DLANSP(3) LAPACK routine of NEC Numeric Library Collection DLANSP(3) NAME DLANSP SYNOPSIS DOUBLE PRECISION FUNCTION DLANSP (NORM, UPLO, N, AP, WORK) PURPOSE DLANSP returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix A, supplied in packed form. Returns: DLANSP DLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. ARGUMENTS NORM (input) NORM is CHARACTER*1 Specifies the value to be returned in DLANSP as described above. UPLO (input) UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is supplied. = 'U': Upper triangular part of A is supplied = 'L': Lower triangular part of A is supplied N (input) N is INTEGER The order of the matrix A. N >= 0. When N = 0, DLANSP is set to zero. AP (input) AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) The upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. WORK (output) WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, WORK is not referenced. LAPACK routine 31 October 2017 DLANSP(3)