ADVANCED SCIENTIFIC LIBRARY
ASL
User's Guide
<Basic Functions Vol.2>

PROPRIETARY NOTICE

The information disclosed in this document is the property of NEC Corporation (NEC) and/or its licensors.
NEC and/or its licensors, as appropriate, reserve all patent, copyright and other proprietary rights to this
document, including all design, manufacturing, reproduction, use and sales rights thereto, except to extent said
rights are expressly granted to others.

The information in this document is subject to change at any time, without notice.

Copyright 2023
NEC Corporation

PREFACE

This manual describes general concepts, functions, and specifications for use of the Advanced
Scientific Library (ASL).

The manuals corresponding to this product consist of seven volumes, which are divided into the
chapters shown below. This manual describes the basic functions, volume 2.

Basic Functions Volume 1

Chapter Title Contents
1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.
2 Storage Mode Explanation of algorithms, method of using, and usage example
Conversion of subroutine related to storage mode conversion of array data.
3 Basic Matrix Algebra | Explanation of algorithms, method of using, and usage example
of subroutine related to basic calculations involving matrices.
4 Eigenvalues and Explanation of algorithms, method of using, and usage example
Eigenvectors of subroutine related to

the standard eigenvalue problem for real matrices, complex
matrices, real symmetric matrices, Hermitian matrices, real sym-
metric band matrices, real symmetric tridiagonal matrices, real
symmetric random sparse matrices, Hermitian random sparse
matrices and

the generalized eigenvalue problem for real matrices, real
symmetric matrices, Hermitian matrices, real symmetric band
matrices.

Basic Functions Volume 2

Chapter Title Contents
1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.
2 Simultaneous Linear Explanation of algorithms, method of using, and usage exam-
Equations ple of subroutine related to simultaneous linear equations corre-
(Direct Method) sponding to real matrices, complex matrices, positive symmetric

matrices, real symmetric matrices, Hermitian matrices, real band
matrices, positive symmetric band matrices, real tridiagonal ma-
trices, real upper triangular matrices, and real lower triangular
matrices.

Basic Functions Volume 3

Chapter

Title

Contents

Introduction

Explanation of the organization of this manual, how to view each
item, and usage limitations.

Fourier Transforms
and their applications

Explanation of algorithms, method of using, and usage exam-
ple of subroutine related to one-, two- and three-dimensional
complex Fourier transforms and real Fourier transforms, one-,
two- and three-dimensional convolutions, correlations, and power
spectrum analysis, wavelet transforms, and inverse Laplace
transforms.

Basic Functions Volume 4

Chapter

Title

Contents

1

Introduction

Explanation of the organization of this manual, how to view each
item, and usage limitations.

Differential Equations
and Their Applications

Explanation of algorithms, method of using, and usage example
of subroutine related to

ordinary differential equations initial value problems for
high-order simultaneous ordinary differential equations, implicit
simultaneous ordinary differential equations, matrix type ordi-
nary differential equations, stiff problem high-order simultane-
ous ordinary differential equations, simultaneous ordinary dif-
ferential equations, first-order simultaneous ordinary differential
equations, and high-order ordinary differential equations, and
ordinary differential equations boundary value problems
for high-order simultaneous ordinary differential equations, first-
order simultaneous ordinary differential equations, high-order or-
dinary differential equations, high-order linear ordinary differen-
tial equations, and second-order linear ordinary differential equa-
tions, and

integral equations for Fredholm’s integral equations of second
kind and Volterra’s integral equations of first kind, and

partial differential equations for two- and three-dimensional
inhomogeneous Helmholtz equation.

Numerical Differentials

Explanation of algorithms, method of using, and usage example
of subroutine related to numerical differentials of one-variable
functions and multi-variable functions.

Numerical Integration

Explanation of algorithms, method of using, and usage example
of subroutine related to numerical integration over a finite inter-
val, semi-infinite interval, fully infinite interval, two-dimensional
finite interval, and multi-dimensional finite interval.

Interpolations and
Approximations

Explanation of algorithms, method of using, and usage example
of subroutine related to interpolations, surface interpolations,
least squares approximations, least squares surface approxima-
tions, and Chebyshev’s approximations.

Spline Functions

Explanation of algorithms, method of using, and usage exam-
ple of subroutine related to interpolation, smoothing, numerical
derivatives, and numerical integrals using cubic splines, bicubic
splines and B—splines.

Basic Functions Volume 5

Chapter

Title

Contents

Introduction

Explanation of the organization of this manual, how to view each
item, and usage limitations.

Special Functions

Explanation of algorithms, method of using, and usage example
of subroutine related to Bessel functions, modified Bessel func-
tions, spherical Bessel functions, functions related to Bessel func-
tions, Gamma functions, functions related to Gamma functions,
elliptic functions, indefinite integrals of elementary functions, as-
sociated Legendre functions, orthogonal polynomials, and other
special functions.

Sorting and Ranking

Explanation and usage examples of subroutine related to sorting
and ranking.

Roots of Equations

Explanation of algorithms, method of using, and usage example
of subroutine related to roots of algebraic equations, nonlinear
equations, and simultaneous nonlinear equations.

Extremal Problems
and Optimization

Explanation of algorithms, method of using, and usage exam-
ple of subroutine related to minimization of functions with no
constraints, minimization of the sum of the squares of functions
with no constraints, minimization of one-variable functions with
constraints, minimization of multi-variable functions with con-
straints, and shortest path problem.

Basic Functions Volume 6

Chapter

Title

Contents

1

Introduction

Explanation of the organization of this manual, how to view each
item, and usage limitations.

Random Number Tests

Explanation and usage examples of subroutine related to uniform
random number tests, and distribution random number tests.

Probability
Distributions

Explanation and usage examples of subroutine related to contin-
uous distributions and discrete distributions.

Basic Statistics

Explanation and usage examples of subroutine related to basic
statistics, variance-covariance and correlation.

Tests and Estimates

Explanation and usage examples of subroutine related to interval
estimates and tests.

Analysis of Variance
and
Design of Experiments

Explanation and usage examples of subroutine related to one-way
layout, two-way layout, multiple-way layout, randomized block
design, Greco-Latin square method, cumulative Method.

Nonparametric Tests

Explanation and usage examples of subroutine related to tests
using x? distribution and tests using other distributions.

Multivariate Analysis

Explanation and usage examples of subroutine related to prin-
cipal component analysis, factor analysis, canonical correlation
analysis, discriminant analysis, cluster analysis.

Time Series Analysis

Explanation and usage examples of subroutine related to auto-
correlation, cross correlation, autocovariance, cross covariance,
smoothing and demand forecasting.

10

Regression analysis

Explanation and usage examples of subroutine related to linear
Regression and nonlinear Regression.

Shared Memory Parallel Functions

Chapter Title Contents

1 Introduction Explanation of the organization of this manual, how to view each
item, and usage limitations.

2 Basic Matrix Algebra | Explanation of algorithms, method of using, and usage example
of subroutine related to obtain the product of real matrices and
complex matrices.

3 Simultaneous Linear Explanation of algorithms, method of using, and usage exam-

Equations ple of subroutine related to simultaneous linear equations cor-
(Direct Method) responding to real matrices, complex matrices, real symmetric
matrices, and Hermitian matrices.

4 Simultaneous Linear Explanation of algorithms, method of using, and usage exam-
Equations ple of subroutine related to simultaneous linear equations corre-
(Iteration Method) sponding to real positive definite symmetric sparse matrices, real

symmetric sparse matrices and real asymmetric sparse matrices.

5 Eigenvalues and Explanation of algorithms, method of using, and usage example
Eigenvectors of subroutine related to the eigenvalue problem for real symmet-

ric matrices and Hermitian matrices.

6 Fourier Transforms Explanation of algorithms, method of using, and usage example
and their applications | of subroutine related to one-, two- and three-dimensional com-

plex Fourier transforms and real Fourier transforms, two- and
three-dimensional convolutions, correlations, and power spec-
trum analysis.

7 Sorting Explanation and usage examples of subroutine related to sorting
and ranking.

Document Version 3.0.0-230301 for ASL, March 2023
Remarks

(1) This manual corresponds to ASL 1.1. All functions described in this manual are program products.

(2) Proper nouns such as product names are registered trademarks or trademarks of individual manufacturers.

(3) This library was developed by incorporating the latest numerical computational techniques. Therefore,
to keep up with the latest techniques, if a newly added or improved function includes the function of an
existing function may be removed.

Contents

1 INTRODUCTION 1
1.1 OVERVIEW e e 1
1.1.1 Introduction to The Advanced Scientific Library ASL 1
1.1.2 Distinctive Characteristics of ASL 1
1.2 KINDS OF LIBRARIES e e s s 2
1.3 ORGANIZATION s e e s 3
1.3.1 Imtroduction e 3
1.3.2 Organization of Subroutine Description o . 3
1.3.3 Contents of Each Item 3
1.4 SUBROUTINE NAMES e e e e s e e 7
1.5 NOTES 9
2 SIMULTANEOUS LINEAR EQUATIONS(DIRECT METHOD) 10
2.1 INTRODUCTION o e e s e e s s s 10
2.1.1 Methods of using subroutines Lo 11
2.1.2 Notes e e e 13
2.1.3 Algorithms Used e 15
2.1.3.1 Crout Method e 15
2.1.3.2 Cholesky method 16
2.1.3.3 Modified Cholesky method 16
2.1.34 Gaussmethod L 17
2.1.3.5 Levinson method L 18
2.1.3.6 Vandermonde matrix L L 19
2.1.3.7 Cyclic Reduction Method L oL 21
2.1.3.8 Calculating the inverse matrix L L. 27
2.1.3.9 Calculating the determinant 27
2.1.3.10 Improving the solution 27
2.1.3.11 Precise estimate of the approximate solution 28
2.1.3.12 Condition Number 28
2.1.4 Reference Bibliography L 30
2.2 REAL MATRIX (TWO-DIMENSIONAL ARRAY TYPE) 31

2.2.1 DBGMSM, RBGMSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Real Matrix) 31

2.2.2 DBGMSL, RBGMSL

Simultaneous Linear Equations (Real Matrix) 35

2.2.3 DBGMLU, RBGMLU
LU Decomposition of a Real Matrix 39

2.2.4 DBGMLC, RBGMLC
LU Decomposition and Condition Number of a Real Matrix 41

2.2.5 DBGMLS, RBGMLS

Simultaneous Linear Equations (LU-Decomposed Real Matrix) 43

2.2.6 DBGMMS, RBGMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Real
Matrix) . . . oo 45

—i—

2.3

2.4

2.5

2.2.7 DBGMDI, RBGMDI

Determinant and Inverse Matrix of a Real Matrix 48
2.2.8 DBGMLX, RBGMLX

Improving the Solution of Simultaneous Linear Equations (Real Matrix) 50
COMPLEX MATRIX (TWO DIMENSIONAL ARRAY TYPE) (REAL ARGUMENT TYPE) .. 54
2.3.1 ZBGMSM, CBGMSM

Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix) 54
2.3.2 ZBGMSL, CBGMSL

Simultaneous Linear Equations (Complex Matrix) 58
2.3.3 ZBGMLU, CBGMLU

LU Decomposition of a Complex Matrix 62
2.3.4 ZBGMLC, CBGMLC

LU Decomposition and Condition Number of a Complex Matrix 64
2.3.5 ZBGMLS, CBGMLS

Simultaneous Linear Equations (LU-Decomposed Complex Matrix) 66
2.3.6 ZBGMMS, CBGMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex

Matrix)o 68
2.3.7 ZBGMDI, CBGMDI

Determinant and Inverse Matrix of a Complex Matrix 72
2.3.8 ZBGMLX, CBGMLX

Improving the Solution of Simultaneous Linear Equations (Complex Matrix) 74
COMPLEX MATRIX (TWO-DIMENSIONAL ARRAY TYPE)
(COMPLEX ARGUMENT TYPE) o e e e 76
2.4.1 ZBGNSM, CBGNSM

Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix) 76
2.4.2 ZBGNSL, CBGNSL

Simultaneous Linear Equations (Complex Matrix), 79
2.4.3 ZBGNLU, CBGNLU

LU Decomposition of a Complex Matrix 82
2.4.4 7ZBGNLC, CBGNLC

LU Decomposition and Condition Number of a Complex Matrix 84
2.4.5 ZBGNLS, CBGNLS

Simultaneous Linear Equations (LU-Decomposed Complex Matrix) 86
2.4.6 ZBGNMS, CBGNMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex

Matrix)o 88
2.4.7 ZBGNDI, CBGNDI

Determinant and Inverse Matrix of a Complex Matrix 92
2.4.8 ZBGNLX, CBGNLX

Improving the Solution of Simultaneous Linear Equations (Complex Matrix) 94
POSITIVE SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIAN-
GULAR TYPE) . . . 96
2.5.1 DBPDSL, RBPDSL

Simultaneous Linear Equations (Positive Symmetric Matrix) 96
2.,5.2 DBPDUU, RBPDUU

LLT Decomposition of a Positive Symmetric Matrix 100
2.5.3 DBPDUC, RBPDUC

LLT Decomposition and Condition Number of a Positive Symmetric Matrix 102
2.5.4 DBPDLS, RBPDLS

Simultaneous Linear Equations (LLT-Decomposed Positive Symmetric Matrix) 104
2.5.5 DBPDDI, RBPDDI

Determinant and Inverse Matrix of a Positive Symmetric Matrix 106
2.5.6 DBPDLX, RBPDLX

Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Matrix) . . 108

—11—

2.6 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGU-
LAR TYPE) . . . o oot
2.6.1 DBSPSL, RBSPSL

Simultaneous Linear Equations (Real Symmetric Matrix)
2.6.2 DBSPUD, RBSPUD

LDL™ Decomposition of a Real Symmetric Matrix
2.6.3 DBSPUC, RBSPUC

LDLT Decomposition and Condition Number of a Real Symmetric Matrix
2.6.4 DBSPLS, RBSPLS

Simultaneous Linear Equations (LDLT-Decomposed Real Symmetric Matrix)
2.6.5 DBSPMS, RBSPMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDLT decomposed Real

Matrix) . . . o oo
2.6.6 DBSPDI, RBSPDI

Determinant and Inverse Matrix of a Real Symmetric Matrix
2.6.7 DBSPLX, RBSPLX

Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix)

2.7 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGU-
LAR TYPE)(NO PIVOTING) o oot
2.7.1 DBSMSL, RBSMSL

Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)
2.7.2 DBSMUD, RBSMUD

LDLT Decomposition of a Real Symmetric Matrix (No Pivoting)
2.7.3 DBSMUC, RBSMUC

LDLT Decomposition and Condition Number of a Real Symmetric Matrix (No Pivoting)
2.7.4 DBSMLS, RBSMLS

Simultaneous Linear Equations (LDLT-Decomposed Real Symmetric Matrix) (No Pivoting)
2.7.5 DBSMMS, RBSMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL”-Decomposed Real

Matrix) (No Pivoting) o
2.7.6 DBSMDI, RBSMDI

Determinant and Inverse Matrix of a Real Symmetric Matrix (No Pivoting)
2.7.7 DBSMLX, RBSMLX

Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix) (No

Pivoting)

2.8 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE, LOWER TRIANGU-
LAR TYPE)(NO PIVOTING) o oot
2.8.1 DBSNSL, RBSNSL

Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)
2.8.2 DBSNUD, RBSNUD

UTDU Decomposition of a Real Symmetric Matrix (No Pivoting)
2.8.3 DBSNLS, RBSNLS

. 133

135

Simultaneous Linear Equations (UTDU-Decomposed Real Symmetric Matrix) (No Pivoting)150

2.9 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE)
(REAL ARGUMENT TYPE) e
2.9.1 ZBHPSL, CBHPSL

Simultaneous Linear Equations (Hermitian Matrix)

2.9.2 ZBHPUD, CBHPUD
LDL* Decomposition of a Hermitian Matrix

2.9.3 ZBHPUC, CBHPUC

LDL* Decomposition and Condition Number of a Hermitian Matrix
2.9.4 ZBHPLS, CBHPLS

Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix)

i

2.10

2.11

2.12

2.9.5 ZBHPMS, CBHPMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Her-

mitian Matrix) e 162
2.9.6 ZBHPDI, CBHPDI

Determinant and Inverse Matrix of a Hermitian Matrix 165
2.9.7 ZBHPLX, CBHPLX

Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) 167
HERMITTIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE)
(REAL ARGUMENT TYPE) (NO PIVOTING) i 169
2.10.1 ZBHRSL, CBHRSL

Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting) 169
2.10.2 ZBHRUD, CBHRUD

LDL* Decomposition of a Hermitian Matrix (No Pivoting) 173
2.10.3 ZBHRUC, CBHRUC

LDL* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting) 175
2.10.4 ZBHRLS, CBHRLS

Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No Pivoting) . . . 177

2.10.5 ZBHRMS, CBHRMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Her-

mitian Matrix) (No Pivoting) L 179
2.10.6 ZBHRDI, CBHRDI
Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting) 182

2.10.7 ZBHRLX, CBHRLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)184
HERMITTAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE)

(COMPLEX ARGUMENT TYPE) e e e 186
2.11.1 ZBHFSL, CBHFSL

Simultaneous Linear Equations (Hermitian Matrix) 186
2.11.2 ZBHFUD, CBHFUD

LDL* Decomposition of a Hermitian Matrix 190
2.11.3 ZBHFUC, CBHFUC

LDL* Decomposition and Condition Number of a Hermitian Matrix 192
2.11.4 ZBHFLS, CBHFLS

Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) 194

2.11.5 ZBHFMS, CBHFMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Her-

mitian Matrix) 196
2.11.6 ZBHFDI, CBHFDI

Determinant and Inverse Matrix of a Hermitian Matrix 199
2.11.7 ZBHFLX, CBHFLX

Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) 201
HERMITTAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE)
(COMPLEX ARGUMENT TYPE) (NO PIVOTING) 203
2.12.1 ZBHESL, CBHESL

Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting) 203
2.12.2 ZBHEUD, CBHEUD

LDL* Decomposition of a Hermitian Matrix (No Pivoting) 207
2.12.3 ZBHEUC, CBHEUC

LDL* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting) 209
2.12.4 ZBHELS, CBHELS

Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No Pivoting) . . . 211

2.12.5 ZBHEMS, CBHEMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Her-
mitian Matrix) (No Pivoting)o e 213

2.13

2.14

2.15

2.16

2.17

2.18

2.12.6 ZBHEDI, CBHEDI

Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting) 216
2.12.7 ZBHELX, CBHELX

Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)218

REAL BAND MATRIX (BAND TYPE) e 220
2.13.1 DBBDSL, RBBDSL

Simultaneous Linear Equations (Real Band Matrix) 220
2.13.2 DBBDLU, RBBDLU

LU Decomposition of a Real Band Matrix 225
2.13.3 DBBDLC, RBBDLC

LU Decomposition and Condition Number of a Real Band Matrix 227
2.13.4 DBBDLS, RBBDLS

Simultaneous Linear Equations (LU-Decomposed Real Band Matrix) 229
2.13.5 DBBDDI, RBBDDI

Determinant of a Real Band Matrix 0. 231
2.13.6 DBBDLX, RBBDLX

Improving the Solution of Simultaneous Linear Equations (Real Band Matrix) 233
POSITIVE SYMMETRIC BAND MATRIX (SYMMETRIC BAND TYPE) 237
2.14.1 DBBPSL, RBBPSL

Simultaneous Linear Equations (Positive Symmetric Band Matrix) 237
2.14.2 DBBPUU, RBBPUU

LLT Decomposition of a Positive Symmetric Band Matrix 241
2.14.3 DBBPUC, RBBPUC

LLT Decomposition and Condition Number of a Positive Symmetric Band Matrix 243
2.14.4 DBBPLS, RBBPLS

Simultaneous Linear Equations (LLT-Decomposed Positive Symmetric Band Matrix) 245
2.14.5 DBBPDI, RBBPDI

Determinant of a Positive Symmetric Band Matrix00 247

2.14.6 DBBPLX, RBBPLX
Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Band Matrix)249

REAL TRIDIAGONAL MATRIX (VECTOR TYPE), 251
2.15.1 DBTDSL, RBTDSL

Simultaneous Linear Equations (Real Tridiagonal Matrix) 251
2.15.2 DBTPSL, RBTPSL

Simultaneous Linear Equations (Positive Symmetric Tridiagonal Matrix) 254
REAL TRIDIAGONAL MATRIX (VECTOR TYPE) 257
2.16.1 WBTDSL

Simultaneous Linear Equations (Real Tridiagonal Matrix) 257
2.16.2 WBTDLS

Simultaneous Linear Equations (Real Tridiagonal Matrix after Reduction Operations) . . . 260
FIXED COEFFICIENT REAL TRIDIAGONAL MATRIX
(SCALAR TYPE) 263
2.17.1 WBTCSL

Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix) 263

2.17.2 WBTCLS
Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix after Reduction

Operations)o e 267
VANDERMONDE MATRIX AND TOEPLITZ MATRIX 271
2.18.1 DBTOSL, RBTOSL

Simultaneous Linear Equations (Toeplitz Matrix) 271
2.18.2 DBTSSL, RBTSSL

Simultaneous Linear Equations (Symmetric Toeplitz Matrix) 274
2.18.3 DBVMSL, RBVMSL

Simultaneous Linear Equations (Vandermonde Matrix) 277

—v—

2.19 REAL UPPER TRIANGULAR MATRIX
(TWO-DIMENSIONAL ARRAY TYPE) e 281
2.19.1 DBTUSL, RBTUSL

Simultaneous Linear Equations (Real Upper Triangular Matrix) 281

2.19.2 DBTUCO, RBTUCO

Condition Number of a Real Upper Triangular Matrix 284

2.19.3 DBTUDI, RBTUDI

Determinant and Inverse Matrix of a Real Upper Triangular Matrix 286

2.20 REAL LOWER TRIANGULAR MATRIX
(TWO-DIMENSIONAL ARRAY TYPE) e 288
2.20.1 DBTLSL, RBTLSL

Simultaneous Linear Equations (Real Lower Triangular Matrix) 288

2.20.2 DBTLCO, RBTLCO
Condition Number of a Real Lower Triangular Matrix 291

2.20.3 DBTLDI, RBTLDI

Determinant and Inverse Matrix of a Real Lower Triangular Matrix 293
A GLOSSARY 295
B METHODS OF HANDLING ARRAY DATA 304
B.1 Methods of handling array data corresponding to matrix 304
B.2 Data storage modes Lo 305
B.2.1 Real matrix (two-dimensional array type) oL 305
B.2.2 Complex matrix e 306
B.2.3 Real symmetric matrix and positive symmetric matrix 0L, 307
B.2.4 Hermitian matrix e e e 308
B.2.5 Real band matrix oL e 310
B.2.6 Real symmetric band matrix and positive symmetric matrix (symmetric band type) 311
B.2.7 Real tridiagonal matrix (vector type) Lo 312
B.2.8 Real symmetric tridiagonal matrix and positive symmetric tridiagonal matrix (vector type) 313
B.2.9 Fixed coeflicient real tridiagonal matrix (scalar type) 313
B.2.10 Triangular matrix L e 314
B.2.11 Random sparse matrix (For symmetric matrix only) 314
B.2.12 Random sparse matrixo L e e 315
C MACHINE CONSTANTS USED IN ASL 316
C.1 Units for Determining Error 316
C.2 Maximum and Minimum Values of Floating Point Data 316

—vi—

Chapter 1
INTRODUCTION

1.1 OVERVIEW

1.1.1 Introduction to The Advanced Scientific Library ASL

Table 1—1 shows correspondences among product categories, functions of ASL and supported hardware platforms.

In the same version of ASL, interfaces of subroutines of the same name are common among hardware platforms.

Table 1—1 Classification of functions included in ASL

Classification of Functions Volume

Basic functions Vol. 1-6

Shared memory parallel functions | Vol. 7

1.1.2 Distinctive Characteristics of ASL
ASL has the following distinctive characteristics.

(1) Subroutines are optimized using compiler optimization to take advantage of corresponding system hardware

features.

(2) Special-purpose subroutines for handling matrices are provided so that the optimum processing can be
performed according to the type of matrix (symmetric matrix, Hermitian matrix, or the like). Generally,
processing performance can be increased and the amount of required memory can be conserved by using

the special-purpose subroutines.

(3) Subroutines are modularized according to processing procedures to improve reliability of each component

subroutine as well as the reliability and efficiency of the entire system.

(4) Error information is easy to access after a subroutine has been used since error indicator numbers have been

systematically determined.

1.2 KINDS OF LIBRARIES

Table 1—2 Kinds of libraries providing ASL

. - Doclarati
Size of variable(byte) eclaration Kind Kind of library
of arguments
integer real
4 8 INTEGER(4) 32bit integer Double-precision
REAL(8) subroutine
32bit integer library
(link option: -lasl_sequential)
4 4 INTEGER(4) 32bit integer Single-precision
REAL(4) subroutine
8 8 INTEGER(8) 64bit integer Double-precision
REAL(8) subroutine
64bit integer library
(link option: -lasl_sequential i64)
8 4 INTEGER(8) 64bit integer Single-precision
REAL(4) subroutine

(*¥1) Functions that appear in this documentation do not always support all of the four kinds of subroutines listed
above. For those functions that do not support some of those subroutine kinds, relevant notes will appear in the

corresponding subsections.

(*¥2) The string “(4)” that specifies 32bit (4 byte) can be omitted.

1.3 ORGANIZATION

This section describes the organization of Chapters 2 and later.

1.3.1 Introduction

The first section of each chapter is a general introduction describing such information as the effective ways of

using the subroutines, techniques employed, algorithms on which the subroutines are based, and notes.

1.3.2 Organization of Subroutine Description

The second section of each chapter sequentially describes the following topics for each subroutine.
Function

Usage

Arguments

Restrictions

Error indicator

Notes

7) Example

Each item is described according to the following principles.

1.3.3 Contents of Each Item

(1) Function
Function briefly describes the purpose of the ASL subroutine.

(2) Usage
Usage describes the subroutine name and the order of its arguments. In general, arguments are arranged

as follows.
CALL subroutine-name (input-arguments, input/output-arguments, output-arguments, ISW, work, IERR)

ISW is an input argument for specifying the processing procedure. IERR is an error indicator. In some

cases, input/output arguments precede input arguments. The following general principles also apply.

e Array are placed as far to the left as possible according to their importance.

e The dimension of an array immediately follows the array name. If multiple arrays have the same
dimension, the dimension is assigned as an argument of only the first array name. It is not assigned

as an argument of subsequent array names.

(3) Arguments
Arguments are explained in the order described above in paragraph (2). The explanation format is as
follows.
Arguments Type Size Input/Output Contents

(a) (b) (9 (d) (e)

Contents of Each Item

(a)

(b)

Arguments
Arguments are explained in the order they are designated in the Usage paragraph.
Type
Type indicates the data type of the argument. Any of the following codes may appear as the type.

I : Integer type

D : Double precision real

R : Real

Z : Double precision complex

C : Complex

There are 64-bit integer and 32-bit integer for integer type arguments. In a 32-bit (64-bit) integer type

subroutine, all the integer type arguments are 32-bit (64-bit) integer. In other words, kinds of libraries

determine the sizes of integer type arguments (Refer to 1.4). In the user program, a 32-bit/64-bit
integer type argument must be declared by INTEGER/ INTEGER(8), respectively.

Size

Size indicates the required size of the specified argument. If the size is greater than 1, the required
area must be reserved in the program calling this subroutine.

1 : Indicates that argument is a variable.

N : Indicates that the argument is a vector (one-dimensional array) having N elements. The
argument N indicating the size of this vector is defined immediately after the specified vector.
However, if the size of a vector or array defined earlier, it is omitted following subsequently
defined vectors or arrays. The size may be specified by only a numeric value or in the form of a
product or sum such as 3 x N or N + M.

M, N : Indicates that the argument is a two-dimensional array having M rows and N columns. If M
and N indicating the size of this array have not been defined before this array is specified, they
are defined as arguments immediately following this array.

Input/Output

Input/Output indicates whether the explanation of argument contents applies to input time or
output time.

i. When only “Input” appears
When the control returns to the program using this subroutine, information when the argument
is input is preserved. The user must assign input-time information unless specifically instructed
otherwise.
ii. When only “Output” appears
Results calculated within the subroutine are output to the argument. No data is entered at
input time.
iii. When both “Input” and “Output” appear
Argument contents change between the time control passes to the subroutine and the time control
returns from the subroutine. The user must assign input-time information unless specifically
instructed otherwise.
iv. When “Work” appears
Work indicates that the argument is an area used when performing calculations within the
subroutine. A work area having the specified size must be reserved in the program calling this
subroutine. The contents of the work area may have to be maintained so they can be passed along
to the next calculation.

Contents of Each Item

()

Contents
Contents describes information held by the argument at input time or output time.
e A sample Argument description follows.

Example
The statement of the subroutine (DBGMLC, RBGMLC) that obtains the LU decomposition
and the condition number of a real matrix is as follows.

Double precision:

CALLDBGMLC (A, LNA, N, IPVT, COND, W1, IERR)
Single precision:

CALL RBGMLC (A, LNA, N, IPVT, COND, W1, IERR)

The explanation of the arguments is as follows.

Table 1-3 Sample Arguments

D:Double precision real = Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A Note | LNA,N Input | Real matrix A(two-dimensional array)
D Output | The matrix A decomposed into the matrix LU
R where U is a unit upper triangular matrix and
L is a lower triangular matrix.
2 LNA I 1 Input | Adjustable dimension size of array A
3 N I 1 Input | Order n of matrix A
4 IPVT I N Output | Pivoting information
IPVT(i): Number of the row exchanged with
row ¢ in the i-th step.
5 COND D 1 Output | Reciprocal of the condition number
R
6 W1 D N Work | Work area
R
7 IERR I 1 Output | Error indicator

To use this subroutine, arrays A, IPVT and W1 must first be allocated in the calling program so

double-precision

they can be used as arguments. A is a }N"tc real array of size (LNA , N) , IPVT is

single-precision
double-precision
single-precision
When the 64-bit integer version is used, all integer-type arguments (LNA, N, IPVT and IERR) must
be declared by using INTEGER(8), not INTEGER.

an integer array of size N and W1 is a { }real array of size N.

Note The entries enclosed in brace { } mean that the array should be declared double precision type (code D) when
using subroutine DBGMLC and real type (code R) when using subroutine RBGMLC. Braces are used in this
manner throughout the remainder of the text unless specifically stated otherwise.

Contents of Each Item

Data must be stored in A, LNA and N before this subroutine is called. The LU decomposition and
condition number of the assigned matrix are calculated with in the subroutine, and the results are
stored in array A and variable COND. In addition, pivoting information is stored in IPVT for use by

subsequent subroutines.

IERR is an argument used to notify the user of invalid input data or an error that may occur during

processing. If processing terminates normally, IERR is set to zero.

Since W1 is a work area used only within the subroutine, its contents at input and output time have

no special meaning.

(4) Restrictions
Restrictions indicate limiting ranges for subroutine arguments.

(5) Error indicator

Each subroutine has been given an error indicator as an output argument. This error indicator, which
has uniformly been given the variable name IERR, is placed at the end of the arguments. If an error is

detected within the subroutine, a corresponding value is output to IERR. Error indicator values are divided

into five levels.

Table 1-4 Classification of Error Indicator Output Values

Level IERR value Meaning Processing result
Normal 0 Processing is terminated normally. Results are guaranteed.
Warning | 1000~2999 | Processing is terminated under cer- | Results are conditionally guaranteed.
tain conditions.
3000~3499 | Processing is aborted since an argu- | Results are not guaranteed.
ment violated its restrictions.
Fatal 3500~3999 | Obtained results did not satisfy a cer- | Obtained results are returned (the
tain condition. results are not guaranteed).
4000 or more, A fatal error was detected during | Results are not guaranteed.
processing. Usually, processing is
aborted.
(6) Notes

Notes describes ambiguous items and points requiring special attention when using the subroutine.

(7) Example
Here gives an example of how to use the subroutine. Note that in some cases, multiple subroutines are

combined in a single example. The output results are given in the 32-bit integer version, and may differ

within the range of rounding error if the compiler or intrinsic functions are different.

The source codes of examples in this document are included in User’s Guide. Input data, if required, is

also included in it. To build up an executable files by compiling these example source codes, they should

be linked with this product library.

1.4 SUBROUTINE NAMES

The subroutines name of ASL basic functions consists of (six alphanumeric characters).

Figure 1-1 Subroutine Name Components

Characteristic function of individual subroutine

Indicates the numerical application

Indicates the calculation precision

“1” in Figure 1-1: The following eight letters are used to indicate the calculation precision.

D, W Double precision real-type calculation
R, V Single precision real-type calculation
Z, J Double precision complex-type calculation

C, I Single precision complex-type calculation

However, the complex type calculations listed above do not necessarily require complex arguments.

“2” in Figure 1-1: Currently, the following letters lettererererere are used to indicate the application field
in the ASL related products.

Letter Application Field Volume

A Storage mode conversion 1
Basic matrix algebra 1,7

B Simultaneous linear equations (direct method) 2,7

C Eigenvalues and eigenvectors 1,7

F Fourier transforms and their applications 3,7
Time series analysis 6

G Spline function 4

H Numeric integration 4

I Special function 5

J Random number tests 6

K Ordinary differential equation (initial value problems) 4

L Roots of equations 5

M Extremum problems and optimization 5

N Approximation and regression analysis 4,6

(0] Ordinary differential equations (boundary value problems), integral 4
equations and partial differential equations

P Interpolation 4

Q Numerical differentials 4

S Sorting and ranking 5,7

Letter Application Field Volume

X Basic matrix algebra

Simultaneous linear equations (iterative method)
Probability distributions

Basic statics

Tests and estimates

Analysis of variance and design of experiments

Nonparametric tests

S O W N~
[e>E >N INe NN e e N B

Multivariate analysis

“3—6” in Figure 1—1 : These characters indicate the characteristic function of the individual subroutine.

1.5 NOTES

(1)

Use the subroutines of double precision version whenever possible. They not only provide higher precision
solutions but also are more stable than single precision versions, in particular, for eigenvalue and eigenvector

problems.

To suppress compiler operation exceptions, ASL subroutines are set to so that they conform to the compiler
parameter indications of a user’s main program. Therefore, the main program must suppress any operation

exceptions.

The numerical calculation programs generally deal with operations on finite numbers of digits, so the
precision of the results cannot exceed the number of operation digits being handled. For example, since
the number of operation digits (in the mantissa part) for double-precision operations is on the order of 15
decimal digits, when using these floating point modes to calculate a value that mathematically becomes 1,
an error on the order of 1071 may be introduced at any time. Of course, if multiple length arithmetic is
emulated such as when performing operations on an arbitrary number of digits, this kind of error can be
controlled. However, in this case, when constants such as 7 or function approximation constants, which are
fixed in double-precision operations, for example, are also to be subject to calculations that depend on the
length of the multiple length arithmetic operations, the calculation efficiency will be worse than for normal

operations.

A solution cannot be obtained for a problem for which no solution exists mathematically. For example,
a solution of simultaneous linear equations having a singular (or nearly singular) matrix for its coefficient
matrix theoretically cannot be obtained with good precision mathematically. Numerical calculations cannot
strictly distinguish between mathematically singular and nearly singular matrices. Of course, it is always
possible to consider a matrix to be singular if the calculation value for the condition number is greater than

or equal to an established criterion value.

Generally, if data is assigned that causes a floating point exception during calculations (such as a floating
point overflow), a normal calculation result cannot be expected. However, a floating point underflow that

occurs when adding residuals in an iterative calculation is an exception to this.

For problems that are handled using numerical calculations (specifically, problems that use iterative tech-
niques as the calculation method), there are cases in which a solution cannot be obtained with good precision

and cases in which no solution can be obtained at all, by a special-purpose subroutine.

Depending on the problem being dealt with, there may be cases when there are multiple solutions, and the
execution result differs in appearance according to the compiler used or the computer or OS under which
the program is executed. For example, when an eigenvalue problem is solved, the eigenvectors that are
obtained may differ in appearance in this way.

The mark “DEPRECATED” denotes that the subroutine will be removed in the future. Use ASL Unified

Interface, the higher performance alternative practice instead.

Chapter 2
SIMULTANEOUS LINEAR
EQUATIONS(DIRECT METHOD)

2.1 INTRODUCTION

This chapter describes subroutines that solve simultaneous linear equations and obtain the determinant value and
inverse matrix of a matrix.
In this library, subroutines having the following functions are provided individually for each set of matrix charac-

teristics and storage mode.
(1) Perform triangular decomposition of coefficient matrix, then solve simultaneous linear equations.
(2) Perform triangular decomposition of coefficient matrix.
(3) Perform triangular decomposition of coefficient matrix and obtain condition number.
(4) Solve simultaneous linear equations after triangular decomposition of coefficient matrix
(5) Obtain determinant value and inverse matrix.

You can freely combine the various types of subroutines (1) through (5) to suit your processing needs. This
enables you to perform efficient processing by eliminating unnecessary calculation steps.

In addition, since triangular decomposition of a matrix is performed using the technique most suited to the
characteristics of the matrix, the technique used differs for each type of matrix.
In addition, real tridiagonal matrices are classified into two type-real tridiagonal matrix (vector type) and fixed
coefficient real tridiagonal matrix (scalar type) according to characteristics of the coefficient matrix. Subroutines

having the following functions are provided for tridiagonal matrices.

(1) Solves simultaneous linear equations (performs reduction operations or Gauss method and solves the equa-

tions).
(2) Obtains solutions (only solves the equations after reduction operation).

Users can freely combine the above two subroutines to suit processing objective. This enables processing to be

performed efficiently by eliminating unnecessary computations.

10

Methods of using subroutines

2.1.1 Methods of using subroutines

Methods of using subroutines are described below using a real matrix (two—dimensional array type) as an example.

(1) Simultaneous linear equations

(1) Using {DBGMSL}

RBGMSL

cary { PBEMSLL
RBGMSL,

Performs a triangular decomposition of coefficient matrix A and solves Az = b.

. DBGMLU DBGMLS
(2) Using and
RBGMLU RBGMLS
M
CALL DBGMLU (A,
RBGMLU
DBGML
CALL GMLS (A,-+,b,-)
RBGMLS
DBGMLU performs a triangular decomposition of coefficient matrix A, and DBGMLS solves
RBGMLU RBGMLS

Az = b.

(3) Obtaining the condition number in addition to solving simultaneous linear equations

M
CALL DBGMLC (A,---, COND, --)
RBGMLC
DBGML
CALL GMLS (A,---,b,--)
RBGMLS
M
DBGMLC calculates the condition number and performs a triangular decomposition of coefficient
RBGMLC

DBGMLS

matrix A, and
RBGMLS

} solves Ax = b.

(2) Determinant and inverse matrix

CALL DBGMLU (A,
RBGMLU
M
CALL DBGMDI (A,---, DET, --)
RBGMDI
DBGMLU DBGMDI
performs a triangular decomposition of matrix A, and obtains the determinant
RBGMLU RBGMDI

and inverse matrix.

(3) Improving the solution

(1) Using

DBGMSL
RBGMSL

AQ(*A
bg(*b

CALL DBGMSL (Ag,-++ by,
RBGMSL

11

Methods of using subroutines

M
CALL DBGMLX (A -+, Ag -+ b, by, ")
RBGMLX
DBGMSL
The subroutine shown above improves the solution obtained by using GMS .
RBGMSL
M M
(2) Using DBGMLU and DBGMLS
RBGMLU RBGMLS
2
b2 «~—b
DBGML
cars { DPOMEUL)
RBGMLU
M
cALL { DBOMLS (A, b2,)
RBGMLS
DBGMLX
CALL G (A, Ag,--- b, by,)
RBGMLX
M M
DBGMLU performs a triangular decomposition of matrix A, DBGMLS solves Ax = b, and
RBGMLU RBGMLS
DBGMLX | . .
improves the solution.
RBGMLX

12

Notes

2.1.2 Notes

(1)

To solve the simultaneous linear equations Az = b, you could use the mathematical formula & = A~'b.
However, it would be ill-advised to solve these equations by obtaining the inverse matrix A~! and multiplying
it by the constant vector. For example, in a real matrix (two—dimensional array type), if you compare
this method to one in which you obtain the solution by performing a triangular decomposition of the
coefficient matrix, you would find that for n variables the inverse matrix method requires approximately
n?® multiplications, while the triangular decomposition method requires approximately n?/3 multiplications.
Clearly, the triangular decomposition method is preferable. Therefore, you should obtain the inverse matrix

A~! only if you actually need the inverse matrix itself.

If you need to perform calculations many times for the same matrix such as when solving multiple sets of
simultaneous linear equations where only the constant vector differs, it is more efficient to first perform the
triangular decomposition once and then use that result repetitively thereafter.

Example :

To solve the equations:

A$1 = b1
ACL‘Q = b2

execute either:
DBGMSL

CALL (A, -, by,---)
RBGMSL
M
cary {PBOMES U)
RBGMLS
or
M
CALL DBGMLU (A,
RBGMLU
DBGML
CALL GMLS (A, by,)
RBGMLS
M
cary {PBOMES U)
RBGMLS
M
DBGMSL or DBGMLU performs the triangular decomposition of coefficient matrix A, and this
RBGMSL RBGMLU

result is only referred thereafter without its contents being changed.

Two subroutines are provided for performing triangular decomposition. One obtains the condition number
and the other does not. The subroutine that obtains the condition number requires many more calculations
just to obtain the condition number. For an n-dimensional matrix, it requires approximately n? more
multiplications than the subroutine that does not obtain the condition number. Therefore, unless you
specifically need the condition number, you can save execution time by performing triangular decomposition

without obtaining the condition number.

Although the array type of the input and output data of complex argument type subroutines is complex
type, the array type of the input and output data of all other subroutines is real type.

Although an iterative method can be used to solve simultaneous linear equations having a sparse matrix as

the coeflicient matrix, the following points should be carefully considered.

13

Notes

When solving simultaneous linear equations having a sparse matrix as the coefficient matrix, a solution
is obtained by a finite number of operations when using a direct method, regardless of the properties
of the coefficient matrix. With an iterative method, however, the solution may quickly converge or no
solution may be obtained depending on the properties of the coefficient matrix.

When the coefficient matrix is positive symmetric or diagonally dominant, a solution generally is

obtained faster by using an iterative method subroutine.

Even if no solution is obtained by using an iterative method, a solution may be obtained by using a
direct method.

When the coefficient matrix is nearly singular, a precise solution may not be obtained regardless of
which method is used.

Two subroutines are provided for performing triangular decomposition. One obtains the condition
number and the other does not. The subroutine that obtains the condition number requires many
more calculations just to obtain the condition number.

Therefore, unless you specifically need the condition number, you can save execution time by performing

triangular decomposition without obtaining the condition number.

14

Algorithms Used

2.1.3 Algorithms Used
2.1.3.1 Crout Method

The Crout method decomposes coefficient matrix A into the product of the lower triangular matrix L and the

unit upper triangular matrix U.

A=LU

Matrix U

Matrix A ==
Matrix L

Since partial pivoting is performed in this library, this actually becomes PA = LU (where P is the replacement

matrix for row exchange).
Assume A = (a;5), L = (I;;) and U = (u45) (4,5 =1,2,---,N). Then, the algorithm is as follows.

lil — a1 (i:1,2,---,N)

‘ Partial pivoting ‘

uij —ay;/lin (j=1,2,---,N)
for k=23,---,N

k—1
lkk < Qg — Z lemUmpk
m=1
for i=k+1,k+2,---,N
-1 k—1
lik < air — Z limWmk
m=1

‘ Partial pivoting ‘

for j=k+1,k+2,--- N

k—1
Up; (arj — Z lemUms)/ Uik
m=1

Partial pivoting is an operation for stable decomposition that exchanges rows so that the pivot is the maximum

within the column. The operation at the m-th stage (when k = m in the algorithm shown above) is as follows.

Matrix A during decomposition
m

The element having the maximum absolute value within the hatched portion shown in the figure is selected, and

the row containing that element is exchanged with the m-th row.

15

Algorithms Used

2.1.3.2 Cholesky method

The Cholesky method decomposes coefficient matrix A into the product of the lower triangular matrix L and the

upper triangular matrix L7

A=LL"

Matrix A i Matrix LT

Assume A = (a;;), L = (lij) and L" = (I};) (i,j = 1,2,---, N). If the Cholesky method is applied in the column
direction to the upper right triangular portion of coefficient matrix A, the algorithm is as follows.

for k=1,2,---,N
1 for i=1,2, k-1

-1 i—1
Ly, (aix — Z Unilinie) /i
m=1

k—1
’ 2
lkk — Aik — E lmk
m=1

The calculation efficiency of matrix calculations is increased by generally applying external product calculations
rather than inner product calculations and by further employing an unrolling technique to reduce the memory
access frequency.

Therefore, the Cholesky method that uses external product calculations is used for simultaneous linear equations
having a one-dimensional compressed type coefficient matrix. In addition, the data can be accessed continuously

by storing it in row-oriented format.

2.1.3.3 Modified Cholesky method

The modified Cholesky method decomposes coefficient matrix A into the product of the lower triangular matrix

L, diagonal matrix D, and upper triangular matrix L7
A=LDL"

The diagonal matrix D consists of the reciprocals of the diagonal components of the upper triangular matrix L7

Matrix A i Matrix LT

Assume A = (ai;), L = (lij), D = (dij) and LT = (I};) (i,j = 1,2,---, N). Then, the algorithm is as follows.

lllj <—a1j (j:1,2,3,-",N)

16

Algorithms Used

for k=23,--- N
for i=1,2,---,k—1

wy U /1L
for j=kk+1,- N

<* Akj — E wm m]

w indicates a work area, [N areas are required.

2.1.3.4 Gauss method

The Gauss method decomposes coefficient matrix A into the product of the unit lower triangular matrix L and
the upper triangular matrix U.

A=LU

Matrix A i Matrix U
Matrix L

Since partial pivoting is performed in this library, this actually becomes PA = LU (when P is the replacement
matrix for row exchange).
Assume A = (a;;), L = (I;;) and U = (u45) (4,5 =1,2,---,N). Then, the algorithm is as follows.

for k=1,2,---,N

‘ Partial pivoting ‘
for i=k+1,k+2,---,N
Lik < @il /urk

for j=k+1,k+2,--- N

Ujj < Qjj — likukj

Partial pivoting is an operation for stable decomposition that exchanges row so that the pivot is the maximum
within the column. The operation at the m-th stage (when k& = m in the algorithm shown above) is as follows.

Matrix A during decomposition
m

The element having the maximum absolute value within the hatched portion shown in the figure is selected, and

the m-th through N-th columns of the row containing that element are exchanged with the m-th through N-th
columns of the m-th row.

17

Algorithms Used

2.1.3.5 Levinson method

When the Toeplitz matrix R is represented by:

To r—1 r—o o T—p42 T—n+41
™ To r-r -+ T-n43 T—ni2
R =
Tn—2 Tn—-3 Tn—4 - To r—1
L Tn—1 Th—2 Tnp-3 o T1 To 1

the following simultaneous linear equations:

n
Zri,jxj = bZ (’L =].,"',TL)
j=1

having the Toeplitz matrix as coefficient matrix can be solved as described below by considering the solutions

x§m) (j=1,---,m; m=1,2,---,n) of the following kind of n simultaneous linear equations:

Zrlfjxgm) :bl (Z:]-vvma m:17277n)

=1

(1) Initial solution (m = 1)

A0 =2
o
1 _ "1
91 o
™
pO It
1 o
(2) For m = 2,3,---,n, perform the following sequential iterative calculations.
m—1
(™) = Z Tm—jZj — bm
j=1

m—1
2 = 3" g — g
j=1

pm = &
m 2 (de)
m m—1 m m—1 .
) =l a5 =1
m—1
g(nu) _ Z T,j_mgj(_m—l) e
j=1
m—1
949 = 3™ 75D g
j=1

18

Algorithms Used

m—1
pnuw) — Z rm,jhg-m_l) .
j=1
gim) = g
g(de)
pim) — M
m 2 (de)

m m—1 m m—1 ;
g§):g§) _ gt)hgnﬂ) (j=1,2,---,m—1)

m

A = Y = Rl (= 1,2, m - 1)

m=j

The solutions are obtained by letting x; = x§"). Since r; and r_; are related as follows for a symmetric Toeplitz

matrix:
ri=r—; (i=1,2,---,n)
the following relationship holds:
g§m) = h§m) G=12---m; m=1,2,---,n)

and the calculations can proceed more efficiently than for the general case. Since this method makes practical
use of the properties of the matrix, it is superior to the general Gaussian elimination method in terms of memory
usage and calculation efficiency. However, the solution may not be able to be obtained theoretically even if the

matrix is regular. For example, a solution clearly cannot be obtained by this method when r¢ = 0.

2.1.3.6 Vandermonde matrix

The Vandermonde matrix V of order n consisting of n different elements vy, (k = 1,2,---,n) is represented as
follows.
(1 oy - A AR A |
1 v vy e 'US_2 Ug_l
V =

2
1 vy vi_y
v

|
N =N
—

n—
n—
n—
n

SIS

1 v, 2

Let’s solve the simultaneous linear equations V& = b having the Vandermonde matrix V as coefficient matrix,
which are represented as follows.

Z’Ufflxj =b (i=1,---,n)
j=1
If the polynomial Pl-(") (x) of degree n — 1 is defined as follows:
(). - T— Y% _ - j—1
P, = — ix
=11 = = X
(

k=1
ki)

19

Algorithms Used

the relationship Pi(") (vk) = i (where d;; is the Kronecker delta) holds. Therefore, if the matrix consisting of
the coefficients of the 2771 terms of this polynomial is represented by U = {u; ;}, the relationship UV’ = E
(where E is the unit matrix), that is, V=1 = U” holds. Consequently, the solution = of the simultaneous linear

equations Vax = b is obtained by calculating:
z=U"b

Now, to calculate the various coefficients of U, consider the master polynomial P (x) defined by the following

equation.

n
Tl

Let the coefficient of the /=" term of the master polynomial P (z) be wfl n) j+1, and the master polynomial can

be represented as follows.
P(n)() = z" er(n) n— 1+'~'+wfl@1x+w,(1”)

From the relationship P®)(z) = (z — v;)PU~Y(x) (i = 2,3,---,n), the following relationships are obtained by

comparing the coefficients for z7—!:

wgi) :wgi_l) —v; (1=2,---,n)
7 1—1 1—1 . .o .
wj():wj()_inj('fl) (]:sz_la"'72;22273""7”)

where, the following equations hold.

wlh)

—v1

w9 =0 (j=2,3,---,n)

The various coefficients of the master polynomial can be calculated from the above. On the other hand, the

following relationship holds:

n

dp(n)
7|x V4 H - Uk
(ki)

and this value can be calculated from the following:

dpm) n n
T N T} W CHE S U O}
dx
Also, since:
" pm)
P a) = -

(n)
(@ —v) @)

the coefficients u; ; of the 77! terms of this polynomial can be obtained by using synthetic division to calculate
P™M(x)
(x — v
as the coefficient matrix essentially are ill-conditioned, and it is difficult to obtain a solution with good precision

the coefficients of the 7~ ! terms of

. The simultaneous linear equations having the Vandermonde matrix

except when n is extremely small.

20

Algorithms Used

2.1.3.7 Cyclic Reduction Method

(1) Cyclic reduction method

The cyclic reduction method is used to solve the simultaneous linear equations:
Az =b (2.1)

having the real tridiagonal matrix A as the coefficient matrix.

If we assume that A, x, and b are as follows:

dl (31 O X1 b1
fg do us) bo
A=))) T =) . b=
Un—1
then:
&xFl + d1$1 + UiTi4+1 = bl (22)

This algorithm repeatedly performs a reduction operation |LOG2(n)| times. The reduction operation
creates a set of simultaneous linear equations having a coefficient matrix with one-half the order of the
coefficient matrix before the reduction operation. Ultimately, a single linear equation is created from which
a single solution is obtained.

de = b
x = b/d (2.3)

All of the solutions then are obtained by repeatedly performing back substitution based on this solution.

In this section, |2 represents the maximum integer that does not exceed x.

The reduction operation and back substitution of the cyclic reduction method are described below.

(a) Reduction operation
First, let’s assume n = 2™ — 1.

We will eliminate x;—1 and x;41 from three rows of (2.1) consisting of an even numbered row and the

rows before and after it. That is, we will obtain the following equation:
Uixio + dix; + uiziyo = b (2.4)

b =dipilial;

(2

!
w; = di 1UiUiq

di =lidip1ui—1 + ligadi—1u; — di—1didig
b; = /lidig1bi—1 + di—1uibip1 — di—1dip1b;

from the three rows:

biizio 4+ diciTi1 A+ U1y =bi—1
iz + diz; + uiTi =0;
livizi + dit1Tit1 + Wi1Tir2 = bipa

21

Algorithms Used

where, i is an even number.

By applying (2.4) to all even numbered rows contained in (2.1) (29 = 2,41 = 0), we obtain a set
of simultaneous linear equations having a real tridiagonal coefficient matrix of order |n/2] as the
coefficient matrix.

Next, let’s consider n = 2™. Although we could apply (2.4) to all even numbered rows when n = 2™ —1,
we cannot apply (2.4) to row n — 1 and row n when n = 2™ since row n — 1 is an odd numbered row.

Therefore, we will apply the following equation:
Oy +d,z, =0, (2.5)

éiﬂ = gnflén
d;, =Llptn_1 — dndp_1

bil = Enbn—l —dp_1d,

which was obtained by eliminating x,_1 from the two rows:

ln1Tp_2 + dp1Tp1 + Up_1Tp, =by_1
lnTn—1 + dnTy, = by

Consequently, we can reduce the set of simultaneous linear equations to a set having a real tridiagonal

matrix of order |n/2] as the coefficient matrix regardless of the value of n.

Back substitution

We can obtain the other solutions based on the solution (2.3), which we obtained by using the reduction
method. To obtain these additional solutions, we substitute previously obtained solutions back into
the various sets of simultaneous linear equations produced by the reduction method, proceeding in the
reverse order as when applying the reduction method.

If the solution has been obtained for an even numbered row, the solution for an odd numbered row is

obtained by using the following equation:

iy = (bi—1 —lic1®i—g —ui—1)/di—1, 1=2,4,6,---,n+1

(2) Increasing the speed of the cyclic reduction method

Since the cyclic reduction method is not a successive elimination method such as the Gauss method, the

calculations are independent of one another. Although this essentially allows vectorization to be performed,

the following kind of vectorization also is carried out.

(a)

Increasing the speed of the fixed coefficient type cyclic reduction method

If the fixed coefficient type cyclic reduction method, a modified version of the cyclic reduction method,
is used, the processing speed can be increased for the coefficient matrix that appears when discretizing
the Dirichlet or Neumann boundary value problem. The fixed coefficient type cyclic reduction method

is described below.

First, consider the following coefficient matrices:

d s 0
s d s
, d#0, s#£0 (2.6)
s
0 s d

22

Algorithms Used

d s 0
s d s
, d#0, s#£0 (2.7)
s
0 2-s d

If we compare (2.6) with the matrix obtained by normalizing the last row of (2.7) by 2, we see that
only the last rows of these two matrices differ, and all other rows are identical. Therefore, we can
replace (2.6) and (2.7) by the following matrix (2.8).

d s 0
s d s
, d#0, s£0, e#0 (2.8)
d s
0 s e

Now, let’s first assume n = 2™ — 1.

We will eliminate ;1 and z;41 from three rows of (2.7) consisting of an even numbered row and the
rows before and after it. That is, we will obtain the following equation:
sSrio+dz+ 8T =10 (2.9)
s =s?
d =2-52-d?
v =s(bi—1 + bit1) — db;

from the three rows:

sTri_s + dwi_1 + sx; =bi—1
sxi—1 + dxr; + STy =b;
sty + dripn + sTigo = bip

where, i is an even number.
By applying (2.9) to all even numbered rows contained in (2.8) (zo = xn4+1 = 0), we obtain a set
of simultaneous linear equations having a real tridiagonal coefficient matrix of order |n/2] as the

coeflicient matrix. However, for row n — 1, we have:

sap_s3+er,_1=0_, (2.10)
s’ =e- g2
e —e-s2—e-d®*+d-s?
b, =e-$bypo—e-dby_1+d-s b,

Next, let’s consider n = 2™. Since row n — 1 is an odd numbered row when n = 2™, we will apply the

following equation:

§'Tp_9+ €Ty =bp_1 (2.11)
s = g2
d =s2—d-e
b, 1 =8-bp1—d- by

which was obtained by eliminating z,,_; from the two rows:

{swn_z + drn_1 + sy, =by_1

STp—1 + ex, =2b,

23

Algorithms Used

Consequently, we can reduce the set of simultaneous linear equations to a set having a real tridiagonal
matrix of order |n/2| as the coefficient matrix regardless of the value of n. These operations are
repeatedly performed |LOG2(n)| times until, ultimately, a single linear equation is created from which

a single solution is obtained.
de = b
x = b/d
All of the solutions then are obtained by repeatedly performing back substitution based on this solution.

If the solutions for even numbered rows have been obtained, then the solutions for odd numbered rows

are obtained from the following equation:
xi_l:(bi_l—s-xi_g—s-xi)/d, i1 =2,4,6,---,n+1

Next, consider the following coefficient matrices:

[d 25 0]
s d s
. d#0, s£0 (2.12)
s
0 S d
[d 2. 0
s d s
, d#0, s#£0 (2.13)
s
_0 2-s d

If we compare (2.12) with the matrix obtained by normalizing the last row of (2.13) by 2, we see that
only the last rows of these two matrices differ, and all other rows are identical. Therefore, we can
replace (2.12) and (2.13) by the following matrix (2.14).

d 2-s 0
s d s
, d#0, s#0, e#0 (2.14)
d s
0 s e

This time, let’s consider the operations based on odd numbered rows instead of even numbered rows.

First, we will eliminate x5 from the first and second rows. That is, we will obtain the following equation:
(d?> —2-s%)xy —2- s%x3 = dby — 2sbs (2.15)

from the two rows:
{ dzry
sxy

Next, we will eliminate x9; and g;42 from the three rows of (2.14) consisting of row 2i, row 2i + 1,

+ 2-sx9 =b
+ d.’,EQ + ST3 = b2

and row 2i¢ + 2. That is, we will obtain the following equation:

s'oi—1 4+ d'woit1 + §'Toi43 = by (2.16)
s = 42
d’ 2.52 — (2

/
b2i+1

§-by; —d-bair1+ 5 baiyo

24

Algorithms Used

from the three rows:

§T2i—1 + dT + STait1 = by
sT2; + draip1 + STa2ito = bait1
sdaiy1 + STait2 + ST2i43 = baigo
This is performed for each of the values ¢t =1, 2, 3, ---, m, where m is the maximum value of ¢ that

satisfies the relationship 2i +1 < n — 2.

Finally, for n = 2™, we obtain (2.17) by eliminating x,_2 and x,, from the three rows consisting of row
n —2,n — 1, and row n. Also, for n = 2™ — 1, since row n — 1 is an even numbered row, we obtain
(2.18) by eliminating x,_1 from the two rows consisting of row n — 1 and row n.

That is, for n = 2™, we obtain the following equation:

Sy 3+e€r, 1 =0, (2.17)
s’ =e- g2
e =e-s2—e-d>+d-s?

b1 =s-ebyo—d-eby1+d-s-by

from the three rows:

8Tp—3 + d¥p_2 + STp_1 =bp_2
$Tp—2 + drp—1 + ST, =bn_
$STp—1 + ex, =b,

and for n = 2™ — 1, we obtain the following equation:

sap_o+ex, =0, (2.18)
s = g2
e = s2—e-d
B, = s-by1—d-by

from the two rows:
8Tp—2 + drp—1 + STy =by_1
STp—1 + ex, =b,

Consequently, we can reduce the set of simultaneous linear equations to a set having a real tridiagonal
matrix of order |(n —1)/2] + 1 as the coeflicient matrix regardless of the value of n. These operations
are repeatedly performed | LOG2(n — 1) | times until, ultimately, a set of equations having the following
coefficient matrix is obtained:
dm 2
l 1 e(m)

1, m=|(n—1)/2] +1

All of the solutions then are obtained by repeatedly performing back substitution based on this solution.

Reduction operation truncation

As the reduction operation is repeated, the magnitude of the diagonal elements may be increased
based on a certain assumption (sufficient but not necessary condition) and the ratio of the diagonal
element and subdiagonal element may become larger than 1/EP (EP: Units for determining error) at

an intermediate stage of the reduction operation.

Consider the following as one such assumption:

P al® <) d® /2], 1<i<n (2.19)

25

Algorithms Used

Here, lgk), d™ and u™ are the lower subdiagonal element, the diagonal element and the upper subdi-

i i
agonal element, respectively, in the i-th row of the coefficient matrix after the k-th reduction operation.

If this assumption holds, and the coefficient matrix is normalized to:

RN A A R AR (2.20)
then the subdiagonal elements may become as small as EP, and the constant vector b(k)(k: Reduction
frequency) will converge to several solutions before the reduction operation is completed.

Therefore, if the reduction frequency when convergence occurs is known before performing the reduction
operation, the reduction operation need not be performed all the way to completion. If the reduction
operation is halted before completion and the calculations switch to back substitution, efficiency can

be increased because the calculation time will be reduced. This is called truncation of the cycling

reduction operation.

To obtain the value of the reduction frequency up to truncation, we will check the lower limit for
convergence when (2.20) is satisfied.

First, let’s obtain e = max(l;® /d; ™ u;® /d;() and consider the matrix (---, e, 1,e,---) obtained by
replacing all [;(k) and ui(k) of (2.20) by e. If also would be sufficient to consider a coefficient matrix
such as (---,1,d,1,---). To determine the convergence rate, we define:

e® =d®™ | -2>0

where, d™® is the diagonal element computed during the k-th iteration. Let’s try to measure whether

| d®) | increases towards 1/EP as a function of k. If we take the absolute value of:
4D _ o [doe)r
then from (2.9) we get:
2 2
|5 =) 2= [240] 12 24 46 4+ W]
and it follows that:
ekt > 4e®) 4 [e(k)r (2.21)
From (2.21), we have:
o If e < 1, then e(*+t1) > 4g(k)
and the rate of increase is said to be at least of first order speed.
o If e > 1, then e*+1) > [s(k)]2
and the rate of increase is said to be at least of second order speed.

Consequently, the minimum integer k for which the following relationship holds for the value of e(*)
obtained from (2.21):

e® > 1/EP
is assumed to be the reduction frequency up to truncation. Moreover, truncation will not occur if
k> |[LOG2(n)|.
(3) Supplementary item
e Affect on calculation time
For simultaneous linear equations having a real tridiagonal coefficient matrix that does not satisfy
condition (2.19) (that is, the magnitude of the diagonal elements is not strong), the calculation process

must determine whether or not the coefficient matrix is singular. Therefore, more calculation time is

required than for a coeflicient matrix for which the magnitude of the diagonal elements is strong.

26

Algorithms Used

2.1.3.8 Calculating the inverse matrix

Triangular decomposition is used to calculate the inverse matrix of matrix A.

If A is decomposed into A = LU, then L~! or U~! is obtained as the first step by the sweeping out method.
Next, that result is transformed as the second step to calculate A=! = U~1L~1,

For example, since L” can be obtained by the Cholesky method as L=*A = LT, A~! is obtained by multiplying
the transformation matrix for triangular decomposition L=! by (LT)~! from the right side.

Whether L~! or U~! is calculated as the first step differs according to the triangular decomposition method.

2.1.3.9 Calculating the determinant

The determinant is obtained as follows.
If A has been decomposed into A = LU, then

det(A) = det(L)det(U) = [[tii [] wii
=1 =1
where, L = (l;;) and U = (u;;).

2.1.3.10 Improving the solution

Consider improving the solution of the simultaneous linear equations Az = b. Let (1) be the initially obtained

solution, and assume that Az(!) % b due to computational error. The following algorithm is used to improve
1)
x'H).

