SGEQPF(3) LAPACK routine of NEC Numeric Library Collection SGEQPF(3)
NAME
SGEQPF
SYNOPSIS
SUBROUTINE SGEQPF (M, N, A, LDA, JPVT, TAU, WORK, INFO)
PURPOSE
This routine is deprecated and has been replaced by routine SGEQP3.
SGEQPF computes a QR factorization with column pivoting of a
real M-by-N matrix A: A*P = Q*R.
ARGUMENTS
M (input)
M is INTEGER
The number of rows of the matrix A. M >= 0.
N (input)
N is INTEGER
The number of columns of the matrix A. N >= 0
A (input/output)
A is REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of the array contains the
min(M,N)-by-N upper triangular matrix R; the elements
below the diagonal, together with the array TAU,
represent the orthogonal matrix Q as a product of
min(m,n) elementary reflectors.
LDA (input)
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT (input/output)
JPVT is INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
TAU (output)
TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
WORK (output)
WORK is REAL array, dimension (3*N)
INFO (output)
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FURTHER DETAILS
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(n)
Each H(i) has the form
H = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
The matrix P is represented in jpvt as follows: If
jpvt(j) = i
then the jth column of P is the ith canonical unit vector.
LAPACK routine 31 October 2017 SGEQPF(3)