SGEQRF(3) LAPACK routine of NEC Numeric Library Collection SGEQRF(3) NAME SGEQRF SYNOPSIS SUBROUTINE SGEQRF (M, N, A, LDA, TAU, WORK, LWORK, INFO) PURPOSE SGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R. ARGUMENTS M (input) M is INTEGER The number of rows of the matrix A. M >= 0. N (input) N is INTEGER The number of columns of the matrix A. N >= 0. A (input/output) A is REAL array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). LDA (input) LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK (output) WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,N). For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value FURTHER DETAILS The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). LAPACK routine 31 October 2017 SGEQRF(3)