SDOT(3) BLAS routine of NEC Numeric Library Collection SDOT(3) NAME SDOT - BLAS level one, computes a dot product (inner product) of two real vectors SYNOPSIS REAL FUNCTION SDOT ( n, x, incx, y, incy ) INTEGER n, incx, incy REAL x, y DESCRIPTION SDOT computes a dot product of two real vectors (l real inner product). 2 This routine performs the following vector operation: n SDOT <-- (transpose of x) * y = Sum x(i)*y(i) i=1 where x and y are real vectors. If n <= 0, SDOT is set to 0. ARGUMENTS n INTEGER. (input) Number of elements in each vector. x REAL. (input) Array of dimension (n-1) * |incx| + 1. Array x contains the first vector operand. incx INTEGER. (input) Increment between elements of x. If incx = 0, the results will be unpredictable. y REAL. (input) Array of dimension (n-1) * |incy| + 1. Array y contains the second vector operand. incy INTEGER. (input) Increment between elements of y. If incy = 0, the results will be unpredictable. RETURN VALUES SDOT REAL. Result (dot product). (output) NOTES This routine is Level 1 Basic Linear Algebra Subprograms (Level 1 BLAS). When working backward (incx < 0 or incy < 0), each routine starts at the end of the vector and moves backward, as follows: x(1-incx * (n-1)), x(1-incx * (n-2)), ..., x(1) y(1-incy * (n-1)), y(1-incy * (n-2)), ..., y(1) BLAS routine SDOT(3)