CGEQR2(3) LAPACK routine of NEC Numeric Library Collection CGEQR2(3)
NAME
CGEQR2
SYNOPSIS
SUBROUTINE CGEQR2 (M, N, A, LDA, TAU, WORK, INFO)
PURPOSE
CGEQR2 computes a QR factorization of a complex m by n matrix A:
A = Q * R.
ARGUMENTS
M (input)
M is INTEGER
The number of rows of the matrix A. M >= 0.
N (input)
N is INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output)
A is COMPLEX array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the unitary matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input)
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output)
TAU is COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (output)
WORK is COMPLEX array, dimension (N)
INFO (output)
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FURTHER DETAILS
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
LAPACK routine 31 October 2017 CGEQR2(3)