DLASD5(3) LAPACK routine of NEC Numeric Library Collection DLASD5(3)
NAME
DLASD5
SYNOPSIS
SUBROUTINE DLASD5 (I, D, Z, DELTA, RHO, DSIGMA, WORK)
PURPOSE
This subroutine computes the square root of the I-th eigenvalue
of a positive symmetric rank-one modification of a 2-by-2 diagonal
matrix
diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
The diagonal entries in the array D are assumed to satisfy
0 <= D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
ARGUMENTS
I (input)
I is INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input)
D is DOUBLE PRECISION array, dimension ( 2 )
The original eigenvalues. We assume 0 <= D(1) < D(2).
Z (input)
Z is DOUBLE PRECISION array, dimension ( 2 )
The components of the updating vector.
DELTA (output)
DELTA is DOUBLE PRECISION array, dimension ( 2 )
Contains (D(j) - sigma_I) in its j-th component.
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input)
RHO is DOUBLE PRECISION
The scalar in the symmetric updating formula.
DSIGMA (output)
DSIGMA is DOUBLE PRECISION
The computed sigma_I, the I-th updated eigenvalue.
WORK (output)
WORK is DOUBLE PRECISION array, dimension ( 2 )
WORK contains (D(j) + sigma_I) in its j-th component.
LAPACK routine 31 October 2017 DLASD5(3)