PSLATRD(3) ScaLAPACK routine of NEC Numeric Library Collection PSLATRD(3) NAME PSLATRD - reduce NB rows and columns of a real symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) to symmetric tridiagonal form by an orthogonal similarity transformation Q' * sub( A ) * Q, SYNOPSIS SUBROUTINE PSLATRD( UPLO, N, NB, A, IA, JA, DESCA, D, E, TAU, W, IW, JW, DESCW, WORK ) CHARACTER UPLO INTEGER IA, IW, JA, JW, N, NB INTEGER DESCA( * ), DESCW( * ) REAL A( * ), D( * ), E( * ), TAU( * ), W( * ), WORK( * ) PURPOSE PSLATRD reduces NB rows and columns of a real symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) to symmetric tridiagonal form by an orthogonal similarity transformation Q' * sub( A ) * Q, and returns the matrices V and W which are needed to apply the transforma- tion to the unreduced part of sub( A ). If UPLO = 'U', PSLATRD reduces the last NB rows and columns of a matrix, of which the upper triangle is supplied; if UPLO = 'L', PSLATRD reduces the first NB rows and columns of a matrix, of which the lower triangle is supplied. This is an auxiliary routine called by PSSYTRD. Notes ===== Each global data object is described by an associated description vec- tor. This vector stores the information required to establish the map- ping between an object element and its corresponding process and memory location. Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array". NOTATION STORED IN EXPLANATION --------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case, DTYPE_A = 1. CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating the BLACS process grid A is distribu- ted over. The context itself is glo- bal, but the handle (the integer value) may vary. M_A (global) DESCA( M_ ) The number of rows in the global array A. N_A (global) DESCA( N_ ) The number of columns in the global array A. MB_A (global) DESCA( MB_ ) The blocking factor used to distribute the rows of the array. NB_A (global) DESCA( NB_ ) The blocking factor used to distribute the columns of the array. RSRC_A (global) DESCA( RSRC_ ) The process row over which the first row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the first column of the array A is distributed. LLD_A (local) DESCA( LLD_ ) The leading dimension of the local array. LLD_A >= MAX(1,LOCr(M_A)). Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q. LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process col- umn. Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row. The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC: LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ), LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by: LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A ARGUMENTS UPLO (global input) CHARACTER Specifies whether the upper or lower triangular part of the symmetric matrix sub( A ) is stored: = 'U': Upper triangular = 'L': Lower triangular N (global input) INTEGER The number of rows and columns to be operated on, i.e. the order of the distributed submatrix sub( A ). N >= 0. NB (global input) INTEGER The number of rows and columns to be reduced. A (local input/local output) REAL pointer into the local memory to an array of dimension (LLD_A,LOCc(JA+N-1)). On entry, this array contains the local pieces of the symmetric distributed matrix sub( A ). If UPLO = 'U', the leading N-by-N upper triangular part of sub( A ) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If UPLO = 'L', the leading N-by-N lower trian- gular part of sub( A ) contains the lower triangular part of the matrix, and its strictly upper triangular part is not ref- erenced. On exit, if UPLO = 'U', the last NB columns have been reduced to tridiagonal form, with the diagonal elements over- writing the diagonal elements of sub( A ); the elements above the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. If UPLO = 'L', the first NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of sub( A ); the elements below the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; See Further Details. IA (global input) INTE- GER The row index in the global array A indicating the first row of sub( A ). JA (global input) INTEGER The column index in the global array A indicating the first column of sub( A ). DESCA (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix A. D (local output) REAL array, dimension LOCc(JA+N-1) The diagonal elements of the tridiagonal matrix T: D(i) = A(i,i). D is tied to the distributed matrix A. E (local output) REAL array, dimension LOCc(JA+N-1) if UPLO = 'U', LOCc(JA+N-2) otherwise. The off-diagonal ele- ments of the tridiagonal matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the dis- tributed matrix A. TAU (local output) REAL, array, dimension LOCc(JA+N-1). This array contains the scalar factors TAU of the elementary reflectors. TAU is tied to the distributed matrix A. W (local output) REAL pointer into the local memory to an array of dimension (LLD_W,NB_W), This array contains the local pieces of the N-by-NB_W matrix W required to update the unreduced part of sub( A ). IW (global input) INTEGER The row index in the global array W indicating the first row of sub( W ). JW (global input) INTEGER The column index in the global array W indicating the first column of sub( W ). DESCW (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix W. WORK (local workspace) REAL array, dimension (NB_A) FURTHER DETAILS If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n) H(n-1) . . . H(n-nb+1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(ia:ia+i-2,ja+i), and tau in TAU(ja+i-1). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(ia+i+1:ia+n-1,ja+i-1), and tau in TAU(ja+i-1). The elements of the vectors v together form the N-by-NB matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a symmetric rank-2k update of the form: sub( A ) := sub( A ) - V*W' - W*V'. The contents of A on exit are illustrated by the following examples with n = 5 and nb = 2: if UPLO = 'U': if UPLO = 'L': ( a a a v4 v5 ) ( d ) ( a a v4 v5 ) ( 1 d ) ( a 1 v5 ) ( v1 1 a ) ( d 1 ) ( v1 v2 a a ) ( d ) ( v1 v2 a a a ) where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and vi denotes an element of the vector defining H(i). ScaLAPACK routine 31 October 2017 PSLATRD(3)