

SX-Aurora TSUBASA

C/C++ Compiler User’s Guide

Proprietary Notice

Proprietary Notice

The information disclosed in this document is the property of NEC

Corporation (NEC) and/or its licensors. NEC and/or its licensors, as

appropriate, reserve all patent, copyright and other proprietary rights to

this document, including all design, manufacturing, reproduction, use and

sales rights thereto, except to the extent said rights are expressly granted

to others.

The information in this document is subject to change at any time, without

notice.

Remarks:

 This document is the revision 27th issued in Jun 2022.

 NEC C/C++ Compiler conforms to the following language standards.

‒ ISO/IEC 9899:2011 Programming languages - C

‒ ISO/IEC 14882:2014 Programming languages - C++

‒ ISO/IEC 14882:2017 Programming languages - C++

‒ OpenMP Application Program Interface Version 4.5

 NEC C/C++ Compiler also conforms a part of “ISO/IEC 14882:2020

Programming languages - C++” and ”OpenMP Application Program

Interface Version 5.0”

 In this document, the Vector Engine is abbreviated as VE.

 The reader of this document assumes that you have knowledge of

software development in Fortran/C/C++ language on Linux.

 All product, brand, or trade names in this publication are the trademarks

or registered trademarks of their respective owners.

 The Apache License version 2.0 with LLVM Exceptions product is included

by this product.

(C) NEC Corporation 2018,2022

Contents

Contents

Chapter1 C/C++ Compiler .. 1

1.1 Overview ... 1

1.2 Usage of the Compiler .. 1

1.3 Execution ... 2

1.4 Command Line Syntax ... 3

1.5 Specifying Compiler Options .. 3

1.6 Searching files specified by #include directive 4

1.7 Searching Libraries .. 5

1.8 Arithmetic Exceptions ... 5

1.8.1 Operation Result After Arithmetic Exception Occurrence 5

1.8.2 Changing Arithmetic Exception Mask... 6

1.8.3 Using Traceback Information ... 7

1.8.4 Remarks on Changing Arithmetic Exception Mask 7

Chapter2 Environment Variables .. 8

2.1 Environment Variables Referenced During Compilation 8

2.2 Environment Variables Referenced During Execution 10

Chapter3 Compiler Options ... 15

3.1 Overall Options ... 16

3.2 Optimization Options .. 17

3.3 Parallelization Options .. 24

3.4 Inlining Options ... 25

3.5 Code Generation Options .. 27

3.6 Debugging Options .. 27

3.7 Language Options.. 28

3.7.1 C Language Control Options .. 28

3.7.2 C++ Language Control Options .. 29

3.8 Message Options ... 30

3.9 List Output Options .. 31

3.10 Preprocessor Options ... 32

3.11 Assembler Options ... 34

Contents

3.12 Linker Options ... 34

3.13 Directory Options .. 36

3.14 Miscellaneous Options .. 36

3.15 Compiler options which cannot specify by options directive 36

3.16 Optimization Level and Options’ Defaults .. 37

Chapter4 Compiler Directives .. 40

Chapter5 Optimization and Vectorization ... 48

5.1 Code Optimization ... 48

5.1.1 Optimizations .. 48

5.1.2 Side Effects of Optimization ... 49

5.2 Vectorization Features .. 49

5.2.1 Vectorization ... 49

5.2.2 Partial Vectorization ... 50

5.2.3 Macro Operations ... 50

5.2.4 Conditional Vectorization ... 53

5.2.5 Outer Loop Strip-mining ... 53

5.2.6 Short-loop .. 55

5.2.7 Packed vector instructions ... 55

5.2.8 Other ... 55

5.2.9 Remarks on Using Vectorization ... 56

Chapter6 Inlining .. 58

6.1 Automatic Inlining ... 58

6.2 Explicit Inlining ... 58

6.2.1 Description ... 58

6.2.2 Specifying Inline Directive ... 59

6.2.3 Remarks ... 60

6.3 Cross-file Inlining .. 61

6.4 Inline Expansion Inhibitors .. 61

6.5 Notes on Inlining ... 62

Chapter7 Parallelization .. 63

7.1 Automatic Parallelization ... 63

7.1.1 Description ... 63

7.1.2 Conditional Parallelization Using Threshold Test 63

7.1.3 Conditional Parallelization Using Dependency Test 63

Contents

7.1.4 Parallelization of inner Loops ... 63

7.1.5 Forced Loop Parallelization .. 64

7.2 OpenMP Parallelization ... 65

7.2.1 Using OpenMP Parallelization ... 65

7.2.2 OpenMP 5.0 Parallelization .. 65

7.2.3 Extensions on OpenMP Parallelization .. 66

7.2.4 Restrictions on OpenMP Parallelization .. 66

7.3 Threads ... 67

7.3.1 Set and Get Number of Threads ... 67

7.3.2 Thread Creation and Destroy ... 67

7.3.3 Postpone Thread Creation ... 69

7.4 Notes on Using Parallelization .. 69

Chapter8 Compiler Listing ... 70

8.1 Option List .. 70

8.2 Diagnostic List .. 70

8.2.1 Format of Diagnostic List .. 70

8.2.2 Notes ... 71

8.3 Format List ... 71

8.3.1 Format of Format List ... 72

8.3.2 Loop Structure and Vectorization/Parallelization/Inlining Statuses ... 72

8.3.3 Notes ... 75

8.4 Optimization List of Each Module ... 75

8.4.1 Inlining Module .. 75

8.4.2 Vectorization Module .. 76

8.4.3 Code Generation Module ... 77

Chapter9 Programming Notes Depending on the Language Specification 80

9.1 Builtin Functions .. 80

9.1.1 Performance Tuning Support ... 80

9.1.2 Debugging Support .. 80

9.2 Implementation-Defined Specifications ... 80

9.2.1 Data Types ... 80

9.2.2 Type Conversion .. 82

9.2.3 Internal Representation of Data ... 88

9.2.4 Predefined Macro ... 94

Contents

9.3 Inline Assembly Language .. 95

9.3.1 Basic Asm Statement ... 95

9.3.2 Extended Asm Statement .. 96

9.3.3 Specifying name in assembler codes ... 98

9.3.4 Notes ... 98

9.4 Remarks .. 99

9.4.1 Remarks for C language .. 99

9.4.2 Remarks for C++ language ... 100

Chapter10 Language-Mixed Programming .. 101

10.1 Point of Mixed Language Programming ... 101

10.2 Correspondence of C/C++ Function Name and Fortran Procedure Name

 102

10.2.1 External Symbol Name of Fortran Procedure 102

10.2.2 External Symbol Name of C++ Function 103

10.2.3 Rules for Corresponding C/C++ Functions with Fortran Procedures

 104

10.2.4 Examples of Calling ... 104

10.3 Data Types ... 107

10.3.1 Integer and Logical Types for Fortran 108

10.3.2 Floating-point and Complex Types for Fortran 108

10.3.3 Character Type for Fortran ... 109

10.3.4 Derived Type for Fortran .. 109

10.3.5 Pointer .. 110

10.3.6 Common Block for Fortran ... 112

10.3.7 Notes .. 113

10.4 Type and Return Value of Function and Procedure 114

10.5 Passing Arguments .. 116

10.5.1 Fortran Procedure Arguments ... 116

10.5.2 Notes .. 119

10.6 Linking ... 120

10.6.1 Linking Fortran Program and C Program 120

10.6.2 Linking Fortran Program and C++ Program 120

10.7 Notes .. 120

Chapter11 Messages ... 121

Contents

11.1 Diagnostic Messages .. 121

11.1.1 Diagnostic Message Format .. 121

11.1.2 Message List .. 122

11.2 Runtime Error Message .. 132

Chapter12 Troubleshooting .. 135

12.1 Troubleshooting for compilation ... 135

12.2 Troubleshooting for execution .. 138

12.3 Troubleshooting for tuning .. 142

12.4 Troubleshooting for installation .. 143

Chapter13 Notice ... 145

Appendix A Configuration file .. 146

A.1 Overview ... 146

A.2 Format ... 146

A.3 Example ... 147

Appendix B SX Compatibility ... 148

B.1 Compiler Options ... 148

B.1.1 Overall Options .. 148

B.1.2 Vector/Scalar Optimization Options... 149

B.1.3 Inlining Options ... 153

B.1.4 Parallelization Options .. 153

B.1.5 Code Generation Options .. 154

B.1.6 Language Options .. 154

B.1.7 Performance Measurement Options .. 156

B.1.8 Debugging Options .. 156

B.1.9 Preprocessor Options.. 157

B.1.10 List Output Options ... 158

B.1.11 Message Options ... 158

B.1.12 Assembler Options .. 159

B.1.13 Linker Options .. 159

B.1.14 Directory Options .. 159

B.2 Compiler Directives .. 160

B.3 Environment Variables ... 160

B.4 Implementation-Defined Specifications ... 160

B.4.1 Data Types ... 160

Contents

B.4.2 Predefined Macros ... 162

Appendix C Compiler Directive Conversion Tool .. 163

C.1 ncdirconv ... 163

C.2 Examples ... 164

C.3 Compiler Directives .. 166

C.4 Notes .. 169

Appendix D Change Notes ... 171

Index .. 172

Chapter1 C/C++ Compiler

- 1 -

Chapter1 C/C++ Compiler

1.1 Overview

The NEC C/C++ compiler is a compiler that compiles and links C/C++ programs and

creates binaries for execution on the CPU of the VE. This compiler implements the

following optimization function so that VE hardware performance can be easily drawn

to the limit.

 Vectorization

 Automatic Parallelization and OpenMP Parallelization

 Automatic Inlining

 Performance Information collection

With various compiler options, you can use these capabilities to the utmost while

selecting these functions. For details of the optimization function and compiler

options, refer to Chapter 2 and later.

1.2 Usage of the Compiler

(1) Setting Environment Variables

If you want to omit the path specification when starting the NEC C/C++ compiler,

set the path to the environment variable PATH. The NEC C/C++ compiler is

installed by default under /opt/nec/ve. Add /opt/nec/ve/bin to the environment

variable PATH.

Although the NEC C/C++ compiler provides environment variables for setting

paths such as header files and libraries, the NEC C/C++ compiler automatically

searches for the default path, so you can use it without setting these environment

variable. Set environment variables when you need to search nonstandard

directories, such as when you always want to add OSS header files and library

paths not included in the compiler.

For the environment variables, see “2.2 Environment Variables Referenced During

Execution”.

(2) Examples

The following shows examples of invoking the C/C++ compiler. See “Chapter3

Compiler Options” for details of the compiler options.

Chapter1 C/C++ Compiler

- 2 -

 Compiling and linking a C source file (a.c).

$ ncc a.c

 Compiling and linking more than one source file.

$ ncc a.c b.c

 Compiling, linking, and naming an executable file.

$ ncc -o prog.out a.c

 Compiling and linking with the highest vectorization and optimization.

$ ncc -O4 a.c

 Compiling and linking with safe vectorization and optimization.

$ ncc –O1 a.c

 Compiling and linking without vectorization and optimization.

$ ncc –O0 a.c

 Compiling and linking using automatic parallelization.

$ ncc -mparallel a.c

 Compiling and linking using automatic inlining.

$ ncc -finline-functions a.c

 Compiling and linking using a compiler of specific version.

$ /opt/nec/ve/bin/ncc-X.X.X a.c (X.X.X is version of a compiler.)

1.3 Execution

The example when executing a program below.

 Executing a compiled program

$./a.out

Chapter1 C/C++ Compiler

- 3 -

 Executing with number of VE

$ env VE_NODE_NUMBER=1 ./a.out (Execute on number 1 of VE)

 Executing with input file and input parameter.

$./a.out data1.in 10 (input the file ”data.in” and value ”10”)

 Executing with redirecting an input file.

$./a.out < data2.in

 Executing a parallelized program with specifying the number of threads.

$ ncc –mparallel –O3 a.c b.c

$ export OMP_NUM_THREADS=4

$./a.out

 Using the profiler (ngprof).

The performance information file gmon.out is output at execution a program

which compiled with -pg at compiling and linking. The contents of gmon.out can

be analyzed and output using the command ngprof.

$ ncc –pg a.c

$./a.out

$ ls gmon.out

gmon.out

$ ngprof

(The performance information is output.)

1.4 Command Line Syntax

The command line syntax of invoking the compiler is as follows.

ncc [compiler-option | file] ...

nc++ [compiler-option | file] ...

1.5 Specifying Compiler Options

 The compiler option must begin with a hyphen "-". In addition, there must be a

blank between compiler options.

Chapter1 C/C++ Compiler

- 4 -

Example:

$ ncc -v -c a.c (Correct)

$ ncc -vc a.c (Incorrect)

 The C/C++ Compiler recognizes the input file suffixes as follows. The other file

suffixes are treated as an object file.

 The compiler options and input files can be specified using option files.

An option file is used to specify compiler options that are always enabled at the

invoking of the C/C++ Compiler. Compiler options can be specified in the same

way as when the command line is used. The option files must be placed in the

home directory, to which the environment variable HOME has been set.

Compiler Type Option File Name

ncc $HOME/.nccinit

nc++ $HOME/.nc++init

Example:

$ cat ~/.nccinit

-O3 -finline-functions

$ ncc -v a.c

/opt/nec/ve/libexec/ccom … -O3 -finline-functions … a.c

1.6 Searching files specified by #include directive

The C/C++ compiler searches the following directories in the following order for

header files included by #include <file-name>.

Note The compiler also searches the directory where source file exists to find

the files included by #include ”file-name”. The directory is searched at first.

