } \\ \text { CBHPUD }\end{array}\right\}, 2.9 .3\left\{\begin{array}{l}\text { ZBHPUC } \\ \text { CBHPUC }\end{array}\right\}, 2.9 .1\left\{\begin{array}{l}\text { ZBHPSL } \\ \text { CBHPSL }\end{array}\right\}\) subroutines to perform the decomposition.
(b) The upper triangular matrix \(L^{*}\) must be stored in arrays AR and AI. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they should not be stored in arrays AR and AI. Since the inverse matrix \(A^{-1}\) is a Hermitian matrix, only its upper triangular portion is stored in \(A\). This subroutine uses only the upper triangular portions of arrays AR and AI. (See 2.9.1 Figure 2-9.)
(c) The determinant is given by the following expression:
\[
\operatorname{det}(A)=\operatorname{DET}(1) \times\left(10.0^{\mathrm{DET}(2)}\right)
\]

Scaling is performed at this time so that:
\[
1.0 \leq|\operatorname{DET}(1)|<10.0
\]
(d) Information about partial pivoting performed during LDL* decomposition must be stored in IPVT. This information is given by the subroutines which perform LDL* decomposition of matrix \(A\).
(e) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form \(A^{-1} \boldsymbol{b}\) or \(A^{-1} B\) in the numerical calculations, it must be calculated by solving the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) for the vector \(\boldsymbol{x}\) or by solving the simultaneous linear equations with multiple right-hand sides \(A X=B\) for the matrix \(X\), respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

\subsection*{2.9.7 ZBHPLX, CBHPLX}

\section*{Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)}
(1) Function

ZBHPLX or CBHPLX uses an iterative method to improve the solution of the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:

\section*{CALL ZBHPLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, IPVT, W1, IERR)}

Single precision:
CALL CBHPLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, IPVT, W1, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{\(\left.\begin{array}{l}\text { Contents } \\
\text { R }\end{array}\right\}\)}
\end{tabular}
\begin{tabular}{|l|c|c|c|c|l|}
\hline No. & Argument & Type & \multicolumn{1}{|c|}{ Size } & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 11 & ITOL & I & 1 & Input & \begin{tabular}{l} 
Number of digits to which solution is to be im- \\
proved (See Note (b))
\end{tabular} \\
\cline { 4 - 7 } & & & & Output & \begin{tabular}{l} 
Approximate number of digits to which solution \\
was improved (See Note (c))
\end{tabular} \\
\hline 12 & NIT & I & 1 & Input & Maximum number of iterations (See Note (d)) \\
\hline 13 & IPVT & I & N & Output & Pivoting information. (See Note (a)) \\
\hline 14 & W1 & \(\left\{\begin{array}{l}\text { D } \\
\text { R }\end{array}\right\}\) & \(3 \times \mathrm{N}\) & Work & Work area \\
\hline 15 & IERR & I & 1 & & \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA

\section*{(5) Error indicator}
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & The solution is not improved. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 5000 & \begin{tabular}{l} 
The solution did not converge within the \\
maximum number of iterations.
\end{tabular} & \begin{tabular}{l} 
Processing is aborted after calculating the \\
ITOL output value.
\end{tabular} \\
\hline 6000 & The solution could not be improved. & \\
\hline
\end{tabular}
(6) Notes
(a) This subroutine improves the solution obtained by the 2.9.1 \(\left\{\begin{array}{l}\text { ZBHPSL } \\ \text { CBHPSL }\end{array}\right\}\) or 2.9.4 \(\left\{\begin{array}{l}\text { ZBHPLS } \\ \text { CBHPLS }\end{array}\right\}\) subroutine. Therefore, the coefficient matrix \(A\) after it has been decomposed by the 2.9.1 \(\left\{\begin{array}{l}\text { ZBHPSL } \\ \text { CBHPSL }\end{array}\right\}\), 2.9.2 \(\left\{\begin{array}{l}\text { ZBHPUD } \\ \text { CBHPUD }\end{array}\right\}\), or 2.9.3 \(\left\{\begin{array}{l}\text { ZBHPUC } \\ \text { CBHPUC }\end{array}\right\}\) subroutines and the pivoting information at that time must be given as input.
(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.
\[
\text { ITOL } \leq 0 \text { or ITOL } \geq-\operatorname{LOG} 10(2 \times \varepsilon) \quad(\varepsilon: \text { Unit for determining error })
\]
(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

\subsection*{2.10 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE) (NO PIVOTING)}

\subsection*{2.10.1 ZBHRSL, CBHRSL}

Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)
(1) Function

ZBHRSL or CBHRSL uses the modified Cholesky method to solve the simultaneous linear equations \(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\) having a Hermitian matrix (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL ZBHRSL (AR, AI, LNA, N, BR, BI, W1, IERR)
Single precision:
CALL CBHRSL (AR, AI, LNA, N, BR, BI, W1, IERR)

\section*{(3) Arguments}
\(\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}\) I: \(\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & Contents \\
\hline 7 & W1 & \(\left\{\begin{array}{l}\text { D } \\
\mathrm{R}\end{array}\right\}\) & \(2 \times \mathrm{N}\) & Work & Work area \\
\hline 8 & IERR & I & 1 & & \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l} 
Contents of arrays AR and AI are not \\
changed. \\
\(\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{AR}(1,1)\) is performed.
\end{tabular} \\
\hline 1000 & N was equal to 1. & Processing continues. \\
\hline 2100 & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the LDL* decompo- \\
sition of the coefficient matrix \(A . \quad\) The \\
result may not be obtained with a good \\
accuracy.
\end{tabular} & \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a) was not satisfied.
\end{tabular} \\
\hline \(4000+i\) & \begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
in the \(i\)-th processing step of the LDL* \\
decomposition of coefficient matrix \(A\). \\
\(A\) is nearly singular.
\end{tabular} & \multicolumn{4}{|c|}{} \\
\hline
\end{tabular}
(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector \(\boldsymbol{b}\) differs, call this subroutine only once and then call subroutine 2.10.4 \(\left\{\begin{array}{l}\text { ZBHRLS } \\ \text { CBHRLS }\end{array}\right\}\) the required number of times varying only the contents of \(B\). This enables you to eliminate unnecessary calculation by performing the LDL* decomposition of matrix \(A\) only once.
(b) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portions of arrays AR and AI. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in arrays AR and AI. The matrix \(L\) is the adjoint matrix of the matrix \(L^{*}\), and the matrix \(D\) is a diagonal matrix having the reciprocals of the diagonal elements of the matrix \(L^{*}\) as its components. This subroutine uses only the upper triangular portions of arrays AR and AI (See Fig. 2-10).
Matrix \(L^{*}\)
\(\left[\begin{array}{ccccc}l_{1,1} & l_{2,1} & l_{3,1} & \cdots & l_{5,1} \\ 0.0 & l_{2,2} & l_{3,2} & \cdots & l_{5,2} \\ 0.0 & 0.0 & l_{3,3} & \cdots & l_{5,3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0.0 & 0.0 & 0.0 & \cdots & l_{5,5}\end{array}\right]\left[\begin{array}{ccccc}1 / l_{1,1} & 0.0 & 0.0 & \cdots & 0.0 \\ 0.0 & 1 / l_{2,2} & 0.0 & \cdots & 0.0 \\ 0.0 & 0.0 & 1 / l_{3,3} & \cdots & 0.0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0.0 & 0.0 & 0.0 & \cdots & 1 / l_{5,5}\end{array}\right]\)


\section*{Remarks}
a. \(\quad\) LNA \(\geq \mathrm{N}\) and \(\mathrm{N} \leq \mathrm{K}\) must hold.
b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2-10 Storage Status of Matrix \(L^{*}\) and Contents of Matrix \(D\)

\section*{(7) Example}
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{cccc}
9 & 7+3 i & 2+5 i & 1+i \\
7-3 i & 10 & 3+2 i & 2+4 i \\
2-5 i & 3-2 i & 8 & 5+i \\
1-i & 2-4 i & 5-i & 6
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
10+6 i \\
11+2 i \\
4+6 i \\
4+6 i
\end{array}\right]
\]
(b) Input data

Coefficient matrix real part AR and Imaginary part \(A I, L N A=11, N=4\) and constant vector \(B\).
(c) Main program
```

PROGRAM ABHRSL
*** EXAMPLE OF ZBHRUC,ZBHRLS ***
IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11,LNW = 22)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),BR(LNA),BI(LNA),W1(LNW)
CHARACTER*50 FMT(4)

```
\[
\begin{aligned}
& \text { '(6X,3(16X), 1X,A1,F5.1,1X,A1,F5.1,1X,A1)'// }
\end{aligned}
\]
!
READ \((5, *)\) N
WRITE \((\mathbf{6}, 1000) \mathrm{N}\)
DO \(10 \mathrm{IEAD}(5, *) \mathrm{N}\)
\(\operatorname{READ}(5, *)\) (AR (I , J), AI (I,\(J), J=I, N)\)

10 CONTINUE
\(\operatorname{READ}(5, *)(B R(I), B I(I), I=1, N)\)
WRITE \((6,1100)\)
WRITE \((6,1200) \mathrm{NR}(\mathrm{I}), \mathrm{BI}(\mathrm{I})\)
20 CONTINUE
WRITE \((6,1300)\)
CALL ZBHRUC (AR, AI, LNA, N, COND,W1,IERR)
WRITE \((6,1400)\) 'ZBHRUC', IERR
IF (IERR . GE. 3000) STOP
COND = 1.ODO/COND
CALL ZBHRLS (AR,AI,LNA,N,BR,BI,KERR)
WRITE \((6,1400)\) ' ZBHRLS ', KERR
WRITE \((6,1500)\) COND
WRITE \((6,1600)\)
WRITE \({ }^{\mathrm{I}}(6,1700)^{\mathrm{N}} \mathrm{I}, \mathrm{BR}(\mathrm{I}), \mathrm{BI}(\mathrm{I})\)
30 CONTINUE
STOP
\({ }^{!} 1000\)

/,6X', 'COEFFICIENT MATRIX ( REAL, IMAGINARY )')
1100 FORMAT (6X,' CONSTANT VECTOR ( REAL, IMAGINARY )')
1200 FORMAT (6X,' (',F5.1,' ,', F5.1,' ')')
1300 FORMAT ( \(2 \mathrm{X},{ }^{\prime}\) ** OUTPUT **')
1400 FORMAT (6X,' IERR (',A6,') =', I5)
1500 FORMAT (6X,' CONDITIOXN NUMBER' \(\stackrel{\text { ' }}{=}\),D18.10)
1600 FORMAT (6X,'SOLUTION ( REAL, IMAGINARY )')
1700 FORMAT (10X, 'X(',I2,') = (',D18.10,' ,',D18.10,' )') END
(d) Output results
```

*** ZBHRUC, ZBHRLS ***
** INPUT **
COEFFICIENT MATRIX (REAL, IMAGINARY)

```

```

 CONSTANT VECTOR (REAL, IMAGINARY)
 (\(10.0,6.0\))
 \(\left(\begin{array}{cc}11.0, & 2.0 \\ (4.0, & 6.0\end{array}\right)\)
 ** OUTPUT \({ }^{\text {(}}\) ** 6.0)
 OUTPUT **
 IERR \((\) ZBHRUC \()=\)
 IERR $($ ZBHRLS $)=$
IERR (ZBHRLS) $={ }^{0} 0.2998721749 \mathrm{D}+02$
CONDITION NUMBER = 0.299872
$\mathrm{X}(1)=(0.1000000000 \mathrm{D}+01,0.0000000000 \mathrm{D}+00$
$\mathrm{X}(2)=(0.1000000000 \mathrm{D}+01,0.5464378949 \mathrm{D}-16$
$\mathrm{X}(3)=(-0.1022363649 \mathrm{D}-15,0.1000000000 \mathrm{D}+01)$
$\mathrm{X}(4)=(-0.4170837849 \mathrm{D}-16,0.1000000000 \mathrm{D}+01)$

```

\subsection*{2.10.2 ZBHRUD, CBHRUD}

\section*{LDL* Decomposition of a Hermitian Matrix (No Pivoting)}

\section*{(1) Function}

ZBHRUD or CBHRUD uses the modified Cholesky method to perform an LDL* decomposition of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL ZBHRUD (AR, AI, LNA, N, W1, IERR)
Single precision:
CALL CBHRUD (AR, AI, LNA, N, W1, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{AR} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} \\
\mathrm{R}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Real part of Hermitian matrix \(A\) (twodimensional array type) (upper triangular type) \\
\hline & & & & Output & Real part of upper triangular matrix \(L^{*}\) when \(A\) is decomposed into \(A=L D L^{*}\) (See Note (a)) \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{AI} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
D \\
R
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Imaginary part of Hermitian matrix \(A\) (twodimensional array type) (upper triangular type) \\
\hline & & & & Output & Imaginary part of upper triangular matrix \(L^{*}\) when \(A\) is decomposed into \(A=L D L^{*}\) (See Note (a)) \\
\hline 3 & LNA & I & 1 & Input & Adjustable dimension of array AR and AI \\
\hline 4 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 5 & W1 & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & \(2 \times \mathrm{N}\) & Work & Work area \\
\hline 6 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA

\section*{(5) Error indicator}
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l} 
Contents of arrays AR and AI are not \\
changed.
\end{tabular} \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the LDL* decompo- \\
sition of the coefficient matrix \(A\). The \\
result may not be obtained with a good \\
accuracy.
\end{tabular} \\
\hline 2100 & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
in the \(i\)-th processing step. \\
\(A\) is nearly singular.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portions of arrays AR and AI. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI (See Fig. 2-10 in Section 2.10.1).

\subsection*{2.10.3 ZBHRUC, CBHRUC}

\section*{LDL* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting)}

\section*{(1) Function}

ZBHRUC or CBHRUC uses the modified Cholesky method to perform an LDL* decomposition and obtain the condition number of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL ZBHRUC (AR, AI, LNA, N, COND, W1, IERR)
Single precision:
CALL CBHRUC (AR, AI, LNA, N, COND, W1, IERR)
(3) Arguments
\(\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}\) I: \(\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(0<\mathrm{N} \leq \mathrm{LNA}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l} 
Contents of arrays AR and AI are not \\
changed. \\
COND \(\leftarrow 1.0\) is performed.
\end{tabular} \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l} 
Processing continues. \\
\hline 2100 \\
\end{tabular} \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the LDL* decompo- \\
sition of the coefficient matrix \(A . \quad\) The \\
result may not be obtained with a good \\
accuracy.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
in the \(i\)-th processing step. \\
\(A\) is nearly singular.
\end{tabular} & \begin{tabular}{l} 
Processing is aborted. \\
The condition number is not obtained.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portions of arrays AR and AI. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI (See Fig. 2-10 in Section 2.10.1).
(b) Although the condition number is defined by \(\|A\| \cdot\left\|A^{-1}\right\|\), an approximate value is obtained by this subroutine.

\subsection*{2.10.4 ZBHRLS, CBHRLS}

Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No Pivoting)
(1) Function

ZBHRLS or CBHRLS solves the simultaneous linear equations \(L D L^{*} \boldsymbol{x}=\boldsymbol{b}\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method as coefficient matrix.
(2) Usage

Double precision:
CALL ZBHRLS (AR, AI, LNA, N, BR, BI, IERR)
Single precision:
CALL CBHRLS (AR, AI, LNA, N, BR, BI, IERR)

\section*{(3) Arguments}
\(\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array} \quad\) I: \(\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA

\section*{(5) Error indicator}
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{AR}(1,1)\) is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Normally, you should decompose matrix \(A\) by calling the 2.10.2 \(\left\{\begin{array}{l}\text { ZBHRUD } \\ \text { CBHRUD }\end{array}\right\}\). However, if you also want to obtain the condition number, you should use 2.10.3 \(\left\{\begin{array}{l}\text { ZBHRUC } \\ \text { CBHRUC }\end{array}\right\}\). In addition, if you have already used 2.10.1 \(\left\{\begin{array}{l}\text { ZBHRSL } \\ \text { CBHRSL }\end{array}\right\}\) to solve simultaneous linear equations having the same coefficient matrix \(A\), you can use the LDL* decomposition obtained as part of its output. To solve multiple sets of simultaneous linear equations where only the constant vector \(\boldsymbol{b}\) differs, the solution is obtained more efficiently by directly using the subroutine 2.10.5 \(\left\{\begin{array}{l}\text { ZBHRMS } \\ \text { CBHRMS }\end{array}\right\}\) to perform the calculations.
(b) The upper triangular matrix \(L^{*}\) must be stored in the upper triangular portion of array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they need not be stored in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and AI (See Fig. 2-10 in Section 2.10.1).

\subsection*{2.10.5 ZBHRMS, CBHRMS}

\section*{Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*Decomposed Hermitian Matrix) (No Pivoting)}

\section*{(1) Function}

ZBHRMS or CBHRMS solves the simultaneous linear equations \(L D L^{*} \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}(i=1,2, \cdots, m\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method as coefficient matrix. That is, when the \(n \times m\) matrix \(B\) is defined by \(B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]\), the subroutine obtains \(\left[\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B\).
(2) Usage

Double precision:
CALL ZBHRMS (AR, AI, LNA, N, BR, BI, LNB, M, IERR)
Single precision:
CALL CBHRMS (AR, AI, LNA, N, BR, BI, LNB, M, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & \multicolumn{1}{|c|}{ Size } & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{\(\left.\begin{array}{l}\text { Dontents } \\
\mathrm{R}\end{array}\right\}\)}
\end{tabular}

\section*{(4) Restrictions}
(a) \(0<\mathrm{N} \leq\) LNA, LNB
(b) \(\mathrm{M}>0\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{BR}(1, \mathrm{i}) \leftarrow \mathrm{BR}(1, \mathrm{i}) / \mathrm{AR}(1,1)\), \\
& & \(\mathrm{BI}(1, \mathrm{i}) \leftarrow \mathrm{BI}(1, \mathrm{i}) / \mathrm{AR}(1,1)\) \\
& & \((\mathrm{i}=1,2, \cdots, m)\) are performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 3010 & Restriction (b) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Normally, you should decompose matrix \(A\) by calling the 2.10.2 \(\left\{\begin{array}{l}\text { ZBHRUD } \\ \text { CBHRUD }\end{array}\right\}\) subroutine. However, if you also want to obtain the condition number, you should use 2.10.3 \(\left\{\begin{array}{l}\text { ZBHRUC } \\ \text { CBHRUC }\end{array}\right\}\). In addition, if you have already used 2.10.1 \(\left\{\begin{array}{l}\text { ZBHRSL } \\ \text { CBHRSL }\end{array}\right\}\) to solve simultaneous linear equations having the same coefficient matrix \(A\), you can use the LDL* decomposition obtained as part of its output.
(b) The upper triangular matrix \(L^{*}\) must be stored in array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they need not be stored in array A (See Fig. 2-10 in Section 2.10.1).

\section*{(7) Example}
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{rrrr}
9 & 7+3 i & 2+5 i & 1+1 i \\
7-3 i & 10 & 3+2 i & 2+4 i \\
2-5 i & 3-2 i & 8 & 5+1 i \\
1-1 i & 2-4 i & 5-1 i & 6
\end{array}\right]\left[\begin{array}{rlll}
x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\
x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\
x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\
x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4}
\end{array}\right]=\left[\begin{array}{rrrr}
10+6 i & 8+18 i & 22 i & 2+10 i \\
11+2 i & 12+11 i & 8+23 i & 7+14 i \\
4+6 i & 15+5 i & 20+6 i & 9+7 i \\
4+6 i & 8+2 i & 16+2 i & 12+6 i
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(A\) which has been LDL* decomposed by the modified Cholesky method, LNA \(=\) \(11, \mathrm{~N}=4\), constant vectors \(\boldsymbol{b}_{\boldsymbol{i}}(i=1,2, \cdots, m), \mathrm{LNB}=11\) and \(\mathrm{M}=4\).
(c) Main program
```

PROGRAM ABHRMS
! *** EXAMPLE OF ZBHRUD, ZBHRMS ***
IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (LNA = 11)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),\&
BR(LNA,LNA),BI(LNA,LNA),WK(2*LNA)
READ (5,*) N
WRITE (6,1000) N, M

```
```

 READ (5,*) (AR(I, J),AI (I , J), J=I ,N)
 1 0 \text { CONTINUE}
 DO 15 I = 1, N
 WRITE(6,1100) (AR(J,I),-AI(J,I), J=1, I-1),&
 1 5 \text { CONTINUE}
 WRITE (6,1200)
 DO 20 J = 1, M
 READ (5,*) (BR (I , J), BI (I, J), I=1,N)
 20 CONTINUE
 DO 25 I = 1, N
 WRITE (6,1100) (BR(I, J), BI (I, J), J=1,M)
 25 CONTINUE
 WRITE (6,1300)
 CALL ZBHRUD (AR,AI,LNA,N,WK,IERR)
 WRITE (6,1400) 'ZBHRUD', IERR
 CALL ZBHRMS (AR,AI,LNA,N,BR,BI,LNA,M,JERR)
 WRITE (6,1400) 'ZBHRMS',JERR
 IF (IERR .GE. 3000) STOP
 WRITE (6,1600)
 WRITE (6,1100) (BR (I, J), BI (I,J),J=1,M)
 30 CONTINUE
 1000 FORMAT (1X,/,/,\&
1X ,'*** ZBHRUD, ZBHRMS ***',/,/,\&
1X,1X,'** INPUT
1X,5X,'N =','I3,l,\&
1X,5X,'M =','I3,/,\& M
1100 FORMAT(1XX,6X,4('(',F8.4,',',,F8.4,')''))
1200 FORMAT (/,1X,5X,'CONSTANT VECTORS')
1300 FORMAT(/,'1X,1X,'** OUTPUT **',/)
1400 FORMAT (1X,5X,'ERR (',A6,') =',I5)
1600 FORMAT(/,1X,5X,'SOLUTION')
END

```
(d) Output results
```

*** ZBHRUD, ZBHRMS ***

```
** INPUT **
    \(\mathrm{N}=4\)
\(\mathrm{M}=4\)
    COEFFICIENT MATRIX

    CONSTANT VECTORS
    \((10.0000,6.0000)(8.0000,18.0000)(0.0000,22.0000)(2.0000,10.0000)\)
        \(11.0000,2.0000)(12.0000,11.0000)(8.0000,23.0000)(7.0000,14.0000)\)
        4.0000, 6.0000 ) ( 15.0000, \(\quad 5.0000)(20.0000,6.0000)(9.0000,17.0000)\)
        4.0000, 6.0000 )( \(8.0000,62.0000)(16.0000,62.0000)(12.0000,66.0000)\)
** OUTPUT **
    ERR (ZBHRUD) \(=0\)
    SOLUTION
        \((1.0000,0.0000)(-0.0000,1.0000)(0.0000,1.0000)(1.0000,0.0000)\)
        \((1.0000,0.0000)(1.0000,-0.0000)(-0.0000,1.0000)(0.0000,1.0000)\)


\subsection*{2.10.6 ZBHRDI, CBHRDI}

\section*{Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)}

\section*{(1) Function}

ZBHRDI or CBHRDI obtains the determinant and inverse matrix of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method.
(2) Usage

Double precision:
CALL ZBHRDI (AR, AI, LNA, N, DET, ISW, W1, IERR)
Single precision:
CALL CBHRDI (AR, AI, LNA, N, DET, ISW, W1, IERR)
(3) Arguments
\begin{tabular}{ll}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} & Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for } 32 \mathrm{bit} \text { Integer } \\
\text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{AR} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
D \\
R
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Real part of Hermitian matrix \(A\) (twodimensional array type) (upper triangular type) after LDL* decomposition (See Notes (a) and (b)) \\
\hline & & & & Output & Real part of the Inverse matrix of matrix \(A\) (See Note (b)) \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{AI} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} \\
\mathrm{R}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Imaginary part of Hermitian matrix \(A\) (twodimensional array type) (upper triangular type) after LDL* decomposition (See Notes (a) and (b)) \\
\hline & & & & Output & Imaginary part of the Inverse matrix of matrix \(A\) (See Note (b)) \\
\hline 3 & LNA & I & 1 & Input & Adjustable dimension of array AR and AI \\
\hline 4 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 5 & DET & \(\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}\) & 2 & Output & Determinant of matrix \(A\) (See Note (c) ) \\
\hline 6 & ISW & I & 1 & Input & \begin{tabular}{l}
Processing switch \\
ISW \(>0\) :Obtain determinant. \\
ISW \(=0\) :Obtain determinant and inverse matrix. \\
ISW \(<0\) :Obtain inverse matrix.
\end{tabular} \\
\hline 7 & W1 & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & N & Work & Work area \\
\hline 8 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1)\) \\
& & \(\mathrm{DET}(2) \leftarrow 0.0\) \\
& & \(\mathrm{AR}(1,1) \leftarrow 1.0 / \mathrm{AR}(1,1)\) are performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Use any of the 2.10.2 \(\left\{\begin{array}{l}\text { ZBHRUD } \\ \text { CBHRUD }\end{array}\right\}, 2.10 .3\left\{\begin{array}{c}\text { ZBHRUC } \\ \text { CBHRUC }\end{array}\right\}, 2.10 .1\left\{\begin{array}{c}\text { ZBHRSL } \\ \text { CBHRSL }\end{array}\right\}\) subroutines to perform the decomposition.
(b) The upper triangular matrix \(L^{*}\) must be stored in arrays AR and AI. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they should not be stored in arrays AR and AI. Since the inverse matrix \(A^{-1}\) is a Hermitian matrix, only its upper triangular portion is stored in A. This subroutine uses only the upper triangular portions of arrays AR and AI (See Fig. 2-10 in Section 2.10.1).
(c) The determinant is given by the following expression:
\[
\operatorname{det}(A)=\operatorname{DET}(1) \times\left(10.0^{\operatorname{DET}(2)}\right)
\]

Scaling is performed at this time so that:
\[
1.0 \leq|\mathrm{DET}(1)|<10.0
\]
(d) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form \(A^{-1} \boldsymbol{b}\) or \(A^{-1} B\) in the numerical calculations, it must be calculated by solving the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) for the vector \(\boldsymbol{x}\) or by solving the simultaneous linear equations with multiple right-hand sides \(A X=B\) for the matrix \(X\), respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

\subsection*{2.10.7 ZBHRLX, CBHRLX}

\section*{Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)}

\section*{(1) Function}

ZBHRLX or CBHRLX uses an iterative method to improve the solution of the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL ZBHRLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, W1, IERR)
Single precision:
CALL CBHRLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, W1, IERR)
(3) Arguments
\(\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}\) I: \(\left.\begin{array}{|c|c|c|c|l|}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{XR} & \multirow[t]{2}{*}{\(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\)} & \multirow[t]{2}{*}{N} & Input & Real part of approximate solution \(\boldsymbol{x}\) \\
\hline & & & & Output & Real part of iteratively improved solution \(\boldsymbol{x}\) \\
\hline \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{XI} & \multirow[t]{2}{*}{\(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\)} & \multirow[t]{2}{*}{N} & Input & Imaginary part of approximate solution \(\boldsymbol{x}\) \\
\hline & & & & Output & Imaginary part of iteratively improved solution \(\boldsymbol{x}\) \\
\hline \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{ITOL} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{1} & Input & Number of digits to which solution is to be improved (See Note (b)) \\
\hline & & & & Output & Approximate number of digits to which solution was improved (See Note (c)) \\
\hline 12 & NIT & I & 1 & Input & Maximum number of iterations (See Note (d)) \\
\hline 13 & W1 & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & \(3 \times \mathrm{N}\) & Work & Work area \\
\hline 14 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & The solution is not improved. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 5000 & \begin{tabular}{l} 
The solution did not converge within the \\
maximum number of iterations.
\end{tabular} & \begin{tabular}{l} 
Processing is aborted after calculating the \\
ITOL output value.
\end{tabular} \\
\hline 6000 & The solution could not be improved. & \\
\hline
\end{tabular}
(6) Notes
(a) This subroutine improves the solution obtained by the 2.10.1 \(\left\{\begin{array}{l}\text { ZBHRSL } \\ \text { CBHRSL }\end{array}\right\}\) or 2.10.4 \(\left\{\begin{array}{l}\text { ZBHRLS } \\ \text { CBHRLS }\end{array}\right\}\) subroutine. Therefore, the coefficient matrix \(A\) after it has been decomposed by the 2.10.1 \(\left\{\begin{array}{l}\text { ZBHRSL } \\ \text { CBHRSL }\end{array}\right\}\), 2.10.2 \(\left\{\begin{array}{l}\text { ZBHRUD } \\ \text { CBHRUD }\end{array}\right\}\), or 2.10.3 \(\left\{\begin{array}{l}\text { ZBHRUC } \\ \text { CBHRUC }\end{array}\right\}\) subroutines must be given as input.
(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.
\[
\text { ITOL } \leq 0 \text { or ITOL } \geq-\operatorname{LOG} 10(2 \times \varepsilon) \quad(\varepsilon: \text { Unit for determining error })
\]
(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

\subsection*{2.11 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGUMENT TYPE)}

\subsection*{2.11.1 ZBHFSL, CBHFSL}

\section*{Simultaneous Linear Equations (Hermitian Matrix)}
(1) Function

ZBHFSL or CBHFSL uses the modified Cholesky method to solve the simultaneous linear equations \(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL ZBHFSL (A, LNA, N, B, IPVT, W1, IERR)
Single precision:
CALL CBHFSL (A, LNA, N, B, IPVT, W1, IERR)
(3) Arguments
\(\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}\) I: \(\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l} 
Contents of array A are not changed. \\
\(\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)\) is performed.
\end{tabular} \\
\hline 2100 & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the LDL* decompo- \\
sition of the coefficient matrix \(A . \quad\) The \\
result may not be obtained with a good \\
accuracy.
\end{tabular} & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
in the \(i\)-th processing step of the LDL* \\
decomposition of coefficient matrix \(A\). \\
\(A\) is nearly singular.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector \(\boldsymbol{b}\) differs, call this subroutine only once and then call subroutine 2.11.4 \(\left\{\begin{array}{l}\text { ZBHFLS } \\ \text { CBHFLS }\end{array}\right\}\) the required number of times varying only the contents of B . This enables you to eliminate unnecessary calculations by performing the LDL* decomposition of matrix \(A\) only once.
(b) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portion of array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in array A. The matrix \(L\) is the adjoint matrix of the matrix \(L^{*}\), and the matrix \(D\) is a diagonal matrix having the reciprocals of the diagonal elements of the matrix \(L^{*}\) as its components.

Matrix \(L^{*}\)
\[
\left[\begin{array}{ccccc}
l_{1,1} & l_{2,1} & l_{3,1} & \cdots & l_{5,1} \\
0.0 & l_{2,2} & l_{3,2} & \cdots & l_{5,2} \\
0.0 & 0.0 & l_{3,3} & \cdots & l_{5,3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0.0 & 0.0 & 0.0 & \cdots & l_{5,5}
\end{array}\right] \quad\left[\begin{array}{ccccc}
1 / l_{1,1} & 0.0 & 0.0 & \cdots & 0.0 \\
0.0 & 1 / l_{2,2} & 0.0 & \cdots & 0.0 \\
0.0 & 0.0 & 1 / l_{3,3} & \cdots & 0.0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0.0 & 0.0 & 0.0 & \cdots & 1 / l_{5,5}
\end{array}\right]
\]


\section*{Remarks}
a. \(\quad\) LNA \(\geq \mathrm{N}\) and \(\mathrm{N} \leq \mathrm{K}\) must hold.
b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2-11 Storage Status of Matrix \(L^{*}\) and Contents of Matrix \(D\)
(c) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column) in the i -th step is row (column) \(\mathrm{j}(\mathrm{i}<\mathrm{j})\), then j is stored in IPVT( i ). In addition, among the column(row) elements corresponding to row(column) i and row(column) j of matrix \(A\), elements from column(row) i to column(row) N actually are exchanged at this time.

\section*{(7) Example}
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{cccc}
9 & 7+3 i & 2+5 i & 1+i \\
7-3 i & 10 & 3+2 i & 2+4 i \\
2-5 i & 3-2 i & 8 & 5+i \\
1-i & 2-4 i & 5-i & 6
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
10+6 i \\
11+2 i \\
4+6 i \\
4+6 i
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(A\), LNA \(=11, \mathrm{~N}=4\) and constant vector \(\boldsymbol{b}\).
(c) Main program

PROGRAM ABHFSL
*** EXAMPLE OF ZBHFSL \({ }^{* * *}\)
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (LNA = 11, LNW = 22)
COMPLEX (8) A(LNA,LNA), B(LNA),W1 (LNW)
INTEGER IPVT(LNA)
READ ( \(5, *\) ) N
WRITE \((6,1000) \mathrm{N}\)
READ ( \(5, *\) ) (A (I, J) , J=I,\(N)\)
10 CONTINUE
WRITE \((6,2000)(A(1, J), J=1, N)\)
WRITE \((6,2100)(A(2, J), J=2, N)\)
WRITE \((6,2200)(A(3, J), J=3, N)\)
\(\operatorname{WRITE}(6,2300)(A(4, J), J=4, N)\)
```

 READ (5,*) (B(I),I=1,N)
 WRITE (6,1100)
 WRITE (6,1200) B(I)
 20
 CONTINUE
 WRITE (6,1300)
 CALL ZBHFSL (A,LNA,N ,B, IPVT,W1,IERR)
 WRITE (6,1400) ''ZBHFSL', IERR
 WRITE (6,1600)
 DO 30 I = 1, N
 WRITE (6,17OBO) I,B(I)
 30 CONTINUE
 STOP
 1000 FORMAT (' ','/,/,', *** ZBHFSL ***',/,2X,'** INPUT **',\&
/,6X,'COEFFICIENT MATRIX (REAL, IMAGINARY)')
1100 FORMAT (GX,'CONSTANT VECTOR (REAL, IMAGINARY)')
1200 FORMAT (6X,' (',F5.1,' ,',F5.1,')')
1300
1400 FORMAT (6X,'IERR (',A6,') =',I5)
1600 FORMAT (6X','SOLUTION (REAL, IMAGINARY)')
1700 FORMAT (10X,'X(',I2,') = (',D18.10,',',,D18.10,')')
2000 FORMAT (6X, X , 4'(1X,'(',F5.1,',','F5.1,1X,')'))
2000 FORMAT (6X, 16 4(1X,'(',F5.1,', ',',F5.1,1X,')'))
2100 FORMAT (6X, 16X, 3(1X,'(',F5.1,', ',',F5.1,1X,')'))
2200 FORMAT (6X,2(16X),2(1X,'(',F5.1,',',',F5.1,1X,')'))

```
(d) Output results
```

*** ZBHFSL ***
** INPUT

```
    NOEFFICIENT MATRIX ( REAL, IMAGINARY )

    CONSTANT VECTOR ( REAL, IMAGINARY )
    \((10.0\),
\((11.0\),
\((1.0)\)
    \(\left.\begin{array}{r}(11.0, \\ (4.0, \\ (2.0 \\ \hline\end{array}\right)\)
    ** ( 4.0 ', 6.0.0)
    IERR (ZBHFSL) =
    SOLUTION ( REAL, IMAGINARY )
        \(\mathrm{X}(1)=(0.1000000000 \mathrm{D}+01,0.0000000000 \mathrm{D}+00)\)
        \(\mathrm{X}(2)=\left(\begin{array}{r}0.1000000000 \mathrm{D}+01, \\ \mathrm{X}(3) \\ \mathrm{O}\end{array}, 0.8881784197 \mathrm{D}-16\right.\)
        \(X(3)=(-0.4971147871 \mathrm{D}-16,0.1000000000 \mathrm{D}+01)\)
\(\mathrm{X}(4)=(-0.4170837849 \mathrm{D}-16,0.10000000000 \mathrm{D}+01)\)

\subsection*{2.11.2 ZBHFUD, CBHFUD}

\section*{LDL* Decomposition of a Hermitian Matrix}
(1) Function

ZBHFUD or CBHFUD uses the modified Cholesky method to perform an LDL* decomposition of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL ZBHFUD (A, LNA, N, IPVT, W1, IERR)
Single precision:
CALL CBHFUD (A, LNA, N, IPVT, W1, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}\) & LNA, N & Input & Hermitian matrix \(A\) (two-dimensional array type, upper triangular type) \\
\hline & & & & Output & Upper triangular matrix \(L^{*}\) when \(A\) is decomposed into \(A=L D L^{*}(\) See Note (a)) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & 1 & 1 & Input & Order of matrix \(A\) \\
\hline 4 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (b))
\end{tabular} \\
\hline 5 & W1 & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & N & Work & Work area \\
\hline 6 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq \mathrm{LNA}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & Contents of array A are not changed. \\
\hline 2100 & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the LDL* decompo- \\
sition of the coefficient matrix \(A\). The \\
result may not be obtained with a good \\
accuracy.
\end{tabular} & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
in the \(i\)-th processing step. \\
\(A\) is nearly singular.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portion of array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in array A. This subroutine uses only the upper triangular portion of array A. (See Fig. 2-11 in Section 2.11.1)
(b) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column) in the \(\mathrm{i}-\mathrm{th}\) step is row(column) \(\mathrm{j}(\mathrm{i}<\mathrm{j})\), then j is stored in \(\operatorname{IPVT}(\mathrm{i})\). In addition, among the column(row) elements corresponding to row(column) i and row(column) j of matrix \(A\), elements from column(row) i to column(row) N actually are exchanged at this time.

