CLATRZ(3) LAPACK routine of NEC Numeric Library Collection CLATRZ(3) NAME CLATRZ SYNOPSIS SUBROUTINE CLATRZ (M, N, L, A, LDA, TAU, WORK) PURPOSE CLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means of unitary transformations, where Z is an (M+L)-by-(M+L) unitary matrix and, R and A1 are M-by-M upper triangular matrices. ARGUMENTS M (input) M is INTEGER The number of rows of the matrix A. M >= 0. N (input) N is INTEGER The number of columns of the matrix A. N >= 0. L (input) L is INTEGER The number of columns of the matrix A containing the meaningful part of the Householder vectors. N-M >= L >= 0. A (input/output) A is COMPLEX array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements N-L+1 to N of the first M rows of A, with the array TAU, represent the unitary matrix Z as a product of M elementary reflectors. LDA (input) LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) TAU is COMPLEX array, dimension (M) The scalar factors of the elementary reflectors. WORK (output) WORK is COMPLEX array, dimension (M) FURTHER DETAILS The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form Z( k ) = ( I 0 ), ( 0 T( k ) ) where T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ), ( 0 ) ( z( k ) ) tau is a scalar and z( k ) is an l element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of A2. The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A2, such that the elements of z( k ) are in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A1. Z is given by Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). LAPACK routine 31 October 2017 CLATRZ(3)