DORMTR(3) LAPACK routine of NEC Numeric Library Collection DORMTR(3)
NAME
DORMTR
SYNOPSIS
SUBROUTINE DORMTR (SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)
PURPOSE
DORMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by DSYTRD:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
ARGUMENTS
SIDE (input)
SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO (input)
UPLO is CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from DSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from DSYTRD.
TRANS (input)
TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input)
M is INTEGER
The number of rows of the matrix C. M >= 0.
N (input)
N is INTEGER
The number of columns of the matrix C. N >= 0.
A (input)
A is DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by DSYTRD.
LDA (input)
LDA is INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU (input)
TAU is DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSYTRD.
C (input/output)
C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input)
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (output)
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input)
LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output)
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
LAPACK routine 31 October 2017 DORMTR(3)