(a) Directories specified by -I

Suffix Recognized File

.c .i C source file

.h C header file

.C .cc .cpp .cp .cxx .c++ .ii C++ source file

.H .hh .hpp .hp .hxx .h++ .tcc C++ header file

.S .s Assembler source file

Chapter1 C/C++ Compiler

- 5 -

(b) Subdirectory named “include” under the directory specified by -B

(c) Directories specified by the environment variable NCC_INCLUDE_PATH

(d) Directory specified by -isystem

(e) /opt/nec/ve/ncc/<version-number>/include

(f) Subdirectory named “include” under the directory specified by -isysroot if it is

specified, otherwise /opt/nec/ve/include

1.7 Searching Libraries

The compiler searches the following directories in the following order for libraries.

(a) Directories specified by -L

(b) Directories specified by -B

(c) Directories specified by the environment variable NCC_LIBRARY_PATH

(d) /opt/nec/ve/ncc/<version-number>/lib

(e) Directories specified by the environment variable VE_LIBRARY_PATH

(f) /opt/nec/ve/lib/gcc

(g) /opt/nec/ve/lib

1.8 Arithmetic Exceptions

1.8.1 Operation Result After Arithmetic Exception Occurrence

This section describes how an overflow, underflow, division by zero, invalid

operation, and accuracy degradation are handled when they occur during an

arithmetic operation.

(1) Division by zero

When a division by zero occurs during an integer arithmetic operation, the result

is undefined. When a division by zero occurs during a non-integer arithmetic

operation, the result of the operation is the maximum expressible value if the

dividend is positive, or the minimum expressible value if the dividend is negative.

When the value of VE_FPE_ENABLE is “DIV”, this exception occurs and error

message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “DIV”, this exception does not occurs.

(2) Floating-point overflow

When an overflow occurs during an operation of type real and complex, the result

Chapter1 C/C++ Compiler

- 6 -

of the operation is the maximum expressible value if the value is positive, or the

minimum expressible value if the value is negative.

When the value of VE_FPE_ENABLE is “FOF”, this exception occurs and error

message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “FOF”, this exception does not occurs.

(3) Floating-point underflow

When an underflow occurs during an operation of type real and complex, the

result of the operation is zero.

When the value of VE_FPE_ENABLE is “FUF”, this exception occurs and error

message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “FUF”, this exception does not occurs.

(4) Invalid operation

When an invalid operation occurs during an operation of type real and complex,

the result of the operation is an undefined value or NaN.

When the value of VE_FPE_ENABLE is “INV”, this exception occurs and error

message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “INV”, this exception does not occurs.

(5) Accuracy degradation

When accuracy degradation occurs during an operation of type real and complex,

the result of the operation is a rounded value.

When the value of VE_FPE_ENABLE is “INE”, this exception occurs and error

message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “INE”, this exception does not occurs.

(6) Exception while executing a vector instruction

When overflow, underflow, or division by zero occurs while executing a vector

instruction, the processing is the same as in the case of a scalar instruction.

However, if multiple operation exceptions occur at the same time while executing

one vector instruction, they appear as one exception.

1.8.2 Changing Arithmetic Exception Mask

By changing the mask setting, it can be specified whether an arithmetic exception

occurs or not.

The arithmetic exception mask can be changed by using VE_FPE_ENABLE. Which

Chapter1 C/C++ Compiler

- 7 -

kind of mask should be changed must be specified by VE_FPE_ENABLE.

Example:

$ export VE_FPE_ENABLE=FOF,DIV

$./a.out

In the above example, changing the mask setting so that Floating-point overflow

(FOF) or Divide-by-zero exception (DIV) can occur.

1.8.3 Using Traceback Information

Where the arithmetic exception occurred can be ascertained by changing the mask

and using the traceback information.

Example:

$ ncc -traceback=verbose below.c out.c watch.c hey.c ovf.c

...

$ export VE_TRACEBACK=VERBOSE

$ export VE_FPE_ENABLE=DIV

$./a.out

Runtime Error: Divide by zero at 0x600008001088

[0] 0x600008001088 below_ below.c:3

[1] 0x600018001168 out_ out.c:3

[2] 0x600020001168 watch_ watch.c:3

[3] 0x600010001168 hey_ hey.c:3

[4] 0x60000001cab8 MAIN__ ovf.c:5

In example, the exception of “Divide by zero” occurred in line 3 of below.c.

1.8.4 Remarks on Changing Arithmetic Exception Mask

Changing the arithmetic exception mask affects the system library functions called

from a program. Therefore, the arithmetic exception is raised if precision degradation

or another exception occurs in the system library functions.

Chapter2 Environment Variables

- 8 -

Chapter2 Environment Variables

2.1 Environment Variables Referenced During Compilation

HOME

This variable is referenced by the compiler in order to search the user’s home

directory for an option file. When HOME is not set, the option file has no effect

even if it is put on the home directory.

NCC_COMPILER_PATH

Specified a list of directories separated by colon which are searched for the C/C++

compiler (ccom). The directory has high priority in the order of listing. If it is not

found in the specified directories, ncc/nc++ starts the C/C++ compiler in the

standard directory. This environment variable is set when you want to always

search non-standard directories.

Example:

$ export NCC_COMPILER_PATH=“$HOME/libexec:$HOME/wk/libexec”

NCC_INCLUDE_PATH

Specifies a list of directories separated by colon which are searched for the header

files. The directory has high priority in the order of listing. This environment

variable is set when you want to always search non-standard directories. For

example, you want to always search the OSS header file directory that is not

attached to the NEC C/C++ compiler.

Example:

$ export NCC_INCLUDE_PATH=“$HOME/include:$HOME/wk/include”

NCC_LIBRARY_PATH

Specifies a list of directories separated by colon which are searched for the C/C++

libraries. The directory has high priority in the order of listing. This environment

variable is set when you want to always search non-standard directories. For

example, you want to always search the OSS library directory that is not attached

to the NEC C/C++ compiler.

Chapter2 Environment Variables

- 9 -

Example:

$ export NCC_LIBRARY_PATH=“$HOME/lib:$HOME/wk/lib”

NCC_PROGRAM_PATH

Specified a list of directories separated by colon which are searched for the

assembler and the linker for VE. The directory has high priority in the order of

listing. If they are not found in the specified directories, the NEC C/C++ compiler

automatically starts the assembler and linker in the standard directory. This

environment variable is set when you want to always search non-standard

directories.

Example:

$ export NCC_PROGRAM_PATH=“$HOME/bin:$HOME/wk/bin”

PATH

Add a list of directories separated by colon which are searched for the ncc/nc++.

The directory has high priority in the order of listing. Add the "bin" under the

directory where the NEC C/C++ compiler is installed. If you set this environment

variable, you can omit specifying the path when starting ncc/nc++. When

installing to the standard directory, add "/opt/nec/ve/bin". The environment

variable PATH also affects other applications of the NEC C/C++ compiler. Add it to

the existing environment variable PATH.

Example:

$ export PATH=“/opt/nec/ve/bin:$PATH”

TMPDIR

Specifies a directory where the compilers and commands temporarily use.

(default: /tmp)

VE_LIBRARY_PATH

Specifies a list of directories separated by colon which are searched for the system

libraries. The directory has high priority in the order of listing. This environment

variable is set when you want to always search non-standard directories.

Chapter2 Environment Variables

- 10 -

Example:

$ export VE_LIBRARY_PATH=“$HOME/lib:$HOME/wk/lib”

2.2 Environment Variables Referenced During Execution

OMP_NUM_THREADS / VE_OMP_NUM_THREADS

This variable sets the number of threads to use for OpenMP and/or automatic

parallelized programs. The number of threads is the number of cores of the VE

when it is not specified explicitly.

Example:

$ export OMP_NUM_THREADS=4

OMP_STACKSIZE / VE_OMP_STACKSIZE

This variable sets the upper limit of the stack size by the kilobytes used by each

threads for OpenMP and/or automatic parallelized programs. The value can be

specified as megabytes by using M as unit and gigabytes by using G as unit.

Example:

$ export OMP_STACKSIZE=1G

OMP_TOOL / VE_OMP_TOOL

This variable is used to enable or disable OMPT interface. When “enabled” is set,

OMPT interface is enabled. In default, it is disabled.

Example:

$ export OMP_TOOL=enabled

OMP_TOOL_LIBRARIES / VE_OMP_TOOL_LIBRARIES

This variable is used to set a dynamic-loaded library for OMPT interface. Specify

colon (:) to specify two or more libraries.

Example:

$ export OMP_TOOL_LIBRARIES=libomptool.so:/usr/myhome/libompt.so

VE_ADVANCEOFF

This variable is used to control the advance-off (lockstep execution) mode. When

Chapter2 Environment Variables

- 11 -

“YES” is set, the advance-off mode is enabled.

If any other value is set or this variable is not set, the advance-off mode is

disabled.

If the advance-off mode is enabled, the execution time can be significantly

increased.

Example:

$ export VE_ADVANCEOFF=YES

VE_FPE_ENABLE

This variable is used to control over floating-point exception handling at run-time.

When this variable is set, then the specified exception is enabled.

The value of this variable is a comma separated list, each element of which is one

of the following values.

DIV

Divide-by-zero exception.

FOF

Floating-point overflow exception.

FUF

Floating-point underflow exception.

INV

Invalid operation exception.

INE

Inexact exception.

Example:

$ export VE_FPE_ENABLE=DIV

VE_INIT_STACK

This variable sets the value to initialize the stack area at the run-time. When the

value is not set, the stack area is initialized with zeros. -minit-stack=runtime is

needed at compilation. The following values can be specified.

ZERO

Initializes with zeros.

NAN

Chapter2 Environment Variables

- 12 -

Initializes with quiet NaN in double type (0x7fffffff7fffffff).

NANF

Initializes with quiet NaN in float type (0x7fffffff).

SNAN

Initializes with signaling NaN in double type (0x7ff4000000000000).

SNANF

Initializes with signaling NaN in float type (0x7fa00000).

0xXXXX

Initializes with the value specified in a hexadecimal format up to 16 digits.

When the specified value has more than 8 hexadecimal digits, the initialization

is done on an 8-byte cycle. Otherwise it is done on a 4-byte cycle.

Example:

$ ncc –minit-stack=runtime a.c

$ export VE_INIT_STACK=SNAN

$./a.out

VE_LD_LIBRARY_PATH

This variable set a list of directories separated by colon that the dynamic linker

searches for libraries. The dynamic linker automatically searches the standard

directories. This environment variable is set when you want to always search non-

standard directories. For example, you want to always search the OSS library

directory that is not attached to the NEC C/C++ compiler.

Example:

$ export VE_LD_LIBRARY_PATH=“${HOME}/lib:$VE_LD_LIBRARY_PATH”

VE_NODE_NUMBER

This variable is set to designate a program to be executed on specified VE node.

VE_PROGINF

When “YES” or “DETAIL” is set, the program execution information is output to the

standard error output at the termination of execution. See the

manual ”PROGINF/FTRACE User’s Guide” for the detail.

VE_TRACEBACK

This variable is used to control to output traceback information when a fatal error

Chapter2 Environment Variables

- 13 -

occurs at runtime. The program must be compiled and linked with -traceback to

output traceback information. When the value of this variable is “FULL” or “ALL”,

then at most depth which is specified by VE_TRACEBACK_DEPTH environment

variable of traceback information is output. If any other value is set, only

traceback information of the function that a fatal error occurs is output. If this

variable is not set, no traceback information is output.

An occurrence line number of fatal error is found by address information in

traceback information.

Example:

$ export VE_TRACEBACK=FULL

$./a.out

Runtime Error: Divide by zero at 0x600000000cc0

[1] Called from 0x7f5ca0062f60

[2] Called from 0x600000000b70

Floating point exception

The line number can be sought from the address information using the command

naddr2line. In example, the exception of “Divide by zero” occurred in line 3 of a.c.

Example:

$ naddr2line -e ./a.out -a 0x600000000cc0

0x0000600000000cc0

/.../a.c:3

When running the program which is compiled and linked with -

traceback=verbose and the value of this variable is “VERBOSE”, filename and

line number is output in traceback information.

Example:

$ export VE_TRACEBACK=VERBOSE

$./a.out

Segmentation fault: Address not mapped to object at 0x600008001078

[0] 0x600008001078 below below.c:8

[1] 0x600018001170 out out.c:3

[2] 0x600020001170 watch watch.c:3

[3] 0x600010001170 hey hey.c:3

[4] 0x600000001500 main ovf.c:10

VE_TRACEBACK_DEPTH

This variable is used to control the maximum depth of traceback information when

Chapter2 Environment Variables

- 14 -

it is output. When it is not specified explicitly, then 50 is set. If 0 is specified, then

the maximum depth is unlimited.

Chapter3 Compiler Options

- 15 -

Chapter3 Compiler Options

This chapter describes the operating procedures for compiling, linking, and executing

a C/C++ program using the C/C++ compiler system.

The compiler options of the C/C++ compiler can be divided into the following

categories.

 Overall Options

Compiler options used to control the C/C++ compiler.

 Optimization Options

Compiler options used to control optimization and vectorization.

 Parallelization Options

Compiler options used to control parallelization.

 Inlining Options

Compiler options used to control inlining.

 Code Generation Options

Compiler options used to control code generation for performance measurement

and the stack area initialization.

 Debug Options

Compiler options used to control debug code generation.

 Language Options

Compiler options used to enable or disable language features.

 Message Options

Compiler options used to control message output.

 List Output Options

Compiler options used to control compiler listing.

 Preprocessor Options

Compiler options used to control preprocessing.

 Assembler Options

Compiler options used to specify assembler functions.

 Linker Options

Compiler options used to specify linker functions.

Chapter3 Compiler Options

- 16 -

 Directory Options

Compiler options used to specify various directories.

3.1 Overall Options

-S

Suppresses the linking and outputs the assembler source file.

-c

Suppresses the linking and outputs the object file.