\subsection*{2.11.3 ZBHFUC, CBHFUC}

\section*{LDL* Decomposition and Condition Number of a Hermitian Matrix}
(1) Function

ZBHFUC or CBHFUC uses the modified Cholesky method to perform an LDL* decomposition and obtain the condition number of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL ZBHFUC (A, LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL CBHFUC (A, LNA, N, IPVT, COND, W1, IERR)
(3) Arguments
\begin{tabular}{ll}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} & Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER(4)} \text { as for } 32 \text { bit Integer } \\
\text { INTEGER(8) as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{A} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{Z} \\
\mathrm{C}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Hermitian matrix \(A\) (two-dimensional array type, upper triangular type) \\
\hline & & & & Output & Upper triangular matrix \(L^{*}\) when \(A\) is decomposed into \(A=L D L^{*}\) (See Note (a)) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (b))
\end{tabular} \\
\hline 5 & COND & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Output & Reciprocal of the condition number \\
\hline 6 & W1 & \(\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}\) & N & Work & Work area \\
\hline 7 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l} 
Contents of array A are not changed. \\
COND \(\leftarrow 1.0\) is performed.
\end{tabular} \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the LDL* decompo- \\
sition of the coefficient matrix \(A . \quad\) The
\end{tabular} \\
\hline 2100 \\
result may not be obtained with a good \\
accuracy.
\end{tabular}\(\quad\)\begin{tabular}{l} 
Prontinues. \\
\hline 3000
\end{tabular} Restriction (a) was not satisfied. \(\quad\)\begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
\hline \(4000+i\) \\
in the \(i\)-th processing step. \\
\(A\) is nearly singular.
\end{tabular}

\section*{(6) Notes}
(a) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portion of array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in array A. (See Fig. 2-11 in Section 2.11.1)
(b) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix \(A\). The permutation of rows and columns is symmetrical for row and column. If the pivot row(column) in the i -th step is row(column) \(\mathrm{j}(\mathrm{i}<\mathrm{j})\), then j is stored in IPVT( i\()\). In addition, among the column(row) elements corresponding to row(column) i and row(column) j of matrix \(A\), elements from column(row) i to column(row) N actually are exchanged at this time.
(c) Although the condition number is defined by \(\|A\| \cdot\left\|A^{-1}\right\|\), an approximate value is obtained by this subroutine.

\subsection*{2.11.4 ZBHFLS, CBHFLS \\ Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix)}
(1) Function

ZBHFLS or CBHFLS solves the simultaneous linear equations \(L D L^{*} \boldsymbol{x}=\boldsymbol{b}\) having the Hermitian matrix A (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method as coefficient matrix.
(2) Usage

Double precision:
CALL ZBHFLS (A, LNA, N, B, IPVT, IERR)
Single precision:
CALL CBHFLS (A, LNA, N, B, IPVT, IERR)
(3) Arguments
\begin{tabular}{ll}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} & \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for } 32 \mathrm{bit} \text { Integer } \\
\text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{Z} \\
\mathrm{C}\end{array}\right\}\) & & LNA, N & Input \\
\hline 2 & LNA & I & 1 & \begin{tabular}{l} 
Coefficient matrix \(A\) after LDL* decomposition \\
(Hermitian matrix, two-dimensional array type, \\
upper triangular type) (See Notes (a) and (b))
\end{tabular} \\
\hline 3 & N & I & 1 & Input & Adjustable dimension of array A \\
\hline 4 & B & \(\left\{\begin{array}{l}\mathrm{Z} \\
\mathrm{C}\end{array}\right\}\) & N & Input & Order of matrix \(A\) \\
\hline 5 & IPVT & I & N & Output & Output \\
\hline \begin{tabular}{l} 
Solution \(\boldsymbol{x}\) \\
\hline
\end{tabular} & \begin{tabular}{l} 
Pivoting information \\
IPVT(i): Number of the row(column) ex- \\
changed with row(column) i in the i-th process- \\
ing step. (See Note (c))
\end{tabular} \\
\hline 6 & IERR & I & 1 & & Output \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)\) is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Normally, you should decompose matrix \(A\) by calling the 2.11.2 \(\left\{\begin{array}{l}\text { ZBHFUD } \\ \text { CBHFUD }\end{array}\right\}\) subroutine. However, if you also want to obtain the condition number, you should use 2.11.3 \(\left\{\begin{array}{l}\text { ZBHFUC } \\ \text { CBHFUC }\end{array}\right\}\). In addition, if you have already used 2.11.1 \(\left\{\begin{array}{l}\text { ZBHFSL } \\ \text { CBHFSL }\end{array}\right\}\) to solve simultaneous linear equations having the same coefficient matrix \(A\), you can use the LDL* decomposition obtained as part of its output. To solve multiple sets of simultaneous linear equations where only the constant vector \(\boldsymbol{b}\) differs, the solution is obtained more efficiently by directly using the subroutine 2.11.5 \(\left\{\begin{array}{l}\text { ZBHFMS } \\ \text { CBHFMS }\end{array}\right\}\) to perform the calculations.
(b) The upper triangular matrix \(L^{*}\) must be stored in array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they need not be stored in array A. (See Fig. \(2-11\) in Section 2.11.1)
(c) Information about partial pivoting performed during LDL* decomposition must be stored in IPVT. This information is given by the subroutines 2.11.2 \(\left\{\begin{array}{l}\text { ZBHFUD } \\ \text { CBHFUD }\end{array}\right\}\), 2.11.3 \(\left\{\begin{array}{l}\text { ZBHFUC } \\ \text { CBHFUC }\end{array}\right\}\) or 2.11.1 \(\left\{\begin{array}{l}\text { ZBHFSL } \\ \text { CBHFSL }\end{array}\right\}\) which perform LDL* decomposition of matrix \(A\).

\subsection*{2.11.5 ZBHFMS, CBHFMS}

\section*{Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*Decomposed Hermitian Matrix)}

\section*{(1) Function}

ZBHFMS or CBHFMS solves the simultaneous linear equations \(L D L^{*} \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}(i=1,2, \cdots, m\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method as coefficient matrix. That is, when the \(n \times m\) matrix \(B\) is defined by \(B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]\), the subroutine obtains \(\left[\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B\).
(2) Usage

Double precision:
CALL ZBHFMS (A, LNA, N, B, LNB, M, IPVT, IERR)
Single precision:
CALL CBHFMS (A, LNA, N, B, LNB, M, IPVT, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}\) & LNA, N & Input & Coefficient matrix \(A\) after LDL* decomposition (Hermitian matrix, two-dimensional array type, upper triangular type) (See Notes (a) and (b)) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & B & , Z & LNB, M & Input & Constant vector \(\boldsymbol{b}_{\boldsymbol{i}}(i=1,2, \cdots, m)\) \\
\hline & & ( ) & & Output & Solution \(\boldsymbol{x}_{\boldsymbol{i}}(i=1,2, \cdots, m)\) \\
\hline 5 & LNB & I & 1 & Input & Adjustable dimension of array B \\
\hline 6 & M & I & 1 & Input & Number of right-hand side vectors, \(m\) \\
\hline 7 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (c))
\end{tabular} \\
\hline 8 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA, LNB
(b) \(\mathrm{M}>0\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l}
\(\mathrm{B}(1, \mathrm{i}) \leftarrow \mathrm{B}(1, \mathrm{i}) / \mathrm{A}(1,1)(\mathrm{i}=1,2, \cdots, m)\) \\
are performed.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 3010 & Restriction (b) was not satisfied. & \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Normally, you should decompose matrix \(A\) by calling the 2.11.2 \(\left\{\begin{array}{l}\text { ZBHFUD } \\ \text { CBHFUD }\end{array}\right\}\) subroutine. However, if you also want to obtain the condition number, you should use 2.11.3 \(\left\{\begin{array}{l}\text { ZBHFUC } \\ \text { CBHFUC }\end{array}\right\}\). In addition, if you have already used 2.11.1 \(\left\{\begin{array}{l}\text { ZBHFSL } \\ \text { CBHFSL }\end{array}\right\}\) to solve simultaneous linear equations having the same coefficient matrix \(A\), you can use the LDL* decomposition obtained as part of its output.
(b) The upper triangular matrix \(L^{*}\) must be stored in array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they need not be stored in array A. (See Fig. \(2-11\) in Section 2.11.1)
(c) Information about partial pivoting performed during LDL* decomposition must be stored in IPVT. This information is given by the subroutines 2.11.2 \(\left\{\begin{array}{l}\text { ZBHFUD } \\ \text { CBHFUD }\end{array}\right\}\), 2.11.3 \(\left\{\begin{array}{l}\text { ZBHFUC } \\ \text { CBHFUC }\end{array}\right\}\) or 2.11.1 \(\left\{\begin{array}{l}\text { ZBHFSL } \\ \text { CBHFSL }\end{array}\right\}\) which perform LDL* decomposition of matrix \(A\).

\section*{(7) Example}
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{rrrr}
9 & 7+3 i & 2+5 i & 1+1 i \\
7-3 i & 10 & 3+2 i & 2+4 i \\
2-5 i & 3-2 i & 8 & 5+1 i \\
1-1 i & 2-4 i & 5-1 i & 6
\end{array}\right]\left[\begin{array}{rrrr}
x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\
x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\
x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\
x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4}
\end{array}\right]=\left[\begin{array}{rrrr}
10+6 i & 8+18 i & 22 i & 2+10 i \\
11+2 i & 12+11 i & 8+23 i & 7+14 i \\
4+6 i & 15+5 i & 20+6 i & 9+7 i \\
4+6 i & 8+2 i & 16+2 i & 12+6 i
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(A\) which has been LDL* decomposed by the modified Cholesky method, LNA \(=\) \(11, \mathrm{~N}=4\), constant vectors \(\boldsymbol{b}_{\boldsymbol{i}}(i=1,2, \cdots, m), \mathrm{LNB}=11\) and \(\mathrm{M}=4\).
(c) Main program
```

 PROGRAM ABHFMS
 ! *** EXAMPLE OF ZBHFUD, ZBHFMS ***
IMPLICIT REAL (8) (A-H,O-Z)
PARAMETER (LNA = 11)
COMPLEX (8) A, B
DIMENSION A(LNA,LNA), B(LNA,LNA), IPVT(LNA), WK (LNA)
READ $(5, *)$ N
READ (5,*) M
WRITE $(6,1000) \mathrm{N}, \mathrm{M}$
DO $10 \mathrm{I}=1, \mathrm{~N}(\mathrm{NEAD}(5, *)(\mathrm{I}, \mathrm{J}), \mathrm{J}=\mathrm{I}, \mathrm{N})$
10 CONTINUE

```

```

 15 CONTINUE
 WRITE \((6,1200)\)
    ```

```

 CONTINUE
 DO \(25 \mathrm{I}=1\), N
 WRITE \((6,1100)(B(I, J), J=1, M)\)
 25 CONTINUE
 WRITE \((6,1300)\)
 CALL ZBHFUD (A,LNA,N,IPVT,WK,IERR)
 WRITE (6,1400) 'ZBHFUD', IERR
 CALL ZBHFMS (A,LNA,N, B, LNA, M, IPVT, JERR)
 WRITE \((6,1400)\) ' ZBHFMS', JERR
 WRITE (IERR, 1400. 3000) STOP
 WRITE (6,1600)
 DU \(\operatorname{WRITE}(6,1100)(B(I, J), J=1, M)\)
 30 CONTINUE
 STOP
 1000 FORMAT (1X,/,/,\&

```

```

 1X, \(5 \mathrm{XX}, ' \mathrm{~N}=\) = \(, \mathrm{I} 3, /\), \&
 1X,5X,' \(\mathrm{M}=\) ', \(13, /\) ',\&
 /,'1X,5X,' 'COEFFICIENT MATRIX')
 1100 FORMAT (1X,6X,4('(',F8.4,',',F8.4,')'))
1200 FORMAT (/,1X,5X, 'CONSTANT VEC'TORS')
1300 FORMAT ($/, 1 \mathrm{X}, 1 \mathrm{X}$, ' $* *$, OUTPUT **', $)$
1400 FORMAT (1X,5X,'ERR (',A6,') =',I5)
1600 FORMAT(/,1X,5X,'SOLUTION')
END
(d) Output results

```
```

*** ZBHFUD, ZBHFMS ***

```
** INPUT **
    \(\mathrm{N}=4\)
\(\mathrm{M}=4\)
    COEFFICIENT MATRIX

    CONSTANT VECTORS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 11. & & 8.0000, & 18.0000) & & & 2.0000 , & \\
\hline & & & & & & & \\
\hline & & & & & \(6.0000)\) & & \\
\hline & 0000) & . 000 & . 0000 ) & 16.000 & 2.0000) & . 00 & \\
\hline
\end{tabular}
** OUTPUT **
    ERR (ZBHFUD) \(=0\)
    \(\operatorname{ERR}(\) ZBHFMS \()=0\)
    SOLUTION
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1.0000, & \(0.0000)\) & -0.0000 & .0000) & 0.0000, & .0000)( & 0000, & \\
\hline 1.0000, & \(0.0000)(\) & 1.0000, & -0.0000) & -0.0000, & \(1.0000)(\) & 0.0000, & 1.0000) \\
\hline -0.0000, & 1.0000)( & 1.0000, & -0.0000) & 1.0000, & 0.0000)( & 0.0000, & 1.0000) \\
\hline -0.0000, & 1.0000)( & 0.0000, & 1.0000)( & 1.0000, & -0.0000)( & 1.0000, & -0.0000) \\
\hline
\end{tabular}

\subsection*{2.11.6 ZBHFDI, CBHFDI}

\section*{Determinant and Inverse Matrix of a Hermitian Matrix}

\section*{(1) Function}

ZBHFDI or CBHFDI obtains the determinant and inverse matrix of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method.
(2) Usage

Double precision:
CALL ZBHFDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)
Single precision:

> CALL CBHFDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)
(3) Arguments
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\
\operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{A} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{Z} \\
\mathrm{C}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) after LDL* decomposition (See Notes (a) and (b)) \\
\hline & & & & Output & Inverse matrix of matrix \(A\) (See Note (b)) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of the row(column) exchanged with row(column) i in the i-th processing step. (See Note (d))
\end{tabular} \\
\hline 5 & DET & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & 2 & Output & Determinant of matrix \(A\) (See Note (c)) \\
\hline 6 & ISW & I & 1 & Input & \begin{tabular}{l}
Processing switch \\
ISW \(>0\) :Obtain determinant. \\
ISW \(=0\) :Obtain determinant and inverse matrix. \\
ISW \(<0\) :Obtain inverse matrix.
\end{tabular} \\
\hline 7 & W1 & \(\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}\) & N & Work & Work area \\
\hline 8 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA

\section*{(5) Error indicator}
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1)\) \\
& & \(\mathrm{DET}(2) \leftarrow 0.0\) \\
& & \(\mathrm{~A}(1,1) \leftarrow 1.0 / \mathrm{A}(1,1)\) are performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Use any of the subroutines 2.11.2 \(\left\{\begin{array}{l}\text { ZBHFUD } \\ \text { CBHFUD }\end{array}\right\}, 2.11 .3\left\{\begin{array}{l}\text { ZBHFUC } \\ \text { CBHFUC }\end{array}\right\}, 2.11 .1\left\{\begin{array}{l}\text { ZBHFSL } \\ \text { CBHFSL }\end{array}\right\}\) to perform the decomposition.
(b) The upper triangular matrix \(L^{*}\) must be stored in array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they need not be stored in array A. Since the inverse matrix \(A^{-1}\) is a Hermitian matrix, only its upper triangular portion is stored in \(A\). (See Fig. 2-11 in Section 2.11.1)
(c) The determinant is given by the following expression:
\[
\operatorname{det}(A)=\operatorname{DET}(1) \times\left(10.0^{\operatorname{DET}(2)}\right)
\]

Scaling is performed at this time so that:
\[
1.0 \leq|\operatorname{DET}(1)|<10.0
\]
(d) Information about partial pivoting performed during LDL* decomposition must be stored in IPVT. This information is given by the subroutines which perform LDL* decomposition of matrix \(A\).
(e) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form \(A^{-1} \boldsymbol{b}\) or \(A^{-1} B\) in the numerical calculations, it must be calculated by solving the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) for the vector \(\boldsymbol{x}\) or by solving the simultaneous linear equations with multiple right-hand sides \(A X=B\) for the matrix \(X\), respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

\subsection*{2.11.7 ZBHFLX, CBHFLX}

\section*{Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)}

\section*{(1) Function}

ZBHFLX or CBHFLX uses an iterative method to improve the solution of the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL ZBHFLX (A, LNA, N, AL, B, X, ITOL, NIT, IPVT, W1, IERR)
Single precision:
CALL CBHFLX (A, LNA, N, AL, B, X, ITOL, NIT, IPVT, W1, IERR)

\section*{(3) Arguments}
\begin{tabular}{l} 
D:Double precision real \begin{tabular}{l} 
Z:Double precision complex \\
R:Single precision real \\
C:Single precision complex
\end{tabular} \\
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \(\left.\begin{array}{l}\text { Input/ } \\
\text { INTEGER(4) as for 32bit Integer } \\
\text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
\end{tabular} \\
\hline 1
\end{tabular}

\section*{(4) Restrictions}
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & The solution is not improved. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 5000 & \begin{tabular}{l} 
The solution did not converge within the \\
maximum number of iterations.
\end{tabular} & \begin{tabular}{l} 
Processing is aborted after calculating the \\
ITOL output value.
\end{tabular} \\
\hline 6000 & The solution could not be improved. & \\
\hline
\end{tabular}
(6) Notes
(a) This subroutine improves the solution obtained by the 2.11.1 \(\left\{\begin{array}{l}\text { ZBHFSL } \\ \text { CBHFSL }\end{array}\right\}\) or 2.11.4 \(\left\{\begin{array}{l}\text { ZBHFLS } \\ \text { CBHFLS }\end{array}\right\}\) subroutine. Therefore, the coefficient matrix \(A\) after it has been decomposed by the 2.11.1 \(\left\{\begin{array}{l}\text { ZBHFSL } \\ \text { CBHFSL }\end{array}\right\}\), 2.11.2 \(\left\{\begin{array}{l}\text { ZBHFUD } \\ \text { CBHFUD }\end{array}\right\}\), or 2.11.3 \(\left\{\begin{array}{l}\text { ZBHFUC } \\ \text { CBHFUC }\end{array}\right\}\) subroutines and the pivoting information at that time must be given as input.
(b) Solution improvement is repreated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.
\[
\mathrm{ITOL} \leq 0
\]
or
\[
\text { ITOL } \geq-\operatorname{LOG} 10(2 \times \varepsilon) \quad(\varepsilon: \text { Unit for determining error })
\]
(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

\subsection*{2.12 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGUMENT TYPE) (NO PIVOTING)}

\subsection*{2.12.1 ZBHESL, CBHESL}

\section*{Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)}
(1) Function

ZBHESL or CBHESL uses the modified Cholesky method to solve the simultaneous linear equations \(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL ZBHESL (A, LNA, N, B, IERR)
Single precision:
CALL CBHESL (A, LNA, N, B, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{D:Double precision real R :Single precision real} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}\) & LNA, N & Input & Coefficient matrix \(A\) (Hermitian matrix, twodimensional array type, upper triangular type) \\
\hline & & & & Output & Upper triangular matrix \(L^{*}\) when \(A\) is decomposed into \(A=L D L^{*}(\) See Note (b)) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & B & \{ z\(\}\) & N & Input & Constant vector b \\
\hline & & C \(\}\) & & Output & Solution \(\boldsymbol{x}\) \\
\hline 5 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA

\section*{(5) Error indicator}
\begin{tabular}{|c|c|c|}
\hline IERR value & Meaning & Processing \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & Contents of array A are not changed. \(\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)\) is performed. \\
\hline 2100 & There existed the diagonal element which was close to zero in the \(L U\) decomposition of the coefficient matrix \(A\). The result may not be obtained with a good accuracy. & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & A diagonal element became equal to 0.0 in the \(i\)-th processing step of the LDL* decomposition of coefficient matrix \(A\). \(A\) is nearly singular. & \\
\hline
\end{tabular}
(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector \(\boldsymbol{b}\) differs, call this subroutine only once and then call subroutine 2.12.4 \(\left\{\begin{array}{l}\text { ZBHELS } \\ \text { CBHELS }\end{array}\right\}\) the required number of times varying only the contents of B . This enables you to eliminate unnecessary calculations by performing the LDL* decomposition of matrix \(A\) only once.
(b) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portion of array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in array A. The matrix \(L\) is the adjoint matrix of the matrix \(L^{*}\), and the matrix \(D\) is a diagonal matrix having the reciprocals of the diagonal elements of the matrix \(L^{*}\) as its components.

\section*{Remarks}
a. \(\quad\) LNA \(\geq \mathrm{N}\) and \(\mathrm{N} \leq \mathrm{K}\) must hold.
b. Input time values of elements indicated by asterisks \((*)\) are not guaranteed.

Figure 2-12 Storage Status of Matrix \(L^{*}\) and Contents of Matrix \(D\)

\section*{(7) Example}
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{cccc}
9 & 7+3 i & 2+5 i & 1+i \\
7-3 i & 10 & 3+2 i & 2+4 i \\
2-5 i & 3-2 i & 8 & 5+i \\
1-i & 2-4 i & 5-i & 6
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
10+6 i \\
11+2 i \\
4+6 i \\
4+6 i
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(A\), LNA \(=11, \mathrm{~N}=4\) and constant vector \(\boldsymbol{b}\).
(c) Main program
```

PROGRAM ABHESL
*** EXAMPLE OF ZBHEUC, ZBHELS ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PARAMETER (LNA $=11$, LNW $=22$)
COMPLEX (8) A(LNA, LNA), B (LNA), W1 (LNW)
READ $(5, *) N$
WRITE $(6,1000) N$
DO $10 \mathrm{I}=1, \mathrm{~N}$
$\underset{\operatorname{READ}}{ }(5, *)(A(I, J), J=I, N)$
10 CONTINUE
WRITE $(6,2000)(A(1, J), J=1, N)$
WRITE $(6,2100)$ (A $(2, J), J=2, N)$
WRITE $(6,2200)(A(3, J), J=3, N)$
WRITE (6,2300) (A $(4, J), J=4, N)$
$\operatorname{READ}(5, *)(B(I), I=1, N)$
WRITE (6,1100)
DO $20 \mathrm{I}=1$
WRITE $(6,1200)$ B(I)
20 CONTINUE
WRITE $(6,1300)$
CALL ZBHEUC (A , LNA , N , COND, W1, IERR)
WRITE (6,1400)' 'ZBHEUC', IERR
WRITE (6,1400) 'ZBHEUC', IE
IF (IERR .GE. 3000) STOP
IF (IERR .GE. 3000)
COND = 1.ODO/COND
CALL ZBHELS (A, LNA,N,B, KERR)
WRITE (6,1400) 'ZBHELS', KERR

```
```

 WRITE (6,1500) COND
 WRITE (6,1600)
 DO 30 I = 1, N N I,B(I)
 30 CONTINUE
 CONTI
 '1000 FORMAT (', ',/',/,', *** ZBHEUC,ZBHELS ***',/,2X,'** INPUT **',&
 1,6X,'N}=,,I3,&
 /',6X','COEFFICIENT MATRIX (REAL, IMAGINARY)')
 1100 FORMAT (6X,'CONSTANT VECTOR (REAL,'IMAGINARY)')
 1200 FORMAT (6X', (',F5.1,',',F5.1,')'')
 1300 FORMAT (2X,',** 'OUTPUT '*'')
 1400 FORMAT (6X,'IERR (',A6,') =',I5)
 1500 FORMAT (6X,',CONDITION NUMBER =',D18.10)
 1600 FORMAT (6X','SOLUTION (REAL, IMAGINARY)')
 1700 FORMAT (10X,'X(',I2,') = (',D18.10,'',',D18.10,')')
 2000 FORMAT (6X, 16X 4(1X,',(','F5.1,',',',F5.1,1X,')'))
 2100 FORMAT (6X, 16X, 3(1X,'(','F5.1,',',',F5.1,1X,')',))
 2200 FORMAT (6X,2(16X),2(1X,'(',F5.1,' ,',F5.1,1X,')'))
 END
    ```
(d) Output results
*** ZBHEUC, ZBHELS ***
** INPUT **
\(\mathrm{N}=4\)
COEFFICIENT MATRIX ( REAL, IMAGINARY )

CONSTANT VECTOR ( REAL, IMAGINARY )
\((10.0,6.0)\)
\((11.0\),
\(2.0)\)
\(\left.\begin{array}{c}11.0, \\ \left(\begin{array}{c}2.0\end{array}\right) \\ 4.0, \\ 6.0\end{array}\right)\)
** \(\underset{\text { IERR }}{\text { OUTPUT }} \underset{\text { IEBHEUC }}{* *}=0\)
IERR \((\) ZBHEUC \()=0\)
IERR \((\) ZBHELS \()=\)
IERR (ZBHELS) \(=0\)
CONDITION NUMBER \(=0.2998721749 D+02\)
SOLUTION ( REAL, IMAGINARY)
\(\mathrm{X}(1)=(0.100000000 \mathrm{D}+01,0.9868649108 \mathrm{D}-16)\)
\(\mathrm{X}(2)=\binom{0.1000000000 \mathrm{D}+01}{,\mathrm{X}(3)} \quad 0.9367506770 \mathrm{D}-16\)
\(X(3)=(-0.1022363649 D-15,0.1000000000 D+01)\)
\(X(4)=(-0.0000000000 D+00,0.1000000000 D+01)\)

\subsection*{2.12.2 ZBHEUD, CBHEUD}

\section*{LDL* Decomposition of a Hermitian Matrix (No Pivoting)}
(1) Function

ZBHEUD or CBHEUD uses the modified Cholesky method to perform an LDL* decomposition of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL ZBHEUD (A, LNA, N, IERR)
Single precision:
CALL CBHEUD (A, LNA, N, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{Z} \\
\mathrm{C}\end{array}\right\}\) & & LNA, N & Input \\
\cline { 4 - 6 } & & & \begin{tabular}{l} 
Hermitian matrix \(A\) (two-dimensional array \\
type, upper triangular type)
\end{tabular} \\
\hline 2 & LNA & I & 1 & \begin{tabular}{l} 
Upper triangular matrix \(L^{*}\) when \(A\) is decom- \\
posed into \(A=L D L^{*}\) (See Note (a))
\end{tabular} \\
\hline 3 & N & I & 1 & Input & Adjustable dimension of array A \\
\hline 4 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & Contents of array A are not changed. \\
\hline 2100 & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the \(L U\) decompo- \\
sition of the coefficient matrix \(A\). The \\
result may not be obtained with a good \\
accuracy.
\end{tabular} & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
in the \(i\)-th processing step. \\
\(A\) is nearly singular.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portion of array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in array A. This subroutine uses only the upper triangular portion of array A. (See Fig. 2-12 in Section 2.12.1)

\subsection*{2.12.3 ZBHEUC, CBHEUC}

\section*{LDL* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting)}

\section*{(1) Function}

ZBHEUC or CBHEUC uses the modified Cholesky method to perform an LDL* decomposition and obtain the condition number of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type).
(2) Usage

Double precision:
CALL ZBHEUC (A, LNA, N, COND, W1, IERR)
Single precision:
CALL CBHEUC (A, LNA, N, COND, W1, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{D:Double precision real R :Single precision real} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{z} \\ \mathrm{C}\end{array}\right\}\) & LNA, N & Input & Hermitian matrix \(A\) (two-dimensional array type, upper triangular type) \\
\hline & & & & Output & Upper triangular matrix \(L^{*}\) when \(A\) is decomposed into \(A=L D L^{*}(\) See Note (a)) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & 1 & 1 & Input & Order of matrix \(A\) \\
\hline 4 & COND & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Output & Reciprocal of the condition number \\
\hline 5 & W1 & \(\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}\) & N & Work & Work area \\
\hline 6 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l} 
Contents of array A are not changed. \\
COND \(\leftarrow 1.0\) is performed.
\end{tabular} \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l} 
Processing continues. \\
\hline 2100 \\
was close to zero in the \(L U\) decompo- \\
sition of the coefficient matrix \(A\). The \\
result may not be obtained with a good \\
accuracy.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
A diagonal element became equal to 0.0 \\
in the \(i\)-th processing step. \\
\(A\) is nearly singular.
\end{tabular} & \begin{tabular}{l} 
Processing is aborted. \\
The condition number is not obtained.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) The upper triangular matrix \(L^{*}\) is stored in the upper triangular portion of array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they are not stored in array A. (See Fig. 2-12 in Section 2.12.1)
(b) Although the condition number is defined by \(\|A\| \cdot\left\|A^{-1}\right\|\), an approximate value is obtained by this subroutine.

\subsection*{2.12.4 ZBHELS, CBHELS \\ Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No Pivoting)}

\section*{(1) Function}

ZBHELS or CBHELS solves the simultaneous linear equations \(L D L^{*} \boldsymbol{x}=\boldsymbol{b}\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method as coefficient matrix.
(2) Usage

Double precision:
CALL ZBHELS (A, LNA, N, B, IERR)
Single precision:
CALL CBHELS (A, LNA, N, B, IERR)
(3) Arguments
D:Double precision real
R:Single precision real \begin{tabular}{c} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\
\text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{Z} \\
\mathrm{C}\end{array}\right\}\) & LNA, N & Input & \begin{tabular}{l} 
Coefficient matrix \(A\) after LDL* decomposition \\
\((\) Hermitian matrix, two-dimensional array type, \\
upper triangular type) (See Notes (a) and (b))
\end{tabular} \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & B & \(\left\{\begin{array}{l}\text { Z } \\
\mathrm{C}\end{array}\right\}\) & N & Input & Constant vector \(\boldsymbol{b}\) \\
\cline { 5 - 7 } & & Output & Solution \(\boldsymbol{x}\) \\
\hline 5 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)\) is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Normally, you should decompose matrix \(A\) by calling the 2.12.2 \(\left\{\begin{array}{l}\text { ZBHEUD } \\ \text { CBHEUD }\end{array}\right\}\) subroutine. However, if you also want to obtain the condition number, you should use 2.12.3 \(\left\{\begin{array}{l}\text { ZBHEUC } \\ \text { CBHEUC }\end{array}\right\}\). In addition, if you have already used 2.12.1 \(\left\{\begin{array}{l}\text { ZBHESL } \\ \text { CBHESL }\end{array}\right\}\) to solve simultaneous linear equations having the same coefficient matrix \(A\), you can use the LDL* decomposition obtained as part of its output. To solve multiple sets of simultaneous linear equations where only the constant vector \(\boldsymbol{b}\) differs, the solution is obtained more efficiently by directly using the subroutine 2.12.5 \(\left\{\begin{array}{l}\text { ZBHEMS } \\ \text { CBHEMS }\end{array}\right\}\) to perform the calculations.
(b) The upper triangular matrix \(L^{*}\) must be stored in array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they need not be stored in array A. (See Fig. \(2-12\) in Section 2.12.1)

\subsection*{2.12.5 ZBHEMS, CBHEMS}

\section*{Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*Decomposed Hermitian Matrix) (No Pivoting)}

\section*{(1) Function}

ZBHEMS or CBHEMS solves the simultaneous linear equations \(L D L^{*} \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}(i=1,2, \cdots, m\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method as coefficient matrix. That is, when the \(n \times m\) matrix \(B\) is defined by \(B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \cdots, \boldsymbol{b}_{\boldsymbol{m}}\right]\), the subroutine obtains \(\left[\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{m}}\right]=A^{-1} B\).
(2) Usage

Double precision:
CALL ZBHEMS (A, LNA, N, B, LNB, M, IERR)
Single precision:
CALL CBHEMS (A, LNA, N, B, LNB, M, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & \multicolumn{1}{|c|}{ Size } & \begin{tabular}{c} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{Z} \\
\mathrm{C}\end{array}\right\}\) & LNA, N & Input & \begin{tabular}{l} 
Coefficient matrix \(A\) after LDL* decomposition \\
(Hermitian matrix, two-dimensional array type, \\
upper triangular type) (See Notes (a) and (b))
\end{tabular} \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & B & \(\left\{\begin{array}{l}\mathrm{Z} \\
\mathrm{C}\end{array}\right\}\) & LNB, M & Input & Constant vector \(\boldsymbol{b}_{\boldsymbol{i}}(i=1,2, \cdots, m)\) \\
\cline { 4 - 6 } & & I & 1 & Output & Solution \(\boldsymbol{x}_{\boldsymbol{i}}(i=1,2, \cdots, m)\) \\
\hline 5 & LNB & I & 1 & Input & Adjustable dimension of array B \\
\hline 6 & M & I & 1 & Output & Error indicator \\
\hline 7 & IERR & & & \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA, LNB
(b) \(\mathrm{M}>0\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l}
\(\mathrm{B}(1, \mathrm{i}) \leftarrow \mathrm{B}(1, \mathrm{i}) / \mathrm{A}(1,1)(\mathrm{i}=1,2, \cdots, m)\) \\
is performed.
\end{tabular} \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 3010 & Restriction (b) was not satisfied. & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Normally, you should decompose matrix \(A\) by calling the 2.12.2 \(\left\{\begin{array}{l}\text { ZBHEUD } \\ \text { CBHEUD }\end{array}\right\}\) subroutine. However, if you also want to obtain the condition number, you should use 2.12.3 \(\left\{\begin{array}{l}\text { ZBHEUC } \\ \text { CBHEUC }\end{array}\right\}\). In addition, if you have already used 2.12.1 \(\left\{\begin{array}{l}\text { ZBHESL } \\ \text { CBHESL }\end{array}\right\}\) to solve simultaneous linear equations having the same coefficient matrix \(A\), you can use the LDL* decomposition obtained as part of its output.
(b) The upper triangular matrix \(L^{*}\) must be stored in array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they need not be stored in array A. (See Fig. 2-12 in Section 2.12.1)

\section*{(7) Example}
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{rrrr}
9 & 7+3 i & 2+5 i & 1+1 i \\
7-3 i & 10 & 3+2 i & 2+4 i \\
2-5 i & 3-2 i & 8 & 5+1 i \\
1-1 i & 2-4 i & 5-1 i & 6
\end{array}\right]\left[\begin{array}{rlll}
x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\
x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\
x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\
x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4}
\end{array}\right]=\left[\begin{array}{rrrr}
10+6 i & 8+18 i & 22 i & 2+10 i \\
11+2 i & 12+11 i & 8+23 i & 7+14 i \\
4+6 i & 15+5 i & 20+6 i & 9+7 i \\
4+6 i & 8+2 i & 16+2 i & 12+6 i
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(A\) which has been LDL* decomposed by the modified Cholesky method, LNA \(=11, \mathrm{~N}=4\), constant vectors \(\boldsymbol{b}_{\boldsymbol{i}}(i=1,2, \cdots, m), \mathrm{LNB}=11\) and \(\mathrm{M}=4\).
(c) Main program
```

! *** EXAMPEE OF ZBHEUD, ZBHEMS ***
EXAMPLE OF ZBHEUD, ZBHEMS
PARAMETER (LNA = 11)
COMPLEX(8) A, B
DIMENSION A(LNA,LNA),B(LNA,LNA)
!
READ (5,*) N
WRITE (6,1000) N, M
DO 10 I I = 1, N (A (I,J),J=I,N)
10 CONTINUE
DO 15 I = 1, N N (DCONJG(A(J,I)), J=1, I-1), (A(I,J), J=I, N)
15 CONTINUE
WRITE (6,1200)
DO 20 J = 1,M
READ (5,*) (B(I, J), I=1,N)
2 0 ~ C O N T I N U E ~
DO 25 I = 1, N
WRITE (6,1100) (B (I, J), J=1,M)
25 CONTINUE
WRITE (6,1300)
CALL ZBHEUD (A,LNA,N,IERR)
WRITE (6,1400) 'ZBHEUD',IERR
CALL ZBHEMS (A,LNA,N,B,LNA,M, JERR)
WRITE (6,1400) 'ZBHEMS',JERR
IF (IERR'.GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N N WRITE (6,1100) (B(I,J),J=1,M)
3 0 ~ C O N T I N U E ~
1000 FORMAT(1X,/,/,\&
1X,',*** ZBHEUD, ZBHEMS ***',/,/,\&
1X,5X,',N* =, INP,/,
/,1X,'5X,'COEFFICIENT MATRIX')

```
```

100 FORMAT(1X,6X,4('(',F8.4,',',F8.4,')'))
1100 FORMAT (1X,6X,4('(',F8.4,',',F8.4,')
300 FORMAT (/,1X,1X,'** OUTPUT **',/)
1400 FORMAT (1X,5X,'ERR (',A6,',')
END

```
(d) Output results
*** ZBHEUD, ZBHEMS ***
** INPUT **
\(N=4\)
\(M=4\)


\subsection*{2.12.6 ZBHEDI, CBHEDI}

\section*{Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)}
(1) Function

ZBHEDI or CBHEDI obtains the determinant and inverse matrix of the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method.
(2) Usage

