ZLAR2V(3)      LAPACK routine of NEC Numeric Library Collection      ZLAR2V(3)



NAME
       ZLAR2V

SYNOPSIS
       SUBROUTINE ZLAR2V (N, X, Y, Z, INCX, C, S, INCC)



PURPOSE
            ZLAR2V applies a vector of complex plane rotations with real cosines
            from both sides to a sequence of 2-by-2 complex Hermitian matrices,
            defined by the elements of the vectors x, y and z. For i = 1,2,...,n

               (       x(i)  z(i) ) :=
               ( conjg(z(i)) y(i) )

                 (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )
                 ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)        c(i)  )




ARGUMENTS
           N         (input)
                     N is INTEGER
                     The number of plane rotations to be applied.

           X         (input/output)
                     X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
                     The vector x; the elements of x are assumed to be real.

           Y         (input/output)
                     Y is COMPLEX*16 array, dimension (1+(N-1)*INCX)
                     The vector y; the elements of y are assumed to be real.

           Z         (input/output)
                     Z is COMPLEX*16 array, dimension (1+(N-1)*INCX)
                     The vector z.

           INCX      (input)
                     INCX is INTEGER
                     The increment between elements of X, Y and Z. INCX > 0.

           C         (input)
                     C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
                     The cosines of the plane rotations.

           S         (input)
                     S is COMPLEX*16 array, dimension (1+(N-1)*INCC)
                     The sines of the plane rotations.

           INCC      (input)
                     INCC is INTEGER
                     The increment between elements of C and S. INCC > 0.



LAPACK routine                  31 October 2017                      ZLAR2V(3)