SGETRI(3) LAPACK routine of NEC Numeric Library Collection SGETRI(3) NAME SGETRI SYNOPSIS SUBROUTINE SGETRI (N, A, LDA, IPIV, WORK, LWORK, INFO) PURPOSE SGETRI computes the inverse of a matrix using the LU factorization computed by SGETRF. This method inverts U and then computes inv(A) by solving the system inv(A)*L = inv(U) for inv(A). ARGUMENTS N (input) N is INTEGER The order of the matrix A. N >= 0. A (input/output) A is REAL array, dimension (LDA,N) On entry, the factors L and U from the factorization A = P*L*U as computed by SGETRF. On exit, if INFO = 0, the inverse of the original matrix A. LDA (input) LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV (input) IPIV is INTEGER array, dimension (N) The pivot indices from SGETRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i). WORK (output) WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO=0, then WORK(1) returns the optimal LWORK. LWORK (input) LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,N). For optimal performance LWORK >= N*NB, where NB is the optimal blocksize returned by ILAENV. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero; the matrix is singular and its inverse could not be computed. LAPACK routine 31 October 2017 SGETRI(3)