Double precision:
CALL ZBHEDI (A, LNA, N, DET, ISW, W1, IERR)
Single precision:
CALL CBHEDI (A, LNA, N, DET, ISW, W1, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER }(4) \text { as for 32bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \mathrm{bit} \text { Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}z \\ \text { c }\end{array}\right\}\) & LNA, N & Input & Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) after LDL* decomposition (See Notes (a) and (b)) \\
\hline & & & & Output & Inverse matrix of matrix \(A\) (See Note (b)) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & DET & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 2 & Output & Determinant of matrix \(A\) (See Note (c)) \\
\hline 5 & ISW & I & 1 & Input & \begin{tabular}{l}
Processing switch \\
ISW \(>0\) :Obtain determinant. \\
ISW \(=0\) :Obtain determinant and inverse matrix. \\
ISW \(<0\) :Obtain inverse matrix.
\end{tabular} \\
\hline 6 & W1 & \(\left\{\begin{array}{l}\text { z } \\ \text { c }\end{array}\right\}\) & N & Work & Work area \\
\hline 7 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1)\) \\
& & \(\mathrm{DET}(2) \leftarrow 0.0\) \\
& & \(\mathrm{~A}(1,1) \leftarrow 1.0 / \mathrm{A}(1,1)\) are performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be LDL* decomposed before using this subroutine. Use any of the subroutines 2.12.2 \(\left\{\begin{array}{c}\text { ZBHEUD } \\ \text { CBHEUD }\end{array}\right\}, 2.12 .3\left\{\begin{array}{c}\text { ZBHEUC } \\ \text { CBHEUC }\end{array}\right\}, 2.12 .1\left\{\begin{array}{l}\text { ZBHESL } \\ \text { CBHESL }\end{array}\right\}\) to perform the decomposition.
(b) The upper triangular matrix \(L^{*}\) must be stored in array A. Since the diagonal matrix \(D\) and the lower triangular matrix \(L\) are calculated from \(L^{*}\), they need not be stored in array A. Since the inverse matrix \(A^{-1}\) is a Hermitian matrix, only its upper triangular portion is stored in A. (See Fig. 2-12 in Section 2.12.1)
(c) The determinant is given by the following expression:
\[
\operatorname{det}(A)=\operatorname{DET}(1) \times\left(10.0^{\mathrm{DET}(2)}\right)
\]

Scaling is performed at this time so that:
\[
1.0 \leq|\operatorname{DET}(1)|<10.0
\]
(d) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form \(A^{-1} \boldsymbol{b}\) or \(A^{-1} B\) in the numerical calculations, it must be calculated by solving the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) for the vector \(\boldsymbol{x}\) or by solving the simultaneous linear equations with multiple right-hand sides \(A X=B\) for the matrix \(X\), respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

\subsection*{2.12.7 ZBHELX, CBHELX}

\section*{Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)}
(1) Function

ZBHELX or CBHELX uses an iterative method to improve the solution of the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having the Hermitian matrix \(A\) (two-dimensional array type) (upper triangular type) as coefficient matrix.
(2) Usage

Double precision:
CALL ZBHELX (A, LNA, N, AL, B, X, ITOL, NIT, W1, IERR)
Single precision:
CALL CBHELX (A, LNA, N, AL, B, X, ITOL, NIT, W1, IERR)
(3) Arguments
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for 32bit Integer } \\
\operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\text { Z } \\ \text { C }\end{array}\right\}\) & LNA, N & Input & Coefficient matrix \(A\) (Hermitian matrix, twodimensional array type, upper triangular type) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A and AL \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & AL & \(\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}\) & LNA, N & Input & Coefficient matrix \(A\) after LDL* decomposition (See Note (a)) \\
\hline 5 & B & \(\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}\) & N & Input & Constant vector \(\boldsymbol{b}\) \\
\hline 6 & X & \{ Z & N & Input & Approximate solution \(\boldsymbol{x}\) \\
\hline & & C \(\}\) & & Output & Iteratively improved solution \(\boldsymbol{x}\) \\
\hline 7 & ITOL & I & 1 & Input & Number of digits to which solution is to be improved (See Note (b)) \\
\hline & & & & Output & Approximate number of digits to which solution was improved (See Note (c)) \\
\hline 8 & NIT & I & 1 & Input & Maximum number of iterations (See Note (d)) \\
\hline 9 & W1 & \(\left\{\begin{array}{l}\text { Z } \\ \text { C }\end{array}\right\}\) & N & Work & Work area \\
\hline 10 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq \mathrm{LNA}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & The solution is not improved. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 5000 & \begin{tabular}{l} 
The solution did not converge within the \\
maximum number of iterations.
\end{tabular} & \begin{tabular}{l} 
Processing is aborted after calculating the \\
ITOL output value.
\end{tabular} \\
\hline 6000 & The solution could not be improved. & \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) This subroutine improves the solution obtained by the 2.12.1 \(\left\{\begin{array}{l}\text { ZBHESL } \\ \text { CBHESL }\end{array}\right\}\) or 2.12.4 \(\left\{\begin{array}{l}\text { ZBHELS } \\ \text { CBHELS }\end{array}\right\}\) subroutine. Therefore, the coefficient matrix \(A\) after being decomposed by the \(2.12 .3\left\{\begin{array}{l}\text { ZBHEUC } \\ \text { CBHEUC }\end{array}\right\}\), 2.12.1 \(\left\{\begin{array}{l}\text { ZBHESL } \\ \text { CBHESL }\end{array}\right\}\) or 2.12.2 \(\left\{\begin{array}{l}\text { ZBHEUD } \\ \text { CBHEUD }\end{array}\right\}\) subroutine must be given as input.
(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.
\[
\mathrm{ITOL} \leq 0
\]
or
\[
\operatorname{ITOL} \geq-\operatorname{LOG} 10(2 \times \varepsilon) \quad(\varepsilon: \text { Unit for determining error })
\]
(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

\subsection*{2.13 REAL BAND MATRIX (BAND TYPE)}

\subsection*{2.13.1 DBBDSL, RBBDSL}

\section*{Simultaneous Linear Equations (Real Band Matrix)}
(1) Function

DBBDSL or RBBDSL uses the Gauss method to solve the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having a real band matrix (band type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBBDSL (A, LMA, N, MU, ML, B, IPVT, IERR)
Single precision:
CALL RBBDSL (A, LMA, N, MU, ML, B, IPVT, IERR)
(3) Arguments
\(\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \begin{array}{l}\text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array}\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER(4)} \text { as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{A} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
D \\
R
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LMA, N} & Input & Coefficient matrix \(A\) (real band matrix, band type) (See Appendix B) \\
\hline & & & & Output & Upper triangular matrix \(U\) and unit lower triangular matrix \(L\) when \(A\) is decomposed into \(A=L U\) (See Note (b)) \\
\hline 2 & LMA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & MU & I & 1 & Input & Upper band width of matrix \(A\) \\
\hline 5 & ML & I & 1 & Input & Lower band width of matrix \(A\) \\
\hline 6 & B & (D) & N & Input & Constant vector \(\boldsymbol{b}\) \\
\hline & & R \(\}\) & & Output & Solution \(\boldsymbol{x}\) \\
\hline 7 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of row exchanged with row i in the i-th processing step (See Note (b))
\end{tabular} \\
\hline 8 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{N}>0\)
(b) \(0 \leq \mathrm{MU} \leq \mathrm{N}-1\)
\(0 \leq \mathrm{ML} \leq \mathrm{N}-1\)
(c) \(\min (2 \times \mathrm{ML}+\mathrm{MU}+1, \mathrm{~N}+\mathrm{ML}) \leq \mathrm{LMA}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l} 
Contents of array A are not changed. \\
\(\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)\) is performed.
\end{tabular} \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
The pivot became 0.0 in the \(i\)-th process- \\
ing step of the LU decomposition of coef- \\
ficient matrix \(A\). \\
\(A\) is nearly singular.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call this subroutine only once and then call subroutine 2.13.4 \(\left\{\begin{array}{l}\text { DBBDLS } \\ \text { RBBDLS }\end{array}\right\}\) the required number of times varying only the contents of B. This enables you to eliminate unnecessary calculations by performing the LU decomposition of matrix \(A\) only once.
(b) This subroutine performs partial pivoting when obtaining the LU decomposition of coefficient matrix A. If the pivot row in the i -th step is row \(\mathrm{j}(\mathrm{i} \leq \mathrm{j})\), then j is stored in \(\operatorname{IPVT}(\mathrm{i})\). In addition, since columns ithrough N in rows i and j of matrix \(A\) actually are exchanged at this time, the storage area of array A increases only by size \(\mathrm{ML} \times \mathrm{N}\). Therefore, if \(\mathrm{N}<2 \mathrm{ML}+\mathrm{MU}+1\), less memory is required to use the subroutine for real matrices.


Remarks
a. Input time values of elements indicated by asterisks (*) are guaranteed.
b. \(\quad u_{1,4}, u_{2,5}\) is set when corresponding rows are actually exchanged by partial pivoting.
c. MU is the upper band width and ML is the lower band width.
d. LMA \(\geq 2 \times \mathrm{ML}+\mathrm{MU}+1\) and \(\mathrm{K} \geq \mathrm{N}\) must hold.

Figure 2-13 Storage Status of Array A before and after LU Decomposition
(7) Example
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{rrrr}
1 & -2 & 0 & 0 \\
-1 & 3 & 2 & 0 \\
1 & -1 & 4 & -2 \\
0 & 1 & -1 & 7
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-7 \\
1 \\
13
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(\mathrm{A}, \mathrm{LMA}=11, \mathrm{~N}=4, \mathrm{MU}=1, \mathrm{ML}=2\) and constant vector B .
(c) Main program
```

 PROGRAM BBBDSL
 EXAMPLE OF DBBDLC,DBBDLS ***
 IMPLICIT REAL (8) (A-H, \(0-Z\))
 PARAMETER (LMA \(=11\))
 DIMENSION A(LMA,LMA), B(LMA),W1(LMA),IPVT (LMA)
 CHARACTER*50 FMT (4)
 DATA FMT /', (7X,2(A11),2(G11.4))', \&
 ' (7X,2(A11), 2(G11.4))',\&
 '(7X, A11, 3(G11.4))',\&
$\begin{array}{ll}\text { '(7X, } & \text { 4(G11.4)) }, \dot{\&} \\ \text { '(7X, } & \text { 3(G11.4), A11) '/ }\end{array}$
READ $(5, *) N, M U, M L$
WRITE (6,1000) N, MU , ML
DO $10 \mathrm{I} \stackrel{1}{=} 1$, MU+ML+1
IJ = I - ML - 1
IF (IJ .LE. O) THEN
READ ($5, *$) (A (I, J) , J=ML-I $+2, N$
$\operatorname{WRITE}(6, \operatorname{FMT}(I))(, \quad, J=1, M L-I+1),(A(I, J), J=M L-I+2, N)$
ELSE
READ ($5, *$) ($\mathrm{A}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{~N}-\mathrm{IJ})$
WRITE ($6, \operatorname{FMT}(\mathrm{I})$) (Á(I, J) , J=1,N-IJ), (' , , J=N-IJ $+1, N$)
ENDIF
10 CONTINUE
READ $(5, *)$ ($\mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
$\operatorname{WRITE}(6,1200)(B(I), I=1, N)$
WRITE $(6,1300)$
CALL DBBDLC (A, LMA ,N,MU,ML,
WRITE $(6,1400)$ 'DBBDLC', IERR
COND $=1$ ODO COND
CALI DBBDIS (A LM
CALL DBBDLS (A , LMA , N, MU , ML , B , IPVT , KERR)
WRITE $(6,1400)$ ' DBBDLS', KERR
WRITE $(6,1500)$ COND
$\underset{\operatorname{STOP}}{\operatorname{WRITE}}(6,1600)(\mathrm{I}, \mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
STOP
1000 FORMAT (' ', /,/,\&
' *** DBBDLC, DBBDDLS ${ }^{* * *}, /, \&$

```

```

 6X,' UPPER BAND WIDTH =',I3,/,\&
 6X,',LOWER BAND WIDTH =,'I3, /,'\&
 6X,' COEFFICIENT MATRIX')
 200 FORMAT (6X,' 'CONSTANT VECTOR', \(/,(7 X, F 10.4)\))
    ```


```

 1600 FORMAT(6X,'SOLUTION',/,(8X,'X(',I2,') =',D18.10))
 END
    ```
(d) Output results
```

*** DBBDLC,DBBDLS ***
** INPUT **
N = 4
UPPER BAND WIDTH = 1
LOWER BAND WIDTH =
COEFFICIENT MATRIX

1.000	1.000
-1.000	-1.000

 2.000 2.000
 CONSTANT VECTOR
 3.0000
 7.0000
 1.0000
 ** OUTPUT.
 IERR (DBBDLC) = 0
    ```

\footnotetext{
IERR (DBBDLS) \(={ }^{=} \quad 0.1245000000 \mathrm{D}+03\)
CONDITINN NUMBER \(=0.12450\)
SOLUTION
\(X(1)=-0.2900000000 \mathrm{D}+02\)
\(\mathrm{X}(1)=-0.2900000000 \mathrm{D}+02\)
\(\mathrm{X}(2)=-0.1600000000 \mathrm{D}+02\)
\(\mathrm{X}(2)=-0.1600000000 \mathrm{D}+02\)
\(\mathrm{X}(3)=0.6000000000 \mathrm{D}+01\)
\(X(3)=0.6000000000 \mathrm{D}+01\)
\(X(4)=0.5000000000 \mathrm{D}+01\)
}

\subsection*{2.13.2 DBBDLU, RBBDLU}

\section*{LU Decomposition of a Real Band Matrix}

\section*{(1) Function}

DBBDLU or RBBDLU uses the Gauss method to perform an \(\operatorname{LU}\) decomposition of the real band matrix \(A\) (band type).
(2) Usage

Double precision:
CALL DBBDLU (A, LMA, N, MU, ML, IPVT, IERR)
Single precision:
CALL RBBDLU (A, LMA, N, MU, ML, IPVT, IERR)
(3) Arguments
\(\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \begin{array}{l}\text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array}\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER(4)} \text { as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{A} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
D \\
R
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LMA, N} & Input & Real band matrix \(A\) (band type) (See Appendix B) \\
\hline & & & & Output & Upper triangular matrix \(U\) and unit lower triangular matrix \(L\) when \(A\) is decomposed into \(A=L U\) (See Notes (a) and (b)) \\
\hline 2 & LMA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & MU & I & 1 & Input & Upper band width of matrix \(A\) \\
\hline 5 & ML & I & 1 & Input & Lower band width of matrix \(A\) \\
\hline 6 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of row exchanged with row i in the i-th processing step \\
(See Note (b))
\end{tabular} \\
\hline 7 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{N}>0\)
(b) \(0 \leq \mathrm{MU} \leq \mathrm{N}-1\)
\(0 \leq \mathrm{ML} \leq \mathrm{N}-1\)
(c) \(\min (2 \times \mathrm{ML}+\mathrm{MU}+1, \mathrm{~N}+\mathrm{ML}) \leq \mathrm{LMA}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & Contents of array A are not changed. \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
The pivot became 0.0 in the \(i\)-th process- \\
ing step. \\
\(A\) is nearly singular.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) The unit lower triangular matrix \(L\) and the upper triangular matrix \(U\) are stored in band format in array A. However, since the diagonal elements of \(L\) always are 1.0, they are not stored in array A. (See Section 2.13.1 Figure 2-13.)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by subsequent subroutine. If the pivot row in the i -th step is row \(\mathrm{j}(\mathrm{i} \leq \mathrm{j})\), then j is stored in IPVT(i). In addition, since columns i through N in rows i and j of matrix \(A\) actually are exchanged at this time, the storage area within array A increases only by size \(M L \times N\). Therefore, if \(N<2 M L+M U+1\), less memory is required to use the subroutine for real matrices. (See Section 2.13.1 Figure 2-13.)

\subsection*{2.13.3 DBBDLC, RBBDLC}

\section*{LU Decomposition and Condition Number of a Real Band Matrix}

\section*{(1) Function}

DBBDLC or RBBDLC uses the Gauss method to perform an LU decomposition and obtain the condition number of the real band matrix \(A\) (band type).
(2) Usage

Double precision:
CALL DBBDLC (A, LMA, N, MU, ML, IPVT, COND, W1, IERR)
Single precision:
CALL RBBDLC (A, LMA, N, MU, ML, IPVT, COND, W1, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{A} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} \\
\mathrm{R}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LMA, N} & Input & Real band matrix \(A\) (band type) (See Appendix B ) \\
\hline & & & & Output & Upper triangular matrix \(U\) and unit lower triangular matrix \(L\) when \(A\) is decomposed into \(A=L U\) (See Notes (a) and (b)) \\
\hline 2 & LMA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & MU & I & 1 & Input & Upper band width of matrix \(A\) \\
\hline 5 & ML & I & 1 & Input & Lower band width of matrix \(A\) \\
\hline 6 & IPVT & I & N & Output & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of row exchanged with row i in the i-th processing step \\
(See Note (b))
\end{tabular} \\
\hline 7 & COND & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & 1 & Output & Reciprocal of the condition number \\
\hline 8 & W1 & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & N & Work & Work area \\
\hline 9 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(\mathrm{N}>0\)
(b) \(0 \leq M U \leq N-1\)
\(0 \leq \mathrm{ML} \leq \mathrm{N}-1\)
(c) \(\min (2 \times \mathrm{ML}+\mathrm{MU}+1, \mathrm{~N}+\mathrm{ML}) \leq \mathrm{LMA}\)

\section*{(5) Error indicator}
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & Contents of array A are not changed. \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
The pivot became 0.0 in the \(i\)-th process- \\
ing step. \\
\(A\) is nearly singular.
\end{tabular} & \begin{tabular}{l} 
Processing is aborted. \\
The condition number is not obtained.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) The unit lower triangular matrix \(L\) and the upper triangular matrix \(U\) are stored in band format in array A. However, since the diagonal elements of \(L\) always are 1.0, they are not stored in array A. (See 2.13.1 Figure 2-13.)
(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by subsequent subroutine. If the pivot row in the i -th step is row \(\mathrm{j}(\mathrm{i} \leq \mathrm{j})\), then j is stored in IPVT(i). In addition, since columns i through N in rows i and j of matrix \(A\) actually are exchanged at this time, the storage area within array A increases only by size \(M L \times N\). Therefore, if \(N<2 M L+M U+1\), less memory is required to use the subroutine for real matrices. (See 2.13.1 Figure 2-13.)
(c) Although the condition number is defined by \(\|A\| \cdot\left\|A^{-1}\right\|\), an approximate value is obtained by this subroutine.

\subsection*{2.13.4 DBBDLS, RBBDLS \\ Simultaneous Linear Equations (LU-Decomposed Real Band Matrix)}
(1) Function

DBBDLS or RBBDLS solves the simultaneous linear equations \(L U \boldsymbol{x}=\boldsymbol{b}\) having the real band matrix \(A\) (band type) which has been LU decomposed by the Gauss method as coefficient matrix.
(2) Usage

Double precision:
CALL DBBDLS (A, LMA, N, MU, ML, B, IPVT, IERR)
Single precision:
CALL RBBDLS (A, LMA, N, MU, ML, B, IPVT, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & LMA, N & Input & Coefficient matrix \(A\) after LU decomposition (real band matrix, band type) (See Appendix B) (See Notes (a) and (b)) \\
\hline 2 & LMA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & MU & I & 1 & Input & Upper band width of matrix \(A\) \\
\hline 5 & ML & I & 1 & Input & Lower band width of matrix \(A\) \\
\hline \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{B} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} \\
\mathrm{R}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{N} & Input & Constant vector \(\boldsymbol{b}\) \\
\hline & & & & Output & Solution \(\boldsymbol{x}\) \\
\hline 7 & IPVT & I & N & Input & \begin{tabular}{l}
Pivoting information \\
IPVT(i): Number of row exchanged with row i \\
in the i-th processing step \\
(See Note (c))
\end{tabular} \\
\hline 8 & IERR & 1 & 1 & Output & Error indicator \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(\mathrm{N}>0\)
(b) \(0 \leq \mathrm{MU} \leq \mathrm{N}-1\)
\(0 \leq \mathrm{ML} \leq \mathrm{N}-1\)
(c) \(\min (2 \times \mathrm{ML}+\mathrm{MU}+1, \mathrm{~N}+\mathrm{ML}) \leq \mathrm{LMA}\)

\section*{(5) Error indicator}
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)\) is performed. \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l}
\(L\) has a 0.0 diagonal element. \\
\(i\) is the number of the first 0.0 diagonal \\
element.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be LU decomposed before using this subroutine. Normally you should decompose matrix \(A\) by calling the 2.13.2 \(\left\{\begin{array}{l}\operatorname{DBBDLU} \\ \operatorname{RBBDLU}\end{array}\right\}\) subroutine. However, if you also want to obtain the condition number, you should use 2.13.3 \(\left\{\begin{array}{l}\mathrm{DBBDLC} \\ \mathrm{RBBDLC}\end{array}\right\}\). In addition, if you have already used 2.13.1 \(\left\{\begin{array}{l}\text { DBBDSL } \\ \text { RBBDSL }\end{array}\right\}\) to solve simultaneous linear equations having the same coefficient matrix \(A\), you can use the LU decomposition obtained as part of its output.
(b) The unit lower triangular matrix \(L\) and the upper triangular matrix \(U\) must be stored in band format in array A. However, since the diagonal elements of \(L\) always are 1.0 , they should not be stored in array A. (See 2.13.1 Figure 2-13.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This information is given by the 2.13.2 \(\left\{\begin{array}{l}\mathrm{DBBDLU} \\ \text { RBBDLU }\end{array}\right\}, 2.13 .3\left\{\begin{array}{l}\mathrm{DBBDLC} \\ \mathrm{RBBDLC}\end{array}\right\}, 2.13 .1\left\{\begin{array}{l}\mathrm{DBBDSL} \\ \text { RBBDSL}\end{array}\right\}\) subroutines which perform LU decomposition of matrix \(A\).

\subsection*{2.13.5 DBBDDI, RBBDDI}

\section*{Determinant of a Real Band Matrix}
(1) Function

DBBDDI or RBBDDI obtains the determinant of the real band matrix \(A\) (band type) which has been LU decomposed by the Gauss method.
(2) Usage

Double precision:
CALL DBBDDI (A, LMA, N, MU, ML, IPVT, DET, IERR)
Single precision:
CALL RBBDDI (A, LMA, N, MU, ML, IPVT, DET, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & LMA, N & Input & \begin{tabular}{l} 
Real band matrix \(A\) (band type) (See Appendix \\
B) after LU decomposition (See Notes (a) and \\
\((\mathrm{b}))\)
\end{tabular} \\
\hline 2 & LMA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & MU & I & 1 & Input & Upper band width of matrix \(A\) \\
\hline 5 & ML & I & 1 & Input & Lower band width of matrix \(A\) \\
\hline 6 & IPVT & I & N & Input & \begin{tabular}{l} 
Pivoting information \\
IPVT(i): Number of row exchanged with row i \\
in the i-th processing step \\
(See Note (c))
\end{tabular} \\
\hline 7 & DET & \(\left\{\begin{array}{l}\text { D } \\
\text { R }\end{array}\right\}\) & 2 & Output & \begin{tabular}{l} 
Determinant of matrix \(A\) (See Note (d))
\end{tabular} \\
\hline 8 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{N}>0\)
(b) \(0 \leq M U \leq N-1\)
\(0 \leq \mathrm{ML} \leq \mathrm{N}-1\)
(c) \(\min (2 \times \mathrm{ML}+\mathrm{MU}+1, \mathrm{~N}+\mathrm{ML}) \leq \mathrm{LMA}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l}
\(\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1)\) \\
\(\mathrm{DET}(2) \leftarrow 0.0\) (See Note (d))
\end{tabular} \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be LU decomposed before using this subroutine. Use any of the 2.13.2 \(\left\{\begin{array}{l}\text { DBBDLU } \\ \text { RBBDLU }\end{array}\right\}, 2.13 .3\left\{\begin{array}{l}\text { DBBDLC } \\ \text { RBBDLC }\end{array}\right\}, 2.13 .1\left\{\begin{array}{l}\text { DBBDSL } \\ \text { RBBDSL }\end{array}\right\}\) subroutines to perform the decomposition.
(b) The unit lower triangular matrix \(L\) and the upper triangular matrix \(U\) must be stored in band format in array A. However, since the diagonal elements of \(L\) always are 1.0, they need not be stored in array A. (See 2.13.1 Figure 2-13.)
(c) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This information is given by the subroutine that performs the LU decomposition of matrix \(A\).
(d) The determinant is given by the following expression:
\[
\operatorname{det}(A)=\operatorname{DET}(1) \times\left(10.0^{\mathrm{DET}(2)}\right)
\]

Scaling is performed at this time so that:
\[
1.0 \leq|\operatorname{DET}(1)|<10.0
\]
(e) Since the inverse matrix of a band matrix generally is a dense matrix, it is not obtained in this subroutine.

\subsection*{2.13.6 DBBDLX, RBBDLX}

\section*{Improving the Solution of Simultaneous Linear Equations (Real Band Matrix)}

\section*{(1) Function}

DBBDLX or RBBDLX uses an iterative method to improve the solution of the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having the real band matrix \(A\) (band type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBBDLX (A, LMA, N, MU, ML, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)
Single precision:
CALL RBBDLX (A, LMA, N, MU, ML, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular}} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & LMA, N & Input & Coefficient matrix \(A\) (real band matrix, band type) (See Appendix B) \\
\hline 2 & LMA & I & 1 & Input & Adjustable dimension of arrays A and ALU \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & MU & I & 1 & Input & Upper band width of matrix \(A\) \\
\hline 5 & ML & I & 1 & Input & Lower band width of matrix \(A\) \\
\hline 6 & ALU & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & LMA, N & Input & Coefficient matrix \(A\) after LU decomposition (See Note (a)) \\
\hline 7 & B & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & N & Input & Constant vector \(\boldsymbol{b}\) \\
\hline 8 & X & (D) & N & Input & Approximate solution \(\boldsymbol{x}\) \\
\hline & & R \(\}\) & & Output & Iteratively improved solution \(\boldsymbol{x}\) \\
\hline 9 & ITOL & I & 1 & Input & Number of digits to which solution is to be improved (See Note (b)) \\
\hline & & & & Output & Approximate number of digits to which solution was improved (See Note (c)) \\
\hline 10 & NIT & I & 1 & Input & Maximum number of iterations (See Note (d)) \\
\hline 11 & IPVT & I & N & Input & Pivoting information (See Note (a)) \\
\hline 12 & W1 & \(\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}\) & N & Work & Work area \\
\hline 13 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(\mathrm{N}>0\)
(b) \(0 \leq \mathrm{MU} \leq \mathrm{N}-1\)
\(0 \leq \mathrm{ML} \leq \mathrm{N}-1\)
(c) \(\min (2 \times \mathrm{ML}+\mathrm{MU}+1, \mathrm{~N}+\mathrm{ML}) \leq \mathrm{LMA}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & The solution is not improved. \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
The \(i\)-th diagonal element of ALU was \\
equal to 0.0.
\end{tabular} & \\
\hline 5000 & \begin{tabular}{l} 
The solution did not converge within the \\
maximum number of iterations.
\end{tabular} & \multirow{2}{*}{\begin{tabular}{l} 
Processing is aborted after calculating the \\
ITOL output value.
\end{tabular}} \\
\hline 6000 & The solution could not be improved. & \\
\hline
\end{tabular}
(6) Notes
(a) This subroutine improves the solution obtained by the 2.13.1 \(\left\{\begin{array}{l}\text { DBBDSL } \\ \text { RBBDSL }\end{array}\right\}\) or 2.13.4 \(\left\{\begin{array}{l}\text { DBBDLS } \\ \text { RBBDLS }\end{array}\right\}\) subroutine. Therefore, the coefficient matrix \(A\) after it has been decomposed by the 2.13.1 \(\left\{\begin{array}{l}\text { DBBDSL } \\ \text { RBBDSL }\end{array}\right\}\), 2.13.2 \(\left\{\begin{array}{l}\mathrm{DBBDLU} \\ \mathrm{RBBDLU}\end{array}\right\}\) or 2.13.3 \(\left\{\begin{array}{l}\mathrm{DBBDLC} \\ \mathrm{RBBDLC}\end{array}\right\}\) subroutine and the pivoting information at that time must be given as input.
(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.
\[
\mathrm{ITOL} \leq 0
\]
or
\[
\text { ITOL } \geq-\operatorname{LOG} 10(2 \times \varepsilon) \quad(\varepsilon: \text { Unit for determining error })
\]
(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.
(7) Example
(a) Problem

Solve the following simultaneous linear equations and improve the solution.
\[
\left[\begin{array}{rrrrrrrrrr}
10 & 9 & 8 & 7 & 6 & 0 & 0 & 0 & 0 & 0 \\
9 & 9 & 8 & 7 & 6 & 5 & 0 & 0 & 0 & 0 \\
8 & 8 & 8 & 7 & 6 & 5 & 4 & 0 & 0 & 0 \\
7 & 7 & 7 & 7 & 6 & 5 & 4 & 3 & 0 & 0 \\
6 & 6 & 6 & 6 & 6 & 5 & 4 & 3 & 2 & 0 \\
0 & 5 & 5 & 5 & 5 & 5 & 4 & 3 & 2 & 1 \\
0 & 0 & 4 & 4 & 4 & 4 & 4 & 3 & 2 & 1 \\
0 & 0 & 0 & 3 & 3 & 3 & 3 & 3 & 2 & 1 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4} \\
X_{5} \\
X_{6} \\
X_{7} \\
X_{8} \\
X_{9} \\
X_{10}
\end{array}\right]=\left[\begin{array}{r}
8 \\
7 \\
2 \\
2 \\
4 \\
-2 \\
-2 \\
2 \\
2 \\
0
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(\mathrm{A}, \mathrm{LNA}=21, \mathrm{~N}=10, \mathrm{MU}=4, \mathrm{ML}=4\) and constant vector B .
(c) Main program
```

PROGRAM BBBDLX
! *** EXAMPLE OF DBBDLX ***
EXAMPLE OF DBBDLX ***
IMPLICIT REAL (8) $(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z})$
PARAMETER (INA=21
DIMENSION A(LNA,LN), ALU(LNA,LN), B(LN), X(LN), W1(LN)
$\begin{array}{ll}\text { DIMENSION } & \text { A(LNA, LN) } \\ \text { INTEGER } & \text { IPVT(LN) }\end{array}$
READ (5, *) N,MU,ML
WRITE (6,1000) N , MU , ML
$\operatorname{READ}(5, *)((A(I, J), J=1, N), I=1, M U+M L+1)$
$\operatorname{READ}(5, *)(B(I), I=1, N)$
WRITE (6,1100$)$
DO $10 \mathrm{I}=1, \mathrm{MU}+\mathrm{ML}+1$
WRITE $(6,1200)(A(I, J), J=1, N)$
10 CONTINUE
$\operatorname{WRITE}(6,1300)$
$\mathrm{DO} 20 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{WRITE}(6,1400) \quad B(I)$
20 CONTINUE
DO $40 \mathrm{~J}=1, \mathrm{~N}$
DO 30 I $=1, M U+M L+1$
$\operatorname{ALU}(I, J) \stackrel{A}{=}(I, J)$
30 CONTINUE
40 CONTINUE
CALL DBBDSL (ALU, LNA , N, MU , ML , X , IPVT , IERR)
CALL DBBDSL(ALU, LNA,N
IF (IERR.GE.3000) STOP
IF (IERR. GE. 3000
WRITE $(6,1500)$
$\operatorname{WRITE}(6,1500)$
$\operatorname{DO~} 50 \mathrm{I}=1, \mathrm{~N}$
WRITE $(6,1600) \mathrm{I}, \mathrm{X}(\mathrm{I})$
50
CONTINUE
ITOL $=0$
CALL DBBDLX (A , LNA , N , MU , ML , ALU , B , X , ITOL , 0 , IPVT , W1 , IERR)
WRITE $(6,1700)$ IERR
WRITE $(6,1800)$
DO $60 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{WRITE}(6,1600) \mathrm{I}, \mathrm{X}(\mathrm{I})$
60 CONTINUE
STOP

```

```

1100 FORMAT (6X,' 'COEFFICIENT MATRIX A')
1200 FORMAT (8X, 10F7.1)
1300 FORMAT (6X,'CONSTANT VECTOR')
1400 FORMAT (8X, F7.1)
1500 FORMAT(6X,'ORIGINAL SOLUTION')
1600 FORMAT (8X,' $X(', I 2, ')=,, 1 P D 18.10)$

```

```

1800 FORMAT(6X,' IMPROVED SOLUTION')
END

```
(d) Output results
```

*** DBBDLX
** INPUT **
N N= 10

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { ML }=4 \stackrel{4}{=} \\
& \text { COEFFICIENT }
\end{aligned}
\] & MATRIX & A & & & & & & & \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 6.0 & 5.0 & 4.0 & 3.0 & 2.0 & 1.0 \\
\hline & 0.0 & 0.0 & 0.0 & 7.0 & 6.0 & 5.0 & 4.0 & 3.0 & 2.0 & 1.0 \\
\hline & 0.0 & 0.0 & 8.0 & 7.0 & 6.0 & 5.0 & 4.0 & 3.0 & 2.0 & 1.0 \\
\hline & 0.0 & 9.0 & 8.0 & 7.0 & 6.0 & 5.0 & 4.0 & 3.0 & 2.0 & 1.0 \\
\hline & 10.0 & 9.0 & 8.0 & 7.0 & 6.0 & 5.0 & 4.0 & 3.0 & 2.0 & 1.0 \\
\hline & 9.0 & 8.0 & 7.0 & 6.0 & 5.0 & 4.0 & 3.0 & 2.0 & 1.0 & 0.0 \\
\hline & 8.0 & 7.0 & 6.0 & 5.0 & 4.0 & 3.0 & 2.0 & 1.0 & 0.0 & 0.0 \\
\hline & 7.0 & 6.0 & 5.0 & 4.0 & 3.0 & 2.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline & 6.0 & 5.0 & 4.0 & 3.0 & 2.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \multicolumn{11}{|c|}{CONSTANT VECTOR} \\
\hline \multicolumn{11}{|c|}{8.0} \\
\hline \multicolumn{11}{|c|}{7.0} \\
\hline \multicolumn{11}{|c|}{2.0} \\
\hline \multicolumn{11}{|c|}{2.0} \\
\hline \multicolumn{11}{|c|}{4.0} \\
\hline \multicolumn{11}{|c|}{-2.0} \\
\hline \multicolumn{11}{|c|}{-2.0} \\
\hline \multicolumn{11}{|c|}{2.0} \\
\hline \multicolumn{11}{|c|}{2.0} \\
\hline \multicolumn{11}{|c|}{0.0} \\
\hline \multicolumn{11}{|c|}{ORIGINAL SOLUTION} \\
\hline \multicolumn{11}{|c|}{\(X(1)=1.0000000000 \mathrm{D}+00\)} \\
\hline \multicolumn{11}{|c|}{\(X(2)=0.0000000000 \mathrm{D}+00\)} \\
\hline \multicolumn{11}{|c|}{\(X(3)=-1.0000000000 \mathrm{D}+00\)} \\
\hline \multicolumn{11}{|c|}{\(X(4)=0.0000000000 \mathrm{D}+00\)} \\
\hline \multicolumn{11}{|c|}{\(X(5)=1.0000000000 \mathrm{D}+00\)} \\
\hline \multicolumn{11}{|c|}{\(\mathrm{X}(6)=-3.7848512203 \mathrm{D}-17\)} \\
\hline \multicolumn{11}{|c|}{\(X(7)=-1.0000000000 \mathrm{D}+00\)} \\
\hline \multicolumn{11}{|l|}{} \\
\hline \multicolumn{11}{|c|}{\(X(8)=-6.2883389974 D-16\)
\(X(9)=1.000000000 \mathrm{D}+00\)} \\
\hline & \(\mathrm{X}(10)=\) & 4.88053 & 302754 & & & & & & & \\
\hline \multicolumn{11}{|l|}{** OUTPUT **} \\
\hline \multicolumn{11}{|c|}{IERR = 0} \\
\hline \multicolumn{11}{|c|}{IMPROVED SOLUTION} \\
\hline \multicolumn{11}{|c|}{\(X(1)=1.0000000000 \mathrm{D}+00\)} \\
\hline \multicolumn{11}{|c|}{\(\mathrm{X}(2)=7.8886090522 \mathrm{D}-32\)} \\
\hline \multicolumn{11}{|c|}{\(\mathrm{X}(3)=-1.0000000000 \mathrm{D}+00\)} \\
\hline \multicolumn{11}{|c|}{\(\mathrm{X}(4)=-6.5738408768 \mathrm{D}-32\)} \\
\hline \multicolumn{11}{|c|}{\(X(5)=1.0000000000 \mathrm{D}+00\)} \\
\hline \multicolumn{11}{|c|}{\(\mathrm{X}(6)=-4.9303806576 \mathrm{D}-32\)} \\
\hline \multicolumn{11}{|c|}{\(\mathrm{X}(7)=-1.0000000000 \mathrm{D}+00\)} \\
\hline \multicolumn{11}{|c|}{\(\mathrm{X}(\mathrm{8})=9.8607613153 \mathrm{D}-32\)} \\
\hline \multicolumn{11}{|c|}{\(X(9)=1.0000000000 \mathrm{D}+00\)} \\
\hline & \(X(10)=\) & 2.95822 & 83946 & & & & & & & \\
\hline
\end{tabular}

\subsection*{2.14 POSITIVE SYMMETRIC BAND MATRIX (SYMMETRIC BAND TYPE)}

\subsection*{2.14.1 DBBPSL, RBBPSL}

\section*{Simultaneous Linear Equations (Positive Symmetric Band Matrix)}
(1) Function

DBBPSL or RBBPSL uses the Cholesky method to solve the simultaneous linear equations \(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\) having the positive symmetric band matrix \(A\) (symmetric band type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBBPSL (A, LMA, N, MB, B, IERR)
Single precision:
CALL RBBPSL (A, LMA, N, MB, B, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}D \\ R\end{array}\right\}\) & LMA, N & Input & Positive symmetric band matrix \(A\) (symmetric band type) (See Appendix B) \\
\hline & & & & Output & Upper triangular matrix \(L^{T}\) when \(A\) is decomposed into \(A=L L^{T}\) (See Note (b)) \\
\hline 2 & LMA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & MB & I & 1 & Input & Band width of matrix \(A\) \\
\hline 5 & B & (D & N & Input & Constant vector \(\boldsymbol{b}\) \\
\hline & & R \(\}\) & & Output & Solution \(\boldsymbol{x}\) \\
\hline 6 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{N}>0\)
(b) \(0 \leq \mathrm{MB} \leq \mathrm{N}-1\)
(c) \(\mathrm{MB}+1 \leq \mathrm{LMA}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l}
\(\mathrm{A}(1,1) \leftarrow \sqrt{\mathrm{A}(1,1)}\) and \\
\(\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)\) are performed.
\end{tabular} \\
\hline 1000 & N was equal to 1. & Processing is aborted. \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & \begin{tabular}{l} 
A diagonal element became less than or \\
equal to 0.0 in the \(i\)-th processing step of \\
the LLT decomposition of coefficient ma- \\
trix \(A\). \\
\(A\) is nearly singular.
\end{tabular} \\
\hline \(4000+i\) & & \\
\hline
\end{tabular}
(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call this subroutine only once and then call subroutine 2.14.4 \(\left\{\begin{array}{l}\text { DBBPLS } \\ \operatorname{RBBPLS}\end{array}\right\}\) the required number of times varying only the contents of \(B\). This enables you to eliminate unnecessary calculations by performing the \(L^{T}\) decomposition of matrix \(A\) only once.
(b) Only the upper triangular matrix \(L^{T}\) is stored in array A. Since the lower triangular matrix \(L\) is calculated from \(L^{T}\), it is not stored in array A.
\[

\]

Storage status within array A(LMA, K)


\section*{Remarks}
a. Input time values of elements indicated by asterisks (*) are guaranteed.
b. MB is the band width.
c. \(\quad\) LMA \(\geq M B+1\) and \(K \geq N\) must hold.

