SORMTR(3) LAPACK routine of NEC Numeric Library Collection SORMTR(3) NAME SORMTR SYNOPSIS SUBROUTINE SORMTR (SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) PURPOSE SORMTR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by SSYTRD: if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). ARGUMENTS SIDE (input) SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right. UPLO (input) UPLO is CHARACTER*1 = 'U': Upper triangle of A contains elementary reflectors from SSYTRD; = 'L': Lower triangle of A contains elementary reflectors from SSYTRD. TRANS (input) TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T. M (input) M is INTEGER The number of rows of the matrix C. M >= 0. N (input) N is INTEGER The number of columns of the matrix C. N >= 0. A (input) A is REAL array, dimension (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The vectors which define the elementary reflectors, as returned by SSYTRD. LDA (input) LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. TAU (input) TAU is REAL array, dimension (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SSYTRD. C (input/output) C is REAL array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. LDC (input) LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK (output) WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value LAPACK routine 31 October 2017 SORMTR(3)