DLAED5(3) LAPACK routine of NEC Numeric Library Collection DLAED5(3) NAME DLAED5 SYNOPSIS SUBROUTINE DLAED5 (I, D, Z, DELTA, RHO, DLAM) PURPOSE This subroutine computes the I-th eigenvalue of a symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) + RHO * Z * transpose(Z) . The diagonal elements in the array D are assumed to satisfy D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one. ARGUMENTS I (input) I is INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2. D (input) D is DOUBLE PRECISION array, dimension (2) The original eigenvalues. We assume D(1) < D(2). Z (input) Z is DOUBLE PRECISION array, dimension (2) The components of the updating vector. DELTA (output) DELTA is DOUBLE PRECISION array, dimension (2) The vector DELTA contains the information necessary to construct the eigenvectors. RHO (input) RHO is DOUBLE PRECISION The scalar in the symmetric updating formula. DLAM (output) DLAM is DOUBLE PRECISION The computed lambda_I, the I-th updated eigenvalue. LAPACK routine 31 October 2017 DLAED5(3)