Figure 2-14 Storage Status of Matrix \(L^{T}\)

\section*{(7) Example}
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{rrrr}
10 & -2 & 1 & 0 \\
-2 & 9 & -1 & 2 \\
1 & -1 & 8 & -3 \\
0 & 2 & -3 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
72 \\
9 \\
62 \\
-4
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(\mathrm{A}, \mathrm{LMA}=11, \mathrm{~N}=4, \mathrm{MB}=2\) and constant vector B .
(c) Main program
```

PROGRAM BBBPS
EXAMPLE OF DBBPUC,DBBPLS ***
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (LMA = 11)
DIMENSION A(LMA, LMA), B (LMA),W1 (LMA)
CHARACTER*50 FMT(3)
DATA FMT /'(7X,2(A11),2(G11.4))', \&
, (7X, A11, 3(G11.4)),',\&
, (7X, A11, 3(G11.4)), 4(G11.4)),
READ (5,*) N,MB
WRITE $(6,1000) \mathrm{N}, \mathrm{MB}$
DO $10 \mathrm{I}=1, \mathrm{MB}+1$
READ ($5, *$) ($\mathrm{A}(\mathrm{I}, \mathrm{J}), \mathrm{J}=\mathrm{MB}-\mathrm{I}+2, \mathrm{~N})$
WRITE ($6, \operatorname{FMT}(I)$) (' $, J=1, M B-I+1),(A(I, J), J=M B-I+2, N)$
10 CONTINUE
READ ($5, *$) ($\mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N}$)
WRITE (6,1200) (B(I), $\mathrm{I}=1, \mathrm{~N}$)
WRITE $(6,1300)$
CALL DBBPUC (A MA N MB COND, W1, IERR)
WRITE $(6,1400)$ ' ${ }^{\prime}$ DBBPUC' ', IERR'
WRITE (IERR . GE. 3000) STOP
COND $=1$. ODO $/$ COND
COND $=1.0 \mathrm{DO} / \mathrm{COND}$
CALL DBBPLS (A, LMA , N, MB , B, KERR)
WRITE $(6,1400)$ ' DBBPLS', KERR
WRITE $(6,1500)$ COND

```
\(\underset{\operatorname{WRITE}}{ }(6,1600)(\mathrm{I}, \mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})\)
STOP
1000 FORMAT(, ', /,/,\&
*** DBBPUC,DBBPLS ***',/,\&
2X, '** INPUT **',/,\&
6X,' \(N=\), , I3, / , \&

1200 FORMAT (6X,','CONSTANT VECTOR', \(/\), ( \(7 \mathrm{X}, \mathrm{F} 10.4\) ))
1300 FORMAT (2X', '** OUTPUT **')
1400 FORMAT (6X,' 'IERR (', A6, ') \(=\) ', I5)
1500 FORMAT (6X,' 'CONDITION NUMBER' =', D18.10)
1600 FORMAT (6X,', SOLUTION', /, (8X,'X(', I2,' \()=\) ', D18.10))
(d) Output results
*** DBBPUC,DBBPLS ***
** INPUT **
\(\mathrm{N}=4\)
BAND WIDTH \(=2\)
COEFFICIENT MATRIX
\begin{tabular}{rrrr} 
& -2.000 & 1.000 & 2.000 \\
10.00 & -1.000 & -3.000 \\
CONSTANT VECTOR & 8.000 & 7.000
\end{tabular}
72.0000
72.0000
62.0000
** OUTPUT \({ }^{-4} .000\)
IERR (DBBPUC) \(=0\)
CONDITION NUMBER \(=0.3234671497 \mathrm{D}+01\)
SOLUTION
\(X(1)=0.7000000000 \mathrm{D}+01\)
\(X(2)=0.3000000000 \mathrm{D}+01\)
\(X(3)=0.8000000000 \mathrm{D}+01\)
\(\mathrm{X}(4)=0.2000000000 \mathrm{D}+01\)

\subsection*{2.14.2 DBBPUU, RBBPUU}

\section*{\(L^{\mathrm{T}}\) Decomposition of a Positive Symmetric Band Matrix}
(1) Function

DBBPUU or RBBPUU uses the Cholesky method to perform an \(L L^{T}\) decomposition of the positive symmetric band matrix \(A\) (symmetric band type).
(2) Usage

Double precision:
CALL DBBPUU (A, LMA, N, MB, IERR)
Single precision:
CALL RBBPUU (A, LMA, N, MB, IERR)
(3) Arguments
\(\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & \multicolumn{1}{|c|}{ Size } & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & LMA, N & Input & \begin{tabular}{l} 
Positive symmetric band matrix \(A\) \\
(symmetric band type) (See Appendix B)
\end{tabular} \\
\cline { 5 - 6 } & & & Output & \begin{tabular}{l} 
Upper triangular matrix \(L^{T}\) when \(A\) is decom- \\
posed into \(A=L L^{T}\) (See Note (a))
\end{tabular} \\
\hline 2 & LMA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & MB & I & 1 & Input & Band width of matrix \(A\) \\
\hline 5 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}

\section*{(4) Restrictions}
(a) \(\mathrm{N}>0\)
(b) \(0 \leq \mathrm{MB} \leq \mathrm{N}-1\)
(c) \(\mathrm{MB}+1 \leq\) LMA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l}
\(\mathrm{A}(1,1) \leftarrow \sqrt{\mathrm{A}(1,1)}\) \\
is performed.
\end{tabular} \\
\hline 1000 & N was equal to 1. & Processing is aborted. \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & \begin{tabular}{l} 
A diagonal element became less than or \\
equal to 0.0 in the \(i\)-th processing step.
\end{tabular} \\
\hline \(4000+i\) & \begin{tabular}{l} 
equ
\end{tabular} \\
\hline
\end{tabular}
(6) Notes
(a) The upper triangular matrix \(L^{T}\) is stored in array A. Since the lower triangular matrix \(L\) is calculated from \(L^{T}\), it is not stored in array A. (See 2.14.1 Figure 2-14.)

\subsection*{2.14.3 DBBPUC, RBBPUC}

\section*{\(L^{T}\) Decomposition and Condition Number of a Positive Symmetric Band Matrix}

\section*{(1) Function}

DBBPUC or RBBPUC uses the Cholesky method to perform an LL \({ }^{T}\) decomposition and obtain the condition number of the positive symmetric band matrix \(A\) (symmetric band type).
(2) Usage

Double precision:
CALL DBBPUC (A, LMA, N, MB, COND, W1, IERR)
Single precision:
CALL RBBPUC (A, LMA, N, MB, COND, W1, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{D:Double precision real R:Single precision real} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & Input/ Output & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}\) & LMA, N & Input & Positive symmetric band matrix \(A\) (symmetric band type) (See Appendix B) \\
\hline & & & & Output & Upper triangular matrix \(L^{T}\) when \(A\) is decomposed into \(A=L L^{T}\) (See Note (a)) \\
\hline 2 & LMA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & MB & I & 1 & Input & Band width of matrix \(A\) \\
\hline 5 & COND & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & 1 & Output & Reciprocal of the condition number \\
\hline 6 & W1 & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & N & Work & Work area \\
\hline 7 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{N}>0\)
(b) \(0 \leq \mathrm{MB} \leq \mathrm{N}-1\)
(c) \(\mathrm{MB}+1 \leq \mathrm{LMA}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \begin{tabular}{l}
\(\mathrm{A}(1,1) \leftarrow \sqrt{\mathrm{A}(1,1)}\) and \\
\(\mathrm{COND} \leftarrow 1.0\) are performed.
\end{tabular} \\
\hline 1000 & N was equal to 1. & Processing is aborted. \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & \begin{tabular}{l} 
A diagonal element became less than or \\
equal to 0.0 in the \(i\)-th processing step.
\end{tabular}
\end{tabular} \begin{tabular}{l} 
Processing is aborted. \\
The condition number is not obtained.
\end{tabular}
(6) Notes
(a) The upper triangular matrix \(L^{T}\) is stored in array A. Since the lower triangular matrix \(L\) is calculated from \(L^{T}\), it is not stored in array A. (See 2.14.1 Figure 2-14.)
(b) Although the condition number is defined by \(\|A\| \cdot\left\|A^{-1}\right\|\), an approximate value is obtained by this subroutine.

\subsection*{2.14.4 DBBPLS, RBBPLS}

Simultaneous Linear Equations (LL \({ }^{\mathrm{T}}\)-Decomposed Positive Symmetric Band Matrix)

\section*{(1) Function}

DBBPLS or RBBPLS solves the simultaneous linear equations \(L L^{T} \boldsymbol{x}=\boldsymbol{b}\) having the positive symmetric band matrix \(A\) (symmetric band type) which has been \(L L^{\mathrm{T}}\) decomposed by the Cholesky method as coefficient matrix.
(2) Usage

Double precision:
CALL DBBPLS (A, LMA, N, MB, B, IERR)
Single precision:
CALL RBBPLS (A, LMA, N, MB, B, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
D:Double precision real \\
R :Single precision real
\end{tabular}} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER }(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\
\text { INTEGER }(8) \text { as for } 64 \mathrm{bit} \text { Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & A & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & LMA, N & Input & Coefficient matrix \(A\) after \(\mathrm{LL}^{\mathrm{T}}\) decomposition (positive symmetric band matrix, symmetric band type) (See Appendix B) (See Notes (a) and (b)) \\
\hline 2 & LMA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & MB & I & 1 & Input & Band width of matrix \(A\) \\
\hline 5 & B & \{ D & N & Input & Constant vector b \\
\hline & & R \(\}\) & & Output & Solution \(\boldsymbol{x}\) \\
\hline 6 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{N}>0\)
(b) \(0 \leq \mathrm{MB} \leq \mathrm{N}-1\)
(c) \(\mathrm{MB}+1 \leq \mathrm{LMA}\)

\section*{(5) Error indicator}
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \(\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)^{2}\) is performed. \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l} 
Processing is aborted. \\
\hline 3000 \\
satisfied.
\end{tabular} \\
\hline \(4000+i\) & \begin{tabular}{l}
\(L^{T}\) has a diagonal element that is less \\
than or equal to 0.0. \\
\(i\) is the number of the first diagonal ele- \\
ment that is less than or equal to 0.0.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) The coefficient matrix \(A\) must be \(L L^{T}\) decomposed before using this subroutine. Normally, you should decompose matrix \(A\) by calling the 2.14.2 \(\left\{\begin{array}{l}\operatorname{DBBPUU} \\ \operatorname{RBBPUU}\end{array}\right\}\) subroutine. However, if you also want to obtain the condition number, you should use 2.14.3 \(\left\{\begin{array}{l}\mathrm{DBBPUC} \\ \mathrm{RBBPUC}\end{array}\right\}\). In addition, if you have already used 2.14.1 \(\left\{\begin{array}{l}\text { DBBPSL } \\ \text { RBBPSL }\end{array}\right\}\) to solve simultaneous linear equations having the same coefficient matrix \(A\), you can use the \(L L^{T}\) decomposition obtained as part of its output.
(b) The upper triangular matrix \(L^{T}\) must be stored in array A. Since the lower triangular matrix \(L\) is calculated from \(L^{T}\), it should not be stored in array A. (See 2.14.1 Figure 2-14.)

\subsection*{2.14.5 DBBPDI, RBBPDI}

\section*{Determinant of a Positive Symmetric Band Matrix}
(1) Function

DBBPDI or RBBPDI obtains the determinant of the positive symmetric band matrix \(A\) (symmetric band type) which has been \(L L^{T}\) decomposed by the Cholesky method.
(2) Usage

Double precision:
CALL DBBPDI (A, LMA, N, MB, DET, IERR)
Single precision:
CALL RBBPDI (A, LMA, N, MB, DET, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & \multicolumn{1}{|c|}{ Size } & \begin{tabular}{c} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & LMA, N & Input & \begin{tabular}{l} 
Upper triangular matrix \(L^{T}\) after LL \({ }^{T}\) decom- \\
position (See Notes (a) and (b))
\end{tabular} \\
\hline 2 & LMA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & MB & I & 1 & Input & Band width of matrix \(A\) \\
\hline 5 & DET & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 2 & Output & Determinant of matrix \(A\) (See Note (c)) \\
\hline 6 & IERR & I & 1 & & \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{N}>0\)
(b) \(0 \leq \mathrm{MB} \leq \mathrm{N}-1\)
(c) \(\mathrm{MB}+1 \leq\) LMA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l}
\(\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1)\) \\
\(\mathrm{DET}(2) \leftarrow 0.0\) (See Note (c))
\end{tabular} \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) The coefficient matrix \(A\) must be LL \({ }^{\mathrm{T}}\) decomposed before using this subroutine. Use any of the 2.14 .1 \(\left\{\begin{array}{l}\text { DBBPSL } \\ \text { RBBPSL }\end{array}\right\}, 2.14 .2\left\{\begin{array}{l}\text { DBBPUU } \\ \text { RBBPUU }\end{array}\right\}, 2.14 .3\left\{\begin{array}{l}\text { DBBPUC } \\ \text { RBBPUC }\end{array}\right\}\) subroutines to perform the decomposition.
(b) The upper triangular matrix \(L^{T}\) must be stored in array A. Since the lower triangular matrix \(L\) is calculated from \(L^{T}\), it should not be stored in array A. (See 2.14.1 Figure 2-14.)
(c) The determinant is given by the following expression:
\[
\operatorname{det}(A)=\operatorname{DET}(1) \times\left(10.0^{\operatorname{DET}(2)}\right)
\]

Scaling is performed at this time so that:
\[
1.0 \leq|\operatorname{DET}(1)|<10.0
\]
(d) Since the inverse matrix of a positive symmetric band matrix generally is a dense matrix, it is not obtained in this subroutine.

\subsection*{2.14.6 DBBPLX, RBBPLX}

\section*{Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Band Matrix)}

\section*{(1) Function}

DBBPLX or RBBPLX uses an iterative method to improve the solution of the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having the positive symmetric band matrix \(A\) (symmetric band type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBBPLX (A, LMA, N, MB, ALL, B, X, ITOL, NIT, W1, IERR)
Single precision:
CALL RBBPLX (A, LMA, N, MB, ALL, B, X, ITOL, NIT, W1, IERR)
(3) Arguments
\(\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}\) I: \(\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)

\section*{(4) Restrictions}
(a) \(\mathrm{N}>0\)
(b) \(0 \leq \mathrm{MB} \leq \mathrm{N}-1\)
(c) \(\mathrm{MB}+1 \leq \mathrm{LMA}\)

\section*{(5) Error indicator}
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & The solution is not improved. \\
\hline 3000 & \begin{tabular}{l} 
Restriction (a), (b) or (c) was not \\
satisfied.
\end{tabular} & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
The \(i\)-th diagonal element of array ALL \\
was less than or equal to 0.0.
\end{tabular} & \\
\hline 5000 & \begin{tabular}{l} 
The solution did not converge within the \\
maximum number of iterations.
\end{tabular} & \begin{tabular}{l} 
Processing is aborted after calculating the \\
ITOL output value.
\end{tabular} \\
\hline 6000 & The solution could not be improved. & \\
\hline
\end{tabular}
(6) Notes
(a) This subroutine improves the solution obtained by the 2.14.1 \(\left\{\begin{array}{l}\mathrm{DBBPSL} \\ \mathrm{RBBPSL}\end{array}\right\}\) or 2.14.4 \(\left\{\begin{array}{l}\text { DBBPLS } \\ \mathrm{RBBPLS}\end{array}\right\}\) subroutine. Therefore, the coefficient matrix \(A\) after it has been decomposed by the 2.14.1 \(\left\{\begin{array}{l}\text { DBBPSL } \\ \text { RBBPSL }\end{array}\right\}\), 2.14.2 \(\left\{\begin{array}{l}\mathrm{DBBPUU} \\ \mathrm{RBBPUU}\end{array}\right\}\) or 2.14.3 \(\left\{\begin{array}{l}\mathrm{DBBPUC} \\ \mathrm{RBBPUC}\end{array}\right\}\) subroutine must be given as input.
(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change. However, if the following condition is satisfied, solution improvement is repeated until the solution changes in at most the low order 1 bit.
\[
\mathrm{ITOL} \leq 0
\]
or
\[
\text { ITOL } \geq-\operatorname{LOG} 10(2 \times \varepsilon) \quad(\varepsilon: \text { Unit for determining error })
\]
(c) If the required number of digits have not converged within the iteration count, the approximate number of digits in the improved solution that were unchanged is returned to ITOL.
(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

\subsection*{2.15 REAL TRIDIAGONAL MATRIX (VECTOR TYPE)}

\subsection*{2.15.1 DBTDSL, RBTDSL}

\section*{Simultaneous Linear Equations (Real Tridiagonal Matrix)}
(1) Function

DBTDSL or RBTDSL uses the Gauss method to solve the simultaneous linear equations \(\boldsymbol{A x}=\boldsymbol{b}\) having a real tridiagonal matrix \(A\) (vector type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBTDSL (SDL, D, SDU, N, B, IERR)
Single precision:
CALL RBTDSL (SDL, D, SDU, N, B, IERR)
(3) Arguments
\(\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \begin{array}{l}\text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array}\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{SDL} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
D \\
R
\end{array}\right\}
\]} & \multirow[t]{2}{*}{N} & Input & Lower subdiagonal component of coefficient matrix \(A\) (real tridiagonal matrix, vector type) (See Appendix B) \\
\hline & & & & Output & Input-time contents are not saved. \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{D} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
D \\
R
\end{array}\right\}
\]} & \multirow[t]{2}{*}{N} & Input & Diagonal component of coefficient matrix \(A\) (real tridiagonal matrix, vector type) (See Appendix B) \\
\hline & & & & Output & Input-time contents are not saved. \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{SDU} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
D \\
R
\end{array}\right\}
\]} & \multirow[t]{2}{*}{N} & Input & Upper subdiagonal component of coefficient matrix \(A\) (real tridiagonal matrix, vector type) (See Appendix B) \\
\hline & & & & Output & Input-time contents are not saved. \\
\hline 4 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{B} & \multirow[t]{2}{*}{\(\underline{\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}}\)} & \multirow[t]{2}{*}{N} & Input & Constant vector b \\
\hline & & & & Output & Solution \(\boldsymbol{x}\) \\
\hline 6 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{N}>0\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{D}(1)\) is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
The pivot became 0.0 in the \(i\)-th process- \\
ing step. \\
\(A\) is nearly singular.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) This subroutine performs partial pivoting.
(7) Example
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{llll}
2 & 3 & 0 & 0 \\
1 & 2 & 3 & 0 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
8 \\
14 \\
20 \\
11
\end{array}\right]
\]
(b) Input data

Lower subdiagonal component SDL, diagonal component D , upper subdiagonal component \(\mathrm{SDU}, \mathrm{N}=4\) and constant vector \(B\).
(c) Main program

\section*{PROGRAM BBTDSL}
! *** EXAMPLE OF DBTDSL ***
IMPLICIT REAL (8) ( \(\mathrm{A}-\mathrm{H}, 0-\mathrm{Z}\) )
PARAMETER ( \(\mathrm{NN}=10\) )
DIMENSION SDL (NN), D (NN) , SDU(NN) , B(NN)
! \(\quad \operatorname{READ}(5, *) \mathrm{N}\)
WRITE \((6,1000)\) N
\(\operatorname{READ}(5, *)(\operatorname{SDL}(I), I=2, N),(D(I), I=1, N),(\operatorname{SDU}(I), I=1, N-1)\)
WRITE \((6,1110)\) (SDL(I), I=2,N
WRITE \((6,1100)\) ( \(D(I), I=1, N)\)
\(\operatorname{WRITE}(6,1120)(\operatorname{SDU}(I), I=1, N-1)\)
READ \((5, *)(B(I), I=1, N)\)
WRITE \((6,1200)(B(I), I=1, N)\)
WRITE \((6,1300)\)
WRITE (6,1300)
CALL DBTDSL (SDL , D, SDU , \(N\), \(B\), IERR)
WRITE \((6,1400)\) IERR
IF (IERR . GE. 3000) STOP
WRITE \((6,1500)(I, B(I), I=1, N)\) STOP

1000 FORMAT (, , /,/,\&
, *** DBTDSL
2X,'** INPUT
6X,' \(N=\), , I3, /, ***',/,\&
6X,', 'COEFFICIENT MATRIX'
1100 FORMAT (7X,4(G11.4))
1110 FORMAT (7X,'
1120 FORMAT (7X, \(3(G 11.4), ~, 3(G 11.4)) ~\)
1200 FORMAT (6X,'CONSTANT VECTOR', /, (7X,F10.4))
1200 FORMAT (6X,', CONSTANT 1300 FORMAT (2X, '** OUTPUT \(* *\) ')
1300 FORMAT (6X,', IERR =, , I5)
1500 FORMAT (6X,'SOLUTION', \(\left./,\left(8 \mathrm{X},{ }^{\prime} \mathrm{X}(,, \mathrm{I} 2, ')=,, \mathrm{D} 18.10\right)\right)\)
END
(d) Output results

COEFFICIENT MATRIX


\subsection*{2.15.2 DBTPSL, RBTPSL \\ Simultaneous Linear Equations (Positive Symmetric Tridiagonal Matrix)}
(1) Function

DBTPSL or RBTPSL uses the Gauss method to solve the simultaneous linear equations \(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\) having a positive symmetric tridiagonal matrix \(A\) (vector type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBTPSL (D, SD, N, B, IERR)
Single precision:
CALL RBTPSL (D, SD, N, B, IERR)
(3) Arguments
\(\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}\) I: \(\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(\mathrm{N}>0\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{D}(1)\) is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 4000 & \begin{tabular}{l} 
The diagonal component became 0.0 dur- \\
ing processing. \\
\(A\) is nearly singular.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) This subroutine performs Gaussian elimination concurrently from both ends of the diagonal of matrix A. Therefore, both forward elimination and back substitution are performed repeatedly along the diagonal.

Figure 2-15 Operations for a Positive Symmetric Tridiagonal Matrix

Forward elimination


Back substitution

(7) Example
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{rrrr}
-2 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0
\end{array}\right]
\]
(b) Input data

Diagonal component D , subdiagonal component \(\mathrm{SD}, \mathrm{N}=4\) and constant vector B .
(c) Main program
```

*** PROGRAM BBTPSL
EXAMPLE OF DBTPSL ***
IMPLICIT REAL (8) (A-H,O-Z)
PARAMETER (NN = 10)
DIMENSION D(NN),SD(NN),B(NN)
!
READ (5,*) N
WRITE (6,1000) N
READ (5,*) (D (I) ,I=1,N),(SD(I),I=1,N-1)
WRITE (6,1100) (D (I), I=1,N)
WRITE (6,1110) (SD (I), I=1,N-1)
READ (5,*) (B (I), I=1,N)
WRITE (6,1200) (B (I), I=1,N)
WRITE (6,1300)
CALL DBTPSL (D SD N , B IERR)
WRITE (6,1400) IERR
IF (IERR.GE. 3000) STOP
WRITE (6,1500) (I, B (I), I=1,N)
WRITE
!}1000\mathrm{ FORMAT(, ,,/,/,\&
***'DBTPSL ***',/,\&

```
```

 2X,'** INPUT **',/,&
 6X,'N =',I3,/,& ,/,&
 1100 FORMAT(7X,4(G11.4))
 1110 FORMAT(7X,3(G11.4),' ,
1200 FORMAT (6X,''CONSTANT' VECTOR', , ((7X,F10.4))
1300 FORMAT (2X,',** OUTPUT
1400 FORMAT(6X,''IERR ='',I5)
END
(d) Output results

```
*** DBTPSL ***
** INPUT ** COEFFICIENT MATRIX \(\begin{array}{llll}-2.000 & -2.000 & -2.000 & -2.000 \\ 1.000 & 1.000 & 1.000 & \end{array}\) CONSTANT VECTOR
\(-1.0000\)
0.0000
0.0000
0.0000
** OUTPUT **
IERR =
SOLUTION
\(X(1)=0.8000000000 \mathrm{D}+00\)
\(\mathrm{X}(2)=0.6000000000 \mathrm{D}+00\)
\(\mathrm{X}(3)=0.4000000000 \mathrm{D}+00\)
\(\mathrm{X}(4)=0.2000000000 \mathrm{D}+00\)

\subsection*{2.16 REAL TRIDIAGONAL MATRIX (VECTOR TYPE)}

\subsection*{2.16.1 WBTDSL}

\section*{Simultaneous Linear Equations (Real Tridiagonal Matrix)}
(1) Function

WBTDSL uses the cyclic reduction method to solve the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having the real tridiagonal matrix \(A\) (vector type) as coefficient matrix.
(2) Usage

Double precision:
CALL WBTDSL (SDL, D, SDU, N, B, IW, W1, IERR)
Single precision:
Nothing
(3) Arguments
\(\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \begin{array}{l}\text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array}\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{SDL} & \multirow[t]{2}{*}{D} & \multirow[t]{2}{*}{N} & Input & Lower subdiagonal components of coefficient matrix \(A\) (real tridiagonal matrix, vector type) (See Appendix B.) \\
\hline & & & & Output & Input-time contents are not retained. \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{D} & \multirow[t]{2}{*}{D} & \multirow[t]{2}{*}{N} & Input & Diagonal components of coefficient matrix \(A\) (real tridiagonal matrix, vector type) (See Appendix B.) \\
\hline & & & & Output & Input-time contents are not retained. \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{SDU} & \multirow[t]{2}{*}{D} & \multirow[t]{2}{*}{N} & Input & Upper subdiagonal components of coefficient matrix \(A\) (real tridiagonal matrix, vector type) (See Appendix B.) \\
\hline & & & & Output & Input-time contents are not retained. \\
\hline 4 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{B} & \multirow[t]{2}{*}{D} & \multirow[t]{2}{*}{N} & Input & Constant vector \(\boldsymbol{b}\) \\
\hline & & & & Output & Solution vector \(\boldsymbol{x}\) \\
\hline 6 & IW & I & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Work & \begin{tabular}{l}
Work area (See Note (a)) \\
Size: \(3 \times\left\lfloor\log _{2}(\mathrm{~N})\right\rfloor+1\)
\end{tabular} \\
\hline 7 & W1 & D & \(4 \times \mathrm{N}\) & Work & Work area \\
\hline 8 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{N}>0\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & \(\mathrm{~N}=1\) & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{D}(1)\) \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 4000 & A is nearly singular. & \\
\hline
\end{tabular}
(6) Notes
(a) \(\left\lfloor\log _{2}(\mathrm{~N})\right\rfloor\) is the value obtained by truncating the fractional part of \(\log _{2}(\mathrm{~N})\).
(b) The single-precision version of the subroutine is not supported.

\section*{(7) Example}
(a) Problem

Solve
\[
\left[\begin{array}{llll}
6 & 2 & 0 & 0 \\
1 & 6 & 2 & 0 \\
0 & 1 & 6 & 2 \\
0 & 0 & 1 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
10 \\
19 \\
28 \\
27
\end{array}\right]
\]
(b) Input data

Lower subdiagonal components SDL, diagonal components D, upper subdiagonal components SDU, \(\mathrm{N}=4\) and constant vector \(\boldsymbol{b}\).
(c) Main program
```

PROGRAM EBTDSL
*** EXAMPLE OF WBTDSL ***
IMPLICIT REAL(8) (A-H,0-Z)
DIMENSION SDL(NN),D(NN),SDU(NN),B(NN),DWK(4*NN),IW(10)
READ (5,*) N
READ (5,*) N
WRITE (6,1000) N
READ (5,*) (SDL(I),I=2,N),(D(I),I=1,N),(SDU(I),I=1,N-1)
WRITE (6,1600) (SDL (I),I=2,N
WRITE (6,1100) (DDU(I),I=1,N-1
READ (5,*) (B (I), I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL WBTDSL (SDL,D,SDU ,N,B,IW,DWK,IERR)
WRITE (6,1400) IERR
IF (IERR'.GE. 3000) STOP
STOP
STOP
!
1000 FORMAT (' ',/,,/,', *** WBTDSL ****',/,2X,'** INPUT **',/,\&
1100 FORMAT (7X,4(G11.4))
1200 FORMAT (6X,''CONSTANT VECTOR',/,(7X,F10.4))
1300 FORMAT (2X,'** OUTPUT **')
1400 FORMAT (6X,',IERR =, I5)
1400 FORMAT (6X,'IERR =',I5)
1600 FORMAT (18X,3(G11.4)),
1700 FORMAT (7X,3(G11.4),1X)

```
(d) Output results
```

*** WBTDSL ***
** INPUT **
N = = 4

| 6.000 | 1.000 | 1.000 | 1.000 |
| :--- | :--- | :--- | :--- |

 6.000 6.000
 CONSTANT VECTOR
10.0000
19.0000
19.0000
27.0000
** OUTPUT **
IERR =
SOLUTION
X(1) = 0.1000000000D+01
X(2) = 0.2000000000D+01
X(3) = 0.3000000000D+01
X(4)=0.4000000000D+01

```

\subsection*{2.16.2 WBTDLS \\ Simultaneous Linear Equations (Real Tridiagonal Matrix after Reduction Operations)}

\section*{(1) Function}

WBTDLS uses the cyclic reduction method to solve the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having the real tridiagonal matrix \(A\) (vector type) after reduction operations have been performed as coefficient matrix.
(2) Usage

Double precision:
CALL WBTDLS (SDL, D, SDU, N, B, IW, W1, IERR)
Single precision:
Nothing
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{D:Double precision real R :Single precision real} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER }(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\
\text { INTEGER }(8) \text { as for } 64 \mathrm{bit} \text { Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline 1 & SDL & D & N & Input & Lower subdiagonal components of coefficient matrix \(A\) after reduction operations (real tridiagonal matrix, vector type) (See Appendix B.) (See Note (a)) \\
\hline 2 & D & D & N & Input & Diagonal components of coefficient matrix \(A\) after reduction operations (real tridiagonal matrix, vector type) (See Appendix B.) (See Note (a)) \\
\hline 3 & SDU & D & N & Input & Upper subdiagonal components of coefficient matrix \(A\) after reduction operations (real tridiagonal matrix, vector type) (See Appendix B.) (See Note (a)) \\
\hline 4 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 5 & B & D & N & Input & Constant vector \(\boldsymbol{b}\) \\
\hline & & & & Output & Solution vector \(\boldsymbol{x}\) \\
\hline 6 & IW & I & \begin{tabular}{l}
See \\
Contents
\end{tabular} & Input & \begin{tabular}{l}
Reduction operation information (See Notes (a) and (b)) \\
Size: \(3 \times\left\lfloor\log _{2}(\mathrm{~N})\right\rfloor+1\)
\end{tabular} \\
\hline 7 & W1 & D & \(4 \times \mathrm{N}\) & Input & Reduction operation information (See Note (a)) \\
\hline 8 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{N}>0\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & \(\mathrm{~N}=1\) & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{D}(1)\) \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline 4000 & A is nearly singular (Only when \(\mathrm{N}=1)\) & \\
\cline { 1 - 2 } & \\
\hline
\end{tabular}
(6) Notes
(a) This subroutine can be used to solve multiple sets of simultaneous linear equations having the same coefficient matrix but different constant vectors. First, use 2.16.1 WBTDSL to perform reduction operations for the coefficient matrix and obtain solutions.
Then, repeatedly use this subroutine to only obtain solutions for the different constant vectors. The contents of arguments SDL, D, SDU, IW, and W1 from this subroutine must be retained since they become input values for this subroutine 2.16.1 WBTDSL.
(b) \(\left\lfloor\log _{2}(\mathrm{~N})\right\rfloor\) is the value obtained by truncating the fractional part of \(\log _{2}(\mathrm{~N})\).
(c) The single-precision version of the subroutine is not supported.
(7) Example
(a) Problem

Solve simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}_{1}\) and \(A \boldsymbol{y}=\boldsymbol{b}_{2}\) with unknowns \(\boldsymbol{x}\) and \(\boldsymbol{y}\) where,
\[
A=\left[\begin{array}{llll}
6 & 2 & 0 & 0 \\
1 & 6 & 2 & 0 \\
0 & 1 & 6 & 2 \\
0 & 0 & 1 & 6
\end{array}\right], \boldsymbol{b}_{1}=\left[\begin{array}{c}
10 \\
19 \\
28 \\
27
\end{array}\right], \boldsymbol{b}_{2}=\left[\begin{array}{c}
30 \\
26 \\
17 \\
8
\end{array}\right]
\]
(b) Input data

Lower subdiagonal components SDL, diagonal components D , upper subdiagonal components SDU, \(\mathrm{N}=4\) and constant vectors \(\boldsymbol{b}_{1}\) and \(\boldsymbol{b}_{2}\).
(c) Main program
```

PROGRAM EBTDLS
*** EXAMPLE OF WBTDLS ***
IMPLICIT REAL (8) (A-H,0-Z)
MAPLICIT REAL(8) (A-H,O-Z)
PARAMETER (NN = 10)
READ (5,*) N
WRITE (6,1000) N
READ (5,*) (SDL (I), I=2,N),(D (I) , I=1,N),(SDU (I) , I=1,N-1)
WRITE (6,1700) (SDL(I), I=2,N)
WRITE (6,1100) (D (I),I=1,N)
WRITE (6,1800) (SDU(I),I=1,N-1)
READ (5,*) (B1 (I), I=1,N)
READ (5,*) (B2(I),I=1,N)
WRITE (6,1200) (B1 (I), B2 (I), I=1,N)
WRITE (6,1300)
CALL WBTDSL (SDL,D,SDU,N,B1,IW,DWK,KERR)
CALL WBTDLS (SDL,D,SDU,N,B2,IW,DWK,IERR)
WRITE (6,1400) IERR
IF (IERR . GE. 3000) STOP
WRITE (6,1500) (I , B1 (I), I=1 ,N)
WRITE (6,1600) (I,B2(I), I=1,N)
STOP

```
```

1000 FORMAT (' ', /,//,' *** WBTDLS ***', $, 2 \mathrm{X},{ }^{\prime * *}$ INPUT ${ }^{* *}$ ',/,\&
1100 KX,'N $=$ ', I3, /, 6X, 'COEFFICIENT MATRIX')
1200 FORMAT (6X,','CONSTANT VECTOR', $/$, ($7 \mathrm{X}, \mathrm{F} 10.4,4 \mathrm{X}, \mathrm{F} 10.4$) $)$
1300 FORMAT (2X,' $* *$ OUTPUT
1400 FORMAT (6 X, 'IERR $=$, I5)
1400 FORMAT (6X,' 'IERR =', I5)
1500 FORMAT (6X,','SOLUTION X',/,($\left.\left.8 \mathrm{X},{ }^{\prime} \mathrm{X}(\prime, \mathrm{I} 2, ')=,, D 18.10\right)\right)$
1600 FORMAT (6X', 'SOLUTION Y','/,'(8X,'Y(','I2,') =', D18.10))
1700 FORMAT (18X, 3(G11.4))
1800 FORMAT (7X,3(G11.4),1X)
END

```
(d) Output results
*** WBTDLS ***
** INPUT ** COEFFICIENT MATRIX
\begin{tabular}{llll} 
& 1.000 & 1.000 & 1.000 \\
6.000 & 6.000 & 6.000 & 6.000 \\
2.000 & 2.000 & 2.000 &
\end{tabular} \(\begin{array}{cc}\text { CONSTANT VECTOR } \\ 10.0000 & 30.0000\end{array}\) \(\begin{array}{ll}10.0000 & 30.0000 \\ 19.0000 & 26.0000\end{array}\) \(28.0000 \quad 17.0000\)
** OUTPUT \({ }^{* *}\)
IERR =
SOLUTION X
\(X(1)=0.1000000000 D+01\)
\(x(2)=0.2000000000 \mathrm{D}+01\)
\(\mathrm{X}(4)=0.3000000000 \mathrm{D}+01\)
SOLUTION Y \(0.4000000000 \mathrm{D}+01\)
\(Y(2)=0.4000000000+01\)
\(Y(3)=0.2000000000 \mathrm{D}+01\) \(\mathrm{Y}(4)=0.1000000000 \mathrm{D}+01\)

\subsection*{2.17 FIXED COEFFICIENT REAL TRIDIAGONAL MATRIX (SCALAR TYPE)}

\subsection*{2.17.1 WBTCSL}

Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix)

\section*{(1) Function}

WBTCSL uses the cyclic reduction method to solve the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having the fixed coefficient real tridiagonal matrix A (scalar type) as coefficient matrix.
(2) Usage

Double precision:
CALL WBTCSL ( D, SD, N, B, ISW, IW, W1, IERR)
Single precision:
Nothing
(3) Arguments
\(\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}\) I: \(\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(\mathrm{N}>0\)
(b) \(\operatorname{ISW} \in\{1,2,3,4\}\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & \(\mathrm{~N}=1\) & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{D}(1)\) \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 4000 & \(A\) is nearly singular. & \\
\hline
\end{tabular}
(6) Notes
(a) Coefficient matrix \(A\) is a fixed coefficient real tridiagonal matrix of the types shown below corresponding to \(\mathrm{ISW}=1,2,3\), and 4 .
For \(\operatorname{ISW}=1\)
\(\left[\begin{array}{llll}\mathrm{D} & \mathrm{SD} & & \\ \mathrm{SD} & \mathrm{D} & \mathrm{SD} & \\ & \mathrm{SD} & \mathrm{D} & \mathrm{SD}\end{array}\right.\)
\(\left.\begin{array}{lll} & 0 & \\ & & \\ \cdot & & \\ \cdot & \cdot \\ \mathrm{D} & \mathrm{SD} \\ \mathrm{SD} & \mathrm{D}\end{array}\right], \mathrm{D} \neq 0, \mathrm{SD} \neq 0\)

For \(\operatorname{ISW}=2\)
\[
\left[\begin{array}{llllll}
\mathrm{D} & \mathrm{SD} & & & & 0 \\
\mathrm{SD} & \mathrm{D} & \mathrm{SD} & & & \\
& \mathrm{SD} & \mathrm{D} & \mathrm{SD} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& 0 & & & \cdot & \mathrm{D} \\
& & & & 2 \times \mathrm{SD} & \mathrm{D}
\end{array}\right], \mathrm{D} \neq 0, \mathrm{SD} \neq 0
\]

For \(\operatorname{ISW}=3\)
\(\left[\begin{array}{llllll}\mathrm{D} & 2 \times \mathrm{SD} & & & & 0 \\ \mathrm{SD} & \mathrm{D} & \mathrm{SD} & & & \\ & \mathrm{SD} & \mathrm{D} & \mathrm{SD} & & \\ & & \cdot & \cdot & \cdot & \\ & & & \cdot & \cdot & \cdot \\ & 0 & & \cdot & \mathrm{D} & \mathrm{SD} \\ & & & & \mathrm{SD} & \mathrm{D}\end{array}\right], \mathrm{D} \neq 0, \mathrm{SD} \neq 0\)

For \(\operatorname{ISW}=4\)
\[
\left[\begin{array}{llllll}
\mathrm{D} & 2 \times \mathrm{SD} & & & & 0 \\
\mathrm{SD} & \mathrm{D} & \mathrm{SD} & & & \\
& \mathrm{SD} & \mathrm{D} & \mathrm{SD} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& 0 & & \cdot & \mathrm{D} & \mathrm{SD} \\
& & & & 2 \times \mathrm{SD} & \mathrm{D}
\end{array}\right], \mathrm{D} \neq 0, \mathrm{SD} \neq 0
\]

Coefficient matrices of the types shown above appear when discretizing the Dirichlet or Neumann boundary value problem.
(b) \(\left\lfloor\log _{2}(\mathrm{~N})\right\rfloor\) is the value obtained by truncating the fractional part of \(\log _{2}(\mathrm{~N})\).
(c) The single-precision version of the subroutine is not supported.

