PDDTSV(3) ScaLAPACK routine of NEC Numeric Library Collection PDDTSV(3) NAME PDDTSV - solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS) SYNOPSIS SUBROUTINE PDDTSV( N, NRHS, DL, D, DU, JA, DESCA, B, IB, DESCB, WORK, LWORK, INFO ) INTEGER IB, INFO, JA, LWORK, N, NRHS INTEGER DESCA( * ), DESCB( * ) DOUBLE PRECISION B( * ), D( * ), DL( * ), DU( * ), WORK( * ) PURPOSE PDDTSV solves a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS) where A(1:N, JA:JA+N-1) is an N-by-N real tridiagonal diagonally dominant-like distributed matrix. Gaussian elimination without pivoting is used to factor a reordering of the matrix into L U. See PDDTTRF and PDDTTRS for details. ScaLAPACK routine 31 October 2017 PDDTSV(3)