ZLAR2V(3) LAPACK routine of NEC Numeric Library Collection ZLAR2V(3) NAME ZLAR2V SYNOPSIS SUBROUTINE ZLAR2V (N, X, Y, Z, INCX, C, S, INCC) PURPOSE ZLAR2V applies a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian matrices, defined by the elements of the vectors x, y and z. For i = 1,2,...,n ( x(i) z(i) ) := ( conjg(z(i)) y(i) ) ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) ) ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) ) ARGUMENTS N (input) N is INTEGER The number of plane rotations to be applied. X (input/output) X is COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector x; the elements of x are assumed to be real. Y (input/output) Y is COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector y; the elements of y are assumed to be real. Z (input/output) Z is COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector z. INCX (input) INCX is INTEGER The increment between elements of X, Y and Z. INCX > 0. C (input) C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) The cosines of the plane rotations. S (input) S is COMPLEX*16 array, dimension (1+(N-1)*INCC) The sines of the plane rotations. INCC (input) INCC is INTEGER The increment between elements of C and S. INCC > 0. LAPACK routine 31 October 2017 ZLAR2V(3)