-cf=conf

Applies the configuration file specified by conf to compilation and linking.

-clear

Ignores all compiler options and input files specified before -clear.

-fsyntax-only

Performs only grammar analysis.

-o filename

Specifies a filename to which output is written, where the output is preprocessed

text, assembler source file, object file or executable file. This option cannot be

specified when two or more source files are specified with -S, -c, or –E.

-x language

Specifies the language kind for the input files. The effect of this option is prior to

the default setting according to the file suffix and the specification is applied to all

the input files following this option (until the next -x if any) on the command-line.

One of the following can be specified as language.

c

Compiles as a C source file.

c++

Compiles as a C++ source file.

assembler

Assembles as an assembler source file.

assembler-with-cpp

Does preprocessing and assembles the preprocessed file.

@file-name

Reads options from file-name and inserts them in the place of the original @file-

name option.

Chapter3 Compiler Options

- 17 -

3.2 Optimization Options

-O[n]

Specifies optimization level by n. The following are available as n:

4

Enables aggressive optimization which violates language standard.

3

Enables optimization which causes side-effects and nested loop optimization.

2

Enables optimization which causes side-effects. (default)

1

Enables optimization which does not cause any side effects.

0

Disables any optimizations, automatic vectorization, parallelization, and inlining.

-fargument-alias

Allows the compiler to assume that arguments are aliasing each other and non-

local-objects in all optimization. (default)

-fargument-noalias

Disallows the compiler to assume that arguments are aliasing each other and non-

local-objects in all optimization.

-f[no-]associative-math

Allow [Disallows] re-association of operands in series during optimization and loop

transformation. When -fno-associative-math is specified, the transformation

which matrix multiply loops into a vector matrix library function call with -

fmatrix-multiply is not performed. (default: -fassociative-math)

-f[no-]aggressive-associative-math

Allows [Disallow] aggressive re-association of operands in series during

optimization and loop transformation.

(default: -fno-aggressive-associative-math)

-f[no-]check-noexcept-violation

Enable [Disable] runtime checking weather C++ noexcept specification is violated

or not. When this option is not effective, std::terminate function is not called and

a program execution continues even if noexcept specification is violated.

(default: -fno-check-noexcept-violation)

Chapter3 Compiler Options

- 18 -

-f[no-]cse-after-vectorization

[Does not] Re-apply common subexpression elimination after vectorization.

(default: -fno-cse-after-vectorization)

-f[no-]fast-math

[Does not] uses fast scalar version math functions outside of vectorized loops.

(default: -ffast-math)

-f[no-]ignore-induction-variable-overflow

[Does not] Ignores induction variable overflow in optimization.

(default: -fno-ignore-induction-variable-overflow)

-f[no-]ignore-volatile

[Does not] Ignores volatile attribute in optimization.

(default: -fno-ignore-volatile)

-fivdep

Inserts ivdep directive before all loops.

-fivdep-omp-worksharing-loop

Inserts ivdep directive before an OpenMP parallelized loop that does not have

simd with safelen and/or simdlen clause.

-f[no-]loop-collapse

Allows [Disallows] loop collapsing. -On (n=2,3,4) must be effective.

(default: -fno-loop-collapse)

-floop-count=n

Specifies n which is taken to assume the iteration count of the loop whose

iteration count cannot be decided at compilation to do optimization suitable for

loop count. (default: -floop-count=5000)

-f[no-]loop-fusion

Allows [Disallows] loop fusion. -On (n=2,3,4) must be effective.

(default: -fno-loop-fusion)

-f[no-]loop-interchange

Allows [Disallows] loop interchange. -On (n=2,3,4) must be effective.

(default: -fno-loop-interchange)

-f[no-]loop-normalize

Allows [Disallows] loop normalization. Compiler assumes that loop iteration count

is not changed in loop body. (default: -fno-loop-normalize)

-f[no-]loop-split

Chapter3 Compiler Options

- 19 -

Allows [Disallows] splitting out of a function call in a loop from the loop. -On

(n=2,3,4) must be effective. (default: -fno-loop-split)

-f[no-]loop-strip-mine

Allows [Disallows] loop strip mining. -On (n=2,3,4) must be effective.

(default: -fno-loop-strip-mine)

-f[no-]loop-unroll

Allows [Disallows] loop unrolling. -On (n=2,3,4) must be effective.

(default: -floop-unroll)

-floop-unroll-complete=m

Allows loop expansion (complete loop unrolling) of a loop whose iteration count is

constant, can be calculated, and is less than or equal to m. -On (n=2,3,4) must

be effective. (default: -floop-unroll-complete=4)

Remark:

-floop-unroll-completely=m can be used as an alias option name.

-floop-unroll-max-times=n

Specifies maximum unrolled times by n. When this option is not effective, the

compiler automatically choose the suitable unroll times.

-f[no-]matrix-multiply

Allows [Disallows] to transform matrix multiply loops into a vector matrix library

function call. -On (n=2,3,4) and -fassociative-math must be effective.

(default: -fno-matrix-multiply)

-f[no-]move-loop-invariants

Enable [Disables] the loop invariant motion under if-condition.

(default: -fmove-loop-invariants)

-f[no-]move-loop-invariants-if

Allows [Disallows] the loop invariant if-structure motion. -On (n=2,3,4) must be

effective. (default: -fno-move-loop-invariants-if)

-f[no-]move-loop-invariants-unsafe

Allow [Disallow] motion of unsafe codes which may cause any side effects.

The example of unsafe codes are:

‒ divide

‒ memory reference to 1 byte or 2 byte area

(default: -fno-move-loop-invariants-unsafe)

-f[no-]move-nested-loop-invariants-outer

Chapter3 Compiler Options

- 20 -

Allows [Disallows] the compiler to move the loop invariant expressions to outer

loop. When this option is specified, they are moved before the current loop.

(default: -fmove-nested-loop-invariants-outer).

-fnaked-ivdep

Accepts “#pragma ivdep” as “#pragma _NEC ivdep”.

-fnamed-alias

The compiler will assume that the object pointed-to-by a named pointer have an

alias in applying optimization and vectorization.

-fnamed-noalias

The compiler will assume that the object pointed-to-by a named pointer does not

have an alias in applying optimization and vectorization. (default)

-f[no-]outerloop-unroll

Allows [Disallows] outer-loop unrolling. -On (n=2,3,4) must be effective.

(default: -fno-outerloop-unroll)

-fouterloop-unroll-max-size=n

Specifies maximum size of an innermost loop to be outer-loop-unrolled.

(default: -fouterloop-unroll-max-size=4)

-fouterloop-unroll-max-times=n

Specifies maximum outer-loop unrolled times by n. n must be power of 2. When

this option is not effective, the compiler automatically choose the suitable unroll

times.

-f[no-]precise-math

[Does not] Apply high resolution algorithm in the vector versions of pow(3C) and

powf(3C) when the exponent is an integer value. Their results become more exact

but their calculation speeds become slower. (default: -fno-precise-math)

-f[no-]reciprocal-math

Allows [Disallows] change an expression “x/y” to “x * (1/y)”.

(default: -freciprocal-math)

-f[no-]replace-loop-equation

Allows [Disallows] replacement of “!=” and “==” operator with “<=” or “>=” at

the loop backedge. (default: -fno-replace-loop-equation)

-f[no-]strict-aliasing

Allows [Disallows] the compiler to assume the ANSI aliasing rules in all

optimization.

Chapter3 Compiler Options

- 21 -

(default: -fstrict-aliasing)

When this option is not effective, the compiler assumes the stored value is

accessed only by one of the following types.

‒ A type compatible with the effective type of the object

‒ A qualified version of a type compatible with the effective type of the object

‒ A type that is the signed or unsigned type corresponding to the effective type

of the object

‒ A type that is the signed or unsigned type corresponding to a qualified version

of the effective type of the object

‒ An aggregate or union type that includes one of the aforementioned types

among its members (including, recursively, a member of a sub aggregate or

contained union)

‒ A character type

-fthis-pointer-alias

Allows the compiler to assume that this-pointer has an alias in all optimization.

-fthis-pointer-noalias

Disallows the compiler to assume that this-pointer has an alias in all optimization.

(default)

-m[no-]list-vector

Allows [Disallows] the vectorization of the statement in a loop when an array

element with a vector subscript expression appears on both the left and right

sides of an assignment operator. (default: -mno-list-vector)

-mretain-keyword

Sets higher priority to vector memory access results to retain on LLC (Last-Level

Cache). The following are available as keyword:

all

Sets higher priority to vector load/store/gather/scatter results. (default)

list-vector

Sets higher priority to vector gather/scatter results.

none

Does not set higher priority to vector memory access results.

-msched-keyword

Specifies whether and how the instruction scheduling. The following are available

Chapter3 Compiler Options

- 22 -

as keyword.

none

Does not perform the instruction scheduling.

insns

Performs the instruction scheduling in a basic block.

block

Performs the instruction scheduling in a basic block, but to a wider range than

-msched-insns does, in order to schedule instructions aggressively. (default)

interblock

Performs the instruction scheduling beyond basic blocks.

-m[no-]vector

Enable [Disables] automatic vectorization. (default: -mvector)

-m[no-]vector-advance-gather

Allows [Disallows] motion of vector gather instructions so that they can be started

as advance as possible. (default: -mvector-advance-gather)

-mvector-advance-gather-limit=n

The number of vector gather operations which is moved by -mvector-advance-

gather is up to n. (default: -mvector-advance-gather-limit=56)

-m[no-]vector-dependency-test

Allows [Disallows] the conditional vectorization by dependency-test. -On

(n=2,3,4) must be effective. (default: -mvector-dependency-test)

-m[no-]vector-floating-divide-instruction

Allows [Disallows] to use vector-floating-divide instruction. By default,

approximate instruction sequence by using vector-floating-reciprocal instructions

is used.

(default: -mno-vector-floating-divide-instruction)

-m[no-]vector-fma

Allows [Disallows] to use vector fused-multiply-add instruction.

(default: -mvector-fma)

-m[no-]vector-intrinsic-check

[Does not] Checks the value ranges of arguments in the mathematical functions

the vectorized version. (default: -mno-vector-intrinsic-check)

The target mathematical functions of this option are as follows.

acos, acosh, asin, atan, atan2, atanh, cos, cosh, cotan, exp, exp10, exp2,

Chapter3 Compiler Options

- 23 -

expm1, log10, log2, log, pow, sin, sinh, sqrt, tan, tanh

-m[no-]vector-iteration

Allows [Disallows] to use vector iteration instruction in the vectorization.

(default: -mvector-iteration)

-m[no-]vector-iteration-unsafe

Allows [Disallows] to use vector iteration instruction in the vectorization when it

may give incorrect result. (default: -mvector-iteration-unsafe)

-m[no-]vector-loop-count-test

Allows [Disallows] the conditional vectorization by loop-iteration-count-test. -On

(n=2,3,4) must be effective. (default: -mno-vector-loop-count-test)

-m[no-]vector-low-precise-divide-function

Allows [Disallows] to use low precise version for vector floating divide operation. It

is faster than the normal precise version but the result may include at most one

bit numerical error in mantissa. (default: -mno-vector-low-precise-divide-

function)

-m[no-]vector-merge-conditional

Allows [Disallows] to merge vector load and store in THEN block, ELSE IF block,

and ELSE block. (default: -mno-vector-merge-conditional)

-m[no-]vector-packed

Allows [Disallows] to use packed vector instruction.

(default: -mno-vector-packed)

-m[no-]vector-power-to-explog

Allows [Disallows] to replace pow(R1,R2) in a vectorized loop with

exp(R2*log(R1)). powf(3C) is replaced, too. By the replacement, the execution

time would be shortened, but numerical error occurs rarely in the calculation.

(default: -mno-vector-power-to-explog)

-m[no-]vector-power-to-sqrt

Allows [Disallows] to replace pow(R1,R2) in a vectorized loop with the expression

including sqrt(3C) or cbrt(3C) when R2 is a special value such as 0.5, 1.0/3.0 etc.

powf(3C) is not replaced, too. When it is replaced, the execution time would

become faster, but numerical error occurs rarely in the calculation.

(default: -mvector-power-to-sqrt)

-m[no-]vector-reduction

Allows [Disallows] to use vector reduction instruction in the vectorization.

Chapter3 Compiler Options

- 24 -

(default: -mvector-reduction)

-m[no-]vector-shortloop-reduction

Allows [Disallows] the conditional vectorization by loop-iteration-test for

reduction. -On (n=2,3,4) must be effective.

(default: -mno-vector-shortloop-reduction)

-m[no-]vector-sqrt-instruction

Allows [Disallows] to use vector-sqrt instruction. By default, approximate

instruction sequence by using vector-floating-reciprocal instructions is used.

(default: -mno-vector-sqrt-instruction)

-mvector-threshold=n

Specifies the minimum iteration count (n) of a loop for vectorization.

(default: -mvecter-threshold=5)

-mwork-vector-kind=none

Disallows the partial vectorization using loop division.

3.3 Parallelization Options

-fopenmp

Enables OpenMP directives. -pthread is implicitly enabled.

-fopenmp-tools

Enables OMPT interface. (default: -fno-openmp-tools)

-m[no-]create-threads-at-startup

[Does not] Generates threads for OpenMP or automatic parallelization at the

first parallel region execution. The threads are generated at the startup of the

execution at default. (default: -mcreate-threads-at-startup)

Remark:

-static-nec or -static must be specified when you specified this option.

-mparallel

Allows automatic parallelization. -pthread is implicitly enabled.

-mparallel-innerloop

Allows to parallelize inner-loop.

-m[no-]parallel-omp-routine

Allows [Disallows] to apply automatic parallelization to a routine including OpenMP

directive.

(default: -mparallel-omp-routine)

Chapter3 Compiler Options

- 25 -

-mparallel-outerloop-strip-mine

Allows to parallelize the nested loops that are outer-loop strip-mined.