(1) r® =b — Ax®
(2) Ay®) = ¢k
(3) 2D = (k) 4 (k) (k=1,2,--")
This iterative procedure generates a rounding error in (2). Therefore, the formula in (2) actually becomes:
(A+ E)yy®) = r®
Using this equation together with (1) and (3) yields:
e* D) g = [T (A+E) AW —)
rHD = [T AA+E) r®

1
Therefore, if | E|||| A} < 3 then

D AL

S s (k — 00)

Moreover, if

ly™ e 1y* Vs
e+ oo~ 2 [2®)]|

the solution does not converge.

(See reference bibliography (6).)

27

Algorithms Used

2.1.3.11 Precise estimate of the approximate solution

For the approximate solution &),
y® = (A4 E)b— AzW) = (T + AT'E) Yz — =)

(k)
can be replaced by M if the solution converges sufficiently

(L[

|z _w(k)”oo

The relative error of the solution ——mr
2"

and matrix A is well conditioned.

2.1.3.12 Condition Number

(1) Condition numbers and their use The condition number x(A) of matrix A is a numeric value that indicates
the degree of influence the error included in coefficient matrix A or constant vector b exerts on the solution
when solving the simultaneous linear equations Ax = b. The condition number is given by the following
formula:

K(A) = || Al[lA7Y|

If error E is contained in coefficient matrix A, the relative error between the derived solution y and real

solution z is in the range:

ly —=|
WY =21 - (a)e
lyll

where:

1E]

g = .
1A]l

If error e is contained in constant vector b, the relative error is in the range:

lell
€= 1.
o]l

Therefore, if the condition number is on the order of 10, the precision of the derived solution may be
approximately « digits less than the precision of the original data.

This library obtain the reciprocal of the condition number and store it in the variable COND. Note that
even if solution is obtained for simultaneous linear equations having a coeflicient matrix for which the COND
value is extremely small, the precision will be extremely poor. In particular, if the following decision formula
holds, the matrix is computationally singular, and the solution is unreliable.

(Singular matrix decision formula):

1.0+ COND =1.0

(2) Calculating the condition number Although the condition number

K(A) = [l A[IATY

28

Algorithms Used

this library approximate ||A~!|| without obtaining A=! and then multiply that value by || A]|.
Let A= UXVT be a singular decomposition of A where

U,V : Orthogonal matrices
o 0
E =
| 0 on |

o; : Singular value

01209220y

Consider the system of equations Ax = y. If y is represented as:

y=lylld aw O a’=1)
=1 [

where u; (a column vector of U) is a basis, then, the following relationship holds:

%
- || iy
IATH > = = (—)
ol | 2o

As long as a,, is not particularly small, the size of the right side is on the order of o, ~*(= [|[A™}|)) for any
type of vector y.

This library select y so that approximate solutions get successively better.

The inequality shown above holds when y = w, (o, = 1,; = 0;i =1,2,---,n — 1). Therefore, y should be

determined so that it has w,, as its principle elements. Actually, for:

+1
+1
z =
+1
y should be obtained in ATy = z by determining the sign of each element of z so that @ is maximized.
z
Using this y to solve Az =y, % is the approximate value of ||A~1.
Yy

The actual procedure for obtaining the condition number is as follows.

(a) Obtain || A]l.

(b) Perform a triangular decomposition of A into A = LU.

|wll is maximized.

(El
(d

(e
(

Obtain y by solving LTy = w.

Obtain « by solving LUx = y.
f

Obtain ————

)
)
¢) Obtain w by determining z in UTw = z so that
)
)
) (reciprocal of the condition number) and store this value in the argument COND.

(See reference bibliography (3).)

29

Reference Bibliography

2.1.4 Reference Bibliography

(1) Wilkinson, J. H. and Reinsch, C. , “Handbook for Automatic Computation, vol II, Linear Algebra”,
Springer—Verlag, (1971).

(2) Dahlquist, G. and Bjorck, A., “Numerical Methods”, translated by Anderson, N. Prentice-Hall, Inc.,
(1974).

(3) Cline, A. K. , Moler, C. B. , Stewart, G. W. and Wilkinson, J. H. , “An estimate for the condition number
of a matrix”, STAM Numerical Analysis Vol. 16, pp. 368-375, (1979).

(4) Dongarra, J. J., Moler, C. B., Bunch, J. R. and Stewart, G. W., “LINPACK Users’ Guide”, STAM, (1979).

5 Forsythe, G. E. and MOIGI', C. B. y “Computer Solution of Linear Algebraic Systems”, Prentice—Hall, IHC.,
g

(6) Wilkinson, J. H. , “Rounding Errors in Algebraic Processes, Notes on Applied Science No. 32”7, Prentice-
Hall, Inc., (1963).

(7) Robert, Y. and Sguazzero, P. “The LU decomposition algorithm and its efficient FORTRAN implementation
on IBM3090 Vector Multiprocessor”, IBM Tech. Rep. , ICE-0006, (1987).

(8) Stone, Harold. S., “Parallel Tridiagonal Equation Solvers”, ACM Transactions on Mathematical Software,
Vol. 1, No. 4, 289, (1975).

(9) Hockney, R. W. and Jesshope, C. R. , “Parallel Computers”

30

2.2 REAL MATRIX (TWO-DIMENSIONAL ARRAY TYPE)

2.2.1 DBGMSM, RBGMSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Real Ma-
trix)
(1) Function
DBGMSM or RBGMSM uses Gauss’ method to solve the simultaneous linear equations Ax; = b;(i =

1,2,---,m) having real matrix A (two-dimensional array type) as coefficient matrix. That is, when the
n X m matrix B is defined by B = [b1, b2, -, b, the subroutine obtains [z1,x2, -, Tm] = A~B.
(2) Usage

Double precision:

CALL DBGMSM (AB, LNA, N, M, IPVT, IERR)
Single precision:

CALL RBGMSM (AB, LNA, N, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 AB D See Input | Matrix (real matrix, two-dimensional array
{R} Contents type) consisting of coefficient matrix A and
right-hand side vectors b; [A, b1, ba, -+, bm)]
Size: (LNA, (N + M))
Output | Matrix (real matrix, two-dimensional array
type) consisting of the factored matrix A’ of
coefficient matrix A and solution vectors x;
[A" @1, X2, , Tm] (See Notes (a) and (b))
2 LNA I 1 Input | Adjustable dimension of array AB
3 N I 1 Input | Order of matrix A
4 M I 1 Input | Number of right-hand side vectors, m
5 IPVT I N Output | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (a))
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N < LNA
(b) 0<M

31

DBGMSM, RBGMSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Real Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. AB(1,N+1i) «+ AB(1,N +1i)/AB(1,1)
(i=1,2,---,M) is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LU decompo-
sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.

4000 + ¢ The pivot became 0.0 in the i-th process-
ing step of the LU decomposition of coef-

ficient matrix A.

A is nearly singular.

(6) Notes

(a) This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix
A. TIf the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i). In addition, among the
column elements corresponding to row i and row j of matrix A, elements from column 1 to column n

actually are exchanged at this time.

(b) The unit lower triangular matrix L is stored in the lower triangular portion of array AB with the
sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However,
since the diagonal components of L always are 1.0, they are not stored in array AB. In addition, the

reciprocals of the diagonal components of U are stored.

32

DBGMSM, RBGMSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Real Matrix)

Figure 2—1 Storage Status of Matrices L and U

Matrix L Matrix U
1.0 00 00 --- 0.0 U1, U2 U3t ULS
la 1.0 00 --- 00 00 wzz uzs - us
lsg ls2 1.0 -+ 00 00 0.0 wuss - uss
Ils1 Ils2 s 1.0 0.0 0.0 0.0 Us,5
3
Storage status of array AB(LNA, K)
1/ui Uu1,2 Uu1,3 ceeULS
—li2 1l/us2 w23z -+ u2s
—liz —l23 1/uzs -+ uss N
LNA
—lis —las —l3s 1/us.5
———————— Ne—————- —
—————————— K-—————-—-—-— —

Remarks
a. LNA > N and N+M < K must be hold.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

2 4 -1 6 T11 Tio 36 11
-1 -5 4 2 Toa1 T2z | 15 0
1 2 3 1 x31 wza | | 22 7
3 5 —1 -3 Ta1 T4 —6 4

(b) Input data
Array AB in which coefficient matrix A and constant vectors by and bs are stored, LNA=11, N=4 and
M=2.

(¢) Main program

PROGRAM BBGMSM
| *%x EXAMPLE OF DBGMSM s
IMPLICIT REAL(8) (A -H,0-2)
PARAMETER (LNA = 11)
PARAMETER (LMA = 5)
DIMENSION AB(LNA,LNA+LMA),IPVT(LNA)

READ (5,*) N

READ (5,*) M

WRITE (6,1000) N, M

DO 10 I =1, N
READ (5,%) (AB(I,J),J=1,N)
WRITE (6,1100) (AB(I, J) J=1,N)

10 CONT
WRITE (6 1200)
DO 20T =1,

READ (5, *) (AB(I,N+J),J=1,M)
WRITE (6,1100) (AB(I,N+J),J=1,M)
20 CONTINUE
WRITE (6,1300)
CALL DBGMSM (AB,LNA,N, M, IPVT IERR)
WRITE (6,1400) ’>DBGMSM
IF (IERR .GE. 3000) STDP
WRITE (6, 160)
DO 30 I =
WRITE (6 1100) (AB(I,N+J),J=1,M)
30 CONTINUE

33

DBGMSM, RBGMSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Real Matrix)

STOP

1000 FORMAT(’ °,/,/,&
> xkk DBGMSM *¥x’ /. &
2X,’**x INPUT *x’,/.&
6X,’N =’,I3,/,&
6X,’M =7,13,/,&
6X,’COEFFICIENT MATRIX’)
1100 FORMAT(7X,10(F11.4))
1200 FORMAT(6X,’CONSTANT VECTORS’)
1300 FORMAT(2X,’** QUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT(6X,’>SOLUTION’)
END

(d) Output results

***x DBGMSM **x*
*% INPUT *x*

N= 4
M= 2
COEFFICIENT MATRIX
2.0000 4.0000 -1.0000 6.0000
-1.0000 -5.0000 4.0000 2.0000
1.0000 2.0000 3.0000 1.0000
3.0000 5.0000 -1.0000 -3.0000
CONSTANT VECTORS
36.0000 11.0000
15.0000 0.0000
22.0000 7.0000
-6.0000 4.0000
*x QUTPUT *x*
IERR (DBGMSM) = 0
SOLUTION
1.0000 1.0000
2.0000 1.0000
4.0000 1.0000
5.0000 1.0000

34

DBGMSL, RBGMSL
Simultaneous Linear Equations (Real Matrix)

2.2.2 DBGMSL, RBGMSL
Simultaneous Linear Equations (Real Matrix)
(1) Function
DBGMSL or RBGMSL uses the Gauss method or the Crout method to solve the simultaneous linear

equations Az = b having the real matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage
Double precision:
CALL DBGMSL (A, LNA, N, B, IPVT, IERR)
Single precision:
CALL RBGMSL (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA,N Input | Coefficient matrix A (real matrix, two-
{R} dimensional array type)
Output | Upper triangular matrix U and lower triangular
matrix L when A is decomposed into A = LU.
(See Notes (b) and (c))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
{R} Output | Solution vector x
5 IPVT I N Output | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (b))
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

35

DBGMSL, RBGMSL
Simultaneous Linear Equations (Real Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1 B(1) «+ B(1)/A(1,1) is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ The pivot became 0.0 in the i-th process-

ing step of the LU decomposition of coef-
ficient matrix A.

A is nearly singular.

(6) Notes

(a)

To solve multiple sets of simultaneous linear equations where only the constant vector b differs, the

DBGMSM
solution is obtained more efficiently by directly using the subroutine 2.2.1 GMS to perform
RBGMSM
DBGMSM
the calculations. However, when 2.2.1 G cannot be used such as when all of the right-
RBGMSM

hand side vectors b are not known in advance, call this subroutine only once and then call subroutine

DBGMLS
2.2.5 { the required number of times varying only the contents of B. This enables you to

RBGMLS
eliminate unnecessary calculation by performing the LU decomposition of matrix A only once.

This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix
A. Tf the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i). In addition, among the
column elements corresponding to row i and row j of matrix A, elements from column 1 to column n
actually are exchanged at this time.

The unit lower triangular matrix L is stored in the lower triangular portion of array A with the sign
changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since
the diagonal components of L always are 1.0, they are not stored in array A. In addition, the reciprocals

of the diagonal components of U are stored.

36

DBGMSL, RBGMSL
Simultaneous Linear Equations (Real Matrix)

Matrix L Matrix U
1.0 0.0 0.0 0.0 w11 U2 UL3 u1,5
12,1 1.0 0.0 0.0 0.0 u272 u2,3 u2,5
lsp ls2 1.0 0.0 00 0.0 wuss us.s
15,1 15,2 15,3 1.0 0.0 0.0 0.0 Us,5
J
Storage status within array A(LNA, K)
1/ui1 u1,2 u1,3 U1,5
—li2 1l/uz2 u2s U2,5
—lis —l23 1/uss u3,5
LNA : : : :
—lis —l2s l3,5 1/us,5
- —— - N-——————— —
- ——— = K-—————— —

Remarks
a. LNA > N and N < K must hold.

Figure 2—2 Storage Status of Matrices L and U
(7) Example

(a) Problem

Solve the following simultaneous linear equations and obtain the condition number.

2 4 -1 6 T 36
-1 -5 4 2 x| | 15
1 2 3 1 z3 || 22
3 5 -1 -3 T4 —6

(b) Input data
Coefficient matrix A, LNA = 11, N = 4, and constant vector B.
(¢) Main program

PROGRAM BBGMSL

EXAMPLE OF DBGMSL x**x*

IMPLICIT REAL(8) (A-H,0-Z)

PARAMETER (LNA = 11)

DIMENSION A(LNA, LNA) B(LNA) ,IPVT(LNA)

READ (5,*) N
WRITE (6,1000) N
N

1 okokx

DO 10T =1,
READ (5,%) (A(T,J),J=1,N)
WRITE (6 1100) (A(I J) J=1,N)
10 CONTINUE

READ (5,*) (B(I),I=1,N)

WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)

CALL DBGMSL (A,LNA,N,B,IPVT,IERR)
WRITE (6,1400) ’DBGMSL’,IERR

IF (IERR .GE. 3000) STOP

WRITE (6,1600) (I,B(I),I=1,N)
STOP

1000 FORMAT(’ °,/,/,&
> xkk DBGMSL *¥x’ /. &
2X,’%x INPUT *x’,/,&
6X,’N =2

13,/,%
6X,’COEFFICIENT MATRIX’)
FORMAT (7X,10(G11.4))
FORMAT (6X, > CONSTANT VECTOR’,/, (7X,F10.4))
FORMAT (2X,’#* OQUTPUT *x%’)

1100
1200
1300

37

DBGMSL, RBGMSL
Simultaneous Linear Equations (Real Matrix)

1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT(6X,’SOLUTION’,/, (8X,’X(’,I2,’) =’,D18.10))
END

(d) Output results

% DBGMSL %%
*x INPUT *x*

N= 4
COEFFICIENT MATRIX

2.000 4.000 -1.000 6.000
-1.000 -5.000 4.000 2.000
1.000 2.000 3.000 1.000
3.000 5.000 -1.000 -3.000
CONSTANT VECTOR
36.0000
15.0000
22.0000
-6.0000
**x QUTPUT *x*
IERR (DBGMSL) = 0
SOLUTION
X(1) = 0.1000000000D+01
X(2) = 0.2000000000D+01
X(3) = 0.4000000000D+01
X(4) = 0.5000000000D+01

38

DBGMLU, RBGMLU
LU Decomposition of a Real Matrix

2.2.3 DBGMLU, RBGMLU
LU Decomposition of a Real Matrix
(1) Function

DBGMLU or RBGMLU uses the Gauss method or the Crout method to perform an LU decomposition of
the real matrix A (two-dimensional array type).

(2) Usage
Double precision:
CALL DBGMLU (A, LNA, N, IPVT, IERR)
Single precision:
CALL RBGMLU (A, LNA, N, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA,N Input | Real Matrix A (two-dimensional array type)
{ R} Output | Unit upper triangular matrix U and lower tri-

angular matrix L when A is decomposed into
A = LU (See Notes (a) and (b))

2 LNA I 1 Input | Adjustable dimension of array A

N I 1 Input | Order of matrix A

4 IPVT I N Output | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (b))

5 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N <LNA

39

DBGMLU, RBGMLU
LU Decomposition of a Real Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N is equal to 1 Contents of array A are not changed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ The pivot became 0.0 in the i-th process-
ing step.
A is nearly singular.
(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with the sign
changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since

the diagonal components of matrix L always are 1.0, they are not stored in array A. In addition, the

reciprocals of the diagonal components of U are stored. (See Fig. 2—2 in Section 2.2.2)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by
subsequent subroutines. If the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i).

In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.

40

DBGMLC, RBGMLC
LU Decomposition and Condition Number of a Real Matrix

2.2.4 DBGMLC, RBGMLC
LU Decomposition and Condition Number of a Real Matrix

(1) Function
DBGMLC or RBGMLC uses the Gauss method or the Crout method to perform an LU decomposition and
obtain the condition number of the real matrix A (two-dimensional array type).

(2) Usage
Double precision:
CALL DBGMLC (A, LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL RBGMLC (A, LNA, N, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex INTEGER(4) as for 32bit Integer
R:Single precision real C:Single precision complex . { INTEGER(8) as for 64bit Integer}
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA,N Input | Real Matrix A (two-dimensional array type)
{ R} Output | Unit upper triangular matrix U and lower tri-

angular matrix L when A is decomposed into
A = LU (See Notes (a) and (b))

2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 IPVT I N Output | Pivoting information

IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (b))

5 COND 1 Output | Reciprocal of the condition number

Work Work area

D

=
—| ——
—| W O| ®™UC
N—— | Y—~—

Z

7 IERR 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

41

DBGMLC, RBGMLC
LU Decomposition and Condition Number of a Real Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N is equal to 1 Contents of array A are not changed and
COND < 1.0 is performed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ The pivot became 0.0 in the i-th process-
ing step.
A is nearly singular.
(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with the sign
changed, and the upper triangular matrix U is stored in the upper triangular portion. However, since
the diagonal components of matrix L always are 1.0, they are not stored in array A. In addition, the

reciprocals of the diagonal components of U are stored. (See Fig. 2—2 in Section 2.2.2)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by
subsequent subroutines. If the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i).

In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.

(c) Although the condition number is defined by ||A| ---||A~!||, an approximate value is obtained by this

subroutine.

42

DBGMLS, RBGMLS
Simultaneous Linear Equations (LU-Decomposed Real Matrix)

2.2.5 DBGMLS, RBGMLS
Simultaneous Linear Equations (LU-Decomposed Real Matrix)

(1) Function
DBGMLS or RBGMLS solves the simultaneous linear equations LUx = b having the real matrix A (two-
dimensional array type) which has been LU decomposed by the Gauss method or the Crout method as

coefficient matrix.

(2) Usage
Double precision:
CALL DBGMLS (A, LNA, N, B, IPVT, IERR)
Single precision:
CALL RBGMLS (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex) { INTEGER(4) as for 32bit Integer}
R:Single precision real C:Single precision complex INTEGER(S8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA, N Input | Coefficient matrix A after LU decomposition
{ R} (real matrix, two-dimensional array type) (See
Notes (a) and (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
{R} Output | Solution vector x
5 IPVT I N Input | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (c))
6 IERR I 1 Output | Error indicator

(4) Restrictions
(a) 0 < N < LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N is equal to 1 B(1) «+ B(1)/A(1,1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.

43

DBGMLS, RBGMLS
Simultaneous Linear Equations (LU-Decomposed Real Matrix)

(6) Notes

(a)

The coefficient matrix A must be LU decomposed before using this subroutine. Normally, you should
DBGMLU

decompose matrix A by calling the 2.2.3
RBGMLU

} subroutine. However, if you also want to obtain

DBGMLC
the condition number, you should use 2.2.4 G .
RBGMLC
DBGMSL
In addition, if you have already used 2.2.2 G to solve simultaneous linear equations having
RBGMSL

the same coefficient matrix A, you can use the LU decomposition obtained as part of its output.

To solve multiple sets of simultaneous linear equations where only the constant vector b differs, the

DBGMMS}
to perform

solution is obtained more efficiently by directly using the subroutine 2.2.6
RBGMMS

the calculations.

The unit lower triangular matrix L must be stored in the lower triangular portion of array A with
the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion.
However, since the diagonal components of matrix L always are 1.0, they should not be stored in array
A. In addition, the reciprocals of the diagonal components of U must be stored. (See Fig. 2—2 in
Section 2.2.2.)

Information about partial pivoting performed during LU decomposition must be stored in IPVT.
DBGML DBGML DBGMSL

This information is given by the 2.2.3 GMLU , 4 GMLC , and 2.2.2 GMS

RBGMLU RBGMLC RBGMSL

subroutines which perform LU decomposition of matrix A.

44

DBGMMS, RBGMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Real Matrix)

2.2.6 DBGMMS, RBGMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-
Decomposed Real Matrix)

(1) Function

DBGMMS or RBGMMS solves the simultaneous linear equations LUz = b having the real matrix A (two-
dimensional array type) which has been LU decomposed by the Gauss method or the Crout method as

coefficient matrix. That is, when the n x m matrix B is defined by B = [by, bz, -, by,], the subroutine
obtains [x1,x2, +, Tm] = A"'B.
(2) Usage

Double precision:

CALL DBGMMS (A, LNA, N, B, LNB, M, IPVT, IERR)
Single precision:

CALL RBGMMS (A, LNA, N, B, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real = Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A after LU decomposition
{R} (real matrix, two-dimensional array type) (See
Notes (a) and (b))
LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 B D LNA,N Input | Matrix consisting of constant vector b;
{R} [A',b1,ba, -, bp,]
Output | Matrix consisting of Solution vector ;
[A X1, T2, -, Ty
5 LNB I 1 Input | Adjustable dimension of array B
M I 1 Input | Number of right-hand side vectors, m
IPVT I N Input | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step (See Note (c)).
8 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N <LNA
(b) 0<M
(¢) 0<IPVT{H) <N (i=1,...,N)

45

DBGMMS, RBGMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Real Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N is equal to 1 B(1,i) «+ B(1,i)/A(1,1) (i=1,2,---,M)
is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Normally, you should

DBGMLU
RBGMLU

DBGMLC}

decompose matrix A by calling the 2.2.3 { subroutine. However, if you also want to obtain

RBGMLC

DBGMSL

RBGMSL
the same coeflicient matrix A, you can use the LU decomposition obtained as part of its output.

the condition number, you should use 2.2.4 {

In addition, if you have already used 2.2.2 to solve simultaneous linear equations having

The unit lower triangular matrix L must be stored in the lower triangular portion of array A with
the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion.
However, since the diagonal components of matrix L always are 1.0, they should not be stored in array
A. In addition, the reciprocals of the diagonal components of U must be stored. (See Fig. 2—2 in
Section 2.2.2.)

Information about partial pivoting performed during LU decomposition must be stored in IPVT.

M M M
This information is given by the 2.2.3 DBG LU}, 2.2.4 {DBG LC}, and 2.2.2 {DBG SL}

RBGMLU RBGMLC RBGMSL
subroutines which perform LU decomposition of matrix A.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

2 4 -1 6 T11 T1o 36 11
-1 -5 4 2 To1 T2 15 0
1 2 3 1 T3 T3 2 7
3 5 -1 ‘*3 $4?1 $4?2 4*6 4

(b) Input data

Coefficient matrix A, LNA = 10, N = 4, matrix consisting of constant vector B, LNB=B and M=2.

(¢) Main program

PROGRAM BBGMSM
! %% EXAMPLE OF DBGMMS %
IMPLICIT NONE

INTEGER LNA,LNB,N,M,I,J,IERR
PARAMETER (LNA=10,LNB=10,N=4,M=2)
INTEGER IPVT(LNA)

REAL(8) A(LNA,N),B(LNB,M)

DATA ((A(I,J),J=1,N),I=1,N)/&

2.0D0, 4.0D0, -1.0D0, 6.0D0,&
-1.0D0, -5.0D0, 4.0DO, 2.0D0,&
1.0D0, 2.0D0, 3.0D0, 1.0DO,&

46

DBGMMS, RBGMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Real Matrix)

10

20

3.0D0, 5.0D0, -1.0D0, -3.0D0/
DATA ((B(I,J),J=1,M),I=1,N)/&

36.0D0, 11.0D0,&

15.0D0, 0.0D0.&

22.0D0, 7.0DO0,&

~6.0D0, 4.0D0/

WRITE (6,1000) N, M
DO 10 I = 1, N
WRITE (6,1100) (A(I,J),J=1,N)
CONTINUE
WRITE (6, 1200)
DO 20 I =
WRITE (6 1100) (B(I,3),J=1,M)
CONTINUE
WRITE (6,1300)

CALL DBGMLU (A,LNA,N,IPVT,IERR)

F (IERR .GE. 30005 STOP
CALL DBGMMS (A,LNA,N,B,LNB,M,IPVT,IERR)
IF (IERR .GE. 30005 STOP

WRITE (6,1400) IERR
WRITE (6, 1500)

DO 30 I = N
WRITE (6 1100) (B(I,J),J=1,M)
30 CONTINUE
STOP

]

1000 FORMAT(1X &
1X, 2#%x DBGMMS *x%x*’ ,/ &
1X, 2 *x INPUT s*x’ AR ;
1X, ° N =’,13 /&
1X, ° M =’,I3 &
1X,/,&
1X, COEFFICIENT MATRIX’)

1100 FORMAT(1X, 6X 10(F11.4))

1200 FORMAT(lx /,&

; CONSTANT VECTORS’)

1300 FORMAT(lX /L

X, STax QUTPUT %’ ,/)

1400 FORMAT(lX ’ IERR =’,I5)

1500 FORMAT(1X./,&
1X, SOLUTION’)

END
(d) Output results
*%% DBGMMS **x
*% INPUT *x*
N= 4
M= 2
COEFFICIENT MATRIX
2.0000 4.0000 -1.0000 6.0000
-1.0000 -5.0000 4.0000 2.0000
1.0000 2.0000 3.0000 1.0000
3.0000 5.0000 -1.0000 -3.0000
CONSTANT VECTORS
36.0000 11.0000
15.0000 0.0000
22.0000 7.0000
-6.0000 4.0000
#% QUTPUT *x*
IERR = 0
SOLUTION
1.0000 1.0000
2.0000 1.0000
4.0000 1.0000
5.0000 1.0000

47

DBGMDI, RBGMDI

Determinant and Inverse Matrix of a Real Matrix

2.2.7 DBGMDI, RBGMDI
Determinant and Inverse Matrix of a Real Matrix

(1) Function

DBGMDI or RBGMDI obtains the determinant and inverse matrix of the real matrix A (two-dimensional

array type) which has been LU decomposed by the Gauss method or the Crout method.

(2) Usage

Double precision:
CALL DBGMDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)
Single precision:
CALL RBGMDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

| INTEGER(4) as for 32bit Integer
" | INTEGER(8) as for 64bit Integer

No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA,N Input | Real matrix A (two-dimensional array type) af-
{R} ter LU decomposition (See Notes (a) and (b))
Output | Inverse matrix of matrix A
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 IPVT I N Input | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (c))
5 DET D 2 Output | Determinant of matrix A (See Note (d))
it}
6 ISW I 1 Input | Processing switch
ISW > 0: Obtain determinant.
ISW = 0: Obtain determinant and inverse ma-
trix.
ISW < 0: Obtain inverse matrix.
7 W1 D N Work | Work area
)
8 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

48

DBGMDI, RBGMDI
Determinant and Inverse Matrix of a Real Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1 DET(1) < A(1,1) (See Note (d))
DET(2) < 0.0
A(1,1) + 1.0/A(1,1).
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Use any of the 2.2.3
{DBGMLU} {DBGMLC} {DBGMSL

subroutines to perform the decomposition.
RBGMLU RBGMLC RBGMSL

(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array A with
the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion.
However, since the diagonal components of matrix L always are 1.0, they should not be stored in array
A. In addition, the reciprocals of the diagonal components of U must be stored. (See 2.2.2 Figure
2-2).

(¢) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This
information is given by the subroutine that performs the LU decomposition of matrix A.

(d) The determinant is given by the following expression:
det(A) = DET(1) x (10.0PFT(2))
Scaling is performed at this time so that:
1.0 < |DET(1)] < 10.0

(e) The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A='b or A~'B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

49

DBGMLX, RBGMLX
Improving the Solution of Simultaneous Linear Equations (Real Matrix)

2.2.8 DBGMLX, RBGMLX
Improving the Solution of Simultaneous Linear Equations (Real Matrix)

(1) Function
DBGMLX or RBGMLX uses an iterative method to improve the solution of the simultaneous linear equations
Az = b having the real matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage
Double precision:
CALL DBGMLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)
Single precision:
CALL RBGMLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex) INTEGER(4) as for 32bit Integer
R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 A D LNA,N Input | Coefficient matrix A (real matrix, two-
R dimensional array type)
2 LNA 1 Input | Adjustable dimension of arrays A and ALU

1 Input | Order of matrix A
LNA N Input | Coefficient matrix A after LU decomposition
(See Note (a))

4 ALU

Input | Constant vector b

N Input | Approximate solution

Output | Iteratively improved solution x

ot
es]
—| — |
—| "W O| W O| @™ O|—~|~
N—— | Y—~— | —~—
Z

7 ITOL 1 Input | Number of digits to which solution is to be im-
proved (See Note (b))

Output | Approximate number of digits to which solution

was improved (See Note (c))

8 NIT I 1 Input | Maximum number of iterations (See Note (d))
9 IPVT I N Input | Pivoting information (See Note (a))
10 W1 D N Work | Work area
R
11 IERR I 1 Output | Error indicator

50

DBGMLX, RBGMLX
Improving the Solution of Simultaneous Linear Equations (Real Matrix)

(4) Restrictions
(a) 0 < N < LNA

(5) Error indicator

TERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1 The solution is not improved.
3000 Restriction (a) was not satisfied. Processing is aborted.
5000 The solution did not converge within the | Processing is aborted after calculating the
maximum number of iterations. ITOL output value.
6000 The solution could not be improved.
(6) Notes
DBGMSL DBGMLS
(a) This subroutine improves the solution obtained by the 2.2.2 G or 2.2.5 G sub-
RBGMSL RBGMLS
DBGMSL
routine. Therefore, the coefficient matrix A after it has been decomposed 2.2.2 ,2.2.3
RBGMSL

DBGML DBGML
GMLU or 2.2.4 GMLC subroutine and the pivoting information at that time must be
RBGMLU RBGMLC

given as input.

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.
However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.
ITOL <0
or
ITOL > — LOGI10 (2 x €) (e : Unit for determining error)

(c) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

o1

DBGMLX, RBGMLX
Improving the Solution of Simultaneous Linear Equations (Real Matrix)

(7) Example

(a) Problem

Solve the following simultaneous linear equations and improve the solution.

10 9 76 5 4 3 2 1 T 6
9 9 8 76 5 4 3 2 1 o 5
8 8 8 7 6 5 4 3 2 1 T3 4
7777 6 5 43 21 T4 4
6 6 6 6 6 5 4 3 2 1 x5 || 4
555 55 5 4 3 21 z | | 3
4 4 4 4 4 4 4 3 2 1 z7 2
33333332321 s 2
2 2 222 2 2 2 21 T 2
111111111 1] [a0] |1]

(b) Input data
Coefficient matrix A, LNA = 11,N = 10 and constant vector b.
(¢) Main Program

PROGRAM BBGMLX
| #%* EXAMPLE OF DBGMLX **x*
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA=11, LN=10)
DIMENSION A(LNA,LN), ALU(LNA,LN), B(LN), X(LN), Wi(LN)
INTEGER IPVT(LN) ,NIT

READ(5,*) N
WRITE(6,1000) N
READ(5,*) ((A(I,J),J=1,N),I=1,N)
READ(5,*) (B(I),I=1,N)
WRITE(6,1100)
DO 10 I = 1,N
WRITE(6,1200) (A(I,J),J=1,N)
10 CONTINUE
WRITE(6,1300)
DO 20 I = 1,N
WRITE(6,1400) B(I)
20 CONTINUE

DO 40 J = 1,N
X(J) = B(J)
DO 30 I =

I=1,N
ALU(I,J) = A(I,J)
30 CONTINUE
40 CONTINUE
CALL DBGMSL(ALU,LNA,N,X,IPVT,IERR)
IF (IERR.GE.3000) STOP
WRITE(6,1500)
DO 50 I = 1,N
WRITE(6,1600) I,X(I)
50 CONTINUE
ITOL = 0
NIT = 0
CALL DBGMLX(A,LNA,N,ALU,B,X,ITOL,NIT,IPVT,W1,IERR)
WRITE(6,1700) IERR
WRITE(6, 1800)
DO 60 I = 1,N
WRITE(6,1600) I,X(I)
60 CONTINUE
STOP
1000 FORMAT(’ ° / / ’ **; DBGMLX **x’,/,2X, %% INPUT *%’,/.,&
6X 15

s

1100 FORMAT(6X, ’COEFFICIENT MATRIX A’)
1200 FORMAT(8X,10F7.1)
1300 FORMAT(6X,’CONSTANT VECTOR’)
1400 FORMAT(8X, F7.1)
1500 FORMAT(6X,’0RIGINAL SOLUTION’)
1600 FORMAT(8X,’X(’,I2,’) = ’,1PD18.10)
1700 FDRMAT(2X,’** QUTPUT **’,/,GX,’IERR = ’,I5)
1800 FORMAT(6X,’IMPROVED SOLUTION’)

END

(d) Output results

***x DBGMLX **%*
**% INPUT **
N = 10

52

DBGMLX, RBGMLX
Improving the Solution of Simultaneous Linear Equations (Real Matrix)

COEFFICIENT MATRIX A
10

.0 .0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
9.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
.0 8.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
7.0 7.0 7.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
6.0 6.0 6.0 6.0 6.0 5.0 4.0 3.0 2.0 1.0
5.0 5.0 5.0 5.0 5.0 5.0 4.0 3.0 2.0 1.0
4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.0 2.0 1.0
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 1.0
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CONSTANT VECTOR
6.0
5.0
4.0
4.0
4.0
3.0
2.0
2.0
2.0
1.0
ORIGINAL SOLUTION
X(1) = 1.0000000000D+00
X(2) = -1.2335811385D-16
X(3) = -1.0000000000D+00
X(4) = -2.5376526277D-16
X(5) = 1.0000000000D+00
X(6) = 7.9936057773D-16
X(7) = -1.0000000000D+00
X(8) = -7.4014868308D-17
X(9) = 1.0000000000D+00
X(10) = 0.0000000000D+00
*x QUTPUT **
IERR = 0
IMPROVED SOLUTION
X(1) = 1.0000000000D+00
X(2) = -4.6838616247D-31
X(3) = -1.0000000000D+00
X(4) = -1.3312027776D-30
X(5) = 1.0000000000D+00
X(6) = -1.9721522631D-31
X(7) = -1.0000000000D+00
X(8) = -9.8607613153D-32
X(9) = 1.0000000000D+00
X(10) = 0.0000000000D+00

93

2.3 COMPLEX MATRIX (TWO DIMENSIONAL ARRAY TYPE)
(REAL ARGUMENT TYPE)

2.3.1 ZBGMSM, CBGMSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex
Matrix)

(1) Function
ZBGMSM or CBGMSM uses Gauss’ method to solve the simultaneous linear equations Axz; = b;(i =

1,2,---,m) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the
n X m matrix B is defined by B = [by, ba, - -, by], the subroutine obtains [z1,x2, -, Tm] = A~ B.
(2) Usage

Double precision:

CALL ZBGMSM (ABR, ABI, LNA, N, M, IPVT, W1, IERR)
Single precision:

CALL CBGMSM (ABR, ABI, LNA, N, M, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}
R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer

Input/
Output

1 ABR {D} See Input | Real part of matrix (complex matrix, two-

No. | Argument | Type Size Contents

R Contents dimensional array type) consisting of coeffi-
cient matrix A and right-hand side vectors b;
[A,b1,b2, -, by,

Size: (LNA, (N + M))

Output | Real part of matrix (complex matrix, two-

dimensional array type) consisting of the fac-
tored matrix A’ of coefficient matrix A and solu-
tion vectors x; [A', 1, X2, -, Tm] (See Notes
(a) and (b)).

2 ABI {D} See Input | Imaginary part of matrix (complex matrix, two-

Contents dimensional array type) consisting of coeffi-
cient matrix A and right-hand side vectors b;
[A,b1,ba, -+, bm]

Size: (LNA, (N +M))

Output | Imaginary part of matrix (complex matrix, two-

dimensional array type) consisting of the fac-
tored matrix A’ of coefficient matrix A and solu-
tion vectors x; [A', @1, X2, -, Tm] (See Notes
(a) and (b))

3 LNA I 1 Input | Adjustable dimension of arrays ABR and ABI

54

ZBGMSM, CBGMSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix)

No. | Argument | Type Size fnput/ Contents
Output
N I 1 Input | Order of matrix A
5 M I 1 Input | Number of right-hand side vectors, m
IPVT I N Output | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step (See Note (a)).
7 W1 D N Work | Work area
i
8 IERR I 1 Output | Error indicator
(4) Restrictions
(a) 0 < N<LNA
(b) 0<M
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1 ABR(1, N+i)
+ (ABR(1, N+i) x ABR(1, 1)
+ ABI(1, N+i) x ABI(1, 1))
/ (ABR(1, 1)? + ABI(1, 1)?),
ABI(1, N+i)
+ (ABI(1, N+i) x ABR(1, 1)
— ABR(1, N+i) x ABI(1, 1))
/ (ABR(1, 1)? + ABI(1, 1)?)
(i=1,2, ---, M)
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
4000 + ¢ The pivot became 0.0 in the i-th process-
ing step of the LU decomposition of coef-
ficient matrix A.
A is nearly singular.

(6) Notes

(a) This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix
A. If the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i). In addition, among the

95

ZBGMSM, CBGMSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix)

column elements corresponding to row i and row j of matrix A, elements from column 1 to column n

actually are exchanged at this time.

(b) The unit lower triangular matrix L is stored in the lower triangular portion of array ABR and ABI
with the sign changed, and the upper triangular matrix U is stored in the upper triangular portion.
However, since the diagonal components of L always are 1.0, they are not stored in array ABR and

ABI. In addition, the reciprocals of the diagonal components of U are stored.

Figure 2—3 Storage Status of Matrices L and U

Matrix L Matrix U
1.0 0.0 0.0 0.0 u1,1 U2 U1,3 U1,5
12,1 1.0 0.0 0.0 0.0 uz2,2 u273 u275
ls1 lz2 1.0 0.0 0.0 0.0 w33 Uu3,s
L 15’1 15’2 15’3 1.0] i 0.0 0.0 0.0 Us,5]
U
Storage status within array ABR(LNA, K)
R{l/urn} R{u2} R{urs} R{u1s}
R{-l2}t R{1/uz2} R{ues} R{uzs}
R{-lst R{-l2s} R{1/uss} R{us,s} N
LNA : : . :
3%{711,5} %{712’5} 3%{713’5} §R{1/u575}
———————— Ne—————- —
- ——— K-———-———-—— —
Storage status within array ABI(LNA, K)
%{1/u171} %{ul,g} %{ul,g} %{u175}
%{—ZLQ} S{l/u;g} S{u;g} s{ug,s}
S{-list S{-los} S{l/uss} S{us,s} N
LNA
%{711’5} J{*lg 5} %{713’5} %{1/U5 5}
- N - —
- ——— K-———-———-—— —
Remarks
a. LNA > N and N+M < K must be hold.
(7) Example
(a) Problem
Solve the following simultaneous linear equations.
4421 3+ 9 441 T7T+9¢ T11 Ti2 T1.3 X14 1 0 0 O
6+ 71 4i 4+77 2+ 51 Ta1 T22 T23 X24 . 01 0 0
9 + 3t 6 + 2t 9 + 50 8 + 51 r31 X32 T33 T34 0 01 0
1 + 5’L 7 + 9’L 3 + 5Z 2 + 41 I4’1 174,2 174,3 I4’4 0 0 O 1

(b) Input data

Array ABR and ABI in which coefficient matrix A, constant vectors by, bz, bs and by are stored,

56

ZBGMSM, CBGMSM

Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix)

LNA=

11, N=4 and M=4.

(¢) Main program

1 okkx

10

20

30

1000

1100
1200
1300
1400
1600

PROGRAM ABGMSM

EXAMPLE OF ZBGMSM s

IMPLICIT REAL(8) (A -H,0-2)

PARAMETER (LNA = 11)

PARAMETER (LMA = 5)

DIMENSION ABR(LNA,LNA+LMA),ABI(LNA,LNA+LMA),IPVT(LNA),W(LNA)

READ (5,*) N
READ (5,*) M
WRITE (6,1000) N, M
DO 10 I =1, N
READ (5,%) (ABR(I,J),ABI(I,J),J=1,N)
WRITE (6,1100) (ABR(I,J),ABI(I,J).J=1,N)
CONTINUE
WRITE (6, 1200)
DO 20 I =
READ (5 *) (ABR(I,N+J),ABI(I,N+J),J=1,M)
WRITE (6,1100) (ABR(I,N+J),ABI(I, N+J) J=1,M)
CONTINUE
WRITE (6,1300)
CALL ZBGMSM (ABR,ABI,LNA,N,M,IPVT,W,IERR)
WRITE (6,1400) ’ZBGMSM’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6, 1600)
DO 30 I =
WRITE (6 1100) (ABR(I,N+J),ABI(I,N+J),J=1,M)
CONTINUE
STOP

FORMAT(’ °,/,/,&

> xkk ZBGMSM *¥x’ /&

2X,2%x INPUT *x’,/,&

6X,’N =2,13,/,&

6X,’M =’ IB /&

6X, ’CDEFFICIENT MATRIX’)
FORMAT(7X,4(’(’,F8.4,°,°,F8.4,%)’))
FORMAT(6X,’CDNSTANT VECTDRS’)
FORMAT (2X, >**x QUTPUT *x’)
FORMAT (6X,’IERR (’,A6,’) =’,I5)
FORMAT (6X, >SOLUTION’)
END

(d) Output results

k% k
*k

*x

ZBGMSM **x*

INPUT *x*

N= 4

M= 4

COEFFICIENT MATRIX
(4.0000, 2.0000)(3.0000, 9.0000)(4.0000, 1.0000)(
(6.0000, 7.0000)(0.0000, 4.0000)(4.0000, 7.0000)(
(9.0000, 3 0000) (6.0000, 2.0000)(9.0000, 5.0000)(
(1.0000, 0000) (7.0000, 9.0000)(3.0000, 5.0000)(

CONSTANT VECTORS
(1.0000, 0.0000)(0.0000, 0.0000)(0.0000, 0.0000)¢(
(0.0000, 0.0000) (1.0000, 0.0000)(0.0000, 0.0000)(
(0.0000, 0.0000)(0.0000, 0.0000)(1.0000, 0.0000)¢
(0.0000, 0.0000)(0.0000, 0.0000)(0.0000, 0.0000)(

OUTPUT *x*

IERR (ZBGMSM) = 0

SOLUTION

(0.0133, -0.0730)(O
(-0.0178, -0.0189)(-0.0680, -0.0696) (-0.0128, 0.1001)(
(-0.0353, 0.1382)(-0.0585, 0.1700)(0.1333, -0.2410)(
(0.0494, -0.0686)(-0

o7

.1814, -0.2467)(-0.1840, 0.1782)(-

.0096, 0.1300)(0.0885, -0.0709)(-

0
0.
0.
0

HOOO NN

QOO0 w1

-0.
-0.
.0191)
.0662)

.0000)
.0000)
.0000)
.0000)

.0000)
.0000)
.0000)
.0000)

0560)
0657)

ZBGMSL, CBGMSL

Simultaneous Linear Equations (Complex Matrix)

2.3.2 ZBGMSL, CBGMSL
Simultaneous Linear Equations (Complex Matrix)

(1) Function

ZBGMSL or CBGMSL uses the Gauss method or the Crout method to solve the simultaneous linear equa-
tions Az = b having the complex matrix A=(AR, AI) (two-dimensional array type) as coefficient matrix.

(2) Usage

Double precision:
CALL ZBGMSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)
Single precision:
CALL CBGMSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

| INTEGER(4) as for 32bit Integer
" | INTEGER(8) as for 64bit Integer

No. | Argument | Type Size fnput/ Contents
Output
1 AR D LNA, N Input | Real part of coefficient matrix A
{R} (complex matrix, two-dimensional array type)
Output | Real parts of unit upper triangular matrix U
and low triangular matrix L when A is decom-
posed into A = LU (See Notes (b) and (c))
2 Al D LNA,N Input | Imaginary part of coefficient matrix (complex
{R} matrix, two-dimensional array type)
Output | Imaginary parts of unit upper triangular ma-
trix U and lower triangular matrix L when A
is decomposed into A = LU (See Notes (b) and
(©)
3 LNA I 1 Input | Adjustable dimension of arrays AR and Al
4 N I 1 Input | Order of matrix A
5 BR D N Input | Real part of constant vector b
{R} Output | Real part of solution =
6 BI D N Input | Imaginary part of constant vector b
{R} Output | Imaginary part of solution x
7 IPVT I N Output | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (b))
8 W1 D N Work | Work area
)
9 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

o8

ZBGMSL, CBGMSL
Simultaneous Linear Equations (Complex Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1 BR(1)

— {BR(1) x AR(1,1) + BI(1) x AI(1,1)}
/ {AR(1,1)? + AI(1,1)?}

BI(1)

— {BI(1) x AR(1,1) — BR(1) x AI(1,1)}
/ {AR(1,1)? + AI(1,1)}

2100 There existed the diagonal element which | Processing continues.
was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ The pivot became 0.0 in the i-th process-

ing step of the LU decomposition of coef-
ficient matrix A.

A is nearly singular.

(6) Notes

(a)

To solve multiple sets of simultaneous linear equations where only the constant vector b differs, the

ZBGMSM
solution is obtained more efficiently by directly using the subroutine 2.3.1 GMS to perform
CBGMSM
ZBGMSM
the calculations. However, when 2.3.1 G cannot be used such as when all of the right-
CBGMSM

hand side vectors b are not known in advance, call this subroutine only once and then call subroutine
ZBGMLS
2.35 {

CBGMLS
eliminate unnecessary calculation by performing the LU decomposition of matrix A only once.

} the required number of times varying only the contents of B. This enables you to

This subroutine performs partial pivoting when obtaining the LU decomposition of coefficient matrix
A=(AR, AI). If the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i). In addition,
among the column elements corresponding to row i and row j of matrix A, elements from column 1 to

column n actually are exchanged at this time.

The unit lower triangular matrix L is stored in the lower triangular portion of array AR and AI with the
sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However,
since the diagonal components of L always are 1.0, they are not stored in array AR and Al. In addition,
the reciprocals of the diagonal components of U are stored. In Fig. 2—4, R{z} and 3{z} denote a real

part and an imaginary part of a complex number z, respectively.

59

ZBGMSL, CBGMSL

Simultaneous Linear Equations (Complex Matrix)

LNA

LNA

Remarks

Matrix L Matrix U
1.0 00 00 --- 0.0 w11 U2 ULt ULs
l2n 1.0 00 --- 0.0 0.0 w22 w23 -+ uU2s
l3n lz2 1.0 --- 0.0 0.0 0.0 w33 --- wu3s
15,1 15,2 15,3 e 1.0 0.0 0.0 0.0 R us,s
U
Storage status within array AR(LNA, K)

8%{1/u171} §R{U1,2} §R{U1,3} R §R{u175}

R{-l2} R{l/uz2} Rfuas} - Rfuas}

?R{—ll,g} ?R{—lz,g} 3%{1/’11,3,3} e %{ug,s}

§R{*l175} §R{*l275} 3%{713’5} R §R{1/U5’5}
777777777777 N-———-———
______________ Ke — — — — — — —

Storage status within array AI(LNA, K)

%{1/u171} %{ul,g} %{ul,g} cee %{ulys}

S{—l1,2} {1/ u22} S{uzs} - S{ues}

S{lis} S{-ls} S{l/uss} - S{uss)

%{7[175} %{7[275} %{713 5} %{1/11,5 5}
———————————— N-"———
______________ Ke - — — . ____

a. LNA > N, N < K must hold.

Figure 2—4 Storage Status of Matrices L and U

60

ZBGMSL, CBGMSL
Simultaneous Linear Equations (Complex Matrix)

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

5+8 741 643 142 1
147 9450 4+) T2

43 3+3i 4+2i 649 T3
7T+ 88 6 7+6t 10+ 4¢ Tq

(b) Input data

Coefficient matrix real part AR and imaginary part AIl, LNA = 11,N =4 and constant vector B.

(¢) Main program

PROGRAM ABGMSL

! *** EXAMPLE OF ZBGMLC,ZBGMLS *¥*
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11,LNW = 22)

DIMENSION AR(LNA,LNA),AI(LNA,LNA),BR(LNA),BI(LNA),IPVT(LNA)

DIMENSION Wi (LNW)

READ (5,*) N
WRITE (6, 1000) N
DO 10 I =1,
READ (5, *) (AR(I,J),AI(I,J),J=1,N)
WRITE (6,1100) (AR(,7),AI(I,3).3=1,N)
10 CONTINUE
READ (5,*) (BR(I),BI(I),I=1,N)
WRITE (6, 12)
DO 20 I =
WRITE (6 1300) BR(I),BI(I)
20 CONTINUE
WRITE (6,1400)
CALL ZBGMLC (AR,AI,LNA,N,IPVT,COND,W1,IERR)
WRITE (6,1500) ’ZBGMLC’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0DO/COND
CALL ZBGMLS (AR,AI,LNA,N,BR,BI,IPVT,KERR)

WRITE (6,1500) ’ZBGMLS’,KERR
WRITE (6,1600) COND
WRITE (6, 1700)
DO 30 I =1,
WRITE (6 1800) I,BR(I),BI(I)
30 CONTINUE
STOP
]
1000 FORMAT (’ °,/,/,’ **x ZBGMLC,ZBGMLS ***’,&
/,2X,2*%x INPUT **’,&
/.6X,°N =7,I3,&
/,6X,’COEFFICIENT MATRIX (REAL,
1100 FORMAT (6X,4(’ (’,F5.1,” ,’,F5.1,%)’))

IMAGINARY)’)

1200 FORMAT (6X,’CONSTANT VECTOR (REAL, IMAGINARY)°’)
1300 FORMAT (6X, °* (’,F5.1,’ ,?,F5.1,’)?’)
1400 FORMAT (2X,’** QUTPUT *x*’)
1500 FORMAT (6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT (6X,’CONDITION NUMBER =’,D18.10)
1700 FORMAT (6X,’SOLUTION (REAL, IMAGINARY)°’)
1800 FORMAT (6X,’ X(’,12,’) = (°,D18.10,’ ,?,D18.10,’)’)
END
(d) Output results
*k% ZBGMLC,ZBGMLS ssx
*% INPUT *x*
= 4
COEFFICIENT MATRIX (REAL, IMAGINARY)
5.0, 80) (7.0, 1.0) (6.0, 3.0) (1.0, 2.0)
(1.0, 1.0) (¢ 9.0, 5.0)(40, 1.0) (5.0, 0.0)
(0.0, 40)(30, 3.0)(40, 2.0)(6.0, 9.0)
(7.0 8.0) (6.0, 0.0) (7.0, 6.0) (10.0, 4.0)
CONSTANT VECTOR_ (REAL, IMAGINARY)
(3.0, 20.0)
(-6.0, 7.0)
(0.0, -6.0)
(0.0, 13.0)
x% QUTPUT *x
IERR (ZBGMLC) 0

IERR (ZBGMLS) 0

CONDITION NUMBER = 0.6279263302D+01

SOLUTION (REAL, IMAGINARY)
1

X(= 0.1000000000D+01 , 0.1000000000D+01
X(2) = (-0.2220446049D-15 , 0.1000000000D+01
X(3) = (0.1000000000D+01 , -0.4996003611D-15
X(4) = (-0.1000000000D+01 , -0.1000000000D+01

61

NN

ZBGMLU, CBGMLU
LU Decomposition of a Complex Matrix

2.3.3 ZBGMLU, CBGMLU
LU Decomposition of a Complex Matrix
(1) Function

ZBGMLU or CBGMLU uses the Gauss method or the Crout method to perform an LU decomposition of
the complex matrix A=(AR, AI) (two-dimensional array type).

(2) Usage
Double precision:
CALL ZBGMLU (AR, AI, LNA, N, IPVT, W1, IERR)
Single precision:
CALL CBGMLU (AR, AI, LNA, N, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 AR D LNA, N Input | Real part of coefficient matrix A
R (two-dimensional array type)

Output | Real parts of unit upper triangular matrix U
and low triangular matrix L when A is decom-
posed into A = LU (See Notes (a) and (b))

2 Al {D} LNA,N Input | Imaginary part of coefficient matrix

(two-dimensional array type)

Output | Imaginary parts of unit upper triangular ma-
trix U and lower triangular matrix L when A
is decomposed into A = LU (See Notes (a) and

(b))

3 LNA I 1 Input | Adjustable dimension of arrays AR and Al
N I 1 Input | Order of matrix A
5 IPVT I N Output | Pivoting information

IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (b))

6 W1 D N Work | Work area
R
7 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

62

ZBGMLU, CBGMLU
LU Decomposition of a Complex Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array AR and Al are not
changed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ The pivot became 0.0 in the i-th process-
ing step.
A is nearly singular.
(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array AR and Al with the

sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However,

since the diagonal components of L always are 1.0, they are not stored in array AR and AI. In addition,

the reciprocals of the diagonal components of U are stored. (See 2.3.2 Figure 2—4.)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by

subsequent subroutines. If the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i).

In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.

63

ZBGMLC, CBGMLC
LU Decomposition and Condition Number of a Complex Matrix

2.3.4 ZBGMLC, CBGMLC
LU Decomposition and Condition Number of a Complex Matrix
(1) Function

ZBGMLC or CBGMLC uses the Gauss method or the Crout method to perform an LU decomposition and
obtain the condition number of the complex matrix A=(AR, AI) (two-dimensional array type).

(2) Usage
Double precision:
CALL ZBGMLC (AR, AI, LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL CBGMLC (AR, AI, LNA, N, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 AR D LNA, N Input | Real part of coefficient matrix A
R (two-dimensional array type)

Output | Real parts of unit upper triangular matrix U
and low triangular matrix L when A is decom-
posed into A = LU (See Notes (a) and (b))

2 Al {D} LNA,N Input | Imaginary part of coefficient matrix

(two-dimensional array type)

Output | Imaginary parts of unit upper triangular ma-
trix U and lower triangular matrix L when A
is decomposed into A = LU (See Notes (a) and

(b))

3 LNA I 1 Input | Adjustable dimension of arrays AR and Al
N I 1 Input | Order of matrix A
5 IPVT I N Output | Pivoting information

IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (b))

6 COND D 1 Output | Reciprocal of the condition number
)

7 W1 D 2 x N Work | Work area
)

8 IERR I 1 Output | Error indicator

64

ZBGMLC, CBGMLC
LU Decomposition and Condition Number of a Complex Matrix

(4) Restrictions
(a) 0 < N < LNA

(5) Error indicator

TERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array AR and Al are not
changed and COND <« 1.0 is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LU decompo-
sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ The pivot became 0.0 in the i-th process-
ing step.

A is nearly singular.

(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array AR and Al with the
sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However,
since the diagonal components of L always are 1.0, they are not stored in array AR and AI. In addition,

the reciprocals of the diagonal components of U are stored. (See 2.3.2 Figure 2—4.)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by
subsequent subroutines. If the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i).
In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.

(c) Although the condition number is defined by ||A|| - ||A™!||, an approximate value is obtained by this

subroutine.

65

ZBGMLS, CBGMLS
Simultaneous Linear Equations (LU-Decomposed Complex Matrix)

2.3.5 ZBGMLS, CBGMLS
Simultaneous Linear Equations (LU-Decomposed Complex Matrix)

(1) Function

ZBGMLS or CBGMLS solves the simultaneous linear equations LUx = b having the complex matrix
A=(AR, AI) (two-dimensional array type) which has been LU decomposed by the Gauss method or the

Crout method as coeflicient matrix.

(2) Usage

Double precision:
CALL ZBGMLS (AR, AIL, LNA, N, BR, BI, IPVT, IERR)
Single precision:

CALL CBGMLS (AR, AI, LNA, N, BR, BI, IPVT, IERR)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

| INTEGER(4) as for 32bit Integer
INTEGER(8) as for 64bit Integer

Input
No. | Argument | Type Size nput/ Contents
Output
1 AR D LNA, N Input | Real parts of coefficient matrix A after LU de-
R composition (See Notes (a) and (b))
2 Al D LNA,N Input | Imaginary parts of coefficient matrix A after LU
R decomposition (See Notes (a) and (b))
3 LNA I 1 Input | Adjustable dimension of arrays AR and Al
4 N I 1 Input | Order of matrix A
5 BR D N Input | Real part of constant vector b
R Output | Real part of solution x
6 BI D N Input | Imaginary part of constant vector b
R Output | Imaginary part of solution x
7 IPVT I N Input | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (c))
8 IERR I 1 Output | Error indicator

66

ZBGMLS, CBGMLS
Simultaneous Linear Equations (LU-Decomposed Complex Matrix)

(4) Restrictions

(a) 0 <N < LNA

(5) Error indicator

TERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1 BR(1) «

{BR(1) x AR(1,1) + BI(1) x AI(1,1)}
J{AR(1,1)% + AI(1,1)?}

BI(1) «

{BI(1) x AR(1,1) — BR(1) x AI(1,1)}
J{AR(1,1)? + AI(1,1)?}

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a) The coefficient matrix A=(AR, AI) must be LU decomposed before using this subroutine. Normally,

ZBGMLU

you should decompose matrix A by calling the 2.3.3
CBGMLU

} subroutine. However, if you also

want to obtain the condition number, you should use 2.3.4 ZBGMLC .
' CBGMLC
ZBGMSL
In addition, if you have already used 2.3.2 G to solve simultaneous linear equations having
CBGMSL

the same coefficient matrix A, you can use the LU decomposition obtained as part of its output.
To solve multiple sets of simultaneous linear equations where only the constant vector b differs, the
ZBGMMS

solution is obtained more efficiently by directly using the subroutine 2.3.6
CBGMMS

} to perform
the calculations.

The unit lower triangular matrix L must be stored in the lower triangular portion of array AR and
AT with the sign changed, and the upper triangular matrix U must be stored in the upper triangular
portion. However, since the diagonal components of L always are 1.0, they should not be stored in
array AR and Al In addition, the reciprocals of the diagonal components of U must be stored. (See
2.3.2 Figure 2—4.)

Information about partial pivoting performed during LU decomposition must be stored in IPVT. This
ZBGMLU } { ZBGMLC } { ZBGMSL

CBGMLU CBGMLC CBGMSL
perform LU decomposition of matrix A.

information is given by 2.3.3 { } subroutines which

67

ZBGMMS, CBGMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix)

2.3.6 ZBGMMS, CBGMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-
Decomposed Complex Matrix)

(1) Function
ZBGMMS or CBGMMS uses Gauss’ method to solve the simultaneous linear equations Axz; = b;(i =

1,2,---,m) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the
n X m matrix B is defined by B = [by, ba, - -, by], the subroutine obtains [z1,x2, -, Tm] = A~ B.
(2) Usage

Double precision:

CALL ZBGMMS (AR, AL, LNA, N, BR, BI, LNB, M, IPVT, IERR)
Single precision:

CALL CBGMMS (AR, AI, LNA, N, BR, BI, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 AR D LNA N Input | Real parts of coefficient matrix A after LU de-
R composition (See Notes (a) and (b))
2 Al D LNA,N Input | Imaginary parts of coefficient matrix A after LU
R decomposition (See Notes (a) and (b))
3 LNA I 1 Input | Adjustable dimension of arrays AR and Al
4 N I 1 Input | Order of matrix A
5 BR D LNB,M Input | Real part of constant vector b
R Output | Real part of solution x
6 BI D LNB,M Input | Imaginary part of constant vector b
R Output | Imaginary part of solution x
7 LNB I 1 Input | Adjustable dimension of arrays AR and Al
8 M I 1 Input | Order of matrix B
9 IPVT I N Input | Pivoting information

IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (c))
10 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N < LNA,LNB
(b) M >0
(c) 0 <IPVT(H) <N (i=1,...,N)

68

ZBGMMS, CBGMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. BR(1,i)+

{ BR(1,i)xAR(1,1) +BI(1,i) x AI(1,1) }
/ { AR(1,1)*+ AI(1,1)% }

BI(1,i)«+

{ BI(1,;)xAR(1,1) —BR(1,7) xAI(1,1) }
/ { AR(1,1)%+ AI(1,1)% }

(i =1,2,---,M) is performed.

3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.

(6) Notes

(a) The coefficient matrix A=(AR, AI) must be LU decomposed before using this subroutine. Normally,
ZBGMLU
CBGMLU

ZBGMLC}

you should decompose matrix A by calling the 2.3.3 { subroutine. However, if you also

want to obtain the condition number, you should use 2.3.4
CBGMLC

ZBGMSL
In addition, if you have already used 2.3.2 to solve simultaneous linear equations having

CBGMSL
the same coefficient matrix A, you can use the LU decomposition obtained as part of its output.

(b) The unit lower triangular matrix L must be stored in the lower triangular portion of array AR and
AT with the sign changed, and the upper triangular matrix U must be stored in the upper triangular
portion. However, since the diagonal components of L always are 1.0, they should not be stored in
array AR and Al In addition, the reciprocals of the diagonal components of U must be stored. (See
2.3.2 Figure 2—4.)

(¢) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This
ZBGMLU} ; {ZBGMLC} ; {ZBGMSL
CBGMLU [’ CBGMLC [’ CBGMSL
perform LU decomposition of matrix A.

information is given by 2.3.3 } subroutines which

(7) Example

(a) ProblemSolve the following simultaneous linear equations.

4421 349 4+ T+N T11 Ti2 T1,3 T14 1 0 0 O
6+ 7i 41 4+7i 2451 o1 T22 w23 T24 | [0 1 0 0
94+3i 6+2 9+5i 845 T31 32 X33 T34 | |0 0 1 0
145 749 34+5i 2+4i Ty1 Tap T4z Taa 0001

(b) Input data
Array ABR and ABI in which coefficient matrix A, constant vectors by, bz, bg and by are stored,
LNA=11, LNB=11, N=4 and M=4.

