DLASD5(3) LAPACK routine of NEC Numeric Library Collection DLASD5(3) NAME DLASD5 SYNOPSIS SUBROUTINE DLASD5 (I, D, Z, DELTA, RHO, DSIGMA, WORK) PURPOSE This subroutine computes the square root of the I-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * transpose(Z) . The diagonal entries in the array D are assumed to satisfy 0 <= D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one. ARGUMENTS I (input) I is INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2. D (input) D is DOUBLE PRECISION array, dimension ( 2 ) The original eigenvalues. We assume 0 <= D(1) < D(2). Z (input) Z is DOUBLE PRECISION array, dimension ( 2 ) The components of the updating vector. DELTA (output) DELTA is DOUBLE PRECISION array, dimension ( 2 ) Contains (D(j) - sigma_I) in its j-th component. The vector DELTA contains the information necessary to construct the eigenvectors. RHO (input) RHO is DOUBLE PRECISION The scalar in the symmetric updating formula. DSIGMA (output) DSIGMA is DOUBLE PRECISION The computed sigma_I, the I-th updated eigenvalue. WORK (output) WORK is DOUBLE PRECISION array, dimension ( 2 ) WORK contains (D(j) + sigma_I) in its j-th component. LAPACK routine 31 October 2017 DLASD5(3)