SSYEQUB(3) LAPACK routine of NEC Numeric Library Collection SSYEQUB(3) NAME SSYEQUB SYNOPSIS SUBROUTINE SSYEQUB (UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO) PURPOSE SSYEQUB computes row and column scalings intended to equilibrate a symmetric matrix A and reduce its condition number (with respect to the two-norm). S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S puts the condition number of B within a factor N of the smallest possible condition number over all possible diagonal scalings. ARGUMENTS UPLO (input) UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. N (input) N is INTEGER The order of the matrix A. N >= 0. A (input) A is REAL array, dimension (LDA,N) The N-by-N symmetric matrix whose scaling factors are to be computed. Only the diagonal elements of A are referenced. LDA (input) LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). S (output) S is REAL array, dimension (N) If INFO = 0, S contains the scale factors for A. SCOND (output) SCOND is REAL If INFO = 0, S contains the ratio of the smallest S(i) to the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S. AMAX (output) AMAX is REAL Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled. WORK (output) WORK is REAL array, dimension (3*N) INFO (output) INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the i-th diagonal element is nonpositive. LAPACK routine 31 October 2017 SSYEQUB(3)