DLANEG(3) LAPACK routine of NEC Numeric Library Collection DLANEG(3) NAME DLANEG SYNOPSIS INTEGER FUNCTION DLANEG (N, D, LLD, SIGMA, PIVMIN, R) PURPOSE DLANEG computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal T - sigma I = L D L^T. This implementation works directly on the factors without forming the tridiagonal matrix T. The Sturm count is also the number of eigenvalues of T less than sigma. This routine is called from DLARRB. The current routine does not use the PIVMIN parameter but rather requires IEEE-754 propagation of Infinities and NaNs. This routine also has no input range restrictions but does require default exception handling such that x/0 produces Inf when x is non-zero, and Inf/Inf produces NaN. For more information, see: ARGUMENTS N (input) N is INTEGER The order of the matrix. D (input) D is DOUBLE PRECISION array, dimension (N) The N diagonal elements of the diagonal matrix D. LLD (input) LLD is DOUBLE PRECISION array, dimension (N-1) The (N-1) elements L(i)*L(i)*D(i). SIGMA (input) SIGMA is DOUBLE PRECISION Shift amount in T - sigma I = L D L^T. PIVMIN (input) PIVMIN is DOUBLE PRECISION The minimum pivot in the Sturm sequence. May be used when zero pivots are encountered on non-IEEE-754 architectures. R (input) R is INTEGER The twist index for the twisted factorization that is used for the negcount. LAPACK routine 31 October 2017 DLANEG(3)