\section*{(7) Example}
(a) Problem

Solve
\[
\left[\begin{array}{llll}
6 & 2 & 0 & 0 \\
2 & 6 & 2 & 0 \\
0 & 2 & 6 & 2 \\
0 & 0 & 2 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
8 \\
10 \\
10 \\
8
\end{array}\right]
\]
(b) Input data

Diagonal components D, subdiagonal components \(\mathrm{SD}, \mathrm{N}=4\), \(\mathrm{ISW}=1\), and constant vector \(\boldsymbol{b}\).
(c) Main program
```

PROGRAM EBTCSL
*** EXAMPLE OF WBTCSL ***
IMPLICIT REAL (8) (A-H, $\mathrm{O}-\mathrm{Z}$)
PARAMETER (NN $=10)$
DIMENSION $\operatorname{SDL}(\mathrm{NN}), \mathrm{D}(\mathrm{NN}), \mathrm{SDU}(\mathrm{NN}), \mathrm{B}(\mathrm{NN}), \mathrm{DWK}(21), \mathrm{IW}(10)$
! READ $(5, *) \mathrm{N}$, ISW
WRITE (6,1000) N, ISW
READ ($5, *$) (SDL (I), $\mathrm{I}=2, \mathrm{~N}$), ($\mathrm{D}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N}),(\operatorname{SDU}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N}-1)$
$\operatorname{WRITE}(6,1600)$ (SDLL(I), $I=2, N$)
WRITE $(6,1100)$ ($\mathrm{D}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
$\operatorname{WRITE}(6,1700)(\operatorname{SDU}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N}-1)$
$\operatorname{READ}(5, *)$ ($B(I), I=1, N)$
WRITE $(6,1200)(B(I), I=1, N)$
WRITE $(6,1300)$
DD $=\mathrm{D}(1)$
$\mathrm{SD}=\mathrm{SDL}(2)$
CALL WBTCSL (DD,SD,N,B,ISW,IW,DWK,IERR)
WRITE $(6,1400)$ IERR
WRITE (6,1400) IERR
$\operatorname{WRITE}(6,1500)(\mathrm{I}, \mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
STOP
1000 FORMAT (' ', //,/,', *** WBTCSL ${ }^{* * * ', /, 2 X, ' * *}$ INPUT ${ }^{* *}, /, \&$

```

```

 1100 FORMAT (\(6 \mathrm{x}, 4\) (GONSTA)
 1200 FORMAT (6X,' CONSTANT VECTOR', \(/,(7 X, F 10.4)\))
 1300 FORMAT (2X,'
1300 FORMAT (2X,' $* *$ OUTPUT
1400 FORMAT (6 X, 'IERR $=$, I5)
1400 FORMAT (6X','IERR =', I5)
1500 FORMAT (6X, $\operatorname{SOLULTON}, ',(8 X, ' X(\prime, I 2, ')=', D 18.10))$
1500 FORMAT (6X,'SOLUTION','/
1600 FORMAT (18X, 3(G11.4))
1700 FORMAT (7X,3(G11.4),1X)
END

```
(d) Output results
```

$* * *$ WBTCSL $* * *$
$* *$
INPUT
** INPUT **
$\mathrm{N}=4$
ISW
COEFFICIENT MATRIX
$2.000 \quad 2.000 \quad 2.000$

```
\begin{tabular}{|c|c|c|c|}
\hline 6.000 & 6.000 & 6.000 & 6.000 \\
\hline 2.000 & 2.000 & 2.000 & \\
\hline \multicolumn{4}{|l|}{CONSTANT VECTOR} \\
\hline \multicolumn{4}{|l|}{8.0000} \\
\hline \multicolumn{4}{|l|}{10.0000} \\
\hline \multicolumn{4}{|l|}{10.0000} \\
\hline \multicolumn{4}{|l|}{8.0000} \\
\hline OUTPUT * & & & \\
\hline IERR = & 0 & & \\
\hline \multicolumn{4}{|l|}{SOLUTION} \\
\hline \(\mathrm{X}(1)=\) & 0.1000000 & & \\
\hline X ( 2) & 0.1000000 & & \\
\hline \(\mathrm{X}(3)=\) & 0.1000000 & & \\
\hline \(\mathrm{X}(4)=\) & 0.1000000 & & \\
\hline
\end{tabular}

\subsection*{2.17.2 WBTCLS}

\section*{Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix after Reduction Operations)}

\section*{(1) Function}

WBTCLS uses the cyclic reduction method to solve the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having the fixed coefficient real tridiagonal matrix \(A\) (scalar type) after reduction operations have been performed as coefficient matrix.

\section*{(2) Usage}

Double precision:
CALL WBTCLS (D, SD, N, B, ISW, IW, W1, IERR)
Single precision:
Nothing

\section*{(3) Arguments}
D:Double precision real \begin{tabular}{l} 
Z:Double precision complex \\
R:Single precision real
\end{tabular} C:Single precision complex \(\quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\
\text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)

\section*{(4) Restrictions}
(a) \(\mathrm{N}>0\)
(b) \(\mathrm{ISW} \in\{1,2,3,4\}\)

\section*{(5) Error indicator}
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & \(\mathrm{~N}=1\) & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{D}(1)\) \\
\hline 3000 & Restriction (a) or (b) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 4000 & \(A\) is nearly singular. (Only when \(\mathrm{N}=1\) ) & \\
\hline
\end{tabular}
(6) Notes
(a) This subroutine can be used to solve multiple sets of simultaneous linear equations having the same coefficient matrix but different constant vectors. First, use 2.17.1 WBTCSL to perform reduction operations for the coefficient matrix and obtain solutions. Then, repeatedly use this subroutine to only obtain solutions for the different constant vectors. The contents of arguments D, SD, IW, and W1 from 2.17.1 WBTCSL must be retained since they become input values for this subroutine.
(b) Coefficient matrix \(A\) is a fixed coefficient real tridiagonal matrix of the types shown below corresponding to \(\operatorname{ISW}=1,2,3\), and 4 .
For \(\operatorname{ISW}=1\)
\(\left[\begin{array}{llll}\mathrm{D} & \mathrm{SD} & & \\ \mathrm{SD} & \mathrm{D} & \mathrm{SD} & \\ & \mathrm{SD} & \mathrm{D} & \mathrm{SD}\end{array}\right.\)
\(\left.\begin{array}{ccc} & 0 & \\ & & \\ \cdot & & \\ \cdot & \cdot \\ \mathrm{D} & \mathrm{SD} \\ \mathrm{SD} & \mathrm{D}\end{array}\right], \mathrm{D} \neq 0, \mathrm{SD} \neq 0\)

For \(\operatorname{ISW}=2\)
\(\left[\begin{array}{llllll}\mathrm{D} & \mathrm{SD} & & & & 0 \\ \mathrm{SD} & \mathrm{D} & \mathrm{SD} & & & \\ & \mathrm{SD} & \mathrm{D} & \mathrm{SD} & & \\ & & \cdot & \cdot & \cdot & \\ & & & & \cdot & \cdot \\ & 0 & & & \cdot & \mathrm{D} \\ & & & & 2 \times \mathrm{SD} & \mathrm{D}\end{array}\right], \mathrm{D} \neq 0, \mathrm{SD} \neq 0\)

For \(\mathrm{ISW}=3\)
\(\left[\begin{array}{lllllll}\mathrm{D} & 2 \times \mathrm{SD} & & & & 0 & \\ \mathrm{SD} & \mathrm{D} & \mathrm{SD} & & & \\ & \mathrm{SD} & \mathrm{D} & \mathrm{SD} & & \\ & & \cdot & \cdot & \cdot & \\ & & & \cdot & \cdot & \cdot \\ & 0 & & \cdot & \mathrm{D} & \mathrm{SD} \\ & & & & \mathrm{SD} & \mathrm{D}\end{array}\right], \mathrm{D} \neq 0, \mathrm{SD} \neq 0\)

For \(\operatorname{ISW}=4\)
\[
\left[\begin{array}{llllll}
\mathrm{D} & 2 \times \mathrm{SD} & & & & 0 \\
\mathrm{SD} & \mathrm{D} & \mathrm{SD} & & & \\
& \mathrm{SD} & \mathrm{D} & \mathrm{SD} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& 0 & & \cdot & \mathrm{D} & \mathrm{SD} \\
& & & & 2 \times \mathrm{SD} & \mathrm{D}
\end{array}\right], \mathrm{D} \neq 0, \mathrm{SD} \neq 0
\]

Coefficient matrices of the types shown above appear when discretizing the Dirichlet or Neumann boundary value problem.
(c) \(\left\lfloor\log _{2}(\mathrm{~N})\right\rfloor\) is the value obtained by truncating the fractional part of \(\log _{2}(\mathrm{~N})\).
(d) The single-precision version of the subroutine is not supported.

\section*{(7) Example}
(a) Problem

Solve simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}_{1}\) and \(A \boldsymbol{y}=\boldsymbol{b}_{2}\) with unknowns \(\boldsymbol{x}\) and \(\boldsymbol{y}\). Where,
\[
A=\left[\begin{array}{llll}
6 & 2 & 0 & 0 \\
2 & 6 & 2 & 0 \\
0 & 2 & 6 & 2 \\
0 & 0 & 2 & 6
\end{array}\right], \boldsymbol{b}_{1}=\left[\begin{array}{c}
8 \\
10 \\
10 \\
8
\end{array}\right], \boldsymbol{b}_{2}=\left[\begin{array}{l}
10 \\
20 \\
30 \\
30
\end{array}\right]
\]
(b) Input data

Diagonal components D , subdiagonal components \(\mathrm{SD}, \mathrm{N}=4\), ISW \(=1\) and constant vectors \(\boldsymbol{b}_{1}\) and \(b_{2}\).
(c) Main program
```

 PROGRAM EBTCLS
 *** EXAMPLE OF WBTCLS ***
 IMPLICIT REAL(8) (A-H,O-Z)
 PARAMETER (NN = 10)
 DIMENSION B1 (NN),B2(NN),DWK(21),IW(10)
 ! READ (5,*) N,ISW
WRITE (6,1000) N, ISW
READ (5,*) DD,SD
WRITE (6,1100) DD
WRITE (6,1100) SD
READ (5,*) (B1(I),I=1,N)
READ (5,*) (B2(I),I=1,N)
WRITE (6,1200) (B1(I),B2(I),I=1,N)
WRITE (6,1300)
CALL WBTCSSL (DD,SD,N,B1,ISW,IW,DWK,KERR)
CALL WBTCLS (DD,SD,N,B2,ISW,IW,DWK,IERR)
WRITE (6,1400) IERR
IF (IERR,.GE. 2000) STOP
WRITE (6,1500) (I,B1(I), I=1,N)
WRITE (6,1500) (I,B1(I),I=1,N)
1000 FORMAT (' ','/,/,','*** WBTCLS ***',/,2X,'** INPUT ***',
1100 FORMAT (16X',G11.4)
1200 FORMAT (6X,'CONSTANT VECTOR', /, (7X ,F10.4,4X , F10.4))
1300 FORMAT (2X,',** OUTPUT
1400 FORMAT (6X,''IERR =',I5)
1500 FORMAT (6X,',SOLUTION X', /, (8X,'X(', I2,') =',D18.10))
1600 FORMAT (6X,',SOLUTION Y',','(8X,'Y(','I2,') =',D18.10))
END

```
(d) Output results
```

*** WBTCLS ****
* INPUT **
N = = 4
ISW = 1

```


\subsection*{2.18 VANDERMONDE MATRIX AND TOEPLITZ MATRIX}

\subsection*{2.18.1 DBTOSL, RBTOSL}
```

Simultaneous Linear Equations (Toeplitz Matrix)

```
(1) Function

The Toeplitz matrix \(R\) of order \(n\) consisting of \(2 \times n-1\) elements \(r_{k}(k=-n+1,-n+2, \cdots, n-1)\) is represented as follows.
\[
R=\left[\begin{array}{cccccc}
r_{0} & r_{-1} & r_{-2} & \cdots & r_{-n+2} & r_{-n+1} \\
r_{1} & r_{0} & r_{-1} & \cdots & r_{-n+3} & r_{-n+2} \\
\vdots & \vdots & \ddots & & \vdots & \vdots \\
\vdots & \vdots & & \ddots & \vdots & \vdots \\
r_{n-2} & r_{n-3} & r_{n-4} & \cdots & r_{0} & r_{-1} \\
r_{n-1} & r_{n-2} & r_{n-3} & \cdots & r_{1} & r_{0}
\end{array}\right]
\]

The DBTOSL or RBTOSL solves the following simultaneous linear equations \(R \boldsymbol{x}=\boldsymbol{b}\) having this Toeplitz matrix \(R\) as coefficient matrix:
\[
\sum_{j=1}^{n} r_{i-j} x_{j}=b_{i} \quad(i=1, \cdots, n)
\]
or the following simultaneous linear equations \(R^{T} \boldsymbol{x}=\boldsymbol{b}\) having the matrix \(R^{T}\) as coefficient matrix:
\[
\sum_{j=1}^{n} r_{j-i} x_{j}=b_{i} \quad(i=1, \cdots, n)
\]
(2) Usage

Double precision:
CALL DBTOSL (R, N, B, X, W, ISW, IERR)
Single precision:
CALL RBTOSL (R, N, B, X, W, ISW, IERR)

\section*{(3) Arguments}
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & \multicolumn{1}{|c|}{ Size } & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & R & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & \(2 \times \mathrm{N}-1\) & Input & \begin{tabular}{l} 
Components \(r_{k}(k=-n+1,-n+2, \cdots, n-1)\) \\
of Toeplitz matrix \(R\)
\end{tabular} \\
\hline 2 & N & I & 1 & Input & Order of matrix \(R\) \\
\hline 3 & B & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & N & Input & Constant vector \(\boldsymbol{b}\) \\
\hline 4 & X & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & N & Output & Solution vector \(\boldsymbol{x}\) \\
\hline 5 & W & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & \(2 \times \mathrm{N}\) & Work & Work area \\
\hline 6 & ISW & I & 1 & Input & \begin{tabular}{l} 
Processing switch \\
\(1:\) Solve \(R \boldsymbol{x}=\boldsymbol{b}\) \\
W: Solve \(R^{T} \boldsymbol{x}=\boldsymbol{b}\)
\end{tabular} \\
\hline 7 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{ISW} \in\{1,2\}\)
(b) \(\mathrm{N}>0\)
(c) \(\mathrm{R}(\mathrm{N}) \neq 0\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1 & \(\mathrm{X}(1) \leftarrow \mathrm{B}(1) / \mathrm{R}(\mathrm{N})\) is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3010 & Restriction (b) was not satisfied. & \\
\hline 3020 & Restriction (c) was not satisfied. & \multirow{3}{*}{} \\
\hline 4000 & The divisor \(x^{(d e)}\) was zero. & \\
\hline 4010 & The divisor \(g^{(d e)}\) was zero. & \\
\hline
\end{tabular}
(6) Notes
(a) Since this subroutine makes practical use of the properties of the matrix, it is superior to 2.2.2 \(\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}\) in terms of memory usage and calculation efficiency. However, the solution may not be obtained theoretically even if the matrix is regular. In particular, if \(x^{(d e)}\) or \(g^{(d e)}\), which are divisors, are close to zero during the calculation process, the reliability of the solution obtained will not be guaranteed. (See Section 2.1.3 "Algorithms Used".)
(7) Example
(a) ProblemSolve the following simultaneous linear equations.
\[
\left[\begin{array}{cccc}
r_{0} & r_{-1} & r_{-2} & r_{-3} \\
r_{1} & r_{0} & r_{-1} & r_{-2} \\
r_{2} & r_{1} & r_{0} & r_{-1} \\
r_{3} & r_{2} & r_{1} & r_{0}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
\]
(b) Input data

Array \(\mathrm{R}=\left\{\mathrm{r}_{-3}, \mathrm{r}_{-2}, \mathrm{r}_{-1}, \mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{r}_{3}\right\}\) in which matrix \(R\) components are stored, \(\mathrm{N}=4, \mathrm{ISW}=1\) and constant vector \(\boldsymbol{b}\).
Note The same problem can be solved by storing matrix \(R\) components as \(\mathrm{R}=\left\{\mathrm{r}_{3}, \mathrm{r}_{2}, \mathrm{r}_{1}, \mathrm{r}_{0}, \mathrm{r}_{-1}, \mathrm{r}_{-2}, \mathrm{r}_{-3}\right\}\) and setting ISW=2.
(c) Main program

PROGRAM BBTOSL
! *** EXAMPLE OF DBTOSL \(* * *\)
IMPLICIT REAL (8) (A-H, \(0-\mathrm{Z}\) )
IMPLICIT REAL(8) \(\quad\) (A
\(\left.\begin{array}{l}\text { PARAMETER } \\ \text { DIMENSION } \\ \mathrm{R}(2 * \mathrm{LNA}\end{array}\right)\)
DIMENSION B (LNA), X(LNA),W ( \(2 *\) LNA)
READ (5,*) ISW
READ (5,*) N
WRITE \((6,1000)\) ISW, N
\(\mathrm{READ}(5, *)(\mathrm{R}(\mathrm{I}), \mathrm{I}=1,2 * \mathrm{~N}-1)\)
DO \(10 \mathrm{I}=1, \mathrm{~N}\)
10 CONTINUE
WRITE \((6,1200)\)
DO \(20 \mathrm{I}=1, \mathrm{~N}\)
WRITE \((6,1100) \mathrm{B}(\mathrm{I}\)
20 CONTINUE
WRITE \((6,1300)\)
CALL DBTOSL ( \(\mathrm{R}, \mathrm{N}, \mathrm{B}, \mathrm{X}, \mathrm{W}\), ISW, IERR)
WRITE \((6,1400)\) ' \({ }^{\text {DBTOSL' }}\) ', IERR
IF (IERR. GE. 3000) STOP
WRITE \((6,1600)\)
WRITE \((6,1100) \quad \mathrm{X}(\mathrm{I})\)
30 CONTINUE

1000 FORMAT(, , ,/,/,\&
*** DBTOSL ***',/,\&
2X,',** INPUT **',/,\&
\(6 X, '\) ISW \(=\), ,I3, /,\&
6X,'N =, ,I3,/,\&
6X,'COEFFICIENT MATRIX')
1100 FORMAT(7X,10(F11.4))
1200 FORMAT (6X,'CONSTANT VECTOR')
1300 FORMAT (2X,'** OUTPUT **')
1400 FORMAT (6X,' IERR (', A6, ') \(=\) ', I5)
1600 FORMAT(6X,'SOLUTION')
END
(d) Output results


\subsection*{2.18.2 DBTSSL, RBTSSL}

Simultaneous Linear Equations (Symmetric Toeplitz Matrix)

\section*{(1) Function}

The symmetric Toeplitz matrix \(R\) of order \(n\) consisting of \(n\) elements \(r_{k}(k=0,1, \cdots, n-1)\) is represented as follows.
\[
R=\left[\begin{array}{cccccc}
r_{0} & r_{1} & r_{2} & \cdots & r_{n-2} & r_{n-1} \\
r_{1} & r_{0} & r_{1} & \cdots & r_{n-3} & r_{n-2} \\
\vdots & \vdots & \ddots & & \vdots & \vdots \\
\vdots & \vdots & & \ddots & \vdots & \vdots \\
r_{n-2} & r_{n-3} & r_{n-4} & \cdots & r_{0} & r_{1} \\
r_{n-1} & r_{n-2} & r_{n-3} & \cdots & r_{1} & r_{0}
\end{array}\right]
\]

DBTSSL or RBTSSL solves the following simultaneous linear equations \(R \boldsymbol{x}=\boldsymbol{b}\) having this symmetric Toeplitz matrix \(R\) as coefficient matrix:
\[
\sum_{j=1}^{n} r_{|i-j|} x_{j}=b_{i} \quad(i=1, \cdots, n)
\]
(2) Usage

Double precision:
CALL DBTSSL (R, N, B, X, W, IERR)
Single precision:
CALL RBTSSL (R, N, B, X, W, IERR)
(3) Arguments
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
D:Double precision real \\
R:Single precision real
\end{tabular}} & \multicolumn{2}{|l|}{Z:Double precision complex C:Single precision complex} & \[
\text { I: }\left\{\begin{array}{l}
\text { INTEGER(4) as for 32bit Integer } \\
\text { INTEGER }(8) \text { as for } 64 \text { bit Integer }
\end{array}\right\}
\] \\
\hline No. & Argument & Type & Size & Input/ Output & Contents \\
\hline 1 & R & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & N & Input & Components \(r_{k}(k=0,1, \cdots, n-1)\) of symmetric Toeplitz matrix \(R\) \\
\hline 2 & N & I & 1 & Input & Order of matrix \(R\) \\
\hline 3 & B & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & N & Input & Constant vector \(\boldsymbol{b}\) \\
\hline 4 & X & \(\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}\) & N & Output & Solution vector \(\boldsymbol{x}\) \\
\hline 5 & W & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & N & Work & Work area \\
\hline 6 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{N}>0\)
(b) \(\mathrm{R}(1) \neq 0\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1 & \(\mathrm{X}(1) \leftarrow \mathrm{B}(1) / \mathrm{R}(1)\) is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3010 & Restriction (b) was not satisfied. & \\
\hline 4000 & The divisor \(x^{(d e)}\) was zero. & \\
\hline
\end{tabular}
(6) Notes
(a) Since this subroutine makes practical use of the properties of the matrix, it is superior to \(\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}\) in terms of memory usage and calculation efficiency. However, the solution may not be obtained theoretically even if the matrix is regular. In particular, if \(x^{(d e)}\), which is divisor, is close to zero during the calculation process, the reliability of the solution obtained will not be guaranteed. (See Section 2.1.3 "Algorithms Used").

\section*{(7) Example}
(a) ProblemSolve the following simultaneous linear equations.
\[
\left[\begin{array}{llll}
r_{0} & r_{1} & r_{2} & r_{3} \\
r_{1} & r_{0} & r_{1} & r_{2} \\
r_{2} & r_{1} & r_{0} & r_{1} \\
r_{3} & r_{2} & r_{1} & r_{0}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
\]
(b) Input data

Array \(\mathrm{R}=\left\{\mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{r}_{3}\right\}\) in which matrix \(R\) components are stored, \(\mathrm{N}=4\) and constant vector \(\boldsymbol{b}\).
(c) Main program
```

 PROGRAM BBTSSL
 ! *** EXAMPLE OF DBTSSL ***
IMPLICIT REAL (8) (A-H,0-Z)
IMPLICIT REAL(8) (A
PARAMETER (LNA =
DIMENSION B(LNA), X(LNA),W(LNA)
!
READ (5,*) N
WRITE (6,1000) N
READ (5,*) (R (I), I=1,N)
DO 10 I = 1,N
WRITE (6,1100) (R(1+ABS (I-J)),J=1,N)
10 CONTINUE
WRITE (6,1200)
DO 20 I = 1,
READ (5,*) B (I)
WRITE (6,1100) B (I)
2O CONTINUE
WRITE (6,1300)
CALL DBTSSL (R, N, B, X, W, IERR)
WRITE (6,1400)',DBTSSL',IERR
IF (IERR.GE. 3000) STOP
WRITE (6,1600)
DO 30 I = 1, N
(6,1100) X(I)
3 0 ~ C O N T I N U E ~
STOP
'1000 FORMAT(, , ,/,/,\&

```
```

 , <*** DBTSSL ***,
 2X,'** INPUT **',',&
 6X,'N N=',I3,/,& M
 1100 FORMAT(7X,10(F11.4))
 1200 FORMAT (6X,''CONSTANT VECTOR')
 1300 FORMAT (2X,'** OUTPUT **')
 1400 FORMAT (6X','IERR (',A6, ') '*'),I5)
 1600 FORMAT(6X', 'SOLUTION')'
 END
 (d) Output results

```
*** DBTSSL ***
** \(\mathrm{INPUT}_{\mathrm{N}}={ }^{* *}\)
\(\mathrm{N}=4\) COEFFICIENT MATRIX
\begin{tabular}{llll}
1.0000 & 2.0000 & 3.0000 & 4.0000 \\
2.0000 & 1.0000 & 2.0000 & 3.0000 \\
3.0000 & 2.0000 & 1.0000 & 2.0000 \\
4.0000 & 3.0000 & 2.0000 & 1.0000
\end{tabular} CONSTANT VECTOR
10.0000
8.0000
8.0000

OUTPUT \({ }^{10.0000}\)
IERR (DBTSSL) \(=0\)
SOLUTION
1.0000
1.0000
1.0000
1.0000

\subsection*{2.18.3 DBVMSL, RBVMSL \\ Simultaneous Linear Equations (Vandermonde Matrix)}
(1) Function

The Vandermonde matrix \(V\) of order \(n\) consisting of \(n\) different elements \(v_{k}(k=1,2, \cdots, n)\) is represented as follows.
\[
V=\left[\begin{array}{cccccc}
1 & v_{1} & v_{1}^{2} & \cdots & v_{1}^{n-2} & v_{1}^{n-1} \\
1 & v_{2} & v_{2}^{2} & \cdots & v_{2}^{n-2} & v_{2}^{n-1} \\
\vdots & \vdots & \ddots & & \vdots & \vdots \\
\vdots & \vdots & & \ddots & \vdots & \vdots \\
1 & v_{n-1} & v_{n-1}^{2} & \cdots & v_{n-1}^{n-2} & v_{n-1}^{n-1} \\
1 & v_{n} & v_{n}^{2} & \cdots & v_{n}^{n-2} & v_{n}^{n-1}
\end{array}\right]
\]

DBVMSL or RBVMSL solves the following simultaneous linear equations \(V \boldsymbol{x}=\boldsymbol{b}\) having this Vandermonde matrix \(V\) as coefficient matrix:
\[
\sum_{j=1}^{n} v_{i}^{j-1} x_{j}=b_{i} \quad(i=1, \cdots, n)
\]
or the following simultaneous linear equations \(V^{T} \boldsymbol{x}=\boldsymbol{b}\) having the matrix \(V^{T}\) as coefficient matrix:
\[
\sum_{j=1}^{n} v_{j}^{i-1} x_{j}=b_{i} \quad(i=1, \cdots, n)
\]

The simultaneous linear equations having the Vandermonde matrix as the coefficient matrix essentially are ill-conditioned, and it is difficult to obtain a solution with good precision except when \(n\) is extremely small (See Note (a)).
(2) Usage

Double precision:
CALL DBVMSL (V, N, B, X, W, ISW, IERR)
Single precision:
CALL RBVMSL (V, N, B, X, W, ISW, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & \multicolumn{1}{|c|}{ Size } & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & V & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & N & Input & \begin{tabular}{l} 
Components \(v_{k}(k=1,2, \cdots, n)\) of Vander- \\
monde matrix \(V\)
\end{tabular} \\
\hline 2 & N & I & 1 & Input & Order \(n\) of matrix \(V\) \\
\hline 3 & B & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & N & Input & Constant vector \(\boldsymbol{b}\) \\
\hline 4 & X & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & N & Output & Solution vector \(\boldsymbol{x}\) \\
\hline 5 & W & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & N & Work & Work area (See Note (b)) \\
\hline 6 & ISW & I & 1 & Input & \begin{tabular}{l} 
Processing switch \\
\(1:\) Solve \(V \boldsymbol{x}=\boldsymbol{b}\) \\
W: Solve \(V^{T} \boldsymbol{x}=\boldsymbol{b}\)
\end{tabular} \\
\hline 7 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(\mathrm{ISW} \in\{1,2\}\)
(b) \(\mathrm{N}>0\)
(c) \(\mathrm{V}(\mathrm{i}) \neq 0 \quad(\mathrm{i}=1, \ldots, \mathrm{~N})\)
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & \(\mathrm{~N}=1\) is specified. & \(\mathrm{X}(1) \leftarrow \mathrm{B}(1)\) is performed. \\
\hline 3000 & Restriction (a) was not satisfied. & \multirow{2}{*}{ Processing is aborted. } \\
\hline 3010 & Restriction (b) was not satisfied. & \\
\hline 3020 & Restriction (c) was not satisfied. & \\
\hline 4000 & \begin{tabular}{l} 
A division by zero occurred during an \\
operation.
\end{tabular} & \multicolumn{1}{|l}{} \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) Since this subroutine makes practical use of the properties of the matrix, it is superior to 2.2.2 \(\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}\) in terms of memory usage. However, the part that obtains the solution via the inverse matrix without performing pivoting may be inferior in terms of calculation precision. In any event, the simultaneous linear equations having the Vandermonde matrix as the coefficient matrix essentially are ill-conditioned, and it is difficult to obtain a solution with good precision except when N is extremely small. When double precision subroutine is used, the maximum value of N , which is the size of the problem for which solutions can be obtained, is about 15 . Also, the simultaneous linear equations having \(V^{T}\) as coefficient matrix usually has better properties than the simultaneous linear equations having \(V\) as coefficient matrix.
(b) The coefficients \(w_{j}\) of the terms of the master polynomial \(P(x)\) defined by the following equation are stored in Work area W.
\[
P(x)=\prod_{k=1}^{n}\left(x-v_{k}\right)=x^{n}+w_{1} x^{n-1}+\cdots+w_{n-1} x+w_{n}
\]

\section*{(7) Example}
(a) ProblemSolve the following simultaneous linear equations.
\[
\left[\begin{array}{cccc}
1 & v_{1} & v_{1}^{2} & v_{1}^{3} \\
1 & v_{2} & v_{2}^{2} & v_{2}^{3} \\
1 & v_{3} & v_{3}^{2} & v_{3}^{3} \\
1 & v_{4} & v_{4}^{2} & v_{4}^{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
\]
(b) Input data

Array \(\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}\) in which matrix \(V\) components are stored, \(\mathrm{N}=4, \mathrm{ISW}=1\) and constant vector \(b\).
(c) Main program
```

 PROGRAM BBVMSL
 EXAMPLE OF DBVMSL ***
 IMPLICIT REAL(8) (A-H,O-Z)
 PARAMETER (LNA = 4)
 DIMENSION V(LNA)
 DIMENSION B(LNA),X(LNA),W(LNA)
 READ (5,*) ISW
 READ (5,*) N
 WRITE (6,1000) ISW, N
 WRITE (6,1000) ISW,N
 READ (5,*) (V(I),I=1,N)
 DO WRITE (}6,1100)(V(I)**(J-1),J=1,N
 10 CONTINUE
 WRITE (6,1200)
 DO 20 I = 1, N
 READ (5,*) B(I)
 WRITE (6,1100) B(I)
 20
 CONTINUE
 WRITE (6,1300)
 CALL DBVMSL (V, N, B, X, W, ISW, IERR)
 WRITE (6,1400) 'DBVMSL',IERR
 IF (IERR .GE. 3000) STOP
 WRITE (6,1600)
 DO 30 I = 1, N
 WRITE (6,1100) X(I)
 30 CONTINUE
 STOP
 1000 FORMAT(' ',/,/,\&
2X,'** INPUT **','/,\&
6X,',ISW =',I3,/,\&
6X,''COEFFICIENT MATRIX')

```
```

 1100 FORMAT(7X,10(F11.4))
 1200 FORMAT (6X,',CONSTANT VECTOR')
 1300 FORMAT(2X,',** OUTPUT **')
 1400 FORMAT(6X,',IERR (',A6
 END
 (d) Output results
*** DBVMSL ***
** INPUT **
ISW $=$
$N=4$
COEFFICIENT MATRIX

| 1.0000 | 2.0000 | 4.0000 | 8.0000 |
| :--- | ---: | ---: | ---: |
| 1.0000 | 3.0000 | 9.0000 | 27.0000 |
| 1.0000 | 4.0000 | 16.0000 | 64.0000 |
| 1.0000 | 5.0000 | 25.0000 | 125.0000 |

CONSTANT VECTOR
15.0000
40.0000
85.0000
** OUTPUT **
IERR (DBVMSL) $=0$
SOLUTION
1.0000
.0000
1.0000
1.0000

```

\subsection*{2.19 REAL UPPER TRIANGULAR MATRIX (TWO-DIMENSIONAL ARRAY TYPE)}

\subsection*{2.19.1 DBTUSL, RBTUSL}

Simultaneous Linear Equations (Real Upper Triangular Matrix)
(1) Function

DBTUSL or RBTUSL solves the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having a real upper triangular matrix \(A\) (two-dimensional array type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBTUSL (A, LNA, N, B, IERR)
Single precision:
CALL RBTUSL (A, LNA, N, B, IERR)
(3) Arguments
\(\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array}\) I: \(\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \(\mathrm{B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1,1)\) is performed. \\
\hline 1000 & N was equal to 1. & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the coefficient matrix \\
\(A\). The result may not be obtained with \\
a good accuracy.
\end{tabular} \\
\hline 2100 & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
The coefficient matrix \(A\) has a 0.0 diago- \\
nal element. \\
\(A\) is singular.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes

None
(7) Example
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{rrrr}
1 & 2 & -3 & 4 \\
0 & 4 & -1 & 1 \\
0 & 0 & 5 & -1 \\
0 & 0 & 0 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-10 \\
-9 \\
-3 \\
-16
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(A\), LNA \(=11, \mathrm{~N}=4\) and constant vector \(\boldsymbol{b}\).
(c) Main program
```

PROGRAM BBTUSL
! *** EXAMPLE OF DBTUCO, DBTULS $* * *$
IMPLICIT REAL (8) (A-H,O-Z)
PARAMETER (LNA = 11)
DIMENSION A (LNA,LNA), B(LNA),W1 (LNA)
READ $(5, *) \mathrm{N}$
WRITE $(6,1000) \mathrm{N}$
DO $20 \mathrm{I}=1$, N
DO $10 \mathrm{~J}=1, \mathrm{~N}$
10 CONTINUE
10 CONTINUE
DO $30 \mathrm{I}=1, \mathrm{~N}$
READ $(5, *)(A(I, J), J=I, N)$
WRITE $(6,1100)(A(I, J), J=1, N)$
30 CONTINUE
$\operatorname{READ}(5, *)(B(I), I=1, N)$
WRITE $(6,1200)(B(I), I=1, N)$
WRITE (6,1300)
CALL DBTUCO (A , LNA , N , COND, W1 , IERR)
WRITE $(6,1400)$ 'DBTUCO', IERR
IF (IERR . GE. 3000) STOP
COND $=1.0 D 0 / \mathrm{COND}$
CALL DBTUSL (A,LNA, N, B , KERR)
WRITE $(6,1400)$ 'DBTUSL', KERR
WRITE $(6,1500)$ COND
WRITE $(6,1600)(I, B(I), I=1, N)$
STOP
1000 FORMAT(, , ,/,/,\&
***' DBTUCD,DBTUSL $* * * ', /, \&$
$2 \mathrm{X}, ' * *$
$6 \mathrm{X}, ' \mathrm{~N}$
INPUT
, I3,/, \&
6X,'N =', I3, /, \&
T (7X,4(F11.4)
1200 FORMAT (6X,'CONSTANT VECTOR',/,(7X,F10.4))

```

1300 FORMAT (2X,'** OUTPUT **')
1400 FORMAT (6X,' IERR (',A6,') =', I5)
 END
(d) Output results
*** DBTUCO,DBTUSL ***
** INPUT **
N \(\mathrm{N}=\stackrel{4}{\text { E }}\) CFFICNT MATRIX
\begin{tabular}{lrrr}
1.0000 & 2.0000 & -3.0000 & 4.0000 \\
0.0000 & 4.0000 & -1.0000 & 1.0000 \\
0.0000 & 0.0000 & 5.0000 & -1.0000 \\
0.0000 & 0.0000 & 0.0000 & 8.0000
\end{tabular}

CONSTANT VECTOR
\(-10.0000\)
-9.0000
-3.0000
-3.0000
-16.0000
** OUTPUT **
IERR (DBTUCO) \(=0\)
IERR (DBTUSL) \(=0\)
CONDITION NUMBER \(=0.1074561404 \mathrm{D}+02\)
SOLUTION
\(\mathrm{X}(1)=-0.1000000000 \mathrm{D}+01\)
\(X(2)=-0.2000000000 \mathrm{D}+01\)
\(X(3)=-0.1000000000 \mathrm{D}+01\)
\(\mathrm{X}(4)=-0.2000000000 \mathrm{D}+01\)

\subsection*{2.19.2 DBTUCO, RBTUCO}

\section*{Condition Number of a Real Upper Triangular Matrix}
(1) Function

DBTUCO or RBTUCO obtains the condition number of the real upper triangular matrix \(A\) (two-dimensional array type).
(2) Usage

Double precision:
CALL DBTUCO (A, LNA, N, COND, W1, IERR)
Single precision:
CALL RBTUCO (A, LNA, N, COND, W1, IERR)
(3) Arguments
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\
\text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{c} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & LNA, N & Input & \begin{tabular}{l} 
Real upper triangular matrix \(A\) \\
(two-dimensional array type)
\end{tabular} \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & COND & \(\left\{\begin{array}{l}\text { D } \\
\mathrm{R}\end{array}\right\}\) & 1 & Output & Reciprocal of the condition number \\
\hline 5 & W1 & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & N & Work & Work area \\
\hline 6 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & COND \(\leftarrow 1.0\) is performed. \\
\hline 2100 & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the coefficient matrix \\
\(A\). The result may not be obtained with \\
a good accuracy.
\end{tabular} & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
Matrix \(A\) has a 0.0 diagonal element. \\
\(i\) is the number of the first 0.0 diagonal \\
element.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) Although the condition number is defined by \(\|A\| \cdot\left\|A^{-1}\right\|\), an approximate value is obtained by this subroutine.

