DPOTRF(3) LAPACK routine of NEC Numeric Library Collection DPOTRF(3)
NAME
DPOTRF
SYNOPSIS
SUBROUTINE DPOTRF (UPLO, N, A, LDA, INFO)
PURPOSE
DPOTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the block version of the algorithm, calling Level 3 BLAS.
ARGUMENTS
UPLO (input)
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input)
N is INTEGER
The order of the matrix A. N >= 0.
A (input/output)
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
LDA (input)
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
INFO (output)
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
LAPACK routine 31 October 2017 DPOTRF(3)