PCGETRF(3) ScaLAPACK routine of NEC Numeric Library Collection PCGETRF(3) NAME PCGETRF - compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges SYNOPSIS SUBROUTINE PCGETRF( M, N, A, IA, JA, DESCA, IPIV, INFO ) INTEGER IA, INFO, JA, M, N INTEGER DESCA( * ), IPIV( * ) COMPLEX A( * ) PURPOSE PCGETRF computes an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges. The factorization has the form sub( A ) = P * L * U, where P is a permutation matrix, L is lower triangular with unit diago- nal ele- ments (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n). L and U are stored in sub( A ). This is the right-looking Parallel Level 3 BLAS version of the algo- rithm. Notes ===== Each global data object is described by an associated description vec- tor. This vector stores the information required to establish the map- ping between an object element and its corresponding process and memory location. Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array". NOTATION STORED IN EXPLANATION --------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case, DTYPE_A = 1. CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating the BLACS process grid A is distribu- ted over. The context itself is glo- bal, but the handle (the integer value) may vary. M_A (global) DESCA( M_ ) The number of rows in the global array A. N_A (global) DESCA( N_ ) The number of columns in the global array A. MB_A (global) DESCA( MB_ ) The blocking factor used to distribute the rows of the array. NB_A (global) DESCA( NB_ ) The blocking factor used to distribute the columns of the array. RSRC_A (global) DESCA( RSRC_ ) The process row over which the first row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the first column of the array A is distributed. LLD_A (local) DESCA( LLD_ ) The leading dimension of the local array. LLD_A >= MAX(1,LOCr(M_A)). Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q. LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process col- umn. Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row. The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC: LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ), LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by: LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A This routine requires square block decomposition ( MB_A = NB_A ). ARGUMENTS M (global input) INTEGER The number of rows to be operated on, i.e. the number of rows of the distributed submatrix sub( A ). M >= 0. N (global input) INTEGER The number of columns to be operated on, i.e. the number of columns of the distributed submatrix sub( A ). N >= 0. A (local input/local output) COMPLEX pointer into the local memory to an array of dimension (LLD_A, LOCc(JA+N-1)). On entry, this array contains the local pieces of the M-by-N distributed matrix sub( A ) to be factored. On exit, this array contains the local pieces of the factors L and U from the fac- torization sub( A ) = P*L*U; the unit diagonal ele- ments of L are not stored. IA (global input) INTEGER The row index in the global array A indicating the first row of sub( A ). JA (global input) INTEGER The column index in the global array A indicating the first column of sub( A ). DESCA (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix A. IPIV (local output) INTEGER array, dimension ( LOCr(M_A)+MB_A ) This array contains the pivoting information. IPIV(i) -> The global row local row i was swapped with. This array is tied to the distributed matrix A. INFO (global output) INTEGER = 0: successful exit < 0: If the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i. > 0: If INFO = K, U(IA+K-1,JA+K-1) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. ScaLAPACK routine 31 October 2017 PCGETRF(3)