DLANV2(3) LAPACK routine of NEC Numeric Library Collection DLANV2(3)
NAME
DLANV2
SYNOPSIS
SUBROUTINE DLANV2 (A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN)
PURPOSE
DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
matrix in standard form:
[ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
[ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
where either
1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
conjugate eigenvalues.
ARGUMENTS
A (input/output)
A is DOUBLE PRECISION
B (input/output)
B is DOUBLE PRECISION
C (input/output)
C is DOUBLE PRECISION
D (input/output)
D is DOUBLE PRECISION
On entry, the elements of the input matrix.
On exit, they are overwritten by the elements of the
standardised Schur form.
RT1R (output)
RT1R is DOUBLE PRECISION
RT1I (output)
RT1I is DOUBLE PRECISION
RT2R (output)
RT2R is DOUBLE PRECISION
RT2I (output)
RT2I is DOUBLE PRECISION
The real and imaginary parts of the eigenvalues. If the
eigenvalues are a complex conjugate pair, RT1I > 0.
CS (output)
CS is DOUBLE PRECISION
SN (output)
SN is DOUBLE PRECISION
Parameters of the rotation matrix.
FURTHER DETAILS
Modified by V. Sima, Research Institute for Informatics, Bucharest,
Romania, to reduce the risk of cancellation errors,
when computing real eigenvalues, and to ensure, if possible, that
abs(RT1R) >= abs(RT2R).
LAPACK routine 31 October 2017 DLANV2(3)