CTGSYL(3)      LAPACK routine of NEC Numeric Library Collection      CTGSYL(3)



NAME
       CTGSYL

SYNOPSIS
       SUBROUTINE CTGSYL (TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
           E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)



PURPOSE
            CTGSYL solves the generalized Sylvester equation:

                        A * R - L * B = scale * C            (1)
                        D * R - L * E = scale * F

            where R and L are unknown m-by-n matrices, (A, D), (B, E) and
            (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
            respectively, with complex entries. A, B, D and E are upper
            triangular (i.e., (A,D) and (B,E) in generalized Schur form).

            The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
            is an output scaling factor chosen to avoid overflow.

            In matrix notation (1) is equivalent to solve Zx = scale*b, where Z
            is defined as

                   Z = [ kron(In, A)  -kron(B**H, Im) ]        (2)
                       [ kron(In, D)  -kron(E**H, Im) ],

            Here Ix is the identity matrix of size x and X**H is the conjugate
            transpose of X. Kron(X, Y) is the Kronecker product between the
            matrices X and Y.

            If TRANS = 'C', y in the conjugate transposed system Z**H *y = scale*b
            is solved for, which is equivalent to solve for R and L in

                        A**H * R + D**H * L = scale * C           (3)
                        R * B**H + L * E**H = scale * -F

            This case (TRANS = 'C') is used to compute an one-norm-based estimate
            of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
            and (B,E), using CLACON.

            If IJOB >= 1, CTGSYL computes a Frobenius norm-based estimate of
            Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
            reciprocal of the smallest singular value of Z.

            This is a level-3 BLAS algorithm.




ARGUMENTS
           TRANS     (input)
                     TRANS is CHARACTER*1
                     = 'N': solve the generalized sylvester equation (1).
                     = 'C': solve the "conjugate transposed" system (3).

           IJOB      (input)
                     IJOB is INTEGER
                     Specifies what kind of functionality to be performed.
                     =0: solve (1) only.
                     =1: The functionality of 0 and 3.
                     =2: The functionality of 0 and 4.
                     =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
                         (look ahead strategy is used).
                     =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
                         (CGECON on sub-systems is used).
                     Not referenced if TRANS = 'C'.

           M         (input)
                     M is INTEGER
                     The order of the matrices A and D, and the row dimension of
                     the matrices C, F, R and L.

           N         (input)
                     N is INTEGER
                     The order of the matrices B and E, and the column dimension
                     of the matrices C, F, R and L.

           A         (input)
                     A is COMPLEX array, dimension (LDA, M)
                     The upper triangular matrix A.

           LDA       (input)
                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1, M).

           B         (input)
                     B is COMPLEX array, dimension (LDB, N)
                     The upper triangular matrix B.

           LDB       (input)
                     LDB is INTEGER
                     The leading dimension of the array B. LDB >= max(1, N).

           C         (input/output)
                     C is COMPLEX array, dimension (LDC, N)
                     On entry, C contains the right-hand-side of the first matrix
                     equation in (1) or (3).
                     On exit, if IJOB = 0, 1 or 2, C has been overwritten by
                     the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
                     the solution achieved during the computation of the
                     Dif-estimate.

           LDC       (input)
                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1, M).

           D         (input)
                     D is COMPLEX array, dimension (LDD, M)
                     The upper triangular matrix D.

           LDD       (input)
                     LDD is INTEGER
                     The leading dimension of the array D. LDD >= max(1, M).

           E         (input)
                     E is COMPLEX array, dimension (LDE, N)
                     The upper triangular matrix E.

           LDE       (input)
                     LDE is INTEGER
                     The leading dimension of the array E. LDE >= max(1, N).

           F         (input/output)
                     F is COMPLEX array, dimension (LDF, N)
                     On entry, F contains the right-hand-side of the second matrix
                     equation in (1) or (3).
                     On exit, if IJOB = 0, 1 or 2, F has been overwritten by
                     the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
                     the solution achieved during the computation of the
                     Dif-estimate.

           LDF       (input)
                     LDF is INTEGER
                     The leading dimension of the array F. LDF >= max(1, M).

           DIF       (output)
                     DIF is REAL
                     On exit DIF is the reciprocal of a lower bound of the
                     reciprocal of the Dif-function, i.e. DIF is an upper bound of
                     Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).
                     IF IJOB = 0 or TRANS = 'C', DIF is not referenced.

           SCALE     (output)
                     SCALE is REAL
                     On exit SCALE is the scaling factor in (1) or (3).
                     If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
                     to a slightly perturbed system but the input matrices A, B,
                     D and E have not been changed. If SCALE = 0, R and L will
                     hold the solutions to the homogenious system with C = F = 0.

           WORK      (output)
                     WORK is COMPLEX array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK     (input)
                     LWORK is INTEGER
                     The dimension of the array WORK. LWORK > = 1.
                     If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           IWORK     (output)
                     IWORK is INTEGER array, dimension (M+N+2)

           INFO      (output)
                     INFO is INTEGER
                       =0: successful exit
                       <0: If INFO = -i, the i-th argument had an illegal value.
                       >0: (A, D) and (B, E) have common or very close
                           eigenvalues.



LAPACK routine                  31 October 2017                      CTGSYL(3)