PDLARFT(3) ScaLAPACK routine of NEC Numeric Library Collection PDLARFT(3) NAME PDLARFT - form the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors SYNOPSIS SUBROUTINE PDLARFT( DIRECT, STOREV, N, K, V, IV, JV, DESCV, TAU, T, WORK ) CHARACTER DIRECT, STOREV INTEGER IV, JV, K, N INTEGER DESCV( * ) DOUBLE PRECISION TAU( * ), T( * ), V( * ), WORK( * ) PURPOSE PDLARFT forms the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors. If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. If STOREV = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column of the distributed matrix V, and H = I - V * T * V' If STOREV = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of the distributed matrix V, and H = I - V' * T * V Notes ===== Each global data object is described by an associated description vec- tor. This vector stores the information required to establish the map- ping between an object element and its corresponding process and memory location. Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array". NOTATION STORED IN EXPLANATION --------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case, DTYPE_A = 1. CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating the BLACS process grid A is distribu- ted over. The context itself is glo- bal, but the handle (the integer value) may vary. M_A (global) DESCA( M_ ) The number of rows in the global array A. N_A (global) DESCA( N_ ) The number of columns in the global array A. MB_A (global) DESCA( MB_ ) The blocking factor used to distribute the rows of the array. NB_A (global) DESCA( NB_ ) The blocking factor used to distribute the columns of the array. RSRC_A (global) DESCA( RSRC_ ) The process row over which the first row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the first column of the array A is distributed. LLD_A (local) DESCA( LLD_ ) The leading dimension of the local array. LLD_A >= MAX(1,LOCr(M_A)). Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q. LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process col- umn. Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row. The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC: LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ), LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by: LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A ARGUMENTS DIRECT (global input) CHARACTER*1 Specifies the order in which the elementary reflectors are mul- tiplied to form the block reflector: = 'F': H = H(1) H(2) . . . H(k) (Forward) = 'B': H = H(k) . . . H(2) H(1) (Backward) STOREV (global input) CHARACTER*1 Specifies how the vectors which define the elementary reflec- tors are stored (see also Further Details): = 'R': rowwise N (global input) INTEGER The order of the block reflector H. N >= 0. K (global input) INTEGER The order of the triangular factor T (= the number of elemen- tary reflectors). 1 <= K <= MB_V (= NB_V). V (input/output) DOUBLE PRECISION pointer into the local memory to an array of local dimension (LOCr(IV+N-1),LOCc(JV+K-1)) if STOREV = 'C', and (LOCr(IV+K-1),LOCc(JV+N-1)) if STOREV = 'R'. The distributed matrix V contains the Householder vectors. See further details. IV (global input) INTEGER The row index in the global array V indicating the first row of sub( V ). JV (global input) INTEGER The column index in the global array V indicating the first column of sub( V ). DESCV (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix V. TAU (local input) DOUBLE PRECISION array, dimension LOCr(IV+K-1) if INCV = M_V, and LOCc(JV+K-1) otherwise. This array contains the Householder scalars related to the Householder vectors. TAU is tied to the distributed matrix V. T (local output) DOUBLE PRECISION array, dimension (NB_V,NB_V) if STOREV = 'Col', and (MB_V,MB_V) otherwise. It contains the k-by-k triangular factor of the block reflector asso- ciated with V. If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is lower triangular. WORK (local workspace) DOUBLE PRECISION array, dimension (K*(K-1)/2) FURTHER DETAILS The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used. DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': V( IV:IV+N-1, ( 1 ) V( IV:IV+K-1, ( 1 v1 v1 v1 v1 ) JV:JV+K-1 ) = ( v1 1 ) JV:JV+N-1 ) = ( 1 v2 v2 v2 ) ( v1 v2 1 ) ( 1 v3 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 ) DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': V( IV:IV+N-1, ( v1 v2 v3 ) V( IV:IV+K-1, ( v1 v1 1 ) JV:JV+K-1 ) = ( v1 v2 v3 ) JV:JV+N-1 ) = ( v2 v2 v2 1 ) ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) ( 1 v3 ) ( 1 ) ScaLAPACK routine 31 October 2017 PDLARFT(3)