\subsection*{2.19.3 DBTUDI, RBTUDI}

\section*{Determinant and Inverse Matrix of a Real Upper Triangular Matrix}

\section*{(1) Function}

DBTUDI or RBTUDI obtains the determinant and inverse matrix of the real upper triangular matrix \(A\) (two-dimensional array type).
(2) Usage

Double precision:
CALL DBTUDI (A, LNA, N, DET, ISW, IERR)
Single precision:
CALL RBTUDI (A, LNA, N, DET, ISW, IERR)
(3) Arguments
\begin{tabular}{ll}
\begin{tabular}{l} 
D:Double precision real \\
R:Single precision real
\end{tabular} & \begin{tabular}{l} 
Z:Double precision complex \\
C:Single precision complex
\end{tabular}
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\
\text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & & LNA, N & Input \\
\cline { 4 - 6 } & & Output & \begin{tabular}{l} 
Real upper triangular matrix \(A\) \\
(two-dimensional array type)
\end{tabular} \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & DET & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & 2 & Output & Determinant of matrix \(A((\) See Note (b)) \\
\hline 5 & ISW & I & 1 & Input & \begin{tabular}{l} 
Processing switch \\
ISW \(>0:\) Obtain determinant.
\end{tabular} \\
\hline & & & & \begin{tabular}{l} 
ISW=0:Obtain determinant and inverse ma- \\
trix. \\
ISW \(<0:\) Obtain inverse matrix.
\end{tabular} \\
\hline 6 & IERR & I & 1 & Output & \begin{tabular}{l} 
Error indicator
\end{tabular} \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{|c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1)\) \\
& & \(\mathrm{DET}(2) \leftarrow 0.0\) \\
& & \(\mathrm{~A}(1,1) \leftarrow 1.0 / \mathrm{A}(1,1)\) are performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) Since the inverse matrix of an upper triangular matrix is an upper triangular matrix, the inverse matrix \(A^{-1}\) is stored only in the upper triangular portion of array A .
\[
\begin{aligned}
& \text { Storage status within array } \mathrm{A}(\text { LNA, } \mathrm{K})
\end{aligned}
\]

\section*{Remarks}
a. LNA \(\geq \mathrm{N}\) and \(\mathrm{N} \leq \mathrm{K}\) must hold.
b. Input time values of elements indicated by asterisks \((*)\) are not guaranteed.

Figure 2-16 Storage Status of the Inverse Matrix (Upper Triangular Matrix)
(b) The determinant is given by the following expression:
\[
\operatorname{det}(A)=\operatorname{DET}(1) \times\left(10.0^{\mathrm{DET}(2)}\right)
\]

Scaling is performed at this time so that:
\[
1.0 \leq|\operatorname{DET}(1)|<10.0
\]
(c) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form \(A^{-1} \boldsymbol{b}\) or \(A^{-1} B\) in the numerical calculations, it must be calculated by solving the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) for the vector \(\boldsymbol{x}\) or by solving the simultaneous linear equations with multiple right-hand sides \(A X=B\) for the matrix \(X\), respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

\subsection*{2.20 REAL LOWER TRIANGULAR MATRIX (TWO-DIMENSIONAL ARRAY TYPE)}

\subsection*{2.20.1 DBTLSL, RBTLSL}

Simultaneous Linear Equations (Real Lower Triangular Matrix)
(1) Function

DBTLSL or RBTLSL solves the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) having a real lower triangular matrix \(A\) (two-dimensional array type) as coefficient matrix.
(2) Usage

Double precision:
CALL DBTLSL (A, LNA, N, B, IERR)
Single precision:
CALL RBTLSL (A, LNA, N, B, IERR)
(3) Arguments
D:Double precision real \begin{tabular}{l} 
Z:Double precision complex \\
R:Single precision real \\
C:Single precision complex
\end{tabular} I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\
\text { INTEGER(8) as for 64bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & Size & \begin{tabular}{l} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{l}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\text { D } \\
\text { R }\end{array}\right\}\) & LNA, N & Input & \begin{tabular}{l} 
Coefficient matrix \(A\) (real lower triangular ma- \\
trix, two-dimensional array type)
\end{tabular} \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & B & \(\left\{\begin{array}{l}\text { D } \\
R\end{array}\right\}\) & N & Input & Constant vector \(\boldsymbol{b}\) \\
\cline { 5 - 7 } & & I & 1 & Output & Solution \(\boldsymbol{x}\) \\
\hline 5 & IERR & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{~B}(1) \leftarrow \mathrm{B}(1) / \mathrm{A}(1)\) is performed. \\
\hline 2100 & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the coefficient matrix \\
\(A\). The result may not be obtained with \\
a good accuracy.
\end{tabular} & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
The coefficient matrix \(A\) has a 0.0 diago- \\
nal element. \\
\(i\) is the number of the first 0.0 diagonal \\
element. \\
The matrix \(A\) is singular.
\end{tabular} \\
\hline
\end{tabular}
(6) Notes

None
(7) Example
(a) Problem

Solve the following simultaneous linear equations.
\[
\left[\begin{array}{rrrr}
5 & 0 & 0 & 0 \\
-1 & 4 & 0 & 0 \\
2 & 1 & 2 & 0 \\
3 & 2 & 7 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
5 \\
3 \\
5 \\
22
\end{array}\right]
\]
(b) Input data

Coefficient matrix \(\mathrm{A}, \mathrm{LNA}=11, \mathrm{~N}=4\) and constant vector B .
(c) Main program
```

 PROGRAM BBTLSL
 EXAMPLE OF DBTLCO,DBTLSL ***
 IMPLICIT REAL(8) (A-H,O-Z)
 PARAMETER (LNA = 11)
 PARAMETER (LNA = 11) ,B(LNA),W1(LNA)
 READ (5,*) N
 WRITE (6,1000) N
 DO 20 I = 1, N
 DO 10 J = 1, N
 A(I,J) = 0.0DO
 1 0
 CONTINU
 20 CONTINUE
 DO 30 I = 1, N
 READ (5,*) (A (I, J), J=1, I)
 WRITE (6,1100) (A(I,J),J=1,N)
 30 CONTINUE
 READ (5,*) (B(I),I=1,N)
 WRITE (6,1200) (B (I), I=1,N)
 WRITE (6,1300)
 CALL DBTLCO (A,LNA,N,COND,W1,IERR)
 WRITE (6,1400) 'DBTLCD',IERR
 IF (IERR'.GE. 3000) STO
 COND = 1.ODO/COND
 CALL DBTLSL (A,LNA,N,B,KERR)
 WRITE (6,1400) 'DBTLSL',KERR
 WRITE (6,1500) COND
 WRITE (6,1600) (I,B(I),I=1,N)
 WRITE
 1000 FORMAT(', ',/,/,\&
2X,'** (N** INPUT, NBTL',/,\&***',/,\&

```
```

6X,'N=',I3,/,\& MATRIX ')
1100 FORMAT (4X,'(F11.4)) (')
1300 FORMAT (2X','** OUTPUT ,**'),
1400 FORMAT (6X,',IERR (',AG,') =',I5)
1500 FORMAT (6XX,','CONDITIONN NUMBER,=',D18.10)
1600 FORMAT(6X','SOLUTION',/,(8X,'X(',I2;') =',D18.10))
END
(d) Output results

```
*** DBTLCO,DBTLSL ***
** INPUT **
\(\mathrm{N}=\stackrel{4}{\text { COEFFICIENT MATRIX }}\)
\begin{tabular}{rrrr} 
& & \\
5.0000 & 0.0000 & 0.0000 & 0.0000 \\
-1.0000 & 4.0000 & 0.0000 & 0.0000 \\
2.0000 & 1.0000 & 2.0000 & 0.0000 \\
3.0000 & 2.0000 & 7.0000 & 10.0000 \\
CONSTANT VECTOR & & &
\end{tabular}

CONSTANT VECTOR
5.0000
3.0000
5.0000
** OUTPUT 22.0000
IERR (DBTLCO) \(=0\)
IERR (DBTLSL) \(=0\)
CONDITION NUMBER \(=0.6966071429 \mathrm{D}+01\) SOLUTION
\(X(1)=0.1000000000 \mathrm{D}+01\)
\(X(2)=0.1000000000 \mathrm{D}+01\)
\(X(3)=0.1000000000 \mathrm{D}+01\)

\subsection*{2.20.2 DBTLCO, RBTLCO}

Condition Number of a Real Lower Triangular Matrix
(1) Function

DBTLCO or RBTLCO obtains the condition number of the real lower triangular matrix \(A\) (two-dimensional array type).
(2) Usage

Double precision:
CALL DBTLCO (A, LNA, N, COND, W1, IERR)
Single precision:
CALL RBTLCO (A, LNA, N, COND, W1, IERR)
(3) Arguments
\begin{tabular}{ll} 
D:Double precision real & Z:Double precision complex \\
R:Single precision real & C:Single precision complex
\end{tabular}\(\quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for } 32 \text { bit Integer } \\
\text { INTEGER(8) as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|l|}
\hline No. & Argument & Type & \multicolumn{1}{|c|}{ Size } & \begin{tabular}{c} 
Input/ \\
Output
\end{tabular} & \multicolumn{1}{|c|}{ Contents } \\
\hline 1 & A & \(\left\{\begin{array}{l}\mathrm{D} \\
\mathrm{R}\end{array}\right\}\) & LNA,N & Input & \begin{tabular}{l} 
Real lower triangular matrix \(A\) \\
(two-dimensional array type)
\end{tabular} \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & COND & \(\left\{\begin{array}{l}\text { D } \\
\text { R }\end{array}\right\}\) & 1 & Output & Reciprocal of the condition number \\
\hline 5 & W1 & \(\left\{\begin{array}{l}\text { D } \\
R\end{array}\right\}\) & N & Work & Work area \\
\hline 6 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA

\section*{(5) Error indicator}
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & COND \(\leftarrow 1.0\) is performed. \\
\hline 2100 & \begin{tabular}{l} 
There existed the diagonal element which \\
was close to zero in the coefficient matrix \\
\(A\). The result may not be obtained with \\
a good accuracy.
\end{tabular} & Processing continues. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline \(4000+i\) & \begin{tabular}{l} 
Matrix \(A\) has a 0.0 diagonal element. \\
\(i\) is the number of the first 0.0 diagonal \\
element.
\end{tabular} & \\
\hline
\end{tabular}
(6) Notes
(a) Although the condition number is defined by \(\|A\| \cdot\left\|A^{-1}\right\|\), an approximate value is obtained by this subroutine.

\subsection*{2.20.3 DBTLDI, RBTLDI}

\section*{Determinant and Inverse Matrix of a Real Lower Triangular Matrix}
(1) Function

DBTLDI or RBTLDI obtains the determinant and inverse matrix of the real lower triangular matrix \(A\) (two-dimensional array type).
(2) Usage

Double precision:
CALL DBTLDI (A, LNA, N, DET, ISW, IERR)
Single precision:
CALL RBTLDI (A, LNA, N, DET, ISW, IERR)
(3) Arguments
\(\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad\) I: \(\left\{\begin{array}{l}\text { INTEGER(4) as for } 32 \text { bit Integer } \\ \text { INTEGER(8) as for } 64 \text { bit Integer }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Argument & Type & Size & \begin{tabular}{l}
Input/ \\
Output
\end{tabular} & Contents \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{A} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{D} \\
\mathrm{R}
\end{array}\right\}
\]} & \multirow[t]{2}{*}{LNA, N} & Input & Real lower triangular matrix \(A\) (two-dimensional array type) \\
\hline & & & & Output & Inverse matrix of matrix \(A\) (See Note (a)) \\
\hline 2 & LNA & I & 1 & Input & Adjustable dimension of array A \\
\hline 3 & N & I & 1 & Input & Order of matrix \(A\) \\
\hline 4 & DET & \(\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}\) & 2 & Output & Determinant of matrix \(A(\) (See Note (b) ) \\
\hline 5 & ISW & I & 1 & Input & \begin{tabular}{l}
Processing switch \\
ISW \(>0\) :Obtain determinant \\
ISW \(=0:\) Obtain determinant and inverse matrix \\
ISW \(<0\) :Obtain inverse matrix
\end{tabular} \\
\hline 6 & IERR & I & 1 & Output & Error indicator \\
\hline
\end{tabular}
(4) Restrictions
(a) \(0<\mathrm{N} \leq\) LNA
(5) Error indicator
\begin{tabular}{|c|l|l|}
\hline IERR value & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Processing } \\
\hline 0 & Normal termination. & \\
\hline 1000 & N was equal to 1. & \(\mathrm{DET}(1) \leftarrow \mathrm{A}(1,1)\) \\
& & \(\mathrm{DET}(2) \leftarrow 0.0\) \\
& & \(\mathrm{~A}(1,1) \leftarrow 1.0 / \mathrm{A}(1,1)\) are performed. \\
\hline 3000 & Restriction (a) was not satisfied. & Processing is aborted. \\
\hline
\end{tabular}

\section*{(6) Notes}
(a) Since the inverse matrix of an lower triangular matrix is an lower triangular matrix, the inverse matrix \(A^{-1}\) is stored only in the lower triangular portion of array A .
\[
\begin{aligned}
& \text { Storage status within array A(LNA, K) } \\
& \left.\begin{array}{c}
\text { Inverse matrix } A^{-1} \\
{\left[\begin{array}{ccccc}
\tilde{a}_{1,1} & 0.0 & 0.0 & \cdots & 0.0 \\
\tilde{a}_{2,1} & \tilde{a}_{2,2} & 0.0 & \cdots & 0.0 \\
\tilde{a}_{3,1} & \tilde{a}_{3,2} & \tilde{a}_{3,3} & \cdots & 0.0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\tilde{a}_{5,1} & \tilde{a}_{5,2} & \tilde{a}_{5,3} & \cdots & \tilde{a}_{5,5}
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
\tilde{a}_{1,1} & * & * & \cdots & * \\
\tilde{a}_{2,1} & \tilde{a}_{2,2} & * & \cdots & * \\
\tilde{a}_{3,1} & \tilde{a}_{3,2} & \tilde{a}_{3,3} & \cdots & * \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\tilde{a}_{5,1} & \tilde{a}_{5,2} & \tilde{a}_{5,3} & \cdots & \tilde{a}_{5,5} \\
\leftarrow-----\mathrm{N}-\cdots-\cdots \\
\leftarrow-\cdots \\
\leftarrow-------\mathrm{K}-\cdots-\cdots-\cdots
\end{array}\right.} \\
\end{array}\right] \mathrm{N}
\end{aligned}
\]

\section*{Remarks}
a. \(\quad \mathrm{LNA} \geq \mathrm{N}\) and \(\mathrm{N} \leq \mathrm{K}\) must hold.
b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2-17 Storage Status of the Inverse Matrix (Lower Triangular Matrix)
(b) The determinant is given by the following expression:
\[
\operatorname{det}(A)=\operatorname{DET}(1) \times\left(10.0^{\operatorname{DET}(2)}\right)
\]

Scaling is performed at this time so that:
\[
1.0 \leq|\operatorname{DET}(1)|<10.0
\]
(c) The inverse matrix should not be calculated, except the inverse matrix itself is required, or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix appears in the form \(A^{-1} \boldsymbol{b}\) or \(A^{-1} B\) in the numerical calculations, it must be calculated by solving the simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\) for the vector \(\boldsymbol{x}\) or by solving the simultaneous linear equations with multiple right-hand sides \(A X=B\) for the matrix \(X\), respectively. Mathematically, solving these kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical calculations, these are usually extremely different. The calculation efficiency for obtaining inverse matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is worse than for solving the simultaneous linear equations, and the calculation precision also declines.

\section*{Appendix A}

\section*{GLOSSARY}

\section*{(1) Matrix}

An \(m \times n\) matrix \(A\) is rectangular array of \(m \times n\) elements \(a_{i, j}(i=1,2, \cdots, m ; j=1,2, \cdots, n)\) as shown below.
\[
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right]
\]

The element \(a_{i, j}\) is called the \((i, j)\)-th element of matrix \(A\). The elements of a matrix are considered to be complex or real numbers. In particular, a matrix having complex numbers as its elements is called a complex matrix, and a matrix having real numbers as its elements is called a real matrix. Also, if \(m=n\), the matrix \(A\) is called square matrix.
The matrix \(A\) is sometimes denotes as \(\left(a_{i j}\right)\). In this manual, \(\left(a_{i, j}\right)\) is used for distinguishing between the row subscript \(i\) and column subscript \(j\) as necessary.

\section*{(2) (Number) vector}
\(1 \times n\) matrix is called a row vector of size \(n\), and an \(m \times 1\) matrix is called a column vector of size \(m\). Unless it is specifically necessary to distinguish between them, both of these are simply called vectors. Mathematically, a vector is defined as a more abstract concept. The "vector" described here is called a number vector. For the definition of an abstract vector, see the explanation of "vector space."

\section*{(3) Matrix product}

The matrix product \(A B=\left(c_{i, l}\right)\) of the two matrices \(A=\left(a_{i, j}\right)\) and \(B=\left(b_{k, l}\right)\) is defined as follows
\[
c_{i, l}=\sum_{j} a_{i, j} \cdot b_{j, l}
\]
only when the number of columns in matrix \(A\) is equal to the number of rows in matrix \(B\).
(4) Matrix-vector product

If the matrix \(B\) in the matrix product \(A B\) is a column vector \(\boldsymbol{x}\), then the product \(A \boldsymbol{x}\) is called the matrixvector product.

\section*{(5) Transpose of matrix}

The matrix \(A^{\prime}=\left(a_{j, i}\right)\) formed by interchanging the rows and columns in \(m \times n\) matrix \(A=\left(a_{i, j}\right)(i=\) \(1,2, \cdots, m ; j=1,2, \cdots, n)\) is called the transpose of matrix \(A\) and is represented by \(A^{T}\). The transpose may be also represented as \({ }^{t} A\).
(6) (Main) diagonal of a matrix

The list of elements \(a_{i, i}(i=1,2, \cdots, n)\) in an \(n \times n\) square matrix \(A=\left(a_{i, j}\right)(i, j=1,2, \cdots, n)\) is called the (main) diagonal, and the elements are called the (main) diagonal elements. Also, a matrix having nonzero elements only on the diagonal is called a diagonal matrix.

\section*{(7) Unit matrix}

An \(n \times n\) matrix \(A=\left(a_{i, j}\right)(i, j=1,2, \cdots, n)\) in which all the diagonal elements \(a_{i, i}(i=1,2, \cdots, n)\) are 1 and all the non-diagonal elements are 0 is called a unit matrix and is represented using the symbol \(E\) or \(I\). This satisfies \(A E=E A=A\) for any matrix \(A\).
(8) Inverse matrix

For a square matrix \(A\), if a square matrix \(B\) exist that satisfies \(A B=B A=E\) (where \(E\) is the unit matrix), then the matrix \(B\) is called the inverse matrix of matrix \(A\) and is represented by the symbol \(A^{-1}\).
(9) General inverse matrix

For an \(m \times n\) matrix \(A\), an \(n \times m\) matrix \(X\) that satisfies the following relationships exists uniquely. This matrix \(X\), which is called the (Moore-Penrose) general inverse matrix of matrix \(A\), is represented by the symbol \(A^{\dagger}\).
- \(A X A=A\)
- \(X A X=X\)
- \((A X)^{T}=A X\)
- \((X A)^{T}=X A\)

\section*{(10) Lower triangle and upper triangle of a matrix}

The collection of elements \(a_{i, j}(i>j)\) in an \(n \times n\) square matrix \(A=\left(a_{i, j}\right)(i, j=1,2, \cdots, n)\) is called the lower triangle and the collection of elements \(a_{i, j}(i<j)\) is called the upper triangle. The diagonal may also be included in the definition of the upper and lower triangles. A matrix having nonzero elements only in the lower triangle that includes the diagonal is called a lower triangular matrix, and a matrix having nonzero elements only in the upper triangle that includes the diagonal is called an upper triangular matrix.
(11) Conjugate transpose matrix

The transpose of a matrix having the complex conjugates of the elements of a complex matrix \(A\) as elements is called conjugate transpose matrix and is represented by the symbol \(A^{*}\). If the elements of a matrix are real numbers, then \(A^{*}=A^{T}\).
(12) Symmetric matrix

A square matrix for which \(A=A^{T}\) holds is called a symmetric matrix. In a symmetric matrix, \(a_{i, j}=a_{j, i}\).
(13) Hermitian matrix

A square matrix for which \(A=A^{*}\) holds is called a Hermitian matrix. In a Hermitian matrix, \(a_{i, j}\) and \(a_{j, i}\) are complex conjugates.
(14) Unitary matrix

The square matrix \(U\) for which \(U U^{*}=I\) ( \(I\) is the unit matrix) holds is called the unitary matrix.

\section*{(15) Orthogonal matrix}

The real square matrix \(A\) for which \(A A^{T}=I\) ( \(I\) is the unit matrix) holds is called the orthogonal matrix.
(16) Subdiagonal of a matrix

The list of elements \(a_{i, i+p}(i=1,2, \cdots, n-p)\) in an \(n \times n\) square matrix \(A=\left(a_{i, j}\right)(i, j=1,2, \cdots, n)\) is called the \(p\)-th upper subdiagonal, and the list of elements \(a_{i+q, i}(i=1,2, \cdots, n-q)\) is called the \(q\)-th lower subdiagonal. The elements are called the \(p\)-th upper subdiagonal elements and \(q\)-th lower subdiagonal elements, respectively. Also, both of these collectively may be referred to simply as subdiagonal elements.
(17) Band matrix

A matrix having nonzero elements only on the main diagonal and in several upper and lower subdiagonals near the main diagonal in an \(n \times n\) square matrix \(A=\left(a_{i, j}\right)(i, j=1,2, \cdots, n)\) is called a band matrix. If the subdiagonals containing nonzero elements that are furthest from the diagonal are the \(u\)-th upper subdiagonal and \(l\)-th lower subdiagonal, the values \(u\) and \(l\) are called the upper bandwidth and lower bandwidth, respectively. if \(u=l\), this is simply called the bandwidth.
(18) Tridiagonal matrix

A matrix in which the upper and lower bandwidths are both 1 is called a tridiagonal matrix.
(19) Hessenberg matrix

A matrix in which all lower triangle elements except the first lower subdiagonal are zero in an \(n \times n\) square matrix \(A=\left(a_{i, j}\right)(i, j=1,2, \cdots, n)\) is called a Hessenberg matrix. To obtain the eigenvalues of a matrix, a general matrix is converted to this kind of matrix.

\section*{(20) Quasi-upper triangular matrix}

An \(n \times n\) square matrix \(A=\left(a_{i, j}\right)(i, j=1,2, \cdots, n)\) for which at least one of every two consecutive subdiagonal elements of the first lower subdiagonal is 0 and all lower triangular elements excluding the first lower subdiagonal are 0 is called a quasi-upper triangular matrix. This is a special case of a Hessenberg matrix.

\section*{(21) Sparse matrix}

In general, a matrix in which the number of nonzero elements is relatively small compared to the total number of elements is called a sparse matrix. If the arrangement of the elements within a sparse matrix has some kind of regularity and an effective method of solving a problem is created by making practical use of this regularity, this matrix is called a regular sparse matrix. A sparse matrix that is not a regular sparse matrix is called an irregular sparse matrix. For example, a band matrix having a small bandwidth is a type of regular sparse matrix.

\section*{(22) Regular and singular matrices}

If a square matrix \(A\) has an inverse matrix, the matrix \(A\) is said to be regular. A matrix that is not regular is said to be singular. The solutions of system of simultaneous linear equations having a regular matrix as coefficients are uniquely determined. However, since calculations are actually performed using a finite number of digits, the effects of rounding errors cannot be avoided, and the distinction between a regular and singular matrix becomes ambiguous. For example, solutions may apparently be obtained even when a system of simultaneous linear equations is solved numerically using a mathematically singular matrix. Therefore, when solving a system of simultaneous linear equations having a nearly singular matrix as coefficients, sufficient testing is required concerning the appropriateness of solutions that are apparently obtained.

\section*{(23) LU decomposition}

To use a direct method to solve the system of simultaneous linear equations \(A \boldsymbol{x}=\boldsymbol{b}\), first decompose the coefficient matrix \(A\) into the product \(A=L U\) of the lower triangular matrix \(L\) and upper triangular matrix \(U\). This decomposition is called an LU decomposition, If this kind of decomposition is performed, the solution \(\boldsymbol{x}\) of the system of simultaneous linear equations is obtained by sequentially solving the following equations:
\[
\begin{aligned}
L \boldsymbol{y} & =\boldsymbol{b} \\
U \boldsymbol{x} & =\boldsymbol{y}
\end{aligned}
\]

Since the coefficient matrix of these two simultaneous linear equations is a triangular matrix, they can be easily solved by using forward-substitution and backward-substitution. If the matrix \(A\) is regular, for example, if the diagonal elements of matrix \(L\) are fixed at 1 , the \(L U\) decomposition of the matrix \(A\) is uniquely determined. Also, when solving a system of simultaneous linear equations, since LU decomposition generally is performed while performing partial pivoting, if \(P\) is a row exchange matrix due to pivoting, triangular matrices \(L\) and \(U\) for which \(P A=L U\) is satisfied are obtained, respectively.
(24) \(\mathrm{U}^{\mathrm{T}} \mathrm{DU}\) decomposition

If the coefficient matrix of a system of simultaneous linear equations is a symmetric matrix, the relationship \(L=U^{T} D\) holds between the lower triangular matrix \(L\) and upper triangular matrix \(U\) obtained by performing an LU decomposition without performing pivoting. Here, \(D\) is a diagonal matrix. Therefore, the system of simultaneous linear equations can be solved by explicitly obtaining only \(D\) and one of \(L\) and \(U\). The decomposition that explicitly obtains \(U\) and \(D\) from coefficient matrix is called the \(\mathrm{U}^{\mathrm{T}} \mathrm{DU}\) decomposition.

\section*{(25) U*DU decomposition}

If the coefficient matrix of a system of simultaneous linear equations is a Hermitian matrix, the relationship \(L=U^{*} D\) holds between the lower triangular matrix \(L\) and upper triangular matrix \(U\) obtained by performing an LU decomposition without performing pivoting. Here, \(D\) is a diagonal matrix. Therefore, the system of simultaneous linear equations can be solved by explicitly obtaining only \(D\) and one of \(L\) and \(U\). The decomposition that explicitly obtains \(U\) and \(D\) from coefficient matrix is called the \(\mathrm{U}^{*} \mathrm{DU}\) decomposition.
(26) Positive definite

If a real symmetric matrix or Hermitian matrix \(A\) satisfies \(\boldsymbol{x}^{*} A \boldsymbol{x}>0\) for an arbitrary vector \(\boldsymbol{x}(\boldsymbol{x} \neq \mathbf{0})\), it is said to be positive (definite). If it satisfies \(\boldsymbol{x}^{*} A \boldsymbol{x}<0\), it is said to be negative. The fact that the matrix \(A\) is a positive definite matrix is equivalent to the following two condition.
(a) All of the eigenvalues of matrix \(A\) are positive.
(b) All principal minors of matrix \(A\) are positive.

Although, mathematically, an LU decomposition can be performed for a positive definite matrix without performing pivoting, if pivoting is not actually performed, an LU decomposition may not be able to be performed numerically with stability.
(27) Real eigenvalue

The eigenvalue of a real square matrix are all real if and only if the matrix is a product of two real symmetric matrices. Also, the eigenvalue of a complex square matrix are all real if and only if the matrix is a product of two Hermitian matrices.

\section*{(28) Diagonally dominant}

If the following holds for an \(n \times n\) square matrix \(A=\left(a_{i, j}\right)(i, j=1,2, \cdots, n)\)
\[
\left|a_{i, i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i, j}\right| \quad(i=1,2, \cdots, n)
\]
matrix \(A\) is called a diagonally dominant matrix. Although, mathematically, an LU decomposition can be performed for a diagonally dominant matrix without performing pivoting, if pivoting is not actually performed, an LU decomposition may not be able to be performed numerically with stability.

\section*{(29) Fill-in}

When an LU decomposition of a sparse matrix is performed, changing elements that had originally been zero to nonzero values due to the calculation is called fill-in.
(30) Envelope method

When performing a \(\mathrm{U}^{\mathrm{T}} \mathrm{DU}\) decomposition of an \(n \times n\) symmetric sparse matrix \(A\), the envelope method executes the decomposition by selecting the first nonzero element of each row of matrix \(A\) and the diagonal elements as an envelope and considering only the elements within the envelope. This technique uses the fact that fill-in occurs only within the envelope when \(\mathrm{U}^{\mathrm{T}} \mathrm{DU}\) decomposition of the matrix is performed.
The envelope method performs the decomposition by considering the lower triangular portion of the symmetric matrix. A technique that performs a similar decomposition by considering the upper triangular portion is known as the skyline method.

