PZLACON(3) ScaLAPACK routine of NEC Numeric Library Collection PZLACON(3) NAME PZLACON - estimate the 1-norm of a square, complex distributed matrix A SYNOPSIS SUBROUTINE PZLACON( N, V, IV, JV, DESCV, X, IX, JX, DESCX, EST, KASE ) INTEGER IV, IX, JV, JX, KASE, N DOUBLE PRECISION EST INTEGER DESCV( * ), DESCX( * ) COMPLEX*16 V( * ), X( * ) PURPOSE PZLACON estimates the 1-norm of a square, complex distributed matrix A. Reverse communication is used for evaluating matrix-vector products. X and V are aligned with the distributed matrix A, this information is implicitly contained within IV, IX, DESCV, and DESCX. Notes ===== Each global data object is described by an associated description vec- tor. This vector stores the information required to establish the map- ping between an object element and its corresponding process and memory location. Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array". NOTATION STORED IN EXPLANATION --------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case, DTYPE_A = 1. CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating the BLACS process grid A is distribu- ted over. The context itself is glo- bal, but the handle (the integer value) may vary. M_A (global) DESCA( M_ ) The number of rows in the global array A. N_A (global) DESCA( N_ ) The number of columns in the global array A. MB_A (global) DESCA( MB_ ) The blocking factor used to distribute the rows of the array. NB_A (global) DESCA( NB_ ) The blocking factor used to distribute the columns of the array. RSRC_A (global) DESCA( RSRC_ ) The process row over which the first row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the first column of the array A is distributed. LLD_A (local) DESCA( LLD_ ) The leading dimension of the local array. LLD_A >= MAX(1,LOCr(M_A)). Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q. LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process col- umn. Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row. The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC: LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ), LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by: LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A ARGUMENTS N (global input) INTEGER The length of the distributed vectors V and X. N >= 0. V (local workspace) COMPLEX*16 pointer into the local memory to an array of dimension LOCr(N+MOD(IV-1,MB_V)). On the final return, V = A*W, where EST = norm(V)/norm(W) (W is not returned). IV (global input) INTEGER The row index in the global array V indicating the first row of sub( V ). JV (global input) INTEGER The column index in the global array V indicating the first column of sub( V ). DESCV (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix V. X (local input/local output) COMPLEX*16 pointer into the local memory to an array of dimension LOCr(N+MOD(IX-1,MB_X)). On an intermediate return, X should be overwritten by A * X, if KASE=1, A' * X, if KASE=2, where A' is the conjugate trans- pose of A, and PZLACON must be re-called with all the other parameters unchanged. IX (global input) INTEGER The row index in the global array X indicating the first row of sub( X ). JX (global input) INTEGER The column index in the global array X indicating the first column of sub( X ). DESCX (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix X. EST (global output) DOUBLE PRECISION An estimate (a lower bound) for norm(A). KASE (local input/local output) INTEGER On the initial call to PZLACON, KASE should be 0. On an inter- mediate return, KASE will be 1 or 2, indicating whether X should be overwritten by A * X or A' * X. On the final return from PZLACON, KASE will again be 0. FURTHER DETAILS The serial version ZLACON has been contributed by Nick Higham, Univer- sity of Manchester. It was originally named SONEST, dated March 16, 1988. Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation", ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988. ScaLAPACK routine 31 October 2017 PZLACON(3)