-mparallel-sections

Allows to generate parallelized sections.

-mparallel-threshold=n

Specifies the threshold value n of the loop parallelization. When the value is larger

than the work of the loop, the loop is parallelized.

(default: -mparallel-threshold=2000)

-mschedule-dynamic

-mschedule-runtime

-mschedule-static

-mschedule-chunk-size=n

Specifies a scheduling kind and chunk size of a thread when they are not specified

by schedule-clause in OpenMP parallelization and automatic parallelization.

-pthread

Enables support for multithreading with the pthread library.

3.4 Inlining Options

-finline-abort-at-error

Stops the compilation when generation of routines defined in source files fails.

Does not search them and continues the compilation when this option is not

effective.

(default: -fno-inline-abort-at-error)

-f[no-]inline

Allows [Disallows] the inlining of inline functions. (default: -finline)

-f[no-]inline-copy-arguments

[Does not] Generate a copy of the argument of an inlined function call by

automatic inlining. When not generating a copy the function parameter is replaced

with a corresponding function argument.

(default: -finline-copy-arguments)

-finline-directory=directory name

Searches all source files under directories separated by colon for functions to

inline.

-fno-inline-directory=directory name

Chapter3 Compiler Options

- 26 -

Does not search all source files under directories separated by colon for functions

to inline. This option is specified when you do not want to search the source files

specified by -finline-file or -finline-directory.

-finline-file=string

Searches source files separated by colon for functions to inline. Searches all input

source files specified in command line when all is specified.

-fno-inline-file=string

Does not search source files separated by colon for functions to inline. This option

is specified when you do not want to search the source files specified by -finline-

file or -finline-directory.

-finline-functions

Allows automatic inlining.

-finline-max-depth=n

Specifies the level of functions to be inlined from the bottom of the calling tree by

automatic inlining. (default: -finline-max-depth=2)

-finline-max-function-size=n

Specifies the function size (= the amount of intermediate representations for a

function) to be inlined by automatic inlining.

(default: -finline-max-function-size=50)

-finline-max-times=n

Sets the limit of the function size (= the amount of intermediate representations

for a function) after automatic inlining to “(function-size-before-inlining) * n”.

(default: -finline-max-times=6)

-f[no-]inline-suppress-diagnostics

[Does not] Output diagnostics when generation of routines defined in source files

to search fails. The option -fno-inline-suppress-diagnostics is specified when

you want to check which source files you specified are searched normally.

(default: -finline-suppress-diagnostics)

-mgenerate-il-file

Outputs an IL file for cross-file inlining. The file is created in the current directory,

under the name "source-file-name.cil".

-mread-il-file IL file name

Read IL files separated by colon for functions to inline. When -finline-directory,

-finline-file or -mgenerate-il-file are specified, this option is ignored.

Chapter3 Compiler Options

- 27 -

3.5 Code Generation Options

-finstrument-functions

Inserts function calls for the instrumentation to entry and exit of functions. The

instrumented functions are;

void __cyg_profile_func_enter(void *this_fn, void *call_site);

void __cyg_profile_func_exit(void *this_fn, void *call_site);

-fpic

-fPIC

Generates position-independent code.

-ftrace

Creates an object file and the executable file for ftrace function.

(default: -no-ftrace)

-p

-pg

Creates an executable file for output profiler information (ngprof).

-[no-]proginf

Does not create an executable file for PROGINF function. (default: -proginf)

3.6 Debugging Options

-g

Generates debugging information in DWARF.

-minit-stack=value

Initializes the stack area with the specified value at the run-time. The following

are available as value:

zero

Initializes with zeros.

nan

Initializes with quiet NaN in double type (0x7fffffff7fffffff).

nanf

Initializes with quiet NaN in float type (0x7fffffff).

snan

Initializes with signaling NaN in double type (0x7ff4000000000000).

Chapter3 Compiler Options

- 28 -

snanf

Initializes with signaling NaN in float type (0x7fa00000).

runtime

Initializes with the value specified by the environment variable

VE_INIT_STACK.

0xXXXX

Initializes with the value specified in a hexadecimal format up to 16 digits.

When the specified value has more than 8 hexadecimal digits, the initialization

is done on an 8-byte cycle. Otherwise it is done on a 4-byte cycle.

-traceback[=verbose]

Specifies to generate extra information in the object file and to link run-time

library due to provide traceback information when a fatal error occurs and the

environment variable VE_TRACEBACK is set at run-time.

When verbose is specified, generates filename and line number information in

addition to the above due to provide these information in traceback output. Set

the environment variable VE_TRACEBACK=VERBOSE to output these

information at run-time.

3.7 Language Options

3.7.1 C Language Control Options

-fno-allow-keyword-macros

Disallows to define any keyword macros.

-fgnu89-inline

Performs inlining according to semantic rules of the GNU C89 specification.

-f[no-]restrict

[Does not] Treat restrict as C keyword. (default: -frestrict)

Remark:

The default is different in C and C++. In C++, the default is -fno-restrict.

-fsigned-char | -funsigned-char

Specifies whether to treat plain char type as signed or unsigned.

(default: -fsigned-char)

-std=standard

Specifies C Language standard. Available keywords as language are gnu89,

Chapter3 Compiler Options

- 29 -

gnu99, gnu11, c99 or c11. (default: -std=gnu11)

-traditional

Preprocesses C source file according to the K&R C language specification. This

option must be specified with -E.

-traditional-cpp

Preprocesses C source file according to the K&R C language specification.

-trigraphs

Enables recognition of trigraph sequences.

3.7.2 C++ Language Control Options

-fdefer-inline-template-instantiation

Do not instantiate an inline function template at the function call position and

postpone it to appropriate timing. (default).

-fno-defer-inline-template-instantiation

Do instantiate an inline function template at the function call position.

(default: -fdefer-inline-template-instantiation).

-f[no-]exceptions

Enables [Disables] C++ exception handling feature. (default: -fexceptions)

-fext-numeric-literals

Treats a constant expression with a suffix I, i, J or j as a complex constant.

(default when -std=gnu++11, -std=gnu++14 or -std=gnu++17 is effective)

-fno-ext-numeric-literals

Treats a constant expression with a suffix I, i, J or j as a user-defined literal.

(default when -std=c++11, c++14, c++17 or c++20 is effective)

-ffor-scope

The scope of variables declared in a for-init-statement is limited to the "for" loop

itself. (default)

-fno-for-scope

The scope of variables declared in a for-init-statement is extended to the end of

the enclosing scope. (default: -ffor-scope)

-fimplicit-include

Allows implicit inclusion of source files as a method of finding definitions of

template entities to be instantiated.

Chapter3 Compiler Options

- 30 -

-f[no-]restrict

[Does not] Treats restrict as C++ keyword. (default: -fno-restrict)

Remark:

The default is different in C and C++. In C, the default is -frestrict.

-f[no-]rtti

Enables [Disables] run-time-type-identification feature. (default: -frtti)

-ftemplate-depth=n

Specifies the maximum number of instantiations of a given template that may be

in process of being instantiated at a given time. This is used to detect runaway

recursive instantiations. The value n can be between 0 and 1024. If n is zero,

there is no limit. (default: -ftemplate-depth=256)

-std=standard

Specifies C++ Language standard. Available keywords as language are gnu++11,

gnu++14, gnu++17, gnu++20, c++11, c++14, or c++17 or c++20.

(default: -std=gnu++14)

3.8 Message Options

-Wall

Outputs all syntax warning messages.

-Wcomment

Outputs a warning message for a comment-start sequence /* which appears in a

/* */ comment.

-Werror

Treats all syntax warnings as fatal errors.

-Wno-div-by-zero

Suppresses a warning message for integer division by zero detected at the

compilation.

-Wunknown-pragma

Outputs a warning message when the compiler encounters unknown #pragma.

-Wunused

Same as -Wunused-variable.

-Wunused-but-set-parameter

Outputs a warning message for any parameters which is set but not used.

-Wunused-but-set-variable

Chapter3 Compiler Options

- 31 -

Outputs a warning message for any local variables which is set but not used.

-Wunsued-parameter

Outputs a warning message for any parameters which is not used.

-Wunused-value

Outputs a warning message for any expressions whose value is computed but not

used.

-Wunused-variable

Outputs a warning message for any local variables or functions which is not used.

-fdiag-inline=n

Specifies automatic inlining diagnostics level by n. (0: No output, 1: Information,

2: Detail) (default: -fdiag-inline=1)

-fdiag-parallel=n

Specifies automatic parallelization diagnostics level by n. (0: No output, 1:

Information, 2: Detail) (default: -fdiag-parallel=1)

-fdiag-vector=n

Specifies vector diagnostics level by n. (0: No output, 1: Information, 2: Detail)

(default: -fdiag-vector=1)

-fdiag-system-header

Outputs optimization diagnostics for a function defined in a system header.

-pedantic

Outputs the warnings for using of language extension.

-pedantic-errors

Outputs the errors for using of language extension.

-w

Suppresses all warning messages.

3.9 List Output Options

-report-file=filename

Outputs the listing result to the specified file instead of the default one.

-report-append-mode

Opens the output file with “appending mode” instead of “overwriting mode”. This

option cannot be used unless the -report-file option is specified.

-report-all

Outputs the code generation list, diagnostic list, format list, inline list, option list

Chapter3 Compiler Options

- 32 -

and vector list.

-[no-]report-cg

[Does not] Outputs optimization list of code generation module.

(default: -no-report-cg)

-[no-]report-diagnostics

[Does not] Outputs diagnostic list. (default: -no-report-diagnostics)

-[no-]report-format

[Does not] Outputs format list. (default: -no-report-format)

-[no-]report-inline

[Does not] Outputs optimization list of inlining module. (default: -no-report-

inline)

-[no-]report-option

[Does not] Outputs option list. (default: -no-report-option)

-[no-]report-system-header

[Does not] Outputs compiler listings for a function defined in a system header.

(default: -no-report-system-header)

-[no-]report-vector

[Does not] Outputs optimization list of vectorization module.

(default: -no-report-vector)

3.10 Preprocessor Options

-C

Keeps comments in the preprocessed output.

-dD

Outputs a list of #define or #undef for all the macros appear in #define and

#undef, in addition to the normal preprocessed text. When -E is not specified,

this option is ignored.

-dI

Outputs the #include used in the input file, in addition to the normal

preprocessed text. When -E is not specified, this option is ignored. When -dM is

specified, this option is ignored.

-dM

Outputs a list of #define with macro names and their values for all the macros

defined by #define or -D, instead of the normal preprocessed text. When -E is

Chapter3 Compiler Options

- 33 -

not specified, this option is ignored.

-dN

Outputs a list of #define with macro names for all the macros defined by #define

or -D, in addition to the normal preprocessed text. When -E is not specified, this

option is ignored.

-Dmacro[=defn]

Defines macro as the value defn as if #define does. When =defn is omitted,

macro is defined as decimal constant 1.

-E

Performs preprocessing only and outputs the preprocessed text to the standard

output.

-H

Outputs a list of files included by #include to the standard error output.

-Idirectory

Adds directory to the list of directories searched for files specified by #include.

-I-

Specifies that the directories specified with -I preceding this option are searched

only for the files specified by the form of #include “filename” and they are not

searched for the files specified by the form of #include <filename>.

-include file

Includes file at the beginning of the compilation.

-isysroot directory

Searches the directory named include under directory for header files specified

with #include.

-isystem directory

Searches directory after all the directories specified by -I but before the standard

system directories.

-M

Outputs a list of the file dependencies instead of the normal preprocessed text.

-MD

Same as -M -MF filename, where filename is a name suffixed by “.d” which is

based on input filename or the name specified with -o if any.

-MF filename

Specifies that the list of the file dependencies is output to filename instead of the

Chapter3 Compiler Options

- 34 -

default. This option must be specified with -M.

-MP

Tells the preprocessor to add a phony target for each dependency output. This

option must be specified with -M.

-MT target

Changes the default target of dependency output to target. This option must be

specified with -M.

-nostdinc

Omits searching the standard system directory for header files.

-P

Omits outputting line directives to preprocessed text.

-Umacro

Undefines the definition of macro.

-undef

Do not predefine any system-specific macros.

-Wp,option

Specifies option to be passed to preprocessor (cpp). Multiple options or arguments

can be specified to this option at once by separating them by commas.

3.11 Assembler Options

-Wa,option

Specifies option to be passed to assembler (nas). Multiple options or arguments

can be specified to this option at once by separating them by commas.

-Xassembler option

Specifies an option to be passed to assembler (nas). If an option requires an

argument, this option must be specified twice, once for the option and once for

the argument.

-assembly-list

Outputs assembly list to file. The output filename is a name suffixed by “.O” which

is based on input filename.

3.12 Linker Options

-Bdynamic

Chapter3 Compiler Options

- 35 -

Enables the linking of dynamic-link libraries at the run-time. This is default when

not specifying -Bstatic.

-Bstatic

Link user's libraries statically.

-Ldirectory

Searches directory for libraries specified subsequently to this option, before the

directories searched by default.

-llibrary

Specifies a library to be linked. Prescribed directories are searched for the library

named liblibrary.a.

-nostartfiles

Does not link the standard system startup files.

-nostdlib

Does not link the standard system startup files or libraries.

-rdynamic

Adds all symbols including any unused symbols to the dynamic symbol table at

the linking.

-static

Link libraries statically.

-static-nec

Link the NEC SDK libraries statically.

-shared

Generates a shared object.

-Wl,option

Specifies option to be passed to linker (nld). Multiple options or arguments can be

specified to this option at once by separating them by commas.

-Xlinker option

Specifies an option to be passed to linker (nld). If an option requires an argument,

this option must be specified twice, once for the option and once for the

argument.