69

ZBGMMS, CBGMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix)

(¢) Main program

PROGRAM ABGMMS
| #x* EXAMPLE OF ZBGMMS
IMPLICIT NONE
INTEGER LNA,LNB,LMB
PARAMETER(LNA = 11, LNB = 11, LMB = 5)
INTEGER N,M,IPVT(LNA),IERR
INTEGER I,J
REAL(8) AR(LNA,LNA),BR(LNB,LMB)
REAL(8) AI(LNA,LNA),BI(LNB,LMB)
REAL(8) W(LNA)

DATA (AR(1,J)
DATA (AR(2,J
DATA (AR(3,J
DATA (AR(4,J
DATA (AI(1,J
DATA (AI(2,J

J

J

.0DO,
.0DO,
-0DO,
.0DO,
-0DO,
.0DO,
.0DO,
-0DO,

.0DO
.0DO
.0DO
.0DO
.0DO
.0DO
.0DO
.0DO

RRRRRRRE

DATA (AI(3,
DATA (AI(4,

N
M

[S TR S}
NN
TWNN = OO D
ONPONOO W

o

o

o
QIOITN - WO D

o

(=}

o
B OICIONNN
A N

e
nmn==

101 CONTINUE
100 CONTINUE

1.0D0
110 CONTINUE

WRITE(6,6000) N, M
D0 120 I = 1, N
WRITE(6,6010) (AR(I,J),AI(I,J),J=1,N)
120 CONTINUE
WRITE(6,6020)
DO 130 I=1,N
WRITE(6,6010) (BR(I,J),BI(I,J),J=1,M)
130 CONTINUE

WRITE(6,6030)
CALL ZBGMLU(AR,AI,LNA,N,IPVT,W,IERR)
IF(IERR .GE. 3000) THEN
WRITE(6,6040) IERR
STOP
ENDIF
CALL ZBGMMS(AR,AI,LNA,N,BR,BI,LNB,M,IPVT,IERR)
WRITE(6,6050) IERR
IF(IERR .GE. 3000) STOP
WRITE(6,6060)
DO 140 I=1,N
WRITE(6,6010) (BR(I,J),BI(I,J),J=1,M)
140 CONTINUE
STOP

6000 FORMAT(/,&
1X, 2 %*%*x ZBGMMS *x*x*’ / /. &
1X,? %% INPUT #%>,/./.&

X, M =.13././,&
1X,° COEFFICIENT MATRIX (REAL, IMAGINARY)’)
6010 FORMAT(1X,’ Va0 (P,F7.4,7 0 FT.4,))

6020 FORMAT(/,&
1X,° CONSTANT VECTORS (REAL, IMAGINARY)’)
6030 FORMAT(/,&
1X,? #* QUTPUT *x%°,/)

6040 FORMAT(1X,’ IERR(ZBGMLU) =’,I5)

6050 FORMAT(1X,’ IERR =’,I5,/)

6060 FORMAT(1X,’ SOLUTION (REAL, IMAGINARY)’)
END

70

ZBGMMS, CBGMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix)

(d) Output results

k% k

*x

*x

ZBGMMS ***
INPUT **

N= 4

M= 4

COEFFICIENT MATRIX
(4.0000, 2.0000)
(6.0000, 7. oooo)
(9.0000, 3.0000)
(1.0000, 5.0000)

CONSTANT VECTORS (
(1.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)

OUTPUT *x*
IERR = 0

(
(
(
(
(
R
(
(
(
(

3.0
0.
6.
7
EA
0.
1.
0.
0.

REAL IMAGINARY
9.00

0, 00)
0000, 4.0000)
0000, 2.0000)
0000, 9.0000)

L, IMAGINARY)
0000 0.0000)
0000, 0.0000)
0000, 0.0000)
0000, 0.0000)

SOLUTION (REAL, IMAGINARY)
(0.1814,-0.2467)

(0.0133,-0.0730)
(-0.0178,-0.0189)
(-0.0353, 0.1382)
(0.0494,-0.0686)

(
(-
(

-0.
0.
-0.

0680,-0.0696)
0585, 0.1700)
0096, 0.1300)

AAAA
WO

~AAA
O OO

o

o

o

o
QO

.1840, 0.
.0128, 0.
.1333,-0.
.0885,-0.

71

.0000)
.0000)
.0000)
.0000)

.0000)
.0000)
.0000)
.0000)

1782)
1001)
2410)
0709)

~AAA
NN

~AAA
ROOO

[eXeXeole]

.0000)
.0000)
.0000)
.0000)

.0000)
.0000)
.0000)
.0000)

.0560)
.0657)
.0191)
.0662)

ZBGMDI, CBGMDI
Determinant and Inverse Matrix of a Complex Matrix

2.3.7 ZBGMDI, CBGMDI
Determinant and Inverse Matrix of a Complex Matrix

(1) Function

ZBGMDI or CBGMDI obtains the determinant and inverse matrix of the complex matrix A=(AR, AI)
(two-dimensional array type) which has been LU decomposed by the Gauss method or the Crout method.

(2) Usage

Double precision:
CALL ZBGMDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)
Single precision:
CALL CBGMDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

| INTEGER(4) as for 32bit Integer
" | INTEGER(8) as for 64bit Integer

No. | Argument | Type Size fnput/ Contents
Output
1 AR D LNA, N Input | Real parts of coefficient matrix A after LU de-
{R} composition (See Notes (a) and (b))
Output | Real parts of inverse matrix of matrix A
2 Al D LNA, N Input | Imaginary parts of coefficient matrix A after LU
{R} decomposition (See Notes (a) and (b))
Output | Imaginary parts inverse matrix of matrix A
3 LNA I 1 Input | Adjustable dimension of arrays AR and Al
4 N I 1 Input | Order of matrix A
5 IPVT I N Input | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (c))
6 DET D 3 Output | Determinant of matrix A (See Note (d))
it}
7 ISW I 1 Input | Processing switch
ISW>0: Obtain determinant.
ISW=0: Obtain determinant and inverse ma-
trix.
ISW<0: Obtain inverse matrix.
8 W1 D 2x N Work | Work area
i
9 IERR I 1 Output | Error indicator

72

ZBGMDI, CBGMDI
Determinant and Inverse Matrix of a Complex Matrix

(4) Restrictions

(a)

0 < N < LNA

(5) Error indicator

TERR value Meaning Processing
0 Normal termination.

1000 N was equal to 1. DET(1) «+ AR(1)
DET(2) < AI(1)
DET(3) «+ 0.0
AR(1,1) +
AR(1,1)/{AR(1,1)% + AI(1,1)%}
AI(1,1) +
—AI(1,1)/{AR(1,1)%? + AI(1,1)?}

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a)

(b)

The coefficient matrix A must be LU decomposed before using this subroutine. Use any of the 2.3.3

ZBGMLU ZBGMLC ZBGMSL . ..
,2.3.4 ,2.3.2 subroutines to perform the decomposition.
CBGMLU CBGMLC CBGMSL

The unit lower triangular matrix L must be stored in the lower triangular portion of array AR and
AT with the sign changed, and the upper triangular matrix U must be stored in the upper triangular
portion. However, since the diagonal components of L always are 1.0, they should not be stored in
array AR and Al In addition, the reciprocals of the diagonal components of U must be stored. (See
2.3.2 Figure 2—4).

Information about partial pivoting performed during LU decomposition must be stored in IPVT(i).
This information is given by the subroutine that performs the LU decomposition of matrix A.

The determinant is given by the following expression: R{det(A4)} = DET(1) x 10PET(®)
3{det(A)} = DET(2) x 10PET®)
Scaling is performed at this time so that:

1.0 < [DET(1)| + |[DET(2)| < 10.0

The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A='b or A~'B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Ax = b for the vector & or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

73

ZBGMLX, CBGMLX
Improving the Solution of Simultaneous Linear Equations (Complex Matrix)

2.3.8 ZBGMLX, CBGMLX
Improving the Solution of Simultaneous Linear Equations (Complex Matrix)

(1) Function
ZBGMLX or CBGMLX uses an iterative method to improve the solution of the simultaneous linear equations

Az = b having the complex matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage
Double precision:
CALL ZBGMLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, IPVT, W1,
IERR)
Single precision:
CALL CBGMLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, IPVT, W1,
IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output

1 AR D LNA, N Input | Real parts of coefficient matrix A
R (two-dimensional array type)

2 Al D LNA, N Input | Imaginary parts of coefficient matrix A
R (two-dimensional array type)

3 LNA I 1 Input | Adjustable dimension of array AR, AI, ALR,

and ALI
4 N I 1 Input | Order of matrix A
ALR D LNA N Input | Real parts of coefficient matrix A after LU de-

R composition (See Note (a))

6 ALI D LNA, N Input | Imaginary parts of coefficient matrix A after LU
R decomposition (See Note (a))

7 BR D N Input | Real part of constant vector b
R

8 BI D N Input | Imaginary part of constant vector b
R

9 XR D N Input | Real part of approximate solution
R Output | Real part of iteratively improved solution x

10 XI D N Input | Imaginary part of approximate solution
R Output | Imaginary part of iteratively improved solution

T

74

ZBGMLX, CBGMLX
Improving the Solution of Simultaneous Linear Equations (Complex Matrix)

No. | Argument | Type Size fnput/ Contents
Output
11 ITOL I 1 Input | Number of digits to which solution is to be im-
proved (See Note (b))
Output | Approximate number of digits to which solution
was improved (See Note (c))
12 NIT I 1 Input | Maximum number of iterations (See Note (d))
13 IPVT I N Input | Pivoting information (See Note (a))
14 W1 D 3xN Work | Work area
i
15 IERR I 1 Output | Error indicator

(4) Restrictions

()

0 < N<LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The solution is not improved.
3000 Restriction (a) was not satisfied. Processing is aborted.
5000 The solution did not converge within the | Processingis aborted after calculation the
maximum number of iterations. ITOL output value.
6000 The solution could not be improved.
(6) Notes

()

(©)

(d)

CBGMSL CBGMLS

ZBGMSL 33
CBGMSL |’

ZBGMSL ZBGMLS
This subroutine improves the solution obtained by the 2.3.2 { } or 2.3.5 { } sub-

routine. Therefore, the coefficient matrix A after being decomposed by 2.3.2 {

ZBGMLU 934 ZBGMLC
CBGMLU [’ " | CBGMLC
given as input.

} subroutine and the pivoting information at that time must be

Solution improvement is repeated until the high-order ITOL digits of the solution do not change.
However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.
ITOL <0
or
ITOL > — LOG10 (2 x €) (e : Unit for determining error)

If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

75

2.4 COMPLEX MATRIX (TWO-DIMENSIONAL ARRAY TYPE)
(COMPLEX ARGUMENT TYPE)

2.4.1 ZBGNSM, CBGNSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex
Matrix)

(1) Function
ZBGNSM or CBGNSM uses Gauss’ method to solve the simultaneous linear equations Axz; = b;(i =

1,2,---,m) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the
n X m matrix B is defined by B = [by, ba, - -, by], the subroutine obtains [z1,x2, -+, Tm] = A~ B.
(2) Usage

Double precision:

CALL ZBGNSM (AB, LNA, N, M, IPVT, IERR)
Single precision:

CALL CBGNSM (AB, LNA, N, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 AB 7 See Input | Matrix (complex matrix, two-dimensional ar-
{C} Contents ray type) consisting of coefficient matrix A and
right-hand side vectors b; [A, b1, b2, -, bm]
Size: (LNA, (N + M))
Output | Matrix (complex matrix, two-dimensional ar-
ray type) consisting of the factored matrix A’
of coefficient matrix A and solution vectors x;
[A" 1,22, -, Tm] (See Notes (a) and (b))
2 LNA I 1 Input | Adjustable dimension of array AB
3 N I 1 Input | Order of matrix A
4 M 1 1 Input | Number of right-hand side vectors, m
5 IPVT I N Output | Pivoting information
IPVT(i): Number of row exchanged with row 4
in the i-th processing step (See Note (a)).
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA
(b) 0 <M

76

ZBGNSM, CBGNSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. AB(1,N+1) + AB(1,N +1i)/AB(1,1)
(i=1,2,---,M) is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LU decompo-
sition of the coefficient matrix A. The

result may not be obtained with a good

accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.

4000 + ¢ The pivot became 0.0 in the i-th process-
ing step of the LU decomposition of coef-
ficient matrix A.

A is nearly singular.

(6) Notes

(a) This subroutine perform partial pivoting when obtaining the LU decomposition of coefficient matrix
A. Tf the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i). In addition, among the
column elements corresponding to row i and row j of matrix A, elements from column 1 to column n
actually are exchanged at this time.

(b) The unit lower triangular matrix L is stored in the lower triangular portion of array AB with the
sign changed, and the upper triangular matrix U is stored in the upper triangular portion. However,
since the diagonal components of L always are 1.0, they are not stored in array AB. In addition, the

reciprocals of the diagonal components of U are stored. (See Figure 2—1 in Section 2.2.1).
(7) Example

(a) Problem

Solve the following simultaneous linear equations.

4421 349 4+ T+N T1,1 Ti2 T1,3 T14 1 0 0 0
6+ 71 41 4+7i 2451 T2,1 T22 X233 X24 . 01 0 O
9+3i 6+2 9+5i 845 T31 32 X33 T34 | |0 0 1 0
1+55 7+97 3+57 2443 T4 Ta2 T43 Tad 0 0 0 1

(b) Input data
Array AB in which coefficient matrix A, constant vectors by, bz, bg and by are stored, LNA=11, N=4

and M=4.
(¢) Main program

PROGRAM ABGNSM

| *%x EXAMPLE OF ZBGNSM s
IMPLICIT REAL(8) (A -H,0-2)
PARAMETER (LNA = 11)
PARAMETER (LMA
COMPLEX(8) AB
DIMENSION AB(LNA,LNA+LMA),IPVT(LNA)

READ (5,%) N
READ (5,*) M
WRITE (6,1000) N, M

7

ZBGNSM, CBGNSM
Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix)

10

20

30

1000

1100
1200
1300
1400
1600

DO 10T =1, N
READ (5, *) (AB(I,J),J=1,N)
WRITE (6 1100) (AB(I J) J=1,N)

CONTINUE
WRITE (6, 1200)
DO 20 I =

READ (5, *) (AB(I,N+J),J=
WRITE (6 1100) (AB(I N+J) J=1,M)

CONTINUE
WRITE (6,1300)

)

CALL ZBGNSM (AB,LNA,N,M,IPVT,IERR)

WRITE (6,1400)
WRITE (6, 160)

’ZBGNSM’
IF (IERR .GE. 3000) STOP

, IERR

DO 30 I =
WRITE (6 1100) (AB(I,N+J),J=1,M)
CONTINUE
STOP
FORMAT(1X,/,/,&
1X ’*** ZBGNSM *x*x’,/ /. &
1X, 1X Yk INPUT =*x’,/,/.&
1X,5X N =2,13,/,&
1X,5X,°’M =’ I3 /,&
/,1X,5X ’CDEFFICIENT MATRIX’)
FORMAT(1X,6X,4(’(’ ,F8.4,7,7 ,F8.4,)°))

FDRMAT(/,lX,EX,’CDNSTANT VECTORS’)

FORMAT(/,1X,1X, > **

OUTPUT

*%7,/)

FORMAT(1X,5X, >IERR (’,A6,’) =’,I5)
FORMAT(/,1X,5X, *SOLUTION’)

END

(d) Output results

k% k

*x

*x

ZBGNSM **x*

INPUT *x

N= 4

M= 4

COEFFICIENT MATRIX
(4.0000, 2.0000)(3.0000, 9.0000)(
(6.0000, 7.0000)(0.0000, 4.0000)(
(9.0000, 3.0000)(6.0000, 2.0000)(
(1.0000, 5.0000)(7.0000, 9.0000)(

CONSTANT VECTORS
(1.0000, 0.0000)(0.0000, 0.0000)¢(
(0.0000, 0.0000)(1.0000, 0.0000)(
(0.0000, 0.0000)(0.0000, 0.0000)(
(0.0000, 0.0000)(0.0000, 0.0000)(

OUTPUT **

IERR (ZBGNSM) = 0

SOLUTION
(0.0133, -0.0730)(0.1814, -0.2467)(
(-0.0178, -0.0189) (-0. 0680, -0.0696) (
(-0.0353, 0.1382)(-0.0585, 0.1700) (
(0.0494, -0.0686)(-0.0096, 0.1300)(

WO

-0.
-0.
.1333,
.0885,

78

OoOr OO

1840,
0128,

O~

[eXeleole]

.0000) (
.0000) (
.0000) (
.0000) (

.0000) (
.0000) (
.0000) (
.0000) (

.1782) (-

0.1001) (

-0.
-0.

2410)(

0709) (-

N 0O N~

ROOO

0
0.
0.
0

SO

[eXeleoleo]

, -0.

-0.
.0191)
.0662)

.0000)
.0000)
.0000)
.0000)

.0000)
.0000)
.0000)
.0000)

0560)
0657)

ZBGNSL, CBGNSL
Simultaneous Linear Equations (Complex Matrix)

2.4.2 ZBGNSL, CBGNSL
Simultaneous Linear Equations (Complex Matrix)
(1) Function

ZBGNSL or CBGNSL uses the Gauss method or the Crout method to solve the simultaneous linear equations
Az = b having the complex matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage
Double precision:
CALL ZBGNSL (A, LNA, N, B, IPVT, IERR)
Single precision:
CALL CBGNSL (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA, N Input | Coefficient matrix
{C} (complex matrix, two-dimensional array type)
Output | Upper triangular matrix U and lower triangular
matrix L when A is decomposed into A = LU
(See Notes (b) and (c))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B 7 N Input | Constant vector b
{C} Output | Solution x
5 IPVT I N Output | Pivoting information
IPVT(i): Number of the row exchanged with
row i in the i-th processing step. (See Note (b))
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

79

ZBGNSL, CBGNSL
Simultaneous Linear Equations (Complex Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) «+ B(1)/A(1,1) is performed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ The pivot became 0.0 in the i-th process-
ing step of the LU decomposition of coef-
ficient matrix A.
A is nearly singular.
(6) Notes

(a)

To solve multiple sets of simultaneous linear equations where only the constant vector b differs, the

ZBGNSM
solution is obtained more efficiently by directly using the subroutine 2.4.1 GRS to perform
CBGNSM
ZBGNSM
the calculations. However, when 2.4.1 G cannot be used such as when all of the right-
CBGNSM

hand side vectors b are not known in advance, call this subroutine only once and then call subroutine

ZBGNLS
2.4.5 { the required number of times varying only the contents of B. This enables you to

CBGNLS
eliminate unnecessary calculation by performing the LU decomposition of matrix A only once.

This subroutine performs partial pivoting when obtaining the LU decomposition of coefficient matrix
A. Tf the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i). In addition, among the
column elements corresponding to row i and row j of matrix A, elements from column 1 to column n
actually are exchanged at this time.

The unit lower triangular matrix L is stored in the lower triangular portion of array A with a minus sign
added to each element, and the upper triangular matrix U is stored in the upper triangular portion.
However, since the diagonal components of L always are 1.0, they are not stored in array A. Also,

reciprocals are stored for the diagonal components of U. (See Figure 2—2 in Section 2.2.2).

(7) Example

(a)

(b)

Problem
Solve the following simultaneous linear equations.
5+8 T74+i 6+3i 1+2¢ 1 3+ 20¢
144 9450 4+ 5 z2 | | —6+71
4i 3+3i 442 6+09 3 | —6i
7T+ 81 6 7+6¢ 10+ 44 Ty 13:
Input data

Coefficient matrix A, LNA = 11,N = 4 and constant vector b.

80

ZBGNSL, CBGNSL

Simultaneous Linear Equations (Complex Matrix)

(¢) Main program

10

20

30

!
1000

1100
1200
1300
1400
1500
1600
1700
1800

PROGRAM ABGNSL

*xx EXAMPLE OF ZBGNLC,ZBGNLS **x*

IMPLICIT REAL(8) (A-H,0-2)

PARAMETER (LNA = 11,LNW = 22)
COMPLEX(8) A(LNA,LNA),B(LNA),W1(LNW)
DIMENSION IPVT(LNA)

READ (5,%) N
WRITE (6,1000) N

DO 10 I =1

>

N
READ (5,%) (A(I,J),J=1,N)
WRITE (6,1100) (A(I,J),J=1,N)

CONTINUE

READ (5,%) (B(I),I=1,N)
WRITE (6,1200)

DO 20 I =

=1, N
WRITE (6,1300) B(I)

CONTINUE

WRITE (6,1400)
CALL ZBGNLC (A,LNA,N,IPVT,COND,W1,IERR)
WRITE (6,1500) ’ZBGNLC’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0DO/COND

CALL ZBGNLS (A,LNA,N,B,IPVT,KERR)

WRITE (6,1500) ’ZBGNLS’,KERR
WRITE (6,1600) COND
WRITE (6,1700)

DO30I=1, N
WRITE (6,1800) I,B(I)
CONTINUE
STOP
FORMAT (> °,/,/,’ *** ZBGNLC,ZBGNLS **x’ &
/,2X,’ %% INPUT *x’,&
/,6X,’N =’ ,13,&
/,6X,’COEFFICIENT MATRIX (REAL, IMAGINARY)’)
FORMAT (6X,4(’ (’,F5.1,° ,’,F5.1,’)?))
FORMAT (6X,’CONSTANT VECTOR (REAL, IMAGINARY)?’)
FORMAT (6X, ’> (’°,F5.1,’ ,’,F5.1,”)?)
FORMAT (2X,’#*x QUTPUT *x*’)

FORMAT (6X,’IERR (’,A6,’) =,I5)
FORMAT (6X,’CONDITION NUMBER =’,D18.10)
FORMAT (6X,’SOLUTION (REAL, IMAGINARY)’)

FORMAT (6X,’

END

(d) Output results

k% k
*x

*x

ZBGNLC,ZBGNLS *%**
*

INPUT *

I
(, 8.0 7.0 , 1.0
(1.0, 1.0 9.0 , 5.0
(0.0, 4.0) (3.0, 3.0
(7.0. 80))(6.0, 0.0
CONSTANT VECTOR (REAL, IMAGINARY)
(3.0, 20.0)
(-6.0 , 7.0)
(0.0, -6.0)
(0.0, 13.0)
OUTPUT %%
IERR (ZBGNLC)

IERR_(ZBGNLS)
CONDITION NUMBER =

SDLUTION)(REAL, IMAGINARY)
X(1

0.1000000000D+01
(-0.1665334537D-15
(0.1000000000D+01
(-0.1000000000D+01

>
>
>
>

X(>,12,’) = (*,D18.10,’ ,>,D18.10,

DN =W
[eXeoleole)
(AN

~AAA

0.5807863993D+01

0.1000000000D+01
0.1000000000D+01
-0.2775557562D-15
-0.1000000000D+01

81

>

e

)
)
)
)

OO UT-

)7)

[eXoleole)

»OON

[eleleole]
(2NN

ZBGNLU, CBGNLU
LU Decomposition of a Complex Matrix

2.4.3 ZBGNLU, CBGNLU
LU Decomposition of a Complex Matrix
(1) Function
ZBGNLU or CBGNLU uses the Gauss method or the Crout method to perform an LU decomposition of

the complex matrix A (two-dimensional array type).

(2) Usage
Double precision:
CALL ZBGNLU (A, LNA, N, IPVT, IERR)
Single precision:
CALL CBGNLU (A, LNA, N, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA, N Input | Complex matrix A (two-dimensional array
{c } type)
Output | Upper triangular matrix U and lower triangular
matrix L when A is decomposed into A = LU.
(See Notes (a) and (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 IPVT I N Output | Pivoting information
IPVT(i): Number of the row exchanged with
row i in the i-th processing step. (See Note (b))
5 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

82

ZBGNLU, CBGNLU
LU Decomposition of a Complex Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The contents of array A are unchanged.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ The pivot became 0.0 in the i-th process-
ing step.
A is nearly singular.
(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with a minus sign

added to each element, and the upper triangular matrix U is stored in the upper triangular portion.

However, since the diagonal components of L always are 1.0, they are not stored in array A. Also,

reciprocals are stored for the diagonal components of U. (See Fig. 2—2 in Section 2.2.2.)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by

subsequent subroutines. If the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i).

In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.

83

ZBGNLC, CBGNLC
LU Decomposition and Condition Number of a Complex Matrix

2.4.4 ZBGNLC, CBGNLC
LU Decomposition and Condition Number of a Complex Matrix

(1) Function

ZBGNLC or CBGNLC uses the Gauss method or the Crout method to perform an LU decomposition and

obtain the condition number of the complex matrix A (two-dimensional array type).

(2) Usage

Double precision:
CALL ZBGNLC (A, LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL CBGNLC (A, LNA, N, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

| INTEGER(4) as for 32bit Integer
" | INTEGER(8) as for 64bit Integer

Input
No. | Argument | Type Size nput/ Contents
Output
1 A 7 LNA, N Input | Complex matrix (two-dimensional array type)
C Output | Upper triangular matrix U and lower triangular
matrix L when A is decomposed into A = LU
(See Notes (a) and (b))
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 IPVT I N Output | Pivoting information
IPVT(i): Number of the row exchanged with
row i in the i-th processing step. (See Note (b))
5 COND D 1 Output | Reciprocal of the condition number
R
6 W1 7 N Work | Work area
C
7 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

84

ZBGNLC, CBGNLC
LU Decomposition and Condition Number of a Complex Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The contents of array A are unchanged.
COND < 1.0 is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ The pivot became 0.0 in the i-th process- | Processing is aborted. The condition
ing step. number is not obtained.

A is nearly singular.

(6) Notes

(a) The unit lower triangular matrix L is stored in the lower triangular portion of array A with a minus sign
added to each element, and the upper triangular matrix U is stored in the upper triangular portion.
However, since the diagonal components of L always are 1.0, they are not stored in array A. Also,
reciprocals are stored for the diagonal components of U. (See Fig. 2—2 in Section 2.2.2.)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by
subsequent subroutines. If the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i).
In addition, among the column elements corresponding to row i and row j of matrix A, elements from

column 1 to column n actually are exchanged at this time.

(c) Although the condition number is defined by ||A|| - ||[A™!||, an approximate value is obtained by this

subroutine.

85

ZBGNLS, CBGNLS

Simultaneous Linear Equations (LU-Decomposed Complex Matrix)

2.4.5 ZBGNLS, CBGNLS

Simultaneous Linear Equations (LU-Decomposed Complex Matrix)

(1) Function

ZBGNLS or CBGNLS solves the simultaneous linear equations LUx = b having the complex matrix A

(two-dimensional array type) which has been LU decomposed by the Gauss method or the Crout method

as coefficient matrix.

(2) Usage
Double precision:
CALL ZBGNLS (A, LNA, N, B, IPVT, IERR)
Single precision:
CALL CBGNLS (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex

| INTEGER(4) as for 32bit Integer
INTEGER(8) as for 64bit Integer

Input
No. | Argument | Type Size nput/ Contents
Output
1 A 7 LNA, N Input | Coefficient matrix after LU decomposition
C (complex matrix, two-dimensional array type)
(See Notes (a) and (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B 7 N Input | Constant vector b
C Output | Solution x
5 IPVT I N Output | Pivoting information
IPVT(i): Number of the row exchanged with
row i in the i-th processing step. (See Note (c))
6 IERR I 1 Output | Error indicator
(4) Restrictions
(a) 0 <N < LNA
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) + B(1)/A(1,1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.

86

ZBGNLS, CBGNLS
Simultaneous Linear Equations (LU-Decomposed Complex Matrix)

(6) Notes

(a)

The coefficient matrix A must be LU decomposed before using the ZBGNLS or CBGNLS subroutine.
ZBGNLU

subroutine. However, if
CBGNLU

Normally, you should decompose matrix A by calling the 2.4.3 {

ZBGNLC
you also want to obtain the condition number, you should use 2.4.4 G . In addition, if you
CBGNLC
ZBGNSL
have already used 2.4.2 CBgNSL to solve simultaneous linear equations having the same coefficient

matrix A, you can use the LU decomposition obtained as part of its output. To solve multiple sets of

simultaneous linear equations where only the constant vector b differs, the solution is obtained more
ZBGNMS

efficiently by directly using the subroutine 2.4.6
CBGNMS

} to perform the calculations.

The unit lower triangular matrix L is stored in the lower triangular portions of array A with a minus
sign added to each element, and the unit upper triangular matrix U is stored in the upper triangular
portion. However, since the diagonal components of U always are 1.0, they are not stored in array A.

Also, reciprocals must be stored for the diagonal components of U. (See Fig. 2—2 in Section 2.2.2.)

Information about partial pivoting performed during LU decomposition must be stored in IPVT. This
N
ZBGNLU}, 244 {ZBG LC}7 2o {ZBGNSL

CBGNLU CBGNLC CBGNSL
which perform LU decomposition of matrix A.

information is given by the 2.4.3 } subroutines

87

ZBGNMS, CBGNMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix)

2.4.6 ZBGNMS, CBGNMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-
Decomposed Complex Matrix)

(1) Function
ZBGMSM or CBGNMS uses Gauss’ method to solve the simultaneous linear equations Ax; = b;(i =

1,2,---,m) having complex matrix A (two-dimensional array type) as coefficient matrix. That is, when the
n X m matrix B is defined by B = [by, ba, - -, bsy], the subroutine obtains [z1,x2, -, Tm] = A~ B.
(2) Usage

Double precision:

CALL ZBGNMS (A, LNA, N, B, LNB, M, IPVT, IERR)
Single precision:

CALL CBGNMS (A, LNA, N, B, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA N Input | Coefficient matrix after LU decomposition
{C} (complex matrix, two-dimensional array type)
(See Notes (a) and (b))
LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 B 7 LNB,M Input | Constant vector b
{C} Output | Solution «
5 LNB I 1 Input | Adjustable dimension of array B
M I 1 Input | Order of matrix B
7 IPVT I N Input | Pivoting information
IPVT(i): Number of the row exchanged with
row i in the i-th processing step. (See Note (c))
8 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA,LNB
(b) M >0
(c) 0 <IPVT(H) <N (i=1,...,N)

88

ZBGNMS, CBGNMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1 B(1,i)« B(1,i))/A(1,1) (¢ =1,2,---M) is
performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

3020 Restriction (c) was not satisfied.

(6) Notes

()

The coefficient matrix A must be LU decomposed before using the ZBGNLS or CBGNLS subroutine.
ZBGNLU

Normally, you should decompose matrix A by calling the 2.4.3
CBGNLU

} subroutine. However, if

ZBGNLC
you also want to obtain the condition number, you should use 2.4.4 . In addition, if you
CBGNLC
ZBGNSL
have already used 2.4.2 CBGNSL to solve simultaneous linear equations having the same coefficient

matrix A, you can use the LU decomposition obtained as part of its output.

The unit lower triangular matrix L is stored in the lower triangular portions of array A with a minus
sign added to each element, and the unit upper triangular matrix U is stored in the upper triangular
portion. However, since the diagonal components of U always are 1.0, they are not stored in array A.

Also, reciprocals must be stored for the diagonal components of U. (See Fig. 2—2 in Section 2.2.2.)

Information about partial pivoting performed during LU decomposition must be stored in IPVT. This
ZBGNLU} {ZBGNLC} {ZBGN$J

CBGNLU CBGNLC CBGNSL
which perform LU decomposition of matrix A.

information is given by the 2.4.3 { } subroutines

(7) Example

(a)

(b)

ProblemSolve the following simultaneous linear equations.

4421 3+ 447 T+ T11 Ti2 T1.3 T14 1 0 0 O

6+ 71 4i 4+7T7i 2+ 51 Ta1 T22 T23 X24 . 01 0 0

9 + 3t 6 + 2t 9 + 5 8 + 51 r3,1 X32 I33 T34 00 1 0

1 + 5Z 7 + 92 3 + 5Z 2 + 43 I4’1 174_’2 174_’3 I4’4 O 0 O 1
Input data

Coefficient matrix A, constant vectors by, ba, bz and by are stored, LNA=11, LNB=11, N=4 and

M=4.

89

ZBGNMS, CBGNMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix)

(¢) Main program

PROGRAM ABGNMS
| #x* EXAMPLE OF ZBGNMS
IMPLICIT NONE
INTEGER LNA,LNB,LMB
PARAMETER(LNA = 11, LNB = 11, LMB = 5)
INTEGER N,M,IPVT(LNA),IERR
INTEGER I,J
COMPLEX(8) A(LNA,LNA),B(LNB,LMB)

DATA (A(l J1),J=1,4)&

/ (4.0D0,2 ODO) (3 0D0,9.0D0) , (4.0D0,1.0D0), (7.0D0,9.0D0) /
DATA (A(2 J) J=1,4)&

/ (6.0D0,7 ODO) (O 0D0,4.0D0) , (4.0D0,7.0D0), (2.0D0,5.0D0) /
DATA (A(3 J) J=1,4)&

/ (9.0D0,3 ODO) (6 0D0,2.0D0), (9.0D0,5.0D0) , (8.0D0,5.0D0) /
DATA (A(4 J) J=1,4)%

/ (1.0D0,5 ODO) (7. 0D0,9.0D0), (3.0D0,5.0D0) , (2.0D0,4.0D0) /

==
]
IN'N

DO 100 J=1,M
DO 101 I=1,N
B(I,J) = (0.0DO,0.0D0)
101 CONTINUE
100 CONTINUE
DO 110 I=1,N
B(I,I) = (1.0D0,0.0DO0)
110 CONTINUE

WRITE(6,6000) N, M
D0 120 I = 1, N
WRITE(6,6010) (A(I,J),J=1,N)
120 CONTINUE
WRITE(6,6020)
DO 130 I = 1,
WRITE(6, 6010) (B(1,J),J=1,M)
130 CONTINUE

WRITE(6,6030)
CALL ZBGNLU(A,LNA,N,IPVT,IERR)
IF(IERR .GE. 3000) THEN
WRITE(6,6040) IERR
STOP

ENDIF
CALL ZBGNMS(A,LNA,N,B,LNB,M,IPVT,IERR)
WRITE(6,6050) IERR
IF(IERR .GE. 3000) STOP
WRITE(6,6060)
DO 140 I = 1,
WRITE(S, 6010) (B(1,J),J=1,M)
140 CONTINUE
STOP

6000 FORMAT(/,&
1%, 7%%% ZBGNMS ***’,;,/,&

1X,> *x INPUT **2, /. /&

1X.? N 13,/,&

1X,° =2,13,/,/,&

X, CDEFFICIENT MATRIX (REAL, IMAGINARY)’)
6010 FORMAT(1X,’ ’,4C (°,F7.4,,,F7.4,)7))

6020 FDRMAT(/ &
6030 FDRMAT(/ &

CONSTANT VECTORS (REAL, IMAGINARY)’)
*% QUTPUT *x’,/)

6040 FDRMAT(iX” TERR(ZBGNLU) =’,I5)

6050 FORMAT(1X,’ IERR =’,15,/)

6060 FORMAT(1X,’ SOLUTION (REAL, IMAGINARY)’)
END

(d) Output results

*%k*k ZBGNMS k%%
**x INPUT *x*

N= 4

M= 4

COEFFICIENT MATRIX (REAL, IMAGINARY)
(4.0000, 2.0000) (3.0000, 9.0000) (4.0000, 1.0000) (7.0000, 9.0000)
(6.0000, 7.0000) (0.0000, 4.0000) (4.0000, 7.0000) (2.0000, 5.0000)
(9.0000, 3.0000) (6.0000, 2.0000) (9.0000, 5.0000) (8.0000, 5.0000)
(1.0000, 5.0000) (7.0000, 9.0000) (3.0000, 5.0000) (2.0000, 4.0000)

CONSTANT VECTORS (REAL, IMAGINARY)
(1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 0.0000)

** QUTPUT *x*

90

ZBGNMS, CBGNMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix)

IERR = 0
SOLUTION (REAL, IMAGINARY)

(0.0133,-0.0730) (0.1814,-0.2467) (-0.1840, 0.1782) (-0.1039,-0.0560)
(-0.0178,-0.0189) (-0.0680,-0.0696) (-0.0128, 0.1001) (0.0415,-0.0657)
(-0.0353, 0.1382) (-0.0585, 0.1700) (0.1333,-0.2410) (0.1314, 0.0191)
(0.0494,-0.0686) (-0.0096, 0.1300) (0.0885,-0.0709) (-0.0462, 0.0662)

91

ZBGNDI, CBGNDI
Determinant and Inverse Matrix of a Complex Matrix

2.4.7 ZBGNDI, CBGNDI
Determinant and Inverse Matrix of a Complex Matrix

(1) Function

ZBGNDI or CBGNDI obtains the determinant and inverse matrix of the complex matrix A (two-dimensional

array type) which has been LU decomposed by the Gauss method or the Crout method.

(2) Usage

Double precision:
CALL ZBGNDI (A, LNA, N, IPVT, CDET, DET, ISW, W1, IERR)
Single precision:
CALL CBGNDI (A, LNA, N, IPVT, CDET, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

| INTEGER(4) as for 32bit Integer
" | INTEGER(8) as for 64bit Integer

Input
No. | Argument | Type Size nput/ Contents
Output
1 A 7 LNA, N Input | Complex matrix A (two-dimensional array
C type) after LU decomposition (See Notes (a)
and (b))
Output | Inverse matrix of matrix A
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 IPVT I N Input | Pivoting information
IPVT(i): Number of the row exchanged with
row i in the i-th processing step of the LU de-
composition. (See Note (c))
5 CDET 7 1 Output | Determinant of matrix A (See Note (d))
C
6 DET D 1 Output | Determinant of matrix A (See Note (d))
R
7 ISW I 1 Input | Processing switch
ISW > 0: Obtain determinant.
ISW = 0: Obtain determinant and inverse ma-
trix.
ISW < 0: Obtain inverse matrix.
8 W1 7 N Work | Work area
C
9 IERR I 1 Output | Error indicator

92

ZBGNDI, CBGNDI
Determinant and Inverse Matrix of a Complex Matrix

(4) Restrictions

(a)

0 < N < LNA

(5) Error indicator

TERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. CDET «+ A(1,1)

DET <« 0.0 (See Note (d)) and
A(1,1) + 1.0/A(1,1) are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a)

The coefficient matrix A must be LU decomposed before using the ZBGNDI or CBGNDI subroutine.
ZBGNLU } { ZBGNLC } { ZBGNSL

Use any of the subroutines 2.4.3
CBGNLU CBGNLC CBGNSL

} to perform the

decomposition.

The unit lower triangular matrix L must be stored in the lower triangular portion of array A with
the sign changed, and the upper triangular matrix U must be stored in the upper triangular portion.
However, since the diagonal components of matrix L always are 1.0, they should not be stored in array
A. In addition, the reciprocals of the diagonal components of U must be stored. (See 2.2.2 Figure
2-2).

Information about partial pivoting performed during LU decomposition must be stored in IPVT. This
ZBGNL ZBGNLC ZBGNSL

] B0V, (50

CBGNLU CBGNLC CBGNSL
which perform LU decomposition of matrix A.

information is given by the 2.4.3 { } subroutines

The determinant is given by the following expression:
det(A) = CDET x 10PFT

Scaling is performed at this time so that:
1.0 < |R{CDET}| + |[3{CDET}| < 10.0

where, the notation ® and & mean that the real and imaginary parts of the complex number are to be

taken, respectively.

The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A~'b or A™!B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

93

ZBGNLX, CBGNLX
Improving the Solution of Simultaneous Linear Equations (Complex Matrix)

2.4.8 ZBGNLX, CBGNLX
Improving the Solution of Simultaneous Linear Equations (Complex Matrix)
(1) Function

ZBGNLX or CBGNLX uses an iterative method to improve the solution of the simultaneous linear equations

Az = b having the complex matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage
Double precision:
CALL ZBGNLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)
Single precision:
CALL CBGNLX (A, LNA, N, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex) INTEGER(4) as for 32bit Integer
R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A 7 LNA, N Input | Coefficient matrix A
C (complex matrix, two-dimensional array type)
2 LNA I 1 Input | Adjustable dimension of arrays A and ALU
N I 1 Input | Order of matrix A
4 ALU 7 LNA N Input | Coefficient matrix A after LU decomposition
C (See Note (a))
5 B 7 N Input | Constant vector b
C
6 X 7 N Input | Approximate solution
C Output | Iteratively improved solution x
7 ITOL I 1 Input | Approximate number of digits to which solution
was improved (See Note (d))
Output | Approximate number of digits to which solution
was improved. (See Note (c))
8 NIT I 1 Input | Maximum number of iterations (See Note (d))
9 IPVT I N Input | Pivoting information (See Note (a))
10 W1 7 N Work | Work area
C
11 IERR I 1 Output | Error indicator

94

ZBGNLX, CBGNLX
Improving the Solution of Simultaneous Linear Equations (Complex Matrix)

(4) Restrictions

(a)

0 < N < LNA

(5) Error indicator

TERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The solution is not improved.
3000 Restriction (a) was not satisfied. Processing is aborted.
5000 The solution did not converge within the | Processing is aborted after calculating the
maximum number of iterations. ITOL output value.
6000 The solution could not be improved.
(6) Notes

()

(©)

(d)

CBGNSL CBGNLS
ZBGNSL
GNS }, 243

N N
This subroutine improves the solution obtained by the 2.4.2 {ZBG SL} or 2.4.5 {ZBG LS} sub-

routine. Therefore, the coefficient matrix A after being decomposed by 2.4.2
CBGNSL

ZBGNL ZBGNL
v , or 2.4.4 GNLC subroutine and the pivoting information at that time must be
CBGNLU CBGNLC

given as input.

Solution improvement is repeated until the high-order ITOL digits of the solution do not change.
However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.
ITOL <0
or
ITOL > — LOGI10 (2 x €) (e : Unit for determining error)

If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

95

2.5 POSITIVE SYMMETRIC MATRIX (TWO-DIMENSIONAL AR-
RAY TYPE) (UPPER TRIANGULAR TYPE)

2.5.1 DBPDSL, RBPDSL
Simultaneous Linear Equations (Positive Symmetric Matrix)

(1) Function
DBPDSL or RBPDSL uses the Cholesky method to solve the simultaneous linear equations Az = b having

the positive symmetric matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage
Double precision:
CALL DBPDSL (A, LNA, N, B, IERR)
Single precision:
CALL RBPDSL (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A (positive symmetric ma-
{ R} trix, two-dimensional array type, upper trian-
gular type)
Output | Upper triangular matrix LT when A is decom-
posed into A = LLT (See Note (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
{R} Output | Solution «
5 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

96

DBPDSL, RBPDSL

Simultaneous Linear Equations (Positive Symmetric Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1 A(1,1) < /A(1,1) and
B(1) «+ B(1)/A(1,1)
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LLT decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became less than or
equal to 0.0 in the ¢-th processing step.
A is nearly singular.
(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, call

this subroutine only once and then call subroutine 2.5.4 {

DBPDLS
RBPDLS

} required number of times varying

only the contents of B. This enables you to eliminate unnecessary calculations by performing the LLT

decomposition of matrix A only once.

(b) The upper triangular matrix LT is stored in the upper triangular portion of array A. Since the lower

triangular matrix L is calculated from L7, it is not stored in array A. this subroutine uses only the

upper triangular portion of array A.

97

DBPDSL, RBPDSL
Simultaneous Linear Equations (Positive Symmetric Matrix)

Matrix LT
lin la 31 l5,1
0.0 l22 32 ls,2
0.0 0.0 I33 l5,3
0.0 0.0 0.0 ls5
4
Storage status within array A(LNA, K)
lin log 31 l5,1
x lao 3o ls,2
* * l3,3 l5,3
LNA '
* * * 55
- N — - —
- —— K-—————— —

Remarks
a. LNA > N and N < K must hold.

b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2—5 Storage status of Matrix L7
(7) Example

(a) Problem

Solve the following simultaneous linear equations.

5 7 6 5 1 23
7 10 8 7 x| | 32
6 8 10 9 z3 | | 33
5 7 9 10 4 31

(b) Input data
Coefficient matrix A, LNA = 11, N = 4, and constant vector b.
(¢) Main program

PROGRAM BBPDSL

EXAMPLE OF DBPDSL **x*
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA)

READ (5,*) N
WRITE (6,1000) N
DO 10 I =1, N

READ (5,%) (A(I,J),J=I,N)

WRITE (6,1100) (A(J,I),J=1,I-1),(A(I,T),J=I,N)
CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBPDSL (A,LNA,N,B,IERR)
WRITE (6,1400) °DBPDSL’,IERR
IF (IERR .GE. 3000) STOP
gRéTE (6,1500) (I,B(I),I=1,N)
TOP

1ok

10

1000

1100

FORMAT(C’ °,/,/,&
> **x DBPDSL
2X,’*x INPUT
6X,°N =,13,/,&

*xx2 /&
*x2 /&

6X,) COEFFICIENT MATRIX’)

FORMAT(7X,10(G11.4))

98

DBPDSL, RBPDSL
Simultaneous Linear Equations (Positive Symmetric Matrix)

1200 FORMAT(6X,’CONSTANT VECTOR’,/, (7X,F10.4))

1300 FORMAT(2X, %% OUTPUT #**’)

1400 FORMAT(6X,’IERR (’,A6,’) =7,I5)

1500 FORMAT(6X,’SOLUTION’,/,(8X, X(’>,I2,’) =’,D18.10))
END

(d) Output results

k%% DBPDSL *k*x*
*% INPUT *x*

N= 4
COEFFICIENT MATRIX

5.000 7.000 6.000 5.000
7.000 10.00 8.000 7.000
6.000 8.000 10.00 9.000
5.000 7.000 9.000 10.00
CONSTANT VECTOR
23.0000
32.0000
33.0000
31.0000
*x QUTPUT _ *x*
IERR (DBPDSL) = 0
SOLUTION
X(1) = 0.1000000000D+01
X(2) = 0.1000000000D+01
X(3) = 0.1000000000D+01
X(4) = 0.1000000000D+01

99

DBPDUU, RBPDUU

LL"Y Decomposition of a Positive Symmetric Matrix

2.5.2 DBPDUU, RBPDUU

LLT Decomposition of a Positive Symmetric Matrix

(1) Function

DBPDUU or RBPDUU uses the Cholesky method to perform an LL” decomposition of the positive sym-

metric matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:

CALL DBPDUU (A, LNA, N, IERR)

Single precision:

CALL RBPDUU (A, LNA, N, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

_ { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA, N Input | Positive symmetric matrix A
{R} (two-dimensional array type) (upper triangular
type)
Output | Upper triangular matrix L™ when A is decom-
posed into A = LLT (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

100

DBPDUU, RBPDUU

LL™ Decomposition of a Positive Symmetric Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. A(1,1) < /A(1,1) is performed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LLT decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became less than or
equal to 0.0 in the i-th processing step.
A is nearly singular.
(6) Notes

(a) The upper triangular matrix L7 is stored in the upper triangular portion of array A. Since the lower

triangular matrix L is calculated from L7, it is not stored in array A. This subroutine uses only the

upper triangular portion of array A. (See Section 2.5.1, Figure 2—5)

101

DBPDUC, RBPDUC
LL"Y Decomposition and Condition Number of a Positive Symmetric Matrix

2.5.3 DBPDUC, RBPDUC
LLT Decomposition and Condition Number of a Positive Symmetric Matrix
(1) Function
DBPDUC or RBPDUC uses the Cholesky method to perform an LL” decomposition and obtain the con-

dition number of the positive symmetric matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:
CALL DBPDUC (A, LNA, N, COND, W1, IERR)
Single precision:
CALL RBPDUC (A, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA, N Input | Positive symmetric matrix A
R (two-dimensional array type) (upper triangular
type)
Output | Upper triangular matrix L™ when A is decom-
posed into A = LLT (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 COND D 1 Output | Reciprocal of the condition number
R
5 W1 D N Work | Work area
R
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

102

DBPDUC, RBPDUC

LL™ Decomposition and Condition Number of a Positive Symmetric Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. A(1,1) « +/A(1,1) and
COND < 1.0 are performed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LLT decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became less than or | Processing is aborted.
equal to 0.0 in the ¢-th processing step. The condition number is not obtained.
A is nearly singular.
(6) Notes

(a) The upper triangular matrix LT is stored in the upper triangular portion of array A. Since the lower

triangular matrix L is calculated from LT, it is not stored in array A. This subroutine uses only the

upper triangular portion of array A. (See Section 2.5.1, Figure 2—5).

(b) Although the condition number is defined by || Al - |A™!||, an approximate value is obtained by this

subroutine.

103

DBPDLS, RBPDLS
Simultaneous Linear Equations (LLT-Decomposed Positive Symmetric Matrix)

2.5.4 DBPDLS, RBPDLS
Simultaneous Linear Equations (LL'-Decomposed Positive Symmetric Ma-
trix)
(1) Function
DBPDLS or RBPDLS solves the simultaneous linear equations LL”« = b having the positive symmetric

matrix A (two-dimensional array type) (upper triangular type) which has been LL” decomposed by the
Cholesky method as coefficient matrix.

(2) Usage
Double precision:
CALL DBPDLS (A, LNA, N, B, IERR)
Single precision:
CALL RBPDLS (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex) INTEGER(4) as for 32bit Integer
R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A after LLT decomposition
R (positive symmetric matrix, two-dimensional
array type, upper triangular type) (See Notes
(a) and (b))
LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
R Output | Solution «
5 IERR I 1 Output | Error indicator
(4) Restrictions
(a) 0 < N<LNA
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) + B(1)/A(1,1)? is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.

104

DBPDLS, RBPDLS
Simultaneous Linear Equations (LLT-Decomposed Positive Symmetric Matrix)

(6) Notes

(a) The coefficient matrix A must be LLT decomposed before using this subroutine. Normally, you should
DBPDUU

decompose matrix A by calling the 2.5.2
RBPDUU

} subroutine. However, if you also want to obtain

DBPDUC

the condition number, you should use 2.5.3
RBPDUC

}. In addition, if you have already used 2.5.1

RBPDSL
the LLT decomposition obtained as part of its output.

DBPDSL
to solve simultaneous linear equations having the same coefficient matrix A, you can use

(b) The upper triangular matrix L? must be stored in the upper triangular portion of array A. Since the
lower triangular matrix L is calculated from L7, it need not be stored in array A. This subroutine uses

only the upper triangular portion of array A. (See Section 2.5.1, Figure 2—5).

105

DBPDDI, RBPDDI
Determinant and Inverse Matrix of a Positive Symmetric Matrix

2.5.5 DBPDDI, RBPDDI

Determinant and Inverse Matrix of a Positive Symmetric Matrix

(1) Function

DBPDDI or RBPDDI obtains the determinant and inverse matrix of the positive symmetric matrix A
(two-dimensional array type) (upper triangular type) which has been LLT decomposed by the Cholesky

method.

(2) Usage

Double precision:
CALL DBPDDI (A, LNA, N, DET, ISW, IERR)
Single precision:
CALL RBPDDI (A, LNA, N, DET, ISW, IERR)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

| INTEGER(4) as for 32bit Integer
INTEGER(8) as for 64bit Integer

No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA, N Input | Positive symmetric matrix A
{R} (two-dimensional array type) (upper triangular
type) after LLT decomposition (See Notes (a)
and (b))
Output | Inverse matrix of matrix A (See Note (b))
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 DET D 2 Output | Determinant of matrix A (See Note (c))
i
5 ISW I 1 Input | Processing switch
ISW > 0: Obtain determinant.
ISW = 0: Obtain determinant and inverse ma-
trix.
ISW < 0: Obtain inverse matrix.
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

106

DBPDDI, RBPDDI
Determinant and Inverse Matrix of a Positive Symmetric Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1 DET(1) «+ A(1,1)2
DET(2) «+ 1.0
A(1,1) + 1.0/A(1,1)?
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes

(a)

(b)

The coefficient matrix A must be LL? decomposed before using this subroutine. Use any of the 2.5.2

DBPDUU DBPDUC DBPDSL) ..
,253 ,25.1 subroutines to perform the decomposition.
RBPDUU RBPDUC RBPDSL

The upper triangular matrix LT must be stored in the upper triangular portion of array A. Since
the lower triangular matrix L is calculated from L7, it need not be stored in array A. Since the
inverse matrix A~! is a symmetric matrix, only its upper triangular portion is stored in array A. This

subroutine uses only the upper triangular portion of array A. (See Section 2.5.1, Figure 2—5).

The determinant is given by the following expression:
det(4) = DET(1) x 10P¥T®

Scaling is performed at this time so that:
1.0 < [DET(1)| < 10.0

The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A~'b or A™!B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

107

DBPDLX, RBPDLX
Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Matrix)

2.5.6 DBPDLX, RBPDLX
Improving the Solution of Simultaneous Linear Equations (Positive Symmet-
ric Matrix)
(1) Function
DBPDLX or RBPDLX uses an iterative method to improve the solution of the simultaneous linear equations

Az = b having the positive symmetric matrix A (two-dimensional array type) (upper triangular type) as

coefficient matrix.

(2) Usage
Double precision:
CALL DBPDLX (A, LNA, N, ALL, B, X, ITOL, NIT, W1, IERR)
Single precision:
CALL RBPDLX (A, LNA, N, ALL, B, X, ITOL, NIT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A (positive symmetric ma-
R trix, two-dimensional array type, upper trian-
gular type)
LNA I 1 Input | Adjustable dimension of array A and ALL
3 N I 1 Input | Order of matrix A
4 ALL D LNA N Input | Coefficient matrix A after LLT decomposition
R (See Note (a))
5 B D N Input | Constant vector b
R
6 X D N Input | Approximate solution
R Output | Iteratively improved solution x
7 ITOL I 1 Input | Number of digits to which solution is to be im-
proved. (See Note (b))
Output | Approximate number of digits to which solution
was improved. (See Note (c))
8 NIT I 1 Input | Maximum number of iterations. (See Note (d))
9 W1 D N Work | Work area
R
10 IERR I 1 Output | Error indicator

108

DBPDLX, RBPDLX
Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Matrix)

(4) Restrictions
(a) 0 < N < LNA

(5) Error indicator

TERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The solution is not improved.
3000 Restriction (a) was not satisfied. Processing is aborted.
5000 The solution did not converge within the | Processing is aborted after calculating
maximum number of iterations. ITOL output value.
6000 The solution could not be improved.
(6) Notes
DBPDSL DBPDLS
(a) This subroutine improves the solution obtained by the 2.5.1 or 2.5.4 sub-
RBPDSL RBPDLS
DBPDSL
routine. Therefore, the coefficient matrix A after it has been decomposed 2.5.1 , 2.5.2
RBPDSL
DBPDUU DBPDUC .))
,or 2.5.3 subroutine must be given as input.
RBPDUU RBPDUC

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.
However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.
ITOL <0
or
ITOL > — LOG10 (2 x €) (e : Unit for determining error)

(¢) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to I'TOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

109

2.6 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY
TYPE) (UPPER TRIANGULAR TYPE)

2.6.1 DBSPSL, RBSPSL
Simultaneous Linear Equations (Real Symmetric Matrix)

(1) Function
DBSPSL or RBSPSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b
having the real symmetric matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage
Double precision:
CALL DBSPSL (A, LNA, N, B, IPVT, WK, IERR)
Single precision:
CALL RBSPSL (A, LNA, N, B, IPVT, WK, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A (real symmetric matrix,
{R} two-dimensional array type, upper triangular
type)
Output | Upper triangular matrix LT when A is decom-
posed into A = LDLT (See Note (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
{R} Output | Solution x
5 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (c))
6 WK D N Work | Work Area
)
7 IERR I 1 Output | Error indicator

110

DBSPSL, RBSPSL
Simultaneous Linear Equations (Real Symmetric Matrix)

(4) Restrictions
(a) 0 < N < LNA

(5) Error indicator

TERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) «+ B(1)/A(1,1) is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step of the LDLT
decomposition of coefficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call
DBSPLS
RBSPLS
calculations by performing the LDLT decomposition of matrix A only once.

this subroutine only once and then call subroutine 2.6.4 { } you to eliminate unnecessary

(b) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from LT, they are not stored in array A. The matrix L is the
transpose of matrix L7, and the matrix D is a diagonal matrix having the reciprocals of the diagonal
elements of matrix L7 as components.

This subroutine uses only the upper triangular portion of array A.

111

DBSPSL, RBSPSL
Simultaneous Linear Equations (Real Symmetric Matrix)

Remarks

Matrix LT Matrix D
i by 31 l51 1/lha 0.0 0.0 0.0
0.0 lon I3z 5.2 00 1/lbs 0.0 0.0
0.0 0.0 Iss 5.3 00 00 1/lss 0.0
0.0 00 0.0 - Iss 00 00 00 1/15.5
4
Storage status within array A(LNA, K)
lin log 31 l5,1
x lao 3o ls,2
* * l3,3 l5,3 N
LNA '
* * * 55
- N — - —
- —— K-——————

a.

b.

(c) This subroutine performs partial pivoting when obtaining the LDLT decomposition of coefficient matrix
A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)
in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

LNA > N and N < K must hold.

Input time values of elements indicated by asterisks (%) are not guaranteed.

Figure 2—6 Storage Status of Matrix LT and Contents of Matrix D

i to column(row) N actually are exchanged at this time.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

— =
Al
N = =

(b) Input data
Coefficient matrix A, LNA = 11, N = 4 and constant vector b.
(¢) Main program

I oskokok

10

PROGRAM BBSPSL

B~ N~

T 1
z2 | | -1
T3 N 4
Ty —4

EXAMPLE OF DBSPSL ##x*
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA),W1(LNA),IPVT(LNA)

READ (5,*) N
WRITE (8,1000)
DO 10 I = 1,

N
READ (5,%) (A(I,]),J=I,

N

N)
WRITE (6 1100) (A(J 1,J=1,1-1),(A(1,3),J=I,N)

CONTIN

READ (5,*) (B(I),
WRITE (6,1200) (B(I),I=1,N)

WRITE (6,1300)

I=1,N)

CALL DBSPSL (A,LNA,N,B,IPVT,W1,IERR)

112

DBSPSL, RBSPSL

Simultaneous Linear Equations (Real Symmetric Matrix)

!
1000

1100
1200
1300
1400
1500

WRITE (6,1400) ’DBSPSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1500) (I,B(I),I=1,N)
STOP

FORMAT(°,/,/,&

> s%% DBSPSL ***’,/ &

2X,’#* INPUT #*x’,/,&

6X,’N =2,13,/,&

6X, ’COEFFICIENT MATRIX’)
FORMAT(7X,10(G11.4))
FORMAT (6X, ’COEFFICIENT VECTOR’,/, (7X,F10.4))
FORMAT (2X,’** OUTPUT **’)
FORMAT(6X,’IERR (’,A6,’) =7,I5)
FORMAT (6X, > SOLUTION’,/, (8X,°X(*,12,’) =’,D18.10))
END

(d) Output results

k% k
*k

*k

DBSPSL **x*
INPUT *x*
N= 4
COEFFICIENT MATRIX
5.000 4.000 1.000 1.000
4.000 5.000 1.000 1.000
1.000 1.000 4.000 2.000
1.000 1.000 2.000 4.000
COEFFICIENT VECTOR
1.0000
-1.0000
4.0000
-4.0000
OUTPUT _ *x*
IERR (DBSPSL) = 0
SOLUTION
X(1) = 0.1000000000D+01
X(2) = -0.1000000000D+01
X(3) = 0.2000000000D+01
X(4) = -0.2000000000D+01

113

DBSPUD, RBSPUD
LDLT Decomposition of a Real Symmetric Matrix

2.6.2 DBSPUD, RBSPUD
LDLT Decomposition of a Real Symmetric Matrix
(1) Function
DBSPUD or RBSPUD uses the modified Cholesky method to perform an LDLT decomposition of the real

symmetric matrix A (two-dimensional array type).

(2) Usage
Double precision:
CALL DBSPUD (A, LNA, N, IPVT, WK, IERR)
Single precision:
CALL RBSPUD (A, LNA, N, IPVT, WK, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA, N Input | Real symmetric matrix A (two-dimensional ar-
{R} ray type) (upper triangular type)
Output | Upper triangular matrix L™ when A is decom-
posed into A = LDLT (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (b))
5 WK D N Work | Work area
i
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

114

DBSPUD, RBSPUD

LDLT Decomposition of a Real Symmetric Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LU decomposi-
tion of the coefficient matrix A. The re-
sult may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step.
A is nearly singular.
(6) Notes

(a) The upper triangular matrix L7 is stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from L, they are not stored in array A. (See Section 2.6.1, Figure

2-6.)

(b) This subroutine performs partial pivoting when obtaining the LDLT decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

115

DBSPUC, RBSPUC
LDLT Decomposition and Condition Number of a Real Symmetric Matrix

2.6.3 DBSPUC, RBSPUC
LDLT Decomposition and Condition Number of a Real Symmetric Matrix
(1) Function
DBSPUC or RBSPUC uses the modified Cholesky method to perform an LDLT decomposition and obtain

the condition number of the real symmetric matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:
CALL DBSPUC (A, LNA, N, IPVT, COND, WK, IERR)
Single precision:
CALL RBSPUC (A, LNA, N, IPVT, COND, WK, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA, N Input | Real symmetric matrix A (two-dimensional ar-
{R} ray type) (upper triangular type)
Output | Upper triangular matrix L™ when A is decom-
posed into A = LDLT (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 IPVT I N Output | Pivoting information

IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (b))

1 Output | Reciprocal of the condition number

5 COND

Work Work area

(@)

=

-~
—|
—| W O| ®™UC
—— —~—

Z

7 IERR 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

116

DBSPUC, RBSPUC
LDL"Y Decomposition and Condition Number of a Real Symmetric Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
COND < 1.0 is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LU decomposi-
tion of the coefficient matrix A. The re-
sult may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ A diagonal element became equal to 0.0 | Processing is aborted.
in the i-th processing step. The condition number is not obtained.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from LT, they are not stored in array A. (See Section 2.6.1, Figure
2—6.)

(b) This subroutine performs partial pivoting when obtaining the LDLT decomposition of coefficient matrix
A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)
in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)
elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

(c) Although the condition number is defined by ||A|| - ||[A™!||, an approximate value is obtained by this

subroutine.

117

DBSPLS, RBSPLS
Simultaneous Linear Equations (LDLT-Decomposed Real Symmetric Matrix)

2.6.4 DBSPLS, RBSPLS
Simultaneous Linear Equations (LDL-Decomposed Real Symmetric Matrix)
(1) Function
DBSPLS or RBSPLS solves the simultaneous linear equations having the real symmetric matrix A (two-

dimensional array type) which has been LDLT decomposed by the modified Cholesky method as coefficient

matrix.

(2) Usage
Double precision:
CALL DBSPLS (A, LNA, N, B, IPVT, IERR)
Single precision:
CALL RBSPLS (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA, N Input | Coefficient matrix A after LDLT decomposition
{ R} (real symmetric matrix, two-dimensional array
type, upper triangular type) (See Notes (a) and
(b))
2 LNA I 1 Input | Adjustable dimension af array A
N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
{R} Output | Solution «
5 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (c))
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

118

DBSPLS, RBSPLS
Simultaneous Linear Equations (LDL™-Decomposed Real Symmetric Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) «+ B(1)/A(1,1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes

()

The coefficient matrix A must be LDLT decomposed before using this subroutine. Normally, you
DBSPUD
RBSPUD
DBSPUC
RBSPUC

should decompose matrix A by calling the 2.6.2 { } subroutine. However, if you also want

to obtain the condition number, you should use 2.6.3 { } subroutine. In addition, if you

DBSPSL
RBSPSL
matrix A, you can use the LDLT decomposition obtained as part of its output. To solve multiple sets

have already used 2.6.1 { } to solve simultaneous linear equations having the same coefficient

of simultaneous linear equations where only the constant vector b differs, the solution is obtained more
DBSPMS

efficiently by directly using the subroutine 2.6.5
RBSPMS

} to perform the calculations.

The upper triangular matrix L7 must be stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L7, they need not be stored in array A. This subroutine uses

only the upper triangular portion of array A. (See Section 2.6.1, Figure 2—6.)

This subroutine performs partial pivoting when obtaining the LDL™T decomposition of coefficient matrix
A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)
in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)
elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

119

DBSPMS, RBSPMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDLT decomposed Real Matrix)

2.6.5 DBSPMS, RBSPMS

composed Real Matrix)

(1) Function

DBSPMS or RBSPMS solves the simultaneous linear equations LDLT z = b having the real matrix A (two-
dimensional array type) which has been LDLY decomposed by the Gauss method or the Crout method as
coefficient matrix. That is, when the n x m matrix B is defined by B = [by, b2, -

obtains [x1, X2, +, Tm] = A"1B.

(2) Usage

Double precision:
CALL DBSPMS (A, LNA, N, B, LNB, M, IPVT, IERR)
Single precision:
CALL RBSPMS (A, LNA, N, B, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL" de-

| INTEGER(4) as for 32bit Integer
" | INTEGER(8) as for 64bit Integer

No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A after LDLT decomposition
{R} (real symmetric matrix, two-dimensional array
type, upper triangular type) (See Notes (a) and
(b))
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 B D LNA, N Input | Matrix consisting of constant vector b;
{R} [A",b1,ba, -, bp]
Output | Matrix consisting of Solution vector x;
[A x1, T2, -, T
5 LNB I 1 Input | Adjustable dimension of array B
6 M 1 1 Input | Number of right-hand side vectors, m
7 IPVT I N Input | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step. (See Note (c))
8 IERR I 1 Output | Error indicator
(4) Restrictions
(a) 0 < N<LNA
(b) 0 <M
(¢) 0<IPVT(i) <N (i=1,...,N)

120

, bim], the subroutine

DBSPMS, RBSPMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDLT decomposed Real Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N is equal to 1 B(1,i) «+ B(1,i)/A(1,1) (i = 1,2,---, M)
is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
(6) Notes

(a) The coefficient matrix A must be LDLT decomposed before using this subroutine. Normally, you

DBSPUD
RBSPUD

DBSPUC
RBSPUC |

should decompose matrix A by calling the 2.6.2 { } subroutine. However, if you also want

to obtain the condition number, you should use 2.6.3 {

DBSPSL
In addition, if you have already used 2.6.1 RBSPSL to solve simultaneous linear equations having

the same coefficient matrix A, you can use the LDL™ decomposition obtained as part of its output.

