DSYEQUB(3) LAPACK routine of NEC Numeric Library Collection DSYEQUB(3)
NAME
DSYEQUB
SYNOPSIS
SUBROUTINE DSYEQUB (UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO)
PURPOSE
DSYEQUB computes row and column scalings intended to equilibrate a
symmetric matrix A and reduce its condition number
(with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
ARGUMENTS
UPLO (input)
UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input)
N is INTEGER
The order of the matrix A. N >= 0.
A (input)
A is DOUBLE PRECISION array, dimension (LDA,N)
The N-by-N symmetric matrix whose scaling
factors are to be computed. Only the diagonal elements of A
are referenced.
LDA (input)
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S (output)
S is DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND (output)
SCOND is DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX (output)
AMAX is DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
WORK (output)
WORK is DOUBLE PRECISION array, dimension (3*N)
INFO (output)
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
LAPACK routine 31 October 2017 DSYEQUB(3)