SGEQL2(3) LAPACK routine of NEC Numeric Library Collection SGEQL2(3)
NAME
SGEQL2
SYNOPSIS
SUBROUTINE SGEQL2 (M, N, A, LDA, TAU, WORK, INFO)
PURPOSE
SGEQL2 computes a QL factorization of a real m by n matrix A:
A = Q * L.
ARGUMENTS
M (input)
M is INTEGER
The number of rows of the matrix A. M >= 0.
N (input)
N is INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output)
A is REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th
superdiagonal contain the m by n lower trapezoidal matrix L;
the remaining elements, with the array TAU, represent the
orthogonal matrix Q as a product of elementary reflectors
(see Further Details).
LDA (input)
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output)
TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (output)
WORK is REAL array, dimension (N)
INFO (output)
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FURTHER DETAILS
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
LAPACK routine 31 October 2017 SGEQL2(3)