STGSYL(3)      LAPACK routine of NEC Numeric Library Collection      STGSYL(3)



NAME
       STGSYL

SYNOPSIS
       SUBROUTINE STGSYL (TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
           E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO)



PURPOSE
            STGSYL solves the generalized Sylvester equation:

                        A * R - L * B = scale * C                 (1)
                        D * R - L * E = scale * F

            where R and L are unknown m-by-n matrices, (A, D), (B, E) and
            (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
            respectively, with real entries. (A, D) and (B, E) must be in
            generalized (real) Schur canonical form, i.e. A, B are upper quasi
            triangular and D, E are upper triangular.

            The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
            scaling factor chosen to avoid overflow.

            In matrix notation (1) is equivalent to solve  Zx = scale b, where
            Z is defined as

                       Z = [ kron(In, A)  -kron(B**T, Im) ]         (2)
                           [ kron(In, D)  -kron(E**T, Im) ].

            Here Ik is the identity matrix of size k and X**T is the transpose of
            X. kron(X, Y) is the Kronecker product between the matrices X and Y.

            If TRANS = 'T', STGSYL solves the transposed system Z**T*y = scale*b,
            which is equivalent to solve for R and L in

                        A**T * R + D**T * L = scale * C           (3)
                        R * B**T + L * E**T = scale * -F

            This case (TRANS = 'T') is used to compute an one-norm-based estimate
            of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
            and (B,E), using SLACON.

            If IJOB >= 1, STGSYL computes a Frobenius norm-based estimate
            of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
            reciprocal of the smallest singular value of Z.

            This is a level 3 BLAS algorithm.




ARGUMENTS
           TRANS     (input)
                     TRANS is CHARACTER*1
                     = 'N', solve the generalized Sylvester equation (1).
                     = 'T', solve the 'transposed' system (3).

           IJOB      (input)
                     IJOB is INTEGER
                     Specifies what kind of functionality to be performed.
                      =0: solve (1) only.
                      =1: The functionality of 0 and 3.
                      =2: The functionality of 0 and 4.
                      =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
                          (look ahead strategy IJOB  = 1 is used).
                      =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
                          ( SGECON on sub-systems is used ).
                     Not referenced if TRANS = 'T'.

           M         (input)
                     M is INTEGER
                     The order of the matrices A and D, and the row dimension of
                     the matrices C, F, R and L.

           N         (input)
                     N is INTEGER
                     The order of the matrices B and E, and the column dimension
                     of the matrices C, F, R and L.

           A         (input)
                     A is REAL array, dimension (LDA, M)
                     The upper quasi triangular matrix A.

           LDA       (input)
                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1, M).

           B         (input)
                     B is REAL array, dimension (LDB, N)
                     The upper quasi triangular matrix B.

           LDB       (input)
                     LDB is INTEGER
                     The leading dimension of the array B. LDB >= max(1, N).

           C         (input/output)
                     C is REAL array, dimension (LDC, N)
                     On entry, C contains the right-hand-side of the first matrix
                     equation in (1) or (3).
                     On exit, if IJOB = 0, 1 or 2, C has been overwritten by
                     the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
                     the solution achieved during the computation of the
                     Dif-estimate.

           LDC       (input)
                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1, M).

           D         (input)
                     D is REAL array, dimension (LDD, M)
                     The upper triangular matrix D.

           LDD       (input)
                     LDD is INTEGER
                     The leading dimension of the array D. LDD >= max(1, M).

           E         (input)
                     E is REAL array, dimension (LDE, N)
                     The upper triangular matrix E.

           LDE       (input)
                     LDE is INTEGER
                     The leading dimension of the array E. LDE >= max(1, N).

           F         (input/output)
                     F is REAL array, dimension (LDF, N)
                     On entry, F contains the right-hand-side of the second matrix
                     equation in (1) or (3).
                     On exit, if IJOB = 0, 1 or 2, F has been overwritten by
                     the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
                     the solution achieved during the computation of the
                     Dif-estimate.

           LDF       (input)
                     LDF is INTEGER
                     The leading dimension of the array F. LDF >= max(1, M).

           DIF       (output)
                     DIF is REAL
                     On exit DIF is the reciprocal of a lower bound of the
                     reciprocal of the Dif-function, i.e. DIF is an upper bound of
                     Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).
                     IF IJOB = 0 or TRANS = 'T', DIF is not touched.

           SCALE     (output)
                     SCALE is REAL
                     On exit SCALE is the scaling factor in (1) or (3).
                     If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
                     to a slightly perturbed system but the input matrices A, B, D
                     and E have not been changed. If SCALE = 0, C and F hold the
                     solutions R and L, respectively, to the homogeneous system
                     with C = F = 0. Normally, SCALE = 1.

           WORK      (output)
                     WORK is REAL array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK     (input)
                     LWORK is INTEGER
                     The dimension of the array WORK. LWORK > = 1.
                     If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           IWORK     (output)
                     IWORK is INTEGER array, dimension (M+N+6)

           INFO      (output)
                     INFO is INTEGER
                       =0: successful exit
                       <0: If INFO = -i, the i-th argument had an illegal value.
                       >0: (A, D) and (B, E) have common or close eigenvalues.



LAPACK routine                  31 October 2017                      STGSYL(3)