The upper triangular matrix L7 is stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L, they are not stored in array A. (See Section 2.6.1, Figure
2—6.)

Information about partial pivoting performed during LDL™ decomposition must be stored in IPVT.

DBSPUD DBSP DBSPSL
This information is given by the 2.6.2 SPU ,2.6.3 SPUC ,and 2.6.1 SPS sub-
RBSPUD RBSPUC RBSPSL

routines which perform LDLT decomposition of matrix A.

(7) Example

()

(b)
(©)

Problem

Solve the following simultaneous linear equations.
5 4 1 1 Ti1 T1,2 1 -2
4 5 1 1 o1 w22 | | —1 1
11 4 2 r31 32 | 4 9
1 1 2 4 Ta1 T42 —4 13

Input data

Coefficient matrix A, LNA = 10, N = 4, matrix consisting of constant vector B, LNB=B and M=2.
Main program

PROGRAM BBSPMS
| s%x EXAMPLE OF DBSPMS
IMPLICIT NONE
INTEGER LNA,LNB,N,M,I,J,IERR
PARAMETER (LNA=10,LNB=10,N=4,M=2)
INTEGER IPVT(LNA)
REAL(8) A(LNA,N),B(LNB,M),WK(LNA)
DATA ((A(I,J),J=1,N),I=1,N)/&
5.0D0, 4.0DO, 1.0D0, 1.0DO0,&
4.0D0, 5.0D0, 1.0D0, 1.0DO0,&
1.0D0, 1.0D0, 4.0D0, 2.0D0,&
1.0D0, 1.0D0, 2.0D0, 4.0D0/
DATA ((B(I,J),J=1,M),I=1,N)/&
1.0D0, -2.0D0,&

-1.0D0, 1.0D0.&

4.0D0, 9.0D0,&
-4.0D0, 13.0D0/

121

DBSPMS, RBSPMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDLT decomposed Real Matrix)

WRITE (6 1000) N, M
DO 10 1, N
WRITE (6,1100) (A(I,J),J=1,N)
10 CONTINUE

WRITE (6 1200)

DO 20 N
WRITE (6 1100) (B(I,J),J=1,M)
20 CONTINUE

WRITE (6,1300)

CALL DBSPUD (A,LNA,N,IPVT,WK,IERR)

IF (IERR .GE. 3000) STOP

CALL DBSPMS (A,LNA,N,B,LNB,M,IPVT,IERR)
IF (IERR .GE. 3000) STOP

WRITE (6,1400) IERR
WRITE (6, 150)
DO 30 I =
WRITE (6 1100) (B(1,3),J=1,M)
30 CONTINUE

| STOP
1000 FORMAT (1X /&
1X, ?%%% DBSPMS #x*x’ /&
1X, ’ *%x INPUT *x*’ /L&
1X, N =’,13 WAR;
1X, ° M =’,I3 /&
1X,/,&
X, 3 COEFFICIENT MATRIX’)
1100 FORMAT(1X, 6X,10(F11.4))
1200 FDRMAT(lX /, &
CONSTANT VECTORS’)
1300 FDRMAT(iX ./, &
X, 7 #%x QUTPUT *x’ /)
1400 FDRMAT(iX ’ IERR =’,I5)
1500 FORMAT(1X./,&
1X, ° SOLUTION’)
END
(d) Output results
*%% DBSPMS *%%
*% INPUT *x*
N= 4
M= 2
COEFFICIENT MATRIX
5.0000 4.0000 1.0000 1.0000
4.0000 5.0000 1.0000 1.0000
1.0000 1.0000 4.0000 2.0000
1.0000 1.0000 2.0000 4.0000
CONSTANT VECTORS
1.0000 -2.0000
-1.0000 1.0000
4.0000 9.0000

-4.0000 13.0000
** QUTPUT *x*

IERR = 0
SOLUTION
1.0000 -2.0000
-1.0000 1.0000
2.0000 1.0000
-2.0000 3.0000

122

DBSPDI, RBSPDI
Determinant and Inverse Matrix of a Real Symmetric Matrix

2.6.6 DBSPDI, RBSPDI
Determinant and Inverse Matrix of a Real Symmetric Matrix

(1) Function
DBSPDI or RBSPDI obtains the determinant and inverse matrix of the real symmetric matrix A (two-
dimensional array type) (upper triangular type) which has been LDLT decomposed by the modified Cholesky
method.

(2) Usage
Double precision:
CALL DBSPDI (A, LNA, N, IPVT, DET, ISW, WK, IERR)
Single precision:
CALL RBSPDI (A, LNA, N, IPVT, DET, ISW, WK, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(S8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA, N Input | Real symmetric matrix A (two-dimensional ar-
{R} ray type) (upper triangular type) after LDL™T
decomposition (See Notes (a) and (b))
Output | Inverse matrix of matrix A (See Note (b))
2 LNA I 1 Input | Adjustable dimensional pf array A
N I 1 Input | Order of matrix A
4 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (c))
5 DET D 2 Output | Determinant of matrix A (See Note (c))
i
6 ISW I 1 Input | Processing switch
ISW > 0: Obtain determinant.
ISW = 0: Obtain determinant and inverse ma-
trix.
ISW < 0: Obtain inverse matrix.
7 WK D N Work | Work area
il
8 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

123

DBSPDI, RBSPDI
Determinant and Inverse Matrix of a Real Symmetric Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. DET(1) «+ A(1,1), DET(2) «+ 0.0

A(1,1) < 1.0/A(1,1)
are performed. (See Note (c¢))

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a)

(b)

The coefficient matrix A must be LDLT decomposed before using this subroutine. Use any of the 2.6.2

DBSPUD ,2.6.3 DBSPUC ,2.6.1 DBSPSL subroutines to perform the decomposition.
RBSPUD RBSPUC RBSPSL

The upper triangular matrix L7 must be stored in array A at input time. Since the diagonal matrix
D and the lower triangular matrix L are calculated from L7, they need not be stored in array A. Since
the inverse matrix A~! is a symmetric matrix, only its upper triangular portion is stored in array A.

This subroutine uses only the upper triangular portion of array A. (See Section 2.6.1, Figure 2—6.)

This subroutine performs partial pivoting when obtaining the LDL" decomposition of coefficient matrix
A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)
in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)
elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

The determinant is given by the following expression:
det(A) = DET(1) x 10PFT(2)

Scaling is performed at this time so that:
1.0 < |DET(1)| < 10.0

The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A=!'b or A~'B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Az = b for the vector & or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is
worse than for solving the simultaneous linear equations, and the calculation precision also declines.

124

DBSPLX, RBSPLX
Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix)

2.6.7 DBSPLX, RBSPLX
Improving the Solution of Simultaneous Linear Equations (Real Symmetric
Matrix)

(1) Function
DBSPLX or RBSPLX uses an iterative method to improve the solution of the simultaneous linear equations
Ax = b having the real symmetric Matrix A (two-dimensional array type) (upper triangular type) as

coefficient matrix.

(2) Usage
Double precision:
CALL DBSPLX (A, LNA, N, ALD, B, X, ITOL, NIT, IPVT, WK, IERR)
Single precision:
CALL RBSPLX (A, LNA, N, ALD, B, X, ITOL, NIT, IPVT, WK, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A (real symmetric matrix,
R two-dimensional array type, upper triangular
type)
LNA I 1 Input | Adjustable dimension of array A and ALD
3 N I 1 Input | Order of matrix A
4 ALD D LNA N Input | Coefficient matrix A after LDLT decomposition
R (See Note (a))
5 B D N Input | Constant vector b
R
6 X D N Input | Approximate solution x
R Output | Iteratively improved solution x
7 ITOL I 1 Input | Number of digits to which solution is to be im-
proved (See Note (b))
Output | Approximate number of digits to which solution
was improved (See Note (c))
8 NIT I 1 Input | Maximum number of iterations (See Note (d))
9 IPVT I N Output | Pivoting information. (See Note (a))
10 WK D N Work | Work area
R
11 IERR I 1 Output | Error indicator

125

DBSPLX,

RBSPLX

Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix)

(4) Restrictions

(a)

0 < N <LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The solution is not improved.
3000 Restriction (a) was not satisfied. Processing is aborted.
5000 The solution did not converge within the | Processing is aborted after calculation the
maximum number of iterations. ITOL output value.
6000 The solution could not be improved.
(6) Notes

()

()

(d)

DBSPSL DBSPLS
This subroutine improves the solution obtained by the 2.6.1 { } or 2.6.4 { } sub-

RBSPSL RBSPLS
DBSPSL
routine. Therefore, the coefficient matrix A after it has been decomposed by the 2.6.1 RBSPSL [

DBSPUD DBSP
2.6.2 SPU ,or 2.6.3 SPUC subroutine and the pivoting information at that time must
RBSPUD RBSPUC

be given as input.

Solution improvement is repeated until the high-order ITOL digits of the solution do not change.
However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.
ITOL <0
or
ITOL > — LOGI10 (2 x €) (e : Unit for determining error)

If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

126

2.7 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY
TYPE) (UPPER TRIANGULAR TYPE)(NO PIVOTING)

2.7.1 DBSMSL, RBSMSL
Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

(1) Function
DBSMSL or RBSMSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b
having the real symmetric matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage
Double precision:
CALL DBSMSL (A, LNA, N, B, W1, IERR)
Single precision:
CALL RBSMSL (A, LNA, N, B, W1, IERR)

(3) Arguments

D:Double precision real = Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A (real symmetric matrix,
R two-dimensional array type, upper triangular
type)
Output | Upper triangular matrix LT when A is decom-
posed into A = LDLT (See Note (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
R Output | Solution x
5 W1 D N Work | Work Area
R
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

127

DBSMSL, RBSMSL
Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) «+ B(1)/A(1,1) is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LDLT decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step of the LDLT
decomposition of coefficient matrix A.

A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call
DBSMLS
RBSMLS
calculations by performing the LDLT decomposition of matrix A only once.

this subroutine only once and then call subroutine 2.7.4 { } you to eliminate unnecessary

(b) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L7, they are not stored in array A. The matrix L is the
transpose of matrix L7, and the matrix D is a diagonal matrix having the reciprocals of the diagonal
elements of matrix LT as components.

This subroutine uses only the upper triangular portion of array A.

128

DBSMSL, RBSMSL

Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

Matrix LT Matrix D
lig 21 lsa -+ Is; 1/lix 0.0 00 --- 0.0
0.0 lon lso - ls2 00 1/lae 00 - 00
0.0 0.0 I35 - lIss 00 00 1/lss - 00
0.0 0.0 00 --- lIs5 0.0 0.0 0.0 e 1/lss
\
Storage status within array A(LNA, K)
lia len Isn -0 Isa
* lag 3o - 52
* ¥ gz - s N
LNA ’
* * * ls,5
——————— N-—————— &
—————————— K---———-——->

Remarks

a. LNA > N and N < K must hold.

b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2—7 Storage Status of Matrix LT and Contents of Matrix D

129

DBSMSL, RBSMSL
Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

5 4 1 1 T 1
4 5 1 1 x| | -1
1 1 4 2 zs | | 4
11 2 4 T4 —4

(b) Input data
Coefficient matrix A, LNA = 11,N = 4 and constant vector b.
(¢) Main program

PROGRAM BBSMSL
! %% EXAMPLE OF DBSMSL x*x*x*
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA),W1(LNA)

READ (5,*) N
WRITE (6,1000) N
DO 10 I =1, N
READ (5,%) (A(I,J),J=I,N)
WRITE (6,1100) (A(J,I),J=1,I-1),(A(I,J),J=I,N)
10 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBSMSL (A,LNA,N,B,W1,IERR)
WRITE (6,1400) ’DBSMSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1500) (I,B(I),I=1,N)
STOP

1000 FORMAT(’ °,/,/,&
> xkk DBSMSL *¥x’ /. &
2X,2*x INPUT *x*’,/,&
6X,’N =’,13,/,&
6X, ’COEFFICIENT MATRIX’)
1100 FORMAT(7X,10(G11.4))
1200 FORMAT(6X,’COEFFICIENT VECTOR’,/, (7X,F10.4))
1300 FORMAT(2X,’** QUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))
END

(d) Output results

k%% DBSMSL **x*
*% INPUT *x*

N= 4
COEFFICIENT MATRIX

5.000 4.000 1.000 1.000
4.000 5.000 1.000 1.000
1.000 1.000 4.000 2.000
1.000 1.000 2.000 4.000
COEFFICIENT VECTOR
1.0000
-1.0000
4.0000
-4.0000
** QUTPUT *x*
IERR (DBSMSL) = 0
SOLUTION
X(1) = 0.1000000000D+01
X(2) = -0.1000000000D+01
X(3) = 0.2000000000D+01
X(4) = -0.2000000000D+01

130

DBSMUD, RBSMUD
LDLT Decomposition of a Real Symmetric Matrix (No Pivoting)

2.7.2 DBSMUD, RBSMUD
LDLT Decomposition of a Real Symmetric Matrix (No Pivoting)
(1) Function
DBSMUD or RBSMUD uses the modified Cholesky method to perform an LDLT decomposition of the real

symmetric matrix A (two-dimensional array type).

(2) Usage
Double precision:
CALL DBSMUD (A, LNA, N, W1, IERR)
Single precision:
CALL RBSMUD (A, LNA, N, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA, N Input | Real symmetric matrix A (two-dimensional ar-
R ray type) (upper triangular type)
Output | Upper triangular matrix L™ when A is decom-
posed into A = LDLT (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 W1 D N Work | Work area
R
5 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

131

DBSMUD, RBSMUD
LDL™ Decomposition of a Real Symmetric Matrix (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LDLT decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix L7 is stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L, they are not stored in array A. (See Section 2.7.1, Figure
2-17.)

132

DBSMUC, RBSMUC
LDLT Decomposition and Condition Number of a Real Symmetric Matrix (No Pivoting)

2.7.3 DBSMUC, RBSMUC
LDLT Decomposition and Condition Number of a Real Symmetric Matrix
(No Pivoting)

(1) Function
DBSMUC or RBSMUC uses the modified Cholesky method to perform an LDLT decomposition and obtain

the condition number of the real symmetric matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:
CALL DBSMUC (A, LNA, N, COND, W1, IERR)
Single precision:
CALL RBSMUC (A, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(S8) as for 64bit Integer

Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA, N Input | Real symmetric matrix A (two-dimensional ar-
R ray type) (upper triangular type)
Output | Upper triangular matrix L™ when A is decom-
posed into A = LDL™ (See Note (a))
LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 COND D 1 Output | Reciprocal of the condition number
R
5 W1 D N Work | Work area
R
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N <LNA

133

DBSMUC, RBSMUC
LDL™T Decomposition and Condition Number of a Real Symmetric Matrix (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
COND < 1.0 is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LDLT decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ A diagonal element became equal to 0.0 | Processing is aborted.

in the i-th processing step. The condition number is not obtained.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from LT, they are not stored in array A. (See Section 2.7.1, Figure
2-17.)

(b) Although the condition number is defined by ||A|| - ||A™!||, an approximate value is obtained by this

subroutine.

134

DBSMLS, RBSMLS
Simultaneous Linear Equations (LDLT-Decomposed Real Symmetric Matrix) (No Pivoting)

2.7.4 DBSMLS, RBSMLS
Simultaneous Linear Equations (LDL-Decomposed Real Symmetric Matrix)
(No Pivoting)

(1) Function
DBSMLS or RBSMLS solves the simultaneous linear equations having the real symmetric matrix A (two-
dimensional array type) which has been LDLT decomposed by the modified Cholesky method as coefficient

matrix.

(2) Usage
Double precision:
CALL DBSMLS (A, LNA, N, B, IERR)
Single precision:
CALL RBSMLS (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A after LDLT decomposition
{R} (real symmetric matrix, two-dimensional array
type, upper triangular type) (See Notes (a) and
(b))
LNA I 1 Input | Adjustable dimension af array A
3 N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
{R} Output | Solution x
5 IERR I 1 Output | Error indicator

(4) Restrictions
(a) 0 < N < LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) «+ B(1)/A(1,1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.

135

DBSMLS, RBSMLS
Simultaneous Linear Equations (LDLT-Decomposed Real Symmetric Matrix) (No Pivoting)

(6) Notes

(a)

The coefficient matrix A must be LDLT decomposed before using this subroutine. Normally, you
DBSMUD

should decompose matrix A by calling the 2.7.2
RBSMUD

} subroutine. However, if you also want

DBSMUC

to obtain the condition number, you should use 2.7.3
RBSMUC

} subroutine. In addition, if you

DBSMSL
RBSMSL
matrix A, you can use the LDLT decomposition obtained as part of its output. To solve multiple sets

have already used 2.7.1 { } to solve simultaneous linear equations having the same coefficient

of simultaneous linear equations where only the constant vector b differs, the solution is obtained more
DBSMMS

efficiently by directly using the subroutine 2.7.5
RBSMMS

} to perform the calculations.

The upper triangular matrix L7 must be stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L7, they need not be stored in array A. This subroutine uses

only the upper triangular portion of array A. (See Section 2.7.1, Figure 2—7.)

136

DBSMMS, RBSMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDLT-Decomposed Real Matrix) (No
Pivoting)

2.7.5 DBSMMS, RBSMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL’-
Decomposed Real Matrix) (No Pivoting)
(1) Function

DBSMMS or RBSMMS solves the simultaneous linear equations LDLTx = b having the real matrix A
(two-dimensional array type) which has been LDL™T decomposed by the Gauss method or the Crout method

as coefficient matrix. That is, when the n x m matrix B is defined by B = [b1,ba, - - -, by], the subroutine
obtains [z1,x2, +, Tm] = A"'B.
(2) Usage

Double precision:

CALL DBSMMS (A, LNA, N, B, LNB, M, IERR)
Single precision:

CALL RBSMMS (A, LNA, N, B, LNB, M, IERR)

(3) Arguments

D:Double precision real = Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A after LDLT decomposition
{R} (real symmetric matrix, two-dimensional array
type, upper triangular type) (See Notes (a) and
(b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B D LNA,N Input Matrix consisting of constant vector b;
o) oty
Output | Matrix consisting of Solution vector x;
[A X1, T2, -, Ty
5 LNB I 1 Input | Adjustable dimension of array B
M I 1 Input | Number of right-hand side vectors, m
IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N <LNA
(b) 0<M

137

DBSMMS, RBSMMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDLT -Decomposed Real Matrix) (No

Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N is equal to 1 B(1,i) + B(1,i)/A(1,1) (i =1,2,---,M)
is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
(6) Notes

(a) The coefficient matrix A must be LDLT decomposed before using this subroutine. Normally, you

should decompose matrix A by calling the 2.7.2 {
to obtain the condition number, you should use 2.7.3 {

In addition, if you have already used 2.7.1 {

DBSMSL
RBSMSL

DBSMUD
RBSMUD

} subroutine. However, if you also want

DBSMUC
RBSMUC [

to solve simultaneous linear equations having

the same coefficient matrix A, you can use the LDL™ decomposition obtained as part of its output.

(b) The upper triangular matrix LT is stored in array A. Since the diagonal matrix D and the lower

triangular matrix L are calculated from LT, they are not stored in array A. (See Section 2.7.1, Figure

2-7.)

(7) Example

1
-1
4
-4

-2
1

9
13

Coefficient matrix A, LNA = 10, N = 4, matrix consisting of constant vector B, LNB=B and M=2.

(a) Problem
Solve the following simultaneous linear equations.
5 4 1 1 T1,1 T1,2
4 5 1 1 To1 T2 _
11 4 2 T31 w32 |
1 1 2 4 T41 T4,2
(b) Input data
(¢) Main program

I oskokok

10

20

PROGRAM BBSMMS

EXAMPLE OF DBSMMS ##x*

IMPLICIT NONE

INTEGER LNA,LNB,N,M,I,J,IERR
PARAMETER (LNA=10,LNB=10,N=4,M=2)
REAL(8) A(LNA,N),B(LNB,M),WK(LNA)
DATA ((A(I,J),J=1,N),I=1,N)/&

5.0D0, 4.0D0, 1.0D0, 1.0D0,&
4.0D0, 5.0D0, 1.0D0, 1.0DO0.&
1.0D0, 1.0D0, 4.0DO, 2.0DO0,&
1.0D0, 1.0D0, 2.0D0, 4.0DO/

DATA ((B(I,J),J=1,M),I=1,N)/&
1.0D0, -2.0D0,&
-1.0D0, 1.0DO,&
4.0D0, 9.0D0,&
-4.0D0, 13.0D0/

WRITE (6,1000) N, M
D010 I = 1, N
WRITE (6,1100) (A(I,J),J=1,N)
CONTINUE
WRITE (6,1200)
D020 I =1, N
WRITE (6,1100) (B(I,J),J=1,M)
CONTINUE
WRITE (6,1300)

138

DBSMMS, RBSMMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDLT-Decomposed Real Matrix) (No

Pivoting)

30

1000

1100
1200

1300

1400
1500

CALL DBSMUD (A,LNA,N,WK,IERR)

F (IERR .GE. 30005 STQP
CALL DBSMMS (A,LNA,N,B,LNB,M,IERR)
IF (IERR .GE. 3000) STOP

WRITE (6,1400) IERR
WRITE (6,1500)

(d) Output results

k% k
*k

C

C

*%
I
S

DO30I=1, N
WRITE (6,1100) (B(I,J),J=1,M)
CONTINUE
STOP
FORMAT (1X AR
1X, ?%%% DBSMMS %%’ /&
1X, ? *x INPUT *x*’ VR
1X, N =’,13 N 1
1X, ° M =’,I3 /&
1X,/,&
1X, COEFFICIENT MATRIX’)
FORMAT (1X, 6X,10(F11.4))
FORMAT(lX /,&
; CONSTANT VECTORS’)
FORMAT(lX /&
1X. > %% QUTPUT #x° /)
FORMAT (1X, ° IERR =’,I5)
FORMAT (1X,/,&
1X, SOLUTION’)
END
DBSMMS
INPUT *x
N= 4
M= 2
OEFFICIENT MATRIX
5.0000 4.0000 1.0000 1.0000
4.0000 5.0000 1.0000 1.0000
1.0000 1.0000 4.0000 2.0000
1.0000 1.0000 2.0000 4.0000
ONSTANT VECTORS
1.0000 -2.0000
-1.0000 1.0000
4.0000 9.0000
-4.0000 13.0000
QUTPUT *x*
ERR = 0
OLUTION
1.0000 -2.0000
-1.0000 1.0000
2.0000 1.0000
-2.0000 3.0000

139

DBSMDI, RBSMDI
Determinant and Inverse Matrix of a Real Symmetric Matrix (No Pivoting)

2.7.6 DBSMDI, RBSMDI
Determinant and Inverse Matrix of a Real Symmetric Matrix (No Pivoting)
(1) Function
DBSMDI or RBSMDI obtains the determinant and inverse matrix of the real symmetric matrix A (two-

dimensional array type) (upper triangular type) which has been LDLT decomposed by the modified Cholesky
method.

(2) Usage
Double precision:
CALL DBSMDI (A, LNA, N, DET, ISW, W1, IERR)
Single precision:
CALL RBSMDI (A, LNA, N, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA N Input | Real symmetric matrix A (two-dimensional ar-
R ray type) (upper triangular type) after LDL™
decomposition (See Notes (a) and (b))
Output | Inverse matrix of matrix A (See Note (b))
2 LNA I 1 Input | Adjustable dimensional pf array A
3 N I 1 Input | Order of matrix A
4 DET D 2 Output | Determinant of matrix A (See Note (c))
R
5 ISW I 1 Input | Processing switch
ISW > 0: Obtain determinant.
ISW = 0: Obtain determinant and inverse ma-
trix.
ISW < 0: Obtain inverse matrix.
6 W1 D N Work | Work area
R
7 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

140

DBSMDI, RBSMDI
Determinant and Inverse Matrix of a Real Symmetric Matrix (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. DET(1) «+ A(1,1), DET(2) «+ 0.0

A(1,1) « 1.0/A(1,1)

are performed. (See Note (c))

3000 Restriction (a) was not satisfied. Processing is aborted.

(6) Notes

(a)

(b)

The coefficient matrix A must be LDLT decomposed before using this subroutine. Use any of the 2.7.2

DBSMUD DBSMUC DBSMSL) ..
,2.7.3 ,2.7.1 subroutines to perform the decomposition.
RBSMUD RBSMUC RBSMSL

The upper triangular matrix L7 must be stored in array A at input time. Since the diagonal matrix
D and the lower triangular matrix L are calculated from L7, they need not be stored in array A. Since
the inverse matrix A~! is a symmetric matrix, only its upper triangular portion is stored in array A.

This subroutine uses only the upper triangular portion of array A. (See Section 2.7.1, Figure 2—7.)

The determinant is given by the following expression:
det(4) = DET(1) x 10P¥T®

Scaling is performed at this time so that:
1.0 < [DET(1)| < 10.0

The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A~'b or A~!B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

141

DBSMLX, RBSMLX
Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

2.7.7 DBSMLX, RBSMLX
Improving the Solution of Simultaneous Linear Equations (Real Symmetric
Matrix) (No Pivoting)

(1) Function
DBSMLX or RBSMLX uses an iterative method to improve the solution of the simultaneous linear equations
Az = b having the real symmetric Matrix A (two-dimensional array type) (upper triangular type) as

coefficient matrix.

(2) Usage
Double precision:
CALL DBSMLX (A, LNA, N, ALD, B, X, ITOL, NIT, W1, IERR)
Single precision:
CALL RBSMLX (A, LNA, N, ALD, B, X, ITOL, NIT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output

1 A D LNA N Input | Coefficient matrix A (real symmetric matrix,

{R} two-dimensional array type, upper triangular
type)
2 LNA 1 Input | Adjustable dimension of array A and ALD
N 1 Input | Order of matrix A
4 ALD LNA N Input | Coefficient matrix A after LDLT decomposition

(See Note (a))

Input | Constant vector b

N Input | Approximate solution x

Output | Iteratively improved solution x

ot
o8]
—| — | —/—
=l O | WO WO |—~|—
Z

7 ITOL 1 Input | Number of digits to which solution is to be im-
proved (See Note (b))

Output | Approximate number of digits to which solution

was improved (See Note (c))

8 NIT I 1 Input | Maximum number of iterations (See Note (d))
9 W1 D N Work | Work area

R
10 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

142

DBSMLX, RBSMLX
Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The solution is not improved.
3000 Restriction (a) was not satisfied. Processing is aborted.
5000 The solution did not converge within the | Processing is aborted after calculation the
maximum number of iterations. ITOL output value.
6000 The solution could not be improved.
(6) Notes

DBSMSL DBSMLS
(a) This subroutine improves the solution obtained by the 2.7.1 or 2.7.4 sub-
RBSMSL RBSMLS

routine. Therefore, the coefficient matrix A after it has been decomposed by the 2.7.1
RBSMSL

M M
2.7.2 DBSMUD ,or2.7.3 DBSMUC subroutine must be given as input.
RBSMUD RBSMUC

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.

DBSMSL}

However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.
ITOL <0
or
ITOL > — LOG10 (2 x €) (e : Unit for determining error)

(¢) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

143

2.8 REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY
TYPE, LOWER TRIANGULAR TYPE)(NO PIVOTING)

2.8.1 DBSNSL, RBSNSL
Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

(1) Function
DBSNSL or RBSNSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having the real symmetric matrix A (two-dimensional array type, lower triangular type) as coefficient matrix.

(2) Usage
Double precision:
CALL DBSNSL (A, LNA, N, B, IERR)
Single precision:
CALL RBSNSL (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A (real symmetric matrix,
{R} two-dimensional array type, lower triangular
type)
Output | lower triangular matrix U7 when A is decom-
posed into A = UTDU (See Note (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
{R} Output | Solution x
5 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

144

DBSNSL, RBSNSL

Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) + B(1)/A(1,1) is performed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the UTDU decom-
position of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step of the UTDU
decomposition of coefficient matrix A.
A is nearly singular.
(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call

this subroutine only once and then call subroutine 2.8.3 {

DBSNLS

you to eliminate unnecessary
RBSNLS

calculations by performing the UTDU decomposition of matrix A only once.

(b) The lower triangular matrix U7 is stored in array A. For the diagonal components of U”', their recipro-

cals are stored in array A with the sign changed. Since the diagonal matrix D and the upper triangular

matrix U are calculated from U7, they are not stored in array A. The matrix U is the transpose of

matrix U7, and the matrix D is a diagonal matrix having the reciprocals of the diagonal elements of

matrix UT as components.

This subroutine uses only the lower triangular portion of array A.

145

DBSNSL, RBSNSL
Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

Matrix UT Matrix D
ui,; 00 00 .- 0.0 1/u1 0.0 0.0 cee 0.0
U1 uze 0.0 -+ 0.0 00 1/uge 00 -+ 00
us,1 us,2 us,3 e 0.0 0.0 0.0 1/1143,3 LR 0.0
Us,1 Us2 U533 ccc UsS 0.0 0.0 0.0 coo 1/uss
4
Storage status within array A(LNA, K)
—1/u11 * * e *
Uu2,1 71/'U‘272 * e *
u3,1 u3,2 —1/uzz --- * N
LNA '
Us,1 Uus,2 Uus,3 —1/us5
———————— Ne—————- —
——————————— K-———————— —

Remarks
a. LNA > N and N < K must hold.

b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2—8 Storage Status of Matrix U” and Contents of Matrix D

146

DBSNSL, RBSNSL
Simultaneous Linear Equations (Real Symmetric Matrix) (No Pivoting)

(7) Example

(a) Problem
Solve the following simultaneous linear equations.

5 4 1 1 T 1
4 5 1 1 x| | -1
1 1 4 2 zs | | 4
11 2 4 T4 —4

(b) Input data
Coefficient matrix A, LNA = 11,N =4, and constant vector b.
(¢) Main program

PROGRAM BBSNSL

| %% EXAMPLE OF DBSNSL **x
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA)

READ (5,%) N
WRITE (6,1000) N
DO10 I =1, N
READ (5,%) (A(I,J),J=1,I)
10 CONTINUE
DO20I =1, N
WRITE (6,1100) (A(I,J),J=1,I),(A(J,I),J=I+1,N)
20 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBSNSL (A,LNA,N,B,IERR)
WRITE (6,1400) ’DBSNSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6,1500) (I,B(I),I=1,N)
. STOP
1000 FORMAT(’ ’,/,/,’ #*x DBSNSL *k*’,/ &
2X,’** INPUT *%’,/,6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)
1100 FORMAT(7X,10(G11.4))
1200 FORMAT (6X,’COEFFICIENT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’#** OUTPUT *%’)
1400 FORMAT(6X,’IERR (’,A6,’) =,I5)
1500 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))
END

(d) Output results

% DBSNSL **x%
**x INPUT *x*
4

N =
COEFFICIENT MATRIX
5.000 4.000 1.000 1.000
4.000 5.000 1.000 1.000
1.000 1.000 4.000 2.000
1.000 1.000 2.000 4.000
COEFFICIENT VECTOR
1.0000
-1.0000
4.0000
-4.0000
*x QUTPUT _ *x*
IERR (DBSNSL) = 0
SOLUTION
X(1) = 0.1000000000D+01
X(2) = -0.1000000000D+01
X(3) = 0.2000000000D+01
X(4) = -0.2000000000D+01

147

DBSNUD, RBSNUD

UTDU Decomposition of a Real Symmetric Matrix (No Pivoting)

2.8.2 DBSNUD, RBSNUD

UTDU Decomposition of a Real Symmetric Matrix (No Pivoting)

(1) Function

DBSNUD or RBSNUD uses the modified Cholesky method to perform an UTDU decomposition of the real

symmetric matrix A (two-dimensional array type) (lower triangular type).

(2) Usage
Double precision:

CALL DBSNUD (A, LNA, N, IERR)

Single precision:

CALL RBSNUD (A, LNA, N, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

. { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA, N Input | Real symmetric matrix A (two-dimensional ar-
{R} ray type) (lower triangular type)
Output | Lower triangular matrix U? when A is decom-
posed into A = UT DU (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

148

DBSNUD, RBSNUD

UTDU Decomposition of a Real Symmetric Matrix (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the UTDU decom-
position of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step.
A is nearly singular.
(6) Notes

(a) The lower triangular matrix U7 is stored in array A. For the diagonal components of U7, their re-

ciprocals are stored in array A with the sign changed. Since the diagonal matrix D and the upper

triangular matrix U are calculated from U”, they are not stored in array A. (See Section 2.8.1, Figure

2-8.)

149

DBSNLS, RBSNLS

Simultaneous Linear Equations (UTDU-Decomposed Real Symmetric Matrix) (No Pivoting)

2.8.3 DBSNLS, RBSNLS

Simultaneous Linear Equations (UTDU-Decomposed Real Symmetric Matrix)

(No Pivoting)

(1) Function

DBSNLS or RBSNLS solves the simultaneous linear equations having the real symmetric matrix A (two-

dimensional array type, lower triangular type) which has been UTDU decomposed by the modified Cholesky

method as coefficient matrix.

(2) Usage
Double precision:
CALL DBSNLS (A, LNA, N, B, IERR)
Single precision:
CALL RBSNLS (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

R:Single precision real C:Single precision complex

| INTEGER(4) as for 32bit Integer
" | INTEGER(8) as for 64bit Integer

Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A after UTDU decomposi-
R tion (real symmetric matrix, two-dimensional
array type, lower triangular type) (See Notes
(a) and (b))
2 LNA I 1 Input | Adjustable dimension af array A
N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
R Output | Solution x
5 IERR I 1 Output | Error indicator
(4) Restrictions
(a) 0 < N<LNA
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) «+ B(1)/A(1,1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.

150

DBSNLS, RBSNLS
Simultaneous Linear Equations (UTDU-Decomposed Real Symmetric Matrix) (No Pivoting)

(6) Notes

(a)

The coefficient matrix A must be UTDU decomposed before using this subroutine. Normally, you

DBSNUD
should decompose matrix A by calling the 2.8.2 SNU subroutine. In addition, if you have
RBSNUD
DBSNSL
already used 2.8.1 RBSNSL to solve simultaneous linear equations having the same coefficient

matrix A, you can use the UTDU decomposition obtained as part of its output.

The lower triangular matrix U? must be stored in array A. Since the diagonal matrix D and the upper
triangular matrix U are calculated from U”', they need not be stored in array A. This subroutine uses

only the lower triangular portion of array A. (See Section 2.8.1, Figure 2—8.)

151

2.9 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY
TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT
TYPE)

2.9.1 ZBHPSL, CBHPSL
Simultaneous Linear Equations (Hermitian Matrix)

(1) Function
ZBHPSL or CBHPSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having a Hermitian matrix (two-dimensional array type) (upper triangular type) as coefficient matrix.

(2) Usage
Double precision:
CALL ZBHPSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)
Single precision:
CALL CBHPSL (AR, AI, LNA, N, BR, BI, IPVT, W1, IERR)

(3) Arguments

D:Double precision real = Z:Double precision complex INTEGER(4) as for 32bit Integer
R:Single precision real C:Single precision complex : { INTEGER(8) as for 64bit Integer}
No. | Argument | Type Size fnput/ Contents
Output
1 AR D LNA, N Input | Real part of coefficient matrix A (Hermitian
{R} matrix, two-dimensional array type, upper tri-

angular type)

Output | Real part of upper triangular matrix L* when
A is decomposed into A = LDL* (See Note (b))
2 Al {D} LNA,N Input | Imaginary part of coefficient matrix A (Hermi-

tian matrix, two-dimensional array type, upper

triangular type)

Output | Imaginary part of upper triangular matrix L*
when A is decomposed into A = LDL* (See

Note (b))
3 LNA I 1 Input | Adjustable dimension of arrays AR and Al
4 N I 1 Input | Order of matrix A
BR D N Input | Real part of constant vector b
R Output | Real part of solution x
6 BI D N Input | Imaginary part of constant vector b
R Output | Imaginary part of solution x

152

ZBHPSL, CBHPSL
Simultaneous Linear Equations (Hermitian Matrix)

No. | Argument | Type Size fnput/ Contents
Output
7 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (c))
8 W1 D N Work | Work area
il
9 IERR I 1 Output | Error indicator
(4) Restrictions
(a) 0 < N<LNA
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of arrays AR and Al are not
changed.
B(1) < B(1)/AR(1,1) is performed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LDL* decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step of the LDL*
decomposition of coefficient matrix A.
A is nearly singular.

(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, call
ZBHPLS
this subroutine only once and then call subroutine 2.9.4 CBHPLS the required number of times

varying only the contents of B. This enables you to eliminate unnecessary calculation by performing

the LDL* decomposition of matrix A only once.

(b) The upper triangular matrix L* is stored in the upper triangular portions of arrays AR and Al Since
the diagonal matrix D and the lower triangular matrix L are calculated from L*, they are not stored
in arrays AR and AI. The matrix L is the adjoint matrix of the matrix L*, and the matrix D is a
diagonal matrix having the reciprocals of the diagonal elements of the matrix L* as its components.

This subroutine uses only the upper triangular portions of arrays AR and Al

153

ZBHPSL, CBHPSL

Simultaneous Linear Equations (Hermitian Matrix)

0.0
0.0
0.0

1/[5’5

Matrix L* Matrix D
l171 l271 l371 l571 1/l171 0.0 0.0
0.0 l2,2 l3,2 .. l5,2 0.0 1/12’2 0.0
00 00 lss - Iss 00 00 1/lss
00 00 00 --- lIs5 0.0 0.0 0.0
4
Storage status within array AR(LNA, K)
Lo {1} R{ls1} R{ls,1}
* 12’2 ?R{lg,z} ?R{l5,2}
* * l3’3 ?R{l5,3}
LNA ’

* * * ls,5
- —— — = N-~—— =
——_————————————— K-————————-

Storage status within array AI(LNA, K)

0.0 S{laa} S{ls1} S{ls,1}

* 0.0 S{ls,2} S{ls,2}

* * 0.0 %{l573}

LNA '

* * * 0.0
—————————— N - —
———————————— K-———-——-—-—-

Remarks

a. LNA > N and N < K must hold.

b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2—9 Storage Status of Matrix L* and Contents of Matrix D

(¢) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix
A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)
in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

9 T+3i 2+5 1+ T 10 + 6i
7—3 10 3+2 2+4i xo | | 11420
2-5 3-2 8 544 z3 | | 4+6i
1—i 2—-4i 5—i 6 T4 4+ 6i

(b) Input data

Coefficient matrix real part AR and Imaginary part A, LNA = 11, N = 4 and constant vector B.

154

ZBHPSL, CBHPSL
Simultaneous Linear Equations (Hermitian Matrix)

(¢) Main program

PROGRAM ABHPSL
! #%% EXAMPLE OF ZBHPSL *xx
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11,LNW = 22)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),BR(LNA),BI(LNA),W1(LNW)
DIMENSION IPVT(LNA)

CHARACTER*50 FMT (4)

DATA FMT /’(6X 4(1X,A1,F5.1,1X,A1,F5.1,1X,A1))’ ,&
>(6X, 16X, 3(1X,A1,F5.1,1X,A1,F5.1,1X,A1))’,&
> (6X, 2(16X) 2(1X,A1, JF5. 1,1X,A1,F5.1,1X, A1) a
> (6X, 3(16X), 1X,A1,F5.1,1X,A1,F5.1,1X,A1)’

READ (5,*%) N
WRITE (6,1000) N
DO 10 I =1, N
READ (5,%) (AR(I,J),AI(I,J),J=I,N)
WRITE (6,FMT(I)) (> (’,AR(I,J),’,’,AI(I,J),’)’,J=I,N)
10 CONTINUE
READ (5,*) (BR(I),BI(I),I=1,N)
WRITE (6, 1100)

~e v

DO 20 I =1,
WRITE (6 1200) BR(I),BI(I)
20 CONTINUE

WRITE (6,1300)
CALL ZBHPSL (AR,AI,LNA,N,BR,BI,IPVT,W1,IERR)
WRITE (6,1400) ’ZBHPSL’,IERR
WRITE (6,1600)
DO 30 I=1,
WRITE (6, 1700) I,BR(I),BI(I)
30 CONTINUE
STOP
]
1000 FORMAT (’ °,/,/,’ **x ZBHPSL *x*x*’,/ 2X,’** INPUT *x*’,&
/,6X,’N =’,13,&
/,6X,’COEFFICIENT MATRIX (REAL, IMAGINARY)’)
1100 FORMAT (6X,’CONSTANT VECTOR (REAL, IMAGINARY)’)
1200 FORMAT (6X,’ (’,F5.1,’ ,’,F5.1,’)’)
1300 FORMAT (2X,’** OQUTPUT *x*’)
1400 FORMAT (6X,’IERR (’,A6,’) =’,Ib5)
1600 FORMAT (6X ’SOLUTIDN (REAL, IMAGINARY)’)
1700 FORMAT (10X,’X(’,I2,’) = (’.D18.10,’ ,’,D18.10,°)*)
END

(d) Output results

**x ZBHPSL *k*x*
*% INPUT *x*

N= 4
C%EFFICIENT MATRIX (REAL, IMAGIN%RY)

9.0, 0.0) (7.0, 3.0) 2.0, 5.0) (1.0, 1.0)
(10.0, 0.0 (¢ 3.0, 2.0) ¢ 2.0, 4.0)
(8.0, 0.0)(5.0, 1.0)
(6.0, 0.0)
CONSTANT VECTOR (REAL, IMAGINARY)
(10.0 , 6.0)
(11.0 . 2.0)
(4.0, 6.0)
(4.0 . 6.0)
*% QUTPUT **
IERR (ZBHPSL) = 0

SDLUTION)(REAL, IMAGINARY)
X(1

(= 0.1000000000D+01 , 0.0000000000D+00)
X(2) = (0.1000000000D+01 , 0.8881784197D-16)
X(3) = (-0.4971147871D-16 , 0.1000000000D+01)
X(4) = (-0.4170837849D-16 , 0.1000000000D+01)

155

ZBHPUD, CBHPUD
LDL* Decomposition of a Hermitian Matrix

2.9.2 ZBHPUD, CBHPUD
LDL* Decomposition of a Hermitian Matrix
(1) Function
ZBHPUD or CBHPUD uses the modified Cholesky method to perform an LDL* decomposition of the

Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:
CALL ZBHPUD (AR, AI, LNA, N, IPVT, W1, IERR)
Single precision:
CALL CBHPUD (AR, AI, LNA, N, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 AR D LNA, N Input | Real part of Hermitian matrix A (two-
R dimensional array type) (upper triangular type)

Output | Real part of upper triangular matrix L* when
A is decomposed into A = LDL* (See Note (a))
2 Al {D} LNA,N Input | Imaginary part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output | Imaginary part of upper triangular matrix L*
when A is decomposed into A = LDL* (See

Note (a))
3 LNA I 1 Input | Adjustable dimension of array AR and Al
4 N I 1 Input | Order of matrix A
IPVT I N Output | Pivoting information

IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (b))

6 W1 D 2x N Work | Work area
R
7 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

156

ZBHPUD, CBHPUD
LDL* Decomposition of a Hermitian Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of arrays AR and Al are not
changed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LDL* decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix L* is stored in the upper triangular portions of arrays AR and AlI. Since
the diagonal matrix D and the lower triangular matrix L are calculated from L*, they are not stored
in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and Al
(See Sections 2.9.1 Figure 2—9.)

(b) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix
A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)
in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)
elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

157

ZBHPUC, CBHPUC
LDL* Decomposition and Condition Number of a Hermitian Matrix

2.9.3 ZBHPUC, CBHPUC
LDL* Decomposition and Condition Number of a Hermitian Matrix

(1) Function
ZBHPUC or CBHPUC uses the modified Cholesky method to perform an LDL* decomposition and obtain

the condition number of the Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:
CALL ZBHPUC (AR, AI LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL CBHPUC (AR, AI, LNA, N, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 AR D LNA, N Input | Real part of Hermitian matrix A (two-
R dimensional array type) (upper triangular type)

Output | Real part of upper triangular matrix L* when
A is decomposed into A = LDL* (See Note (a))
2 Al {D} LNA,N Input | Imaginary part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output | Imaginary part of upper triangular matrix L*
when A is decomposed into A = LDL* (See

Note (a))
3 LNA I 1 Input | Adjustable dimension of arrays AR and Al
4 N I 1 Input | Order of matrix A
IPVT I N Output | Pivoting information

IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (b))

6 COND D 1 Output | Reciprocal of the condition number
i

7 W1 D 2x N Work | Work area
il

8 IERR I 1 Output | Error indicator

158

ZBHPUC, CBHPUC
LDL* Decomposition and Condition Number of a Hermitian Matrix

(4) Restrictions
(a) 0 < N < LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of arrays AR and Al are not
changed.
COND < 1.0 is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LDL* decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ A diagonal element became equal to 0.0 | Processing is aborted.
in the i-th processing step. The condition number is not obtained.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix L* is stored in the upper triangular portions of arrays AR and Al Since
the diagonal matrix D and the lower triangular matrix L are calculated from L*, they are not stored
in arrays AR and Al This subroutine uses only the upper triangular portions of arrays AR and Al
(See 2.9.1 Figure 2—9.)

(b) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix
A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)
in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)
elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

(c) Although the condition number is defined by ||A|| - ||A™!||, an approximate value is obtained by this

subroutine.

159

ZBHPLS, CBHPLS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix)

2.9.4 ZBHPLS, CBHPLS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix)
(1) Function
ZBHPLS or CBHPLS solves the simultaneous linear equations LDL*x = b having the Hermitian matrix
A (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified

Cholesky method as coefficient matrix.

(2) Usage
Double precision:
CALL ZBHPLS (AR, AI, LNA, N, BR, BI, IPVT, IERR)
Single precision:
CALL CBHPLS (AR, AL, LNA, N, BR, BI, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 AR D LNA N Input | Real part of coefficient matrix A after
R LDL* decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)
(See Notes (a) and (b))
2 Al {D} LNA,N Input | Imaginary part of coefficient matrix A after

LDL* decomposition (Hermitian matrix, two-
dimensional array type, upper triangular type)
(See Notes (a) and (b))

3 LNA I 1 Input | Adjustable dimension of array AR and Al
4 N I 1 Input | Order of matrix A
BR D N Input | Real part of constant vector b
{R} Output | Real part of solution =
6 BI D N Input | Imaginary part of constant vector b
{R} Output | Imaginary part of solution x
7 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (c))
8 IERR I 1 Output | Error indicator

160

ZBHPLS, CBHPLS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix)

(4) Restrictions
(a) 0 < N < LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) + B(1)/AR(1,1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes

(a) The coefficient matrix A must be LDL* decomposed before using this subroutine. Normally, you
ZBHPUD

should decompose matrix A by calling the 2.9.2
CBHPUD

}. However, if you also want to obtain

ZBHPUC
the condition number, you should use 2.9.3 v . In addition, if you have already used 2.9.1
CBHPUC
ZBHPSL
CBHPSL to solve simultaneous linear equations having the same coefficient matrix A, you can use

the LDL* decomposition obtained as part of its output. To solve multiple sets of simultaneous linear

equations where only the constant vector b differs, the solution is obtained more efficiently by directly
ZBHPMS

using the subroutine 2.9.5
CBHPMS

} to perform the calculations.

(b) The upper triangular matrix L* must be stored in the upper triangular portion of array A. Since the
diagonal matrix D and the lower triangular matrix L are calculated from L*, they need not be stored
in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and Al
(See 2.9.1 Figure 2—9.)

(¢) Information about partial pivoting performed during LDL* decomposition must be stored in IPVT.

This information is given by the subroutines which perform LDL* decomposition of matrix A.

161

ZBHPMS, CBHPMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix)

2.9.5 ZBHPMS, CBHPMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-
Decomposed Hermitian Matrix)

(1) Function
ZBHPMS or CBHPMS solves the simultaneous linear equations LDL*x; = b; (i = 1,2,---,m) having the
Hermitian matrix A (two-dimensional array type) (upper triangular type) which has been LDL* decomposed
by the modified Cholesky method as coefficient matrix. That is, when the n X m matrix B is defined by
B = [b1, ba, -+, by, the subroutine obtains [x1, X2, -+, Tm| = A1 B.

(2) Usage
Double precision:
CALL ZBHPMS (AR, AL, LNA, N, BR, BI, LNB, M, IPVT, IERR)
Single precision:
CALL CBHPMS (AR, AI, LNA, N, BR, BI, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 AR D LNA, N Input | Real part of Coefficient matrix A after
R LDL* decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)

(See Notes (a) and (b))

2 Al D LNA,N Input | Imaginary part of Coefficient matrix A after
{ } LDL* decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)
(See Notes (a) and (b))

3 LNA I 1 Input | Adjustable dimension of array AR and Al
4 N I 1 Input | Order of matrix A
BR D LNB,M Input | Real part of Constant vector b;
{R} (i=1,2,---,m)
Output | Real part of Solution x;(i =1,2,---,m)
6 BI D LNB,M Input | Imaginary part of Constant vector b;
{R} (i=1,2,---,m)
Output | Imaginary part of Solution x;
(i=1,2,---,m)
7 LNB I 1 Input | Adjustable dimension of array BR and BI
8 M 1 1 Input | Number of right-hand side vectors, m
9 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row (column) i in the i-th pro-
cessing step. (See Note (c))
10 IERR I 1 Output | Error indicator

162

ZBHPMS, CBHPMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix)

(4) Restrictions

(a) 0 < N < LNA,LNB
(b)y M>0

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.

1000 N was equal to 1. BR(1,i) + BR(1,1)/AR(1,1),
BI(1,i) « BI(1,i)/AR(1,1)
(i=1,2,---,m) are performed.

3000 Restriction (a) was not satisfied. Processing is aborted.

3010 Restriction (b) was not satisfied.

(6) Notes

(a) The coefficient matrix A must be LDL* decomposed before using this subroutine. Normally, you should
ZBHPUD

decompose matrix A by calling the 2.9.2
CBHPUD

} subroutine. However, if you also want to obtain

ZBHPUC
the condition number, you should use 2.9.3 . In addition, if you have already used 2.9.1
CBHPUC
ZBHPSL
CBHPSL to solve simultaneous linear equations having the same coefficient matrix A, you can use

the LDL* decomposition obtained as part of its output.

(b) The upper triangular matrix L* must be stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L*, they need not be stored in array A. (See Fig. 2—9 in
Section 2.9.1)

(¢) Information about partial pivoting performed during LDL* decomposition must be stored in IPVT.

This information is given by the subroutines which perform LDL* decomposition of matrix A.
(7) Example

(a) Problem

Solve the following simultaneous linear equations.

9 T+3i 2+45i 141i | [211 x12 =13 214 104+ 6i 8+ 18i 22i 2+ 10i
7—3i 10 3+2 2+44i | | w01 oo @os woa | | 1142 124110 8+23i 7+ 14i
2-5i 3—2i 8 5+1i | | @31 wso 33 x4 | | 4460 15450 20460 9+7i
1—1i 2—4i 5—1i 6 | | 241 Taz Tus Tas A46i 842 1642 12+6i

(b) Input data
Coefficient matrix A which has been LDL* decomposed by the modified Cholesky method, LNA =
11,N = 4, constant vectors b;(i = 1,2,---,m), LNB=11 and M=4.

163

ZBHPMS, CBHPMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix)

(¢) Main program

PROGRAM ABHPMS
! %x* EXAMPLE OF ZBHPUD, ZBHPMS sk
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),&
BR(LNA,LNA) ,BI(LNA,LNA), WK(LNA) IPVT(LNA)

READ (5,*) N
READ (5,*) M
WRITE (6, 1000) N, M
DO 10 I =
READ (5, *) (AR(I,J),AI(I,]),J=I,N)
10 CONTINUE
DO 15 I =1, N
WRITE(6,1100) (AR(J,I),-AI(J,I), J
J

(AR(I.3). AICI. D).
15 CONTINUE

WRITE (6, 1200)
DO 20 J = 1,
READ (5, *) (BR(I,J),BI(I,J),I=1,N)
20 CONTINUE
DO 25 I
WRITE (6 1100) (BR(I,J),BI(I,J),J=1,M)
25 CONTINUE
WRITE (6,1300)
CALL ZBHPUD (AR,AI,LNA,N,IPVT,WK,IERR)
WRITE (6,1400) °>ZBHPUD’,IERR
CALL ZBHPMS (AR,AI,LNA,N,BR,BI,LNA,M,IPVT,JERR)
WRITE (6,1400) °ZBHPMS’,JERR
IF (IERR .GE. 3000) STOP
WRITE (6, 160)
DO 30 I = N
WRITE (6 1100) (BR(I,J),BI(I,J),J=1,M)
30 CONTINUE
STOP

1000 FDRMAT(lX /,/,&
Yx*kx ZBHPUD, ZBHPMS *x*x’, /. /.&
1x 1X,7%% INPUT *x’,/,/.&
1X,5X,°N =°,13,/,&
1X.5X.°M =2.13./.&
/,1X,5X, ’CDEFFICIENT MATRIX’)
1100 FORMAT(1X,6X,4(>(,F > ,2,F8.4,7)7))
1200 FORMAT(/,1X,5X, ’CDNSTANT VECTORS)
1300 FORMAT(/,1X,1X,’%% QUTPUT *x*’,/)
1400 FORMAT(1X,5X,’ERR (*,A6,’) =’,I5)
1600 FORMAT(/,1X,5X,’SOLUTION’)
END

(d) Output results

*%x ZBHPUD, ZBHPMS %
*x% INPUT *x*

N= 4

M= 4

COEFFICIENT MATRIX
(9.0000, 0.0000)(7.0000, 3.0000)(2.0000, 5.0000)(1.0000, 1.0000)
(7.0000, -3.0000)(10.0000, 0.0000)(3.0000, 2.0000)(2.0000, 4.0000)
(2.0000, -5.0000)(3.0000, -2.0000)(8.0000, 0.0000)(5.0000, 1.0000)
(1.0000, -1.0000)(2.0000, -4.0000)(5.0000, -1.0000)(6.0000, 0.0000)

CONSTANT VECTORS
(10.0000, 6.0000)(8.0000, 18.0000)(0.0000, 22.0000)(2.0000, 10.0000)
(11.0000, 2.0000)(12.0000, 11.0000)(8.0000, 23.0000)(7.0000, 14.0000)
(4.0000, 6.0000) (15.0000, 5.0000) (20.0000, 6.0000)(9.0000, 7.0000)
(4.0000, 6.0000)(8.0000, 2.0000)(16.0000, 2.0000)(12.0000, 6.0000)

** QUTPUT *x*

ERR (ZBHPUD) = 0

ERR (ZBHPMS) = 0

SOLUTION
(1.0000, 0.0000)(-0.0000, 1.0000)(0.0000, 1.0000)(1.0000, 0.0000)
(1.0000, 0.0000)(1.0000, -0.0000)(-0.0000, 1.0000)(0.0000, 1.0000)
(-0.0000, 1.0000)(1.0000, -0.0000)(1.0000, 0.0000)(0.0000, 1.0000)
(-0.0000, 1.0000)(0.0000, 1.0000)(1.0000, -0.0000)(1.0000, -0.0000)

164

ZBHPDI, CBHPDI
Determinant and Inverse Matrix of a Hermitian Matrix

2.9.6 ZBHPDI, CBHPDI
Determinant and Inverse Matrix of a Hermitian Matrix

(1) Function
ZBHPDI or CBHPDI obtains the determinant and inverse matrix of the Hermitian matrix A (two-dimensional

array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method.

(2) Usage
Double precision:
CALL ZBHPDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)
Single precision:
CALL CBHPDI (AR, AI, LNA, N, IPVT, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 AR D LNA, N Input | Real part of Hermitian matrix A (two-
{ R} dimensional array type) (upper triangular type)
after LDL* decomposition (See Notes (a) and
(b))
Output | Real part of the Inverse matrix of matrix A (See
Note (b))
2 Al D LNA, N Input | Imaginary part of Hermitian matrix A (two-
{R} dimensional array type) (upper triangular type)
after LDL* decomposition (See Notes (a) and
(b))
Output | Imaginary part of the Inverse matrix of matrix
A (See Note (b))
3 LNA I 1 Input | Adjustable dimension of array AR and Al
4 N I 1 Input | Order of matrix A
5 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (d))
6 DET D 2 Output | Determinant of matrix A (See Note (c))
i
7 ISW I 1 Input | Processing switch
ISW>0:0Obtain determinant.
ISW=0:Obtain determinant and inverse ma-
trix.
ISW<0:Obtain inverse matrix.

165

ZBHPDI, CBHPDI
Determinant and Inverse Matrix of a Hermitian Matrix

Input
No. | Argument | Type Size nput/ Contents
Output
8 W1 D N Work | Work area
R
9 IERR I 1 Output | Error indicator
(4) Restrictions
(a) 0 < N<LNA
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. DET(1) «+ A(1,1)
DET(2) < 0.0
AR(1,1) + 1.0/AR(1, 1) are performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes

(a) The coefficient matrix A must be LDL* decomposed before using this subroutine. Use any of the 2.9.2

ZBHPUD ZBHPUC ZBHPSL) ..
,2.93 ,29.1 subroutines to perform the decomposition.
CBHPUD CBHPUC CBHPSL

(b) The upper triangular matrix L* must be stored in arrays AR and Al. Since the diagonal matrix D and
the lower triangular matrix L are calculated from L*, they should not be stored in arrays AR and Al
Since the inverse matrix A~! is a Hermitian matrix, only its upper triangular portion is stored in A.

This subroutine uses only the upper triangular portions of arrays AR and Al. (See 2.9.1 Figure 2—9.)

(¢) The determinant is given by the following expression:
det(A) = DET(1) x (10.0PET(2)
Scaling is performed at this time so that:
1.0 < |DET(1)] < 10.0

(d) Information about partial pivoting performed during LDL* decomposition must be stored in IPVT.

This information is given by the subroutines which perform LDL* decomposition of matrix A.

(e) The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A~'b or A™!B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

166

ZBHPLX, CBHPLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)

2.9.7 ZBHPLX, CBHPLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)

(1) Function
ZBHPLX or CBHPLX uses an iterative method to improve the solution of the simultaneous linear equations
Ax = b having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage
Double precision:
CALL ZBHPLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, IPVT, W1,
IERR)
Single precision:
CALL CBHPLX (AR, AI, LNA, N, ALR, ALI BR, BI, XR, XI, ITOL, NIT, IPVT, W1,
IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 AR D LNA, N Input | Real part of coefficient matrix A (Hermitian
R matrix, two-dimensional array type, upper tri-

angular type)
2 Al {D} LNA,N Input | Imaginary part of coefficient matrix A (Hermi-

tian matrix, two-dimensional array type, upper

triangular type)

3 LNA I 1 Input | Adjustable dimension of arrays AR, AI, ALR
and ALI
4 N I 1 Input | Order of matrix A
5 ALR D LNA N Input | Real part of coefficient matrix A after LDL*
R decomposition (See Note (a))
6 ALI D LNA, N Input | Imaginary part of coefficient matrix A after

LDL* decomposition (See Note (a))

=

Input | Real part of constant vector b

N Input | Imaginary part of constant vector b

N Input | Real part of approximate solution x

Output | Real part of iteratively improved solution x

| 0| = O

10 XI N Input | Imaginary part of approximate solution

Output | Imaginary part of iteratively improved solution

=

\]

os}

=
/—’H/—/H/—’HE’?/—/H/—/H
—— —— | —— | —— | Y—— | Y——

Z

xTr

167

ZBHPLX,

CBHPLX

Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)

No. | Argument | Type Size fnput/ Contents
Output
11 ITOL I 1 Input | Number of digits to which solution is to be im-
proved (See Note (b))
Output | Approximate number of digits to which solution
was improved (See Note (c))
12 NIT I 1 Input | Maximum number of iterations (See Note (d))
13 IPVT I N Output | Pivoting information. (See Note (a))
14 W1 D 3xN Work | Work area
i}
15 IERR I 1 Output | Error indicator

(4) Restrictions

(a)

0 < N<LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The solution is not improved.
3000 Restriction (a) was not satisfied. Processing is aborted.
5000 The solution did not converge within the | Processingis aborted after calculating the
maximum number of iterations. ITOL output value.
6000 The solution could not be improved.
(6) Notes

(a)

()

(d)

ZBHPSL ZBHPL
This subroutine improves the solution obtained by the 2.9.1 5 or 2.9.4 5 sub-
CBHPSL CBHPLS

ZBHPSL
routine. Therefore, the coefficient matrix A after it has been decomposed by the 2.9.1 {CBHPSL}’

CBHPUD CBHPUC
be given as input.

ZBHPUD ZBHPUC
2.9.2 { }, or 2.9.3 { } subroutines and the pivoting information at that time must

Solution improvement is repeated until the high-order ITOL digits of the solution do not change.
However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.
ITOL <0 or ITOL > —LOGI10(2 x) (e : Unit for determining error)

If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

168

2.10 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY
TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT
TYPE) (NO PIVOTING)

2.10.1 ZBHRSL, CBHRSL
Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

(1) Function
ZBHRSL or CBHRSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having a Hermitian matrix (two-dimensional array type) (upper triangular type) as coefficient matrix.

(2) Usage
Double precision:
CALL ZBHRSL (AR, AI, LNA, N, BR, BI, W1, IERR)
Single precision:
CALL CBHRSL (AR, AI, LNA, N, BR, BI, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 AR D LNA,N Input | Real part of coefficient matrix A (Hermitian
R matrix, two-dimensional array type, upper tri-

angular type)

Output | Real part of upper triangular matrix L* when
A is decomposed into A = LDL* (See Note (b))
2 Al D LNA/N Input | Imaginary part of coefficient matrix A (Hermi-

{ } tian matrix, two-dimensional array type, upper

triangular type)

Output | Imaginary part of upper triangular matrix L*
when A is decomposed into A = LDL* (See

Note (b))
3 LNA I 1 Input | Adjustable dimension of arrays AR and Al
4 N I 1 Input | Order of matrix A
BR D N Input | Real part of constant vector b
R Output | Real part of solution x
6 BI D N Input | Imaginary part of constant vector b
R Output | Imaginary part of solution x

169

ZBHRSL, CBHRSL
Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

Input
No. | Argument | Type Size nput/ Contents
Output
7 W1 D 2x N Work | Work area
R
8 IERR I 1 Output | Error indicator
(4) Restrictions
(a) 0 < N<LNA
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of arrays AR and Al are not
changed.
B(1) < B(1)/AR(1,1) is performed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LDL* decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step of the LDL*
decomposition of coefficient matrix A.
A is nearly singular.
(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, call

this subroutine only once and then call subroutine 2.10.4

ZBHRLS
CBHRLS

the required number of times

varying only the contents of B. This enables you to eliminate unnecessary calculation by performing

the LDL* decomposition of matrix A only once.

(b) The upper triangular matrix L* is stored in the upper triangular portions of arrays AR and Al Since

the diagonal matrix D and the lower triangular matrix L are calculated from L*, they are not stored

in arrays AR and AI. The matrix L is the adjoint matrix of the matrix L*, and the matrix D is a

diagonal matrix having the reciprocals of the diagonal elements of the matrix L* as its components.

This subroutine uses only the upper triangular portions of arrays AR and Al (See Fig. 2—10).

