DLAGTM(3) LAPACK routine of NEC Numeric Library Collection DLAGTM(3) NAME DLAGTM SYNOPSIS SUBROUTINE DLAGTM (TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB) PURPOSE DLAGTM performs a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of order N, B and X are N by NRHS matrices, and alpha and beta are real scalars, each of which may be 0., 1., or -1. ARGUMENTS TRANS (input) TRANS is CHARACTER*1 Specifies the operation applied to A. = 'N': No transpose, B := alpha * A * X + beta * B = 'T': Transpose, B := alpha * A'* X + beta * B = 'C': Conjugate transpose = Transpose N (input) N is INTEGER The order of the matrix A. N >= 0. NRHS (input) NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices X and B. ALPHA (input) ALPHA is DOUBLE PRECISION The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, it is assumed to be 0. DL (input) DL is DOUBLE PRECISION array, dimension (N-1) The (n-1) sub-diagonal elements of T. D (input) D is DOUBLE PRECISION array, dimension (N) The diagonal elements of T. DU (input) DU is DOUBLE PRECISION array, dimension (N-1) The (n-1) super-diagonal elements of T. X (input) X is DOUBLE PRECISION array, dimension (LDX,NRHS) The N by NRHS matrix X. LDX (input) LDX is INTEGER The leading dimension of the array X. LDX >= max(N,1). BETA (input) BETA is DOUBLE PRECISION The scalar beta. BETA must be 0., 1., or -1.; otherwise, it is assumed to be 1. B (input/output) B is DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the N by NRHS matrix B. On exit, B is overwritten by the matrix expression B := alpha * A * X + beta * B. LDB (input) LDB is INTEGER The leading dimension of the array B. LDB >= max(N,1). LAPACK routine 31 October 2017 DLAGTM(3)