-z keyword

Same as nld’s -z option.

Chapter3 Compiler Options

- 36 -

3.13 Directory Options

--sysroot=directory

Specifies a directory name where header files and libraries are searched for. The

directory named “include” under directory is searched for the header files. The

directory named “lib” under directory is searched for the libraries.

-Bdirectory

Specifies a directory name where commands, header files and libraries are

searched for. The specified directory is searched for the commands and libraries.

The directory named “include” under directory is searched for the header files.

3.14 Miscellaneous Options

--help

Displays usage of the compiler.

-print-file-name=library

Displays the full pathname of the library file named library which would be linked.

When this option is specified, actual compilation and linking are never done.

If the named library is not found, only the name specified as library is displayed.

-print-prog-name=program

Displays the command name named program in the compiler system which would

be invoked during the compilation through linking. When this option is specified,

actual compilation and linking are never done.

If the named command is not found, only the name specified as program is

displayed.

-noqueue

When the number of licenses exceeds use restriction, the compiler doesn’t stands

by until a license is freed.

-v

Displays the invoked commands at each stage of compilation.

--version

Displays the version number and copyrights of the compiler.

3.15 Compiler options which cannot specify by options directive

The following compiler options cannot be specified by options directive.

Chapter3 Compiler Options

- 37 -

 Overall Options

-S, -c, -cf=conf, -fsyntax-only, -o file-name, -x language, @file-name

 Parallelization Options

-mno-create-threads-at-startup, -pthread

 Code Generation Options

-no-proginf

 Debugging Options

-traceback

 Language Options

-traditional, -cpp, -trigraphs

 Message Options

-Werror

 Preprocessor Options

-C, -dD, -dI, -dM, -dN, -Dmacro[=defn], -E, -H, -include file, -M, -MD,

-MF filename, -MP, -MT target, -P, -Umacro, -undef

 Assembler Options

-Wa,option, -Xassembler option, -assembly-list

 Linker Options

-Bdynamic, -Bstatic, -Ldirectory, -llibrary, -nostartfiles, -nostdlib,

-rdynamic, -static, -static-nec, -shared, -Wl,option, -Xlinker option, -z

keyword

 Directory Options

--sysroot=directory, -Bdirectory

 Miscellaneous Options

--help, -print-file-name=library, -print-prog-name=program, -noqueue, -v,

--version

3.16 Optimization Level and Options’ Defaults

The relation between -On and independently optimization options are as follows.

Note that -On controls the overall level of optimization, and the same instruction

code cannot be created even if an independently optimization option are enabled or

disabled are equal. To effectively apply one optimization, optimizations are

Chapter3 Compiler Options

- 38 -

interrelated such as applying another ancillary optimizations, and -On controls them

to work together. For example specifying the optimization option that is set as the

defaults of -O1 with –O0, the instruction code cannot equal to -O1.

Option Name -O4 -O3 -O2 -O1 -O0

-fargument-alias - ✓ ✓ ✓ ✓

-fargument-noalias ✓ - - - -

-fassociative-math ✓ ✓ ✓ - -

-ffast-math ✓ ✓ ✓ ✓ -

-fignore-induction-variable-overflow ✓ - - - -

-fignore-volatile ✓ - - - -

-finline-copy-arguments - ✓ ✓ ✓ ✓

-floop-collapse ✓ ✓ - - -

-floop-fusion ✓ ✓ - - -

-floop-interchange ✓ ✓ - - -

-floop-normalize ✓ ✓ - - -

-floop-strip-mine ✓ ✓ - - -

-floop-unroll ✓ ✓ ✓ - -

-floop-unroll-complete=4 ✓ ✓ ✓ - -

-fmatrix-multiply ✓ ✓ - - -

-fmove-loop-invariants ✓ ✓ ✓ ✓ -

-fmove-loop-invariants-if ✓ ✓ - - -

-fmove-loop-invariants-unsafe ✓ - - - -

-fmove-nested-loop-invariants-outer ✓ ✓ ✓ ✓ -

-fnamed-alias - - - ✓ ✓

-fnamed-noalias ✓ ✓ ✓ - -

-fouterloop-unroll ✓ ✓ - - -

-freciprocal-math ✓ ✓ ✓ - -

-freplace-loop-equation ✓ - - - -

-fstrict-aliasing ✓ ✓ ✓ - -

-fthis-pointer-alias - - - ✓ ✓

-fthis-pointer-noalias ✓ ✓ ✓ - -

Chapter3 Compiler Options

- 39 -

Option Name -O4 -O3 -O2 -O1 -O0

-msched-none - - - - ✓

-msched-block ✓ ✓ ✓ ✓ -

-mvector ✓ ✓ ✓ ✓ -

-mvector-dependency-test ✓ ✓ ✓ - -

-mvector-fma ✓ ✓ ✓ - -

-mvector-merge-conditional ✓ ✓ - - -

Chapter4 Compiler Directives

- 40 -

Chapter4 Compiler Directives

This chapter describes the compiler directive of C/C++ compiler. Its format is as

follows.

Format:

#pragma _NEC directive-name [clause]

[no]advance_gather

Allows [Disallows] motion of vector gather instructions in the following loop so

that they can be started as advance as possible.

always_inline

A function which includes this directive should be always inlined. This directive

must be specified in a called function. A function call which noinline is effective is

never inlined even if the called function includes this directive. -On[n=2,3,4], -

finline-functions, -fopenmp, or -mparallel is needed to enable this directive.

[no]assoc

Allows [Disallows] associative transformation in which the order of operations may

be different from the original.

[no]assume

Allows [Disallows] the use of an array declaration to assume the loop iteration

count.

atomic

Specifies that the expression in the statement immediately after atomic is a macro

operation which is one of x binop=expr, x++, ++x, x-- or --x. See 7.1.5 Forced

Loop Parallelization for details.

cncall

Allows parallelization of a loop which includes function calls.

collapse

Allows parallelization of a loop which includes user defined function calls.

Chapter4 Compiler Directives

- 41 -

[no]concurrent

Allows [Disallows] automatic parallelization of the following loop. -mparallel must

be effective. The following schedule-clause whose functionality is the same as

OpenMP can be specified.

schedule(static [,chunk-size])

schedule(dynamic [,chunk-size])

schedule(runtime)

[no]dependency_test

Allows [Disallows] the conditional vectorization by dependency-test.

forced_collapse

Collapses a nested loop forcibly. The user have to guarantee that the loop collapse

does not give unexpected result, incorrect result etc.

gather_reorder

Allows the instruction reordering on the assumption that vector loads and vector

stores with non-linear subscripts appearing in the following loop do not overlap

each other.

[no]inline

A function call in a following statement, a compound statement, an iteration

statement, or a selection statement is [not] chosen as a candidate for inlining. -

On[n=2,3,4], -finline-functions, -fopenmp, or -mparallel is needed to enable

these directive.

inline_complete

Same as inline. But, if the inlined function includes a function call, the called

function is chosen as a candidate for inlining. The inlining applied until there is no

function calls if possible. -On[n=2,3,4], -finline-functions, -fopenmp, or -

mparallel is needed to enable this directive.

[no]inner

Allows [Disallows] parallelization of the innermost loop. When it is specified to the

innermost loop, it is effective.

Chapter4 Compiler Directives

- 42 -

[no]interchange

Allows [Disallows] loop interchanging.

ivdep

Regards the unknown dependency as vectorizable dependency during the

automatic vectorization. An execution result can be incorrect by vectorizing the

loop which is impossible to be vectorized.

[no]list_vector

Allows [Disallows] vectorization of the statement in a loop when an array element

with a vector subscript expression appears on both the left and right sides of an

assignment operator.

loop_count(n)

Assumes loop iteration count as n when compiler cannot determine the count by

loop controlling expression.

[no]loop_count_test

Allows [Disallows] the conditional vectorization by loop-iteration-count-test.

[no]lstval

loop transformation which does not guarantee the values of the variables in the

loop after the loop has been processed.

move / move_unsafe / nomove

move

Allows the loop invariant motion under if-condition.

move_unsafe

Allows the loop invariant motion under if-condition. The unsafe codes which

may cause any side effects are moved.

nomove

Disallows the loop invariant motion under if-condition.

nofma

Disallows to use vector fused-multiply-add instruction in the loop.

Chapter4 Compiler Directives

- 43 -

nofuse

Disallows the loop fusion with the previous loop.

nosync

Parallelizes the loop ignoring unknown dependencies when the array elements in

the loop have unknown dependencies.

options “compiler-option [compiler-option]...”

Specify the compiler options by options directive in the same way as on a

command line.

Rules

‒ The options directive must be specified at the top of your source program.

‒ Two or more options directives can be specified in succession.

‒ Blank line, comment line, #line and #ident can be written before and between

options directive.

‒ The options directive can be specified in the file included by #include at the

top of your source program.

Remarks:

‒ An option directive line cannot be continued.

‒ The directory specified by -I in options directive is not searched for reading

options directive.

‒ The upper limits of nesting level of files included by #include is 1000.

‒ The compiler options that control linking or compiler environment cannot be

specified. See “3.15 Compiler options which cannot specify by options

directive”.

‒ When -fopenmp, -mparallel and/or –ftrace are specified by options directive,

they must be specified at linking.

outerloop_unroll(n) / noouterloop_unroll

outerloop_unroll(n)

Allows outer loop unrolling. The unroll time becomes a power of 2 that is less

than or equal to n.

Chapter4 Compiler Directives

- 44 -

noouterloop_unroll

Disallows outer loop unrolling.

[no]packed_vector

Allows to use packed vector instruction in the loop.

parallel for

Applies forced loop parallelization to the loop immediately after this directive. The

user must check the validity of the operation when the loop is parallelized. See

7.1.5 Forced Loop Parallelization for details.

pvreg(array-name)

Assign a vector register forcedly to the array “array-name” in this routine. The

array must satisfy the following conditions.

‒ Local array

‒ The type of array must be one of int, unsigned int, or float.

‒ One-dimensional array

‒ The number of the array elements is less than or equal to the maximum packed

vector length (=512).

‒ They must be referenced in the packed vectorized loops.

‒ Their subscript expressions must be the same in all loops.

‒ The array specified by vreg directive cannot be specified by pvreg directive.

retain(array-name)

Sets higher priority to array “array-name” to retain on LLC (Last-Level Cache) in

the vectorized loop immediately after this directive.

select_concurrent

Choose the following loop rather than other loops in a nested loop when applying

automatic parallelization.

Note Please specify -mretain-list-vector or -mretain-none when you use this

directive.

Chapter4 Compiler Directives

- 45 -

select_vector

Choose the following loop rather than other loops in a nested loop when applying

automatic vectorization.

shortloop

Vectorizes a loop as a short-loop. Compiler assume the iteration count would be

less than or equal to the maximum vector register length (=256) when the

iteration count is unknown.

[no]shortloop_reduction

Allows [Disallows] the conditional vectorization by iteration count test for a

reduction loop.

[no]sparse

sparse

Assumes that the number of mathematical function calling under a conditional

expression is only a small number of the total iterations at vectorization.

nosparse

Assumes that the number of mathematical function calling under a conditional

expression is a large number of the total iterations at vectorization.

unroll(n) / nounroll

unroll(n)

Allows loop unrolling. The unroll time is n.

nounroll

Disallows loop unrolling.

unroll_complete

Allows loop expansion (complete loop unrolling) of a loop whose iteration count is

constant and can be calculated at the compilation.

In order to calculate the number of iterations at compile time, the loop must be of

the following form. varN(N=1,2,...) are assumed to be variables. They shall not be

defined in the loop. Furthermore, the types of varN and constN must be the same.

When the value of const3 is 1, the ++ and -- operators may be used in

expressions that update the rightmost var1.

Chapter4 Compiler Directives

- 46 -

 for (var1 = const1; var1 <= const2; var1 = var1 + const3)

 for (var1 = const1; var1 < const2; var1 = var1 + const3)

 for (var1 = const1; var1 >const2; var1 = var1 - const3)

 for (var1 = const1; var1 >= const2; var1 = var1 - const3)

 for (var1 = var2 + const1; var1 <= var2 + const2; var1 = var1 + const3)

 for (var1 = var2 + const1; var1 < var2 + const2; var1 = var1 + const3)

 for (var1 = var2 + const1; var1 > var2 + const2; var1 = var1 - const3)

 for (var1 = var2 + const1; var1 >= var2 + const2; var1 = var1 - const3)

 for (var1 = var2 - const1; var1 <= var2 - const2; var1 = var1 + const3)

 for (var1 = var2 - const1; var1 < var2 - const2; var1 = var1 + const3)

 for (var1 = var2 - const1; var1 > var2 - const2; var1 = var1 - const3)

 for (var1 = var2 - const1; var1 >= var2 - const2; var1 = var1 - const3)

Remark: unroll_completely can be used as an alias directive name.

[no]vector

Allows [Disallows] automatic vectorization of the following loop.

vector_threshold(n)

Specifies the minimum loop iteration count for vectorization of the following loop.

[no]verror_check

[Not] Checks the value ranges of arguments in the mathematical functions in the

vectorized version.

 [no]vob

Disallows [Allows] a scalar load, a scalar store or a vector load which is executed

after the loop immediately after this directive to overtake the vector store in the

loop.

[no]vovertake

Allows [Disallows] all vector stores in the loop are over-taken by the subsequent

scalar load, scalar store or vector load.

Chapter4 Compiler Directives

- 47 -

‒ An execution result becomes incorrect, if there actually is overlap of areas

between an array assignment statement or vector-storing in the loop and

scalar-loading, scalar-storing, vector-loading in the loop or behind the loop.

‒ When it is specified to an outer-loop, it is not effective in the inner loops.

vreg(array-name)

Assign a vector register forcedly to the array “array-name” in this routine. The

array must satisfy the following conditions.