170

ZBHRSL, CBHRSL
Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

Matrix L* Matrix D
lig 21 lsa -+ Is; 1/lix 0.0 00 --- 00
0.0 lon lso - ls2 00 1/l 00 -~ 0.0
0.0 0.0 I35 - lIss 00 00 1/lss --- 0.0
00 00 00 --- lIs5 0.0 0.0 0.0 -+ 1/ls5
3
Storage status within array AR(LNA, K)
i R{len} R{lsa} - R{ls1}
* l2,2 R{ls2} -+ RN{ls2}
* * l3,3 oo {53} N
LNA '

* * * ls,5
- —— = N-———————— —
———————————— K-——-——-——--—-—- —

Storage status within array AI(LNA, K)

0.0 S{le1} S{lsa} -+ S{lsa}

* 0.0 S{ls2} - {is2}

* * 0.0 o S{lss) N
LNA '

* * * 0.0
—————————— N - —
———————————— K-——-——-——--—-—- —

Remarks
a. LNA > N and N < K must hold.

b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2—10 Storage Status of Matrix L* and Contents of Matrix D
(7) Example

(a) Problem

Solve the following simultaneous linear equations.

9 T+4+3i 245 1+ T 10 + 6i
7—3 10 3+2 2+4i xo | | 11420
2-5 3-2 8 544 z3 | | 4+6i
1—i 2—4i 5—i 6 T4 4+ 6i

(b) Input data
Coefficient matrix real part AR and Imaginary part AIl, LNA = 11, N = 4 and constant vector B.
(¢) Main program
PROGRAM ABHRSL
! #x* EXAMPLE OF ZBHRUC,ZBHRLS *x*
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11,LNW = 22)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),BR(LNA),BI(LNA),W1(LNW)

CHARACTER*50 FMT (4)

171

ZBHRSL, CBHRSL
Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

DATA FMT /’(6X 4(1X,A1,F5.1,1X,A1,F5.1,1X,A1))° ,&
’(6X, 16X, 3(1X,A1,F5.1,1X,A1,F5.1,1X,A1))’,&
> (6X, 2(16X) 2(1X,A1, JF5. 1,1X,A1,F5.1,1X, A a
’(6X,3(16X), 1X,A1,F5.1,1X,A1,F5.1,1X,A1)

READ (5,*) N
WRITE (6,1000) N
DO 10 I =1, N
READ (5,%) (AR(I,J),AI(I,),J=I,N)
WRITE (6,FMT(I)) (> (’,AR(T, J), ,?,AI(1,3),?)?,J=I,N)
10 CONTINUE
READ (5,*) (BR(I),BI(I),I=1,N)
WRITE (6, 1100)
DO 20 I =1,
WRITE (6 1200) BR(I),BI(I)
20 CONTINUE
WRITE (6,1300)
CALL ZBHRUC (AR,AI,LNA,N,COND,W1,IERR)
WRITE (6,1400) °>ZBHRUC’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0DO/COND
CALL ZBHRLS (AR,AI,LNA,N,BR,BI,KERR)
WRITE (6,1400) °’ZBHRLS’,KERR
WRITE (6,1500) COND
WRITE (6 160)
DO 30 I
WRITE (6 1700) I,BR(I),BI(I)
30 CONTINUE
STOP

H
H
H
>

>
>
>

!
1000 FORMAT (> ° / /,’ **x ZBHRUC,ZBHRLS #*x’,/,2X,’** INPUT *x’,&

/,6X.°N =7,13,&
/.6X,>COEFFICIENT MATRIX (REAL, IMAGINARY)’)
1100 FORMAT (68X, CONSTANT VECTOR (REAL, IMAGINARY)’)
1200 FORMAT (6X,’ (’,F5.1, ,?,F5.1,)%)
1300 FORMAT (2X,’%% OUTPUT *%’)
1400 FORMAT (6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT (6X,’CONDITION NUMBER =’,D18.10)
1600 FORMAT (6X,’SOLUTION (REAL, IMAGINARY)°’)
1700 FORMAT (10X,°X(’,I2,’) = (°,D18.10,’ ,’,D18.10,’)°’)
END

(d) Output results

xxx ZBHRUC,ZBHRLS **x
*x% INPUT *x*
N= 4
COEFFICIENT MATRIX (REAL, IMAGINARY)
(9.0 0) (3.0) (

, 0. .0 , 2.0, 5.0) (1.0, 1.0)
(10.0, 0.0)(3.0, 2.0) (2.0, 4.0)
(8.0, 0.0) (5.0, 1.0)
(6.0, 0.0)
CONSTANT VECTOR (REAL, IMAGINARY)
10.0 , 6.0)
(11.0 , 2.0
(4.0, 6.0)
(4.0, 6.0)
*%x QUTPUT **
IERR (ZBHRUC) = O

IERR (ZBHRLS) = 0
CONDITION NUMBER = 0.2998721749D+02
SOLUTION (REAL, IMAGINARY)

X(1) = (0.1000000000D+01 , 0.0000000000D+00)
X(2) = (0.1000000000D+01 , 0.5464378949D-16)
X(3) = (-0.1022363649D-15 , 0.1000000000D+01)
X(4) = (-0.4170837849D-16 , 0.1000000000D+01)

172

ZBHRUD, CBHRUD
LDL* Decomposition of a Hermitian Matrix (No Pivoting)

2.10.2 ZBHRUD, CBHRUD
LDL* Decomposition of a Hermitian Matrix (No Pivoting)

(1) Function
ZBHRUD or CBHRUD uses the modified Cholesky method to perform an LDL* decomposition of the

Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:
CALL ZBHRUD (AR, AI, LNA, N, W1, IERR)
Single precision:
CALL CBHRUD (AR, AI, LNA, N, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 AR D LNA, N Input | Real part of Hermitian matrix A (two-
R dimensional array type) (upper triangular type)

Output | Real part of upper triangular matrix L* when
A is decomposed into A = LDL* (See Note (a))
2 Al {D} LNA,N Input | Imaginary part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output | Imaginary part of upper triangular matrix L*
when A is decomposed into A = LDL* (See

Note (a))
3 LNA I 1 Input | Adjustable dimension of array AR and Al
4 N I 1 Input | Order of matrix A
W1 D 2x N Work | Work area
)
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N <LNA

173

ZBHRUD, CBHRUD
LDL* Decomposition of a Hermitian Matrix (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of arrays AR and Al are not
changed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LDL* decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ A diagonal element became equal to 0.0

in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix L* is stored in the upper triangular portions of arrays AR and Al. Since
the diagonal matrix D and the lower triangular matrix L are calculated from L*, they are not stored
in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and Al
(See Fig. 2—10 in Section 2.10.1).

174

ZBHRUC, CBHRUC
LDL* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting)

2.10.3 ZBHRUC, CBHRUC
LDL* Decomposition and Condition Number of a Hermitian Matrix (No
Pivoting)

(1) Function
ZBHRUC or CBHRUC uses the modified Cholesky method to perform an LDL* decomposition and obtain
the condition number of the Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:
CALL ZBHRUC (AR, AI, LNA, N, COND, W1, IERR)
Single precision:
CALL CBHRUC (AR, AI, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(S8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 AR D LNA N Input | Real part of Hermitian matrix A (two-
R dimensional array type) (upper triangular type)

Output | Real part of upper triangular matrix L* when
A is decomposed into A = LDL* (See Note (a))
2 Al {D} LNA,N Input | Imaginary part of Hermitian matrix A (two-

dimensional array type) (upper triangular type)

Output | Imaginary part of upper triangular matrix L*
when A is decomposed into A = LDL* (See

Note (a))
3 LNA I 1 Input | Adjustable dimension of arrays AR and Al
N I 1 Input | Order of matrix A

5 COND D 1 Output | Reciprocal of the condition number

R
6 W1 D 2 x N Work | Work area

R
7 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

175

ZBHRUC, CBHRUC

LDL* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of arrays AR and Al are not
changed.
COND < 1.0 is performed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LDL* decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became equal to 0.0 | Processing is aborted.
in the i-th processing step. The condition number is not obtained.
A is nearly singular.
(6) Notes

(a) The upper triangular matrix L* is stored in the upper triangular portions of arrays AR and Al. Since
the diagonal matrix D and the lower triangular matrix L are calculated from L*, they are not stored

in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and Al

(See Fig. 2—10 in Section 2.10.1).

(b) Although the condition number is defined by [|A] - ||A}||, an approximate value is obtained by this

subroutine.

176

ZBHRLS, CBHRLS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No Pivoting)

2.10.4 ZBHRLS, CBHRLS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No
Pivoting)

(1) Function
ZBHRLS or CBHRLS solves the simultaneous linear equations LDL*x = b having the Hermitian matrix
A (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified
Cholesky method as coefficient matrix.

(2) Usage
Double precision:
CALL ZBHRLS (AR, AI, LNA, N, BR, BI, IERR)
Single precision:
CALL CBHRLS (AR, AI, LNA, N, BR, BI, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 AR D LNA N Input | Real part of coefficient matrix A after
R LDL* decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)
(See Notes (a) and (b))
2 Al {D} LNA,N Input | Imaginary part of coefficient matrix A after

LDL* decomposition (Hermitian matrix, two-
dimensional array type, upper triangular type)
(See Notes (a) and (b))

3 LNA I 1 Input | Adjustable dimension of array AR and Al
N I 1 Input | Order of matrix A
5 BR D N Input | Real part of constant vector b
R Output | Real part of solution x
6 BI D N Input | Imaginary part of constant vector b
R Output | Imaginary part of solution x
7 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N <LNA

177

ZBHRLS,

CBHRLS

Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) + B(1)/AR(1,1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes

(a)

The coefficient matrix A must be LDL* decomposed before using this subroutine. Normally, you
ZBHRUD

should decompose matrix A by calling the 2.10.2
CBHRUD

}. However, if you also want to obtain

7ZBH
the condition number, you should use 2.10.3 RUC . In addition, if you have already used 2.10.1
CBHRUC
ZBHRSL
to solve simultaneous linear equations having the same coefficient matrix A, you can use
CBHRSL ‘

the LDL* decomposition obtained as part of its output. To solve multiple sets of simultaneous linear

equations where only the constant vector b differs, the solution is obtained more efficiently by directly
ZBHRMS

using the subroutine 2.10.5
CBHRMS

} to perform the calculations.

The upper triangular matrix L* must be stored in the upper triangular portion of array A. Since the
diagonal matrix D and the lower triangular matrix L are calculated from L*, they need not be stored
in arrays AR and AI. This subroutine uses only the upper triangular portions of arrays AR and Al
(See Fig. 2—10 in Section 2.10.1).

178

ZBHRMS, CBHRMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix) (No
Pivoting)

2.10.5 ZBHRMS, CBHRMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-
Decomposed Hermitian Matrix) (No Pivoting)

(1) Function
ZBHRMS or CBHRMS solves the simultaneous linear equations LDL*x; = b;(i = 1,2,---,m having the
Hermitian matrix A (two-dimensional array type) (upper triangular type) which has been LDL* decomposed
by the modified Cholesky method as coefficient matrix. That is, when the n X m matrix B is defined by
B = [b1,ba, -+, by, the subroutine obtains [x1, X2, -+, Tm| = A1 B.

(2) Usage
Double precision:
CALL ZBHRMS (AR, AI, LNA, N, BR, BI, LNB, M, IERR)
Single precision:
CALL CBHRMS (AR, AL, LNA, N, BR, BI, LNB, M, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 AR D LNA, N Input | Real part of Coefficient matrix A after
R LDL* decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)

(See Notes (a) and (b))

2 Al D LNA, N Input | Imaginary part of Coefficient matrix A after
{ } LDL* decomposition (Hermitian matrix, two-

dimensional array type, upper triangular type)
(See Notes (a) and (b))

3 LNA I 1 Input | Adjustable dimension of array AR and Al
4 N I 1 Input | Order of matrix A
BR D LNB,M Input | Real part of Constant vector b;
{R} (i=1,2,---,m)

Output | Real part of Solution x;
(i=1,2,---,m)
6 BI {D} LNB,M Input | Imaginary part of Constant vector b;

(i=1,2,---,m)
Output | Imaginary part of Solution x;

(i=1,2,---,m)
LNB I 1 Input | Adjustable dimension of array BR and BI
M I 1 Input | Number of right-hand side vectors, m
9 IERR I 1 Output | Error indicator

179

ZBHRMS, CBHRMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix) (No

Pivoting)

(4) Restrictions

(a) 0 < N<LNA,LNB
(b) M >0
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. BR(1,i) + BR(1,i)/AR(1,1),
BI(1,i) « BI(1,i)/AR(1,1)
(i=1,2,---,m) are performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
(6) Notes
(a) The coefficient matrix A must be LDL* decomposed before using this subroutine. Normally, you

ZBHRUD

should decompose matrix A by calling the 2.10.2
CBHRUD

} subroutine. However, if you also want

ZBHRUC
to obtain the condition number, you should use 2.10.3 U . In addition, if you have already
CBHRUC
ZBHRSL
used 2.10.1 to solve simultaneous linear equations having the same coefficient matrix A,
CBHRSL

you can use the LDL* decomposition obtained as part of its output.

The upper triangular matrix L* must be stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L*, they need not be stored in array A (See Fig. 2—10 in
Section 2.10.1).

(7) Example

(a)

Problem
Solve the following simultaneous linear equations.

9 7+3’L 2+5’L 1+ 1s r11 T12 T13 Ti,4 10+62 8+ 18: 221 2+ 10z
7T— 3 10 342 2+4 To1 T22 w23 T2a4 | | 11420 12+ 110 8+231 T+ 14
2—-51 3—-2 8 5+1s 3,1 T32 T33 L34 B 44671 15+57 204+6: 9+ 7
1-10 2—4i 5—-14 6 T4l Ta T4z Taa 4461 8427 1642 12461
Input data

Coefficient matrix A which has been LDL* decomposed by the modified Cholesky method, LNA =
11,N = 4, constant vectors b;(i = 1,2,---,m), LNB=11 and M=4.
Main program

PROGRAM ABHRMS
| *%* EXAMPLE OF ZBHRUD, ZBHRMS #%*
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11)
DIMENSION AR(LNA,LNA),AI(LNA,LNA),&
BR(LNA,LNA) ,BI(LNA,LNA) ,WK(2+LNA)

READ (5,*) N

READ (5,%) M

WRITE (6,1000) N, M
DO 10 I =1, N

180

ZBHRMS, CBHRMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix) (No

Pivoting)

10

15

20

25

30

1000

1100
1200
1300
1400
1600

READ (5,*) (AR(I,J),AI(I,J),J=I,N)
CONTINUE

DO 15 I =1, N
WRITE(6,1100) (AR(J,I),-AI(J,I),
(AR(I,J), AI(I,J),

J=1, I-1),&
J=I, N)
CONTINUE
WRITE (6, 1200)
DO 20 J =1,

READ (5, *) (BR(I,J),BI(I,J),I=1,N)
CONTINUE
DO 25 I =1, N

WRITE (6 1100) (BR(I,J),BI(I,J),J=1,M)
CONTINUE
WRITE (6,1300)
CALL ZBHRUD (AR,AI,LNA,N,WK,IERR)
WRITE (6,1400) ’ZBHRUD’ IERR
CALL ZBHRMS (AR,AI,LNA, N BR,BI,LNA,M, JERR)
WRITE (6,1400) ’ZBHRMS’ JERR
IF (IERR .GE. 3000) STOP
WRITE (6, 1600)
DO 30 I =1,

WRITE (6 1100) (BR(I,J),BI(I,J),J=1,M)
CONTINUE
STOP

FORMAT (1X,/,/,&

1X', 2%+ ZBHRUD, ZBHRMS #%x’,/,/.&

1X, 1X Yxk INPUT *x*x’,/,/,&

1X,5X,’N =2,13,/,&

1X.5X,°M =7.13./.8&

/,iX, 5%, COEFFICIENT MATRIX’)
FORMAT(1X,6X,4(’ (*,F8.4, ,F8.4,7)°))
FORMAT(/, 1X,5X, > CONSTANT VECTDRS)
FORMAT(/,1X,1X, %% QUTPUT *x’,/)

FORMAT(1X,5X,’ERR (’,A6,’) =?,I5)
FORMAT(/,1X,5X, ’SOLUTION’)
END

(d) Output results

k% k

*k

*k

ZBHRUD, ZBHRMS **x*

INPUT *x*
N= 4
M= 4

COEFFICIENT MATRIX

(9.0000, 0.0000)(7.0000, 3.0000)(2.0000,
(7.0000, -3.0000)(10.0000, 0.0000)(3.0000,
(2.0000, -5.0000)(3.0000, -2.0000)(8.0000,
(1.0000, -1.0000)(2.0000, -4.0000)(5.0000,

CONSTANT VECTORS
(10.0000, 6.0000)(8.0000, 18.0000)(0.0000,
(11.0000, 2.0000)(12.0000, 11.0000)(8.0000,
(4.0000, 6.0000)(15.0000, 5.0000)(20.0000,
(4.0000, 6.0000)(8.0000, 2.0000)(16.0000,

QUTPUT **

ERR (ZBHRUD) = 0

ERR (ZBHRMS) = 0

SOLUTION
(1.0000, 0.0000)(-0.0000, 1.0000)(0.0000,
(1.0000, 0.0000)(1.0000, -0.0000)(-0.0000,
(-0.0000, 1.0000)(1.0000, -0.0000)(1.0000,
(-0.0000, 1.0000)(0.0000, 1.0000)(1.0000,

181

5.0000) (
2.0000) (
0.0000) (
1.0000) (

22.0000) (
23.0000) (
6.0000) (
2.0000) (1

1.0000) (
1.0000) (
0.0000) (-
-0.0000) (

OUIN =

1.
0.
0.
1.

NO~NN

0000,
0000,
0000,
0000,

ST

OO

.0000)
.0000)
.0000)
.0000)

.0000)
.0000)
.0000)
.0000)

.0000)
.0000)
.0000)
.0000)

ZBHRDI, CBHRDI
Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)

2.10.6 ZBHRDI, CBHRDI
Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)

(1) Function
ZBHRDI or CBHRDI obtains the determinant and inverse matrix of the Hermitian matrix A (two-dimensional

array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method.

(2) Usage
Double precision:
CALL ZBHRDI (AR, AI, LNA, N, DET, ISW, W1, IERR)
Single precision:
CALL CBHRDI (AR, AI, LNA, N, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 AR D LNA, N Input | Real part of Hermitian matrix A (two-
{R} dimensional array type) (upper triangular type)
after LDL* decomposition (See Notes (a) and
(b))
Output | Real part of the Inverse matrix of matrix A (See
Note (b))
2 Al D LNA, N Input | Imaginary part of Hermitian matrix A (two-
{R} dimensional array type) (upper triangular type)
after LDL* decomposition (See Notes (a) and
(b))
Output | Imaginary part of the Inverse matrix of matrix
A (See Note (b))
3 LNA I 1 Input | Adjustable dimension of array AR and Al
4 N I 1 Input | Order of matrix A
5 DET D 2 Output | Determinant of matrix A (See Note (c))
)
6 ISW I 1 Input | Processing switch
ISW>0:0Obtain determinant.
ISW=0:Obtain determinant and inverse ma-
trix.
ISW<0:Obtain inverse matrix.
7 W1 D N Work | Work area
it}
8 IERR I 1 Output | Error indicator

182

ZBHRDI, CBHRDI
Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)

(4) Restrictions

(a)

0 < N < LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. DET(1) «+ A(1,1)
DET(2) < 0.0
AR(1,1) « 1.0/AR(1,1) are performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes

()

(b)

The coefficient matrix A must be LDL* decomposed before using this subroutine. Use any of the 2.10.2

ZBHRUD , 2.10.3 ZBHRUC ,2.10.1 ZBHRSL subroutines to perform the decomposition.
CBHRUD CBHRUC CBHRSL

The upper triangular matrix L* must be stored in arrays AR and Al. Since the diagonal matrix D
and the lower triangular matrix L are calculated from L*, they should not be stored in arrays AR and
Al Since the inverse matrix A~! is a Hermitian matrix, only its upper triangular portion is stored in
A. This subroutine uses only the upper triangular portions of arrays AR and AI (See Fig. 2—10 in
Section 2.10.1).

The determinant is given by the following expression:
det(A) = DET(1) x (10.0PET(®)

Scaling is performed at this time so that:
1.0 < |DET(1)| < 10.0

The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A~'b or A~!B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Az = b for the vector & or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

183

ZBHRLX, CBHRLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

2.10.7 ZBHRLX, CBHRLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Ma-
trix) (No Pivoting)

(1) Function
ZBHRLX or CBHRLX uses an iterative method to improve the solution of the simultaneous linear equations
Az = b having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage
Double precision:
CALL ZBHRLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, W1, IERR)
Single precision:
CALL CBHRLX (AR, AI, LNA, N, ALR, ALI, BR, BI, XR, XI, ITOL, NIT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 AR D LNA N Input | Real part of coeflicient matrix A (Hermitian
R matrix, two-dimensional array type, upper tri-

angular type)
2 Al {D} LNA,N Input | Imaginary part of coefficient matrix A (Hermi-

tian matrix, two-dimensional array type, upper

triangular type)

3 LNA I 1 Input | Adjustable dimension of arrays AR, AI, ALR
and ALI
N I 1 Input | Order of matrix A

5 ALR D LNA,N Input | Real part of coefficient matrix A after LDL*
R decomposition (See Note (a))

6 ALI D LNA,N Input | Imaginary part of coefficient matrix A after
R LDL* decomposition (See Note (a))

7 BR D N Input | Real part of constant vector b
R

8 BI {D} N Input | Imaginary part of constant vector b
R

184

ZBHRLX, CBHRLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

No. | Argument | Type Size fnput/ Contents
Output
9 XR D N Input | Real part of approximate solution x
{R} Output | Real part of iteratively improved solution x
10 XI D N Input | Imaginary part of approximate solution
{R} Output | Imaginary part of iteratively improved solution
T
11 ITOL I 1 Input | Number of digits to which solution is to be im-
proved (See Note (b))
Output | Approximate number of digits to which solution
was improved (See Note (c))
12 NIT I 1 Input | Maximum number of iterations (See Note (d))
13 W1 D 3xN Work | Work area
i
14 IERR I 1 Output | Error indicator

(4) Restrictions
(a) 0 < N < LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The solution is not improved.
3000 Restriction (a) was not satisfied. Processing is aborted.
5000 The solution did not converge within the | Processing is aborted after calculating the
maximum number of iterations. ITOL output value.
6000 The solution could not be improved.
(6) Notes
ZBHRSL ZBHRLS
(a) This subroutine improves the solution obtained by the 2.10.1 or 2.10.4 sub-
CBHRSL CBHRLS
ZBHRSL
routine. Therefore, the coefficient matrix A after it has been decomposed by the 2.10.1 CBHRSL [’

2.10.2 ZBHRUD ,or 2.10.3 ZBHRUC subroutines must be given as input.
CBHRUD CBHRUC

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.
However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.
ITOL <0 or ITOL > —LOG10(2 x €) (e : Unit for determining error)

(¢) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

185

2.11 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY
TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGU-
MENT TYPE)

2.11.1 ZBHFSL, CBHFSL
Simultaneous Linear Equations (Hermitian Matrix)
(1) Function
ZBHFSL or CBHFSL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient matrix.

(2) Usage
Double precision:
CALL ZBHFSL (A, LNA, N, B, IPVT, W1, IERR)
Single precision:
CALL CBHFSL (A, LNA, N, B, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA,N Input | Coefficient matrix A (Hermitian matrix, two-
{C} dimensional array type, upper triangular type)
Output | Upper triangular matrix L* when A is decom-
posed into A = LDL* (See Note (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B 7 N Input | Constant vector b
{C} Output | Solution x
5 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (c))
6 W1 D N Work | Work area
i
7 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

186

ZBHFSL, CBHFSL

Simultaneous Linear Equations (Hermitian Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
B(1) + B(1)/A(1,1) is performed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LDL* decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step of the LDL*
decomposition of coefficient matrix A.
A is nearly singular.
(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, call
this subroutine only once and then call subroutine 2.11.4 giiiiz the required number of times

varying only the contents of B. This enables you to eliminate unnecessary calculations by performing

the LDL* decomposition of matrix A only once.

(b) The upper triangular matrix L* is stored in the upper triangular portion of array A. Since the diagonal

matrix D and the lower triangular matrix L are calculated from L*, they are not stored in array A.

The matrix L is the adjoint matrix of the matrix L*, and the matrix D is a diagonal matrix having

the reciprocals of the diagonal elements of the matrix L* as its components.

187

ZBHFSL, CBHFSL
Simultaneous Linear Equations (Hermitian Matrix)

Matrix L* Matrix D
lip lag Is1 -+ Isa 1/l 0.0 00 -+ 00
0.0 lon lsa - ls2 00 1/l 00 -~ 0.0
0.0 0.0 lss - lIss 00 00 1/lss --- 0.0
0.0 0.0 00 - Is5 0.0 0.0 0.0 -+ 1/ls5
I
Storage status within array A(LNA, K)
lia lea Isn o0 Isa
* l2,2 13,2 ls,2
* * ls;g -+ 53 N
LNA ‘
* * * ls,5
- N — - —
——————————— K-———————— —

Remarks
a. LNA > N and N < K must hold.

b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2—11 Storage Status of Matrix L* and Contents of Matrix D

(¢) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix
A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)
in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)
elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)
i to column(row) N actually are exchanged at this time.

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

9 T+3i 2+5 1+ T 10 + 6i
7—3 10 3+2 2+4i xo | | 11420
2-5 3-2 8 544 z3 | | 4+6i
1—i 2—-4i 5—i 6 T4 4+ 6i

(b) Input data
Coefficient matrix A, LNA = 11, N = 4 and constant vector b.
(¢) Main program

PROGRAM ABHFSL

! *x*% EXAMPLE OF ZBHFSL k%
IMPLICIT REAL(8) (A-H,0-2)
PARAMETER (LNA = 11,LNW = 22)
COMPLEX (8) A(LNA,LNA),B(LNA),W1(LNW)
INTEGER IPVT(LNA)

READ (5,%) N

WRITE (6,1000) N

DO10I =1, N
READ (5,%) (A(I,J),J=I,N)

10 CONTINUE

WRITE (6,2000) (A(1,J),J=1,N)
WRITE (6,2100) (A(2,J),J=2,N)
WRITE (6,2200) (A(3,J),J=3,N)
WRITE (6,2300) (A(4,J),J=4,N)

188

ZBHFSL, CBHFSL
Simultaneous Linear Equations (Hermitian Matrix)

READ (5,*) (B(I),I=1,N)

WRITE (6,1100)

D020 I =1, N

WRITE (6,1200) B(I)

CONTINUE

WRITE (6,1300)

CALL ZBHFSL (A,LNA,N,B,IPVT,W1,IERR)
WRITE (6,1400) ’ZBHFSL’,IERR

WRITE (6,1600)

20

D030 I =1, N
WRITE (6,1700) I,B(I)
30 CONTINUE
STOP
]
1000 FORMAT (’ ’,/,/,’ #%* ZBHFSL *#’,/,2X,”** INPUT #*’,&
/,6X,’N =>,13,&
/,6X,’COEFFICIENT MATRIX (REAL, IMAGINARY)’)
1100 FORMAT (6X,’CONSTANT VECTOR (REAL, IMAGINARY)’)
1200 FORMAT (6X,’ (’,F5.1,° ,’,F5.1,”)’)
1300 FORMAT (2X,’#** OUTPUT **’)
1400 FORMAT (6X,’IERR (’,AB,’) =2,I5)
1600 FORMAT (6X,’SOLUTION (REAL, IMAGINARY)’)
1700 FORMAT (10X,’X(’,I2,’) = (’.D18.10,’ ,’,D18.10,’)’)
2000 FORMAT (6X, 4(1X,’ C,F5.1,> ,’,F5.1,1X,7)7))
2100 FORMAT (6X, 16X, 3(1X,’(’,F5.1,” ,’,F5.1,1X,?)"))
2200 FORMAT (6X,2(16X),2(1X,>(’.F5.1.> .’>.F5.1,1X.7)°))
2300 FORMAT (6X,3(16X), 1X,’(’,F5.1,’> ,’,F5.1,1X,’)’)
END
(d) Output results
*%% ZBHFSL *%%
%k INPUT *x*
N= 4
COEFFICIENT MATRIX (REAL, IMAGINARY)
(9.0, 00)(7.0, 30) (2.0, 50)(1.0, 1.0)
(10.0, 0.0)(3.0, 2.0) (2.0, 4.0)
(8.0, 0.0)(5.0. 1.0)
(6.0, 0.0)

10.0 , 6.0)
(11.0 , 2.0)
(4.0, 6.0)
(4.0, 6.0)
*% QUTPUT *x
IERR (ZBHFSL) = 0
SOLUTION (REAL, IMAGINARY)
X(1) = 0.1000000000D+01 ,
X(2) = (0.1000000000D+01 ,
X(3) = (-0.4971147871D-16 ,
X(4) = (-0.4170837849D-16 ,

189

0.0000000000D+00)
0.8881784197D-16)
0.1000000000D+01)
0.1000000000D+01)

ZBHFUD, CBHFUD
LDL* Decomposition of a Hermitian Matrix

2.11.2 ZBHFUD, CBHFUD
LDL* Decomposition of a Hermitian Matrix

(1) Function
ZBHFUD or CBHFUD uses the modified Cholesky method to perform an LDL* decomposition of the

Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:
CALL ZBHFUD (A, LNA, N, IPVT, W1, IERR)
Single precision:
CALL CBHFUD (A, LNA, N, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA, N Input | Hermitian matrix A (two-dimensional array
{C} type, upper triangular type)
Output | Upper triangular matrix L* when A is decom-
posed into A = LDL* (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (b))
5 W1 D N Work | Work area
i
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

190

ZBHFUD, CBHFUD
LDL* Decomposition of a Hermitian Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LDL* decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step.
A is nearly singular.
(6) Notes

(a) The upper triangular matrix L* is stored in the upper triangular portion of array A. Since the diagonal

matrix D and the lower triangular matrix L are calculated from L*, they are not stored in array A.

This subroutine uses only the upper triangular portion of array A. (See Fig. 2—11 in Section 2.11.1)

(b) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

191

ZBHFUC, CBHFUC
LDL* Decomposition and Condition Number of a Hermitian Matrix

2.11.3 ZBHFUC, CBHFUC
LDL* Decomposition and Condition Number of a Hermitian Matrix
(1) Function
ZBHFUC or CBHFUC uses the modified Cholesky method to perform an LDL* decomposition and obtain

the condition number of the Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:
CALL ZBHFUC (A, LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL CBHFUC (A, LNA, N, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A 7 LNA, N Input | Hermitian matrix A (two-dimensional array
C type, upper triangular type)
Output | Upper triangular matrix L* when A is decom-
posed into A = LDL* (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (b))
5 COND D 1 Output | Reciprocal of the condition number
R
6 W1 7 N Work | Work area
C
7 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

192

ZBHFUC, CBHFUC

LDL* Decomposition and Condition Number of a Hermitian Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
COND < 1.0 is performed.
2100 There existed the diagonal element which | Processing continues.
was close to zero in the LDL* decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good
accuracy.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ A diagonal element became equal to 0.0 | Processing is aborted.
in the i-th processing step. The condition number is not obtained.
A is nearly singular.
(6) Notes

(a) The upper triangular matrix L* is stored in the upper triangular portion of array A. Since the diagonal

matrix D and the lower triangular matrix L are calculated from L*, they are not stored in array A.
(See Fig. 2—11 in Section 2.11.1)

(b) This subroutine performs partial pivoting when obtaining the LDL* decomposition of coefficient matrix

A. The permutation of rows and columns is symmetrical for row and column. If the pivot row(column)

in the i-th step is row(column) j (i < j), then j is stored in IPVT(i). In addition, among the column(row)

elements corresponding to row(column) i and row(column) j of matrix A, elements from column(row)

i to column(row) N actually are exchanged at this time.

(c) Although the condition number is defined by ||A|| - ||[A™!||, an approximate value is obtained by this

subroutine.

193

ZBHFLS, CBHFLS

Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix)

2.11.4 ZBHFLS, CBHFLS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix)

(1) Function

ZBHFLS or CBHFLS solves the simultaneous linear equations LDL*x = b having the Hermitian matrix
A (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified

Cholesky method as coefficient matrix.

(2) Usage

Double precision:

CALL ZBHFLS (A, LNA, N, B, IPVT, IERR)
Single precision:

CALL CBHFLS (A, LNA, N, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA N Input | Coefficient matrix A after LDL* decomposition
{C} (Hermitian matrix, two-dimensional array type,
upper triangular type) (See Notes (a) and (b))
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 B 7 N Input | Constant vector b
{C} Output | Solution «
5 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (c))
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) «+ B(1)/A(1,1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.

194

ZBHFLS, CBHFLS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix)

(6) Notes

(a)

The coefficient matrix A must be LDL* decomposed before using this subroutine. Normally, you should
ZBHFUD

decompose matrix A by calling the 2.11.2 subroutine. However, if you also want to obtain
CBHFUD

ZBHFUC

the condition number, you should use 2.11.3
CBHFUC

}. In addition, if you have already used 2.11.1

ZBHFSL

CBHFSL
the LDL* decomposition obtained as part of its output. To solve multiple sets of simultaneous linear

to solve simultaneous linear equations having the same coefficient matrix A, you can use

equations where only the constant vector b differs, the solution is obtained more efficiently by directly
ZBHFMS

using the subroutine 2.11.5
CBHFMS

} to perform the calculations.

The upper triangular matrix L* must be stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L*, they need not be stored in array A. (See Fig. 2—11 in
Section 2.11.1)

Information about partial pivoting performed during LDL* decomposition must be stored in IPVT.

ZBHFUD ZBHFUC
This information is given by the subroutines 2.11.2 U , 2.11.3 v or 2.11.1
CBHFUD CBHFUC

ZBHFSL
CBHFSL

} which perform LDL* decomposition of matrix A.

195

ZBHFMS, CBHFMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix)

2.11.5 ZBHFMS, CBHFMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-
Decomposed Hermitian Matrix)

(1) Function
ZBHFMS or CBHFMS solves the simultaneous linear equations LDL*x; = b;(i = 1,2,---,m having the
Hermitian matrix A (two-dimensional array type) (upper triangular type) which has been LDL* decomposed
by the modified Cholesky method as coefficient matrix. That is, when the n X m matrix B is defined by
B = [b1, ba, -+, by, the subroutine obtains [x1, X2, -+, Tm| = A1 B.

(2) Usage
Double precision:
CALL ZBHFMS (A, LNA, N, B, LNB, M, IPVT, IERR)
Single precision:
CALL CBHFMS (A, LNA, N, B, LNB, M, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA, N Input | Coefficient matrix A after LDL* decomposition
{C} (Hermitian matrix, two-dimensional array type,
upper triangular type) (See Notes (a) and (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B 7 LNB,M Input | Constant vector b;(i = 1,2,---,m)
{C} Output | Solution x;(i =1,2,---,m)
5 LNB I 1 Input | Adjustable dimension of array B
6 M 1 1 Input | Number of right-hand side vectors, m
7 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (c))
8 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N < LNA,LNB
(b) M >0

196

ZBHFMS, CBHFMS

Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1,i) «+ B(1,i)/A(1,1) (i= 1,2,---,m)
are performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
(6) Notes

(a)

The coefficient matrix A must be LDL* decomposed before using this subroutine. Normally, you
ZBHFUD

should decompose matrix A by calling the 2.11.2
CBHFUD

} subroutine. However, if you also want

ZBHFUC
to obtain the condition number, you should use 2.11.3 . In addition, if you have already
CBHFUC
ZBHFSL
used 2.11.1 CBHFSL to solve simultaneous linear equations having the same coefficient matrix A,

you can use the LDL* decomposition obtained as part of its output.

The upper triangular matrix L* must be stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L*, they need not be stored in array A. (See Fig. 2—11 in
Section 2.11.1)

Information about partial pivoting performed during LDL* decomposition must be stored in IPVT.

ZBHFUD ZBHFUC
This information is given by the subroutines 2.11.2 v , 2.11.3 v or 2.11.1
CBHFUD CBHFUC

ZBHFSL
CBHFSL

} which perform LDL* decomposition of matrix A.

(7) Example

()

Problem
Solve the following simultaneous linear equations.

9 743t 245t 1+1s 1,1 Ti2 T1,3 Ti4 10+6:¢ 8+18: 229 24107
7T—3t 10 3 + 21 2 + 41 T2,1 T22 T23 T24 o 11 + 27 12 + 11z 8 + 231 7 + 144
2 — 5Z 3 — 2Z 8 5 +].Z 173_’1 I3’2 Ig’g 173_’4 B 4 + 67,].5 + 5Z 20 + 62 9 + 7Z
1—-1¢ 2—41 5—11 6 T4,1 Ta2 T43 T4,4 4 + 617 8 + 27 16 + 2t 12 + 61
Input data

Coefficient matrix A which has been LDL* decomposed by the modified Cholesky method, LNA =
11,N = 4, constant vectors b;(i = 1,2,---,m), LNB=11 and M=4.

197

ZBHFMS, CBHFMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix)

(¢) Main program

PROGRAM ABHFMS
| *x* EXAMPLE OF ZBHFUD, ZBHFMS **
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11)
COMPLEX(8) A, B
DIMENSION A(LNA LNA) ,B(LNA,LNA) ,IPVT(LNA) , WK (LNA)

READ (5,*) N
READ (5,*) M
WRITE (6, 1000) N, M
DO 10 I =
READ (5, *) (A(T,]),J=I,N)
10 CONTINUE
DO 15 I =1, N
WRITE(6,1100) (DCONJG(A(J,I)), J=1, I-1), (A(I,J), J=I, N)
15 CONTINUE
WRITE (6, 1200)
DO 20 J = 1,
READ (5, *) (B(1,J),I=1,N)
20 CONTINUE

DO 25 I =1, N
WRITE (6,1100) (B(I,J),J=1,M)
25 CONTINUE

WRITE (6,1300)

CALL ZBHFUD (A,LNA,N,IPVT, WK IERR)

WRITE (6,1400) ’ZBHFUD’ IERR

CALL ZBHFMS (A,LNA,N,B, LNA M, IPVT,JERR)

WRITE (6,1400) ’ZBHFMS’ JERR

IF (IERR .GE. 3000) STOP

WRITE (6, 1600)

DO 30 I =1,

WRITE (6 1100) (B(1,3),J=1,M)

30 CONTINUE

STOP

1000 FORMAT(1X,/,/,&
1X ’*** ZBHFUD, ZBHFMS *x*x’,/,/.&
1X, 1X xx INPUT =*x’,/,/,&
1X,5X,’N =’,13,/,&
1X.5X,°M =7.13./.8&
/1% 5x CDEFFICIENT MATRIX’)
1100 FDRMAT(lX 6X 4((’,F8.4, ,F8.4,7)%))
1200 FORMAT(/, 1X 5X CDNSTANT VECTORS)
1300 FORMAT(/,1X,1X,’** QUTPUT *x’,/)
1400 FORMAT(1X,5X,’ERR (’,A6,’) =’,I5)
1600 FORMAT(/,1X,5X,’SOLUTION’)
END

(d) Output results

*%x ZBHFUD, ZBHFMS *%x*
x INPUT *x*

N= 4

M= 4

COEFFICIENT MATRIX
(9.0000, 0.0000)(7.0000, 3.0000)(2.0000, 5.0000)(1.0000, 1.0000)
(7.0000, -3.0000)(10.0000, 0.0000)(3.0000, 2.0000)(2.0000, 4.0000)
(2.0000, -5.0000)(3.0000, -2.0000)(8.0000, 0.0000)(5.0000, 1.0000)
(1.0000, -1.0000)(2.0000, -4.0000)(5.0000, -1.0000)(6.0000, 0.0000)

CONSTANT VECTORS

.0000) (8.0000, 18.0000)(0.0000, 22.0000) (
.0000) (12.0000, 11.0000)(8.0000, 23.0000) (
.0000) (15.0000, 5.0000)(20.0000, 6.0000) (
.0000) (' 8.0000, 2.0000)(16.0000, 2.0000)(1

.0000, 10.0000)
.0000, 14.0000)
.0000, 7.0000)
.0000, 6.0000)

~

-

O

o

o

O
DN O
N © NN

(4. OOOO
** QUTPUT *x*

ERR (ZBHFUD) = 0

ERR (ZBHFMS) = 0

SOLUTION
(1.0000, 0.0000)(-0.0000, 1.0000)(0.0000, 1.0000)(1.0000, 0.0000)
(1.0000, 0.0000)(1.0000, -0.0000)(-0.0000, 1.0000)(0.0000, 1.0000)
(-0.0000, 1.0000)(1.0000, -0.0000)(1.0000, 0.0000)(0.0000, 1.0000)
(-0.0000, 1.0000)(0.0000, 1.0000)(1.0000, -0.0000)(1.0000, -0.0000)

198

ZBHFDI, CBHFDI
Determinant and Inverse Matrix of a Hermitian Matrix

2.11.6 ZBHFDI, CBHFDI
Determinant and Inverse Matrix of a Hermitian Matrix
(1) Function

ZBHFDI or CBHFDI obtains the determinant and inverse matrix of the Hermitian matrix A (two-dimensional

array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method.

(2) Usage
Double precision:
CALL ZBHFDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)
Single precision:
CALL CBHFDI (A, LNA, N, IPVT, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA, N Input | Hermitian matrix A (two-dimensional array
{C} type) (upper triangular type) after LDL* de-
composition (See Notes (a) and (b))
Output | Inverse matrix of matrix A (See Note (b))
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 IPVT I N Output | Pivoting information
IPVT(i): Number of the row(column) ex-
changed with row(column) i in the i-th process-
ing step. (See Note (d))
5 DET D 2 Output | Determinant of matrix A (See Note (c))
i
6 ISW I 1 Input | Processing switch
ISW>0:0Obtain determinant.
ISW=0:Obtain determinant and inverse ma-
trix.
ISW<0:Obtain inverse matrix.
7 W1 7 N Work | Work area
f
8 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

199

ZBHFDI, CBHFDI
Determinant and Inverse Matrix of a Hermitian Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. DET(1) «+ A(1,1)
DET(2) < 0.0
A(1,1) < 1.0/A(1,1) are performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes

(a)

(b)

The coefficient matrix A must be LDL* decomposed before using this subroutine. Use any of the sub-
ZBHFUD }) { ZBHFUC } { ZBHFSL

routines 2.11.2
{CBHFUD CBHFUC CBHFSL

} to perform the decomposition.

The upper triangular matrix L* must be stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L*, they need not be stored in array A. Since the inverse
matrix A~! is a Hermitian matrix, only its upper triangular portion is stored in A. (See Fig. 2—11 in
Section 2.11.1)

The determinant is given by the following expression:
det(A) = DET(1) x (10.0PET(2))

Scaling is performed at this time so that:
1.0 < |DET(1)] < 10.0

Information about partial pivoting performed during LDL* decomposition must be stored in IPVT.

This information is given by the subroutines which perform LDL* decomposition of matrix A.

The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A='b or A~'B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

200

ZBHFLX, CBHFLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)

2.11.7 ZBHFLX, CBHFLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Ma-
trix)
(1) Function
ZBHFLX or CBHFLX uses an iterative method to improve the solution of the simultaneous linear equations

Az = b having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage
Double precision:
CALL ZBHFLX (A, LNA, N, AL, B, X, ITOL, NIT, IPVT, W1, IERR)
Single precision:
CALL CBHFLX (A, LNA, N, AL, B, X, ITOL, NIT, IPVT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A 7 LNA N Input | Coefficient matrix A (Hermitian matrix, two-
C dimensional array type, upper triangular type)
2 LNA I 1 Input | Adjustable dimension of array A and AL
N I 1 Input | Order of matrix A
4 AL 7 LNA, N Input | Coefficient matrix A after LDL* decomposition
C (See Note (a))
5 B {Z} N Input | Constant vector b
C

Input | Approximate solution x

Output | Iteratively improved solution x

D

>
——
—| Q N
——
Z

7 ITOL 1 Input | Number of digits to which solution is to be im-
proved (See Note (b))

Output | Approximate number of digits to which solution

was improved (See Note (c))

8 NIT I 1 Input | Maximum number of iterations (See Note (d))
9 IPVT I N Output | Pivoting information. (See Note (a))
10 W1 7 N Work | Work area
C
11 IERR I 1 Output | Error indicator

201

ZBHFLX, CBHFLX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)

(4) Restrictions

(a) 0 <N < LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The solution is not improved.
3000 Restriction (a) was not satisfied. Processing is aborted.
5000 The solution did not converge within the | Processing is aborted after calculating the
maximum number of iterations. ITOL output value.
6000 The solution could not be improved.
(6) Notes

()

()

()

ZBHFSL ZBHFLS
This subroutine improves the solution obtained by the 2.11.1 or 2.11.4
CBHFSL CBHFLS

ZBHFSL
subroutine. Therefore, the coefficient matrix A after it has been decomposed by the 2.11.1 {CBHFEL}’

CBHFUD CBHFUC
must be given as input.

ZBHFUD ZBHFUC
2.11.2 { v }, or 2.11.3 { v } subroutines and the pivoting information at that time

Solution improvement is repreated until the high-order ITOL digits of the solution do not change.
However, if the following condition is satisfied, solution improvement is repeated until the solution
changes in at most the low order 1 bit.

ITOL <0
or
ITOL > —LOG10(2 x €) (e : Unit for determining error)

If the required number of digits have not converged within the iteration count, the approximate number
of digits in the improved solution that were unchanged is returned to I'TOL.

If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

202

2.12 HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY
TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGU-
MENT TYPE) (NO PIVOTING)

2.12.1 ZBHESL, CBHESL
Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

(1) Function
ZBHESL or CBHESL uses the modified Cholesky method to solve the simultaneous linear equations Ax = b

having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient matrix.

(2) Usage
Double precision:
CALL ZBHESL (A, LNA, N, B, IERR)
Single precision:
CALL CBHESL (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex INTEGER(4) as for 32bit Integer
R:Single precision real C:Single precision complex : { INTEGER(8) as for 64bit Integer}
No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA,N Input | Coefficient matrix A (Hermitian matrix, two-
{C} dimensional array type, upper triangular type)
Output | Upper triangular matrix L* when A is decom-
posed into A = LDL* (See Note (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B 7 N Input | Constant vector b
{C} Output | Solution x
5 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

203

ZBHESL, CBHESL
Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
B(1) + B(1)/A(1,1) is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step of the LDL*
decomposition of coefficient matrix A.

A is nearly singular.

(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector b differs, call
ZBHELS
this subroutine only once and then call subroutine 2.12.4 OBHELS the required number of times

varying only the contents of B. This enables you to eliminate unnecessary calculations by performing

the LDL* decomposition of matrix A only once.

(b) The upper triangular matrix L* is stored in the upper triangular portion of array A. Since the diagonal
matrix D and the lower triangular matrix L are calculated from L*, they are not stored in array A.
The matrix L is the adjoint matrix of the matrix L*, and the matrix D is a diagonal matrix having

the reciprocals of the diagonal elements of the matrix L* as its components.

204

ZBHESL, CBHESL

Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

Matrix L*
lig l21 Izn -+ Is; 1/l
0.0 l2,2 13’2 cee l5,2 0.0
0.0 0.0 I35 - lss 0.0
0.0 00 00 --- Is55 0.0
4

Matrix D
0.0 0.0 e 0.0
1/12,2 0.0 0.0
0.0 1/ls3 - 0.0
0.0 0.0 e 1/lss

Storage status within array A(LNA, K)

lin e I3n ls,1
* lao U39 ls,2
* * l3,3 l5,3 N
LNA '
* * * ls,5
- N — - —

Remarks

a.

b.

(7) Example

LNA > N and N < K must hold.

Input time values of elements indicated by asterisks (%) are not guaranteed.

Figure 2—12 Storage Status of Matrix L* and Contents of Matrix D

(a) Problem

Solve the following simultaneous linear equations.

9 T+3i 245 1+i 1
7-3 10 342 244 o
29—5 3-2 8 5+i T3
1—i 2—4i 5—i 6 T4

(b) Input data
Coefficient matrix A, LNA = 11,N = 4 and constant vector b.
(¢) Main program

10

20

PROGRAM ABHESL

*** EXAMPLE OF ZBHEUC,ZBHELS *¥*
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11,LNW = 22)
COMPLEX(8) A(LNA,LNA),B(LNA),W1(LNW)

READ (5,*) N
WRITE (6,1000) N
DO 10 I =1, N
READ (5,%) (A(I,J),J=I,N)
CONTINUE
WRITE (6,2000) (A(1,J),J
WRITE (6,2100) (A(2,J),J
WRITE (6,2200) (A(3,J),J
WRITE (6,2300) (A(4,J),J
READ (5,*) (B(I),I=1,N)
WRITE (6,1100)
DO 20 I =1, N
WRITE (6,1200) B(I)
CONTINUE
WRITE (6,1300)
CALL ZBHEUC (A,LNA,N,COND,W1,IERR)
WRITE (6,1400) ’ZBHEUC’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0DO/COND
CALL ZBHELS (A,LNA,N,B,KERR)
WRITE (6,1400) ’ZBHELS’,KERR

1
2
3
4

205

10 + 6:
11+ 24
4+ 61
4+ 61

ZBHESL, CBHESL
Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

30

1000

1100
1200
1300
1400
1500
1600
1700
2000
2100
2200
2300

WRITE (6,1500) COND
WRITE (6, 160)

(d) Output results

k% k

k%

DO 30 I
WRITE (6 1700) I,B(I)
CONTINUE
STOP
FORMAT (° ’,/,/,’> **x ZBHEUC,ZBHELS *x*x*’ 6/ 2X,6 % *x*
/,6X,’N =2 ,13,&
/,6X,’COEFFICIENT MATRIX (REAL, IMAGINARY)’)
FORMAT (6X,’CONSTANT VECTOR (REAL, IMAGINARY)’)
FORMAT (6X,’> (’,F5.1,° ,’,F5.1,’)’)
FORMAT (2X,’*x QUTPUT **’)
FORMAT (6X,’IERR (’,A6,’) =’,I5)
FORMAT (6X, ’CDNDITIDN NUMBER -’ ,D18.10)
FORMAT (6X,’SOLUTION (REAL, IMAGINARY)?)
FORMAT (10X,’X(’,I2,’) = (’,D18.10,’ ,?,D18.10,7)
FORMAT (6X, 4(1%,°(’,F5.1,” ,’,F5.1,1X,)?))
FORMAT (6X, 16X, 3(1X,’(’,F5.1,’ ,’,F5.1,1X,’)’))
FORMAT (6X,2(16X),2(1X,’(’,F5.1,”> ,’,F5.1,1X,’)’))
FORMAT (6X,3(16X), 1X,’(’,F5.1,’ ,’,F5.1,1X,’)’)
END
ZBHEUC,ZBHELS **x*
INPUT *x
N= 4
COEFFICIENT MATRIX (REAL, IMAGINARY)
(9.0, 0.0) (7.0, 3.0) (2.0, 5.0) (
(10.0, 0.0) (3.0, 2.0) (
(8.0, 0.0) g
CONSTANT VECTOR (REAL, IMAGINARY)
(10.0 , 6.0)
(11.0, 2.0)
(4.0, 6.0)
(4.0 6.0)
OUTPUT ok
IERR (ZBHEUC) = 0
IERR (ZBHELS) = 0

CONDITION NUMBER =

SOLUTION (REAL, IMAGINARY)

X(= (0.1000000000D+01 ,
X(2) = (. 0.1000000000D+01 |,
X(3) = (-0.1022363649D-15 |,
X(4) = (-0.0000000000D+00 |,

0.2998721749D+02

0.9868649108D-16
0.9367506770D-16
0.1000000000D+01
0.1000000000D+01

206

DU =

INPUT

[eXoleole)

O

EE

[eleleole]
(2NN

&

ZBHEUD, CBHEUD

LDL* Decomposition of a Hermitian Matrix (No Pivoting)

2.12.2 ZBHEUD, CBHEUD

LDL* Decomposition of a Hermitian Matrix (No Pivoting)

(1) Function

ZBHEUD or CBHEUD uses the modified Cholesky method to perform an LDL* decomposition of the

Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:

CALL ZBHEUD (A, LNA, N, IERR)

Single precision:

CALL CBHEUD (A, LNA, N, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

. { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA, N Input | Hermitian matrix A (two-dimensional array
{C} type, upper triangular type)
Output | Upper triangular matrix L* when A is decom-
posed into A = LDL* (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N < LNA

207

ZBHEUD, CBHEUD
LDL* Decomposition of a Hermitian Matrix (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ A diagonal element became equal to 0.0
in the i-th processing step.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix L* is stored in the upper triangular portion of array A. Since the diagonal
matrix D and the lower triangular matrix L are calculated from L*, they are not stored in array A.

This subroutine uses only the upper triangular portion of array A. (See Fig. 2—12 in Section 2.12.1)

208

ZBHEUC, CBHEUC
LDL* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting)

2.12.3 ZBHEUC, CBHEUC
LDL* Decomposition and Condition Number of a Hermitian Matrix (No
Pivoting)

(1) Function
ZBHEUC or CBHEUC uses the modified Cholesky method to perform an LDL* decomposition and obtain

the condition number of the Hermitian matrix A (two-dimensional array type) (upper triangular type).

(2) Usage
Double precision:
CALL ZBHEUC (A, LNA, N, COND, W1, IERR)
Single precision:
CALL CBHEUC (A, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(S8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A 7 LNA,N Input | Hermitian matrix A (two-dimensional array
C type, upper triangular type)
Output | Upper triangular matrix L* when A is decom-
posed into A = LDL* (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 COND D 1 Output | Reciprocal of the condition number
R
5 W1 7 N Work | Work area
C
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N <LNA

209

ZBHEUC, CBHEUC
LDL* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
COND < 1.0 is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the LU decompo-
sition of the coefficient matrix A. The
result may not be obtained with a good

accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.

4000 + ¢ A diagonal element became equal to 0.0 | Processing is aborted.
in the i-th processing step. The condition number is not obtained.

A is nearly singular.

(6) Notes

(a) The upper triangular matrix L* is stored in the upper triangular portion of array A. Since the diagonal
matrix D and the lower triangular matrix L are calculated from L*, they are not stored in array A.
(See Fig. 2—12 in Section 2.12.1)

(b) Although the condition number is defined by ||A|| - ||A™!||, an approximate value is obtained by this

subroutine.

210

ZBHELS, CBHELS

Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No Pivoting)

2.12.4 ZBHELS, CBHELS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No

Pivoting)

(1) Function

ZBHELS or CBHELS solves the simultaneous linear equations LDL*x = b having the Hermitian matrix

A (two-dimensional array type) (upper triangular type) which has been LDL* decomposed by the modified

Cholesky method as coefficient matrix.

(2) Usage

Double precision:
CALL ZBHELS (A, LNA, N, B, IERR)

Single precision:

CALL CBHELS (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

) { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size Input/ Contents
Output
1 A 7 LNA N Input | Coefficient matrix A after LDL* decomposition
{C} (Hermitian matrix, two-dimensional array type,
upper triangular type) (See Notes (a) and (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B 7 N Input | Constant vector b
{C} Output | Solution x
5 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N <LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) «+ B(1)/A(1,1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.

211

ZBHELS, CBHELS
Simultaneous Linear Equations (LDL*-Decomposed Hermitian Matrix) (No Pivoting)

(6) Notes

(a)

The coefficient matrix A must be LDL* decomposed before using this subroutine. Normally, you should
ZBHEUD

subroutine. However, if you also want to obtain
CBHEUD

decompose matrix A by calling the 2.12.2 {

ZBHEUC
the condition number, you should use 2.12.3 . In addition, if you have already used 2.12.1
CBHEUC
ZBHESL
CBHESL to solve simultaneous linear equations having the same coefficient matrix A, you can use

the LDL* decomposition obtained as part of its output. To solve multiple sets of simultaneous linear

equations where only the constant vector b differs, the solution is obtained more efficiently by directly
ZBHEMS

using the subroutine 2.12.5
CBHEMS

} to perform the calculations.

The upper triangular matrix L* must be stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L*, they need not be stored in array A. (See Fig. 2—12 in
Section 2.12.1)

212

ZBHEMS, CBHEMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix) (No
Pivoting)

2.12.5 ZBHEMS, CBHEMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-
Decomposed Hermitian Matrix) (No Pivoting)

(1) Function
ZBHEMS or CBHEMS solves the simultaneous linear equations LDL*x; = b;(: = 1,2,---,m having the
Hermitian matrix A (two-dimensional array type) (upper triangular type) which has been LDL* decomposed
by the modified Cholesky method as coefficient matrix. That is, when the n X m matrix B is defined by
B = [b1,ba, -+, by, the subroutine obtains [x1, X2, -+, Tm| = A1 B.

(2) Usage
Double precision:
CALL ZBHEMS (A, LNA, N, B, LNB, M, IERR)
Single precision:
CALL CBHEMS (A, LNA, N, B, LNB, M, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA, N Input | Coefficient matrix A after LDL* decomposition
{C} (Hermitian matrix, two-dimensional array type,
upper triangular type) (See Notes (a) and (b))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B 7 LNB,M Input | Constant vector b;(i =1,2,---,m)
{C} Output | Solution x;(i =1,2,---,m)
5 LNB I 1 Input | Adjustable dimension of array B
M I 1 Input | Number of right-hand side vectors, m
IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N < LNA,LNB
(b) M>0

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1,i) « B(1,i)/A(1,1) (i= 1,2,---,m)
is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.

213

ZBHEMS, CBHEMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix) (No

Pivoting)

(6) Notes

(a)

The coefficient matrix A must be LDL* decomposed before using this subroutine. Normally, you
ZBHEUD

should decompose matrix A by calling the 2.12.2
CBHEUD

} subroutine. However, if you also want

ZBHEUC
to obtain the condition number, you should use 2.12.3 v . In addition, if you have already
CBHEUC
ZBHESL
used 2.12.1 CBHESL to solve simultaneous linear equations having the same coefficient matrix A,

you can use the LDL* decomposition obtained as part of its output.

The upper triangular matrix L* must be stored in array A. Since the diagonal matrix D and the lower
triangular matrix L are calculated from L*, they need not be stored in array A. (See Fig. 2—12 in
Section 2.12.1)

(7) Example

(a)

(b)

()

Problem
Solve the following simultaneous linear equations.

9 7T+3 245 141 T1,1 T2 T1,3 Ti4 10+67 8+ 18& 227 24107
7T—3i 10 3+27 244 o1 T22 w23 T24 | | 11420 12+ 110 8+231 T+ 14
2—51 3—2 8 5 + 1s r31 T32 T33 T34 4 + 61 15 + 5 20 + 617 9 + 71
1—-15 2—4¢ 5—14 6 T4l Ta2 T4z Taa 4+ 67 8+2t 16+2i 12+ 61
Input data

Coefficient matrix A which has been LDL* decomposed by the modified Cholesky method,
LNA =11, N = 4, constant vectors b;(i = 1,2,---,m), LNB=11 and M=4.
Main program

PROGRAM ABHEMS

! %% EXAMPLE OF ZBHEUD, ZBHEMS x*x*
IMPLICIT REAL(8) (A-H,0-2)
PARAMETER (LNA = 11)
COMPLEX(8) A, B
DIMENSION A(LNA,LNA),B(LNA,LNA)

READ (5,*) N
READ (5,%) M
WRITE (6 1000) N, M
DO 10 I =
READ (5, *) (A(I,D),J=I,N)
10 CONTINUE
DO 15 I = 1,
WRITE(6, 1100) (DCONJG(A(J,I)), J=1, I-1), (A(I,D), J=I, N)
15 CONTINUE
WRITE (6 1200)
DO 20 J = 1,
READ (5 *) (B(I J),I=1,N)
20 CONTINUE
DO 25 I =
WRITE (6 1100) (B(I,1),J=1,M)
25 CONTINUE
WRITE (6,1300)
CALL ZBHEUD (A,LNA,N,IERR)
WRITE (6,1400) °’ZBHEUD’,IERR
CALL ZBHEMS (A,LNA,N,B,LNA,M,JERR)
WRITE (6,1400) °’ZBHEMS’,JERR
IF (IERR .GE. 3000) STOP
WRITE (6,1600)
DO 30 I =1, N
WRITE (6,1100) (B(I,J),J=1,M)
30 CONTINUE
STOP

1000 FORMAT(1X,/,/,&
1X ’*** ZBHEUD, ZBHEMS **x’,/./.&
1X, 1X Yk INPUT =*x*’,/,/.&
1X,5X,’N =2,13,/,&
1X,5X M =2 IS /&
/,1X,5X, ’CDEFFICIENT MATRIX’)

214

ZBHEMS, CBHEMS
Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL*-Decomposed Hermitian Matrix) (No
Pivoting)

1100 FORMAT(1X,6X,4(’(’,F8.4,°,’,F8.4,7)))
1200 FORMAT(/,1X,5X,’CONSTANT VECTORS’)
1300 FORMAT(/,1X,1X,’%% QUTPUT =*x’,/)
1400 FORMAT(1X,5X,’ERR (°,A6,’) =’,I5)
1600 FORMAT(/,1X,5X,’SOLUTION’)

END

(d) Output results

*%x ZBHEUD, ZBHEMS %%
**x INPUT *x*

N= 4

M= 4

COEFFICIENT MATRIX
(9.0000, 0.0000)(7.0000, 3.0000)(2.0000, 5.0000)(1.0000, 1.0000)
(7.0000, -3.0000)(10.0000, 0.0000)(3.0000, 2.0000)(2.0000, 4.0000)
(2.0000, -5.0000)(3.0000, -2.0000)(8.0000, 0.0000)(5.0000, 1.0000)
(1.0000, -1.0000)(2.0000, -4.0000)(5.0000, -1.0000)(6.0000, 0.0000)

CONSTANT VECTORS
(10.0000

6.0000) (8.0000, 18.0000)(0.0000, 22.0000)(2.0000, 10.0000)
(11.0000, 2.0000)(12.0000, 11.0000)(8.0000, 23.0000)(7.0000, 14.0000)
(4.0000, 6.0000)(15.0000, 5.0000)(20.0000, 6.0000)(9.0000, 7.0000)
(4.0000, 6.0000)(8.0000, 2.0000)(16.0000, 2.0000)(12.0000, 6.0000)
**x QUTPUT *x*
ERR (ZBHEUD) = 0
ERR (ZBHEMS) = 0
SOLUTION
(1.0000, 0.0000)(0.0000, 1.0000)(-0.0000, 1.0000)(1.0000, 0.0000)
(1.0000, 0.0000)(1.0000, -0.0000)(-0.0000, 1.0000)(0.0000, 1.0000)
(-0.0000, 1.0000)(1.0000, -0.0000)(1.0000, 0.0000)(0.0000, 1.0000)
(0.0000, 1.0000)(0.0000, 1.0000)(1.0000, -0.0000)(1.0000, -0.0000)

215

ZBHEDI, CBHEDI
Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)

2.12.6 ZBHEDI, CBHEDI

(1) Function

ZBHEDI or CBHEDI obtains the determinant and inverse matrix of the Hermitian matrix A (two-dimensional

array type) (upper triangular type) which has been LDL* decomposed by the modified Cholesky method.