\section*{(31) Vector space}

If the set \(V\) satisfies conditions (a) and (b) \(V\) is called a vector space and its elements are called vectors.
(a) The sum \(\boldsymbol{a}+\boldsymbol{b}\) of two elements \(\boldsymbol{a}\) and \(\boldsymbol{b}\) of \(V\) is uniquely determined as an element of \(V\) and satisfies the following properties.
i. \((\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c}) \quad\) (associative law)

Where, \(\boldsymbol{a}, \boldsymbol{b}\) and \(\boldsymbol{c}\) are arbitrary elements of \(V\).
ii. \(\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a}\) (commutative law)

Where, \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are arbitrary elements of \(V\).
iii. An element \(\mathbf{0}\) of \(V\), which is called the zero vector, exists and satisfies \(\boldsymbol{a}+\mathbf{0}=\boldsymbol{a}\) for an arbitrary element \(\boldsymbol{a}\) of \(V\).
iv. For an arbitrary element \(\boldsymbol{a}\) of \(V\), exactly one element \(\boldsymbol{b}\) of \(V\) exists for which \(\boldsymbol{a}+\boldsymbol{b}=\mathbf{0}\). This element \(\boldsymbol{b}\) is represented as \(-\boldsymbol{a}\).
(b) For an arbitrary element \(\boldsymbol{a}\) of \(V\) and complex number \(c, c \boldsymbol{a}\) (the \(c\) multiple of \(\boldsymbol{a}\) ) is uniquely determined as an element of \(V\) and satisfies the following properties (scalar multiple).
i. \(c(\boldsymbol{a}+\boldsymbol{b})=c \boldsymbol{a}+c \boldsymbol{b}\) (vector distributive law)
ii. \((c+d) \boldsymbol{a}=c \boldsymbol{a}+d \boldsymbol{a}\) (scalar distributive law)
iii. \((c d) \boldsymbol{a}=c(d \boldsymbol{a})\)
iv. \(1 \boldsymbol{a}=\boldsymbol{a}\)
(32) Linear combination, linearly independent and linearly dependent

The vector
\[
c_{1} \boldsymbol{a}_{1}+\cdots+c_{k} \boldsymbol{a}_{k}
\]
created from the \(k\) vectors \(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k}\) of vector space \(V\) and complex numbers \(c_{1}, \cdots, c_{k}\) is called the linear combination of \(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k}\), and \(c_{1}, \cdots, c_{k}\) are called its coefficients. For certain coefficients \(c_{1}, \cdots, c_{k}\) that are not all zero, the set of vectors \(\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k}\right\}\) is said to be linearly dependent if
\[
c_{1} \boldsymbol{a}_{1}+\cdots+c_{k} \boldsymbol{a}_{k}=\mathbf{0}
\]
and is said to be linearly independent otherwise.
(33) Basis

Let \(S\) be an arbitrary subset of vector space \(V\), and let a collection of linearly independent vectors contained in \(S\) be \(\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k}\right\}\). For an arbitrary vector \(\boldsymbol{b}\) of \(S\), if \(\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k}, \boldsymbol{b}\right\}\) is linearly dependent, \(\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k}\right\}\) is said to be the maximum set in \(S\). When the vector space \(V\) itself is taken as \(S\), this collection of linearly independent vectors is called the basis of vector space \(V\). The number of vectors constituting the basis of \(V\) is called the dimension of \(V\). Also, if we let an arbitrary basis of an \(n\)-dimensional vector space \(V_{n}\) be \(\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}\right\}\), then an arbitrary vector \(\boldsymbol{a}\) of \(V_{n}\) is represented uniquely as a linear combination of \(\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}\right\}\).
(34) (Vector) subspace

A subset \(L\) of vector space \(V\) is called a (vector) subspace of \(V\) if the following conditions (a) and (b) are satisfied.
(a) If \(\boldsymbol{a}, \boldsymbol{b} \in L\), then \(\boldsymbol{a}+\boldsymbol{b} \in L\)
(b) If \(\boldsymbol{a} \in L\) and \(c\) is a complex number, \(c \boldsymbol{a} \in L\)

\section*{(35) Linear transformation}

Let \(V_{n}\) and \(V_{m}\) be \(n\)-dimensional and \(m\)-dimensional vector spaces, respectively. If the mapping \(\boldsymbol{A}: V_{n} \rightarrow V_{m}\) that associates each element \(\boldsymbol{x}\) of \(V_{n}\) with an element \(\boldsymbol{A}(\boldsymbol{x})\) of \(V_{m}\) satisfies the following two conditions, \(\boldsymbol{A}\) is said to be a linear transformation from \(V_{n}\) to \(V_{m}\).
(a) \(\boldsymbol{A}\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{1}\right)+\boldsymbol{A}\left(\boldsymbol{x}_{1}\right) \quad \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in V_{n}\)
(b) \(\boldsymbol{A}(c \boldsymbol{x})=c \boldsymbol{A}(\boldsymbol{x}) \quad \boldsymbol{x} \in V_{n}\) and \(c:\) a complex number

If we let a single basis of \(V_{n}\) and \(V_{m}\), respectively, be \(\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}\right\}\) and \(\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{m}\right\}\), then \(\boldsymbol{A}(\boldsymbol{x})\) is determined for an arbitrary \(\boldsymbol{x} \in V_{n}\) according to the coefficient matrix \(A=\left(a_{i, j}\right)\) of
\[
\boldsymbol{A}\left(\boldsymbol{u}_{j}\right)=\sum_{i=1}^{m} a_{i, j} \boldsymbol{v}_{i} \quad(j=1, \cdots, n)
\]

The matrix \(A\) is called the representation matrix of the linear transformation \(\boldsymbol{A}\) related to this basis. Also, if \(\boldsymbol{A}(\boldsymbol{x})=\boldsymbol{x}\) for \(\boldsymbol{x} \in V_{n}\), it defines the linear transformation \(\boldsymbol{E}: V_{n} \rightarrow V_{n}\), which is called the identity transformation. The representation matrix of the identity transformation always is the unit matrix \(E\) regardless of how the basis is taken.
(36) Eigenvalue and eigenvector

For a linear transformation \(\boldsymbol{A}\) within an \(n\)-dimensional vector space \(V_{n}\), if there exists a number \(\lambda\) and a vector \(\boldsymbol{x}(\boldsymbol{x} \neq \mathbf{0})\) such that
\[
\boldsymbol{A}(\boldsymbol{x})=\lambda \boldsymbol{x}, \text { that is, }(\boldsymbol{A}-\lambda \boldsymbol{E})(\boldsymbol{x})=\mathbf{0}
\]
is satisfied, then \(\lambda\) is called an eigenvalue of \(\boldsymbol{A}\) and \(\boldsymbol{x}\) is called the eigenvector belonging to the eigenvalue \(\lambda\). Here, \(\boldsymbol{E}\) is the identity transformation. If we fix a single basis within \(V_{n}\), let the representation matrix of the linear transformation \(\boldsymbol{A}\) be \(A\), and let the number vector corresponding to the eigenvector \(\boldsymbol{x}\) be \(\hat{\boldsymbol{x}}\), then the eigenvalue \(\lambda\) and \(\hat{\boldsymbol{x}}\) satisfy the following equation.
\[
A \hat{\boldsymbol{x}}=\lambda \hat{\boldsymbol{x}}
\]

Here, \(\hat{\boldsymbol{x}}\) is represented using the components \(x_{1}, \cdots, x_{n}\) of \(\boldsymbol{x}\) as
\[
\hat{\boldsymbol{x}}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
\]

Normally, \(\lambda\) and \(\hat{\boldsymbol{x}}\) are called the eigenvalue and eigenvector of matrix \(A\), respectively. These terms are also used in this manual. Also, no distinction is made between the number vector and vector, which are represented as \(\boldsymbol{x}\). Since the collection of all the vectors belonging to eigenvalue \(\lambda\) of the linear transformation \(\boldsymbol{A}: V_{n} \rightarrow V_{n}\) together with the zero vector \(\mathbf{0}\) form a single vector space, this is called the eigenvector space belonging to the eigenvalue \(\lambda\) of \(\boldsymbol{A}\).
(37) Invariant subspace

For the linear transformation \(\boldsymbol{A}\) within the vector space \(V_{n}\), if the subspace \(U\) of \(V_{n}\) has the property
\[
\boldsymbol{A}(U) \subseteq U
\]
that is, if \(\boldsymbol{A} \boldsymbol{x} \in U\) for an arbitrary vector \(\boldsymbol{x}\), then \(U\) is said to be invariant relative to \(\boldsymbol{A}\). In particular, the eigenvector space of \(\boldsymbol{A}\) is invariant relative to \(\boldsymbol{A}\). An invariant subvector space is called an invariant subspace.
(38) Plane rotation

The orthogonal transformation specified by the following kind of matrix \(S_{k: l}(\theta)\) is called a plane rotation.
\[
S_{k l}(\theta)=\left[\begin{array}{ccc}
E_{1: k-1} & O_{1: k-1, k: l} & O_{1: k-1, l: n} \\
O_{k: l, 1: k-1} & T_{k: l}(\theta) & O_{k: l, l: n} \\
O_{l: n, 1: k-1} & O_{l: n, k: l} & E_{l: n}
\end{array}\right]
\]

Here, \(T_{k: l}(\theta)\) is defined as follows:
\[
T_{k: l}(\theta)=\left[\begin{array}{ccc}
\cos \theta & O_{k: k, k+1: l-1} & -\sin \theta \\
O_{k+1: l-1, k: k} & E_{k+1: l-1} & O_{k+1: l-1, l: l} \\
\sin \theta & O_{l: l, k+1: l-1} & \cos \theta
\end{array}\right]
\]
\(E_{p: q}\) is the \(q-p+1\)-dimensional unit matrix shown below:
\[
E_{p: q}=\left[\begin{array}{llll}
1 & & & 0 \\
& 1 & & \\
& & \ddots & \\
0 & & & 1
\end{array}\right] \begin{aligned}
& (p \\
& (p+1 \\
& \vdots \\
& (q
\end{aligned}
\]
and \(O_{p: r, q: s}\) is the \(r-p+1 \times s-q+1\)-dimensional zero matrix shown below:
\[
\begin{aligned}
& O_{p: r, q: s}= \underbrace{q+1} \\
& \cdots \underbrace{s} \\
& {\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right] }
\end{aligned} \quad \begin{aligned}
& (p+1 \\
& \vdots \\
& (r
\end{aligned}
\]

Now, if the submatrix \(A_{p: r, q: s}\) of \(A=\left(a_{i, j}\right)(i=1,2, \cdots, n ; j=1,2, \cdots, n)\) is defined as follows:
\[
A_{p: r, q: s}=\left[\begin{array}{cccc}
a_{p, q} & a_{p, q+1} & \cdots & a_{p, s} \\
a_{p+1, q} & a_{p+1, q+1} & \cdots & a_{p+1, s} \\
\vdots & \vdots & \ddots & \vdots \\
a_{r, q} & a_{r, q+1} & \cdots & a_{r, s}
\end{array}\right]
\]
the matrix \(A\) is represented as follows:
\[
A=\left[\begin{array}{ccc}
A_{1: k-1,1: k-1} & A_{1: k-1, k: l} & A_{1: k-1, l+1: n} \\
A_{k: l, 1: k-1} & A_{k: l, k: l} & A_{k: l, l+1: n} \\
A_{l+1: n, 1: k-1} & A_{l+1: n, k: l} & A_{l+1: n, l+1: n}
\end{array}\right]
\]

At this time, since \(S_{k: l}(\theta) A\) and \(T_{k: l}(\theta) A_{k: l, q: s}\) are as follows:
\[
\begin{gathered}
S_{k: l}(\theta) A=\left[\begin{array}{ccc}
A_{1: k-1,1: k-1} & A_{1: k-1, k: l} & A_{1: k-1, l+1: n} \\
T_{k: l}(\theta) A_{k: l, 1: k-1} & T_{k: l}(\theta) A_{k: l, k: l} & T_{k: l}(\theta) A_{k: l, l+1: n} \\
A_{l+1: n, 1: k-1} & A_{l+1: n, k: l} & A_{l+1: n, l+1: n}
\end{array}\right] \\
T_{k: l}(\theta) A_{k: l, q: s}=\left[\begin{array}{ccc}
\cos \theta a_{k, q}-\sin \theta a_{l, q} & \cdots & \cos \theta a_{k, r}-\sin \theta a_{l, s} \\
a_{k+1, q} & \cdots & a_{k+1, r} \\
\vdots & \cdots & \vdots \\
a_{l-1, q} & \cdots & a_{l-1, r} \\
\sin \theta a_{k, q}+\cos \theta a_{l, q} & \cdots & \sin \theta a_{k, r}+\cos \theta a_{l, s}
\end{array}\right]
\end{gathered}
\]
if \(\theta\) is determined so that \(\tan \theta=\frac{a_{l, i}}{a_{k, i}}\) or \(\tan \theta=-\frac{a_{l, i}}{a_{k, i}}(i=q, \cdots, s)\) is satisfied, then an arbitrary element among the elements of column \(k\) and column \(l\) of \(S_{k: l}(\theta) A\) can be set to zero. Now, since the following relationship holds:
\[
\begin{aligned}
& A S_{k: l}(-\theta)=\left[\begin{array}{cccc}
A_{1: k-1,1: k-1} & A_{1: k-1, k: l} T_{k: l}(-\theta) & A_{1: k-1, l+1: n} \\
A_{k: l, 1: k-1} & A_{k: l, k: l} T_{k: l}(-\theta) & A_{k: l, l+1: n} \\
A_{l+1: n, 1: k-1} & A_{l+1: n, k: l} T_{k: l}(-\theta) & A_{l+1: n, l+1: n}
\end{array}\right] \\
& A_{p: r, k: l} T_{k: l}(-\theta)=\left[\begin{array}{ccccc}
\cos \theta a_{p, k}-\sin \theta a_{p, l} & a_{p, k+1} & \cdots & a_{p, l-1} & \sin \theta a_{p, k}+\cos \theta a_{p, l} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\cos \theta a_{r, k}-\sin \theta a_{r, l} & a_{r, k+1} & \cdots & a_{r, l-1} & \sin \theta a_{r, k}+\cos \theta a_{r, l}
\end{array}\right]
\end{aligned}
\]
if \(\theta\) is determined so that \(\tan \theta=\frac{a_{i, l}}{a_{i, k}}\) or \(\tan \theta=-\frac{a_{i, l}}{a_{i, k}}(i=p, \cdots, r)\) is satisfied, then an arbitrary element among the elements of column \(k\) and column \(l\) of \(A S_{k: l}(-\theta)\) can be set to zero. Now, since the following relationship holds:
\[
S_{k: l}(-\theta)=S_{k: l}(\theta)^{T}
\]
and since \(\tilde{A}=S_{k: l}(\theta) A S_{k: l}(-\theta)\) is as follows:
\[
\tilde{A}=S_{k: l}(\theta) A S_{k: l}(-\theta)=\left[\begin{array}{ccc}
A_{1: k-1,1: k-1} & A_{1: k-1, k: l} T_{k: l}(-\theta) & A_{1: k-1, l+1: n} \\
T_{k: l}(\theta) A_{k: l, 1: k-1} & T_{k: l}(\theta) A_{k: l, k: l} T_{k: l}(-\theta) & T_{k: l}(\theta) A_{k: l, l+1: n} \\
A_{l+1: n, 1: k-1} & A_{l+1: n, k: l} T_{k: l}(-\theta) & A_{l+1: n, l+1: n}
\end{array}\right]
\]
if matrix \(A\) is a symmetric matrix, then by adjusting \(\theta\), either:
\[
\tilde{a}_{k, j}=\tilde{a}_{j, k}=0
\]
or
\[
\tilde{a}_{l, j}=\tilde{a}_{j, l}=0
\]
can be set for some \(j(j \neq k, j \neq l)\), where the elements of \(\tilde{A}=S_{k: l}(\theta) A S_{k: l}(-\theta)\) are represented by \(\left(\tilde{a}_{i, j}\right)\).

\section*{Appendix B}

\section*{METHODS OF HANDLING ARRAY DATA}

\section*{B. 1 Methods of handling array data corresponding to matrix}

Since the ASL subroutine library uses array data corresponding to matrix, this section describes various methods of handling arrays.

To call a subroutine that uses array data, you must declare that array in advance in the calling program. If the declared array is \(\mathrm{A}(\) LNA, K\()\), then \(n \times n\) matrix \(A=\left(a_{i, j}\right)(i=1,2, \cdots, n ; j=1,2, \cdots, n)\) is stored in array A as shown in the figure below.

Matrix Storage Mode Within an Array A


\section*{Remarks}
a. LNA \(\geq n\) and \(\mathrm{K} \geq n\) must hold.
b. Matrix element \(a_{i, j}\) corresponds to the array element \(\mathrm{A}(i, j)\).

Figure B-1 Matrix Storage Mode Within an Array A()
LNA is called an adjustable dimension. If a two-dimensional array is used as an argument, the adjustable must be passed to the subroutine as an argument in addition to the array name and order of the array. The matrix elements \(a_{i, j}(i=1,2, \cdots\), LNA \(; j=1,2, \cdots, \mathrm{~K})\) must correspond to the array element \(\mathrm{A}(\mathrm{i}, \mathrm{j})(\mathrm{i}=1,2, \cdots\), LNA; \(\mathrm{j}=\) \(1,2, \cdots, \mathrm{~K})\), as follows on the main memory.
\begin{tabular}{ccccccc}
\(a_{1,1}\) & \(a_{2,1}\) & \(\cdots\) & \(a_{\text {LNA }, 1}\) & \(a_{1,2}\) & \(a_{2,2}\) & \(\cdots\) \\
\(\downarrow\) & \(\downarrow\) & \(\cdots\) & \(\downarrow\) & \(\downarrow\) & \(\downarrow\) & \(\cdots\) \\
\(\mathrm{~A}(1,1)\) & \(\mathrm{A}(2,1)\) & \(\cdots\) & \(\mathrm{A}(\mathrm{LNA}, 1)\) & \(\mathrm{A}(1,2)\) & \(\mathrm{A}(2,2)\) & \(\cdots\)
\end{tabular}

Example DAM1AD (Real matrix addition)
Add \(3 \times 2\) matrices \(A\) and \(B\) placing the sum in matrix \(C\). If you declare arrays of size \((5,4)\), the declaration and CALL statements are as follows.
```

REAL(8) A(5, 4), B(5, 4), C(5, 4)

```
INTEGER IERR

C
CALL DAM1AD (A, 5, 3, 2, B, 5, C, 5, IERR)

Data is stored in A as follows. Data are stored in B and C in the same way.


Figure B-2 Matrix Storage Mode Within an Array A
If you will be manipulating several arrays having different orders as data, you can prepare one array having LNA equal to the largest order and use that array successively for each array. However, you must always assign the LNA value as an adjustable dimension.

\section*{B. 2 Data storage modes}

Matrix data storage modes differ according to the matrix type. Storage modes for each type of matrix are shown below.

\section*{B.2.1 Real matrix (two-dimensional array type)}


\section*{Remarks}
a. \(\quad \mathrm{LNA} \geq \mathrm{N}\) and \(\mathrm{K} \geq \mathrm{N}\) must hold.

Figure B-3 Real Matrix (Two-Dimensional Array Type) Storage Mode

\section*{B.2.2 Complex matrix}
(1) Two-dimensional array type, real argument type

Real and imaginary parts are stored in separate arrays.
Matrix to be stored
\begin{tabular}{|lll|}
\hline\(a_{1,1}+b_{1,1} i\) & \(a_{1,2}+b_{1,2} i\) & \(a_{1,3}+b_{1,3} i\) \\
\(a_{2,1}+b_{2,1} i\) & \(a_{2,2}+b_{2,2} i\) & \(a_{2,3}+b_{2,3} i\) \\
\(a_{3,1}+b_{3,1} i\) & \(a_{3,2}+b_{3,2} i\) & \(a_{3,3}+b_{3,3} i\) \\
\hline
\end{tabular}
\(\Downarrow\)
Storage status within array \(\operatorname{AR}(\mathrm{LNA}, \mathrm{K}) \quad\) Storage status within array \(\operatorname{AI}(\mathrm{LNA}, \mathrm{K})\)


Remarks
a. \(\quad \mathrm{LNA} \geq \mathrm{N}\) and \(\mathrm{K} \geq \mathrm{N}\) must hold.

Figure B-4 Complex Matrix (Two-dimensional Array Type) (Real Argument Type) Storage Mode
(2) Two-dimensional array type, complex argument type


\section*{Remarks}
a. \(\quad\) LNA \(\geq \mathrm{N}\) and \(\mathrm{K} \geq \mathrm{N}\) must hold.

Figure B-5 Complex Matrix (Two-dimensional Array Type)(Complex Argument Type) Storage Mode

\section*{B.2.3 Real symmetric matrix and positive symmetric matrix}

\section*{(1) Two-dimensional array type, upper triangular type}

\section*{Remarks}
a. The asterisk (*) indicates an arbitrary value.
b. \(\quad \mathrm{LNA} \geq \mathrm{N}\) and \(\mathrm{K} \geq \mathrm{N}\) must hold.

Figure B-6 Real Symmetric Matrix (Two-dimensional Array Type) (Upper Triangular Type) Storage mode
(2) Two-dimensional array type, lower triangular type


\section*{Remarks}
a. The asterisk \((*)\) indicates an arbitrary value.
b. \(\quad\) LNA \(\geq \mathrm{N}\) and \(\mathrm{K} \geq \mathrm{N}\) must hold.

Figure B-7 Real Symmetric Matrix (Two-dimensional Array Type, Lower Triangular Type) Storage mode

\section*{B.2.4 Hermitian matrix}
(1) Two-dimensional array type, real argument type, upper triangular type

Upper triangular portions of the real and imaginary parts are stored in separate arrays.
\[
\begin{gathered}
\text { Matrix to be stored } \\
\begin{array}{|ccc|}
\hline a_{1,1} & a_{1,2}+b_{1,2} i & a_{1,3}+b_{1,3} i \\
a_{2,1}-b_{2,1} i & a_{2,2} & a_{2,3}+b_{2,3} i \\
a_{3,1}-b_{3,1} i & a_{3,2}-b_{3,2} i & a_{3,3} \\
\hline
\end{array}
\end{gathered}
\]
\(\Downarrow\)


\section*{Remarks}
a. The asterisk \((*)\) indicates an arbitrary value.
b. \(\quad \mathrm{LNA} \geq \mathrm{N}\) and \(\mathrm{K} \geq \mathrm{N}\) must hold.

Figure B-8 Hermitian Matrix (Two-dimensional Array Type) (Real Argument Type) (Upper Triangular Type) Storage Mode
(2) Two-dimensional array type, complex argument type, upper triangular type
\begin{tabular}{c}
\multicolumn{5}{c}{ Matrix to be stored } \\
\begin{tabular}{|ccccc|}
\hline\(a_{1,1}\) & \(a_{1,2}\) & \(a_{1,3}\) & \(a_{1,4}\) & \(a_{1,5}\) \\
\(\overline{a_{1,2}}\) & \(a_{2,2}\) & \(a_{2,3}\) & \(a_{2,4}\) & \(a_{2,5}\) \\
\(\overline{a_{1,3}}\) & \(\overline{a_{2,3}}\) & \(a_{3,3}\) & \(a_{3,4}\) & \(a_{3,5}\) \\
\(\overline{a_{1,4}}\) & \(\overline{a_{2,4}}\) & \(\overline{a_{3,4}}\) & \(a_{4,4}\) & \(a_{4,5}\) \\
\(\overline{a_{1,5}}\) & \(\overline{a_{2,5}}\) & \(\overline{a_{3,5}}\) & \(\overline{a_{4,5}}\) & \(a_{5,5}\) \\
\hline \multicolumn{5}{c}{} \\
\(\qquad\)
\end{tabular}
\end{tabular}

Storage status within array \(\mathrm{A}(\mathrm{LNA}, \mathrm{K})\)


\section*{Remarks}
a. The \(\bar{x}\) indicates the complex conjugate of \(x\).
b. The asterisk \(*\) indicates an arbitrary value.
c. \(\quad \mathrm{LNA} \geq \mathrm{N}\) and \(\mathrm{K} \geq \mathrm{N}\) must hold.

Figure B-9 Hermitian Matrix (Two-dimensional Array Type) (Complex Argument Type) (Upper Triangular Type) Storage Mode

\section*{B.2.5 Real band matrix}
\begin{tabular}{|ccccc|}
\multicolumn{5}{c}{ Matrix to be stored } \\
\hline \begin{tabular}{ccccc}
\(a_{1,1}\) & \(a_{1,2}\) & \(a_{1,3}\) & & 0 \\
\(a_{2,1}\) & \(a_{2,2}\) & \(a_{2,3}\) & \(a_{2,4}\) & \\
& \(a_{3,2}\) & \(a_{3,3}\) & \(a_{3,4}\) & \(a_{3,5}\) \\
0 & & \(a_{4,3}\) & \(a_{4,4}\) & \(a_{4,5}\) \\
& & & \(a_{5,4}\) & \(a_{5,5}\) \\
\hline
\end{tabular}
\end{tabular}
\(\Downarrow\)


\section*{Remarks}
a. The asterisk \(*\) indicates an arbitrary value.
b. The area indicated by dashes ( - ) is required for an LU decomposition of the matrix.
c. MU is the upper band width and ML is the lower band width.
d. LNA \(\geq 2 \times \mathrm{ML}+\mathrm{MU}+1\) and \(\mathrm{K} \geq \mathrm{N}\) must hold. (However, if no LU decomposition is to be performed, \(\mathrm{LNA} \geq \mathrm{ML}+\mathrm{MU}+1\) and \(\mathrm{K} \geq \mathrm{N}\) is sufficient.)

Figure B-10 Real Band Matrix (Band Type) Storage Mode

\section*{B.2.6 Real symmetric band matrix and positive symmetric matrix (symmetric band type)}
\begin{tabular}{|ccccc|}
\multicolumn{5}{c}{ Matrix to be stored } \\
\hline\(a_{1,1}\) & \(a_{1,2}\) & \(a_{1,3}\) & & 0 \\
\(a_{1,2}\) & \(a_{2,2}\) & \(a_{2,3}\) & \(a_{2,4}\) & \\
\(a_{1,3}\) & \(a_{2,3}\) & \(a_{3,3}\) & \(a_{3,4}\) & \(a_{3,5}\) \\
0 & \(a_{2,4}\) & \(a_{3,4}\) & \(a_{4,4}\) & \(a_{4,5}\) \\
& & \(a_{3,5}\) & \(a_{4,5}\) & \(a_{5,5}\) \\
\hline
\end{tabular}
\(\Downarrow\)


\section*{Remarks}
a. The asterisk * indicates an arbitrary value.
b. MB is the band width.
c. \(\quad \mathrm{LNA} \geq \mathrm{MB}+1\) and \(\mathrm{K} \geq \mathrm{N}\) must hold.

Figure B-11 Real Symmetric Band Matrix (Symmetric Band Type) Storage Mode

\section*{B.2.7 Real tridiagonal matrix (vector type)}
\begin{tabular}{|ccccc|}
\hline \multicolumn{5}{c|}{ Matrix to be stored } \\
\hline \begin{tabular}{ccccc}
\(a_{1,1}\) & \(a_{1,2}\) & & & 0 \\
\(a_{2,1}\) & \(a_{2,2}\) & \(a_{2,3}\) & & \\
& \(a_{3,2}\) & \(a_{3,3}\) & \(a_{3,4}\) & \\
0 & & \(a_{4,3}\) & \(a_{4,4}\) & \(a_{4,5}\) \\
& & & \(a_{5,4}\) & \(a_{5,5}\) \\
\hline \multicolumn{5}{|c}{} \\
& \(\Downarrow\) & &
\end{tabular}
\end{tabular}

Storage status within arrays SDL(NA)
(lower subdiagonal component),
D(NA)(diagonal component) and
\(\mathrm{SDU}(\mathrm{NA})\) (upper subdiagonal component)

\begin{tabular}{c}
\hline\(a_{1,1}\) \\
\(a_{2,2}\) \\
\(a_{3,3}\) \\
\(a_{4,4}\) \\
\(a_{5,5}\) \\
\hline \\
\hline D
\end{tabular}
\begin{tabular}{cc}
\begin{tabular}{|c}
\begin{tabular}{c}
\(a_{1,2}\) \\
\(a_{2,3}\) \\
\(a_{3,4}\) \\
\(a_{4,5}\) \\
\(*\)
\end{tabular} \\
\hline
\end{tabular}\(\downarrow \mathrm{~N}\). \\
\hline SDU
\end{tabular}

\section*{Remarks}
a. The asterisk * indicates an arbitrary value.
b. \(\quad \mathrm{NA} \geq \mathrm{N}\) must hold.

Figure B-12 Real Tridiagonal Matrix (Vector Type) Storage Mode

\section*{B.2.8 Real symmetric tridiagonal matrix and positive symmetric tridiagonal matrix (vector type)}
\[

\]
\(\Downarrow\)
Storage status within arrays \(\mathrm{D}(\mathrm{NA})\)
(diagonal component) and \(\mathrm{SD}(\mathrm{NA})\)
(subdiagonal component)
NA \(\uparrow\)\begin{tabular}{|c|}
\hline \begin{tabular}{c}
\(a_{1,1}\) \\
\(a_{2,2}\) \\
\(a_{3,3}\) \\
\(a_{4,4}\) \\
\(a_{5,5}\) \\
\hline \\
D
\end{tabular}
\end{tabular}


\section*{Remarks}
a. The asterisk * indicates an arbitrary value.
b. \(\quad \mathrm{NA} \geq \mathrm{N}\) must hold.

Figure B-13 Real Symmetric Tridiagonal Matrix (Vector Type) Storage Mode

\section*{B.2.9 Fixed coefficient real tridiagonal matrix (scalar type)}

\(\Downarrow\)
\[
\begin{aligned}
& \text { Storage status within variables D } \\
& \text { (diagonal component) and SD } \\
& \text { (subdiagonal component) } \\
& \qquad \begin{array}{|cc}
\hline d & s \\
\mathrm{D} & \mathrm{SD}
\end{array}
\end{aligned}
\]

Figure B-14 Fixed Coefficient Real Tridiagonal Matrix (Scalar Type)

\section*{B.2.10 Triangular matrix}
(1) Two-dimensional array type

The storage mode is the same as for a real symmetric matrix (two-dimensional array type) (upper triangular type) or a real symmetric matrix (two-dimensional array type) (lower triangular type).

\section*{B.2.11 Random sparse matrix (For symmetric matrix only)}
(1) Sparse format (Symmetric case)


\section*{Remarks}
a. \(M\) is the number of nonzero elements in the upper triangular part of the original matrix \(A\) including the diagonal.
b. Array AVAL contains the nonzero upper triangular elements of the original matrix \(A\), stored sequentially beginning with the first row.
c. Array JCN contains the column numbers in the original matrix \(A\) of the elements stored in array AVAL.
d. Array IA contains values equal to the positions in array AVAL of the diagonal elements.
e. \(\mathrm{N} \leq \mathrm{M}<\) NA must hold.

Figure B-15 Storage of Random Symmetric Sparse Matrix (Sparse format)

\section*{B.2.12 Random sparse matrix}

\section*{(1) Sparse format}
\begin{tabular}{|cccccc|}
\multicolumn{7}{c|}{ Matrix \(A\) to be stored } \\
\hline\(a_{1,1}\) & 0.0 & \(a_{1,3}\) & \(a_{1,4}\) & \(a_{1,5}\) & 0.0 \\
\(a_{2,1}\) & \(a_{2,2}\) & 0.0 & \(a_{2,4}\) & 0.0 & 0.0 \\
0.0 & \(a_{3,2}\) & \(a_{3,3}\) & 0.0 & \(a_{3,5}\) & 0.0 \\
\(a_{4,1}\) & \(a_{4,2}\) & 0.0 & \(a_{4,4}\) & 0.0 & \(a_{4,6}\) \\
\(a_{5,1}\) & 0.0 & \(a_{5,3}\) & \(a_{5,4}\) & \(a_{5,5}\) & 0.0 \\
\(a_{6,1}\) & 0.0 & \(a_{6,3}\) & 0.0 & \(a_{6,5}\) & \(a_{6,6}\) \\
\hline
\end{tabular}
\(\Downarrow\)
Storage status of arrays AVAL(NA), JCN(NA) and IA(N)
\begin{tabular}{|c|c|c|}
\hline \(\uparrow\) & \(a_{1,1}\) & 1 \\
\hline & \(a_{1,3}\) & 3 \\
\hline & \(a_{1,4}\) & 4 \\
\hline & \(a_{1,5}\) & 5 \\
\hline & \(a_{2,1}\) & 1 \\
\hline & \(a_{2,2}\) & 2 \\
\hline NA & \(a_{2,4}\) & 4 \\
\hline & - & : \\
\hline & \(a_{6,1}\) & 1 \\
\hline & \(a_{6,3}\) & 3 \\
\hline & \(a_{6,5}\) & 5 \\
\hline \(\downarrow\) & \(a_{6,6}\) & 6 \\
\hline & AVAL & CN \\
\hline
\end{tabular}


\section*{Remarks}
a. NA is the number of nonzero elements of the original matrix \(A\).
b. Array AVAL contains the nonzero elements of the original matrix \(A\), stored sequentially beginning with the first row.
c. Array JCN contains the column indices in the original matrix \(A\) of the elements stored in array AVAL.
d. Array IA contains values equal to the positions in array AVAL of the first nonzero element in each row.
e. \(\mathrm{N}<\mathrm{NA}\) must hold.

Figure B-16 Storage of Real Asymmetric Random Sparse Matrix (Sparse Format)

\section*{Appendix C}

\section*{MACHINE CONSTANTS USED IN ASL}

\section*{C. 1 Units for Determining Error}

The table below shows values in ASL as units for determining error in floating point calculations. The units shown in the table are numeric values determined by the internal representation of floating point data. ASL uses these units for determining convergence and zeros.

Table C-1 Units for Determining Error
\begin{tabular}{|c|c|}
\hline Single-precision & Double-precision \\
\hline \(2^{-23}\left(\simeq 1.19 \times 10^{-7}\right)\) & \(2^{-52}\left(\simeq 2.22 \times 10^{-16}\right)\) \\
\hline
\end{tabular}

Remark: The unit for determining error \(\varepsilon\), which is also called the machine \(\varepsilon\), is usually defined as the smallest positive constant for which the calculation result of \(1+\varepsilon\) differs from 1 in the corresponding floating point mode. Therefore, seeing the unit for determining error enables you to know the maximum number of significant digits of an operation (on the mantissa) in that floating point mode.

\section*{C. 2 Maximum and Minimum Values of Floating Point Data}

The table below shows maximum and minimum values of floating point data defined within ASL. Note that the maximum and minimum values shown below may differ from the maximum and minimum values that are actually used by the hardware for each floating point mode.

Table C-2 Maximum and Minimum Values of Floating Point Data
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{1}{|c|}{ Single-precision } & \multicolumn{1}{|c|}{ Double-precision } \\
\hline Maximum value & \(2^{127}\left(2-2^{-23}\right)\left(\simeq 3.40 \times 10^{38}\right)\) & \(2^{1023}\left(2-2^{-52}\right)\left(\simeq 1.80 \times 10^{308}\right)\) \\
\hline \begin{tabular}{l} 
Positive \\
minimum value
\end{tabular} & \(2^{-126}\left(\simeq 1.17 \times 10^{-38}\right)\) & \(2^{-1022}\left(\simeq 2.23 \times 10^{-308}\right)\) \\
\hline \begin{tabular}{l} 
Negative \\
maximum value
\end{tabular} & \(-2^{-126}\left(\simeq-1.17 \times 10^{-38}\right)\) & \(-2^{-1022}\left(\simeq-2.23 \times 10^{-308}\right)\) \\
\hline Minimum value & \(-2^{127}\left(2-2^{-23}\right)\left(\simeq-3.40 \times 10^{38}\right)\) & \(-2^{1023}\left(2-2^{-52}\right)\left(\simeq-1.80 \times 10^{308}\right)\) \\
\hline
\end{tabular}

\section*{Index}

CAM1HH : Vol.1, 85
CAM1HM : Vol.1, 82
CAM1MH : Vol.1, 79
CAM1MM : Vol.1, 76
CAN1HH : Vol.1, 97
CAN1HM : Vol.1, 94
CAN1MH : Vol.1, 91
CAN1MM : Vol.1, 88
CARGJM : Vol.1, 37
CARSJD : Vol.1, 32
CBGMDI : Vol.2, 72
CBGMLC : Vol.2, 64
CBGMLS : Vol.2, 66
CBGMLU : Vol.2, 62
CBGMLX : Vol.2, 74
CBGMMS : Vol.2, 68
CBGMSL : Vol.2, 58
CBGMSM : Vol.2, 54
CBGNDI : Vol.2, 92
CBGNLS : Vol.2, 86
CBGNLU : Vol.2, 82
CBGNLX : Vol.2, 94
CBGMS: Vol.2, 88
CBGNSM : Vol.2, 76
CBHEDI : Vol.2, 216
CBHELS : Vol.2, 211
CBHELX : Vol.2, 218
CBHEMS : Vol.2, 213
CBHEUC : Vol.2, 209
CBHEUD : Vol.2, 207
CBHFDI : Vol.2, 199
CBHFLS : Vol.2, 194
CBHFLX : Vol.2, 201
CBHFMS : Vol.2, 196
CBHFSL : Vol.2, 186
CBHFUC : Vol.2, 192
CBHFUD : Vol.2, 190
CBHPDI : Vol.2, 165
CBHPLX : Vol.2, 167
CBHPMS : Vol.2, 162


D3IEME : Vol.6, 293
D3IERA : Vol.6, 290
D3IESR : Vol.6, 311
D3IESU : Vol.6, 297
D3IETC : Vol.6, 304
D3IEVA : Vol.6, 301
D3TSCD : Vol.6, 347
D3TSME : Vol.6, 326
D3TSRA : Vol.6, 317
D3TSRD : Vol.6, 321
D3TSSR : Vol.6, 350
D3TSSU : Vol.6, 331
D3TSTC : Vol.6, 342
D3TSVA : Vol.6, 338
D41WR1 : Vol.6, 363
D42WR1 : Vol.6, 383
D42WRM : Vol.6, 375
D42WRN : Vol.6, 369
D4BI01 : Vol.6, 438
D4GL01 : Vol.6, 434
D4MU01 : Vol.6, 415
D4MWRF : Vol.6, 391
D4MWRM : Vol.6, 402
D4RB01 : Vol.6, 430
D5CHEF : Vol.6, 447
D5CHMD : Vol.6, 456
D5CHMN : Vol.6, 453
D5CHTT : Vol.6, 450
D5TEMH : Vol.6, 466
D5TESG : Vol.6, 459
D5TESP : Vol.6, 470
D5TEWL : Vol.6, 462
D6CLAN : Vol.6, 518
D6CLDA : Vol.6, 523
D6CLDS : Vol.6, 513
D6CPCC : Vol.6, 482
D6CPSC : Vol.6, 484
D6CVAN : Vol.6, 495
D6CVSC : Vol.6, 498
D6DAFN : Vol.6, 503
D6DASC : Vol.6, 507
D6FALD : Vol.6, 489
D6FAVR : Vol.6, 491
DABMCS : Vol.1, 12
DABMEL : Vol.1, 15
DAM1AD : Vol.1, 47
DAM1MM : Vol.1, 64
DAM1MS : Vol.1, 56
DAM1MT : Vol.1, 67
DAM1MU : Vol.1, 53
DAM1SB : Vol.1, 50
DAM1TM : Vol.1, 70
DAM1TP : Vol.1, 109
DAM1TT : Vol.1, 73


DAM3TP : Vol.1, 111
DAM3VM : Vol.1, 103
DAM4VM : Vol.1, 106
DAMT1M : Vol.1, 59
DAMVJ1 : Vol.1, 114
DAMVJ3 : Vol.1, 118
DAMVJ4 : Vol.1, 122

DARSJD : Vol.1, 21
DASBCS : Vol.1, 17
DASBEL : Vol.1, 19
DATM1M : Vol.1, 61

DBBDLC : Vol.2, 227
DBBDLS : Vol.2, 229
DBBDLU : Vol.2, 225
DBBDLX : Vol.2, 233
DBBDL: Vol.2, 220
DBBPDI: Vol.2, 247
DBBPLX : Vol.2, 249
DBBPSL : Vol.2, 237
BBPUC : Vol.2, 243
DBBPU : Vol.2, 241
DBGMLC : Vol.2, 41
DBGMLS : Vol.2, 43
DBGMLU : Vol.2, 39
DBGMEX: Vol.2, 50

