DLANV2(3) LAPACK routine of NEC Numeric Library Collection DLANV2(3) NAME DLANV2 SYNOPSIS SUBROUTINE DLANV2 (A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN) PURPOSE DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form: [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ] [ C D ] [ SN CS ] [ CC DD ] [-SN CS ] where either 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex conjugate eigenvalues. ARGUMENTS A (input/output) A is DOUBLE PRECISION B (input/output) B is DOUBLE PRECISION C (input/output) C is DOUBLE PRECISION D (input/output) D is DOUBLE PRECISION On entry, the elements of the input matrix. On exit, they are overwritten by the elements of the standardised Schur form. RT1R (output) RT1R is DOUBLE PRECISION RT1I (output) RT1I is DOUBLE PRECISION RT2R (output) RT2R is DOUBLE PRECISION RT2I (output) RT2I is DOUBLE PRECISION The real and imaginary parts of the eigenvalues. If the eigenvalues are a complex conjugate pair, RT1I > 0. CS (output) CS is DOUBLE PRECISION SN (output) SN is DOUBLE PRECISION Parameters of the rotation matrix. FURTHER DETAILS Modified by V. Sima, Research Institute for Informatics, Bucharest, Romania, to reduce the risk of cancellation errors, when computing real eigenvalues, and to ensure, if possible, that abs(RT1R) >= abs(RT2R). LAPACK routine 31 October 2017 DLANV2(3)