DLAED5(3) LAPACK routine of NEC Numeric Library Collection DLAED5(3)
NAME
DLAED5
SYNOPSIS
SUBROUTINE DLAED5 (I, D, Z, DELTA, RHO, DLAM)
PURPOSE
This subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix
diag( D ) + RHO * Z * transpose(Z) .
The diagonal elements in the array D are assumed to satisfy
D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
ARGUMENTS
I (input)
I is INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input)
D is DOUBLE PRECISION array, dimension (2)
The original eigenvalues. We assume D(1) < D(2).
Z (input)
Z is DOUBLE PRECISION array, dimension (2)
The components of the updating vector.
DELTA (output)
DELTA is DOUBLE PRECISION array, dimension (2)
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input)
RHO is DOUBLE PRECISION
The scalar in the symmetric updating formula.
DLAM (output)
DLAM is DOUBLE PRECISION
The computed lambda_I, the I-th updated eigenvalue.
LAPACK routine 31 October 2017 DLAED5(3)