SLAGV2(3) LAPACK routine of NEC Numeric Library Collection SLAGV2(3) NAME SLAGV2 SYNOPSIS SUBROUTINE SLAGV2 (A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR) PURPOSE SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. This routine computes orthogonal (rotation) matrices given by CSL, SNL and CSR, SNR such that 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] where b11 >= b22 > 0. ARGUMENTS A (input/output) A is REAL array, dimension (LDA, 2) On entry, the 2 x 2 matrix A. On exit, A is overwritten by the ``A-part'' of the generalized Schur form. LDA (input) LDA is INTEGER THe leading dimension of the array A. LDA >= 2. B (input/output) B is REAL array, dimension (LDB, 2) On entry, the upper triangular 2 x 2 matrix B. On exit, B is overwritten by the ``B-part'' of the generalized Schur form. LDB (input) LDB is INTEGER THe leading dimension of the array B. LDB >= 2. ALPHAR (output) ALPHAR is REAL array, dimension (2) ALPHAI (output) ALPHAI is REAL array, dimension (2) BETA (output) BETA is REAL array, dimension (2) (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may be zero. CSL (output) CSL is REAL The cosine of the left rotation matrix. SNL (output) SNL is REAL The sine of the left rotation matrix. CSR (output) CSR is REAL The cosine of the right rotation matrix. SNR (output) SNR is REAL The sine of the right rotation matrix. LAPACK routine 31 October 2017 SLAGV2(3)