(2) Usage

Double precision:
CALL ZBHEDI (A, LNA, N, DET, ISW, W1, IERR)
Single precision:
CALL CBHEDI (A, LNA, N, DET, ISW, W1, IERR)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)

| INTEGER(4) as for 32bit Integer
INTEGER(8) as for 64bit Integer

No. | Argument | Type Size fnput/ Contents
Output
1 A 7 LNA, N Input | Hermitian matrix A (two-dimensional array
{C} type) (upper triangular type) after LDL* de-
composition (See Notes (a) and (b))
Output | Inverse matrix of matrix A (See Note (b))
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 DET D 2 Output | Determinant of matrix A (See Note (c))
)
5 ISW I 1 Input | Processing switch
ISW>0:0Obtain determinant.
ISW=0:Obtain determinant and inverse ma-
trix.
ISW<0:Obtain inverse matrix.
6 W1 7 N Work | Work area
)
7 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

216

ZBHEDI, CBHEDI
Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. DET(1) «+ A(1,1)
DET(2) < 0.0
A(1,1) < 1.0/A(1,1) are performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
(6) Notes

(a)

(b)

The coefficient matrix A must be LDL* decomposed before using this subroutine. Use any of the sub-
ZBHEUD ZBHEUC ZBHESL
CBHEUD |’ CBHEUC [’ CBHESL

The upper triangular matrix L* must be stored in array A. Since the diagonal matrix D and the lower

routines 2.12.2 { } to perform the decomposition.

triangular matrix L are calculated from L*, they need not be stored in array A. Since the inverse
matrix A~! is a Hermitian matrix, only its upper triangular portion is stored in A. (See Fig. 2—12 in
Section 2.12.1)

The determinant is given by the following expression:
det(A) = DET(1) x (10.0PFT(2))

Scaling is performed at this time so that:
1.0 < [DET(1)| < 10.0

The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A~'b or A™!B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Ax = b for the vector @ or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

217

ZBHELX, CBHELX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

2.12.7 ZBHELX, CBHELX
Improving the Solution of Simultaneous Linear Equations (Hermitian Ma-
trix) (No Pivoting)

(1) Function
ZBHELX or CBHELX uses an iterative method to improve the solution of the simultaneous linear equations
Az = b having the Hermitian matrix A (two-dimensional array type) (upper triangular type) as coefficient

matrix.

(2) Usage
Double precision:
CALL ZBHELX (A, LNA, N, AL, B, X, ITOL, NIT, W1, IERR)
Single precision:
CALL CBHELX (A, LNA, N, AL, B, X, ITOL, NIT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A 7 LNA N Input | Coefficient matrix A (Hermitian matrix, two-
C dimensional array type, upper triangular type)
2 LNA I 1 Input | Adjustable dimension of array A and AL
N I 1 Input | Order of matrix A
4 AL 7 LNA, N Input | Coefficient matrix A after LDL* decomposition
C (See Note (a))
5 B 7 N Input | Constant vector b
C
6 X 7 N Input | Approximate solution «
C Output | Iteratively improved solution x
7 ITOL I 1 Input | Number of digits to which solution is to be im-
proved (See Note (b))
Output | Approximate number of digits to which solution
was improved (See Note (c))
8 NIT I 1 Input | Maximum number of iterations (See Note (d))
9 W1 7 N Work | Work area
C
10 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

218

ZBHELX, CBHELX
Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix) (No Pivoting)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The solution is not improved.
3000 Restriction (a) was not satisfied. Processing is aborted.
5000 The solution did not converge within the | Processing is aborted after calculating the
maximum number of iterations. ITOL output value.
6000 The solution could not be improved.
(6) Notes

CBHESL CBHELS
ZBHEUC}

ZBHESL ZBHELS
(a) This subroutine improves the solution obtained by the 2.12.1 { } or 2.12.4 { }

subroutine. Therefore, the coefficient matrix A after being decomposed by the 2.12.3
CBHEUC

2,121 ZBHESL or 2.12.2 ZBHEUD subroutine must be given as input.
CBHESL CBHEUD

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.
However, if the following condition is satisfied, solution improvement is repeated until the solution

changes in at most the low order 1 bit.
ITOL <0
or
ITOL > —LOG10(2 x &) (£ : Unit for determining error)

(¢) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to ITOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

219

2.13 REAL BAND MATRIX (BAND TYPE)

2.13.1 DBBDSL, RBBDSL
Simultaneous Linear Equations (Real Band Matrix)
(1) Function
DBBDSL or RBBDSL uses the Gauss method to solve the simultaneous linear equations Az = b having a

real band matrix (band type) as coefficient matrix.

(2) Usage
Double precision:
CALL DBBDSL (A, LMA, N, MU, ML, B, IPVT, IERR)
Single precision:
CALL RBBDSL (A, LMA, N, MU, ML, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LMA,N Input | Coefficient matrix A (real band matrix, band
{R} type) (See Appendix B)
Output | Upper triangular matrix U and unit lower tri-
angular matrix L when A is decomposed into
A = LU (See Note (b))
2 LMA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 MU I 1 Input | Upper band width of matrix A
5 ML I 1 Input | Lower band width of matrix A
6 B D N Input | Constant vector b
{R} Output | Solution «
7 IPVT I N Output | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step
(See Note (b))
8 IERR I 1 Output | Error indicator

(4) Restrictions

(a) N>0

(b) 0<SMU<N-—1
0<ML<N-1

(¢) min(2 x ML + MU + 1,N + ML) < LMA

220

DBBDSL, RBBDSL
Simultaneous Linear Equations (Real Band Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
B(1) + B(1)/A(1,1) is performed.
3000 Restriction (a), (b) or (c¢) was not | Processing is aborted.
satisfied.

4000 + ¢ The pivot became 0.0 in the i-th process-
ing step of the LU decomposition of coef-

ficient matrix A.

A is nearly singular.

(6) Notes
(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call
DBBDLS
this subroutine only once and then call subroutine 2.13.4 RBBDLS the required number of times

varying only the contents of B. This enables you to eliminate unnecessary calculations by performing
the LU decomposition of matrix A only once.

(b) This subroutine performs partial pivoting when obtaining the LU decomposition of coefficient matrix
A. TIf the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i). In addition, since
columns i through N in rows i and j of matrix A actually are exchanged at this time, the storage area
of array A increases only by size ML xN. Therefore, if N < 2ML + MU + 1, less memory is required to
use the subroutine for real matrices.

221

DBBDSL, RBBDSL
Simultaneous Linear Equations (Real Band Matrix)

Storage status within array A(LMA, K)

* a1 a32 a43 as54
ail G222 asz3 Q4,4 Aa55
ai2 023 0a34 A4,5 * 2xML+MU+1
ai,3 az4 Aass * *
LMA - - * * *
—————- Ne———— —
———————- K-—————- —
I
Storage status within array A(LMA, K)
* loqn lz2 lasz s

Ui,1 U222 U3,3 U4,4 UsS5

Ul,2 U2,3 U34 U45 * 2xML+MU+1
u1,3 U224 U35 * *
LMA U4 U225 K * *
—————- N————— —
———————— K-—————- —

Remarks

a. Input time values of elements indicated by asterisks (x) are guaranteed.

b. w14, uz 5 is set when corresponding rows are actually exchanged by partial pivoting.
c. MU is the upper band width and ML is the lower band width.

d. LMA > 2 x ML+MU+1 and K > N must hold.

Figure 2—13 Storage Status of Array A before and after LU Decomposition

222

DBBDSL, RBBDSL
Simultaneous Linear Equations (Real Band Matrix)

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

1 =2 0 0 X, 3
-1 3 2 0 Xy | | -7
1 -1 4 =2 X5 | 1
0 1 -1 7 X4 13

(b) Input data
Coefficient matrix A,LMA = 11,N =4, MU = 1, ML = 2 and constant vector B.
(¢) Main program

1 okkx

10

1000

1200
1300
1400
1500
1600

PROGRAM BBBDSL

EXAMPLE OF DBBDLC,DBBDLS x*x*x*

IMPLICIT REAL(8) (A H,0-2)

PARAMETER (LMA = 11)

DIMENSION A(LMA, LMA) B(LMA) ,W1(LMA) ,IPVT (LMA)
CHARACTER*50 FMT()

DATA FMT /’(7X,2(A11),2(G11.4))°,&
(7X, A11,73(G11.4)) 7 %
) (7X, 4(G11.4))°,&
> (7X, 3(G11.4),A11)°/

READ (5,*) N,MU,ML
WRITE (6,1000) N,MU,ML
DO 10 I = 1, MU+M L+1
IJ=1-ML -
IF (IJ .LE. 0) THEN
READ (5,*) (A(I,J),J= =ML~ I+2,N)
WRITE (8,FMT(I)3 (O 7,J=1,ML-TI+1),(A(I,J),J=ML-I+2,N)

LSE
READ (5,%) (A(I,J),J=1,N-1J)
WRITE (6,FMT(I)) (A(I,J),J=1,N-1J),(’,J=N-IJ+1,N)
ENDIF
CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBBDLC (A,LMA,N,MU,ML,IPVT,COND,W1,IERR)
WRITE (6,1400) ’DBBDLC’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0DO/COND
CALL DBBDLS (A,LMA,N,MU,ML,B,IPVT,KERR)
WRITE (6,1400) ’DBBDLS’,KERR
WRITE (6,1500) COND
WRITE (6,1600) (I,B(I),I=1,N)
STOP

FORMATC’ °,/,/,&
> s%x DBBDLC,DBBDLS **x’,/.&
2X,’*x INPUT =*x’,/.&
6X,’N =’,13,/,&
6X, ’UPPER BAND WIDTH =’,I3,/,&
6X, ’LOWER BAND WIDTH =’,I3,/,&
6X,’COEFFICIENT MATRIX’)
FORMAT (6X, >CONSTANT VECTOR’,/, (7X,F10.4))
FORMAT (2X,>** OQUTPUT *x%’)
FORMAT(6X,’IERR (’,A6,’) =’,I5)
FORMAT (6X, *CONDITION NUMBER =’,D18.10)
FORMAT (6X, > SOLUTION’,/, (8X,’X(’,I2,7) =,D18.10))
END

(d) Output results

k% k
*k

*x

DBBDLC,DBBDLS **x*
INPUT *x*

N= 4

UPPER BAND WIDTH
LOWER BAND WIDTH
COEFFICIENT MATRIX

N =

1.000 1.000
-1.000 -1.000 -1.000
1.000 3.000 4.000 7.000
-2.000 2.000 -2.000
CONSTANT VECTOR
3.0000
-7.0000
1.0000
13.0000
OUTPUT _ *x*
IERR (DBBDLC) = 0

223

DBBDSL, RBBDSL
Simultaneous Linear Equations (Real Band Matrix)

IERR (DBBDLS) 0
CONDITION NUMBER = 0.1245000000D+03

SOLUTION
X(1) = -0.2900000000D+02
X(2) = -0.1600000000D+02
X(3) = 0.6000000000D+01
X(4) = 0.5000000000D+01

224

DBBDLU, RBBDLU
LU Decomposition of a Real Band Matrix

2.13.2 DBBDLU, RBBDLU
LU Decomposition of a Real Band Matrix

(1) Function
DBBDLU or RBBDLU uses the Gauss method to perform an LU decomposition of the real band matrix A
(band type).

(2) Usage
Double precision:
CALL DBBDLU (A, LMA, N, MU, ML, IPVT, IERR)
Single precision:
CALL RBBDLU (A, LMA, N, MU, ML, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LMA,N Input | Real band matrix A (band type) (See Appendix
it :
Output | Upper triangular matrix U and unit lower tri-
angular matrix L when A is decomposed into
A = LU (See Notes (a) and (b))
2 LMA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 MU I 1 Input | Upper band width of matrix A
5 ML I 1 Input | Lower band width of matrix A
6 IPVT I N Output | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step
(See Note (b))
7 IERR I 1 Output | Error indicator

(4) Restrictions

(a) N>0

(b) 0<SMU<N-1
0<ML<N-1

(¢) min(2 x ML 4+ MU + 1,N + ML) < LMA

225

DBBDLU, RBBDLU
LU Decomposition of a Real Band Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.

1000 N was equal to 1. Contents of array A are not changed.

3000 Restriction (a), (b) or (c¢) was not | Processing is aborted.
satisfied.

4000 + ¢ The pivot became 0.0 in the i-th process-

ing step.
A is nearly singular.

(6) Notes

(a) The unit lower triangular matrix L and the upper triangular matrix U are stored in band format in
array A. However, since the diagonal elements of L always are 1.0, they are not stored in array A. (See
Section 2.13.1 Figure 2—13.)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by
subsequent subroutine. If the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i). In
addition, since columns i through N in rows i and j of matrix A actually are exchanged at this time,
the storage area within array A increases only by size MLXxN. Therefore, if N < 2ML + MU + 1, less

memory is required to use the subroutine for real matrices. (See Section 2.13.1 Figure 2—13.)

226

DBBDLC, RBBDLC
LU Decomposition and Condition Number of a Real Band Matrix

2.13.3 DBBDLC, RBBDLC
LU Decomposition and Condition Number of a Real Band Matrix

(1) Function
DBBDLC or RBBDLC uses the Gauss method to perform an LU decomposition and obtain the condition
number of the real band matrix A (band type).

(2) Usage
Double precision:
CALL DBBDLC (A, LMA, N, MU, ML, IPVT, COND, W1, IERR)
Single precision:
CALL RBBDLC (A, LMA, N, MU, ML, IPVT, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LMA,N Input | Real band matrix A (band type) (See Appendix
it 3
Output | Upper triangular matrix U and unit lower tri-
angular matrix L when A is decomposed into
A = LU (See Notes (a) and (b))
2 LMA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 MU I 1 Input | Upper band width of matrix A
5 ML I 1 Input | Lower band width of matrix A
6 IPVT I N Output | Pivoting information

IPVT(i): Number of row exchanged with row i
in the i-th processing step
(See Note (b))

1 Output | Reciprocal of the condition number

7 COND

Work Work area

oo

=
— |
—| d O] @ T
—— | Y—~—

Z

9 IERR

1 Output | Error indicator

(4) Restrictions

(a) N>0

(b)) 0SMU<N-1
0<ML<N-1

(¢) min(2 x ML + MU + 1,N + ML) < LMA

227

DBBDLC, RBBDLC

LU Decomposition and Condition Number of a Real Band Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. Contents of array A are not changed.
3000 Restriction (a), (b) or (c¢) was not | Processing is aborted.
satisfied.
4000 + ¢ The pivot became 0.0 in the i-th process- | Processing is aborted.
ing step. The condition number is not obtained.
A is nearly singular.
(6) Notes

(a) The unit lower triangular matrix L and the upper triangular matrix U are stored in band format in

array A. However, since the diagonal elements of L always are 1.0, they are not stored in array A. (See

2.13.1 Figure 2—13.)

(b) This subroutine performs partial pivoting. Pivoting information is stored in array IPVT for use by
subsequent subroutine. If the pivot row in the i-th step is row j (i < j), then j is stored in IPVT(i). In
addition, since columns i through N in rows i and j of matrix A actually are exchanged at this time,
the storage area within array A increases only by size ML xN. Therefore, if N < 2ML + MU + 1, less

memory is required to use the subroutine for real matrices. (See 2.13.1 Figure 2—13.)

(c) Although the condition number is defined by ||A]| - ||A™!||, an approximate value is obtained by this

subroutine.

228

DBBDLS, RBBDLS
Simultaneous Linear Equations (LU-Decomposed Real Band Matrix)

2.13.4 DBBDLS, RBBDLS
Simultaneous Linear Equations (LU-Decomposed Real Band Matrix)

(1) Function
DBBDLS or RBBDLS solves the simultaneous linear equations LUx = b having the real band matrix A
(band type) which has been LU decomposed by the Gauss method as coefficient matrix.

(2) Usage
Double precision:
CALL DBBDLS (A, LMA, N, MU, ML, B, IPVT, IERR)
Single precision:
CALL RBBDLS (A, LMA, N, MU, ML, B, IPVT, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LMA,N Input | Coefficient matrix A after LU decomposition
{R} (real band matrix, band type) (See Appendix
B) (See Notes (a) and (b))
2 LMA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 MU I 1 Input | Upper band width of matrix A
5 ML I 1 Input | Lower band width of matrix A
6 B D N Input | Constant vector b
{R} Output | Solution x
7 IPVT I N Input | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step
(See Note (c))
8 IERR I 1 Output | Error indicator

(4) Restrictions

(a) N>0

(b) 0<SMU<N-1
0<ML<N-1

(¢) min(2 x ML 4+ MU + 1,N + ML) < LMA

229

DBBDLS, RBBDLS
Simultaneous Linear Equations (LU-Decomposed Real Band Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) + B(1)/A(1,1) is performed.
3000 Restriction (a), (b) or (c¢) was not | Processing is aborted.
satisfied.

4000 + ¢ L has a 0.0 diagonal element.

i is the number of the first 0.0 diagonal
element.

(6) Notes

()

The coefficient matrix A must be LU decomposed before using this subroutine. Normally you should
DBBDLU

decompose matrix A by calling the 2.13.2
RBBDLU

} subroutine. However, if you also want to

DBBDL
obtain the condition number, you should use 2.13.3 ¢ . In addition, if you have already
RBBDLC
DBBDSL
used 2.13.1 RBBDSL to solve simultaneous linear equations having the same coefficient matrix A,

you can use the LU decomposition obtained as part of its output.

The unit lower triangular matrix L and the upper triangular matrix U must be stored in band format
in array A. However, since the diagonal elements of L always are 1.0, they should not be stored in
array A. (See 2.13.1 Figure 2—13.)

Information about partial pivoting performed during LU decomposition must be stored in IPVT. This

DBBDL DBBDL DBBDSL
information is given by the 2.13.2 v ,2.13.3 ¢ ,2.13.1 5 subroutines
RBBDLU RBBDLC RBBDSL

which perform LU decomposition of matrix A.

230

DBBDDI, RBBDDI
Determinant of a Real Band Matrix

2.13.5 DBBDDI, RBBDDI
Determinant of a Real Band Matrix

(1) Function
DBBDDI or RBBDDI obtains the determinant of the real band matrix A (band type) which has been LU
decomposed by the Gauss method.

(2) Usage
Double precision:
CALL DBBDDI (A, LMA, N, MU, ML, IPVT, DET, IERR)
Single precision:
CALL RBBDDI (A, LMA, N, MU, ML, IPVT, DET, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LMA,N Input | Real band matrix A (band type) (See Appendix
{ R} B) after LU decomposition (See Notes (a) and
(b))
2 LMA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 MU I 1 Input | Upper band width of matrix A
5 ML I 1 Input | Lower band width of matrix A
6 IPVT I N Input | Pivoting information
IPVT(i): Number of row exchanged with row i
in the i-th processing step
(See Note (c))
7 DET D 2 Output | Determinant of matrix A (See Note (d))
i
8 IERR I 1 Output | Error indicator

(4) Restrictions

(a) N>0

(b) 0<SMU<N-1
0<ML<N-1

(¢) min(2 x ML + MU + 1,N + ML) < LMA

231

DBBDDI, RBBDDI
Determinant of a Real Band Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. DET(1) «+ A(1,1)
DET(2) + 0.0 (See Note (d))
3000 Restriction (a), (b) or (c¢) was not | Processing is aborted.
satisfied.
(6) Notes

(a) The coefficient matrix A must be LU decomposed before using this subroutine. Use any of the 2.13.2

DBBDLU ,2.13.3 DBBDLC ,2.13.1 DBBDSL subroutines to perform the decomposition.
RBBDLU RBBDLC RBBDSL

(b) The unit lower triangular matrix L and the upper triangular matrix U must be stored in band format

in array A. However, since the diagonal elements of L always are 1.0, they need not be stored in array
A. (See 2.13.1 Figure 2—13.)

(¢) Information about partial pivoting performed during LU decomposition must be stored in IPVT. This

information is given by the subroutine that performs the LU decomposition of matrix A.

(d) The determinant is given by the following expression:
det(A) = DET(1) x (10.0PET2))
Scaling is performed at this time so that:
1.0 < |DET(1)| < 10.0

(e) Since the inverse matrix of a band matrix generally is a dense matrix, it is not obtained in this
subroutine.

232

DBBDLX, RBBDLX
Improving the Solution of Simultaneous Linear Equations (Real Band Matrix)

2.13.6 DBBDLX, RBBDLX
Improving the Solution of Simultaneous Linear Equations (Real Band Ma-
trix)
(1) Function

DBBDLX or RBBDLX uses an iterative method to improve the solution of the simultaneous linear equations

Az = b having the real band matrix A (band type) as coefficient matrix.

(2) Usage
Double precision:
CALL DBBDLX (A, LMA, N, MU, ML, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)
Single precision:
CALL RBBDLX (A, LMA, N, MU, ML, ALU, B, X, ITOL, NIT, IPVT, W1, IERR)
(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(S8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 A D LMA,N Input | Coefficient matrix A (real band matrix, band
R type) (See Appendix B)

LMA Input | Adjustable dimension of arrays A and ALU

Input | Order of matrix A

MU
ML
ALU

Input | Upper band width of matrix A

—_| = = =

Input | Lower band width of matrix A
LMA,N Input | Coefficient matrix A after LU decomposition
(See Note (a))

| O | W N

Input | Constant vector b

N Input | Approximate solution x

Output | Iteratively improved solution x

\]
os}
—| — | —/—
—|l WO | WO B O |~~~
N—— | Y—— | Y—~—
Z

9 ITOL 1 Input | Number of digits to which solution is to be im-
proved (See Note (b))

Output | Approximate number of digits to which solution

was improved (See Note (c))

10 NIT I 1 Input | Maximum number of iterations (See Note (d))
11 IPVT I N Input | Pivoting information
(See Note (a))
12 W1 D N Work | Work area
il
13 IERR I 1 Output | Error indicator

233

DBBDLX, RBBDLX
Improving the Solution of Simultaneous Linear Equations (Real Band Matrix)

(4) Restrictions

(a) N>0
(b) 0<MU<N-1

0<ML<N-1

(¢) min(2 x ML + MU + 1,N + ML) < LMA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.

1000 N was equal to 1. The solution is not improved.

3000 Restriction (a), (b) or (c) was mnot | Processing is aborted.
satisfied.

4000 + ¢ The i-th diagonal element of ALU was

equal to 0.0.

5000 The solution did not converge within the | Processing is aborted after calculating the
maximum number of iterations. ITOL output value.

6000 The solution could not be improved.

(6) Notes

(a)

()

()

DBBDSL DBBDLS
This subroutine improves the solution obtained by the 2.13.1 { } or2.13.4 { } sub-

RBBDSL RBBDLS
DBBDSL
routine. Therefore, the coefficient matrix A after it has been decomposed by the 2.13.1 RBBD:L ,

RBBDLU RBBDLC
be given as input.

DBBDL DBBDLC
2.13.2 { U} or 2.13.3 { } subroutine and the pivoting information at that time must

Solution improvement is repeated until the high-order ITOL digits of the solution do not change.
However, if the following condition is satisfied, solution improvement is repeated until the solution
changes in at most the low order 1 bit.

ITOL <0
or
ITOL > —LOG10(2 x €) (e : Unit for determining error)

If the required number of digits have not converged within the iteration count, the approximate number
of digits in the improved solution that were unchanged is returned to I'TOL.

If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

234

DBBDLX, RBBDLX

Improving the Solution of Simultaneous Linear Equations (Real Band Matrix)

(7) Example

(a) Prob

lem
Solve the following simultaneous linear equations and improve the solution.

(10 9876 00000][x;] [8]
99 8 76 5 0000 X5 7
8 8 8 7 6 5 4 0 0 0 X3 2
YT 7T 7T 6 5 43 00 Xy 2
6 6 6 6 6 5 4 3 2 0 X5 | 4
05555 5 43 21 Xe | | -2
0 0 4 4 4 4 4 3 21 X7 -2
0003 3333 21 Xg
00002222 21 Xy

000001 1 1 1 1]][X | | 0]

(b) Input data
Coefficient matrix A, LNA = 21,N = 10, MU = 4, ML = 4 and constant vector B.
(¢) Main program

1ok

10

20

30
40

50

60
1000

1100
1200
1300
1400
1500
1600
1700
1800

PROGRAM BBBDLX

EXAMPLE OF DBBDLX ***

IMPLICIT REAL(8)(A-H,0-Z)

PARAMETER (LNA=21, LN=10)

DIMENSION ~ A(LNA,LN), ALU(LNA,LN), B(LN), X(LN), W1i(LN)
INTEGER IPVT(LN)

READ(5,*) N,MU,ML
WRITE(G 1000) N MU, ML
READ(5,) ((A(T, J) J=1,N),I=1,MU+ML+1)
READ(5,*) (B(I),I=1,N)
WRITE(G 1100)
DO 10 I = 1,MU+ML+1
WRITE(6,1200) (A(I,J),J=1,N)

CONTINUE
WRITE(S, 1300)
DO 20 I = 1,N
WRITE(6,1400) B(I)
CONTINUE
DO 40 J = 1,N
X(J) = B(J)

DO 30 I = 1,MU+ML+1
ALU(I,J) = A(I,D)
CONTINUE
CONTINUE
CALL DBBDSL(ALU,LNA,N,MU,ML,X,IPVT,IERR)
IF (IERR.GE.3000) STOP
WRITE(6, 1500)
DO 50 I = 1,N
WRITE(6,1600) I,X(I)
CONTINUE
ITOL = O
CALL DBBDLX(A,LNA,N,MU,ML,ALU,B,X,ITOL,0,IPVT,W1,IERR)
WRITE(6,1700) IERR
WRITE(S6, 1800)

DO 60 I =
WRITE(S6, 1600) I,X(D
CONTINUE
STOP
FORMAT(’ ’,/ /,’ *%*x DBBDLX **x’,/ 2X,’*% INPUT *x*’,/.&
5,/,6X,’MU = ’,I4,/,6X,’ML = ,14)

FORMAT(GX ’CDEFFICIENT MATRIX A’)

FORMAT (8X,10F7.1)

FORMAT (6X, >CONSTANT VECTOR’)

FORMAT(8X, F7.1)

FORMAT (6X, ’ORIGINAL SOLUTION’)
FORMAT(8X,°X(’,I2,’) = ’,1PD18.10)
FORMAT(?X,’** QUTPUT **’,/,6X,’IERR = ’,I5)
FORMAT (6X, >IMPROVED SOLUTION’)

END

(d) Output results

*%% D
** T

BBDLX %%
NPUT *x*

N = 10
MU = 4

235

DBBDLX, RBBDLX

Improving the Solution of Simultaneous Linear Equations (Real Band Matrix)

ML = 4
COEFFICIENT MATRIX A
0

.0 .0 0.0
0.0 .0 0.0
0.0 0.0 8.0
0.0 9.0 8.0
10.0 9.0 8.0
9.0 8.0 7.0
8.0 7.0 6.0
7.0 6.0 5.0
6.0 5.0 4.0
CONSTANT VECTOR
8.0
7.0
2.0
2.0
4.0
-2.0
-2.0
2.0
2.0
0.0
ORIGINAL SOLUTION
X(1) = 1.0000000000D+00
X(2) = 0.0000000000D+00
X(3) = -1.0000000000D+00
X(4) = 0.0000000000D+00
X(5) = 1.0000000000D+00
X(6) = -3.7848512203D-17
X(7) = -1.0000000000D+00
X(8) = -6.2883389974D-16
X(9) = 1.0000000000D+00
X(10) = 4.8805302754D-16
*x QUTPUT **
IERR = 0
IMPROVED SOLUTION
X(1) = 1.0000000000D+00
X(2) = 7.8886090522D-32
X(3) = -1.0000000000D+00
X(4) = -6.5738408768D-32
X(5) = 1.0000000000D+00
X(6) = -4.9303806576D-32
X(7) = -1.0000000000D+00
X(8) = 9.8607613153D-32
X(9) = 1.0000000000D+00
X(10) = 2.9582283946D-31

WA OTO~N~N~N~NO
coo00O0O0O0O0O

NWHTIOHOOOD
OQOO0OOOOOOO

WO,
[eXeoleolololololoto)

236

O N WP IR P
[elelolololeleololo]

QOFRNWWWWW
[eXeoleololololololo)

QOO NNNNN

[elelolololeleoleolo]

OQOOORRFEEFEFF

[eXeoleololololololo)

2.14 POSITIVE SYMMETRIC BAND MATRIX (SYMMETRIC
BAND TYPE)

2.14.1 DBBPSL, RBBPSL
Simultaneous Linear Equations (Positive Symmetric Band Matrix)
(1) Function
DBBPSL or RBBPSL uses the Cholesky method to solve the simultaneous linear equations Az = b having

the positive symmetric band matrix A (symmetric band type) as coefficient matrix.

(2) Usage
Double precision:
CALL DBBPSL (A, LMA, N, MB, B, IERR)
Single precision:
CALL RBBPSL (A, LMA, N, MB, B, IERR)

(3) Arguments

D:Double precision real = Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LMA,N Input | Positive symmetric band matrix A
{R} (symmetric band type) (See Appendix B)
Output | Upper triangular matrix LT when A is decom-
posed into A = LLT (See Note (b))
2 LMA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 MB I 1 Input | Band width of matrix A
5 B D N Input | Constant vector b
{R} Output | Solution x
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) N>0
(b) 0<MB<N-1
(c) MB +1 < LMA

237

DBBPSL, RBBPSL
Simultaneous Linear Equations (Positive Symmetric Band Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. A(1,1) + /A(1,1) and
B(1) «+ B(1)/A(1,1) are performed.
3000 Restriction (a), (b) or (c¢) was not | Processing is aborted.
satisfied.
4000 + ¢ A diagonal element became less than or
equal to 0.0 in the i-th processing step of
the LLT decomposition of coefficient ma-
trix A.
A is nearly singular.

(6) Notes

(a) To solve multiple sets of simultaneous linear equations where only the constant vector differs, call this
DBBPLS
RBBPLS
only the contents of B. This enables you to eliminate unnecessary calculations by performing the LLT

subroutine only once and then call subroutine 2.14.4 { } the required number of times varying

decomposition of matrix A only once.

(b) Only the upper triangular matrix L7 is stored in array A. Since the lower triangular matrix L is
calculated from L7, it is not stored in array A.

238

DBBPSL, RBBPSL
Simultaneous Linear Equations (Positive Symmetric Band Matrix)

Matrix LT

S O O O
o
~
w
w
~
w
[
~
w
[

* * liz laa I35
x lig loz lza las MB+1
lia lao I3 lua Iss
LMA| | 77777 N=—m - -
———————- K-————-—- —

Remarks

a. Input time values of elements indicated by asterisks (x) are guaranteed.
b. MB is the band width.
c. LMA > MB+1 and K > N must hold.

Figure 2—14 Storage Status of Matrix LT
(7) Example

(a) Problem

Solve the following simultaneous linear equations.

10 -2 1 0 T 72
-2 9 -1 2 o N
1 -1 8 -3 z3 || 62
0 2 -3 7 T4 —4

(b) Input data
Coefficient matrix A, LMA = 11,N = 4, MB = 2 and constant vector B.
(¢) Main program

PROGRAM BBBPSL

! s%x EXAMPLE OF DBBPUC,DBBPLS s
IMPLICIT REAL(8) (A -H,0-2)
PARAMETER (LMA = 11)
DIMENSION A(LMA,LMA),B(LMA),W1(LMA)

CHARACTER*50 FMT(3)

DATA FMT /°(7X,2(A11),2(G11.4))°,&
27X, A11,73(G11.4)) 7 ¢
 (7X, 4(G11.4))° /

READ (5,%) N,MB

WRITE (6, 1000) N MB

DO 10 I =1,
READ (5,%) (A(I J),J=MB-I+2,N)
WRITE (8,FMT(I)3 (O 7,J=1,MB-I+1),(A(I,J),J=MB-I+2,N)

10 CONTINUE

READ (5,*) (B(I),I=1,N)

WRITE (6,1200) (B(I) 1=1,N)

WRITE (6,1300)

CALL DBBPUC (A,LMA,N,MB,COND,W1,IERR)

WRITE (6,1400) ’DBBPUC’,IERR

IF (IERR .GE. 3000) STOP

COND = 1.0D0/COND

CALL DBBPLS (A,LMA,N,MB,B,KERR)

WRITE (6,1400) ’DBBPLS’,KERR

WRITE (6,1500) COND

239

DBBPSL, RBBPSL
Simultaneous Linear Equations (Positive Symmetric Band Matrix)

WRITE (6,1600) (I,B(I),I=1,N)
STOP

1000 FORMAT(’ °,/,/,&
> *%x DBBPUC,DBBPLS **x*’,/.&
2X,2*x INPUT *x*’,/,&
6X,’N =’,13,/,&
6X, ’BAND WIDTH =2,13,/,&
6X, ’COEFFICIENT MATRIX’)
1200 FORMAT(6X,’CONSTANT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** QUTPUT *x*’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT(6X, ’CONDITION NUMBER -’ ,D18.10)
1600 FORMAT(6X,’SOLUTION’,/, (8X, ’X(’ I12,’) =’,D18.10))
END

(d) Output results

**x DBBPUC, DBBPLS *okk
** INPUT

4
BAND WIDTH = 2
COEFFICIENT MATRIX

1.000 2.000

-2.000 -1.000 -3.000

10.00 9.000 8.000 7.000

CONSTANT VECTOR

72.0000
9.0000
62.0000
-4.0000

*x QUTPUT *x*
IERR (DBBPUC)
IERR (DBBPLS) = 0
CONDITION NUMBER = 0.3234671497D+01

0

SOLUTION
X(1) = 0.7000000000D+01
X(2) = 0.3000000000D+01
X(3) = 0.8000000000D+01
X(4) = 0.2000000000D+01

240

DBBPUU, RBBPUU

LL™ Decomposition of a Positive Symmetric Band Matrix

2.14.2 DBBPUU, RBBPUU

(1) Function
DBBPUU or RBBPUU uses the Cholesky method to perform an LLT decomposition of the positive sym-
metric band matrix A (symmetric band type).

(2) Usage

Double precision:
CALL DBBPUU (A, LMA, N, MB, IERR)
Single precision:
CALL RBBPUU (A, LMA, N, MB, IERR)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

LL"Y Decomposition of a Positive Symmetric Band Matrix

| INTEGER(4) as for 32bit Integer
INTEGER(8) as for 64bit Integer

No. | Argument | Type Size fnput/ Contents

Output

1 A D LMA,N Input | Positive symmetric band matrix A

{ R} (symmetric band type) (See Appendix B)
Output | Upper triangular matrix L™ when A is decom-
posed into A = LLT (See Note (a))

2 LMA I 1 Input | Adjustable dimension of array A

3 N I 1 Input | Order of matrix A

4 MB I 1 Input | Band width of matrix A

5 IERR I 1 Output | Error indicator

(4) Restrictions

(a) N>0
(b) 0<MB<N -1

(¢) MB+1 < LMA

241

DBBPUU, RBBPUU
LLT Decomposition of a Positive Symmetric Band Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. A(1,1) + /AL, 1)
is performed.
3000 Restriction (a), (b) or (c¢) was not | Processing is aborted.
satisfied.
4000 + ¢ A diagonal element became less than or

equal to 0.0 in the i-th processing step.

(6) Notes

(a) The upper triangular matrix LT is stored in array A. Since the lower triangular matrix L is calculated
from LT it is not stored in array A. (See 2.14.1 Figure 2—14.)

242

DBBPUC, RBBPUC
LLT Decomposition and Condition Number of a Positive Symmetric Band Matrix

2.14.3 DBBPUC, RBBPUC
LLT Decomposition and Condition Number of a Positive Symmetric Band
Matrix

(1) Function
DBBPUC or RBBPUC uses the Cholesky method to perform an LLT decomposition and obtain the condition
number of the positive symmetric band matrix A (symmetric band type).

(2) Usage
Double precision:
CALL DBBPUC (A, LMA, N, MB, COND, W1, IERR)
Single precision:
CALL RBBPUC (A, LMA, N, MB, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(S8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LMA,N Input | Positive symmetric band matrix A
R (symmetric band type) (See Appendix B)
Output | Upper triangular matrix LT when A is decom-
posed into A = LLT (See Note (a))
2 LMA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 MB I 1 Input | Band width of matrix A
5 COND D 1 Output | Reciprocal of the condition number
R
6 W1 D N Work | Work area
R
7 IERR I 1 Output | Error indicator

(4) Restrictions

(a) N>0
(b) 0SMB<N-—1
() MB +1 < LMA

243

DBBPUC, RBBPUC
LLT Decomposition and Condition Number of a Positive Symmetric Band Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. A(1,1) + /A(1,1) and
COND < 1.0 are performed.

3000 Restriction (a), (b) or (c¢) was not | Processing is aborted.

satisfied.
4000 + ¢ A diagonal element became less than or | Processing is aborted.
equal to 0.0 in the ¢-th processing step. The condition number is not obtained.
(6) Notes

a) The upper triangular matrix L7 is stored in array A. Since the lower triangular matrix L is calculated
g y g
from LT it is not stored in array A. (See 2.14.1 Figure 2—14.)

(b) Although the condition number is defined by || Al - ||A~}||, an approximate value is obtained by this

subroutine.

244

DBBPLS, RBBPLS
Simultaneous Linear Equations (LLT-Decomposed Positive Symmetric Band Matrix)

2.14.4 DBBPLS, RBBPLS
Simultaneous Linear Equations (LLT-Decomposed Positive Symmetric Band
Matrix)

(1) Function
DBBPLS or RBBPLS solves the simultaneous linear equations LLTx = b having the positive symmet-
ric band matrix A (symmetric band type) which has been LLT decomposed by the Cholesky method as

coefficient matrix.

(2) Usage
Double precision:
CALL DBBPLS (A, LMA, N, MB, B, IERR)
Single precision:
CALL RBBPLS (A, LMA, N, MB, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size Input/ Contents
Output
1 A D LMA,N Input | Coefficient matrix A after LLT decomposition
{R} (positive symmetric band matrix, symmetric
band type) (See Appendix B) (See Notes (a)
and (b))
2 LMA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 MB I 1 Input | Band width of matrix A
5 B D N Input | Constant vector b
{R} Output | Solution x
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) N>0
(b) 0SMB <N -1
(c) MB +1 < LMA

245

DBBPLS, RBBPLS
Simultaneous Linear Equations (LLT-Decomposed Positive Symmetric Band Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) < B(1)/A(1,1)? is performed.
3000 Restriction (a), (b) or (c¢) was not | Processing is aborted.
satisfied.

4000 + ¢ LT has a diagonal element that is less
than or equal to 0.0.
i is the number of the first diagonal ele-

ment that is less than or equal to 0.0.

(6) Notes

(a) The coefficient matrix A must be LL" decomposed before using this subroutine. Normally, you should
DBBPUU
RBBPUU

DBBPUC
RBBPUC

decompose matrix A by calling the 2.14.2 { } subroutine. However, if you also want to

obtain the condition number, you should use 2.14.3 { } In addition, if you have already

DBBPSL
RBBPSL
you can use the LLT decomposition obtained as part of its output.

used 2.14.1 { } to solve simultaneous linear equations having the same coefficient matrix A,

(b) The upper triangular matrix LT must be stored in array A. Since the lower triangular matrix L is
calculated from L7, it should not be stored in array A. (See 2.14.1 Figure 2—14.)

246

DBBPDI, RBBPDI
Determinant of a Positive Symmetric Band Matrix

2.14.5 DBBPDI, RBBPDI
Determinant of a Positive Symmetric Band Matrix

(1) Function
DBBPDI or RBBPDI obtains the determinant of the positive symmetric band matrix A (symmetric band
type) which has been LLT decomposed by the Cholesky method.

(2) Usage
Double precision:
CALL DBBPDI (A, LMA, N, MB, DET, IERR)
Single precision:
CALL RBBPDI (A, LMA, N, MB, DET, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LMA,N Input | Upper triangular matrix LT after LLT decom-
R position (See Notes (a) and (b))
2 LMA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 MB I 1 Input | Band width of matrix A
5 DET D 2 Output | Determinant of matrix A (See Note (c))
R
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) N>0
(b) 0<MB<N—1
(c) MB+1 < LMA

(5) Error indicator

TERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. DET(1) + A(1,1)
DET(2) + 0.0 (See Note (c))
3000 Restriction (a), (b) or (c¢) was not | Processing is aborted.
satisfied.

247

DBBPDI, RBBPDI
Determinant of a Positive Symmetric Band Matrix

(6) Notes

(a) The coefficient matrix A must be LLT decomposed before using this subroutine. Use any of the 2.14.1

DBBPSL DBBP DBBP
5 , 2.14.2 vu ,2.14.3 ve subroutines to perform the decomposition.
RBBPSL RBBPUU RBBPUC

(b) The upper triangular matrix LT must be stored in array A. Since the lower triangular matrix L is
calculated from L7, it should not be stored in array A. (See 2.14.1 Figure 2—14.)

(¢) The determinant is given by the following expression:
det(A) = DET(1) x (10.0PET®2))
Scaling is performed at this time so that:
1.0 < |DET(1)| < 10.0

(d) Since the inverse matrix of a positive symmetric band matrix generally is a dense matrix, it is not

obtained in this subroutine.

248

DBBPLX, RBBPLX
Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Band Matrix)

2.14.6 DBBPLX, RBBPLX
Improving the Solution of Simultaneous Linear Equations (Positive Sym-
metric Band Matrix)

(1) Function
DBBPLX or RBBPLX uses an iterative method to improve the solution of the simultaneous linear equations

Az = b having the positive symmetric band matrix A (symmetric band type) as coefficient matrix.

(2) Usage
Double precision:
CALL DBBPLX (A, LMA, N, MB, ALL, B, X, ITOL, NIT, W1, IERR)
Single precision:
CALL RBBPLX (A, LMA, N, MB, ALL, B, X, ITOL, NIT, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(S8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LMA,N Input | Coefficient matrix A (positive symmetric band
R matrix, symmetric band type) (See Appendix
B)
2 LMA I 1 Input | Adjustable dimension of arrays A and ALL
3 N I 1 Input | Order of matrix A
4 MB I 1 Input | Band width of matrix A
5 ALL D LMA,N Input | Coefficient matrix A after LLT decomposition
R (See Note (a))
6 B D N Input | Constant vector b
R
7 X D N Input | Approximate solution x
R Output | Iteratively improved solution x
8 ITOL I 1 Input | Number of digits to which solution is to be im-
proved (See Note (b))
Output | Approximate number of digits to which solution
was improved (See Note (c))
9 NIT I 1 Input | Maximum number of iterations (See Note (d))
10 W1 D N Work | Work area
R
11 IERR I 1 Output | Error indicator

249

DBBPLX, RBBPLX
Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Band Matrix)

(4) Restrictions

(a) N>0
(b) 0<MB<N-1
() MB +1 < LMA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. The solution is not improved.
3000 Restriction (a), (b) or (c) was mnot | Processing is aborted.
satisfied.

4000 + ¢ The i-th diagonal element of array ALL
was less than or equal to 0.0.

5000 The solution did not converge within the | Processing is aborted after calculating the
maximum number of iterations. ITOL output value.
6000 The solution could not be improved.
(6) Notes

DBBPSL DBBPLS
(a) This subroutine improves the solution obtained by the 2.14.1 { } or 2.14.4 { }

RBBPSL RBBPLS
DBBPSL
subroutine. Therefore, the coefficient matrix A after it has been decomposed by the 2.14.1 RBBPSL}’

P P
2.14.2 DBBPUU or 2.14.3 DBBPUC subroutine must be given as input.
RBBPUU RBBPUC

(b) Solution improvement is repeated until the high-order ITOL digits of the solution do not change.
However, if the following condition is satisfied, solution improvement is repeated until the solution
changes in at most the low order 1 bit.

ITOL<O0
or
ITOL > —LOG10(2 x €) (e : Unit for determining error)

(¢) If the required number of digits have not converged within the iteration count, the approximate number

of digits in the improved solution that were unchanged is returned to I'TOL.

(d) If the NIT input value is less than or equal to zero, 40 is assumed as the default value.

250

2.15

2.15.1 DBTDSL, RBTDSL

REAL TRIDIAGONAL MATRIX (VECTOR TYPE)

Simultaneous Linear Equations (Real Tridiagonal Matrix)

(1) Function

DBTDSL or RBTDSL uses the Gauss method to solve the simultaneous linear equations Az = b having a

real tridiagonal matrix A (vector type) as coeflicient matrix.

(2) Usage
Double precision:
CALL DBTDSL (SDL, D, SDU, N, B, IERR)
Single precision:
CALL RBTDSL (SDL, D, SDU, N, B, IERR)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

| INTEGER(4) as for 32bit Integer
INTEGER(8) as for 64bit Integer

No. | Argument | Type Size fnput/ Contents
Output
1 SDL D Input | Lower subdiagonal component of coefficient
{R} matrix A (real tridiagonal matrix, vector type)
(See Appendix B)
Output | Input-time contents are not saved.
2 D D Input | Diagonal component of coefficient matrix A
{R} (real tridiagonal matrix, vector type) (See Ap-
pendix B)
Output | Input-time contents are not saved.
3 SDU D Input | Upper subdiagonal component of coefficient
{R} matrix A (real tridiagonal matrix, vector type)
(See Appendix B)
Output | Input-time contents are not saved.
4 N I Input | Order of matrix A
5 B D Input | Constant vector b
{R} Output | Solution x
6 IERR I Output | Error indicator

(4) Restrictions

()

N>0

251

DBTDSL, RBTDSL
Simultaneous Linear Equations (Real Tridiagonal Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) «+ B(1)/D(1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ The pivot became 0.0 in the ¢-th process-
ing step.
A is nearly singular.

(6) Notes
(a) This subroutine performs partial pivoting.
(7) Example

(a) Problem

Solve the following simultaneous linear equations.

2 3 00 T 8
1 230 o | | 14
012 3 z3 || 20
00 1 2 T4 11

(b) Input data
Lower subdiagonal component SDL, diagonal component D, upper subdiagonal component SDU, N = 4

and constant vector B.
(¢) Main program

PROGRAM BBTDSL
! %% EXAMPLE OF DBTDSL %
IMPLICIT REAL(8) (A -H,0-Z)
PARAMETER (NN =
DIMENSION SDL(NN) D(NN) SDU(NN) ,B(NN)

READ (5,%) N
WRITE (6,1000) N

READ (5,*) (SDL(I),I=2,N),(D(I),I=1,N),(SDU(I),I=1,N-1)
WRITE (6,1110) (SDL(I),I=2,

WRITE (6,1100) (D(I),I=1,N)

WRITE (6,1120) (SDU(I),I=1,N-1)

READ (5,%) (B(I),I=1,N)

WRITE (6,1200) (B(I),I=1,N)

WRITE (6,1300)

CALL DBTDSL (SDL,D,SDU,N,B,IERR)
WRITE (6,1400) IERR

IF (IERR .GE. 3000) STOP

WRITE (6,1500) (I,B(I),I=1,N)
STOP

1000 FDRMAT(’ VAN
sk DBTDSL **x7 /&

2X,7*x INPUT *x’,/,&

6X,’N =2,13,/,&

6X ’COEFFICIENT MATRIX’)
1100 FORMAT(7X, 4(G11 4))
1110 FDRMAT(?X,’ ’,3(G11.4))
1120 FORMAT(7X,3(G11.4),’)
1200 FORMAT(6X,’CONSTANT VECTOR’,/,(7X,F10.4))
1300 FORMAT(2X,’** QUTPUT **’)
1400 FORMAT(6X,’IERR =’,I5)
1500 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

END

(d) Output results

***x DBTDSL **x*
*% INPUT *x*

N= 4
COEFFICIENT MATRIX

252

DBTDSL, RBTDSL
Simultaneous Linear Equations (Real Tridiagonal Matrix)

*x

1.000 1.000
2.000 2.000 2.000
3.000 3.000 3.000
CONSTANT VECTOR
8.0000
14.0000
20.0000
11.0000
OUTPUT *x*
IERR =
SOLUTION
X(1) = 0.1000000000D+01
X(2) = 0.2000000000D+01
X(3) = 0.3000000000D+01
X(4) = 0.4000000000D+01

1.000
2.000

253

DBTPSL, RBTPSL
Simultaneous Linear Equations (Positive Symmetric Tridiagonal Matrix)

2.15.2 DBTPSL, RBTPSL
Simultaneous Linear Equations (Positive Symmetric Tridiagonal Matrix)

(1) Function
DBTPSL or RBTPSL uses the Gauss method to solve the simultaneous linear equations Az = b having a
positive symmetric tridiagonal matrix A (vector type) as coefficient matrix.

(2) Usage
Double precision:
CALL DBTPSL (D, SD, N, B, IERR)
Single precision:
CALL RBTPSL (D, SD, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size put/ Contents
Output
1 D D N Input | Diagonal component of coefficient matrix A
R (positive symmetric tridiagonal matrix, vector

type) (See Appendix B)

Output | Input-time contents are not saved.
2 SD {D} N Input | Subdiagonal component of coefficient matrix A

(positive symmetric tridiagonal matrix, vector
type) (See Appendix B)

Output | Input-time contents are not saved.

3 N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
R Output | Solution x

5 IERR I 1 Output | Error indicator

(4) Restrictions

(a) N>0

254

DBTPSL, RBTPSL
Simultaneous Linear Equations (Positive Symmetric Tridiagonal Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) + B(1)/D(1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 The diagonal component became 0.0 dur-
ing processing.
A is nearly singular.

(6) Notes

(a) This subroutine performs Gaussian elimination concurrently from both ends of the diagonal of matrix
A. Therefore, both forward elimination and back substitution are performed repeatedly along the

diagonal.

Figure 2—15 Operations for a Positive Symmetric Tridiagonal Matrix

Forward elimination Back substitution
l aa aa
aaa aaa
aaa I aaa
aaa -—-—aaa- - -
aaa aaa 1
aaa T aaa
aa aa

(7) Example

(a) Problem
Solve the following simultaneous linear equations.

-2 1 0 0 T —-1
1 -2 1 0 x2 | 0
0 1 -2 1 3 |
0 0 1 -2 T4 0

(b) Input data
Diagonal component D, subdiagonal component SD, N = 4 and constant vector B.

(¢) Main program

PROGRAM BBTPSL

| %% EXAMPLE OF DBTPSL ***
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (NN = 10)
DIMENSION D(NN),SD(NN),B(NN)

READ (5,*) N

WRITE (6,1000) N

READ (5,*) (D(I),I=1,N),(SD(I),I=1,N-1)
WRITE (6,1100) (D(I),I=1,N)

WRITE (6,1110) (SD(I),I=1,N-1)

READ (5,*) (B(I),I=1,N)

WRITE (6,1200) (B(I),I=1,N)

WRITE (6,1300)

CALL DBTPSL (D,SD,N,B,IERR)

WRITE (6,1400) IERR

IF (IERR .GE. 3000) STOP

WRITE (6,1500) (I,B(I),I=1,N)
. STOP

1000 FORMATC® °,/,/.&
> skk DBTPSL **%’,/ &

255

DBTPSL, RBTPSL
Simultaneous Linear Equations (Positive Symmetric Tridiagonal Matrix)

2X,2*x INPUT *x*’,/,&
6X,’N =2,13,/,&
6X,’COEFFICIENT MATRIX’)
1100 FORMAT(7X,4(G11.4))
1110 FORMAT(7X,3(G11.4),”)
1200 FORMAT(6X,’CONSTANT VECTOR’,/, (7X,F10.4))
1300 FORMAT(2X,’*x QUTPUT *x’)
1400 FORMAT(6X,’IERR =’,I5)
1500 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))
END

(d) Output results

*%% DBTPSL %%
*x INPUT *x*

N= 4
COEFFICIENT MATRIX
-2.000 -2.000 -2.000 -2.000
1.000 1.000 1.000
CONSTANT VECTOR
-1.0000
0.0000
0.0000
0.0000
** QUTPUT *x*
IERR = 0
SOLUTION
X(1) = 0.8000000000D+00
X(2) = 0.6000000000D+00
X(3) = 0.4000000000D+00
X(4) = 0.2000000000D+00

256

2.16 REAL TRIDIAGONAL MATRIX (VECTOR TYPE)

2.16.1 WBTDSL
Simultaneous Linear Equations (Real Tridiagonal Matrix)

(1) Function
WBTDSL uses the cyclic reduction method to solve the simultaneous linear equations Az = b having the

real tridiagonal matrix A (vector type) as coeflicient matrix.

(2) Usage
Double precision:
CALL WBTDSL (SDL, D, SDU, N, B, IW, W1, IERR)
Single precision:
Nothing

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 SDL D N Input | Lower subdiagonal components of coefficient
matrix A (real tridiagonal matrix, vector type)
(See Appendix B.)
Output | Input-time contents are not retained.
2 D D N Input | Diagonal components of coefficient matrix A
(real tridiagonal matrix, vector type) (See Ap-
pendix B.)
Output | Input-time contents are not retained.
3 SDU D N Input | Upper subdiagonal components of coefficient
matrix A (real tridiagonal matrix, vector type)
(See Appendix B.)
Output | Input-time contents are not retained.
4 N I 1 Input | Order of matrix A
B D N Input | Constant vector b
Output | Solution vector x
6 W I See Work | Work area (See Note (a))
Contents Size: 3 x [logy(N)| +1
W1 D 4 x N Work | Work area
IERR I 1 Output | Error indicator

257

WBTDSL
Simultaneous Linear Equations (Real Tridiagonal Matrix)

(4) Restrictions
(a) N>0

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N=1 B(1) « B(1)/D(1)
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 A is nearly singular.
(6) Notes

(a) |logy(N)] is the value obtained by truncating the fractional part of log,(N).

(b) The single-precision version of the subroutine is not supported.
(7) Example

(a) Problem

Solve
6 2 0 0 T 10
16 2 0 za || 19
01 6 2 xs | | 28
001 6 T4 27

(b) Input data
Lower subdiagonal components SDL, diagonal components D, upper subdiagonal components SDU,

N = 4 and constant vector b.
(¢) Main program

PROGRAM EBTDSL
! *** EXAMPLE OF WBTDSL *#**
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (NN = 10)
DIMENSION SDL(NN),D(NN),SDU(NN),B(NN) ,DWK(4*NN),IW(10)

READ (5,%) N

WRITE (6,1000) N

READ (5,%) (SDL(I),I=2,N),(D(I),I=1,N),(SDU(I),I=1,N-1)
WRITE (6,1600) (SDL(I),I=2,N)

WRITE (6,1100) (D(I),I=1,N)

WRITE (6,1700) (SDU(I),I=1,N-1)

READ (5,*) (B(I),I=1,N)

WRITE (6,1200) (B(I),I=1,N)

WRITE (6,1300)

CALL WBTDSL (SDL,D,SDU,N,B,IW,DWK,IERR)
WRITE (6,1400) IERR

IF (IERR .GE. 3000) STOP

gRéTE (6,1500) (I,B(I),I=1,N)

TOP

1000 FORMAT (* ’,/,/,’ *%* WBTDSL *#x’,/,2X,”** INPUT #**’,/,&
6X,’N =’,13,/,6X,’COEFFICIENT MATRIX’)

1100 FORMAT (7X,4(G11.4))

1200 FORMAT (6X,’CONSTANT VECTOR’,/,(7X,F10.4))

1300 FORMAT (2X,’*% OUTPUT #%’)

1400 FORMAT (6X,’IERR =’,I5)

1500 FORMAT (6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

1600 FORMAT (18X,3(G11.4))

1700 FORMAT (7X,3(G11.4),1X)
END

258

WBTDSL
Simultaneous Linear Equations (Real Tridiagonal Matrix)

(d) Output results

*%k*k WBTDSL **x%
*x INPUT *x*

N= 4
COEFFICIENT MATRIX

1.000 1.000 1.000
6.000 6.000 6.000 6.000
2.000 2.000 2.000
CONSTANT VECTOR
10.0000
19.0000
28.0000
27.0000
*x QUTPUT *x*
IERR = 0
SOLUTION
X(1) = 0.1000000000D+01
X(2) = 0.2000000000D+01
X(3) = 0.3000000000D+01
X(4) = 0.4000000000D+01

259

WBTDLS
Simultaneous Linear Equations (Real Tridiagonal Matrix after Reduction Operations)

2.16.2 WBTDLS
Simultaneous Linear Equations (Real Tridiagonal Matrix after Reduction
Operations)
(1) Function

WBTDLS uses the cyclic reduction method to solve the simultaneous linear equations Az = b having the

real tridiagonal matrix A (vector type) after reduction operations have been performed as coefficient matrix.

(2) Usage
Double precision:
CALL WBTDLS (SDL, D, SDU, N, B, IW, W1, IERR)
Single precision:
Nothing

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output

1 SDL D N Input | Lower subdiagonal components of coefficient
matrix A after reduction operations (real tridi-
agonal matrix, vector type) (See Appendix B.)
(See Note (a))

2 D D N Input | Diagonal components of coefficient matrix A af-
ter reduction operations (real tridiagonal ma-
trix, vector type) (See Appendix B.) (See Note
()

3 SDU D N Input | Upper subdiagonal components of coefficient
matrix A after reduction operations (real tridi-
agonal matrix, vector type) (See Appendix B.)
(See Note (a))

4 N I 1 Input | Order of matrix A

B D N Input | Constant vector b
Output | Solution vector x
6 Iw I See Input | Reduction operation information (See Notes (a)
Contents and (b))
Size: 3 x [logy(N)| +1
7 W1 D 4xN Input | Reduction operation information (See Note (a))
8 IERR I 1 Output | Error indicator

260

WBTDLS

Simultaneous Linear Equations (Real Tridiagonal Matrix after Reduction Operations)

(4) Restrictions

(a) N>0

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N=1 B(1) + B(1)/D(1)
3000 Restriction (a) was not satisfied. Processing is aborted.
4000 A is nearly singular (Only when N = 1)
(6) Notes

(a) This subroutine can be used to solve multiple sets of simultaneous linear equations having the same

coefficient

matrix but different constant vectors.

operations for the coefficient matrix and obtain solutions.

First, use 2.16.1 WBTDSL to perform reduction

Then, repeatedly use this subroutine to only obtain solutions for the different constant vectors. The

contents of arguments SDL, D, SDU, IW, and W1 from this subroutine must be retained since they
become input values for this subroutine 2.16.1 WBTDSL.

(b) [logy(N)] is the value obtained by truncating the fractional part of log,(N).

(¢) The single-precision version of the subroutine is not supported.

(7) Example

(a) Problem

Solve simultaneous linear equations Ax = b; and Ay = b, with unknowns x and y where,

(b) Input data

6 2 0 O 10
1 6 2 0 19
, by = , by =
01 6 2 28
0 01 6 27

30
26
17

8

Lower subdiagonal components SDL, diagonal components D, upper subdiagonal components SDU,

N =4 and

constant vectors by and bs.

(¢) Main program

PROGRAM EBTDLS

! *%% EXAMPLE OF WBTDLS *xx
IMPLICIT REAL(8) (A -H,0-2)
PARAMETER (NN = 10)
DIMENSION SDL(NN),D(NN),SDU(NN),B1(NN),B2(NN),DWK(4*NN),IW(10)

READ
WRITE
READ
WRITE
WRITE
WRITE
READ
READ
WRITE
WRITE

(5,%) N
(6,1000) N
(5,%) (SDL(I),I=
(6,1700) (SDL(I
(6,1100) (D(I)
(6,1800) (SDU(
(5,%) (B1(I),I=
(5.%) (B2(I).I=
(6,1200) (B1(I) ,B2(1),1=1,N)
(6,1 00)

2
)
,1
D
1,

CALL WBTDSL (SDL,D,SDU,N,B1,IW,DWK,KERR)
CALL WBTDLS (SDL,D,SDU,N,B2,IW,DWK,IERR)

WRITE

(6,1400) IERR

IF (IERR .GE. 3000) STOP

WRITE
WRITE
STOP

(6,1500) (I,B1(I),I=1,N)
(6,1600) (I,B2(I),I=1,N)

261

§I),I=1,N),(SDU(I),I=1,N—1)

WBTDLS

Simultaneous Linear Equations (Real Tridiagonal Matrix after Reduction Operations)

1000

1100
1200
1300
1400
1500
1600
1700
1800

FORMAT

COSOVAYIS N Sk

WBTDLS

**x2 / 2X, 2%k INPUT =*x’,/.&

6X,’N =’,13,/,6X,’COEFFICIENT MATRIX’)

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

(7X,4(G11.4))

(6X,’CONSTANT VECTOR’,/,(7X,F10.4,4X,F10.4))

(2X,?%* QUTPUT
(6X,’IERR =’,I5)
(6X,’SOLUTION X’
(6X, ’SOLUTION Y’
(18X,3(G11.4))

(7X,3(G11.4),1X)

(d) Output results

k% k
*k

*x

WBTDLS
INPUT *

%%k k
*

N= 4
COEFFICIENT MATRIX

6.000
2.000
CONSTANT
10.0
19.0
28.0
27.0
OUTPUT
IERR =
SOLUTION

2.000
VECTOR
000
000
000
000
*ok
0
X

30.0000
26.0000
17.0000

8.0000

*%7)

,/,(8X,°X(?,12,7) =7,D18.10))
,/,(8X,°Y(*,12,?) =7,D18.10))

1.000
6.000
2.000

1.000
6.000

QOQOO0OO OO0O0O

.1000000000D+01
.2000000000D+01
.3000000000D+01
.4000000000D+01

.4000000000D+01
.3000000000D+01
.2000000000D+01
.1000000000D+01

262

2.17 FIXED COEFFICIENT REAL TRIDIAGONAL MATRIX

2.17.1 WBTCSL
Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix)

(1) Function

WBTCSL uses the cyclic reduction method to solve the simultaneous linear equations Az = b having the

(SCALAR TYPE)

fixed coefficient real tridiagonal matrix A (scalar type) as coefficient matrix.

(2) Usage

Double precision:
CALL WBTCSL (D, SD, N, B, ISW, IW, W1, IERR)

Single precision:
Nothing

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

| INTEGER(4) as for 32bit Integer
" | INTEGER(8) as for 64bit Integer

No. | Argument | Type Size fnput/ Contents
Output
1 D D 1 Input | Diagonal components of coefficient matrix A
(fixed coefficient real tridiagonal matrix, scalar
type) (See Note (a))
Output | Input-time contents are not retained.
2 SD D 1 Input | Subdiagonal components of coefficient matrix A
(fixed coefficient real tridiagonal matrix, scalar
type) (See Note (a))
Output | Input-time contents are not retained.
3 N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
Output | Solution vector x
5 ISW I 1 Input | Specifies the type of coefficient matrix A. (See
Note (a)) ISW=1, 2, 3 or 4
6 W I See Work | Work area (See Note (b))
Contents Size: 3 x [logy(N)| +1
7 W1 D See Work | Work area
Contents Size: N+ 3 x [logy(N) | +2
8 IERR I 1 Output | Error indicator

263

WBTCSL
Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix)

(4) Restrictions

(a) N>0
(b) ISW € {1,2,3,4}

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N=1 B(1) < B(1)/D(1)
3000 Restriction (a) or (b) was not satisfied. Processing is aborted.
4000 A is nearly singular.
(6) Notes

(a) Coefficient matrix A is a fixed coefficient real tridiagonal matrix of the types shown below corresponding
to ISW =1, 2, 3, and 4.

For ISW =1
[D SD 0 i
SD D SD
SO D SD
,D=£0,SD=#£0
0 D SD
L SD D |
For ISW =2
[D SD 0 1
SD D SD
SD D SD
,D=£0,SD #£0
0 D SD
L 2 x SD D |
For ISW =
D 2x8SD 0 1
SD D SD
SD D SD
,D=#0,SD#£0
0 D SD
L SD D |

264

WBTCSL
Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix)

For ISW =4
D 2xSD 0 1
SD D SD
SD D SD
,D#0,SD#0
0 . D SD
i 2 x SD D |

Coefficient matrices of the types shown above appear when discretizing the Dirichlet or Neumann
boundary value problem.

(b) [logy(N)] is the value obtained by truncating the fractional part of log,(N).

