SORM2L(3) LAPACK routine of NEC Numeric Library Collection SORM2L(3) NAME SORM2L SYNOPSIS SUBROUTINE SORM2L (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO) PURPOSE SORM2L overwrites the general real m by n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q**T * C if SIDE = 'L' and TRANS = 'T', or C * Q if SIDE = 'R' and TRANS = 'N', or C * Q**T if SIDE = 'R' and TRANS = 'T', where Q is a real orthogonal matrix defined as the product of k elementary reflectors Q = H(k) . . . H(2) H(1) as returned by SGEQLF. Q is of order m if SIDE = 'L' and of order n if SIDE = 'R'. ARGUMENTS SIDE (input) SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left = 'R': apply Q or Q**T from the Right TRANS (input) TRANS is CHARACTER*1 = 'N': apply Q (No transpose) = 'T': apply Q**T (Transpose) M (input) M is INTEGER The number of rows of the matrix C. M >= 0. N (input) N is INTEGER The number of columns of the matrix C. N >= 0. K (input) K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. A (input) A is REAL array, dimension (LDA,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by SGEQLF in the last k columns of its array argument A. A is modified by the routine but restored on exit. LDA (input) LDA is INTEGER The leading dimension of the array A. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N). TAU (input) TAU is REAL array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGEQLF. C (input/output) C is REAL array, dimension (LDC,N) On entry, the m by n matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. LDC (input) LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK (output) WORK is REAL array, dimension (N) if SIDE = 'L', (M) if SIDE = 'R' INFO (output) INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value LAPACK routine 31 October 2017 SORM2L(3)