DSPGV(3) LAPACK routine of NEC Numeric Library Collection DSPGV(3) NAME DSPGV SYNOPSIS SUBROUTINE DSPGV (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, INFO) PURPOSE DSPGV computes all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric, stored in packed format, and B is also positive definite. ARGUMENTS ITYPE (input) ITYPE is INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x JOBZ (input) JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. N (input) N is INTEGER The order of the matrices A and B. N >= 0. AP (input/output) AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit, the contents of AP are destroyed. BP (input/output) BP is DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix B, packed columnwise in a linear array. The j-th column of B is stored in the array BP as follows: if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. On exit, the triangular factor U or L from the Cholesky factorization B = U**T*U or B = L*L**T, in the same storage format as B. W (output) W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z (output) Z is DOUBLE PRECISION array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I. If JOBZ = 'N', then Z is not referenced. LDZ (input) LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK (output) WORK is DOUBLE PRECISION array, dimension (3*N) INFO (output) INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: DPPTRF or DSPEV returned an error code: <= N: if INFO = i, DSPEV failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero. > N: if INFO = n + i, for 1 <= i <= n, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. LAPACK routine 31 October 2017 DSPGV(3)