ZLARFB(3) LAPACK routine of NEC Numeric Library Collection ZLARFB(3)
NAME
ZLARFB
SYNOPSIS
SUBROUTINE ZLARFB (SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T,
LDT, C, LDC, WORK, LDWORK)
PURPOSE
ZLARFB applies a complex block reflector H or its transpose H**H to a
complex M-by-N matrix C, from either the left or the right.
ARGUMENTS
SIDE (input)
SIDE is CHARACTER*1
= 'L': apply H or H**H from the Left
= 'R': apply H or H**H from the Right
TRANS (input)
TRANS is CHARACTER*1
= 'N': apply H (No transpose)
= 'C': apply H**H (Conjugate transpose)
DIRECT (input)
DIRECT is CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input)
STOREV is CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise
= 'R': Rowwise
M (input)
M is INTEGER
The number of rows of the matrix C.
N (input)
N is INTEGER
The number of columns of the matrix C.
K (input)
K is INTEGER
The order of the matrix T (= the number of elementary
reflectors whose product defines the block reflector).
V (input)
V is COMPLEX*16 array, dimension
(LDV,K) if STOREV = 'C'
(LDV,M) if STOREV = 'R' and SIDE = 'L'
(LDV,N) if STOREV = 'R' and SIDE = 'R'
See Further Details.
LDV (input)
LDV is INTEGER
The leading dimension of the array V.
If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
if STOREV = 'R', LDV >= K.
T (input)
T is COMPLEX*16 array, dimension (LDT,K)
The triangular K-by-K matrix T in the representation of the
block reflector.
LDT (input)
LDT is INTEGER
The leading dimension of the array T. LDT >= K.
C (input/output)
C is COMPLEX*16 array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
LDC (input)
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (output)
WORK is COMPLEX*16 array, dimension (LDWORK,K)
LDWORK (input)
LDWORK is INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= max(1,N);
if SIDE = 'R', LDWORK >= max(1,M).
FURTHER DETAILS
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )
LAPACK routine 31 October 2017 ZLARFB(3)