PCLARZB(3) ScaLAPACK routine of NEC Numeric Library Collection PCLARZB(3) NAME PCLARZB - applie a complex block reflector Q or its conjugate transpose Q**H to a complex M-by-N distributed matrix sub( C ) denoting C(IC:IC+M-1,JC:JC+N-1), from the left or the right SYNOPSIS SUBROUTINE PCLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, IV, JV, DESCV, T, C, IC, JC, DESCC, WORK ) CHARACTER DIRECT, SIDE, STOREV, TRANS INTEGER IC, IV, JC, JV, K, L, M, N INTEGER DESCC( * ), DESCV( * ) COMPLEX C( * ), T( * ), V( * ), WORK( * ) PURPOSE PCLARZB applies a complex block reflector Q or its conjugate transpose Q**H to a complex M-by-N distributed matrix sub( C ) denoting C(IC:IC+M-1,JC:JC+N-1), from the left or the right. Q is a product of k elementary reflectors as returned by PCTZRZF. Currently, only STOREV = 'R' and DIRECT = 'B' are supported. Notes ===== Each global data object is described by an associated description vec- tor. This vector stores the information required to establish the map- ping between an object element and its corresponding process and memory location. Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array". NOTATION STORED IN EXPLANATION --------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case, DTYPE_A = 1. CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating the BLACS process grid A is distribu- ted over. The context itself is glo- bal, but the handle (the integer value) may vary. M_A (global) DESCA( M_ ) The number of rows in the global array A. N_A (global) DESCA( N_ ) The number of columns in the global array A. MB_A (global) DESCA( MB_ ) The blocking factor used to distribute the rows of the array. NB_A (global) DESCA( NB_ ) The blocking factor used to distribute the columns of the array. RSRC_A (global) DESCA( RSRC_ ) The process row over which the first row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the first column of the array A is distributed. LLD_A (local) DESCA( LLD_ ) The leading dimension of the local array. LLD_A >= MAX(1,LOCr(M_A)). Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q. LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process col- umn. Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row. The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC: LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ), LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by: LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A ARGUMENTS SIDE (global input) CHARACTER = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right. TRANS (global input) CHARACTER = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H. DIRECT (global input) CHARACTER Indicates how H is formed from a product of elementary reflec- tors = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) = 'B': H = H(k) . . . H(2) H(1) (Backward) STOREV (global input) CHARACTER Indicates how the vectors which define the elementary reflec- tors are stored: = 'C': Columnwise (not supported yet) = 'R': Rowwise M (global input) INTEGER The number of rows to be operated on i.e the number of rows of the distributed submatrix sub( C ). M >= 0. N (global input) INTEGER The number of columns to be operated on i.e the number of columns of the distributed submatrix sub( C ). N >= 0. K (global input) INTEGER The order of the matrix T (= the number of elementary reflec- tors whose product defines the block reflector). L (global input) INTEGER The columns of the distributed submatrix sub( A ) containing the meaningful part of the Householder reflectors. If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. V (local input) COMPLEX pointer into the local memory to an array of dimension (LLD_V, LOCc(JV+M-1)) if SIDE = 'L', (LLD_V, LOCc(JV+N-1)) if SIDE = 'R'. It contains the local pieces of the distributed vectors V representing the House- holder transformation as returned by PCTZRZF. LLD_V >= LOCr(IV+K-1). IV (global input) INTEGER The row index in the global array V indicating the first row of sub( V ). JV (global input) INTEGER The column index in the global array V indicating the first column of sub( V ). DESCV (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix V. T (local input) COMPLEX array, dimension MB_V by MB_V The lower triangular matrix T in the representation of the block reflector. C (local input/local output) COMPLEX pointer into the local memory to an array of dimension (LLD_C,LOCc(JC+N-1)). On entry, the M-by-N distributed matrix sub( C ). On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C ) or sub( C )*Q or sub( C )*Q'. IC (global input) INTEGER The row index in the global array C indicating the first row of sub( C ). JC (global input) INTEGER The column index in the global array C indicating the first column of sub( C ). DESCC (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix C. WORK (local workspace) COMPLEX array, dimension (LWORK) If STOREV = 'C', if SIDE = 'L', LWORK >= ( NqC0 + MpC0 ) * K else if SIDE = 'R', LWORK >= ( NqC0 + MAX( NpV0 + NUMROC( NUM- ROC( N+ICOFFC, NB_V, 0, 0, NPCOL ), NB_V, 0, 0, LCMQ ), MpC0 ) ) * K end if else if STOREV = 'R', if SIDE = 'L', LWORK >= ( MpC0 + MAX( MqV0 + NUMROC( NUMROC( M+IROFFC, MB_V, 0, 0, NPROW ), MB_V, 0, 0, LCMP ), NqC0 ) ) * K else if SIDE = 'R', LWORK >= ( MpC0 + NqC0 ) * K end if end if where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ), IROFFV = MOD( IV-1, MB_V ), ICOFFV = MOD( JV-1, NB_V ), IVROW = INDXG2P( IV, MB_V, MYROW, RSRC_V, NPROW ), IVCOL = INDXG2P( JV, NB_V, MYCOL, CSRC_V, NPCOL ), MqV0 = NUMROC( M+ICOFFV, NB_V, MYCOL, IVCOL, NPCOL ), NpV0 = NUMROC( N+IROFFV, MB_V, MYROW, IVROW, NPROW ), IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ), ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ), ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ), MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ), NpC0 = NUMROC( N+ICOFFC, MB_C, MYROW, ICROW, NPROW ), NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ), ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subrou- tine BLACS_GRIDINFO. ALIGNMENT REQUIREMENTS The distributed submatrices V(IV:*, JV:*) and C(IC:IC+M-1,JC:JC+N-1) must verify some alignment properties, namely the following expressions should be true: If STOREV = 'Columnwise' If SIDE = 'Left', ( MB_V.EQ.MB_C .AND. IROFFV.EQ.IROFFC .AND. IVROW.EQ.ICROW ) If SIDE = 'Right', ( MB_V.EQ.NB_C .AND. IROFFV.EQ.ICOFFC ) else if STOREV = 'Rowwise' If SIDE = 'Left', ( NB_V.EQ.MB_C .AND. ICOFFV.EQ.IROFFC ) If SIDE = 'Right', ( NB_V.EQ.NB_C .AND. ICOFFV.EQ.ICOFFC .AND. IVCOL.EQ.ICCOL ) end if ScaLAPACK routine 31 October 2017 PCLARZB(3)