DPTRFS(3) LAPACK routine of NEC Numeric Library Collection DPTRFS(3) NAME DPTRFS SYNOPSIS SUBROUTINE DPTRFS (N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, INFO) PURPOSE DPTRFS improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution. ARGUMENTS N (input) N is INTEGER The order of the matrix A. N >= 0. NRHS (input) NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. D (input) D is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the tridiagonal matrix A. E (input) E is DOUBLE PRECISION array, dimension (N-1) The (n-1) subdiagonal elements of the tridiagonal matrix A. DF (input) DF is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the diagonal matrix D from the factorization computed by DPTTRF. EF (input) EF is DOUBLE PRECISION array, dimension (N-1) The (n-1) subdiagonal elements of the unit bidiagonal factor L from the factorization computed by DPTTRF. B (input) B is DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input/output) X is DOUBLE PRECISION array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by DPTTRS. On exit, the improved solution matrix X. LDX (input) LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) FERR is DOUBLE PRECISION array, dimension (NRHS) The forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). BERR (output) BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (output) WORK is DOUBLE PRECISION array, dimension (2*N) INFO (output) INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Internal Parameters: ITMAX is the maximum number of steps of iterative refinement. LAPACK routine 31 October 2017 DPTRFS(3)