‒ Local array

‒ The type of array must be one of int, unsigned int, long, unsigned long,

long long, unsigned long long, float, or double.

‒ One-dimensional array

‒ The number of the array elements is less than or equal to the maximum vector

length (=256).

‒ They must be referenced in the vectorized loops.

‒ Their subscript expressions must have the same subscript values in all loops.

‒ The array specified by pvreg directive cannot be specified by vreg directive.

[no]vwork

Allows [Disallows] partial vectorization using loop division. When novwork is

specified, an outer loop or a loop that contains a nonvectorizable part becomes

nonvectorizable as a whole.

Chapter5 Optimization and Vectorization

- 48 -

Chapter5 Optimization and Vectorization

This chapter describes optimization and automatic vectorization which are useful in

making user programs execute quickly.

5.1 Code Optimization

The code optimization eliminates unnecessary operations by analyzing program

control and data flow. Where possible, it minimizes the operations involved in a loop

and replaces them with equivalent faster operations.

5.1.1 Optimizations

The C/C++ compiler performs the following code optimizations. The parenthesis

indicates the options to enable the individual optimizations.

‒ Common expression elimination (-O[n] (n=1,2,3,4))

‒ Moving invariant expressions under a conditional expression outside a loop (-O[n]

(n=1,2,3,4), -fmove-loop-invariants, -fmove-loop-invariants-unsafe)

‒ Simple assignment elimination (-O [n] (n=1,2,3,4))

‒ Deletion of unnecessary codes (-O [n] (n=1,2,3,4))

‒ Exponentiation optimization (-O [n] (n=1,2,3,4))

‒ Converting division to equivalent multiplication (-O[n](n=2,3,4), -freciprocal-

math)

‒ Loop fusion (-O[n] (n=3,4))

‒ Ignoring of volatile-qualifier (-O[n](n=4), -fignore-volatile)

‒ Compile-time computation of constant expressions and type conversions (-O[n]

(n=1,2,3,4))

‒ Optimization of complex number computations (-O[n](n=1,2,3,4))

‒ Removal of unary minus (-O[n] (n=1,2,3,4))

‒ Optimization of branching (-O[n] (n=1,2,3,4))

‒ Strength reduction (-O[n] (n=1,2,3,4))

‒ Removal of an unnecessary instruction to guarantee the last value (-O[n]

(n=1,2,3,4))

Chapter5 Optimization and Vectorization

- 49 -

‒ In-line expansion of Intrinsic functions (-O[n] (n=1,2,3,4))

‒ Optimizing by Instruction scheduling (-msched-keyword)

5.1.2 Side Effects of Optimization

 Common expression elimination or code motion may change the points where a

calculation is performed. The number of times a calculation is performed also

changes the points where errors occur and the number of error occurrences, as

compared with the not-optimized object code.

 By moving invariant expressions under a conditional expression outside the loop,

expressions which should not be executed are always executed. Therefore an

unexpected error and an arithmetic exception may occur.

 When exponentiation optimization is effective, an exception is not detected even if

underflow exceptions occur.

 Converting division to equivalent multiplication normally causes a slight error in

the result. Although this error can usually be ignored in floating point arithmetic, it

may change the result if floating point arithmetic operations are converted to

integer arithmetic operations. This conversion can be stopped and avoided by

compiler option.

 Optimization by instruction scheduling may produce the following side effect. If a

calculation to be executed only when a certain condition is satisfied is moved

beyond basic blocks, and it is always executed, an error which should not occur

may occur. Also remarkably increases compile time and memory used by the

compiler.

5.2 Vectorization Features

5.2.1 Vectorization

Variables and each element of an array are called scalar data. An orderly arranged

scalar data sequence such as a line, column, or diagonal of a matrix is called vector

data.

Vectorization is the replacement of scalar instructions with vector instructions. In

automatic vectorization, the compiler analyzes the source code to detect parts that

can be executed by vector instructions.

Automatic vectorization is performed when -O[n] (n=1,2,3,4) is valid.

Chapter5 Optimization and Vectorization

- 50 -

The compiler option which controls this vectorization is -mvector.

The compiler directive option which controls this vectorization is [no]vector.

5.2.2 Partial Vectorization

If a vectorizable part and an unvectorizable part exist together in a loop, the

compiler divides the loop into vectorizable and unvectorizable parts and vectorizes

just the vectorizable part. This vectorization is called partial vectorization.

This vectorization is performed when -O[n] (n=1,2,3,4) is valid.

The compiler option which suppress this vectorization is -mwork-vector-kind=none.

The compiler directive option which controls this vectorization is [no]vwork.

5.2.3 Macro Operations

Although patterns like the following do not satisfy the vectorization conditions for

definitions and references, the compiler recognizes them to be special patterns and

performs vectorization by using proprietary vector instructions.

This vectorization is performed when -O[n] (n=1,2,3,4) is valid.

 Sum or inner product

S = S ± exp (exp: An expression)

A sum or inner product that consists of multiple statements is also vectorized.

t1 = S ± exp1 (expi: An expression)

t2 = t1 ± exp2

 ...

S = tn ± expn

The compiler option which controls this vectorization is -mvector-reduction.

 Product

S = S * exp (exp: An expression)

A product that consists of multiple statements is also vectorized.

t1 = S * exp1 (expi: An expression)

t2 = t1 * exp2

 ...

S = tn * expn

The compiler option which controls this vectorization is -mvector-reduction.

Chapter5 Optimization and Vectorization

- 51 -

 Iteration

a[i] = exp1 ± a[i-1]; (expi: An expression)

a[i] = exp1 * a[i-1];

a[i] = exp1 ± a[i-1] * exp2;

a[i] = (exp1 ± a[i-1]) * exp2;

An iteration consists of multiple statements and is also vectorized.

t = exp1 ± a[i-1]; (expi: An expression)

a[i] = t * exp2;

The compiler option which controls this vectorization is -mvector-iteration and

-mvector-iteration-unsafe.

 Maximum values and minimum values

‒ Finding the maximum or minimum value only

Example:

for (i = 0; i < n; i++) {

 if (a[i] > amx)

 amx = a[i];

}

‒ Finding the maximum or minimum value and the value of its subscript

expression

Example:

for (i = 0; i < n; i++) {

 if (a[i] > amx) {

 amx = a[i];

 ix = i;

 }

}

‒ Finding the maximum or minimum value, the values of its subscript

expressions, and other values

Chapter5 Optimization and Vectorization

- 52 -

Example:

for (j = 0; j < n; j++) {

 for (i = 0; i < n; i++) {

 if (a[i][j] > amx) {

 amx = a[i][j];

 ix = i;

 iy = j;

 }

 }

}

 Search

A loop that searches for an element that satisfies a given condition is vectorized.

Example:

for (i = 0; i < n; i++) {

 if (a[i] == 0)

 break;

}

All of the following conditions must be satisfied.

‒ This is the innermost loop.

‒ There is just one branch out of the loop.

‒ The condition for branching out of the loop depends on repetition of the loop.

‒ There must not be an assignment statement to an array element or an object

pointed to by a pointer expression before the branch out of the loop.

‒ All basic conditions for vectorization are satisfied except for not branching out

of the loop.

 Compression

A loop for compressing elements that satisfy a given condition is vectorized.

Example:

j = 0;

for (i = 0; i < N; i++) {

 if (x[i] >= 0.0) {

 j = j + 1;

 y[j] = z[j];

 }

}

Chapter5 Optimization and Vectorization

- 53 -

 Expansion

A loop for expanding values to elements that satisfy a given condition is

vectorized.

Example:

j = 0;

for (i = 0; i < N; i++) {

 if (x[i] >= 0.0) {

 j = j + 1;

 z[j] = y[j];

 }

}

5.2.4 Conditional Vectorization

The compiler generates a variety of codes for a loop, including vectorized codes and

scalar codes, as well as special codes and normal codes. The type of code is selected

by run-time testing at execution when conditional vectorization is performed. Run-

time testing are following.

‒ Data dependency

‒ Loop iteration count

‒ Loop iteration for reduction operation

This vectorization is performed when -O[n] (n=2,3,4) and –mvector is valid.

The compiler option which controls this vectorization is following.

‒ Conditional vectorization with data dependency is -mvector-dependency-test.

‒ Conditional vectorization with loop iteration count is -mvector-loop-count-test.

‒ Conditional vectorization with loop iteration for reduction operation is -mvector-

shortloop-reduction.

The compiler directive option which controls this vectorization is following.

‒ Conditional vectorization with data dependency is dependency_test.

‒ Conditional vectorization with loop iteration count is loop_count_test.

‒ Conditional vectorization with loop iteration for reduction operation is

[no]shortloop_reduction.

5.2.5 Outer Loop Strip-mining

When the iteration count of a loop is greater than the maximum-vector-register-

Chapter5 Optimization and Vectorization

- 54 -

length (=256), the compiler puts a loop around the vector loop, which splits the total

vector operation into "strips" so that the vector length will not be exceeded.

When there are references of array elements whose subscript expressions do not

include the induction variables of the outer loop in the inner loop of a tightly nested

loop, the inner loop is split into a strip loop and the strip loop is moved outside of the

outer loop so that invariants can be kept in the vector register.

This optimization is performed when -O[n] (n=3,4) is valid.

The compiler option which controls this vectorization is -floop-strip-mine.

Note In tightly nested loops, the loops nested together must look as shown in

Example 1. In this case, there is no executable statement between the inner

and outer loops.

Example: Tightly nested loop

for (k = 0; k < 10; k++) {

 for (j = 0; j < 20; j++) {

 for (i = 0; i < 30; i++) {

 a[k][j][i] = b[k][j][i] * c[k][j][i];

 }

 }

}

Example: Not tightly nested loop

for (k = 0; k < 10; k++) {

 for (j = 0; j < 20; j++) {

 for (i = 0; i < 30; i++) {

 a[k][j][i] = b[k][j][i] * c[k][j][i];

 }

 x[j][k] = y[j][k] + z[j][k];

 }

}

for (k = 0; k < 10; k++) {

 for (j = 0; j < 20; j++) {

 for (i = 0; i < 30; i++) {

 a[k][j][i] = b[k][j][i] * c[k][j][i];

 }

 for (i = 0; i < 30; i++) {

 s[k][j][i] = t[k][j][i] * u[k][j][i];

 }

 }

}

Chapter5 Optimization and Vectorization

- 55 -

5.2.6 Short-loop

A loop code which does not have "terminate loop?" is generated for a loop whose

iteration count is less than or equal to the maximum-vector-register-length (=256).

This kind of loop is called a "short-loop".

This optimization is performed when -O[n] (n=1,2,3,4) is valid.

The compiler directive option which controls this optimization is shortloop.

5.2.7 Packed vector instructions

A packed data is packed two 32bit data in each element of a vector register. Packed

vector instructions calculates a packed data. Packed vector instructions can calculate

twice the data of vector instructions by one instruction.

The compiler option which controls using packed vector instructions is -mvector-

packed.

The compiler directive option which controls using packed vector instructions is

[no]packed_vector.

5.2.8 Other

Deletion of common expression, deletion of simple assignments, deletion of

unnecessary codes, conversion of division to equivalent multiplication and removal of

an unnecessary instruction to guarantee the last value are also performed for

vectorized codes.

Additionally the following optimizations are performed for vectorized codes. The

parenthesis indicates the options to enable the individual optimizations.

‒ Extracting scalar operations (-O[n] (n=1,2,3,4))

‒ Vectorization by Statement Replacement (-O[n] (n=1,2,3,4))

‒ Loop collapse (-O[n] (n=3,4), -floop-collapse)

‒ Outer loop unrolling (-O[n] (n=3,4), -fouterloop-unroll)

‒ Loop rerolling (-O[n] (n=3,4))

‒ Recognization matrix multiply loop (-O[n] (n=3,4), -fassociative-math,

-fmatrix-multiply)

‒ Loop expansion (-O[n] (n=2,3,4), -floop-unroll-complete=m)

Chapter5 Optimization and Vectorization

- 56 -

5.2.9 Remarks on Using Vectorization

 The execution result of the summation, the inner product, the product and the

iteration may differ before and after vectorization because the order of their

operations may differ before and after vectorization.

 The 8 byte integer iteration is vectorized by using a floating-point instruction. So

when the result exceeds 52 bits or when a floating overflow occurs, the result

differs from that of scalar execution.

 To increase speed, the vector versions of mathematical functions do not always

use the same algorithms as the scalar versions.

 Optimization techniques, such as conversion of division to multiplication, are

applied differently.

 Optimization techniques, such as reordering of arithmetic operations, are applied

differently.

 The detection of errors and arithmetic exceptions by intrinsic functions may differ

before and after vectorization.

 When the compiler checks whether vectorization would preserve the proper

dependency between array definitions and references, it assumes that all values of

subscript expressions are within the upper and lower limits of the corresponding

size in the array declaration. If a loop violating this condition is vectorized, correct

results are not guaranteed.

 When a loop containing if statement, switch statement, or a conditional operator

is vectorized, arithmetic operations are carried out only for the part that

conditionally requires them, but arrays are referenced as many times as the

iteration count called for by the loop structure and array elements that should not

be referenced are referenced. Unless the arrays have enough area reserved to

satisfy the iteration count, memory access exceptions can occur as a result.

 When a loop containing a branch out of the loop is vectorized, arithmetic

operations are carried out unconditionally for the part before the branch point, as

many times as the iteration count called for by the loop structure. Therefore,

arithmetic operations that should not be carried out are carried out, or data that

should not be referenced are referenced. These events can cause errors or

exceptions.

