DTPRFB(3) LAPACK routine of NEC Numeric Library Collection DTPRFB(3) NAME DTPRFB SYNOPSIS SUBROUTINE DTPRFB (SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T, LDT, A, LDA, B, LDB, WORK, LDWORK) PURPOSE DTPRFB applies a real "triangular-pentagonal" block reflector H or its transpose H**T to a real matrix C, which is composed of two blocks A and B, either from the left or right. ARGUMENTS SIDE (input) SIDE is CHARACTER*1 = 'L': apply H or H**T from the Left = 'R': apply H or H**T from the Right TRANS (input) TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'T': apply H**T (Transpose) DIRECT (input) DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) . . . H(k) (Forward) = 'B': H = H(k) . . . H(2) H(1) (Backward) STOREV (input) STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columns = 'R': Rows M (input) M is INTEGER The number of rows of the matrix B. M >= 0. N (input) N is INTEGER The number of columns of the matrix B. N >= 0. K (input) K is INTEGER The order of the matrix T, i.e. the number of elementary reflectors whose product defines the block reflector. K >= 0. L (input) L is INTEGER The order of the trapezoidal part of V. K >= L >= 0. See Further Details. V (input) V is DOUBLE PRECISION array, dimension (LDV,K) if STOREV = 'C' (LDV,M) if STOREV = 'R' and SIDE = 'L' (LDV,N) if STOREV = 'R' and SIDE = 'R' The pentagonal matrix V, which contains the elementary reflectors H(1), H(2), ..., H(K). See Further Details. LDV (input) LDV is INTEGER The leading dimension of the array V. If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); if STOREV = 'R', LDV >= K. T (input) T is DOUBLE PRECISION array, dimension (LDT,K) The triangular K-by-K matrix T in the representation of the block reflector. LDT (input) LDT is INTEGER The leading dimension of the array T. LDT >= K. A (input/output) A is DOUBLE PRECISION array, dimension (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R' On entry, the K-by-N or M-by-K matrix A. On exit, A is overwritten by the corresponding block of H*C or H**T*C or C*H or C*H**T. See Futher Details. LDA (input) LDA is INTEGER The leading dimension of the array A. If SIDE = 'L', LDC >= max(1,K); If SIDE = 'R', LDC >= max(1,M). B (input/output) B is DOUBLE PRECISION array, dimension (LDB,N) On entry, the M-by-N matrix B. On exit, B is overwritten by the corresponding block of H*C or H**T*C or C*H or C*H**T. See Further Details. LDB (input) LDB is INTEGER The leading dimension of the array B. LDB >= max(1,M). WORK (output) WORK is DOUBLE PRECISION array, dimension (LDWORK,N) if SIDE = 'L', (LDWORK,K) if SIDE = 'R'. LDWORK (input) LDWORK is INTEGER The leading dimension of the array WORK. If SIDE = 'L', LDWORK >= K; if SIDE = 'R', LDWORK >= M. FURTHER DETAILS The matrix C is a composite matrix formed from blocks A and B. The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K, and if SIDE = 'L', A is of size K-by-N. If SIDE = 'R' and DIRECT = 'F', C = [A B]. If SIDE = 'L' and DIRECT = 'F', C = [A] [B]. If SIDE = 'R' and DIRECT = 'B', C = [B A]. If SIDE = 'L' and DIRECT = 'B', C = [B] [A]. The pentagonal matrix V is composed of a rectangular block V1 and a trapezoidal block V2. The size of the trapezoidal block is determined by the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular; if L=0, there is no trapezoidal block, thus V = V1 is rectangular. If DIRECT = 'F' and STOREV = 'C': V = [V1] [V2] - V2 is upper trapezoidal (first L rows of K-by-K upper triangular) If DIRECT = 'F' and STOREV = 'R': V = [V1 V2] - V2 is lower trapezoidal (first L columns of K-by-K lower triangular) If DIRECT = 'B' and STOREV = 'C': V = [V2] [V1] - V2 is lower trapezoidal (last L rows of K-by-K lower triangular) If DIRECT = 'B' and STOREV = 'R': V = [V2 V1] - V2 is upper trapezoidal (last L columns of K-by-K upper triangular) If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K. If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K. If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L. If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L. LAPACK routine 31 October 2017 DTPRFB(3)