SLAGS2(3) LAPACK routine of NEC Numeric Library Collection SLAGS2(3)
NAME
SLAGS2
SYNOPSIS
SUBROUTINE SLAGS2 (UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV,
CSQ, SNQ)
PURPOSE
SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
that if ( UPPER ) then
U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 )
( 0 A3 ) ( x x )
and
V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 )
( 0 B3 ) ( x x )
or if ( .NOT.UPPER ) then
U**T *A*Q = U**T *( A1 0 )*Q = ( x x )
( A2 A3 ) ( 0 x )
and
V**T*B*Q = V**T*( B1 0 )*Q = ( x x )
( B2 B3 ) ( 0 x )
The rows of the transformed A and B are parallel, where
U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ )
( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ )
Z**T denotes the transpose of Z.
ARGUMENTS
UPPER (input)
UPPER is LOGICAL
= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular.
A1 (input)
A1 is REAL
A2 (input)
A2 is REAL
A3 (input)
A3 is REAL
On entry, A1, A2 and A3 are elements of the input 2-by-2
upper (lower) triangular matrix A.
B1 (input)
B1 is REAL
B2 (input)
B2 is REAL
B3 (input)
B3 is REAL
On entry, B1, B2 and B3 are elements of the input 2-by-2
upper (lower) triangular matrix B.
CSU (output)
CSU is REAL
SNU (output)
SNU is REAL
The desired orthogonal matrix U.
CSV (output)
CSV is REAL
SNV (output)
SNV is REAL
The desired orthogonal matrix V.
CSQ (output)
CSQ is REAL
SNQ (output)
SNQ is REAL
The desired orthogonal matrix Q.
LAPACK routine 31 October 2017 SLAGS2(3)