SLAGS2(3) LAPACK routine of NEC Numeric Library Collection SLAGS2(3) NAME SLAGS2 SYNOPSIS SUBROUTINE SLAGS2 (UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ) PURPOSE SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U**T *A*Q = U**T *( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V**T*B*Q = V**T*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z**T denotes the transpose of Z. ARGUMENTS UPPER (input) UPPER is LOGICAL = .TRUE.: the input matrices A and B are upper triangular. = .FALSE.: the input matrices A and B are lower triangular. A1 (input) A1 is REAL A2 (input) A2 is REAL A3 (input) A3 is REAL On entry, A1, A2 and A3 are elements of the input 2-by-2 upper (lower) triangular matrix A. B1 (input) B1 is REAL B2 (input) B2 is REAL B3 (input) B3 is REAL On entry, B1, B2 and B3 are elements of the input 2-by-2 upper (lower) triangular matrix B. CSU (output) CSU is REAL SNU (output) SNU is REAL The desired orthogonal matrix U. CSV (output) CSV is REAL SNV (output) SNV is REAL The desired orthogonal matrix V. CSQ (output) CSQ is REAL SNQ (output) SNQ is REAL The desired orthogonal matrix Q. LAPACK routine 31 October 2017 SLAGS2(3)