PDLATRA(3) ScaLAPACK routine of NEC Numeric Library Collection PDLATRA(3)
NAME
PDLATRA - compute the trace of an N-by-N distributed matrix sub( A )
denoting A( IA:IA+N-1, JA:JA+N-1 )
SYNOPSIS
DOUBLE PRECISION FUNCTION PDLATRA( N, A, IA, JA, DESCA )
INTEGER IA, JA, N
INTEGER DESCA( * )
DOUBLE PRECISION A( * )
PURPOSE
PDLATRA computes the trace of an N-by-N distributed matrix sub( A )
denoting A( IA:IA+N-1, JA:JA+N-1 ). The result is left on every process
of the grid.
Notes
=====
Each global data object is described by an associated description vec-
tor. This vector stores the information required to establish the map-
ping between an object element and its corresponding process and memory
location.
Let A be a generic term for any 2D block cyclicly distributed array.
Such a global array has an associated description vector DESCA. In the
following comments, the character _ should be read as "of the global
array".
NOTATION STORED IN EXPLANATION
--------------- -------------- --------------------------------------
DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
the BLACS process grid A is distribu-
ted over. The context itself is glo-
bal, but the handle (the integer
value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
array A.
N_A (global) DESCA( N_ ) The number of columns in the global
array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
row of the array A is distributed.
CSRC_A (global) DESCA( CSRC_ ) The process column over which the
first column of the array A is
distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
array. LLD_A >= MAX(1,LOCr(M_A)).
Let K be the number of rows or columns of a distributed matrix, and
assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process would
receive if K were distributed over the p processes of its process col-
umn.
Similarly, LOCc( K ) denotes the number of elements of K that a process
would receive if K were distributed over the q processes of its process
row.
The values of LOCr() and LOCc() may be determined via a call to the
ScaLAPACK tool function, NUMROC:
LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper
bound for these quantities may be computed by:
LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
ARGUMENTS
N (global input) INTEGER
The number of rows and columns to be operated on i.e the order
of the distributed submatrix sub( A ). N >= 0.
A (local input) DOUBLE PRECISION pointer into the local memory
to an array of dimension ( LLD_A, LOCc(JA+N-1) ). This array
contains the local pieces of the distributed matrix the trace
is to be computed.
IA (global input) INTEGER
The row index in the global array A indicating the first row of
sub( A ).
JA (global input) INTEGER
The column index in the global array A indicating the first
column of sub( A ).
DESCA (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix A.
ScaLAPACK routine 31 October 2017 PDLATRA(3)