(¢) The single-precision version of the subroutine is not supported.
(7) Example

(a) Problem

Solve
6 2 0 0 T 8
2.6 2 0 za | | 10
0 2 6 2 z3 || 10
00 2 6 T4 8

(b) Input data
Diagonal components D, subdiagonal components SD, N = 4, ISW = 1, and constant vector b.
(¢) Main program

PROGRAM EBTCSL
! x*x EXAMPLE OF WBTCSL %%
IMPLICIT REAL(8) (A -H,0-2)
PARAMETER (NN =
DIMENSION SDL(NN) D(NN) ,SDU(NN) ,B(NN) ,DWK(21) , IW(10)

READ (5,*) N,ISW

WRITE (6,1000) N,ISW
READ (5,%*) (SDL(I),I=2,
WRITE (6,1600) (SDL(I),
WRITE (6,1100) (D(I),I=
WRITE (6,1700) (SDU(I),
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=
WRITE (6,1300)

DD = D(1)

SD = SDL(2)

CALL WBTCSL (DD,SD,N,B,ISW,IW,DWK,IERR)
WRITE (6,1400) IERR

IF (IERR .GE. 2000) S

WRITE (6,1500) (I, B(I) I 1,N)

STOP

§I),I=1,N),(SDU(I),I=1,N—1)

1000 FORMAT (’> ’,/,/,? #*%x WBTCSL **x*’,/ 2X,’*x INPUT *x’,/.&
6X,’N =’,13,/,6X,’ISW =’,13,/,6X,’COEFFICIENT MATRIX’)

1100 FORMAT (7X,4(G11.4))

1200 FORMAT (6X,’CONSTANT VECTOR’,/, (7X,F10.4))

1300 FORMAT (2X,’** QUTPUT *x*’)

1400 FORMAT (6X,’IERR =’,I5)

1500 FORMAT (6X,’SOLUTION’,/,(8X,’X(’,I2,’) =’,D18.10))

1600 FORMAT (18X,3(G11.4))

1700 FORMAT (7X,3(G11.4),1X)
END

(d) Output results

**x WBTCSL *k*x*
*% INPUT *x*
N= 4
ISW= 1
COEFFICIENT MATRIX
2.000 2.000 2.000

265

WBTCSL
Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix)

6.000 6.000 6.000 6.000
2.000 2.000 2.000
CONSTANT VECTOR
8.0000
10.0000
10.0000
8.0000
*x QUTPUT *x*
IERR = 0
SOLUTION
X(1) = 0.1000000000D+01
X(2) = 0.1000000000D+01
X(3) = 0.1000000000D+01
X(4) = 0.1000000000D+01

266

WBTCLS
Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix after Reduction Operations)

2.17.2 WBTCLS
Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix
after Reduction Operations)

(1) Function
WBTCLS uses the cyclic reduction method to solve the simultaneous linear equations Az = b having the
fixed coefficient real tridiagonal matrix A (scalar type) after reduction operations have been performed as

coefficient matrix.

(2) Usage
Double precision:
CALL WBTCLS (D, SD, N, B, ISW, IW, W1, IERR)
Single precision:
Nothing

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output

1 D D 1 Input | Diagonal components of coefficient matrix A af-
ter reduction operations (fixed coefficient real
tridiagonal matrix, scalar type)(See Notes (a)
and (b))

2 SD D 1 Input | Subdiagonal components of coefficient matrix
A after reduction operations (fixed coefficient
real tridiagonal matrix, scalar type)(See Notes
() and (b))

3 N I 1 Input | Order of matrix A

4 B D N Input | Constant vector b

Output | Solution vector x

5 ISW I 1 Input | Specifies the type of coefficient matrix A (See
Note (b)) ISW=1, 2, 3 or 4

6 Iw I See Input | Reduction operation information (See Notes (a)

Contents and (c))
Size: 3 x [logy(N)| +1
7 W1 D See Input | Reduction operation information (See Notes (a)
Contents and (c))
Size: N+ 3 x |logy(N)| + 2
8 IERR I 1 Output | Error indicator

(4) Restrictions

(a) N>0
(b) ISW € {1,2,3,4}

267

WBTCLS
Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix after Reduction Operations)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N=1 B(1) « B(1)/D(1)
3000 Restriction (a) or (b) was not satisfied. Processing is aborted.
4000 A is nearly singular. (Only when N = 1)
(6) Notes

(a) This subroutine can be used to solve multiple sets of simultaneous linear equations having the same
coefficient matrix but different constant vectors. First, use 2.17.1 WBTCSL to perform reduction
operations for the coefficient matrix and obtain solutions. Then, repeatedly use this subroutine to only
obtain solutions for the different constant vectors. The contents of arguments D, SD, IW, and W1

from 2.17.1 WBTCSL must be retained since they become input values for this subroutine.

(b) Coefficient matrix A is a fixed coefficient real tridiagonal matrix of the types shown below corresponding
to ISW =1, 2, 3, and 4.

For ISW =1
[D SD 0 T
SD D SD
SO D SD
,D=£0,SD=#0
0 D SD
L SD D |
For ISW =
[D SD 0 1
SD D SD
SO D SD
,D=£0,SD #£0
0 D SD
L 2 x SD D |
For ISW =3
D 2xSD 0 1
SD D SD
SD D SD
,D=#0,SD=#0
0 D SD
L SD D |

268

WBTCLS

Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix after Reduction Operations)

For ISW =4
[D 2xSD 0]
SD D SD
SD D SD
,D=£0,SD #£0
0 - D SD
i 2 x SD D

Coefficient matrices of the types shown above appear when discretizing the Dirichlet or Neumann

boundary value problem.

(c) [log,
(d) The

(N)] is the value obtained by truncating the fractional part of log,(N).

single-precision version of the subroutine is not supported.

(7) Example

(a) Problem

Solve simultaneous linear equations Ax = b; and Ay = by with unknowns « and y. Where,

6 2 0 O 8 10
2 6 2 0 1 2
A= , by = 0 , by = 0
0 2 6 2 10 30
0 0 2 6 8 30

(b) Input data

Diag
bs.

onal components D, subdiagonal components SD, N = 4, ISW = 1 and constant vectors b; and

(¢) Main program

1000

1100
1200
1300
1400
1500
1600

PROGRAM EBTCLS

#%% EXAMPLE OF WBTCLS s*xx

IMPLICIT REAL(8) (A-H,0-Z)

PARAMETER (NN = 10)

DIMENSION B1(NN) B2(NN) DWK(21) ,IW(10)

READ (5,*) N,ISW

WRITE (6, 1000) N,ISW

READ (5,%) DD,SD

WRITE (6, 1100) DD

WRITE (6,1100) SD

READ (5,%) (B1(I),I=1,N)

READ (5,*) (B2(I),I=1,N)

WRITE (6,1200) (B1(I),B2(I),I=1,N)
WRITE (6,1300)

CALL WBTCSL (DD,SD,N,B1,ISW,IW,DWK,KERR)
CALL WBTCLS (DD,SD,N,B2,ISW,IW,DWK,IERR)
WRITE (6,1400) IERR

IF (IERR .GE. 2000) STOP

WRITE (6,1500) (I,B1(I),I=1,N)

WRITE (6,1600) (I,B2(I),I=1,N)

STOP

FORMAT (* °,/,/,”> **%x WBTCLS *xx*’,/ 2X,’%x INPUT x*x*’,/.,&
6X,’N =’,13,/,6X,’ISW =’,13,/,6X,’COEFFICIENT MATRIX’)
FORMAT (1 X,G11. 4)

FORMAT (6X, ’CONSTANT VECTOR’,/, (7X,F10.4,4X,F10.4))

FORMAT (2X,’** OUTPUT *x*’)

FORMAT (6X,’IERR =’,I5)

FORMAT (6X,’SOLUTION X’,/,(8X,’X(’,I2,’) =’,D18.10))

FORMAT (6X,’SOLUTION Y’,/,(8X,’Y(’,I2,’) =’,D18.10))

END

(d) Output results

k% k
*x

WBTCLS *x%%

INPUT **

N= 4

ISW = 1
COEFFICIENT MATRIX

269

WBTCLS
Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix after Reduction Operations)

6.000
2.000
CONSTANT VECTOR
8.0000 10.0000
10.0000 20.0000
10.0000 30.0000
8.0000 30.0000
*x QUTPUT *x*
IERR = 0
SOLUTION X
X(1) = 0.1000000000D+01
X(2) = 0.1000000000D+01
X(3) = 0.1000000000D+01
X(4) = 0.1000000000D+01
SOLUTION Y
Y(1) = 0.1000000000D+01
Y(2) = 0.2000000000D+01
Y(3) = 0.3000000000D+01
Y(4) = 0.4000000000D+01

270

2.18 VANDERMONDE MATRIX AND TOEPLITZ MATRIX

2.18.1 DBTOSL, RBTOSL
Simultaneous Linear Equations (Toeplitz Matrix)
(1) Function

The Toeplitz matrix R of order n consisting of 2 x n — 1 elements r, (k = —n+1,—-n+2,---,n—1)is

represented as follows.

To r—1 r—2 ++ Topt2 Tonitl
™ To r—1 et T—n4+3 T—n+2
R =
"T™m—2 Tn—-3 Thn—4 - To r—1
L Tn—1 Tn—2 Tn-3 e T1 To |

The DBTOSL or RBTOSL solves the following simultaneous linear equations Rz = b having this Toeplitz

matrix R as coefficient matrix:

n

Zri*jxj :b1 (Z:].,"',77,)

Jj=1

or the following simultaneous linear equations R”« = b having the matrix R” as coefficient matrix:

n
er_ixj :bi (i: 1,-'-,77/)
7j=1

(2) Usage
Double precision:
CALL DBTOSL (R, N, B, X, W, ISW, IERR)
Single precision:
CALL RBTOSL (R, N, B, X, W, ISW, IERR)

271

DBTOSL, RBTOSL
Simultaneous Linear Equations (Toeplitz Matrix)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

| INTEGER(4) as for 32bit Integer
INTEGER(8) as for 64bit Integer

Input
No. | Argument | Type Size nput/ Contents
Output
1 R D 2xN-1 Input | Components ry (k=-n+1,—n+2,---,n—1)
R of Toeplitz matrix R
2 N I 1 Input | Order of matrix R
3 B D N Input | Constant vector b
R
4 X D N Output | Solution vector x
R
5 W D 2x N Work | Work area
R
6 ISW I 1 Input | Processing switch
1: Solve Rz =b
2: Solve RTx = b
7 IERR I 1 Output | Error indicator
(4) Restrictions
(a) ISW € {1,2}
(b) N>0
(c) R(N) £0
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1 X(1) + B(1)/R(N) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
4000 The divisor (%) was zero.
4010 The divisor ¢{%¢) was zero.
(6) Notes

(a) Since this subroutine makes practical use of the properties of the matrix, it is superior to 2.2.2
DBGMSL
RBGMSL

obtained theoretically even if the matrix is regular. In particular, if (%) or ¢(?¢) which are divisors,

} in terms of memory usage and calculation efficiency. However, the solution may not be

are close to zero during the calculation process, the reliability of the solution obtained will not be
guaranteed. (See Section 2.1.3 “Algorithms Used”.)

272

DBTOSL, RBTOSL
Simultaneous Linear Equations (Toeplitz Matrix)

(7) Example

(a) ProblemSolve the following simultaneous

o T—-1 T—2 T_3 T
T To T-1 T-2 Z2 -
ro T To To1 z3 |
rs T2 1 To Ty

(b) Input data
Array R = {r_3,r_,1_1,10,11,T2,13} in

constant vector b.

linear equations.
by
bo
b3
ba

which matrix R components are stored, N=4, ISW=1 and

Note The same problem can be solved by storing matrix R components as R = {rg,ra,r1,109,7-1,7-2,7_3}

and setting ISW=2.
Main program

PROGRAM BBTOSL

EXAMPLE OF DBTOSL ***

IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 4)

DIMENSION R(2*LNA-1)

DIMENSION B(LNA),X(LNA),W(2*LNA)

READ (5,%*) ISW
READ (5,*%) N
WRITE (6,1000) ISW, N
READ (5,%) (R(I) I=1,2%N-1)
DO 10 I N
WRITE (6 1100) (R(N+I-J),J=1,N)
CONTINUE
WRITE (6,1200)
DO 20 I =1, N
READ (5,*) B(I)
WRITE (6,1100) B(I)
CONTINUE
WRITE (6,1300)
CALL DBTOSL (R, N, B, X, W,
WRITE (6,1400) ’DBTOSL’,IERR
IF (IERR .GE. 3000) STOP
WRITE (6, 1600)
DO 30 I
WRITE (6., 1100) X(I)
CONTINUE
STOP

[

10

20

30

1000 FORMAT(’ °,/,/,&

> xkk DBTOSL *¥x’,/.&

2X,’%x INPUT *x’,/,&

6X,’ISW =2,13,/,&

6X,’N —’,IS /&

6X, ’CDEFFICIENT MATRIX’)
FORMAT (7X,10(F11.4))
FORMAT(6X,’CDNSTANT VECTOR’)
FORMAT(2X, >**x QUTPUT *x’)
FORMAT(6X,°IERR (’,A6,’) =’,I5)
FORMAT (6X, >SOLUTION’)
END

(d) Output results

1100
1200
1300
1400
1600

***x DBTOSL *k*x*
*% INPUT *x*
ISW = 1
N= 4
COEFFICIENT MATRIX
1.0000 -2.0000 -3.0000
2.0000 1.0000 -2.0000
3.0000 2.0000 1.0000
4.0000 3.0000 2.0000
CONSTANT VECTOR
-8.0000
-2.0000
4.0000
10.0000
*xx QUT *k
IERR (DBTOSL) = 0
SOLUTION
1.0000
1.0000
1.0000
1.0000

ISW, IERR)

-4.0000
-3.0000
-2.0000

1.0000

273

DBTSSL, RBTSSL

Simultaneous Linear Equations (Symmetric Toeplitz Matrix)

2.18.2 DBTSSL, RBTSSL

Simultaneous Linear Equations (Symmetric Toeplitz Matrix)

(1) Function

The symmetric Toeplitz matrix R of order n consisting of n elements r; (k=0,1,--

as follows.
To T1 T2 et Tp—2
T1 To 1 ot Tp—3
R =
Tn—2 Th—3 Th—4 e To
| "n—=1 Tn—2 Tn-3 -+ T1

Tn—1

Tn—2

T1

To

-,n — 1) is represented

DBTSSL or RBTSSL solves the following simultaneous linear equations Rx = b having this symmetric

Toeplitz matrix R as coefficient matrix:

n

Zr\i—jlffj =b (i=1,---,n)
j=1
(2) Usage
Double precision:
CALL DBTSSL (R, N, B, X, W, IERR)
Single precision:
CALL RBTSSL (R, N, B, X, W, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex

. { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size IOnEtlglit Contents
1 R {D} N Input | Components ry (k=0,1,---,n—1) of symmet-
R ric Toeplitz matrix R
2 N I 1 Input | Order of matrix R
B D N Input | Constant vector b
)
4 X D N Output | Solution vector x
it
5 W D N Work | Work area
)
6 IERR I 1 Output | Error indicator

274

DBTSSL, RBTSSL

Simultaneous Linear Equations (Symmetric Toeplitz Matrix)

(4) Restrictions

(a) N>0
(b) R(1)#0
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1 X(1) « B(1)/R(1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
4000 The divisor (%) was zero.
(6) Notes

(a) Since this subroutine makes practical use of the properties of the matrix, it is superior to 2.2.2

DBGMSL
RBGMSL

} in terms of memory usage and calculation efficiency. However, the solution may not be

obtained theoretically even if the matrix is regular. In particular, if 2(%) which is divisor, is close to

zero during the calculation process, the reliability of the solution obtained will not be guaranteed. (See

Section 2.1.

(7) Example

3 “Algorithms Used”).

(a) ProblemSolve the following simultaneous linear equations.

To
1
T2

T3

(b) Input data

L T2 T3 z1 by
o T1 T2 L2 . b2
Lo To T1 xs || bs
Te T1 To Ty by

Array R = {ro,r1,r2,r3} in which matrix R components are stored, N=4 and constant vector b.

(¢) Main program

PROGRAM BBTSSL

| *%x EXAMPLE OF DBTSSL
IMPLICIT REAL(8) (A-H,0-2)
PARAMETER (LNA 4)
DIMENSION R(LNA)
DIMENSION B(LNA),X(LNA),W(LNA)

READ
WRITE
READ
DO 10

(5,%) N
(6,1000) N
(% f) (R(I),I=1,N)

N
WRITE (6 1100) (R(1+ABS(I-J)),J=1,N)

10 CONTINUE

WRITE
DO 20

(6,1200)
I=1, N

READ (5,%) B(I)

WR

ITE (6,1100) B(I)

20 CONTINUE

WRITE

(6,1300)

CALL DBTSSL (R, IERR)

WRITE

(6,1400) ’DBTSSL’ IERR

IF (IERR .GE. 3000) STOP

WRITE
DO 30
WR

%6 1600)
ITE_(6 1100) X(D)

30 CONTINUE

STOP

1000 FORMAT(C’ °,/,/.%&

DBTSSL, RBTSSL
Simultaneous Linear Equations (Symmetric Toeplitz Matrix)

> xkk DBTSSL *¥x’ /. &
2X,’**x INPUT *x’,/.&
6X,’N =’,I3,/,&
6X,’COEFFICIENT MATRIX’)
1100 FORMAT(7X,10(F11.4))
1200 FORMAT(6X,’CONSTANT VECTOR’)
1300 FORMAT(2X,’*x QUTPUT *x’)
1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1600 FORMAT(6X,’>SOLUTION’)
END

(d) Output results

*%% DBTSSL k%%
*x INPUT *x*
N= 4

COEFFICIENT MATRIX
1.0000 2.0000 3.0000 4.0000
2.0000 1.0000 2.0000 3.0000
3.0000 2.0000 1.0000 2.0000
4.0000 3.0000 2.0000 1.0000

CONSTANT VECTOR

10.0000
8.0000
8.0000

10.0000

*x QUTPUT *x*
IERR (DBTSSL) = 0
SOLUTION
1.0000
1.0000
1.0000
1.0000

276

DBVMSL, RBVMSL
Simultaneous Linear Equations (Vandermonde Matrix)

2.18.3 DBVMSL, RBVMSL

(1)

Simultaneous Linear Equations (Vandermonde Matrix)

Function
The Vandermonde matrix V' of order n consisting of n different elements vy (k =1,2,---,n) is represented
as follows.
r 2 n—2 n—1
vy vy vy V]
2 n—2 n—1
1 v V3 Uy Vg
V =
2 n—2 n—1
I vp Up—1 " VUp_1 VUp_a
2 n—2 n—1
1 v, Vs v v

DBVMSL or RBVMSL solves the following simultaneous linear equations V& = b having this Vandermonde

matrix V as coefficient matrix:

The simultaneous linear equations having the Vandermonde matrix as the coefficient matrix
essentially are ill-conditioned, and it is difficult to obtain a solution with good precision except

when n is extremely small (See Note (a)).

Usage
Double precision:

CALL DBVMSL (V, N, B, X, W, ISW, IERR)
Single precision:

CALL RBVMSL (V, N, B, X, W, ISW, IERR)

277

DBVMSL, RBVMSL

Simultaneous Linear Equations (Vandermonde Matrix)

(3) Arguments

D:Double precision real

R:Single precision real

Z:Double precision complex

C:Single precision complex

I INTEGER(4) as for 32bit Integer
INTEGER(8) as for 64bit Integer

Input
No. | Argument | Type Size nput/ Contents
Output
1 A% D N Input | Components vy (k = 1,2,---,n) of Vander-
R monde matrix V
2 N I 1 Input | Order n of matrix V'
3 B D N Input | Constant vector b
R
4 X D N Output | Solution vector x
R
5 W D N Work | Work area (See Note (b))
R
6 ISW I 1 Input | Processing switch
1: Solve Vx =b
2: Solve Vi = b
7 IERR I 1 Output | Error indicator
(4) Restrictions
(a) ISW € {1,2}
(b) N>0
(¢) Vi) #0 (i=1,...,N)
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N =1 is specified. X(1) « B(1) is performed.
3000 Restriction (a) was not satisfied. Processing is aborted.
3010 Restriction (b) was not satisfied.
3020 Restriction (c) was not satisfied.
4000 A division by zero occurred during an
operation.

278

DBVMSL, RBVMSL
Simultaneous Linear Equations (Vandermonde Matrix)

(6) Notes
(a) Since this subroutine makes practical use of the properties of the matrix, it is superior to 2.2.2
DBGMSL
in terms of memory usage. However, the part that obtains the solution via the inverse
RBGMSL

matrix without performing pivoting may be inferior in terms of calculation precision. In any event, the
simultaneous linear equations having the Vandermonde matrix as the coefficient matrix essentially are
ill-conditioned, and it is difficult to obtain a solution with good precision except when N is extremely
small. When double precision subroutine is used, the maximum value of N, which is the size of the
problem for which solutions can be obtained, is about 15. Also, the simultaneous linear equations
having V7 as coefficient matrix usually has better properties than the simultaneous linear equations

having V as coefficient matrix.

(b) The coefficients w; of the terms of the master polynomial P(x) defined by the following equation are
stored in Work area W.

n
H x — vg) —x"—f—wlx"*l—l—---—i—wn_lx—i—wn
k=1

(7) Example

(a) ProblemSolve the following simultaneous linear equations.

1 v U% U% T b1
1 vy U% ’Ug To ba
1 w3 U% Ug T3 B b3
1wy v v T4 by

(b) Input data
Array V = {v1,va, Vs, v4} in which matrix V components are stored, N=4, ISW=1 and constant vector
b.

(¢) Main program

PROGRAM BBVMSL

| %% EXAMPLE OF DBVMSL **x
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 4)
DIMENSION V(LNA)
DIMENSION B(LNA),X(LNA),W(LNA)

READ (5,%*) ISW
READ (5,*%) N
WRITE (6,1000) ISW, N
READ (5,%) (V(I) I=1,N)
DO 10 I = N
WRITE (6 1100) (V(I)**(J-1),J=1,N)
10 CONTINUE
WRITE (6,1200)
DO 20I =1, N
READ (5,*) B(I)
WRITE (6,1100) B(I)
20 CONTINUE
WRITE (6,1300)
CALL DBVMSL (V, X, W, ISW, IERR)
WRITE (6,1400) ’DBVMSL’ IERR
IF (IERR .GE. 3000) STOP
WRITE (6, 160)
DO 30 I =
WRITE (6 1100) X(I)
30 CONTINUE
STOP
]
1000 FORMAT(’ °,/,/,.&
> xkk DBVMSL *¥x’ /. &
2X, %% INPUT =*%’,/.&
6X,’ISW =’,13,/,&
6X,’N =’,13,/,&
6X, ’COEFFICIENT MATRIX’)

279

DBVMSL, RBVMSL
Simultaneous Linear Equations (Vandermonde Matrix)

1100
1200
1300
1400
1600

FORMAT(7X,10(F11.4))

FORMAT (6X, > CONSTANT VECTOR’)

FORMAT (2X, >** QUTPUT

k%2

FORMAT(6X,’IERR (’,A6,°) =’,I5)

FORMAT (6X, > SOLUTION’)
END

(d) Output results

k% k
*k

*x

DBVMSL *%*

INPUT *x*

Isw = 1

N= 4

COEFFICIENT MATRIX
1.0000 2.0000
1.0000 3.0000
1.0000 4.0000
1.0000 5.0000

CONSTANT VECTOR
15.0000

40.0000
85.0000
156.0000
OUTPUT _ *x*
IERR (DBVMSL) = 0
SOLUTION
1.0000
1.0000
1.0000
1.0000

4.0000
9.0000
16.0000
25.0000

8.0000
27.0000
64.0000

125.0000

280

2.19 REAL UPPER TRIANGULAR MATRIX
(TWO-DIMENSIONAL ARRAY TYPE)

2.19.1 DBTUSL, RBTUSL
Simultaneous Linear Equations (Real Upper Triangular Matrix)
(1) Function
DBTUSL or RBTUSL solves the simultaneous linear equations Az = b having a real upper triangular

matrix A (two-dimensional array type) as coefficient matrix.

(2) Usage
Double precision:
CALL DBTUSL (A, LNA, N, B, IERR)
Single precision:
CALL RBTUSL (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real = Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A (real upper triangular ma-
R trix, two-dimensional array type)
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
R Output | Solution x
5 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N <LNA

281

DBTUSL, RBTUSL
Simultaneous Linear Equations (Real Upper Triangular Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) + B(1)/A(1,1) is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the coefficient matrix
A. The result may not be obtained with
a good accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.
4000+ ¢ The coefficient matrix A has a 0.0 diago-

nal element.

A is singular.

(6) Notes
None

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

1 2 -3 4 T ~10
0 4 -1 1 x| | -9
00 5 -1 z3 | | -3
00 0 8 4 —16

(b) Input data
Coefficient matrix A, LNA = 11,N = 4 and constant vector b.
(¢) Main program

PROGRAM BBTUSL

| *%* EXAMPLE OF DBTUCO,DBTULS *#**
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA),W1(LNA)

READ (5,%) N
WRITE (6,1000) N
D0O20I =1, N

10 CONTINUE
20 CONTINUE
DO 30I=1,N
READ (5,*) (A(I,J),J=
WRITE (6,1100) (A(I,J
30 CONTINUE
READ (5,%*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBTUCO (A,LNA,N,COND,W1,IERR)
WRITE (6,1400) °DBTUCO’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0D0O/COND
CALL DBTUSL (A,LNA,N,B,KERR)
WRITE (6,1400) ’DBTUSL’,KERR
WRITE (6,1500) COND
WRITE (6,1600) (I,B(I),I=1,N)
STOP

]

1000 FORMAT(C’ °,/,/,&
> x*x* DBTUCO,DBTUSL **x’,/.&
2X,2*x INPUT *x*’,/,&
6X,’N =2,13,/,&
6X,’COEFFICIENT MATRIX’)

1100 FORMAT(7X,4(F11.4))

1200 FORMAT(6X,’CONSTANT VECTOR’,/,(7X,F10.4))

282

DBTUSL, RBTUSL
Simultaneous Linear Equations (Real Upper Triangular Matrix)

1300 FORMAT(2X,’** QUTPUT *x*’)

1400 FORMAT(6X,’IERR (’,A6,’) =’,I5)
1500 FORMAT(6X,’CONDITION NUMBER =’,D1
1600 FORMAT(6X,’SOLUTION’,/,(8X,’X(C’,I

END

(d) Output results

k% k
*k

*x

DBTUCO,DBTUSL **x*

INPUT *x
N =
COEFFICIENT MATRIX
1.0000 2.0000
0.0000 4.0000
0.0000 0.0000
0.0000 0.0000
CONSTANT VECTOR
-10.0000
-9.0000
-3.0000
-16.0000
OUTPUT _ *x*
IERR (DBTUCO) 0

IERR (DBTUSL) 0
NUMBER = 0.1074561404D+02

CONDITION

-0.1000000000D+01
-0.2000000000D+01
-0.1000000000D+01
-0.2000000000D+01

-3.0000
-1.0000
5.0000
0.0000

8.10)
2,’) =,D18.10))

4.0000
1.0000
-1.0000
8.0000

283

DBTUCO, RBTUCO
Condition Number of a Real Upper Triangular Matrix

2.19.2 DBTUCO, RBTUCO
Condition Number of a Real Upper Triangular Matrix

(1) Function
DBTUCO or RBTUCO obtains the condition number of the real upper triangular matrix A (two-dimensional
array type).
(2) Usage
Double precision:
CALL DBTUCO (A, LNA, N, COND, W1, IERR)
Single precision:
CALL RBTUCO (A, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA, N Input | Real upper triangular matrix A
R (two-dimensional array type)
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 COND D 1 Output | Reciprocal of the condition number
R
5 W1 D N Work | Work area
R
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

284

DBTUCO, RBTUCO
Condition Number of a Real Upper Triangular Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. COND < 1.0 is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the coefficient matrix
A. The result may not be obtained with

a good accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ Matrix A has a 0.0 diagonal element.
i is the number of the first 0.0 diagonal

element.

(6) Notes

(a) Although the condition number is defined by ||A| - ||[A™!||, an approximate value is obtained by this
subroutine.

285

DBTUDI, RBTUDI
Determinant and Inverse Matrix of a Real Upper Triangular Matrix

2.19.3 DBTUDI, RBTUDI
Determinant and Inverse Matrix of a Real Upper Triangular Matrix
(1) Function
DBTUDI or RBTUDI obtains the determinant and inverse matrix of the real upper triangular matrix A

(two-dimensional array type).

(2) Usage
Double precision:
CALL DBTUDI (A, LNA, N, DET, ISW, IERR)
Single precision:
CALL RBTUDI (A, LNA, N, DET, ISW, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA, N Input | Real upper triangular matrix A
R (two-dimensional array type)
Output | inverse matrix of matrix A (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 DET D 2 Output | Determinant of matrix A((See Note (b))
R
5 ISW I 1 Input | Processing switch
ISW>0:0Obtain determinant.
ISW=0:Obtain determinant and inverse ma-
trix.
ISW<0:Obtain inverse matrix.
6 IERR I 1 Output | Error indicator
(4) Restrictions
(a) 0 < N<LNA
(5) Error indicator
IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. DET(1) «+ A(1,1)
DET(2) + 0.0
A(1,1) + 1.0/A(1,1) are performed.
3000 Restriction (a) was not satisfied. Processing is aborted.

286

DBTUDI, RBTUDI
Determinant and Inverse Matrix of a Real Upper Triangular Matrix

(6) Notes

(a) Since the inverse matrix of an upper triangular matrix is an upper triangular matrix, the inverse matrix

(b)

A~ is stored only in the upper triangular portion of array A.

Storage status within array A(LNA, K)

ai1 Q12 @iz --- Qs
. -1
Inverse matrix A ¥ d2o Qo3 -+ d2s
&1’1 &1,2 (~11,3 l~11,5 * * aszs -+ Q3,5 N
0.0 a22 a23 --- a25
~ ~ =
0.0 00 assz --- ass LNA
] i * * * as,s
. . . . — - — — — — N—e — — — — —
00 00 00 --- ass — - — - ___ Ke — — — — — — -
Remarks

a. LNA > N and N < K must hold.

b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2—16 Storage Status of the Inverse Matrix (Upper Triangular Matrix)
The determinant is given by the following expression:

det(A) = DET(1) x (10.0PFT(®)
Scaling is performed at this time so that:

1.0 < |DET(1)| < 10.0

The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A~'b or A™!B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Ax = b for the vector @ or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

287

2.20 REAL LOWER TRIANGULAR MATRIX
(TWO-DIMENSIONAL ARRAY TYPE)

2.20.1 DBTLSL, RBTLSL
Simultaneous Linear Equations (Real Lower Triangular Matrix)

(1) Function
DBTLSL or RBTLSL solves the simultaneous linear equations Az = b having a real lower triangular matrix

A (two-dimensional array type) as coefficient matrix.

(2) Usage
Double precision:
CALL DBTLSL (A, LNA, N, B, IERR)
Single precision:
CALL RBTLSL (A, LNA, N, B, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA N Input | Coefficient matrix A (real lower triangular ma-
R trix, two-dimensional array type)
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 B D N Input | Constant vector b
R Output | Solution «
5 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 <N <LNA

288

DBTLSL, RBTLSL
Simultaneous Linear Equations (Real Lower Triangular Matrix)

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. B(1) + B(1)/A(1) is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the coefficient matrix
A. The result may not be obtained with

a good accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ The coefficient matrix A has a 0.0 diago-

nal element.

1 is the number of the first 0.0 diagonal
element.

The matrix A is singular.

(6) Notes
None

(7) Example

(a) Problem

Solve the following simultaneous linear equations.

500 0 T 5
-1 4 0 0 x| | 3
21 2 0 z3 | | 5
3 2 7 10 T4 22

(b) Input data
Coefficient matrix A, LNA = 11, N = 4 and constant vector B.
(¢) Main program

PROGRAM BBTLSL

| %% EXAMPLE OF DBTLCO,DBTLSL %
IMPLICIT REAL(8) (A-H,0-Z)
PARAMETER (LNA = 11)
DIMENSION A(LNA,LNA),B(LNA),W1(LNA)

READ (5,*) N
WRITE (6,1000) N

10 CONTINUE
20 CONTINUE

, N
READ (5,*) (A(I,J),J=1,I)
WRITE (6,1100) (A(I,J),J=1,N)
30 CONTINUE
READ (5,*) (B(I),I=1,N)
WRITE (6,1200) (B(I),I=1,N)
WRITE (6,1300)
CALL DBTLCO (A,LNA,N,COND,W1,IERR)
WRITE (6,1400) ’DBTLCO’,IERR
IF (IERR .GE. 3000) STOP
COND = 1.0DO/COND
CALL DBTLSL (A,LNA,N,B,KERR)
WRITE (6,1400) ’DBTLSL’,KERR
WRITE (6,1500) COND
WRITE (6,1600) (I,B(I),I=1,N)
. STOP

1000 FORMATC® °,/,/.&

> %k DBTLCO,DBTLSL **x’,/.&
2X,’*x INPUT =*x’,/.,&

289

DBTLSL, RBTLSL
Simultaneous Linear Equations (Real Lower Triangular Matrix)

6X,’N =2,13,/,&

6X, ’COEFFICIENT MATRIX)
1100 FORMAT(4X,4(F11.4))
1200 FORMAT (6X,’CONSTANT VECTOR’,/, (7X,F10.4))
1300 FORMAT(2X,’#** OUTPUT **’)
1400 FORMAT(6X,’IERR (’,A6,’) =7,I5)
1500 FORMAT (6X,’CONDITION NUMBER =’,D18.1?)

1600 FORMAT(6X,’SOLUTION’,/,(8X,’X(’,I2,°) =7,D18.10))
END
(d) Output results
%% DBTLCO,DBTLSL s
kK INPUT *x
N= 4
COEFFICIENT MATRIX
5.0000 0.0000 0.0000 0.0000
-1.0000 4.0000 0.0000 0.0000
2.0000 1.0000 2.0000 0.0000
3.0000 2.0000 7.0000 10.0000
CONSTANT VECTOR
5.0000
3.0000
5.0000
22.0000

**x QUTPUT *x*
IERR (DBTLCO)
IERR (DBTLSL) 0
CONDITION NUMBER = 0.6966071429D+01

0

SOLUTION
X(1) = 0.1000000000D+01
X(2) = 0.1000000000D+01
X(3) = 0.1000000000D+01
X(4) = 0.1000000000D+01

290

DBTLCO, RBTLCO
Condition Number of a Real Lower Triangular Matrix

2.20.2 DBTLCO, RBTLCO
Condition Number of a Real Lower Triangular Matrix

(1) Function
DBTLCO or RBTLCO obtains the condition number of the real lower triangular matrix A (two-dimensional
array type).
(2) Usage
Double precision:
CALL DBTLCO (A, LNA, N, COND, W1, IERR)
Single precision:
CALL RBTLCO (A, LNA, N, COND, W1, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
Input
No. | Argument | Type Size nput/ Contents
Output
1 A D LNA, N Input | Real lower triangular matrix A
R (two-dimensional array type)
2 LNA I 1 Input | Adjustable dimension of array A
3 N I 1 Input | Order of matrix A
4 COND D 1 Output | Reciprocal of the condition number
R
5 W1 D N Work | Work area
R
6 IERR I 1 Output | Error indicator

(4) Restrictions

(a) 0 < N <LNA

291

DBTLCO, RBTLCO
Condition Number of a Real Lower Triangular Matrix

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. COND < 1.0 is performed.
2100 There existed the diagonal element which | Processing continues.

was close to zero in the coefficient matrix
A. The result may not be obtained with

a good accuracy.

3000 Restriction (a) was not satisfied. Processing is aborted.
4000 + ¢ Matrix A has a 0.0 diagonal element.
i is the number of the first 0.0 diagonal

element.

(6) Notes

(a) Although the condition number is defined by [|A|l - ||A™!||, an approximate value is obtained by this
subroutine.

292

DBTLDI, RBTLDI
Determinant and Inverse Matrix of a Real Lower Triangular Matrix

2.20.3 DBTLDI, RBTLDI
Determinant and Inverse Matrix of a Real Lower Triangular Matrix
(1) Function
DBTLDI or RBTLDI obtains the determinant and inverse matrix of the real lower triangular matrix A
(two-dimensional array type).
(2) Usage
Double precision:
CALL DBTLDI (A, LNA, N, DET, ISW, IERR)

Single precision:
CALL RBTLDI (A, LNA, N, DET, ISW, IERR)

(3) Arguments

D:Double precision real Z:Double precision complex I { INTEGER(4) as for 32bit Integer}

R:Single precision real C:Single precision complex INTEGER(8) as for 64bit Integer
No. | Argument | Type Size fnput/ Contents
Output
1 A D LNA, N Input | Real lower triangular matrix A
{R} (two-dimensional array type)
Output | Inverse matrix of matrix A (See Note (a))
2 LNA I 1 Input | Adjustable dimension of array A
N I 1 Input | Order of matrix A
4 DET D 2 Output | Determinant of matrix A((See Note (b))
t
5 ISW I 1 Input | Processing switch
ISW>0:0Obtain determinant
ISW=0:0Obtain determinant and inverse matrix
ISW<0:Obtain inverse matrix
6 IERR I 1 Output | Error indicator

(4) Restrictions
(a) 0 < N < LNA

(5) Error indicator

IERR value Meaning Processing
0 Normal termination.
1000 N was equal to 1. DET(1) «+ A(1,1)
DET(2) < 0.0
A(1,1) < 1.0/A(1,1) are performed.
3000 Restriction (a) was not satisfied. Processing is aborted.

293

DBTLDI, RBTLDI
Determinant and Inverse Matrix of a Real Lower Triangular Matrix

(6) Notes

(a) Since the inverse matrix of an lower triangular matrix is an lower triangular matrix, the inverse matrix

A=l is stored only in the lower triangular portion of array A.

Storage status within array A(LNA, K)

ai, * * *
. 1
Inverse matrix A G2 G2 % . %

ai,n 0.0 0.0 e 0.0 (~13,1 (3,3,2 EL373 - * N

a1 a2 00 --- 00

- . . =

as1 as2 ass --- 0.0 LNA .
as,1 Gs2 Gs53 as,s
—————- N ———— —

as,1 Gs2 Gs53 -+ G55 - Ke — — — — — N

Remarks

a. LNA > N and N < K must hold.

b. Input time values of elements indicated by asterisks (*) are not guaranteed.

Figure 2—17 Storage Status of the Inverse Matrix (Lower Triangular Matrix)
(b) The determinant is given by the following expression:
det(A) = DET(1) x (10.0PET(®)
Scaling is performed at this time so that:
1.0 < |DET(1)| < 10.0

(¢c) The inverse matrix should not be calculated, except the inverse matrix itself is required,
or the order of the matrix is sufficiently small (less than 100). In many cases, inverse matrix
appears in the form A~!'b or A~!B in the numerical calculations, it must be calculated by solving the
simultaneous linear equations Ax = b for the vector x or by solving the simultaneous linear equations
with multiple right-hand sides AX = B for the matrix X, respectively. Mathematically, solving these
kinds of simultaneous linear equations is the same as obtaining inverse matrix, and multiplying the
inverse matrix and a vector or multiplying the inverse matrix and a matrix. However, in numerical
calculations, these are usually extremely different. The calculation efficiency for obtaining inverse
matrix, and multiplying the inverse matrix and vector or multiplying the inverse matrix and matrix is

worse than for solving the simultaneous linear equations, and the calculation precision also declines.

294

Appendix A

GLOSSARY

(1)

Matrix
An m x n matrix A is rectangular array of m x n elements a; ; (i =1,2,---,m; j = 1,2,---,n) as shown
below.

ai aiz2 -+ Qin

a1 Q22 - G2n

am,1 Am,2 o Qmyn

The element a; ; is called the (7,7)-th element of matrix A. The elements of a matrix are considered to
be complex or real numbers. In particular, a matrix having complex numbers as its elements is called a
complex matrix, and a matrix having real numbers as its elements is called a real matrix. Also, if m = n,
the matrix A is called square matrix.

The matrix A is sometimes denotes as (a;;). In this manual, (a; ;) is used for distinguishing between the

row subscript ¢ and column subscript j as necessary.

(Number) vector

1 x n matrix is called a row vector of size n, and an m x 1 matrix is called a column vector of size m.
Unless it is specifically necessary to distinguish between them, both of these are simply called vectors.
Mathematically, a vector is defined as a more abstract concept. The “vector” described here is called a

number vector. For the definition of an abstract vector, see the explanation of “vector space.”

Matrix product
The matrix product AB = (¢;,;) of the two matrices A = (a;;) and B = (bi,;) is defined as follows

Cig =y aij-bj
i

only when the number of columns in matrix A is equal to the number of rows in matrix B.

Matrix-vector product
If the matrix B in the matrix product AB is a column vector x, then the product Az is called the matrix-

vector product.

Transpose of matrix
The matrix A’ = (a;;) formed by interchanging the rows and columns in m x n matrix A = (a;;) (i =
1,2,---,m; j = 1,2,---,n) is called the transpose of matrix A and is represented by A”. The transpose

may be also represented as tA.

(Main) diagonal of a matrix
The list of elements a;; (1 =1,2,---,n) in an n x n square matrix A = (a; ;) (4,7 =1,2,---,n) is called the
(main) diagonal, and the elements are called the (main) diagonal elements. Also, a matrix having nonzero

elements only on the diagonal is called a diagonal matrix.

295

(7)

(10)

(15)

(16)

Unit matrix

An n x n matrix A = (a;;) (i, =1,2,---,n) in which all the diagonal elements a;; (i =1,2,---,n) are 1
and all the non-diagonal elements are 0 is called a unit matrix and is represented using the symbol E or I.
This satisfies AE = FA = A for any matrix A.

Inverse matrix
For a square matrix A, if a square matrix B exist that satisfies AB = BA = E (where E is the unit matrix),

then the matrix B is called the inverse matrix of matrix A and is represented by the symbol A~1.

General inverse matrix
For an m x n matrix A, an n x m matrix X that satisfies the following relationships exists uniquely. This

matrix X, which is called the (Moore-Penrose) general inverse matrix of matrix A, is represented by the
symbol AT.

o AXA = A
o XAX = X

o (AX)T = AX
o (XA)T = XA

Lower triangle and upper triangle of a matrix

The collection of elements a; ; (¢ > j) in an n X n square matrix A = (a; ;) (1,7 =1,2,---,n) is called the
lower triangle and the collection of elements a; ; (i < j) is called the upper triangle. The diagonal may also
be included in the definition of the upper and lower triangles. A matrix having nonzero elements only in the
lower triangle that includes the diagonal is called a lower triangular matrix, and a matrix having nonzero
elements only in the upper triangle that includes the diagonal is called an upper triangular matrix.

Conjugate transpose matrix

The transpose of a matrix having the complex conjugates of the elements of a complex matrix A as elements
is called conjugate transpose matrix and is represented by the symbol A*. If the elements of a matrix are
real numbers, then A* = AT.

Symmetric matrix

A square matrix for which A = A7 holds is called a symmetric matrix. In a symmetric matrix, a; ; = a;,;.

Hermitian matrix
A square matrix for which A = A* holds is called a Hermitian matrix. In a Hermitian matrix, a; ; and a;;

are complex conjugates.

Unitary matrix

The square matrix U for which UU* = I (I is the unit matrix) holds is called the unitary matrix.

Orthogonal matrix

The real square matrix A for which AAT = I (I is the unit matrix) holds is called the orthogonal matrix.

Subdiagonal of a matrix

The list of elements a; 1, (¢ = 1,2,---,n — p) in an n X n square matrix A = (a;;) (4,7 = 1,2,---,n)
is called the p-th upper subdiagonal, and the list of elements a;;q,; (¢ = 1,2,---,n — q) is called the g-th
lower subdiagonal. The elements are called the p-th upper subdiagonal elements and ¢-th lower subdiagonal

elements, respectively. Also, both of these collectively may be referred to simply as subdiagonal elements.

296

(17)

(18)

(19)

(23)

Band matrix

A matrix having nonzero elements only on the main diagonal and in several upper and lower subdiagonals
near the main diagonal in an n X n square matrix A = (a;;) (4,7 = 1,2,---,n) is called a band matrix.
If the subdiagonals containing nonzero elements that are furthest from the diagonal are the u-th upper
subdiagonal and [-th lower subdiagonal, the values uw and [are called the upper bandwidth and lower

bandwidth, respectively. if w =, this is simply called the bandwidth.

Tridiagonal matrix

A matrix in which the upper and lower bandwidths are both 1 is called a tridiagonal matrix.

Hessenberg matrix
A matrix in which all lower triangle elements except the first lower subdiagonal are zero in an n x n square
matrix A = (a; ;) (i, =1,2,---,n) is called a Hessenberg matrix. To obtain the eigenvalues of a matrix, a

general matrix is converted to this kind of matrix.

Quasi-upper triangular matrix

An n x n square matrix A = (a;;) (4,5 = 1,2,---,n) for which at least one of every two consecutive
subdiagonal elements of the first lower subdiagonal is 0 and all lower triangular elements excluding the first
lower subdiagonal are 0 is called a quasi-upper triangular matrix. This is a special case of a Hessenberg

matrix.

Sparse matrix

In general, a matrix in which the number of nonzero elements is relatively small compared to the total
number of elements is called a sparse matrix. If the arrangement of the elements within a sparse matrix has
some kind of regularity and an effective method of solving a problem is created by making practical use of
this regularity, this matrix is called a regular sparse matrix. A sparse matrix that is not a regular sparse
matrix is called an irregular sparse matrix. For example, a band matrix having a small bandwidth is a type

of regular sparse matrix.

Regular and singular matrices

If a square matrix A has an inverse matrix, the matrix A is said to be regular. A matrix that is not
regular is said to be singular. The solutions of system of simultaneous linear equations having a regular
matrix as coefficients are uniquely determined. However, since calculations are actually performed using
a finite number of digits, the effects of rounding errors cannot be avoided, and the distinction between
a regular and singular matrix becomes ambiguous. For example, solutions may apparently be obtained
even when a system of simultaneous linear equations is solved numerically using a mathematically singular
matrix. Therefore, when solving a system of simultaneous linear equations having a nearly singular matrix
as coefficients, sufficient testing is required concerning the appropriateness of solutions that are apparently

obtained.

LU decomposition

To use a direct method to solve the system of simultaneous linear equations Ax = b, first decompose the
coefficient matrix A into the product A = LU of the lower triangular matrix L and upper triangular matrix
U. This decomposition is called an LU decomposition, If this kind of decomposition is performed, the

solution x of the system of simultaneous linear equations is obtained by sequentially solving the following

equations:
Ly = b
Ux = vy

297

(25)

(27)

(28)

Since the coeflicient matrix of these two simultaneous linear equations is a triangular matrix, they can
be easily solved by using forward-substitution and backward-substitution. If the matrix A is regular, for
example, if the diagonal elements of matrix L are fixed at 1, the LU decomposition of the matrix A is uniquely
determined. Also, when solving a system of simultaneous linear equations, since LU decomposition generally
is performed while performing partial pivoting, if P is a row exchange matrix due to pivoting, triangular
matrices L and U for which PA = LU is satisfied are obtained, respectively.

UTDU decomposition

If the coefficient matrix of a system of simultaneous linear equations is a symmetric matrix, the relationship
L = UT D holds between the lower triangular matrix L and upper triangular matrix U obtained by perform-
ing an LU decomposition without performing pivoting. Here, D is a diagonal matrix. Therefore, the system
of simultaneous linear equations can be solved by explicitly obtaining only D and one of L and U. The

decomposition that explicitly obtains U and D from coefficient matrix is called the UTDU decomposition.

U*DU decomposition

If the coefficient matrix of a system of simultaneous linear equations is a Hermitian matrix, the relationship
L = U* D holds between the lower triangular matrix L and upper triangular matrix U obtained by performing
an LU decomposition without performing pivoting. Here, D is a diagonal matrix. Therefore, the system
of simultaneous linear equations can be solved by explicitly obtaining only D and one of L and U. The

decomposition that explicitly obtains U and D from coefficient matrix is called the U*DU decomposition.

Positive definite
If a real symmetric matrix or Hermitian matrix A satisfies * Az > 0 for an arbitrary vector & (x # 0), it
is said to be positive (definite). If it satisfies &* Az < 0, it is said to be negative. The fact that the matrix

A is a positive definite matrix is equivalent to the following two condition.
(a) All of the eigenvalues of matrix A are positive.
(b) All principal minors of matrix A are positive.
Although, mathematically, an LU decomposition can be performed for a positive definite matrix without

performing pivoting, if pivoting is not actually performed, an LU decomposition may not be able to be

performed numerically with stability.

Real eigenvalue
The eigenvalue of a real square matrix are all real if and only if the matrix is a product of two real
symmetric matrices. Also, the eigenvalue of a complex square matrix are all real if and only if the matrix

is a product of two Hermitian matrices.

Diagonally dominant

If the following holds for an n x n square matrix A = (a;;) (¢4, =1,2,---,n)

n

lasal > D laigl (i=1,2,---,n)
j=1
it

matrix A is called a diagonally dominant matrix. Although, mathematically, an LU decomposition can
be performed for a diagonally dominant matrix without performing pivoting, if pivoting is not actually

performed, an LU decomposition may not be able to be performed numerically with stability.

298

(29)

(30)

Fill-in
When an LU decomposition of a sparse matrix is performed, changing elements that had originally been

zero to nonzero values due to the calculation is called fill-in.

Envelope method

When performing a UTDU decomposition of an n x n symmetric sparse matrix A, the envelope method
executes the decomposition by selecting the first nonzero element of each row of matrix A and the diagonal
elements as an envelope and considering only the elements within the envelope. This technique uses the
fact that fill-in occurs only within the envelope when UTDU decomposition of the matrix is performed.
The envelope method performs the decomposition by considering the lower triangular portion of the sym-
metric matrix. A technique that performs a similar decomposition by considering the upper triangular

portion is known as the skyline method.

Vector space
If the set V satisfies conditions (a) and (b) V is called a vector space and its elements are called vectors.

(a) The sum a + b of two elements @ and b of V is uniquely determined as an element of V' and satisfies
the following properties.
i. (@+b)+c=a+ (b+c) (associative law)
Where, a, b and c are arbitrary elements of V.
ii. @+ b=>b+ a (commutative law)
Where, a and b are arbitrary elements of V.
iii. An element 0 of V', which is called the zero vector, exists and satisfies a + 0 = a for an arbitrary
element a of V.
iv. For an arbitrary element a of V, exactly one element b of V exists for which a + b = 0. This

element b is represented as —a.

(b) For an arbitrary element a of V' and complex number ¢, ca (the ¢ multiple of a) is uniquely determined
as an element of V' and satisfies the following properties (scalar multiple).
i. ¢(a+b) = ca+ cb (vector distributive law)
ii. (¢+ d)a = ca + da (scalar distributive law)
iii. (ed)a = c(da)

iv. la=a

(32) Linear combination, linearly independent and linearly dependent

The vector

cial + - -+ crag

created from the k vectors a1, ---, aj of vector space V' and complex numbers ¢y, -+, ¢ is called the linear
combination of @y, ---, ag, and ¢y, ---, ¢ are called its coefficients. For certain coefficients ¢y, ---, ¢
that are not all zero, the set of vectors {a1, ---, ax} is said to be linearly dependent if

cia; +---+crar =0

and is said to be linearly independent otherwise.

299

(33)

Basis

Let S be an arbitrary subset of vector space V', and let a collection of linearly independent vectors contained
inSbe{ay, ---, ar}. Foranarbitrary vector bof S, if {a1, ---, ai, b} islinearly dependent, {ay, ---, ar}
is said to be the maximum set in S. When the vector space V itself is taken as S, this collection of linearly
independent vectors is called the basis of vector space V. The number of vectors constituting the basis
of V is called the dimension of V. Also, if we let an arbitrary basis of an n-dimensional vector space V,

be {ui, -+, w,}, then an arbitrary vector a of V;, is represented uniquely as a linear combination of

{uh Y un}

(Vector) subspace
A subset L of vector space V is called a (vector) subspace of V' if the following conditions (a) and (b) are
satisfied.

(a) Ifa,be L, thena+be L

(b) If @ € L and ¢ is a complex number, ca € L
Linear transformation
Let V,, and V,,, be n-dimensional and m-dimensional vector spaces, respectively. If the mapping A : V,, — V,,,
that associates each element @ of V,, with an element A(x) of V,,, satisfies the following two conditions, A
is said to be a linear transformation from V,, to V,,.

(a) A(CL‘1 + iL‘2) = A(:Bl) + A(:Bl) x, x3 €V,

(b) A(cx) =cA(x) x €V, and c: a complex number

If we let a single basis of V,, and V,,, respectively, be {uy, ---, u,} and {vy, ---, v,,}, then A(x) is
determined for an arbitrary « € V,, according to the coefficient matrix A = (a;, ;) of

Afuy) =Y aizvi (j=1,--,n)
=1

The matrix A is called the representation matrix of the linear transformation A related to this basis. Also,
if A(x) = x for & € V,, it defines the linear transformation E : V,, — V,,, which is called the identity
transformation. The representation matrix of the identity transformation always is the unit matrix F

regardless of how the basis is taken.

Eigenvalue and eigenvector
For a linear transformation A within an n-dimensional vector space V,,, if there exists a number A and a
vector & (x # 0) such that

A(x) = Mx, that is, (A - AE)(xz) =0

is satisfied, then A is called an eigenvalue of A and x is called the eigenvector belonging to the eigenvalue
A. Here, F is the identity transformation. If we fix a single basis within V,,, let the representation matrix
of the linear transformation A be A, and let the number vector corresponding to the eigenvector & be &,

then the eigenvalue A and & satisfy the following equation.

Az = A&

300

Here, & is represented using the components z1, ---, x, of x as

Z1

Il
I

Tn

Normally, A and & are called the eigenvalue and eigenvector of matrix A, respectively. These terms are
also used in this manual. Also, no distinction is made between the number vector and vector, which are
represented as x. Since the collection of all the vectors belonging to eigenvalue A of the linear transformation
A : 'V, = V, together with the zero vector 0 form a single vector space, this is called the eigenvector space
belonging to the eigenvalue A of A.

(37) Invariant subspace

For the linear transformation A within the vector space V,,, if the subspace U of V,, has the property
AU)CU

that is, if Ax € U for an arbitrary vector x, then U is said to be invariant relative to A. In particular,
the eigenvector space of A is invariant relative to A. An invariant subvector space is called an invariant

subspace.

(38) Plane rotation

The orthogonal transformation specified by the following kind of matrix Sy.;(0) is called a plane rotation.

El:kfl Ol:kfl,k:l Ol:kfl,l:n
S(0) = | Oraa—1 Tra(0) Ok:t,i:n
Ol:n,l:k—l Ol:n,k:l El:n

Here, Tj.;(0) is defined as follows:

cos Ok:k,k+1:-1 —sin 6
Tr1(0) = | Okgra—1,k6 Err1a-1 Okt1a-1,1
sin 0 Ol k+1:1—1 cos

Ey.q is the ¢ — p 4 1-dimensional unit matrix shown below:

1 0] (»
1 (p+1
Ep:q = .
0 1 (q

and Op.y q:s is the 7 —p 4+ 1 X s — ¢ + 1-dimensional zero matrix shown below:

q q+1 s

00 --- 0 (p

0 0 0 (p+1
Op:r,q:s: . .

0 0 0 (r

301

Now, if the submatrix Ay 4.5 of A= (a;;) (1 =1,2,---,n;5 =1,2,---,n) is defined as follows:

Qp,q Ap,q+1 Tt Qps
Ap4+1,9 Aptlg+l "' Aptls
A
p:r,q:s — .
ar,q ar,q+1 tee ar,s

the matrix A is represented as follows:

Avk—11:0-1 Avk—1,k1 Alk—1,0410n
A= Ak k-1 Akt kel Akt i+1:n

Al+1:n,1:k71 Al+1:n,k:l Al+1:n,l+1:n
At this time, since Sk.(0)A and Ty.;(0)Ag.,q:s are as follows:

Al:k—l,l:k—l Al:k—l,k:l Al:k—l,l+1:n

Sei()A = | Tea()Ars1e—1 Tra1(0)Araka Tra(0)Arri+1m
Al+1:n,1:k71 Al+1:n,k:l Al+1:n,l+1:n

cosfay,q —sinfa; 4 cosfay, » — sinfa; s

Qk+1,q Af4-1,r

Tk:l (G)Ak:l,q:s =
Ql—1,r

aj—1,q
sinfay,, » + cosfa; s

sinfay, 4 + cosfa; 4

if # is determined so that tanf = Z}’c—’ or tanf = f;l]’c—’(z =gq,---,s) is satisfied, then an arbitrary element

among the elements of column k and column [of Si.;(#)A can be set to zero. Now, since the following

relationship holds:

Avk—1,1:h-1 Avke—1,0Tk0(—0) Ark—1141:n
ASpa(—0) = Ap:1:k-1 Akt 1 Ti: (—0) Akt i+1:n

Al-‘rl:n,l:k—l Al+1:n,k:lTk:l(_0) Al+1:n,l+1:n

cosba, —sinfa,; apr41 -+ api—1 sinfap i + cosbay

Ap:r,k:lTk:l(*e) =
cosba, —sinfa,; ar g1 arj—1 sinfa,y + cosba,

if # is determined so that tanf = Z’—]’c or tanf = 72’—]’6(2 =p,---,r) is satisfied, then an arbitrary element

among the elements of column k aﬁd column [of ASk:l(fH) can be set to zero. Now, since the following
relationship holds:
Ska(—0) = S (6)"

and since A = Sj.;(0) ASk.(—0) is as follows:
Avik—1 k1T (—0) Alk—1141:n

) Atik—1,1:0—1
A=S51(0)ASka(—0) = | Tea(0)Ara1—1 Tra(0)Agt k1 Tra(—0) Tra(0)Agtisiin
Al+1:n,1:k71 Al+1:n,k:lTk:l(*0) Al+1:n,l+1:n

302

if matrix A is a symmetric matrix, then by adjusting 6, either:
a,; = a5, =0

or
aj=a5=0

can be set for some j(j # k,j # 1), where the elements of A = Sy.;(0) ASk.;(—0) are represented by (a;.;).

303

Appendix B
METHODS OF HANDLING ARRAY DATA

B.1 Methods of handling array data corresponding to matrix

Since the ASL subroutine library uses array data corresponding to matrix, this section describes various methods
of handling arrays.

To call a subroutine that uses array data, you must declare that array in advance in the calling program. If
the declared array is A(LNA, K), then n x n matrix A = (a; ;) (i =1,2,---,n;j =1,2,---,n) is stored in array
A as shown in the figure below.

Matrix Storage Mode Within an Array A

a1 ai2 ai3 ot Qi
az1 Q22 a23 - A2n
a3l az2 azsz -°° AaA3n n
LNA
an,1 Qn,2 Gan,3 An,n
- —— - n—————— —
———————— K-—————- —

Remarks
a. LNA > n and K > n must hold.

b. Matrix element a; ; corresponds to the array element A(i, 7).

Figure B—1 Matrix Storage Mode Within an Array A()

LNA is called an adjustable dimension. If a two-dimensional array is used as an argument, the adjustable must
be passed to the subroutine as an argument in addition to the array name and order of the array. The matrix
elementsa; ; (1 =1,2,---,LNA;j =1,2,--- K) must correspond to the array element A(i,j) i=1,2,---,LNA;j =
1,2,---,K) , as follows on the main memory.

a1 a1 ce ALNA,1 a2 az 2
A(1,1) A(2,1) --- ALNA1) A(1,2) A(2,2)

Example DAMIAD (Real matrix addition)
Add 3 x 2 matrices A and B placing the sum in matrix C. If you declare arrays of size (5, 4), the declaration
and CALL statements are as follows.

REAL(8) A(5, 4), B(5, 4), C(5, 4)
INTEGER IERR

CALL DAM1AD(A, 5, 3, 2, B, 5, C, 5, IERR)

Data is stored in A as follows. Data are stored in B and C in the same way.

304

a1 Q12

az,1 a2 3
as,1 asz2
5 ———2-—-=
- 4—-————=

Figure B—2 Matrix Storage Mode Within an Array A

If you will be manipulating several arrays having different orders as data, you can prepare one array having
LNA equal to the largest order and use that array successively for each array. However, you must always assign

the LNA value as an adjustable dimension.

B.2 Data storage modes

Matrix data storage modes differ according to the matrix type. Storage modes for each type of matrix are shown

below.

B.2.1 Real matrix (two-dimensional array type)

Storage status within array A(LNA, K)

ai,1 ai2 @13 G144 Q15

Matrix to be stored
a21 Q22 023 0G24 Q25

ai1 ai2 Gi13 @14 Q15

az,1 Q32 az3 az4 Aass N
az,1 G2,2 0a23 0G24 0G25 - Gs1 Qa2 Q43 Qa4
@31 @32 433 434 G35 LNA as;1 as2 G53 G54 055
a4,1 Q4,2 Q43 Q44 G45 — ______ Ne — — _ _ N
as,1 as2 a53 As54 As55 - _ ____ Ke — — — _ _ _ N
Remarks

a. LNA > N and K > N must hold.

Figure B—3 Real Matrix (Two-Dimensional Array Type) Storage Mode

305

Complex matrix

B.2.2 Complex matrix

(1) Two-dimensional array type, real argument type

Real and imaginary parts are stored in separate arrays.

Matrix to be stored

a1,1 +b1,1t a12 + b2t aiz+ bzt

az,1 + b1t az2+baat azsz+ b3zt

a3,1 +b31%9 asz2+b320 az3+ b33t

|
Storage status within array AR(LNA, K) Storage status within array AI(LNA, K)
a1l a1z ais bin bi2 bis
az,1 G272 Q23 N ba1 b2 b2gs N
as1 as2 asg3 bs1 b3z b33
LNA| M LNA| M
D G —— - ——K———— =
Remarks

a. LNA > N and K > N must hold.

Figure B—4 Complex Matrix (Two-dimensional Array Type) (Real Argument Type) Storage Mode

(2) Two-dimensional array type, complex argument type

Storage status within array A(LNA, K)

. ai,1 Qi2 13 G14 Q15
Matrix to be stored
a21 Q22 a23 0G24 Q25
ai,1 Qi2 ai3 ai4 ais
as3,1 az2 G33 0A34 G35 N
a1 Q22 G23 0424 0a25
= aq,1 Q42 G4,3 G44 Q45
as1 as2 a33 a34 035 LNA
as,1 as2 G653 QG54 G55
4,1 Q42 Q43 Q44 Q45 — ____ __ N —_ __ —
as,1 Q52 @G53 QA54 G55 - Ke — - __ N
Remarks

a. LNA > N and K > N must hold.

Figure B—5 Complex Matrix (Two-dimensional Array Type)(Complex Argument Type) Storage Mode

306

Real symmetric matrix and positive symmetric matrix

B.2.3 Real symmetric matrix and positive symmetric matrix

(1) Two-dimensional array type, upper triangular type

Storage status within array A(LNA, K)

a1 Qi2 ai3 @14 Q15

Matrix to be stored

* a22 Qa23 0G24 0a25
ai1 ai2 a3 G144 Qi

* * as3 as34 as;s N
ai2 G2,2 Qa23 G244 Q25

= * * * 4,4 Q45

ai,s a23 as3 As4 435 LNA

* * * * as. s
ai,4 Q24 A34 Q44 Q45 - _ _ __ __ N — — _ _ N
ais Q25 Aa3s Q45 455 - ___ Ke — — — — _ _ N

Remarks
a. The asterisk (%) indicates an arbitrary value.
b. LNA > N and K > N must hold.
Figure B—6 Real Symmetric Matrix (Two-dimensional Array Type) (Upper Triangular Type) Storage mode

(2) Two-dimensional array type, lower triangular type

Storage status within array A(LNA, K)

. al,l * * * *
Matrix to be stored

ai2 G232 * * *

a1 ai2 ai3 a4 Aals
ai,3 a3 as3s * * N

ai2 Q22 G23 G24 Q25 N a a a a *
1,4 2,4 3,4 4,4

a3 a23 a33 as4 A3 LNA
ais Q25 A3s5 A45 G55

aj,4 A4 A34 Q44 G455

ais Q25 G35 G455 G55

Remarks
a. The asterisk (*) indicates an arbitrary value.

b. LNA > N and K > N must hold.

Figure B—7 Real Symmetric Matrix (Two-dimensional Array Type, Lower Triangular Type) Storage mode

307

Hermitian matrix

B.2.4 Hermitian matrix

(1) Two-dimensional array type, real argument type, upper triangular type

Upper triangular portions of the real and imaginary parts are stored in separate arrays.

Matrix to be stored

ai1,1 a12 + b2t a1z + b3t
az,1 — b2,1% a2,2 a2,3 + b2 31
as,1 — b3 19 az2 — b3l as,s
4
Storage status within array AR(LNA, K) Storage status within array AI(LNA, K)
a1 ai2 ais 0.0 b2 bis
* a2 02,3 N * 0.0 b2s3 N
* * as,3 * * 0.0
LNA| [- - N-——— > LNA| [- - N-——— >
—————- K-——— —————- K-———
Remarks

a. The asterisk (%) indicates an arbitrary value.

b. LNA > N and K > N must hold.

