PCGEQPF(3)    ScaLAPACK routine of NEC Numeric Library Collection   PCGEQPF(3)



NAME
       PCGEQPF  -  compute a QR factorization with column pivoting of a M-by-N
       distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)

SYNOPSIS
       SUBROUTINE PCGEQPF( M, N, A, IA, JA, DESCA,  IPIV,  TAU,  WORK,  LWORK,
                           RWORK, LRWORK, INFO )

           INTEGER         IA, JA, INFO, LRWORK, LWORK, M, N

           INTEGER         DESCA( * ), IPIV( * )

           REAL            RWORK( * )

           COMPLEX         A( * ), TAU( * ), WORK( * )

PURPOSE
       PCGEQPF  computes  a  QR factorization with column pivoting of a M-by-N
       distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1):
                              sub( A ) * P = Q * R.


       Notes
       =====

       Each global data object is described by an associated description  vec-
       tor.  This vector stores the information required to establish the map-
       ping between an object element and its corresponding process and memory
       location.

       Let  A  be  a generic term for any 2D block cyclicly distributed array.
       Such a global array has an associated description vector DESCA.  In the
       following  comments,  the  character _ should be read as "of the global
       array".

       NOTATION        STORED IN      EXPLANATION
       --------------- -------------- --------------------------------------
       DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
                                      DTYPE_A = 1.
       CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
                                      the BLACS process grid A is distribu-
                                      ted over. The context itself is glo-
                                      bal, but the handle (the integer
                                      value) may vary.
       M_A    (global) DESCA( M_ )    The number of rows in the global
                                      array A.
       N_A    (global) DESCA( N_ )    The number of columns in the global
                                      array A.
       MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
                                      the rows of the array.
       NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
                                      the columns of the array.
       RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
                                      row  of  the  array  A  is  distributed.
       CSRC_A (global) DESCA( CSRC_ ) The process column over which the
                                      first column of the array A is
                                      distributed.
       LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
                                      array.  LLD_A >= MAX(1,LOCr(M_A)).

       Let  K  be  the  number of rows or columns of a distributed matrix, and
       assume that its process grid has dimension p x q.
       LOCr( K ) denotes the number of elements of  K  that  a  process  would
       receive  if K were distributed over the p processes of its process col-
       umn.
       Similarly, LOCc( K ) denotes the number of elements of K that a process
       would receive if K were distributed over the q processes of its process
       row.
       The values of LOCr() and LOCc() may be determined via  a  call  to  the
       ScaLAPACK tool function, NUMROC:
               LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
               LOCc(  N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).  An upper
       bound for these quantities may be computed by:
               LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
               LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A


ARGUMENTS
       M       (global input) INTEGER
               The number of rows to be operated on, i.e. the number  of  rows
               of the distributed submatrix sub( A ). M >= 0.

       N       (global input) INTEGER
               The  number  of  columns  to be operated on, i.e. the number of
               columns of the distributed submatrix sub( A ). N >= 0.

       A       (local input/local output) COMPLEX pointer into the
               local memory to an array of  dimension  (LLD_A,  LOCc(JA+N-1)).
               On  entry,  the  local  pieces of the M-by-N distributed matrix
               sub( A ) which is to be factored. On exit, the elements on  and
               above  the diagonal of sub( A ) contain the min(M,N) by N upper
               trapezoidal matrix R (R is upper triangular if  M  >=  N);  the
               elements  below  the  diagonal, with the array TAU, repre- sent
               the unitary matrix Q as a product of elementary reflectors (see
               Further Details).  IA      (global input) INTEGER The row index
               in the global array A indicating the first row of sub( A ).

       JA      (global input) INTEGER
               The column index in the global array  A  indicating  the  first
               column of sub( A ).

       DESCA   (global and local input) INTEGER array of dimension DLEN_.
               The array descriptor for the distributed matrix A.

       IPIV    (local output) INTEGER array, dimension LOCc(JA+N-1).
               On  exit,  if  IPIV(I) = K, the local i-th column of sub( A )*P
               was the global K-th column of sub( A ). IPIV  is  tied  to  the
               distributed matrix A.

       TAU     (local output) COMPLEX, array, dimension
               LOCc(JA+MIN(M,N)-1). This array contains the scalar factors TAU
               of the elementary reflectors. TAU is tied  to  the  distributed
               matrix A.

       WORK    (local workspace/local output) COMPLEX array,
               dimension  (LWORK)  On  exit,  WORK(1)  returns the minimal and
               optimal LWORK.

       LWORK   (local or global input) INTEGER
               The dimension of the array WORK.  LWORK is local input and must
               be at least LWORK >= MAX(3,Mp0 + Nq0).

               If LWORK = -1, then LWORK is global input and a workspace query
               is assumed; the routine only calculates the minimum and optimal
               size  for  all work arrays. Each of these values is returned in
               the first entry of the corresponding work array, and  no  error
               message is issued by PXERBLA.

       RWORK   (local workspace/local output) REAL array,
               dimension  (LRWORK)  On  exit, RWORK(1) returns the minimal and
               optimal LRWORK.

       LRWORK  (local or global input) INTEGER
               The dimension of the array RWORK.  LRWORK is  local  input  and
               must be at least LRWORK >= LOCc(JA+N-1)+Nq0.

               IROFF  =  MOD( IA-1, MB_A ), ICOFF = MOD( JA-1, NB_A ), IAROW =
               INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ), IACOL = INDXG2P( JA,
               NB_A,  MYCOL,  CSRC_A,  NPCOL ), Mp0   = NUMROC( M+IROFF, MB_A,
               MYROW, IAROW, NPROW ), Nq0   = NUMROC(  N+ICOFF,  NB_A,  MYCOL,
               IACOL,  NPCOL  ),  LOCc(JA+N-1)  = NUMROC( JA+N-1, NB_A, MYCOL,
               CSRC_A, NPCOL )

               and NUMROC, INDXG2P are ScaLAPACK tool functions; MYROW, MYCOL,
               NPROW  and  NPCOL  can  be determined by calling the subroutine
               BLACS_GRIDINFO.

               If LRWORK = -1, then LRWORK is global  input  and  a  workspace
               query  is  assumed; the routine only calculates the minimum and
               optimal size for all work  arrays.  Each  of  these  values  is
               returned  in  the  first entry of the corresponding work array,
               and no error message is issued by PXERBLA.

       INFO    (global output) INTEGER
               = 0:  successful exit
               < 0:  If the i-th argument is an array and the j-entry  had  an
               illegal  value, then INFO = -(i*100+j), if the i-th argument is
               a scalar and had an illegal value, then INFO = -i.

FURTHER DETAILS
       The matrix Q is represented as a product of elementary reflectors

          Q = H(1) H(2) . . . H(n)

       Each H(i) has the form

          H = I - tau * v * v'

       where tau is a complex scalar, and v is a complex vector with  v(1:i-1)
       = 0 and v(i) = 1; v(i+1:m) is stored on exit in
       A(ia+i-1:ia+m-1,ja+i-1).

       The matrix P is represented in jpvt as follows: If
          jpvt(j) = i
       then the jth column of P is the ith canonical unit vector.




ScaLAPACK routine               31 October 2017                     PCGEQPF(3)