Chapter5 Optimization and Vectorization

- 57 -

 The alignment size of vectorizable data must be same as size of the data type (4

bytes or 8 bytes). When a loop containing array elements or objects pointed to by

the pointer expressions which do not satisfy the vectorizable alignment conditions

is vectorized, errors or exceptions may occur. In such a case, specify #pragma

_NEC novector before the loop or

-mno-vector to stop vectorization. The following data may not satisfy the

vectorizable alignment conditions.

‒ Arguments

‒ Objects pointed to by the pointer

The compiler assumes these data to satisfy the alignment condition, and

vectorizes the loop.

Chapter6 Inlining

- 58 -

Chapter6 Inlining

6.1 Automatic Inlining

When automatic inlining is enabled, the compiler chooses the appropriate functions

by analyzing the source files, and inlines them automatically.

The compiler option which controls this optimization is -finline-functions.

6.2 Explicit Inlining

6.2.1 Description

When using the explicit inlining, an inlining directive which controls inlining must be

specified before a statement, a compound statement, an iteration statement, or a

selection statement including inlined function calling. The compiler option

-finline-functions is not needed, but -On[n=2,3,4], -finline-functions, -fopenmp, or

-mparallel is needed.

The compiler has the following directives for explicit inlining.

 always_inline

A function which includes this directive should be always inlined. This directive

must be specified in a called function. A function call has noinline is never inlined

even if the called function includes this directive.

 inline

A function call in a following statement, a compound statement, an iteration

statement, or a selection statement is chosen as a candidate for inlining.

 inline_complete

Same as inline. But, if the inlined function includes a function call, the called

function is chosen as a candidate for inlining. The inlining applied until there is no

function calls if possible.

 noinline

A function call in a following statement, a compound statement, an iteration

statement, or a selection statement is never inlined. The function which includes

always_inline is not inlined, too.

Chapter6 Inlining

- 59 -

6.2.2 Specifying Inline Directive

(1) Called function

always_inline must be specified in a called function.

double small_func(double a)

{

#pragma _NEC always_inline

 return sqrt(a);

}

(2) Statement

inline / inline_complete / noinline affect all function calls in a following

statement.

#pragma _NEC inline

 x = func1(a) + func2(a)

 x += func3(a);

func1() and func2() are candidates for inlining, but func3() is not.

(3) Block

inline / inline_complete / noinline affect all function calls in a following block.

#pragma _NEC inline

 {

 func1();

 func2();

 }

func1() and func2() are candidates for inlining.

(4) Loop

inline / inline_complete / noinline affect all function calls in a following for loop,

while loop, or do-while loop.

#pragma _NEC inline

 for (i = ifunc(); i < 1000; i++) {

 z[i] = func1();

 w[i] = func2();

 }

ifunc(), func1(), and func2() are candidates for inlining.

(5) if-statement and switch-statement

Chapter6 Inlining

- 60 -

inline / inline_complete / noinline affect all function calls in a following if

statement, switch statement, and their sub-statements.

#pragma _NEC inline

 if (ifunc1()) {

 x = func1();

 }

 else if (ifunc2()) {

 x = func2();

 }

 else {

 x = func3();

 }

ifunc1(), ifunc2(), func1(), func2(), and func3() are candidates for inlining.

6.2.3 Remarks

 always_inline, inline, inline_complete, and noinline are effective when -On

[n=2,3,4], -finline-functions, -fopenmp, or -mparallel are enabled.

 always_inline is ignored when both __attribute__((noinline)) and always_inline

are specified.

 The function definition which includes always_inline is not removed. Be careful

that the function definition is removed when __attribute__((always_inline)) is

specified.

 A function call which noinline is effective is not inlined even if the called function

includes always_inline.

 A block includes a block and each block has opposite directive, the immediately

before directive is effective for the inner block.

#pragma _NEC inline

 {

 x = func1(); // Candidate for inlining

#pragma _NEC noinline

 {

 y = func2(); // Not inlined

 }

 }

Chapter6 Inlining

- 61 -

 A function call in an initializer in a declaration is not inlined even if inline is

effective.

6.3 Cross-file Inlining

The compiler inlines functions included in source files other than a source file of the

compilation target. This inlining is called cross-file inlining.

Cross-file inlining is enabled when automatic inlining is enabled and source files to

search for functions to inline are specified.

The following examples show how to specify the source files.

 A source file is specified.

$ ncc -c -finline-functions -finline-file=sub.c call.c

 A source file and all input source files are specified.

$ ncc -c -finline-functions -finline-file=sub2.c:all call.c sub.c

 All source files under a directory are specified.

$ ls dir

sub.c sub2.c sub3.c

$ ncc -c -finline-functions -finline-directory=dir sub.c

 All source files under a directory except for a specific source file are specified.

$ ls dir

sub.c sub2.c sub3.c

$ ncc -c -finline-functions -finline-directory=dir -fno-inline-file=sub2.c

call.c

IL files can be also specified as files to search. Compilation time can become shorter

when you specify IL files instead of source files.

 An IL file is generated and specified.

$ ncc -mgenerate-il-file sub.c

$ ncc -c -finline-functions -mread-il-file sub.cil main.c

6.4 Inline Expansion Inhibitors

Expansion inhibitors are used when one of the following conditions occurs.

Chapter6 Inlining

- 62 -

‒ The function to be inlined cannot be located.

‒ The arguments used in the calling sequence do not match the arguments in the

function to be inlined.

‒ There is a conflict between unions of the calling function and the function to be

inlined.

‒ A function name referenced in the function to be inlined conflicts with a

nonfunction name used in the calling function.

‒ The function to be inlined contains OpenMP directives.

‒ The function to be inlined contains a recursive call of it.

6.5 Notes on Inlining

 If inlining is applied to too many functions in a program, the volume of the codes

may increase, causing the instruction cache to overflow and the performance of

the program to decrease. Choose the functions to be inlined carefully.

 A function called recursively cannot be inlined.

 In cross-file inlining, if large or many programs are searched, the compilation time

can become long or memory used at the compilation may increase.

 In cross-file inlining, whether routines are inlined or not may change by the

compilation order, because the compiler does not search the source files and

continues the compilation when modules referred in programs of source files

specified by -finline-file or -finline-directory are not found. Specify -finline-

abort-at-error when you want to stop the compilation at the case.

 Cross-file inlining can be used only in C language.

Chapter7 Parallelization

- 63 -

Chapter7 Parallelization

7.1 Automatic Parallelization

7.1.1 Description

The compiler automatically detects the parallelism of loop iterations and statement

groups, transforms a program to enable it to be executed in parallel, and generates

parallelization control structures when automatic parallelization is enabled.

The compiler option which controls this optimization is -mparallel.

7.1.2 Conditional Parallelization Using Threshold Test

Parallelization can slow down execution if the loop contains insufficient work to

compensate for the added overhead.

If the loop nest iteration count cannot be determined at compilation, the automatic

parallelization function generates codes to execute a threshold test at run time. If it

is calculated at run time that the loop has a lot of work, the loop is executed in

parallel mode. Otherwise the loop is executed serially. This parallelization is called

parallelization using a workload threshold test.

Automatic parallelization adjusts the threshold value based on the iteration count of

the loop and the number/type of operations in each loop. At run time, the iteration

count of the loop and the threshold value are compared. If the iteration count is

larger than the threshold value, the parallelized loop is executed. Otherwise, the

non-parallelized loop is executed.

The compiler option which controls this optimization is -mparallel-threshold=n.

7.1.3 Conditional Parallelization Using Dependency Test

If a loop is suitable for parallelization except that it is potentially dependent,

automatic parallelization may generate an if-then block in the same way as for

parallelization using a threshold test. When evaluated at run time, this test

determines whether the loop can execute correctly on multiple tasks, or must be run

on a single task. For single loops and double-nested loops, this test is combined with

a threshold test.

7.1.4 Parallelization of inner Loops

When no outer loop can be parallelized, inner loops are analyzed for parallelization

Chapter7 Parallelization

- 64 -

operations. However, inner loops that clearly exceed the threshold value are

automatically parallelized even if inner loops are not requested.

The compiler option which controls this optimization is -mparallel-innerloop.

7.1.5 Forced Loop Parallelization

#pragma _NEC parallel for parallelizes a for-loop that is not parallelized by the

compiler but the user knows that it can be parallelized. The user must check the

validity of the operation when the loop is parallelized.

The for-statements must be in the form of "for (init-expr; var relational-op b; incr-

expr)". The terms of the directive must fulfill the following conditions:

‒ init-expr must be one of "var=lb" or "integer-type var=lb".

‒ incr-expr must be one of ++var, var++, --var, var--, var+=incr, var-=incr,

var=var+incr or var=var-incr.

‒ var is a scalar variable whose type is int, long, long int, long long or long

long int.

‒ relational-op is one of <, <=, >=, > or !=.

‒ lb, b and incr must be loop invariant expressions.

The following schedule-clause whose functionality is the same as OpenMP can be

specified.

schedule(static [,chunk-size])

schedule(dynamic [,chunk-size])

schedule(runtime)

Additionally, private-clause whose functionality is the same as OpenMP can be

specified.

private(scalar-variable[,scalar-variable]...)

#pragma _NEC atomic must be specified when a statement immediately after

atomic is a macro operation which is one of x binop=expr, x++, ++x, x-- or --x.

The statement must fulfill the following conditions:

‒ x must be a scalar variable which can be stored as a value.

‒ expr must be a scalar expression in which x does not appear.

‒ binop must be one of +, *, -, /, &, ^, |, << or >>. It must not be overloaded.

The following code is an example inserting forced-loop parallelization directives.

Chapter7 Parallelization

- 65 -

Example:

double sub (double *a, int n)

{

 int i, j;

 double b[n];

 double sum = 1.0;

 ...

#pragma _NEC parallel for schedule(dynamic,16)

 for (j = 0; j < n; j++) {

 for (i = 0; i < n; i++) {

#pragma _NEC atomic

 sum += a[j] + b[i];

 }

 }

 ...

 return sum;

}

7.2 OpenMP Parallelization

7.2.1 Using OpenMP Parallelization

Specify -fopenmp to use OpenMP parallelization at compilation and linking. See the

OpenMP specifications for OpenMP directives and remarks.

Example: Inserting an OpenMP directive

double sub (double *a, int n)

{

 int i, j;

 double b[n];

 double sum = 1.0;

 ...

#pragma omp parallel for reduction(+:sum)

 for (j = 0; j < n; j++) {

 for (i = 0; i < n; i++) {

 sum += a[j] + b[i];

 }

 }

 ...

 return sum;

}

7.2.2 OpenMP 5.0 Parallelization

The following features of OpenMP Version 5.0 are supported.

Chapter7 Parallelization

- 66 -

 loop construct

 parallel loop construct

 parallel master construct

 OMPT interface

7.2.3 Extensions on OpenMP Parallelization

The environment variables of OpenMP Version 4.5 whose name are prefixed with

“VE_” are also supported. If both environment variables with and without “VE_” are

specified, the value which is specified by the environment variable prefixed by “VE_”

is applied.

Example: Specify the environment variables (applied VE_OMP_NUM_THREADS)

$ export OMP_NUM_THREADS=4

$ export VE_OMP_NUM_THREADS=8

7.2.4 Restrictions on OpenMP Parallelization

The features of OpenMP Version 5.0 except for listed in section 7.2.2 is restricted.

The following features of OpenMP Version 4.5 is restricted.

 All directives/clauses described in "Device Constructs"

Compiler does not generate any device code and target regions run on the host

 All syntax described in “Array Sections” except in reduction clause

 All directives/clauses described in “Cancellation Constructs”

 All directives/clauses described in “Controlling OpenMP Thread Affinity”

 distribute, target, teams

distribute, target and teams in directives for combined construct and all clauses

related to them are ignored.

Example : “target parallel for” is treated as “parallel for”.

 taskloop constructs

 parallel for simd construct and for simd construct

Treated as parallel for and for respectively

 simd construct

If saflen clause or simdlen clause is not specified, treated as ivdep directive.

 declare reduction construct

Chapter7 Parallelization

- 67 -

 allocate clause

 bind clause

 if clause with directive-name-modifier

 in_reduction,task_reduction clause

 ordered clause with parameter

 schedule with modifier

 depend clause with array variable

 depend clause with source or sink of dependence-type

 critical construct with hint

 atomic construct with seq_cst

 linear clause with modifier

 nested parallelism

7.3 Threads

7.3.1 Set and Get Number of Threads

In automatic parallelized programs, parallel processing is realized based on OpenMP

parallel functions. Therefore, you can set the number of threads at execution by the

environment variable OMP_NUM_THREADS or VE_OMP_NUM_THREADS in

automatic parallelized and OpenMP parallelized programs.

OpenMP runtime library routines can set and get the number of threads at execution

in automatic parallelized programs.

extern void omp_set_num_threads(int num_threads); // Set number of threads

extern int omp_get_num_threads(void); // Get number of threads

extern int omp_get_max_threads(void); // Get upper bounds on number of threads

extern int omp_get_thread_num(void); // Get thread number

The number of threads at execution is the same as the number of available VE cores

if it is not set by the environment variable OMP_NUM_THREADS or

VE_OMP_NUM_THREADS before the program execution.

7.3.2 Thread Creation and Destroy

In automatic parallelized and OpenMP parallelized programs, the threads are created

Chapter7 Parallelization

- 68 -

before the routine main(), and they are destroyed at the program termination.

The following figure shows how threads are created and destroyed. Assume that the

environment variable OMP_NUM_THREADS is set to 4.

(a) Three idle threads are created by master thread (#0) before main() starts. The

idle threads are spin-waiting and wait for the task to be assigned by the master

thread.

(b) Tasks are assigned to the threads by master task at the entry of parallel region,

and it is executed in four threads. At the end of parallel region, three threads are

spin-waiting and wait for the task to be assigned by the master thread again.