Figure B—8 Hermitian Matrix (Two-dimensional Array Type) (Real Argument Type) (Upper Triangular Type)
Storage Mode

308

Hermitian matrix

(2) Two-dimensional array type, complex argument type, upper triangular type

Remarks

LNA

Matrix to be stored

a1 ai2 @13 Q14 Q15
ar2 G2 Q23 0G24 Q25
ais G23 G3,3 0A34 Q35
ai4 Q24 Q3,4 Q44 Q45
ai,5s G255 G355 Q4,5 G55
4
Storage status within array A(LNA, K)
a1l ai2 61,3 Aai14 G15
* az2 G233 G24 0A25
* * a3,3 a3,4 Qa3
* * * a4.4 aa,s
* * * * as.s
—————— Ne———-— —
———————- K-————-—-

a. The 7 indicates the complex conjugate of x.

b. The asterisk * indicates an arbitrary value.

c. LNA > N and K > N must hold.

Figure B—9 Hermitian Matrix (Two-dimensional Array Type) (Complex Argument Type) (Upper Triangular

Type) Storage Mode

309

Real band matrix

B.2.5 Real band matrix

Matrix to be stored

a1 ai2 a13
a1 G222 Qa23 a24

az,2 a33 Aa34 G35

0 a43 Q4,4 Q4,5
as4 Q5,5
4
Storage status within array A(LNA, K)
* a1 as2 0a4,3 0as54
ai,1 a2 a3 a44 Aasps
ai,2 Q2,3 G34 Q4,5 * 2xML+MU+1
ai,3 Qa4 Aas;s * *
LNA B B " N N
—————— N————— —
———————— K-———-—-— —
Remarks
a The asterisk * indicates an arbitrary value.
b. The area indicated by dashes (-) is required for an LU decomposition of the matrix.

0

MU is the upper band width and ML is the lower band width.

LNA > 2 x ML+ MU+1 and K > N must hold. (However, if no LU decomposition is to be performed,
LNA > ML + MU + 1 and K > N is sufficient.)

&

Figure B—10 Real Band Matrix (Band Type) Storage Mode

310

Real symmetric band matrix and positive symmetric matrix (symmetric band type)

B.2.6 Real symmetric band matrix and positive symmetric matrix (symmetric band
type)

Matrix to be stored

a1 ai2 ais O
ai2 G272 Qa23 24
ai3 23 as3s3 a34 as;s

0 a24 Q34 Q44 Q45

Storage status within array A(LNA, K)

* * ai,3 a24 Qs;s

* ai2 Q23 a34 Q45 MB-+1

LNA| | €~~~ —— N————— -

Remarks
a. The asterisk * indicates an arbitrary value.

b. MB is the band width.
c. LNA > MB + 1 and K > N must hold.

Figure B—11 Real Symmetric Band Matrix (Symmetric Band Type) Storage Mode

311

Real tridiagonal matrix (vector type)

B.2.7 Real tridiagonal matrix (vector type)

Matrix to be stored

ai1 ai2
az1 az2 G23 0
asz2 @33 @34
0 aq43 Q44 Q45
as4 Q55
4

Storage status within arrays SDL(NA)

(lower subdiagonal component),

D(NA)(diagonal component) and

SDU(NA)(upper subdiagonal component)

* a1 a2
az;1 az,2 a3
as 2 as,s as,4 N
NA
a4,3 Q4,4 Q4,5
as,4 as,s *
SDL D SDU
Remarks
a. The asterisk * indicates an arbitrary value.

b. NA > N must hold.

Figure B—12 Real Tridiagonal Matrix (Vector Type) Storage Mode

312

Real symmetric tridiagonal matrix and positive symmetric tridiagonal matrix (vector type)

B.2.8 Real symmetric tridiagonal matrix and positive symmetric tridiagonal matrix
(vector type)

Matrix to be stored

ail a1,2
ai2 G232 Qa3 0
az3 a33 asa4
0 az,4 Q4,4 Q45
4,5 A5,5
4

Storage status within arrays D(NA)
(diagonal component) and SD(NA)
(subdiagonal component)

ai ai,2
az,2 az,3
as,s as,4 N
NA
Q4,4 Q4,5
a575 *
D SD
Remarks
a. The asterisk * indicates an arbitrary value.

b. NA > N must hold.

Figure B—13 Real Symmetric Tridiagonal Matrix (Vector Type) Storage Mode

B.2.9 Fixed coefficient real tridiagonal matrix (scalar type)

Matrix to be stored (a)

Matrix to be stored (b)

Matrix to be stored (c)

Matrix to be stored (d)

d s d s d 2xs d 2xs
s d s 0 s d s 0 s d s 0 s d s 0
s d s s d s s d s s d s
s d s s d s s d s d s
0 s 0 2X s d 0 s 0 2xs d
(3

Storage status within variables D
(diagonal component) and SD

(subdiagonal component)

[a] [s]
D SD

Figure B—14 Fixed Coefficient Real Tridiagonal Matrix (Scalar Type)

313

Triangular matrix

B.2.10 Triangular matrix

(1) Two-dimensional array type
The storage mode is the same as for a real symmetric matrix (two-dimensional array type) (upper triangular
type) or a real symmetric matrix (two-dimensional array type) (lower triangular type).

B.2.11 Random sparse matrix (For symmetric matrix only)

(1) Sparse format (Symmetric case)

Matrix A to be stored
a;p 00 a3 ais a1z 0.0
0.0 az,2 0.0 az,4 0.0 0.0
a3 00 az3 00 azs 0.0
a4 az,4 0.0 aq,4 0.0 a4.6
ais5 00 a3s5 0.0 ass 0.0
0.0 0.0 0.0 ass 0.0 ase

I
Storage status of arrays AVAL(NA),JCN(NA) and TA(N)

ai 1

NA

IS
w
w
S T O e U W o N U e W

AVAL JCN

Remarks
a. M is the number of nonzero elements in the upper triangular part of the original matrix A including the diagonal.

b. Array AVAL contains the nonzero upper triangular elements of the original matrix A, stored sequentially begin-
ning with the first row.

c. Array JCN contains the column numbers in the original matrix A of the elements stored in array AVAL.
d. Array TA contains values equal to the positions in array AVAL of the diagonal elements.
e. N <M < NA must hold.

Figure B—15 Storage of Random Symmetric Sparse Matrix (Sparse format)

314

Random sparse matrix

B.2.12 Random sparse matrix

(1) Sparse format

Matrix A to be stored
ai,1 0.0 ai3 ai4 Aaips 0.0
az;1 az,2 0.0 a2,4 0.0 0.0
00 az2 a3z 00 a35 0.0

aq,1 Q4,2 0.0 a4.4 0.0 a4.6

as; 0.0 ass asa ass 0.0

ae,1 0.0 ae,3 0.0 ae,s ae,6

I
Storage status of arrays AVAL(NA), JCN(NA) and IA(N)
a1 1
ai1,3 3
ai,4a 4
ai,s 5
az;1 1 5
az,2 2
NA az.4 4 N 1
15
46,1 1 19
ae.s 3 IA
ae,s 5
ae,6 6
AVAL JCN

Remarks
a. NA is the number of nonzero elements of the original matrix A.

b. Array AVAL contains the nonzero elements of the original matrix A, stored sequentially beginning with the first
row.

c. Array JCN contains the column indices in the original matrix A of the elements stored in array AVAL.

d. Array IA contains values equal to the positions in array AVAL of the first nonzero element in each row.

e. N < NA must hold.

Figure B—16 Storage of Real Asymmetric Random Sparse Matrix (Sparse Format)

315

Appendix C
MACHINE CONSTANTS USED IN ASL

C.1 Units for Determining Error

The table below shows values in ASL as units for determining error in floating point calculations. The units
shown in the table are numeric values determined by the internal representation of floating point data. ASL uses

these units for determining convergence and zeros.

Table C—1 Units for Determining Error

Single-precision Double-precision
272(~1.19 x 1077) 2752(~ 2.22 x 10716)

Remark: The unit for determining error e, which is also called the machine ¢, is usually defined as the smallest positive
constant for which the calculation result of 1+ ¢ differs from 1 in the corresponding floating point mode. Therefore, seeing
the unit for determining error enables you to know the maximum number of significant digits of an operation (on the

mantissa) in that floating point mode.

C.2 Maximum and Minimum Values of Floating Point Data

The table below shows maximum and minimum values of floating point data defined within ASL. Note that the
maximum and minimum values shown below may differ from the maximum and minimum values that are actually

used by the hardware for each floating point mode.

Table C—2 Maximum and Minimum Values of Floating Point Data

Single-precision Double-precision

Maximum value 2127(2 — 2723) (~ 3.40 x 10%®) 21023(2 — 2752) (~ 1.80 x 103%8)
Positive 9126 (~ 1.17 x 10~%) 21022 (v .93 x 10-308)
minimum value
Negati

caanve 97126 (~ 1,17 x 107%9) _9-1022 (993 x 10-308)
maximum value
Minimum value —2127(2 — 2723) (~ —3.40 x 1038) —21023(2 _ 2752 (~ —1.80 x 1038)

316

Index

CAM1HH :
CAM1HM :
CAM1MH :
CAM1MM :
CAN1HH :
CAN1HM :
CAN1MH :
CAN1MM :

CANVJ1

CARGJM :
CARSJID :

CBGMDI

CBGMLC :
CBGMLS :
CBGMLU :
CBGMLX :
CBGMMS :
CBGMSL :
CBGMSM :

CBGNDI

CBGNLC :
CBGNLS :
CBGNLU :
CBGNLX :
CBGNMS :
CBGNSL :
CBGNSM :

CBHEDI

CBHELS :
CBHELX :
CBHEMS :
CBHESL :
CBHEUC :
CBHEUD :

CBHFDI

CBHFLS :
CBHFLX :
CBHFMS :
CBHFSL :
CBHFUC :
CBHFUD :

CBHPDI

CBHPLS :
CBHPLX :
CBHPMS :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.

NNNNNDNNDNDNNMNNNNNMNDMNNNDNMNNMNNNMNONNDMNDMNDMNMNNMNONMNNMNNODMNNMNNMNMNMNOMNNMNNNNNR,R,RP,PRPRRPRRRR R P

85
82
79
76
97
94
91
88
126
37
32
72
64
66
62
74
68
58
54
92
84
86
82
94
88
79
76
216
211
218
213
203
209
207
199
194
201
196
186
192
190
165
160
167
162

CBHPSL :
CBHPUC :
CBHPUD :

CBHRDI

CBHRLS :
CBHRLX :
CBHRMS :
CBHRSL :
CBHRUC :
CBHRUD :
CCGEAA :
CCGEAN :
CCGHAA :
CCGHAN :
CCGJAA :
CCGJAN :
CCGKAA
CCGKAN :
CCGNAA :
CCGNAN :
CCGRAA :
CCGRAN :
CCHEAA :
CCHEAN :
CCHEEE :
CCHEEN :
CCHESN :
CCHESS :
CCHJSS :
CCHRAA :
CCHRAN :
CCHREE :
CCHREN :
CCHRSN
CCHRSS :
CFC1BF :
CFC1FB :
CFC2BF :
CFC2FB :
CFC3BF :
CFC3FB :
CFCMBF :
CFCMFB :
CIBHIN :
CIBH2N :

Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

L v ™

-

Lo ¥ V)

OO WWWWWWWWrRrRrRRPRPRRPRRPRPRPRPRPRPRPPRPRRPPRPRRPRPEPPRPREPPRPERPEPRPNNNMNDNDNDNDNDDNDDNDN

-

152
158
156
182
177
184
179
169
175
173
160
164
318
323
325
329
331
335
166
169
311
316
205
208
216
220
214
210
267
188
191
199
203
197
193
58

54

117
113
145
141
87

83

142
144

II

CIBINZ :
CIBJNZ :
CIBKNZ :
CIBYNZ :
CIGAMZ :
CIGLGZ :
CLACHA :
CLNCIS :

D1CDBN :
D1CDBT :
D1CDCC :
D1CDCH :
D1CDEX :
D1CDFB :
D1CDGM :
D1CDGU :
D1CDIB :
D1CDIC :
D1CDIF :
D1CDIG :
D1CDIN :
D1CDIS :
D1CDIT :
D1CDIX :
D1CDLD :
D1CDLG :
D1CDLN :
D1CDNC :
D1CDNO :
D1CDNT :
D1CDPA :
D1CDTB :
D1CDTR :
D1CDUF :
D1CDWE :
D1DDBP :
D1DDGO :
D1DDHG :
D1DDHN :
D1DDPO :
D2BA1T :
D2BA2S :
D2BAGM :
D2BAHM :
D2BAMO :
D2BAMS :
D2BASM :
D2CCMA :
D2CCMT :
D2CCPR :
D2VCGR :
D2VCMT :
D3IECD :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

(S22 B2 I &2 NN &2 G2 B¢ BG)

(o)l Ie) e >NEe NN e NN)R> Ie) BN e) NN o) RN o) RN e > lNe) N e) lie) I e) NN e NN o)l e) o) M) B o) R o) B)N e) N o) B o) o) B o) NN o) N) B o) B o) o) N o) B) B ©) i 0) I o) i e) B) B) i) B @)

127
92

129
94

179
181
345
361

72

114
147
75

132
100
107
135
117
78

104
111
69

97

91

85

138
144
141
81

66

94

126
88

123
120
129
150
154
159
162
157
173
179
191
199
195
186
203
225
220
231
212
207
307

D3IEME :
D3IERA :
D3IESR :
D3IESU :
D3IETC :
D3IEVA :
D3TSCD :
D3TSME :
D3TSRA :
D3TSRD :
D3TSSR :
D3TSSU :
D3TSTC :
D3TSVA :

D41WR1
D42WR1

D42WRM :
D42WRN :

D4BIO1
D4GLO1
D4MUO1

D4AMWRF :
D4AMWRM :

D4RBO1

D5CHEF :
D5CHMD :
D5CHMN :
D5CHTT :
DSTEMH :
DSTESG :
D5TESP :
D5TEWL :
D6CLAN :
D6CLDA :
D6CLDS :
D6CPCC :
D6CPSC :
D6CVAN :
D6CVSC :
D6EDAFN :
D6DASC :
D6FALD :
D6FAVR :
DABMCS :
DABMEL :
DAM1AD :
DAM1MM :
DAM1MS :
DAMIMT :
DAMIMU :
DAM1SB :
DAMITM :
DAMITP :
DAMITT :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

Lot ol o e I Rl) o) B o) Wi @) i o) N o) Wi e) i @) i o) B o) B @) i o) i @) M o) i) i o) i 0) B @) M o) B ©) B @) Bl) B ©) B ©) B) Bl 0) B ©) B @) i o) Bl 0) B ©) Wi @) i o) B @) Wi ©) Bl 0) Bl o) B @) Wi 0) B 0) B 0) M @) i @)}

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

293
290
311
297
304
301
347
326
317
321
350
331
342
338
363
383
375
369
438
434
415
391
402
430
447
456
453
450
466
459
470
462
518
523
513
482
484
495
498
503
507
489
491
12

15

47

64

56

67

53

50

70

109
73

INDEX

INDEX

DAM1VM :
DAM3TP :
DAM3VM :
DAM4VM :
DAMT1M :

DAMVJ1

DAMVJ3 :
DAMVJ4 :
DARGJM :
DARSJD :
DASBCS :
DASBEL :
DATM1M :

DBBDDI

DBBDLC :
DBBDLS :
DBBDLU :
DBBDLX :
DBBDSL :

DBBPDI

DBBPLS :
DBBPLX :
DBBPSL :
DBBPUC :
DBBPUU :

DBGMDI

DBGMLC :
DBGMLS :
DBGMLU :
DBGMLX :
DBGMMS :
DBGMSL :
DBGMSM :

DBPDDI

DBPDLS :
DBPDLX :
DBPDSL :
DBPDUC :
DBPDUU :

DBSMDI

DBSMLS :
DBSMLX :
DBSMMS :
DBSMSL :
DBSMUC :
DBSMUD :
DBSNLS :
DBSNSL :
DBSNUD :

DBSPDI

DBSPLS :
DBSPLX :
DBSPMS :
DBSPSL :

Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.

NNNNNONNDNNDNDNDNMNNNMNNNNNONNDNNDNDMNMNMNNMNONNNMNNODMNDMNNDNDNMNMNNMNNMNNMNOONNNMNNMNDMNDMNMNMNMNMNMNNR,RR,R R, R R, PRPRRPRRPRRR R RP -

100
111
103
106
59

114
118
122
26

21

17

19

61

231
227
229
225
233
220
247
245
249
237
243
241
48

41

43

39

50

45

35

31

106
104
108
96

102
100
140
135
142
137
127
133
131
150
144
148
123
118
125
120
110

DBSPUC :
DBSPUD :
DBTDSL :
DBTLCO :

DBTLDI

DBTLSL :
DBTOSL :

DBTPSL

DBTSSL :
DBTUCO :

DBTUDI

DBTUSL :
DBVMSL :
DCGBFF :
DCGEAA :
DCGEAN :
DCGGAA :
DCGGAN :
DCGJAA :
DCGJAN :
DCGKAA :
DCGKAN :
DCGNAA :
DCGNAN :
DCGSAA :
DCGSAN :
DCGSEE :
DCGSEN :
DCGSSN :
DCGSSS :
DCSBAA :
DCSBAN :
DCSBFF :
DCSBSN :
DCSBSS :
DCSJSS :
DCSMAA :
DCSMAN :
DCSMEE :
DCSMEN :
DCSMSN :
DCSMSS :
DCSRSS :
DCSTAA :
DCSTAN :
DCSTEE :
DCSTEN :
DCSTSN :
DCSTSS :
DFASMA :
DFC1BF :
DFC1FB :
DFC2BF :
DFC2FB :

Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

L T

-

Eo ™ Vv ¥ ™ v v

WWWworrrPrRPrEPRRPEPFEPEPREPEPREPEPEPRPRPEPEPRPPRPRRPPRPPEPERPRPPPRPREREPRPREPERERPRERPEEPENNNDMNDNNMDDNDDNDMNDNDNDNDDNDN

-

116
114
251
291
293
288
271
254
274
284
286
281
277
337
148
153
273
278
299
303
305
309
155
158
280
284
292
297
290
286
222
225
233
231
227
260
171
174
182
186
180
176
254
237
240
248
252
246
242
256
49

45

108
104

I11

v

DFC3BF :
DFC3FB :
DFCMBF :
DFCMFB :
DFCN1D :
DFCN2D :
DFCN3D :
DFCR1D :
DFCR2D :
DFCR3D :
DFCRCS :
DFCRCZ :
DFCRSC :
DFCVCS :
DFCVSC :
DFDPED :
DFDPES :
DFDPET :
DFLAGE :
DFLARA :
DFPS1D :
DFPS2D :
DFPS3D :
DFR1BF :
DFR1FB :
DFR2BF :
DFR2FB :
DFR3BF :
DFR3FB :
DFRMBF :
DFRMFB :
DFWTFF :
DFWTFT :

DFWTH1

DFWTH2 :

DFWTHI

DFWTHR :
DFWTHS :
DFWTHT :
DFWTMF :
DFWTMT :
DGICBP :
DGICBS :
DGICCM :
DGICCN :
DGICCO :
DGICCP :
DGICCQ :
DGICCR :
DGICCS :
DGICCT :
DGIDBY :
DGIDCY :
DGIDMC :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

DD DD DR DD WWWWWWWWWWWWWWWWWWwWwwWwwWwwWwwWwoOo oo OoOoOoOo WWWwwWwwWwwwwww

135
131
77

73

161
170
177
187
196
203
254
252
250
246
243
262
260
265
245
240
213
221
228
67

63

126
122
155
150
98

93

272
274
249
258
264
251
254
261
268
270
447
467
422
425
417
408
410
412
414
419
451
431
391

DGIDPC :
DGIDSC :
DGIDYB :
DGIIBZ :
DGIICZ :
DGIIMC :
DGIIPC :
DGIISC :
DGIIZB :
DGISBX :
DGISCX :

DGISI1

DGISIZ2 :
DGISI3 :
DGISMC :
DGISPC :
DGISPO :
DGISPR :

DGISS1

DGISS2 :
DGISS3 :
DGISSC :
DGISSO :
DGISSR :
DGISXB :
DH2INT :
DHBDFS :
DHBSFC :
DHEMNH :

DHEMNI

DHEMNL :
DHNANL :
DHNEFL :
DHNENH :
DHNENL :
DHNFML :
DHNFNM :
DHNIFL :
DHNINH :

DHNINI

DHNINL :
DHNOFH :

DHNOFI

DHNOFL :
DHNPNL :
DHNRML :
DHNRNM :
DHNSNL :
DIBAID :
DIBAIX :

DIBBEI

DIBBER :
DIBBID :
DIBBIX :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.

L ™ ™ ¥ v V™ v

-

Eo ¥ V¥ ¥ V¥ V™ v

PN IS, N TG WS Y SR GO G U N U G NG Y UG SO SN QY O N O Y O Y OO O O G O N O O Y O SO O SO N NO N SR O OO OV O

-

382
386
439
453
433
404
396
399
444
449
429
470
474
482
377
369
455
458
487
491
498
372
461
464
435
263
233
236
239
253
199
230
209
246
221
279
270
213
249
259
226
242
256
205
217
274
266
202
166
162
148
146
168
164

INDEX

INDEX

DIBIMX :
DIBINX :
DIBJMX :
DIBJNX :

DIBKEI

DIBKER :
DIBKMX :
DIBKNX :
DIBSIN :
DIBSJN :
DIBSKN :
DIBSYN :
DIBYMX :
DIBYNX :

DIEII1

DIEIIZ2 :
DIEII3 :
DIEII4 :

DIGIG1

DIGIG2 :
DIICOS :
DIIERF :
DIISIN :

DILEG1

DILEG2 :
DIMTCE :
DIMTSE :
DIOPC2 :
DIOPCH :
DIOPGL :
DIOPHE :
DIOPLA :
DIOPLE :
DIXEPS :
DIZBSO :

DIZBS1

DIZBSL :
DIZBSN :
DIZBYN :
DIZGLW :
DJTECC :
DJTEEX :
DJTEGM :
DJTEGU :
DJTELG :
DJTENO :
DJTEUN :
DJTEWE :
DKFNCS :
DKHNCS :
DKINCT :
DKMNCN :
DKSNCA :
DKSNCS :

Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

DD OO 01O OTOTOT O OO OTOTOTOTOT OO OO OO OO o100l o1 01O O

121
117
86
81
152
150
124
119
138
132
140
135
89
83
192
194
196
198
175
177
225
241
223
245
248
265
268
261
259
263
257
255
250
283
96
98
105
100
103
252
31
28
42
34
45
24
19
38
67
73
52
78
46
41

DKSSCA :
DLARHA :
DLNRDS :
DLNRIS :
DLNRSA :
DLNRSS :
DLSRDS :
DLSRIS :
DMCLAF :
DMCLCP :
DMCLMC :
DMCLMZ :
DMCLSN :
DMCLTP :
DMCQAZ :
DMCQLM :
DMCQSN :
DMCUSN :

DMSP11

DMSP1M :
DMSPMM :
DMSQPM :
DMUMQG :
DMUMQN :
DMUSSN :
DMUUSN :
DNCBPO :
DNDAAQ :
DNDANL :
DNDAPO :
DNGAPL :
DNLNMA :
DNLNRG :
DNLNRR :
DNNLGF :
DNNLPO :
DNRAPL :
DOFNNF :
DOFNNV :
DOHNLV :
DOHNNF :
DOHNNV :
DOIEF2 :

DOIEV1

DOLNLV :
DOPDH2 :
DOPDH3 :
DOSNNF :
DOSNNV :
DPDAPN :
DPDOPL :
DPGOPL :
DPLOPL :
DQFODX :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

LoV Vv V¥ P Vv v P v)

-

L ¥ ¥ ¥ ™ V™ Pl)

BOR A DS R AEDNMDPMAEDNMDMAENSMDMAENSMDMPAEODOOOOOOOORDSDDENMNOOOOOOOOCOOOCOCOOOOOOoo oo oo oD

-

61

342
348
352
358
355
364
370
436
459
454
447
430
465
481
476
471
427
500
493
497
487
418
414
422
411
345
319
328
324
340
550
537
543
560
555
334
104
98

123
117
111
134
137
129
140
147
91

84

307
304
316
310
162

VI

DQMOGX :
DQMOHX :
DQMOJX :
DSMGON :
DSMGPA :

DSSTA1

DSSTA2 :
DSSTPT
DSSTRA
DXA005

GAM1HH
GAM1HM
GAM1MH
GAM1MM
GAN1HH
GAN1HM
GAN1MH
GAN1MM
GBHESL
GBHEUD
GBHFSL :
GBHFUD :
GBHPSL :
GBHPUD :
GBHRSL
GBHRUD
GCGJAA
GCGJAN
GCGKAA
GCGKAN
GCGRAA
GCGRAN
GCHEAA
GCHEAN
GCHESN
GCHESS
GCHRAA
GCHRAN
GCHRSN
GCHRSS
GFC2BF
GFC2FB
GFC3BF
GFC3FB
GFCMBF
GFCMFB

HAM1HH :
HAM1HM :

(*) DMP Functions: Distributed Memory Par-

Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.

SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP

SMP
SMP

allel Functions

(*) SMP Functions:

Functions

165
168
171
304
308
290
293
300
297
40

IS LR BB, e IS I N NIRNN

Functions™) |

Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,

Functions,
Functions,

36

32

28

53

50

a7

44

131
135
125
129
111
116
118
123
262
266
268
273
254
259
214
218
225
220
200
204
211
206
324
321
351
347
295
291

40
36

Shared Memory Parallel

HAMIMH :
HAM1MM :
HAN1HH :
HAN1HM :
HAN1MH :
HAN1MM :
HBGMLC

HBGMLU :
HBGMSL :
HBGMSM :
HBGNLC

HBGNLU :
HBGNSL :
HBGNSM :
HBHESL :
HBHEUD :
HBHFSL :
HBHFUD :
HBHPSL :
HBHPUD :
HBHRSL :
HBHRUD :
HCGJAA :
HCGJAN :
HCGKAA :
HCGKAN :
HCGRAA :
HCGRAN :
HCHEAA :
HCHEAN :
HCHESN :
HCHESS

HCHRAA :
HCHRAN :
HCHRSN :
HCHRSS

HFC2BF :
HFC2FB :
HFC3BF :
HFC3FB :
HFCMBF :
HFCMFB :

ITIERF :

JIIERF :

PAM1MM
PAMIMT
PAMIMU :
PAM1TM
PAMITT
PBSNSL
PBSNUD :

SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP

Vol.

Vol.

SMP
SMP
SMP
SMP
SMP
SMP
SMP

Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,

5, 243
5, 243

Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,

32
28
53
50
47
44
87
85
81
76
97
95
92
89
131
135
125
129
111
116
118
123
262
266
268
273
254
259
214
218
225
220
200
204
211
206
324
321
351
347
295
291

16
19
13
22
25
105
109

INDEX

INDEX

PBSPSL
PBSPUD :
PCGJAA
PCGJAN
PCGKAA
PCGKAN
PCGSAA
PCGSAN
PCGSSN
PCGSSS
PCSMAA
PCSMAN
PCSMSN
PCSMSS
PFC2BF :
PFC2FB :
PFC3BF :
PFC3FB :
PFCMBF :
PFCMFB :
PFCN2D
PFCN3D
PFCR2D
PFCR3D
PFPS2D
PFPS3D
PFR2BF :
PFR2FB :
PFR3BF :
PFR3FB :
PFRMBF :
PFRMFB :
PSSTA1 :
PSSTA2
PXEO010
PXE020
PXE030
PXE040

QAM1MM :
QAMIMT :
QAM1MU :
QAM1TM :
QAMITT :
QBGMLC :
QBGMLU :
QBGMSL :
QBGMSM :
QBSNSL :
QBSNUD :
QBSPSL :
QBSPUD :
QCGJAA :
QCGJAN :

SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP

SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP

Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,

Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,

99

103
242
246
248
252
227
232
239
234
189
192
198
194
316
312
342
338
285
281
366
373
382
389
399
406
333
329
360
356
305
301
422
425
148
156
164
172

16
19
13
22
25
74
72
68
64
105
109
99
103
242
246

QCGKAA :
QCGKAN :
QCGSAA :
QCGSAN :
QCGSSN :
QCGSSS :
QCSMAA :
QCSMAN :
QCSMSN :
QCSMSS :
QFC2BF :
QFC2FB :
QFC3BF :
QFC3FB :
QFCMBF :
QFCMFB :
QFCN2D :
QFCN3D :
QFCR2D :
QFCR3D :
QFPS2D :
QFPS3D :
QFR2BF :
QFR2FB :
QFR3BF :
QFR3FB :
QFRMBF :
QFRMFB :
QSSTA1 :
QSSTA2 :
QXE010 :
QXE020 :
QXE030 :
QXE040 :

R1CDBN
R1CDBT
R1CDCC
R1CDCH
R1CDEX
R1CDFB
R1CDGM
R1CDGU :
R1CDIB
R1CDIC
R1CDIF
R1CDIG
R1CDIN
R1CDIS
R1CDIT
R1CDIX
R1CDLD
R1CDLG
R1CDLN

SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP
SMP

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,
Functions,

e v e e e

-

e e e e w e

DO O OO O OO O OO O

-

72
114
147
75
132
100
107
135
117
78
104
111
69
97
91
85
138
144
141

248
252
227
232
239
234
189
192
198
194
316
312
342
338
285
281
366
373
382
389
399
406
333
329
360
356
305
301
422
425
148
156
164
172

VII

VIII

R1CDNC :
R1CDNO :
R1CDNT :
R1CDPA :
R1CDTB :
R1CDTR :
R1CDUF :
R1CDWE :
R1DDBP :
R1DDGO :
R1DDHG :
R1DDHN :
R1DDPO :
R2BA1T :
R2BA2S :
R2BAGM :
R2BAHM :
R2BAMO :
R2BAMS :
R2BASM :
R2CCMA :
R2CCMT :
R2CCPR :
R2VCGR :
R2VCMT :
R3IECD :
R3IEME :
R3IERA :
R3IESR :
R3IESU :
R3IETC :
R3IEVA :
R3TSCD :
R3TSME :
R3TSRA :
R3TSRD :
R3TSSR :
R3TSSU :
R3TSTC :
R3TSVA :

R41WR1
R42WR1

R42WRM :
R42WRN :

R4BIO1
R4GLO1
R4MUO1

RAMWRF :
R4AMWRM :

R4RBO1

RS5CHEF :
R5CHMD :
R5CHMN :
R5CHTT :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
: Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.

(o) 3e> o> N> I e) N e) N o) R e) I @) B eI e) M) N o) B o) I e) B ©) B) N @) B) N @) N0) M0) I e)N @) N @) N @) N @) N @) i@) M0) B e N 0> i @) M @) N @) B @) Ji(@) I @) M e) I @ N ©) i ©) B 0 B @) N @) i@ i) I e) N e) B @ B ©) Bl ©) B @) B @)

81

66

94

126
88

123
120
129
150
154
159
162
157
173
179
191
199
195
186
203
225
220
231
212
207
307
293
290
311
297
304
301
347
326
317
321
350
331
342
338
363
383
375
369
438
434
415
391
402
430
447
456
453
450

R5TEMH :
RSTESG :
RSTESP :
RSTEWL :
R6CLAN :
R6CLDA :
R6CLDS :
R6CPCC :
R6CPSC :
R6CVAN :
R6CVSC :
R6DAFN :
R6DASC :
R6FALD :
R6FAVR :
RABMCS :
RABMEL :
RAM1AD :
RAM1MM :
RAMIMS :
RAMIMT :
RAMIMU :
RAM1SB :
RAMITM :
RAMITP :
RAMITT :
RAM1VM :
RAM3TP :
RAM3VM :
RAM4VM :
RAMT1M :

RAMVJ1

RAMVJ3 :
RAMVJ4 :
RARGJM :
RARSJD :
RASBCS :
RASBEL :
RATM1M :

RBBDDI

RBBDLC :
RBBDLS :
RBBDLU :
RBBDLX :
RBBDSL :

RBBPDI

RBBPLS :
RBBPLX :
RBBPSL :
RBBPUC :
RBBPUU :

RBGMDI

RBGMLC :
RBGMLS :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.

NDNDNNNDDDNDNNODMNNDMNDMNDMNNMNMNDNR,rR,R PR R PR PRPRRPRPRRPRPRPRPRRPPREPRPPRPRPRPRREPRPRRERRERREROOODODODODDODDODODDODO OO O OO O

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

466
459
470
462
518
523
513
482
484
495
498
503
507
489
491
12
15
47
64
56
67
53
50
70
109
73
100
111
103
106
59
114
118
122
26
21
17
19
61
231
227
229
225
233
220
247
245
249
237
243
241
48
41
43

INDEX

INDEX

RBGMLU :
RBGMLX :
RBGMMS :
RBGMSL :
RBGMSM :

RBPDDI

RBPDLS :
RBPDLX :
RBPDSL :
RBPDUC :
RBPDUU :

RBSMDI

RBSMLS :
RBSMLX :
RBSMMS :
RBSMSL :
RBSMUC :
RBSMUD :
RBSNLS :
RBSNSL :
RBSNUD :

RBSPDI

RBSPLS :
RBSPLX :
RBSPMS :
RBSPSL :
RBSPUC :
RBSPUD :
RBTDSL :
RBTLCO :

RBTLDI

RBTLSL :
RBTOSL :
RBTPSL :
RBTSSL :
RBTUCO :

RBTUDI

RBTUSL :
RBVMSL :
RCGBFF :
RCGEAA :
RCGEAN :
RCGGAA :
RCGGAN :
RCGJAA :
RCGJAN :
RCGKAA :
RCGKAN :
RCGNAA :
RCGNAN :
RCGSAA :
RCGSAN :
RCGSEE :
RCGSEN :

Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

B R R, R, R, R, R, R, R, RP,R,P R RPRRPRRNNNDMNDNNNNDNNNNDNNNNDNNNNDNDNNNDNODNNDNODNNNODNNDNNDNNNNODNNNDNDNDDNDNODN

39

50

45

35

31

106
104
108
96

102
100
140
135
142
137
127
133
131
150
144
148
123
118
125
120
110
116
114
251
291
293
288
271
254
274
284
286
281
277
337
148
153
273
278
299
303
305
309
155
1568
280
284
292
297

RCGSSN :
RCGSSS :
RCSBAA :
RCSBAN :
RCSBFF :
RCSBSN :
RCSBSS :
RCSJSS :
RCSMAA :
RCSMAN :
RCSMEE :
RCSMEN :
RCSMSN :
RCSMSS :
RCSRSS :
RCSTAA :
RCSTAN :
RCSTEE :
RCSTEN :
RCSTSN :
RCSTSS :
RFASMA :
RFC1BF :
RFC1FB :
RFC2BF :
RFC2FB :
RFC3BF :
RFC3FB :
RFCMBF :
RFCMFB :
RFCN1D :
RFCN2D :
RFCN3D :
RFCR1D :
RFCR2D :
RFCR3D :
RFCRCS :
RFCRCZ :
RFCRSC :
RFCVCS :
RFCVSC :
RFDPED :
RFDPES :
RFDPET :
RFLAGE :
RFLARA :
RFPS1D :
RFPS2D :
RFPS3D :
RFR1BF :
RFR1FB :
RFR2BF :
RFR2FB :
RFR3BF :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

L P ™ ¥ T T v v

-

G E L E W e u e e e e e e e e e e e e e

W WWWWWWWWWwoOoOOoOH OO O OO WWWWWWWwWWwWwwWwwwwworrrRPrRPrRPRRPEPRPEPRRPRPRPPEPREPRRPRPERRERERERRERRRBRE

-

290
286
222
225
233
231
227
260
171
174
182
186
180
176
254
237
240
248
252
246
242
256
49

45

108
104
135
131
77

73

161
170
177
187
196
203
254
252
250
246
243
262
260
265
245
240
213
221
228
67

63

126
122
155

X

X

RFR3FB :
RFRMBF :
RFRMFB :
RFWTFF :
RFWTFT :

RFWTH1

RFWTH2 :

RFWTHI

RFWTHR :
RFWTHS :
RFWTHT :
RFWTMF :
RFWTMT :
RGICBP :
RGICBS :
RGICCM :
RGICCN :
RGICCO :
RGICCP :
RGICCQ :
RGICCR :
RGICCS :
RGICCT :
RGIDBY :
RGIDCY :
RGIDMC :
RGIDPC :
RGIDSC :
RGIDYB :
RGIIBZ :
RGIICZ :
RGIIMC :
RGIIPC :
RGIISC :
RGIIZB :
RGISBX :
RGISCX :

RGISI1

RGISI2 :
RGISI3 :
RGISMC :
RGISPC :
RGISPO :
RGISPR :

RGISS1

RGISS2 :
RGISS3 :
RGISSC :
RGISSO :
RGISSR :
RGISXB :
RH2INT :
RHBDFS :
RHBSFC :

Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

N SQENEENNSRN RN NN SOV O NGV O O NV QY ORI SOV O O O OR O NV O O NN NV O O NN O O S S N N N N N N N O IR IR IR R S B U RN OO R SR OB OO

150
98

93

272
274
249
258
264
251
254
261
268
270
447
467
422
425
417
408
410
412
414
419
451
431
391
382
386
439
453
433
404
396
399
444
449
429
470
474
482
377
369
455
458
487
491
498
372
461
464
435
263
233
236

RHEMNH :

RHEMNI

RHEMNL :
RHNANL :
RHNEFL :
RHNENH :
RHNENL :
RHNFML :
RHNFNM :
RHNIFL :
RHNINH :

RHNINI

RHNINL :
RHNOFH :

RHNOFI

RHNOFL :
RHNPNL :
RHNRML :
RHNRNM :
RHNSNL :
RIBAID :
RIBAIX :

RIBBEI

RIBBER :
RIBBID :
RIBBIX :
RIBIMX :
RIBINX :
RIBJMX :
RIBJNX :

RIBKEI

RIBKER :
RIBKMX :
RIBKNX :
RIBSIN :
RIBSJN :
RIBSKN :
RIBSYN :
RIBYMX :
RIBYNX :

RIEII1

RIEII2 :
RIEII3 :
RIEII4 :

RIGIG1

RIGIG2 :
RIICOS :
RIIERF :
RIISIN :

RILEG1

RILEG2 :
RIMTCE :
RIMTSE :
RIOPC2 :

Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.

L ™ ™ ™ ™ ™ v ™Y

-

LoV ¥ Vv P v P Vv v ™

OO OO ool oololonoooooonooooololonol oo ol oo S D DD SRR SRS RN S NN SN

-

239
253
199
230
209
246
221
279
270
213
249
259
226
242
256
205
217
274
266
202
166
162
148
146
168
164
121
117
86

81

152
150
124
119
138
132
140
135
89

83

192
194
196
198
175
177
225
241
223
245
248
265
268
261

INDEX

INDEX

RIOPCH :
RIOPGL :
RIOPHE :
RIOPLA :
RIOPLE :
RIXEPS :
RIZBSO :

RIZBS1

RIZBSL :
RIZBSN :
RIZBYN :
RIZGLW :

RJTEBI

RJTECC :
RJTEEX :
RJTEGM :
RJTEGU :
RJTELG :
RJTENG :
RJTENO :
RJTEPO :
RJTEUN :
RJTEWE :
RKFNCS :
RKHNCS :
RKINCT :
RKMNCN :
RKSNCA :
RKSNCS :
RKSSCA :
RLARHA :
RLNRDS :
RLNRIS :
RLNRSA :
RLNRSS :
RLSRDS :
RLSRIS :
RMCLAF :
RMCLCP :
RMCLMC :
RMCLMZ :
RMCLSN :
RMCLTP :
RMCQAZ :
RMCQLM :
RMCQSN :
RMCUSN :

RMSP11

RMSP1M :
RMSPMM :
RMSQPM :
RMUMQG :
RMUMQN :
RMUSSN :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

[S20NNe2 G2 IGa B2 B2 B &2 BN @ 2 @2 NG 2 NG 2 NG 2 B2 B @2 B @2 B &2 B &2 B @2 B @2 BN@ 2 @ 2 I @ 2 @ B & BT Syt S St S e S S o) B @) B @) N @) Bl @ J@) @) e D e B e) N @) I © 2 N &2 IG 2 B@ 2 BG 2 I @ s B A I € N 62 B &2 B B9 |

259
263
257
255
250
283
96
98
105
100
103
252
49
31
28
42
34
45
52
24
55
19
38
67
73
52
78
46
41
61
342
348
352
358
355
364
370
436
459
454
447
430
465
481
476
471
427
500
493
497
487
418
414
422

RMUUSN :
RNCBPO :
RNDAAQ :
RNDANL :
RNDAPO :
RNGAPL :
RNLNMA :
RNLNRG :
RNLNRR :
RNNLGF :
RNRAPL :
ROFNNF :
ROFNNV :
ROHNLV :
ROHNNF :
ROHNNV :
ROIEF2 :

ROIEV1

ROLNLV :
ROPDH2 :
ROPDH3 :
ROSNNF :
ROSNNV :
RPDAPN :
RPDOPL :
RPGOPL :
RPLOPL :
RQFODX :
RQMOGX :
RQMOHX :
RQMOJX :
RSMGON :
RSMGPA :

RSSTA1

RSSTA2 :
RSSTPT :
RSSTRA :
RXAO0O5 :

VIBHOX :
VIBH1X :
VIBHYO :

VIBHY1

VIBIOX :
VIBI1X :
VIBJOX :
VIBJ1X :
VIBKOX :
VIBK1X :
VIBYOX :
VIBY1X :
VIDBEY :

VIECI1

VIECI2 :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.

Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.

L ¥ V™ Vv

-

LV ™ ¥ v

[ERS IS IS, TS TS e A N NG G G G G S O N NG N N NN N NG O NG N R N e NI NI I I S S S e

-

e e e v

-

e e e e .

(2162 &2 BNG 2 @2 @2 IO 2 NG N6 2 NG 2 BN 2 B & 2 NG 2 B2 B

-

411
345
319
328
324
340
550
537
543
560
334
104
98

123
117
111
134
137
129
140
147
91

84

307
304
316
310
162
165
168
171
304
308
290
293
300
297
40

154
156
158
160
107
112
71

76

109
114
73

78

273
188
190

XI

XII

VIEJAC :
VIEJEP :
VIEJTE :
VIEJZT :
VIENMQ :

VIEPAI

VIERFC :
VIERRF :
VIETHE :
VIGAMX :
VIGBET :
VIGDIG :
VIGLGX :
VIICNC :
VIICND :
VIIDAW :
VIIEXP :
VIIFCO :

VIIFSI

VIILOG :
VINPLG :
VIXSLA :
VIXSPS :
VIXZTA :

WBTCLS :
WBTCSL :
WBTDLS :
WBTDSL :
WIBHOX :
WIBH1X :
WIBHYO :

WIBHY1

WIBIOX :
WIBI1X :
WIBJOX :
WIBJ1X :
WIBKOX :
WIBK1X :
WIBYOX :
WIBY1X :
WIDBEY :

WIECI1

WIECI2 :
WIEJAC :
WIEJEP :
WIEJTE :
WIEJZT :
WIENMQ :

WIEPAI

WIERFC :
WIERRF :
WIETHE :
WIGAMX :

Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.

oo oo OO O o1 OO OO0 o1 OO0 On

OO oo oo OO Or OO OO OO OO OO OO O NN

200
211
213
209
203
215
239
237
206
170
185
183
173
235
233
231
218
229
227
221
275
278
271
280

267
263
260
257
154
156
168
160
107
112
71

76

109
114
73

78

273
188
190
200
211
213
209
203
215
239
237
206
170

WIGBET :
WIGDIG :
WIGLGX :
WIICNC :
WIICND :
WIIDAW :
WIIEXP :
WIIFCO :

WIIFSI

WIILOG :
WINPLG :
WIXSLA :
WIXSPS :
WIXZTA :

ZAM1HH :
ZAM1HM :
ZAM1MH :
ZAM1MM :
ZAN1HH :
ZAN1HM :
ZAN1MH :
ZAN1MM :

ZANVJ1

ZARGJM :
ZARSJD :

ZBGMDI

ZBGMLC :
ZBGMLS :
ZBGMLU :
ZBGMLX :
ZBGMMS :
ZBGMSL :
ZBGMSM :

ZBGNDI

ZBGNLC :
ZBGNLS :
ZBGNLU :
ZBGNLX :
ZBGNMS :
ZBGNSL :
ZBGNSM :

ZBHEDI

ZBHELS :
ZBHELX :
ZBHEMS :
ZBHESL :
ZBHEUC :
ZBHEUD :

ZBHFDI

ZBHFLS :
ZBHFLX :
ZBHFMS :
ZBHFSL :

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.

v e e e .

-

e e e e .

o1 oo o OO o1 OO o1 OO o1 Ol

-

L ™ " T v Y

-

CE L E E L e u e e e e e e e e

NDNNNDNDNDDNDNNDNDNDNDNDNDNNDNNDNNDMNDNNNDMNDNNNDMNDNNNDMNDMNRERERRPR,RPRR PR R P 22

-

185
183
173
235
233
231
218
229
227
221
275
278
271
280

85
82
79
76
97
94
91
88
126
37
32
72
64
66
62
74
68
58
54
92
84
86
82
94
88
79
76
216
211
218
213
203
209
207
199
194
201
196
186

INDEX

INDEX

ZBHFUC :
ZBHFUD :

ZBHPDI

ZBHPLS :
ZBHPLX :
ZBHPMS :
ZBHPSL :
ZBHPUC :
ZBHPUD :

ZBHRDI

ZBHRLS :
ZBHRLX :
ZBHRMS :
ZBHRSL :
ZBHRUC :
ZBHRUD :
ZCGEAA
ZCGEAN :
ZCGHAA
ZCGHAN :
ZCGJAA
ZCGJAN :
ZCGKAA
ZCGKAN :
ZCGNAA :
ZCGNAN :
ZCGRAA
ZCGRAN :
ZCHEAA :
ZCHEAN :
ZCHEEE :
ZCHEEN :
ZCHESN :
ZCHESS :
ZCHJSS :
ZCHRAA :
ZCHRAN :
ZCHREE :
ZCHREN :
ZCHRSN :
ZCHRSS :
ZFC1BF :
ZFC1FB :
ZFC2BF :
ZFC2FB :
ZFC3BF :
ZFC3FB :
ZFCMBF :
ZFCMFB :
ZIBHIN :
ZIBH2N :
ZIBINZ :
ZIBJNZ :
ZIBKNZ :

Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
: Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

GO O OO WWWwWwwwwwerrrRPRrPPRPPPRPRPPPPPPRPPPREPREPRPREPEPEPEPNNNMNDNMNDMNDNDMNDDNDMNODMNDNDNDDNDDNDDN

192
190
165
160
167
162
1562
168
156
182
177
184
179
169
175
173
160
164
318
323
325
329
331
335
166
169
311
316
205
208
216
220
214
210
267
188
191
199
203
197
193
58

54

117
113
145
141
87

83

142
144
127
92

129

ZIBYNZ :
ZIGAMZ :
ZIGLGZ :
ZLACHA :
ZLNCIS :

Vol.
Vol.
Vol.
Vol.
Vol.

oo oo

-

-

94

179
181
345
361

XIII

	PROPRIETARY NOTICE
	PREFACE
	Contents
	INTRODUCTION
	OVERVIEW
	KINDS OF LIBRARIES
	ORGANIZATION
	SUBROUTINE NAMES
	NOTES

	SIMULTANEOUS LINEAR EQUATIONS(DIRECT METHOD)
	INTRODUCTION
	Methods of using subroutines
	Notes
	Algorithms Used
	Reference Bibliography

	REAL MATRIX (TWO-DIMENSIONAL ARRAY TYPE)
	DBGMSM,RBGMSM Simultaneous Linear Equations with Multiple Right-Hand Sides (Real Matrix)
	DBGMSL,RBGMSL Simultaneous Linear Equations (Real Matrix)
	DBGMLU,RBGMLU LU Decomposition of a Real Matrix
	DBGMLC,RBGMLC LU Decomposition and Condition Number of a Real Matrix
	DBGMLS,RBGMLS Simultaneous Linear Equations (LU-Decomposed Real Matrix)
	DBGMMS,RBGMMS Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Real Matrix)
	DBGMDI,RBGMDI Determinant and Inverse Matrix of a Real Matrix
	DBGMLX,RBGMLX Improving the Solution of Simultaneous Linear Equations (Real Matrix)

	COMPLEX MATRIX (TWO DIMENSIONAL ARRAY TYPE)(REAL ARGUMENT TYPE)
	ZBGMSM,CBGMSM Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix)
	ZBGMSL,CBGMSL Simultaneous Linear Equations (Complex Matrix)
	ZBGMLU,CBGMLU LU Decomposition of a Complex Matrix
	ZBGMLC,CBGMLC LU Decomposition and Condition Number of a Complex Matrix
	ZBGMLS,CBGMLS Simultaneous Linear Equations (LU-Decomposed Complex Matrix)
	ZBGMMS,CBGMMS Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix)
	ZBGMDI,CBGMDI Determinant and Inverse Matrix of a Complex Matrix
	ZBGMLX,CBGMLX Improving the Solution of Simultaneous Linear Equations (Complex Matrix)

	COMPLEX MATRIX (TWO-DIMENSIONAL ARRAY TYPE)(COMPLEX ARGUMENT TYPE)
	ZBGNSM,CBGNSM Simultaneous Linear Equations with Multiple Right-Hand Sides (Complex Matrix)
	ZBGNSL,CBGNSL Simultaneous Linear Equations (Complex Matrix)
	ZBGNLU,CBGNLU LU Decomposition of a Complex Matrix
	ZBGNLC,CBGNLC LU Decomposition and Condition Number of a Complex Matrix
	ZBGNLS,CBGNLS Simultaneous Linear Equations (LU-Decomposed Complex Matrix)
	ZBGNMS,CBGNMS Simultaneous Linear Equations with Multiple Right-Hand Sides (LU-Decomposed Complex Matrix)
	ZBGNDI,CBGNDI Determinant and Inverse Matrix of a Complex Matrix
	ZBGNLX,CBGNLX Improving the Solution of Simultaneous Linear Equations (Complex Matrix)

	POSITIVE SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE)(UPPER TRIANGULAR TYPE)
	DBPDSL,RBPDSL Simultaneous Linear Equations (Positive Symmetric Matrix)
	DBPDUU,RBPDUU LL^T Decomposition of a Positive Symmetric Matrix
	DBPDUC,RBPDUC LL^T Decomposition and Condition Number of a Positive Symmetric Matrix
	DBPDLS,RBPDLS Simultaneous Linear Equations (LL^T-Decomposed Positive Symmetric Matrix)
	DBPDDI,RBPDDI Determinant and Inverse Matrix of a Positive Symmetric Matrix
	DBPDLX,RBPDLX Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Matrix)

	REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE)(UPPER TRIANGULAR TYPE)
	DBSPSL,RBSPSL Simultaneous Linear Equations (Real Symmetric Matrix)
	DBSPUD,RBSPUD LDL^T Decomposition of a Real Symmetric Matrix
	DBSPUC,RBSPUC LDL^T Decomposition and Condition Number of a Real Symmetric Matrix
	DBSPLS,RBSPLS Simultaneous Linear Equations (LDL^T-Decomposed Real Symmetric Matrix)
	DBSPMS,RBSPMS Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL^T decomposed Real Matrix)
	DBSPDI,RBSPDI Determinant and Inverse Matrix of a Real Symmetric Matrix
	DBSPLX,RBSPLX Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix)

	REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE)(UPPER TRIANGULAR TYPE)(NO PIVOTING)
	DBSMSL,RBSMSL Simultaneous Linear Equations (Real Symmetric Matrix)(No Pivoting)
	DBSMUD,RBSMUD LDL^T Decomposition of a Real Symmetric Matrix (No Pivoting)
	DBSMUC,RBSMUC LDL^T Decomposition and Condition Number of a Real Symmetric Matrix (No Pivoting)
	DBSMLS,RBSMLS Simultaneous Linear Equations (LDL^T-Decomposed Real Symmetric Matrix)(No Pivoting)
	DBSMMS,RBSMMS Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL^T-Decomposed Real Matrix)(No Pivoting)
	DBSMDI,RBSMDI Determinant and Inverse Matrix of a Real Symmetric Matrix (No Pivoting)
	DBSMLX,RBSMLX Improving the Solution of Simultaneous Linear Equations (Real Symmetric Matrix)(No Pivoting)

	REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE,LOWER TRIANGULAR TYPE)(NO PIVOTING)
	DBSNSL,RBSNSL Simultaneous Linear Equations (Real Symmetric Matrix)(No Pivoting)
	DBSNUD,RBSNUD U^TDU Decomposition of a Real Symmetric Matrix (No Pivoting)
	DBSNLS,RBSNLS Simultaneous Linear Equations (U^TDU-Decomposed Real Symmetric Matrix)(No Pivoting)

	HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE)(UPPER TRIANGULAR TYPE)(REAL ARGUMENT TYPE)
	ZBHPSL,CBHPSL Simultaneous Linear Equations (Hermitian Matrix)
	ZBHPUD,CBHPUD LDL^* Decomposition of a Hermitian Matrix
	ZBHPUC,CBHPUC LDL^* Decomposition and Condition Number of a Hermitian Matrix
	ZBHPLS,CBHPLS Simultaneous Linear Equations (LDL^*-Decomposed Hermitian Matrix)
	ZBHPMS,CBHPMS Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL^*-Decomposed Hermitian Matrix)
	ZBHPDI,CBHPDI Determinant and Inverse Matrix of a Hermitian Matrix
	ZBHPLX,CBHPLX Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)

	HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE)(UPPER TRIANGULAR TYPE)(REAL ARGUMENT TYPE)(NO PIVOTING)
	ZBHRSL,CBHRSL Simultaneous Linear Equations (Hermitian Matrix)(No Pivoting)
	ZBHRUD,CBHRUD LDL^* Decomposition of a Hermitian Matrix (No Pivoting)
	ZBHRUC,CBHRUC LDL^* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting)
	ZBHRLS,CBHRLS Simultaneous Linear Equations (LDL^*-Decomposed Hermitian Matrix)(No Pivoting)
	ZBHRMS,CBHRMS Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL^*-Decomposed Hermitian Matrix)(No Pivoting)
	ZBHRDI,CBHRDI Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)
	ZBHRLX,CBHRLX Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)(No Pivoting)

	HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE)(UPPER TRIANGULAR TYPE)(COMPLEX ARGUMENT TYPE)
	ZBHFSL,CBHFSL Simultaneous Linear Equations (Hermitian Matrix)
	ZBHFUD,CBHFUD LDL^* Decomposition of a Hermitian Matrix
	ZBHFUC,CBHFUC LDL^* Decomposition and Condition Number of a Hermitian Matrix
	ZBHFLS,CBHFLS Simultaneous Linear Equations (LDL^*-Decomposed Hermitian Matrix)
	ZBHFMS,CBHFMS Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL^*-Decomposed Hermitian Matrix)
	ZBHFDI,CBHFDI Determinant and Inverse Matrix of a Hermitian Matrix
	ZBHFLX,CBHFLX Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)

	HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE)(UPPER TRIANGULAR TYPE)(COMPLEX ARGUMENT TYPE)(NO PIVOTING)
	ZBHESL,CBHESL Simultaneous Linear Equations (Hermitian Matrix)(No Pivoting)
	ZBHEUD,CBHEUD LDL^* Decomposition of a Hermitian Matrix (No Pivoting)
	ZBHEUC,CBHEUC LDL^* Decomposition and Condition Number of a Hermitian Matrix (No Pivoting)
	ZBHELS,CBHELS Simultaneous Linear Equations (LDL^*-Decomposed Hermitian Matrix)(No Pivoting)
	ZBHEMS,CBHEMS Simultaneous Linear Equations with Multiple Right-Hand Sides (LDL^*-Decomposed Hermitian Matrix)(No Pivoting)
	ZBHEDI,CBHEDI Determinant and Inverse Matrix of a Hermitian Matrix (No Pivoting)
	ZBHELX,CBHELX Improving the Solution of Simultaneous Linear Equations (Hermitian Matrix)(No Pivoting)

	REAL BAND MATRIX (BAND TYPE)
	DBBDSL,RBBDSL Simultaneous Linear Equations (Real Band Matrix)
	DBBDLU,RBBDLU LU Decomposition of a Real Band Matrix
	DBBDLC,RBBDLC LU Decomposition and Condition Number of a Real Band Matrix
	DBBDLS,RBBDLS Simultaneous Linear Equations (LU-Decomposed Real Band Matrix)
	DBBDDI,RBBDDI Determinant of a Real Band Matrix
	DBBDLX,RBBDLX Improving the Solution of Simultaneous Linear Equations (Real Band Matrix)

	POSITIVE SYMMETRIC BAND MATRIX (SYMMETRIC BAND TYPE)
	DBBPSL,RBBPSL Simultaneous Linear Equations (Positive Symmetric Band Matrix)
	DBBPUU,RBBPUU LL^T Decomposition of a Positive Symmetric Band Matrix
	DBBPUC,RBBPUC LL^T Decomposition and Condition Number of a Positive Symmetric Band Matrix
	DBBPLS,RBBPLS Simultaneous Linear Equations (LL^T-Decomposed Positive Symmetric Band Matrix)
	DBBPDI,RBBPDI Determinant of a Positive Symmetric Band Matrix
	DBBPLX,RBBPLX Improving the Solution of Simultaneous Linear Equations (Positive Symmetric Band Matrix)

	REAL TRIDIAGONAL MATRIX (VECTOR TYPE)
	DBTDSL,RBTDSL Simultaneous Linear Equations (Real Tridiagonal Matrix)
	DBTPSL,RBTPSL Simultaneous Linear Equations (Positive Symmetric Tridiagonal Matrix)

	REAL TRIDIAGONAL MATRIX (VECTOR TYPE)
	WBTDSL Simultaneous Linear Equations (Real Tridiagonal Matrix)
	WBTDLS Simultaneous Linear Equations (Real Tridiagonal Matrix after Reduction Operations)

	FIXED COEFFICIENT REAL TRIDIAGONAL MATRIX (SCALAR TYPE)
	WBTCSL Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix)
	WBTCLS Simultaneous Linear Equations (Fixed Coefficient Real Tridiagonal Matrix after Reduction Operations)

	VANDERMONDE MATRIX AND TOEPLITZ MATRIX
	DBTOSL,RBTOSL Simultaneous Linear Equations (Toeplitz Matrix)
	DBTSSL,RBTSSL Simultaneous Linear Equations (Symmetric Toeplitz Matrix)
	DBVMSL,RBVMSL Simultaneous Linear Equations (Vandermonde Matrix)

	REAL UPPER TRIANGULAR MATRIX (TWO-DIMENSIONAL ARRAY TYPE)
	DBTUSL,RBTUSL Simultaneous Linear Equations (Real Upper Triangular Matrix)
	DBTUCO,RBTUCO Condition Number of a Real Upper Triangular Matrix
	DBTUDI,RBTUDI Determinant and Inverse Matrix of a Real Upper Triangular Matrix

	REAL LOWER TRIANGULAR MATRIX (TWO-DIMENSIONAL ARRAY TYPE)
	DBTLSL,RBTLSL Simultaneous Linear Equations (Real Lower Triangular Matrix)
	DBTLCO,RBTLCO Condition Number of a Real Lower Triangular Matrix
	DBTLDI,RBTLDI Determinant and Inverse Matrix of a Real Lower Triangular Matrix

	Appendix A: GLOSSARY
	Appendix B: METHODS OF HANDLING ARRAY DATA
	Appendix C: MACHINE CONSTANTS USED IN ASL
	INDEX
	Subroutines included in this Volume
	CBGMDI
	CBGMLC
	CBGMLS
	CBGMLU
	CBGMLX
	CBGMMS
	CBGMSL
	CBGMSM
	CBGNDI
	CBGNLC
	CBGNLS
	CBGNLU
	CBGNLX
	CBGNMS
	CBGNSL
	CBGNSM
	CBHEDI
	CBHELS
	CBHELX
	CBHEMS
	CBHESL
	CBHEUC
	CBHEUD
	CBHFDI
	CBHFLS
	CBHFLX
	CBHFMS
	CBHFSL
	CBHFUC
	CBHFUD
	CBHPDI
	CBHPLS
	CBHPLX
	CBHPMS
	CBHPSL
	CBHPUC
	CBHPUD
	CBHRDI
	CBHRLS
	CBHRLX
	CBHRMS
	CBHRSL
	CBHRUC
	CBHRUD
	DBBDDI
	DBBDLC
	DBBDLS
	DBBDLU
	DBBDLX
	DBBDSL
	DBBPDI
	DBBPLS
	DBBPLX
	DBBPSL
	DBBPUC
	DBBPUU
	DBGMDI
	DBGMLC
	DBGMLS
	DBGMLU
	DBGMLX
	DBGMMS
	DBGMSL
	DBGMSM
	DBPDDI
	DBPDLS
	DBPDLX
	DBPDSL
	DBPDUC
	DBPDUU
	DBSMDI
	DBSMLS
	DBSMLX
	DBSMMS
	DBSMSL
	DBSMUC
	DBSMUD
	DBSNLS
	DBSNSL
	DBSNUD
	DBSPDI
	DBSPLS
	DBSPLX
	DBSPMS
	DBSPSL
	DBSPUC
	DBSPUD
	DBTDSL
	DBTLCO
	DBTLDI
	DBTLSL
	DBTOSL
	DBTPSL
	DBTSSL
	DBTUCO
	DBTUDI
	DBTUSL
	DBVMSL
	RBBDDI
	RBBDLC
	RBBDLS
	RBBDLU
	RBBDLX
	RBBDSL
	RBBPDI
	RBBPLS
	RBBPLX
	RBBPSL
	RBBPUC
	RBBPUU
	RBGMDI
	RBGMLC
	RBGMLS
	RBGMLU
	RBGMLX
	RBGMMS
	RBGMSL
	RBGMSM
	RBPDDI
	RBPDLS
	RBPDLX
	RBPDSL
	RBPDUC
	RBPDUU
	RBSMDI
	RBSMLS
	RBSMLX
	RBSMMS
	RBSMSL
	RBSMUC
	RBSMUD
	RBSNLS
	RBSNSL
	RBSNUD
	RBSPDI
	RBSPLS
	RBSPLX
	RBSPMS
	RBSPSL
	RBSPUC
	RBSPUD
	RBTDSL
	RBTLCO
	RBTLDI
	RBTLSL
	RBTOSL
	RBTPSL
	RBTSSL
	RBTUCO
	RBTUDI
	RBTUSL
	RBVMSL
	WBTCLS
	WBTCSL
	WBTDLS
	WBTDSL
	ZBGMDI
	ZBGMLC
	ZBGMLS
	ZBGMLU
	ZBGMLX
	ZBGMMS
	ZBGMSL
	ZBGMSM
	ZBGNDI
	ZBGNLC
	ZBGNLS
	ZBGNLU
	ZBGNLX
	ZBGNMS
	ZBGNSL
	ZBGNSM
	ZBHEDI
	ZBHELS
	ZBHELX
	ZBHEMS
	ZBHESL
	ZBHEUC
	ZBHEUD
	ZBHFDI
	ZBHFLS
	ZBHFLX
	ZBHFMS
	ZBHFSL
	ZBHFUC
	ZBHFUD
	ZBHPDI
	ZBHPLS
	ZBHPLX
	ZBHPMS
	ZBHPSL
	ZBHPUC
	ZBHPUD
	ZBHRDI
	ZBHRLS
	ZBHRLX
	ZBHRMS
	ZBHRSL
	ZBHRUC
	ZBHRUD

	Link to Other Volumes
	Volume 1
	Volume 3
	Volume 4
	Volume 5
	Volume 6
	Shared Memory Parallel Functions