DBGMSL : Vol.2, 35
DBGMSM : Vol.2, 31
PBDI : Vol.2, 106
DBPDLS : Vol.2, 104
DBPDSL : Vol.2, 96
DBPDUC : Vol.2, 102
DBPDUU : Vol.2, 100
DBSMDI : Vol.2, 140
LS : Vol.2, 135
DBSMM : Vol.2, 142
DBSMSL : Vol.2, 127
DBSMUC : Vol.2, 133
DBSMUD : Vol.2, 131
DBSNLS : Vol.2, 150
DBSNUD : Vol.2, 148
DBSPDI : Vol.2, 123
DBSPLS : Vol.2, 118

DBSPMS : Vol.2, 120
DBSPSL : Vol.2, 110
\begin{tabular}{|c|c|}
\hline DBSPUC & Vol.2, \\
\hline DBSPUD & Vol.2, 114 \\
\hline DBTDSL & Vol.2, 251 \\
\hline DBTLCO & Vol.2, 291 \\
\hline DBTLDI & Vol.2, 293 \\
\hline DBTLSL & Vol.2, 288 \\
\hline DBTOSL & Vol.2, 271 \\
\hline DBTPSL & Vol.2, 254 \\
\hline DBTSSL & Vol.2, 274 \\
\hline DBTUCO & Vol.2, 284 \\
\hline DBTUDI & Vol.2, 286 \\
\hline DBTUSL & Vol.2, 281 \\
\hline DBVMSL & Vol.2, 277 \\
\hline DCGBFF & Vol.1, 337 \\
\hline DCGEAA & Vol.1, 148 \\
\hline DCGEAN & Vol.1, 153 \\
\hline DCGGAA & Vol.1, 273 \\
\hline DCGGAN & Vol.1, 278 \\
\hline DCGJAA & Vol.1, 299 \\
\hline DCGJAN & Vol.1, 303 \\
\hline DCGKAA & Vol.1, 305 \\
\hline DCGKAN & Vol.1, 309 \\
\hline DCGNAA & Vol.1, 155 \\
\hline DCGNAN & Vol.1, 158 \\
\hline DCGSAA & Vol.1, 280 \\
\hline DCGSAN & Vol.1, 284 \\
\hline DCGSEE & Vol.1, 292 \\
\hline DCGSEN & Vol.1, 297 \\
\hline DCGSSN & Vol.1, 290 \\
\hline DCGSSS & Vol.1, 286 \\
\hline DCSBAA & Vol.1, 222 \\
\hline DCSBAN & Vol.1, 225 \\
\hline DCSBFF & Vol.1, 233 \\
\hline DCSBSN & Vol.1, 231 \\
\hline DCSBSS & Vol.1, 227 \\
\hline DCSJSS & Vol.1, 260 \\
\hline DCSMAA & Vol.1, 171 \\
\hline DCSMAN & Vol.1, 174 \\
\hline DCSMEE & Vol.1, 182 \\
\hline DCSMEN & Vol.1, 186 \\
\hline DCSMSN & Vol.1, 180 \\
\hline DCSMSS & Vol.1, 176 \\
\hline DCSRSS & Vol.1, 254 \\
\hline DCSTAA & Vol.1, 237 \\
\hline DCSTAN & Vol.1, 240 \\
\hline DCSTEE & Vol.1, 248 \\
\hline DCSTEN & Vol.1, 252 \\
\hline DCSTSN & Vol.1, 246 \\
\hline DCSTSS & Vol.1, 242 \\
\hline DFASMA & Vol.6, 256 \\
\hline DFC1BF & Vol.3, 49 \\
\hline DFC1FB & Vol.3, 45 \\
\hline DFC2BF & Vol.3, 108 \\
\hline DFC2FB & Vol.3, 10 \\
\hline
\end{tabular}

DBSPUD : Vol.2, 114
. Vol.2, 251
DBTLC : Vol.2, 291
DBTLSL : Vol.2, 288
DBTOSL : Vol.2, 271
Vol.2, 254
DBTSSL : Vol.2, 274
DBTUDI : Vol.2, 286
DBTUSL : Vol.2, 281
DBVMSL : Vol.2, 277
DCGBFF : Vol.1, 337
DCGEAA : Vol.1, 148
DCGEAN : Vol.1, 153
DCGGAA : Vol.1, 273
DCGGAN : Vol.1, 278
JAA : Vol.1, 299
DCGJA : Vol.1, 303
DCGKAN : Vol.1, 309
DCGNAA : Vol.1, 155
DCGNAN : Vol.1, 158
DCGSAA : Vol.1, 280
DCGSEE : Vol.1, 292
DCGSEN : Vol.1, 297
DCGSSN : Vol.1, 290
DCGSSS : Vol.1, 286
DCSBAN : Vol.1, 225
DCSBFF : Vol.1, 233
DCSBSN : Vol.1, 231
DCSBSS : Vol.1, 227

DCSMAA : Vol.1, 171
DCSMAN : Vol.1, 174
DCSMEE : Vol.1, 182
DCSMEN : Vol.1, 186
DCSMSN . Vol.1, 180
DCSRSS : Vol.1, 254
DCSTAA : Vol.1, 237
DCSTAN : Vol.1, 240
DCSTEE : Vol.1, 248

DCSTSN : Vol.1, 246
DCSTSS : Vol.1, 242
DFASMA : Vol.6, 256
DFC1BF : Vol.3, 49

DFC2BF : Vol.3, 108
DFC2FB : Vol.3, 104

\begin{tabular}{l} 
DGIDPC : Vol.4, 382 \\
DGIDSC : Vol.4, 386 \\
DGIDYB : Vol.4, 439 \\
DGIIBZ : Vol.4, 453 \\
DGIICZ : Vol.4, 433 \\
DGIIMC : Vol.4, 404 \\
DGIIPC : Vol.4, 396 \\
DGIISC : Vol.4, 399 \\
DGIIZB : Vol.4, 444 \\
DGISBX : Vol.4, 449 \\
DGISCX : Vol.4, 429 \\
DGISI1 : Vol.4, 470 \\
DGISI2 : Vol.4, 474 \\
DGISI3 : Vol.4, 482 \\
DGISMC : Vol.4, 377 \\
DGISPC : Vol.4, 369 \\
DGISPO : Vol.4, 455 \\
DGISPR : Vol.4, 458 \\
DGISS1 : Vol.4, 487 \\
DGISS2 : Vol.4, 491 \\
DGISS3 : Vol.4, 498 \\
DGISSC : Vol.4, 372 \\
DGISSO : Vol.4, 461 \\
DGISSR : Vol.4, 464 \\
DGISXB : Vol.4, 435 \\
DH2INT : Vol.4, 263 \\
DHBDFS : Vol.4, 233 \\
DHBSFC : Vol.4, 236 \\
DHEMNH : Vol.4, 239 \\
DHEMNI : Vol.4, 253 \\
DHEMNL : Vol.4, 199 \\
DHNANL : Vol.4, 230 \\
DHNEFL : Vol.4, 209 \\
DHNENH : Vol.4, 246 \\
DHNENL : Vol.4, 221 \\
DHNFML : Vol.4, 279 \\
DHNFNM : Vol.4, 270 \\
DHNIFL : Vol.4, 213 \\
DHNINH : Vol.4, 249 \\
DHNINI : Vol.4, 259 \\
DHNINL : Vol.4, 226 \\
DHNOFH : Vol.4, 242 \\
DHNOFI : Vol.4, 256 \\
DHNOFL : Vol.4, 205 \\
DHNPNL : Vol.4, 217 \\
DHNRML : Vol.4, 274 \\
DHNRNM : Vol.4, 266 \\
DHNSNL : Vol.4, 202 \\
DIBAID : Vol.5, 166 \\
DIBAIX : Vol.5, 162 \\
DIBBEI : Vol.5, 148 \\
DIBBER : Vol. : Vol. 146,168 \\
\hline
\end{tabular}


DIBINX : Vol.5, 117
DIBJMX : Vol.5, 86
DIBJNX : Vol.5, 81
DIBKEI : Vol.5, 152
DIBKER : Vol.5, 150
DIBKMX : Vol.5, 124
DBKNX: Vol.5, 119

DIBSJN : Vol.5, 132
DIBSKN : Vol.5, 140
DIBSYN : Vol.5, 135
DIBYMX : Vol.5, 89

DIEII1 : Vol.5, 192
DIEII2 : Vol.5, 194
DIEII3 : Vol.5, 196
DIEII4 : Vol.5, 198
DIGIG1 : Vol.5, 175
DIGIG2 : Vol.5, 177
DIIERF : Vol.5, 241
DIISIN : Vol.5, 223
DILEG1 : Vol.5, 245
DILEG2 : Vol.5, 248
DIMTSE : Vol.5, 268
DIOPC2 : Vol.5, 261
DIOPCH : Vol.5, 259
DIOPGL : Vol.5, 263
DIOPHE : Vol.5, 257
DIOPLA : Vol.5, 255
DIOPLE : Vol.5, 250
DIXEPS : Vol.5, 283
IZBSO : Vol.5, 96

DIZBSL : Vol.5, 105
DIZBSN : Vol.5, 100
DIZBYN : Vol.5, 103
DIZGLW : Vol.5, 252
: Vol.6, 31

DJTEGM : Vol.6, 42
DJTEGU : Vol.6, 34
DJTELG : Vol.6, 45
DJTENO : Vol.6, 24
DJTEU : Vol.6, 19
DKFNCS : Vol.4, 67
DKHNCS : Vol.4, 73
DKINCT : Vol.4, 52

DKSNCA : Vol.4, 46
DKSNCS : Vol.4, 41

DKSSCA : Vol.4, 61
DLARHA : Vol.5, 342
DLNRDS : Vol.5, 348
DLNRIS : Vol.5, 352
DLNRSA : Vol.5, 358
DLNRSS : Vol.5, 355
DLSRDS : Vol.5, 364
DLSRIS : Vol.5, 370
DMCLAF : Vol.5, 436
DMCLCP : Vol.5, 459
DMCLMC : Vol.5, 454
DMCLMZ : Vol.5, 447
DMCLSN : Vol.5, 430
DMCLTP : Vol.5, 465
DMCQAZ : Vol.5, 481
DMCQLM : Vol.5, 476
DMCQSN : Vol.5, 471
DMCUSN : Vol.5, 427
DMSP11 : Vol.5, 500
DMSP1M : Vol.5, 493
DMSPMM : Vol.5, 497
DMSQPM : Vol.5, 487
DMUMQG : Vol.5, 418
DMUMQN : Vol.5, 414
DMUSSN : Vol.5, 422
DMUUSN : Vol.5, 411
DNCBPO : Vol.4, 345
DNDAAO : Vol.4, 319
DNDANL : Vol.4, 328
DNDAPO : Vol.4, 324
DNGAPL : Vol.4, 340
DNLNMA : Vol.6, 550
DNLNRG : Vol.6, 537
DNLNRR : Vol.6, 543
DNNLGF : Vol.6, 560
DNNLPO : Vol.6, 555
DNRAPL: Vol.4, 334
DOFNNF : Vol.4, 104
DOFNNV : Vol.4, 98
DOHNLV : Vol.4, 123
DOHNNF : Vol.4, 117
DOHNNV : Vol.4, 111
DOIEF2 : Vol.4, 134
DOIEV1 : Vol.4, 137
DOLNLV : Vol.4, 129
DOPDH2 : Vol.4, 140
DOPDH3 : Vol.4, 147
DOSNNF : Vol.4, 91
DOSNNV : Vol.4, 84
DPDAPN : Vol.4, 307
DPDOPL : Vol.4, 304
DPGOPL : Vol.4, 316
DPLOPL : Vol.4, 310
DQFODX : Vol.4, 162
DQMOGX : Vol.4, 165
DQMOHX : Vol.4, 168
DQMOJX : Vol.4, 171
DSMGON : Vol.5, 304
DSMGPA : Vol.5, 308
DSSTA1 : Vol.5, 290
DSSTA2 : Vol.5, 293
DSSTPT : Vol.5, 300
DSSTRA : Vol.5, 297
DXA005 : Vol.1, 40

GAM1HH : SMP Functions \({ }^{(*)}, 40\)
GAM1HM : SMP Functions, 36
GAM1MH : SMP Functions, 32
GAM1MM : SMP Functions, 28
GAN1HH : SMP Functions, 53
GAN1HM : SMP Functions, 50
GAN1MH : SMP Functions, 47
GAN1MM : SMP Functions, 44
GBHESL : SMP Functions, 131
GBHEUD : SMP Functions, 135
GBHFSL : SMP Functions, 125
GBHFUD : SMP Functions, 129
GBHPSL : SMP Functions, 111
GBHPUD : SMP Functions, 116
GBHRSL : SMP Functions, 118
GBHRUD : SMP Functions, 123
GCGJAA : SMP Functions, 262
GCGJAN : SMP Functions, 266
GCGKAA : SMP Functions, 268
GCGKAN : SMP Functions, 273
GCGRAA : SMP Functions, 254
GCGRAN : SMP Functions, 259
GCHEAA : SMP Functions, 214
GCHEAN : SMP Functions, 218
GCHESN : SMP Functions, 225
GCHESS : SMP Functions, 220
GCHRAA : SMP Functions, 200
GCHRAN : SMP Functions, 204
GCHRSN : SMP Functions, 211
GCHRSS : SMP Functions, 206
GFC2BF : SMP Functions, 324
GFC2FB : SMP Functions, 321
GFC3BF : SMP Functions, 351
GFC3FB : SMP Functions, 347
GFCMBF : SMP Functions, 295
GFCMFB : SMP Functions, 291
HAM1HH : SMP Functions, 40
HAM1HM : SMP Functions, 36

\footnotetext{
(*) DMP Functions: Distributed Memory Parallel Functions
(*) SMP Functions: Shared Memory Parallel Functions
}

HAM1MH : SMP Functions, 32
HAM1MM : SMP Functions, 28
HAN1HH : SMP Functions, 53
HAN1HM : SMP Functions, 50
HAN1MH: SMP Functions, 47
HAN1MM : SMP Functions, 44
HBGMLC : SMP Functions, 87
HBGMLU : SMP Functions, 85
HBGMSL : SMP Functions, 81
HBGMSM : SMP Functions, 76
HBGNLC : SMP Functions, 97
HBGNLU : SMP Functions, 95
HBGNSL : SMP Functions, 92
HBGNSM : SMP Functions, 89
HBHESL : SMP Functions, 131
HBHEUD : SMP Functions, 135
HBHFSL : SMP Functions, 125
HBHFUD : SMP Functions, 129
HBHPSL : SMP Functions, 111
HBHPUD : SMP Functions, 116
HBHRSL : SMP Functions, 118
HBHRUD : SMP Functions, 123
HCGJAA : SMP Functions, 262
HCGJAN : SMP Functions, 266
HCGKAA : SMP Functions, 268
HCGKAN : SMP Functions, 273
HCGRAA : SMP Functions, 254
HCGRAN : SMP Functions, 259
HCHEAA : SMP Functions, 214
HCHEAN : SMP Functions, 218
HCHESN : SMP Functions, 225
HCHESS : SMP Functions, 220
HCHRAA : SMP Functions, 200
HCHRAN : SMP Functions, 204
HCHRSN : SMP Functions, 211
HCHRSS : SMP Functions, 206
HFC2BF : SMP Functions, 324
HFC2FB : SMP Functions, 321
HFC3BF : SMP Functions, 351
HFC3FB : SMP Functions, 347
HFCMBF : SMP Functions, 295
HFCMFB : SMP Functions, 291
IIIERF : Vol.5, 243
JIIERF : Vol.5, 243
PAM1MM : SMP Functions, 16
PAM1MT : SMP Functions, 19
PAM1MU : SMP Functions, 13
PAM1TM : SMP Functions, 22
PAM1TT : SMP Functions, 25
PBSNSL : SMP Functions, 105
PBSNUD : SMP Functions, 109

PBSPSL : SMP Functions, 99
PBSPUD : SMP Functions, 103
PCGJAA : SMP Functions, 242
PCGJAN : SMP Functions, 246
PCGKAA : SMP Functions, 248
PCGKAN : SMP Functions, 252
PCGSAA : SMP Functions, 227
PCGSAN : SMP Functions, 232
PCGSSN : SMP Functions, 239
PCGSSS : SMP Functions, 234
PCSMAA : SMP Functions, 189
PCSMAN : SMP Functions, 192
PCSMSN : SMP Functions, 198
PCSMSS : SMP Functions, 194
PFC2BF : SMP Functions, 316
PFC2FB : SMP Functions, 312
PFC3BF : SMP Functions, 342
PFC3FB : SMP Functions, 338
PFCMBF : SMP Functions, 285
PFCMFB : SMP Functions, 281
PFCN2D : SMP Functions, 366
PFCN3D : SMP Functions, 373
PFCR2D : SMP Functions, 382
PFCR3D : SMP Functions, 389
PFPS2D : SMP Functions, 399
PFPS3D : SMP Functions, 406
PFR2BF : SMP Functions, 333
PFR2FB : SMP Functions, 329
PFR3BF : SMP Functions, 360
PFR3FB : SMP Functions, 356
PFRMBF : SMP Functions, 305
PFRMFB : SMP Functions, 301
PSSTA1 : SMP Functions, 422
PSSTA2 : SMP Functions, 425
PXE010 : SMP Functions, 148
PXE020 : SMP Functions, 156
PXE030 : SMP Functions, 164
PXE040 : SMP Functions, 172
QAM1MM : SMP Functions, 16
QAM1MT : SMP Functions, 19
QAM1MU : SMP Functions, 13
QAM1TM : SMP Functions, 22
QAM1TT : SMP Functions, 25
QBGMLC : SMP Functions, 74
QBGMLU : SMP Functions, 72
QBGMSL : SMP Functions, 68
QBGMSM : SMP Functions, 64
QBSNSL : SMP Functions, 105
QBSNUD : SMP Functions, 109
QBSPSL : SMP Functions, 99
QBSPUD : SMP Functions, 103
QCGJAA : SMP Functions, 242
QCGJAN : SMP Functions, 246

QCGKAA : SMP Functions, 248
QCGKAN : SMP Functions, 252
QCGSAA : SMP Functions, 227
QCGSAN : SMP Functions, 232
QCGSSN : SMP Functions, 239
QCGSSS : SMP Functions, 234
QCSMAA : SMP Functions, 189
QCSMAN : SMP Functions, 192
QCSMSN : SMP Functions, 198
QCSMSS : SMP Functions, 194
QFC2BF : SMP Functions, 316
QFC2FB : SMP Functions, 312
QFC3BF : SMP Functions, 342
QFC3FB : SMP Functions, 338
QFCMBF : SMP Functions, 285
QFCMFB : SMP Functions, 281
QFCN2D : SMP Functions, 366
QFCN3D : SMP Functions, 373
QFCR2D : SMP Functions, 382
QFCR3D : SMP Functions, 389
QFPS2D : SMP Functions, 399
QFPS3D : SMP Functions, 406
QFR2BF : SMP Functions, 333
QFR2FB : SMP Functions, 329
QFR3BF : SMP Functions, 360
QFR3FB : SMP Functions, 356
QFRMBF : SMP Functions, 305
QFRMFB : SMP Functions, 301
QSSTA1 : SMP Functions, 422
QSSTA2 : SMP Functions, 425
QXE010 : SMP Functions, 148
QXE020 : SMP Functions, 156
QXE030 : SMP Functions, 164
QXE040 : SMP Functions, 172
R1CDBN : Vol.6, 72
R1CDBT : Vol.6, 114
R1CDCC : Vol.6, 147
R1CDCH : Vol.6, 75
R1CDEX : Vol.6, 132
R1CDFB : Vol.6, 100
R1CDGM : Vol.6, 107
R1CDGU : Vol.6, 135
R1CDIB : Vol.6, 117
R1CDIC : Vol.6, 78
R1CDIF : Vol.6, 104
R1CDIG: Vol.6, 111
R1CDIN : Vol.6, 69
R1CDIS : Vol.6, 97
R1CDIT : Vol.6, 91
R1CDIX : Vol.6, 85
R1CDLD : Vol.6, 138
R1CDLG : Vol.6, 144
R1CDLN : Vol.6, 141

R5TEMH : Vol.6, 466
R5TESG : Vol.6, 459
R5TESP : Vol.6, 470
R5TEWL : Vol.6, 462
R6CLAN : Vol.6, 518
R6CLDA : Vol.6, 523
R6CLDS : Vol.6, 513
R6CPCC : Vol.6, 482
R6CPSC : Vol.6, 484
R6CVAN : Vol.6, 495
R6CVSC : Vol.6, 498
R6DAFN : Vol.6, 503
R6DASC : Vol.6, 507
R6FALD : Vol.6, 489
R6FAVR : Vol.6, 491
RABMCS : Vol.1, 12
RABMEL : Vol.1, 15
RAM1AD : Vol.1, 47
RAM1MM : Vol.1, 64
RAM1MS : Vol.1, 56
RAM1MT : Vol.1, 67
RAM1MU : Vol.1, 53
RAM1SB : Vol.1, 50
RAM1TM : Vol.1, 70
RAM1TP : Vol.1, 109
RAM1TT : Vol.1, 73
RAM1VM : Vol.1, 100
RAM3TP : Vol.1, 111
RAM3VM : Vol.1, 103
RAM4VM : Vol.1, 106
RAMT1M : Vol.1, 59
RAMVJ1 : Vol.1, 114
RAMVJ3 : Vol.1, 118
RAMVJ4 : Vol.1, 122
RARGJM : Vol.1, 26
RBGMLS : Vol.2, 43
RARSJD : Vol.1, 21
RASBCS : Vol.1, 17
RBGMDC \(: ~ V o l .2, ~\)

RBGMLU : Vol.2, 39
Vol.2, 50
RBGMSL : Vol.2, 35
RBGMSM : Vol.2, 31
RBPDDI : Vol.2, 106
RBPDLS : Vol.2, 104
BPDLX : Vol.2, 108
RBPDUC : Vol.2, 102
RBPDUU : Vol.2, 100
RBSMDI : Vol.2, 140
RBSMLS : Vol.2, 135
RBSMLX : Vol.2, 142
RBSMMS : Vol.2, 137
RBSMSL : Vol.2, 127
RBSMUC : Vol.2, 133
Vol.2,131
RBSNSL : Vol.2, 144
RBSNUD : Vol.2, 148
RBSPDI : Vol.2, 123
RBSPLS : Vol.2, 118
RBSPLX : Vol.2, 125
RBSPMS : Vol.2, 120
RBSPSL : Vol.2, 110
RBSPUC : Vol.2, 116
RBSPUD : Vol.2, 114
RBTDSL : Vol.2, 251
RBTLCO : Vol.2, 291
RBTLDI : Vol.2, 293
RBTLSL : Vol.2, 288
RBTOSL : Vol.2, 271
BBIPSL : Vol.2, 254
RBTUCO : Vol.2, 284
RBTUDI : Vol.2, 286
RBTUSL : Vol.2, 281
RBVMSL : Vol.2, 277
RCGEAA : Vol.1, 148
RCGEAN : Vol.1, 153
RCGGAA : Vol.1, 273
RCGGAN : Vol.1, 278
RGGJAA : Vol.1, 299
RCGKAA : Vol.1, 305
RCGKAN : Vol.1, 309
RCGNAA : Vol.1, 155
RCGNAN : Vol.1, 158
A : Vol.1, 280
RCGSEE : Vol.1, 292
RCGSEN : Vol.1, 297

RFR3FB : Vol.3, 150
RFRMBF : Vol.3, 98
RFRMFB : Vol.3, 93
RFWTFF : Vol.3, 272
RFWTFT : Vol.3, 274
RFWTH1 : Vol.3, 249
RFWTH2 : Vol.3, 258
RFWTHI : Vol.3, 264
RFWTHR : Vol.3, 251
RFWTHS : Vol.3, 254
RFWTHT : Vol.3, 261
RFWTMF : Vol.3, 268
RFWTMT : Vol.3, 270
RGICBP : Vol.4, 447
RGICBS : Vol.4, 467
RGICCM : Vol.4, 422
RGICCN : Vol.4, 425
RGICCO : Vol.4, 417
RGICCP : Vol.4, 408
RGICCQ : Vol.4, 410
RGICCR : Vol.4, 412
RGICCS : Vol.4, 414
RGICCT : Vol.4, 419
RGIDBY : Vol.4, 451
RGIDCY : Vol.4, 431
RGIDMC : Vol.4, 391
RGIDPC : Vol.4, 382
RGIDSC : Vol.4, 386
RGIDYB : Vol.4, 439
RGIIBZ : Vol.4, 453
RGIICZ : Vol.4, 433
RGIIMC : Vol.4, 404
RGIIPC : Vol.4, 396
RGIISC : Vol.4, 399
RGIIZB : Vol.4, 444
RGISBX : Vol.4, 449
RGISCX : Vol.4, 429
RGISI1 : Vol.4, 470
RGISI2 : Vol.4, 474
RGISI3 : Vol.4, 482
RGISMC : Vol.4, 377
RGISPC : Vol.4, 369
RGISPO : Vol.4, 455
RGISPR : Vol.4, 458
RGISS1 : Vol.4, 487
RGISS2 : Vol.4, 491
RGISS3 : Vol.4, 498
RGISSC : Vol.4, 372
RGISSO : Vol.4, 461
RGISSR : Vol.4, 464
RGISXB : Vol.4, 435
RH2INT : Vol.4, 263
RHBDFS : Vol.4, 233
RHBSFC : Vol.4, 236


RIOPCH : Vol.5, 259
RIOPGL : Vol.5, 263
RIOPHE : Vol.5, 257
RIOPLA : Vol.5, 255
RIOPLE : Vol.5, 250
RIXEPS : Vol.5, 283
RIZBSO : Vol.5, 96
RIZBS1 : Vol.5, 98
RIZBSL : Vol.5, 105
RIZBSN : Vol.5, 100
RIZBYN : Vol.5, 103
RIZGLW : Vol.5, 252
RJTEBI : Vol.6, 49
RJTECC : Vol.6, 31
RJTEEX : Vol.6, 28
RJTEGM : Vol.6, 42
RJTEGU : Vol.6, 34
RJTELG : Vol.6, 45
RJTENG: Vol.6, 52
RJTENO : Vol.6, 24
RJTEPO : Vol.6, 55
RJTEUN : Vol.6, 19
RJTEWE : Vol.6, 38
RKFNCS : Vol.4, 67
RKHNCS : Vol.4, 73
RKINCT : Vol.4, 52
RKMNCN : Vol.4, 78
RKSNCA : Vol.4, 46
RKSNCS : Vol.4, 41
RKSSCA : Vol.4, 61
RLARHA : Vol.5, 342
RLNRDS : Vol.5, 348
RLNRIS : Vol.5, 352
RLNRSA : Vol.5, 358
RLNRSS : Vol.5, 355
RLSRDS : Vol.5, 364
RLSRIS : Vol.5, 370
RMCLAF : Vol.5, 436
RMCLCP : Vol.5, 459
RMCLMC : Vol.5, 454
RMCLMZ : Vol.5, 447
RMCLSN : Vol.5, 430
RMCLTP : Vol.5, 465
RMCQAZ : Vol.5, 481
RMCQLM : Vol.5, 476
RMCQSN : Vol.5, 471
RMCUSN : Vol.5, 427
RMSP11 : Vol.5, 500
RMSP1M : Vol.5, 493
RMSPMM : Vol.5, 497
RMSQPM : Vol.5, 487
RMUMQG : Vol.5, 418
RMUMQN : Vol.5, 414
RMUSSN : Vol.5, 422


RNCBPO : Vol.4, 345

RNDAPO : Vol.4, 324
RNGAPL : Vol.4, 340
RNLNMA : Vol.6, 550
RNLNRG : Vol.6, 537

RNNLGF : Vol.6, 560
RNRAPL : Vol.4, 334
ROFNNF : Vol.4, 104
ROFNNV : Vol.4, 98
ROHNNF : Vol.4, 117
ROHNNV : Vol.4, 111
ROIEF2 : Vol.4, 134
ROIEV1 : Vol.4, 137
ROLNLV : Vol.4, 129

ROPDH3 : Vol.4, 147
ROSNNF : Vol.4, 91
ROSNNV : Vol.4, 84
RPDAPN : Vol.4, 307
RPDOPL : Vol.4, 304
RPGOPL : Vol.4, 316
RPLOPL : Vol.4, 310
RQFODX : Vol.4, 162
RQMOGX : Vol.4, 165
RQMOHX : Vol.4, 168
RQMOJX : Vol.4, 171
RSMGON : Vol.5, 304
RSMGPA : Vol.5, 308
RSSTA1 : Vol.5, 290
RSSTA2 : Vol.5, 293
RSSTPT : Vol.5, 300
RSSTRA : Vol.5, 297
RXA005 : Vol.1, 40
VIBHOX : Vol.5, 154
VIBH1X : Vol.5, 156
VIBHYO : Vol.5, 158
VIBHY1 : Vol.5, 160
VIBIOX : Vol.5, 107
VIBI1X : Vol.5, 112
VIBJOX : Vol.5, 71
VIBJ1X : Vol.5, 76
VIBKOX : Vol.5, 109
VIBK1X : Vol.5, 114
VIBYOX : Vol.5, 73
VIBY1X : Vol.5, 78
VIECI1 : Vol.5, 188
VIECI2 : Vol.5, 190
VIEJAC : Vol.5, 200
VIEJEP : Vol.5, 211
VIEJTE : Vol.5, 213
VIEJZT : Vol.5, 209
VIENMQ : Vol.5, 203
VIEPAI : Vol.5, 215
VIERFC : Vol.5, 239
VIERRF : Vol.5, 237
VIETHE : Vol.5, 206
VIGAMX : Vol.5, 170
VIGBET : Vol.5, 185
VIGDIG : Vol.5, 183
VIGLGX : Vol.5, 173
VIICNC : Vol.5, 235
VIICND : Vol.5, 233
VIIDAW : Vol.5, 231
VIIEXP : Vol.5, 218
VIIFCC : Vol.5, 229
VIIFSI : Vol.5, 227
VIILOG : Vol.5, 221
VINPLG : Vol.5, 275
VIXSLA : Vol.5, 278
VIXSPS : Vol.5, 271
VIXZTA : Vol.5, 280

WBTCLS : Vol.2, 267
WBTCSL : Vol.2, 263
WBTDLS : Vol.2, 260
WBTDSL : Vol.2, 257
WIBH0X : Vol.5, 154
WIBH1X : Vol.5, 156
WIBHYO : Vol.5, 158
WIBHY1 : Vol.5, 160
WIBIOX : Vol.5, 107
WIBI1X : Vol.5, 112
WIBJOX : Vol.5, 71
WIBJ1X : Vol.5, 76
WIBKOX : Vol.5, 109
WIBK1X : Vol.5, 114
WIBYOX : Vol.5, 73
WIBY1X : Vol.5, 78
WIDBEY : Vol.5, 273
WIECI1 : Vol.5, 188
WIECI2 : Vol.5, 190
WIEJAC : Vol.5, 200
WIEJEP : Vol.5, 211
WIEJTE : Vol.5, 213
WIEJZT : Vol.5, 209
WIENMQ : Vol.5, 203
WIEPAI : Vol.5, 215
WIERFC : Vol.5, 239
WIERRF : Vol.5, 237
WIETHE : Vol.5, 206
WIGAMX : Vol.5, 170

VIEJEP : Vol.5, 211
VIEJTE : Vol.5, 213
VIEJZT : Vol.5, 209
VIENMQ : Vol.5, 203
VIEPAI : Vol.5, 215
VIERFC : Vol.5, 239
IERRF : Vol.5, 237
VIETHE : Vol.5, 206
VIGBET : Vol.5, 185
VIGDIG : Vol.5, 183
VIGLGX : Vol.5, 173
Vol.5, 235

VIICND: Vol.5, 233
VIIEXP : Vol.5, 218
VIIFCO : Vol.5, 229
VIFSI : Vol.5, 227
VILLOG : Vol.5, 221

VIXSLA : Vol.5, 278
VIXSPS : Vol.5, 271

WBTCLS : Vol.2, 267
WBTCSL : Vol.2, 263
WBTDLS : Vol.2, 260
BBIDSL : Vol.2, 257

WIBH1X : Vol.5, 156
WIBHYO : Vol.5, 158
WIBHY1 : Vol.5, 160
Vol.5, 107

WIBJOX : Vol.5, 71
WIBJ1X : Vol.5, 76
WIBKOX : Vol.5, 109
WIBK1X : Vol.5, 114
WIBYOX : Vol.5, 73
WIBY1X. Vol.5, 78

WIECI1 : Vol.5, 188
WIECI2 : Vol.5, 190
WIEJAC : Vol.5, 200
IEJEP : Vol.5, 211

WIEJZT : Vol.5, 209
WIENMQ : Vol.5, 203
WIEPAI : Vol.5, 215
WIERFC : Vol.5, 239

WIETHE : Vol.5, 206
WIGAMX : Vol.5, 170
\begin{tabular}{|c|c|}
\hline WIGBET
WIGDIG & Vol.5, 185
Vol.5, 183 \\
\hline WIGLGX & Vol.5, 173 \\
\hline WIICNC & Vol.5, 235 \\
\hline WIICND & Vol.5, 233 \\
\hline WIIDAW & Vol.5, 231 \\
\hline WIIEXP & Vol.5, 218 \\
\hline WIIFCO & Vol.5, 229 \\
\hline WIIFSI & Vol.5, 227 \\
\hline WIILOG & Vol.5, 221 \\
\hline WINPLG & Vol.5, 275 \\
\hline WIXSLA & Vol.5, 278 \\
\hline WIXSPS & Vol.5, 271 \\
\hline WIXZTA & Vol.5, 280 \\
\hline ZAM1HH & Vol.1, 85 \\
\hline ZAM1HM & Vol.1, 82 \\
\hline ZAM1MH & Vol.1, 79 \\
\hline ZAM1MM & Vol.1, 76 \\
\hline ZAN1HH & Vol.1, 97 \\
\hline ZAN1HM & Vol.1, 94 \\
\hline ZAN1MH & Vol.1, 91 \\
\hline ZAN1MM & Vol.1, 88 \\
\hline ZANVJ1 & Vol.1, 126 \\
\hline ZARGJM & Vol.1, 37 \\
\hline ZARSJD & Vol.1, 32 \\
\hline ZBGMDI & Vol.2, 72 \\
\hline ZBGMLC & Vol.2, 64 \\
\hline ZBGMLS & Vol.2, 66 \\
\hline ZBGMLU & Vol.2, 62 \\
\hline ZBGMLX & Vol.2, 74 \\
\hline ZBGMMS & Vol.2, 68 \\
\hline ZBGMSL & Vol.2, 58 \\
\hline ZBGMSM & Vol.2, 54 \\
\hline ZBGNDI & Vol.2, 92 \\
\hline ZBGNLC & Vol.2, 84 \\
\hline ZBGNLS & Vol.2, 86 \\
\hline ZBGNLU & Vol.2, 82 \\
\hline ZBGNLX & Vol.2, 94 \\
\hline ZBGNMS & Vol.2, 88 \\
\hline ZBGNSL & Vol.2, 79 \\
\hline ZBGNSM & Vol.2, 76 \\
\hline ZBHEDI & Vol.2, 216 \\
\hline ZBHELS & Vol.2, 211 \\
\hline ZBHELX & Vol.2, 218 \\
\hline ZBHEMS & Vol.2, 213 \\
\hline ZBHESL & Vol.2, 203 \\
\hline ZBHEUC & Vol.2, 209 \\
\hline ZBHEUD & Vol.2, 207 \\
\hline ZBHFDI & Vol.2, 199 \\
\hline ZBHFLS & Vol.2, 194 \\
\hline ZBHFLX & Vol.2, 201 \\
\hline ZBHFMS & Vol.2, 196 \\
\hline ZBHFSL & Vol.2, 186 \\
\hline
\end{tabular}

WIGDIG : Vol.5, 183
WIGLGX : Vol.5, 173
WIICNC : Vol.5, 235
WIICND : Vol.5, 233
WIIDAW : Vol.5, 231
WIIEXP : Vol.5, 218
Vol.5, 229
WIIFSI : Vol.5, 227
WINPLG : Vol.5, 275
WIXSLA : Vol.5, 278
WIXSPS : Vol.5, 271
WIXZTA : Vol.5, 280

ZAM1HH : Vol.1, 85
ZAM1HM : Vol.1, 82
ZAM1MH: Vol.1, 79

ZAN1HH : Vol.1, 97
ZAN1HM : Vol.1, 94
ZAN1MH : Vol.1, 91
ZAN1MM : Vol.1, 88

ZARGJM : Vol.1, 37
ZARSJD : Vol.1, 32
ZBGMDI : Vol.2, 72
ZBGMLC:Vol.2, 64
ZBGMLS : Vol.2, 66

ZBGMLX : Vol.2, 74
ZBGMMS : Vol.2, 68
ZBGMSL : Vol.2, 58
ZBGMSM : Vol.2, 54

ZBGNLC : Vol.2, 84
ZBGNLS : Vol.2, 86
ZBGNLU : Vol.2, 82
ZBGNLX : Vol.2, 94
ZBGNMS : Vol.2, 88

ZBGNSM : Vol.2, 76
ZBHEDI : Vol.2, 216
ZBHELS : Vol.2, 211
ZBHELX : Vol.2, 218
ZBHEMS : Vol.2, 213

ZBHEUC : Vol.2, 209
ZBHEUD : Vol.2, 207
ZBHFDI • Vol.2, 199
ZBHFLS : Vol.2, 194

ZBHFMS : Vol.2, 196
ZBHFSL : Vol.2, 186
```

