ZHPGVD(3)      LAPACK routine of NEC Numeric Library Collection      ZHPGVD(3)



NAME
       ZHPGVD

SYNOPSIS
       SUBROUTINE ZHPGVD (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
           LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)



PURPOSE
            ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors
            of a complex generalized Hermitian-definite eigenproblem, of the form
            A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
            B are assumed to be Hermitian, stored in packed format, and B is also
            positive definite.
            If eigenvectors are desired, it uses a divide and conquer algorithm.

            The divide and conquer algorithm makes very mild assumptions about
            floating point arithmetic. It will work on machines with a guard
            digit in add/subtract, or on those binary machines without guard
            digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
            Cray-2. It could conceivably fail on hexadecimal or decimal machines
            without guard digits, but we know of none.




ARGUMENTS
           ITYPE     (input)
                     ITYPE is INTEGER
                     Specifies the problem type to be solved:
                     = 1:  A*x = (lambda)*B*x
                     = 2:  A*B*x = (lambda)*x
                     = 3:  B*A*x = (lambda)*x

           JOBZ      (input)
                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO      (input)
                     UPLO is CHARACTER*1
                     = 'U':  Upper triangles of A and B are stored;
                     = 'L':  Lower triangles of A and B are stored.

           N         (input)
                     N is INTEGER
                     The order of the matrices A and B.  N >= 0.

           AP        (input/output)
                     AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the contents of AP are destroyed.

           BP        (input/output)
                     BP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     B, packed columnwise in a linear array.  The j-th column of B
                     is stored in the array BP as follows:
                     if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                     if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

                     On exit, the triangular factor U or L from the Cholesky
                     factorization B = U**H*U or B = L*L**H, in the same storage
                     format as B.

           W         (output)
                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z         (output)
                     Z is COMPLEX*16 array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                     eigenvectors.  The eigenvectors are normalized as follows:
                     if ITYPE = 1 or 2, Z**H*B*Z = I;
                     if ITYPE = 3, Z**H*inv(B)*Z = I.
                     If JOBZ = 'N', then Z is not referenced.

           LDZ       (input)
                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK      (output)
                     WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the required LWORK.

           LWORK     (input)
                     LWORK is INTEGER
                     The dimension of the array WORK.
                     If N <= 1,               LWORK >= 1.
                     If JOBZ = 'N' and N > 1, LWORK >= N.
                     If JOBZ = 'V' and N > 1, LWORK >= 2*N.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the required sizes of the WORK, RWORK and
                     IWORK arrays, returns these values as the first entries of
                     the WORK, RWORK and IWORK arrays, and no error message
                     related to LWORK or LRWORK or LIWORK is issued by XERBLA.

           RWORK     (output)
                     RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
                     On exit, if INFO = 0, RWORK(1) returns the required LRWORK.

           LRWORK    (input)
                     LRWORK is INTEGER
                     The dimension of array RWORK.
                     If N <= 1,               LRWORK >= 1.
                     If JOBZ = 'N' and N > 1, LRWORK >= N.
                     If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.

                     If LRWORK = -1, then a workspace query is assumed; the
                     routine only calculates the required sizes of the WORK, RWORK
                     and IWORK arrays, returns these values as the first entries
                     of the WORK, RWORK and IWORK arrays, and no error message
                     related to LWORK or LRWORK or LIWORK is issued by XERBLA.

           IWORK     (output)
                     IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                     On exit, if INFO = 0, IWORK(1) returns the required LIWORK.

           LIWORK    (input)
                     LIWORK is INTEGER
                     The dimension of array IWORK.
                     If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
                     If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

                     If LIWORK = -1, then a workspace query is assumed; the
                     routine only calculates the required sizes of the WORK, RWORK
                     and IWORK arrays, returns these values as the first entries
                     of the WORK, RWORK and IWORK arrays, and no error message
                     related to LWORK or LRWORK or LIWORK is issued by XERBLA.

           INFO      (output)
                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  ZPPTRF or ZHPEVD returned an error code:
                        <= N:  if INFO = i, ZHPEVD failed to converge;
                               i off-diagonal elements of an intermediate
                               tridiagonal form did not convergeto zero;
                        > N:   if INFO = N + i, for 1 <= i <= n, then the leading
                               minor of order i of B is not positive definite.
                               The factorization of B could not be completed and
                               no eigenvalues or eigenvectors were computed.



LAPACK routine                  31 October 2017                      ZHPGVD(3)