PDDTSV(3)     ScaLAPACK routine of NEC Numeric Library Collection    PDDTSV(3)



NAME
       PDDTSV  -  solve  a system of linear equations  A(1:N, JA:JA+N-1) * X =
       B(IB:IB+N-1, 1:NRHS)

SYNOPSIS
       SUBROUTINE PDDTSV( N, NRHS, DL, D, DU, JA, DESCA, B, IB,  DESCB,  WORK,
                          LWORK, INFO )

           INTEGER        IB, INFO, JA, LWORK, N, NRHS

           INTEGER        DESCA( * ), DESCB( * )

           DOUBLE         PRECISION  B( * ), D( * ), DL( * ), DU( * ), WORK( *
                          )

PURPOSE
       PDDTSV solves a system of linear equations  A(1:N,  JA:JA+N-1)  *  X  =
       B(IB:IB+N-1, 1:NRHS) where A(1:N, JA:JA+N-1) is an N-by-N real
       tridiagonal diagonally dominant-like distributed
       matrix.

       Gaussian elimination without pivoting
       is used to factor a reordering
       of the matrix into L U.

       See PDDTTRF and PDDTTRS for details.




ScaLAPACK routine               31 October 2017                      PDDTSV(3)