(c) At the calling of omp_set_num_threads(2), all idle threads are destroyed and set

ICV to 2.

(d) A thread is created at the entry of the next parallel region.

(e) The parallel region is executed in two threads.

(f) The idle thread is destroyed at the end of program execution.

Note When outputting execution analysis information an auto-

main() {

...

#pragma omp parallel

 {

 ...

 }

 ...

 omp_set_num_threads(2);

 ...

#pragma omp parallel

 {

 ...

 }

 ...

}

a) Create threads

d) Create a thread. The number of
threads becomes 2.

f) Destroy an idle thread.

b) Execute in 4 threads

e) Execute in 2 threads

#0 #1 #2 #3

Threads

spin-wait

spin-wait

spin-wait

c) Destroy all idle threads.
 Set ICV to 2.

Set OMP_NUM_THREADS=4

Chapter7 Parallelization

- 69 -

parallelized program using PROGINF and FTRACE, keep the

following in check:

 The number of operations for the spin-waiting of the thread

created before main program starts is added in PROGINF, but

not in FTRACE.

 In PROGINF, the “Vector Operation Ratio” may decrease. This is

due to calculating the displayed value in PROGINF from the

counter of the whole process which includes the number of

operations for the spin-waiting of the thread created before

main program starts.

See the manual ”PROGINF/FTRACE User’s Guide” for the detail of

PROGINF or FTRACE.

7.3.3 Postpone Thread Creation

By default, idle threads are created before the routine main(). It can be change at

the first parallel region by the following compiler option at linking.

$ ncc –fopenmp -mno-create-threads-at-startup –static-nec a.o

$ ncc –mparallel -mno-create-threads-at-startup –static-nec b.o

7.4 Notes on Using Parallelization

 After parallelization, the total CPU time is increased due to the overhead of

parallelization.

 When parallelizing a function that includes function calls, the inside of the called

function must be checked to see if the definition and/or reference of shared data

is valid.

 Automatic parallelization is applied to the loops outside of a parallel region of

OpenMP when -fopenmp and -mparallel are specified at once. If you don't want

to apply automatic parallelization to a routine containing OpenMP directives,

specify -mno-parallel-omp-routine.

Chapter8 Compiler Listing

- 70 -

Chapter8 Compiler Listing

This chapter describes the output lists of the C/C++ compiler.

The compilation list is created in the current directory, under the name "source-file-

name.L".

8.1 Option List

An option list is output when -report-option or -report-all is specified.

Format:

NEC C/C++ Compiler (3.0.7) for Vector Engine Thu Jun 18 10:18:05 2020 (a)

FILE NAME: fft.c (b)

 COMPILER OPTIONS : -report-option (c)

OPTIONS DIRECTIVE: -O4 (d)

PARAMETER :

Optimization Options :

 (e) (f)

-On : 4

-fargument-alias : disable

-fargument-noalias : enable

-fassociative-math : enable

(a) Compiler revision and compilation date

(b) Name of source file

(c) Compiler options which specify by command line

(d) Compiler options which specify by options directive

(e) Compiler option

(f) Value of Compiler option

8.2 Diagnostic List

A diagnostic list is output when -report-diagnostics or -report-all is specified.

8.2.1 Format of Diagnostic List

The format of the diagnostic list is as follows.

Chapter8 Compiler Listing

- 71 -

Format:

NEC C/C++ Compiler (1.0.0) for Vector Engine Wed Jan 17 14:55:20 2018 (a)

FILE NAME: fft.f90 (b)

FUNCTION NAME: FFT_3D (c)

DIAGNOSTIC LIST

 LINE DIAGNOSTIC MESSAGE

 (d) (e) (f)

 7: inl(1222): Inlined

 9: vec(101): Vectorized loop.

(a) Compiler revision and compilation date

(b) Name of source file

(c) Name of function that includes loops or statements corresponding to diagnostic

(d) Line number

(e) Kind of Diagnostic and message number

Kind of Diagnostic is as follows.

vec : Vectorization diagnostic

opt : Optimization diagnostic

inl : Inlining diagnostic

par : Parallelization diagnostic

(f) Diagnostic message

8.2.2 Notes

 A diagnostic message for a statement and a loop in an inlined function is not

output in a diagnostic list for a function that calls the inlined function. Refer to the

diagnostic list for the inlined function when you need to refer to its diagnostic

messages.

8.3 Format List

A format list is output when -report-format or -report-all is specified. The source

lines for each function together with the following information are output to the list.

 The vectorized status of loops.

 The parallelized status of loops.

Chapter8 Compiler Listing

- 72 -

 The status of inline expansion

8.3.1 Format of Format List

The format of the format list is as follows.

NEC C/C++ Compiler (1.0.0) for Vector Engine Wed Jan 17 14:55:16 2018 (a)

FILE NAME: a.c (b)

FUNCTION NAME: func (c)

FORMAT LIST

 LINE LOOP STATEMENT

 (d) (e) (f)

 1: int func(int m, int n)

 2: {

 3: int i,j, a[m][n], b[m][n];

 4: +------> for (i = 0; i < m; i++) {

 5: |V-----> for (j = 0; j < n; j++) {

 6: || a[i][j] = a[i][j] + b[i][j];

 7: |V----- }

 8: +------ }

 9: return a[0][0];

 10: }

(a) Compiler revision and compilation date

(b) Name of source file

(c) Name of function

(d) Line number.

(e) Vectorization and parallelization status of each loop and inlining status of function

calls

(f) Corresponding source file line

8.3.2 Loop Structure and Vectorization/Parallelization/Inlining Statuses

The following examples show how the loop structure and vectorization,

parallelization and inlining statuses are output.

 The whole loop is vectorized.

V------> for (i = 0; i < n; i++) {

|

V------ }

Chapter8 Compiler Listing

- 73 -

 The loop is partially vectorized.

S------> for (i = 0; i < n; i++) {

|

S------ }

 The loop is conditionally vectorized.

C------> for (i = 0; i < n; i++) {

|

C------ }

 The loop is parallelized.

P------> for (i = 0; i < n; i++) {

|

P------ }

 The loop is parallelized and vectorized.

Y------> for (i = 0; i < n; i++) {

|

Y------ }

 The loop is not vectorized.

+------> for (i = 0; i < n; i++) {

|

+------ }

 The nested loops are collapsed and vectorized.

W------> for (i = 0; i < n; i++) {

|*-----> for (j = 0; j < m; j++)

||

|*----- }

W------ }

 The nested loops are interchanged and vectorized.

X------> for (i = 0; i < n; i++) {

|*-----> for (j = 0; j < m; j++) {

||

|*----- }

X------ }

Chapter8 Compiler Listing

- 74 -

 The outer loop is unrolled and inner loop is vectorized.

U------> for (i = 0; i < n; i++) {

|V-----> for (j = 0; j < m; j++) {

||

|V----- }

U------ }

 The loops are fused and vectorized.

V------> for (i = 0; i < n; i++) {

|

| }

| for (i = 0; i < n; i++) {

|

V------ }

 The loop is expanded.

*------> for (i = 0; i < 4; i++) {

|

*------ }

 A character in the 17th column indicates how the line is optimized.

‒ “I” indicates that the line includes a function call which is inlined.

‒ “M” indicates that the nested loop which includes this line is replaced with

vector-matrix-multiply routine.

‒ “F” indicates that a fused-multiply-add instruction is generated for an

expression in this line.

‒ “R” indicates that retain directive is applied to an array in this line.

‒ “G” indicates that a vector gather instruction is generated for an expression in

this line.

‒ “C” indicates that a vector scatter instruction is generated for an expression in

this line.

‒ “V” indicates that vreg directive or pvreg directive is applied to an array in this

line.

Chapter8 Compiler Listing

- 75 -

8.3.3 Notes

 The loop structure or vectorization / parallelization statuses may be incorrect

when a part of the loop is included in a header file.

 The loop structure or vectorization / parallelization statuses may be incorrect

when two or more loops are written in a line.

 The format list of a function is not output when the entry point of the function is

included in a header file.

 When a line after a loop is a pre-processor directive line, it is treated as the end of

the loop as follows.

V------> for (i = 0; i < n; i++) {

|

| }

V------ #if 0

8.4 Optimization List of Each Module

An optimization list of inlining module, vectorization module and code generation

module is output.

8.4.1 Inlining Module

An optimization list of inlining module is output when -report-inline or -report-all is

specified.

Chapter8 Compiler Listing

- 76 -

Format:

NEC C/C++ Compiler (3.1.0) for Vector Engine Thu Sep 17 07:33:16 2020 (a)

FILE NAME: fft.c (b)

FUNCTION NAME: func3 (c)

INLINE LIST

 INLINE REPORT: func3 (fft.c:17)

 (d)

 -> INLINE: func2 (fft.c:19) (e)

 -> NOINLINE: func0 (fft.c:12) (e)

 *** Source for routine not found. (f)

 -> INLINE: func1 (fft.c:13) (e)

(a) Compiler revision and compilation date

(b) Name of source file

(c) Name of procedure

(d) Level of procedures to be inlined from the bottom of the calling tree.

(e) Inlining status of procedure calls

(f) Diagnostic message

8.4.2 Vectorization Module

An optimization list of vectorization module is output when -report-vector or -

report-all is specified.

Format:

Chapter8 Compiler Listing

- 77 -

NEC C/C++ Compiler (3.1.0) for Vector Engine Thu Sep 17 08:10:39 2020 (a)

FILE NAME: vec.c (b)

FUNCTION NAME: func (c)

VECTORIZATION LIST

 LOOP BEGIN: (vec.c:3)

 <Unvectorized loop.> (d)

 LOOP BEGIN: (vec.c:4)

 <Vectorized loop.> (d)

 *** The number of VGT, VSC. : 0, 0. (vec.c:4) (e)

 *** The number of VLOAD, VSTORE. : 1, 1. (vec.c:4) (e)

 LOOP END

 LOOP END

(a) Compiler revision and compilation date

(b) Name of source file

(c) Name of procedure

(d) Vectorization status of each loop

(e) Diagnostic message

8.4.3 Code Generation Module

An optimization list of code generation module is output when -report-cg or -

report-all is specified.

Format:

Chapter8 Compiler Listing

- 78 -

NEC C/C++ Compiler (3.1.0) for Vector Engine Thu Sep 17 08:10:39 2020 (a)

FILE NAME: vec.c (b)

FUNCTION NAME: func (c)

CODE GENERATION LIST

 Hardware registers (d)

 Reserved : 10 [sl fp lr sp s12 s13 tp got plt s17]

 Callee-saved : 16 [s18-s33]

 Assigned

 Scalar registers : 32 [s0-s12 s15-s16 s18-s21 s23-s32 s61-s63]

 Vector registers : 35 [v0 v30-v63]

 Vector mask registers : 0

 VREG directive : 2 [v18-v19]

 Routine stack (e)

 Total size : 256 bytes

 Register spill area : 16 bytes

 Parameter area : 40 bytes

 Register save area : 176 bytes

 User data area : 16 bytes

 Others : 8 bytes

 Note: Total size of Routine stack does not include

 the size extended by alloca() and so on.

 LOOP BEGIN: (vec.c:3)

 LOOP BEGIN: (vec.c:4)

 *** The number of VECTOR REGISTER SPILL (f)

 Total : 14

 Across calls : 11

 Not enough registers : 1

 Over basic blocks : 1

 Others : 1

 *** The number of VECTOR REGISTER RESTORE

 Total : 14

 Across calls : 11

 Not enough registers : 1

 Over basic blocks : 1

 Others : 1

 *** The number of VECTOR REGISTER TRANSFER : 12

 *** The number of SCALAR REGISTER RESTORE

Chapter8 Compiler Listing

- 79 -

 Total : 14

 Across calls : 11

 Not enough registers : 1

 Over basic blocks : 1

 Others : 1

 *** The number of SCALAR REGISTER RESTORE

 Total : 14

 Across calls : 11

 Not enough registers : 1

 Over basic blocks : 1

 Others : 1

 *** The number of SCALAR REGISTER TRANSFER : 21

 LOOP END

 LOOP END

(a) Compiler revision and compilation date

(b) Name of source file

(c) Name of procedure

(d) Number of registers used for each type of register information

Reserved : System reserved registers

Callee-saved : Registers that save across procedure calls

Assigned : Registers assigned to calculations and user data

(e) Stack information

Register spill area : Stack area for register spill

Parameter area : Stack area for parameter area

Register save area : Stack area for register save area

User data area : Stack area for user data area

Others : Others

(f) Cause of register spill, restore and transfer for each loop

Across calls : Because it across procedure calls

Not enough registers : Because the registers are shortage

Over basic blocks : Because it is used across the basic blocks

Others : Others

Chapter9 Programming Notes Depending on the Language Specification

- 80 -

Chapter9 Programming Notes Depending on the

Language Specification

9.1 Builtin Functions

9.1.1 Performance Tuning Support

void __builtin_vprefetch(const void *target, size_t size)

Prefetches specified size of data started from the address target.

9.1.2 Debugging Support

void __builtin_traceback(unsignd long *framepointer)

Outputs traceback information when the environment variable VE_TRACEBACK is

set.

Example:

__builtin_traceback((unsigned long *)__builtin_frame_address(0));

abort();

9.2 Implementation-Defined Specifications

9.2.1 Data Types

9.2.1.1 Size and alignment

The following table shows the data types available in the C/C++ compiler and

their size and alignment. [Unit: Bytes]

Type Size Alignment Description

_Bool 1 1 Available in C.

bool 1 1 Available in C++.

char

signed char

unsigned char

1 1 char means signed char by default.

It can be changed to unsigned char

by -funsigned-char.

short

short int

unsigned short

unsigned short int

2 2

Chapter9 Programming Notes Depending on the Language Specification

- 81 -

Type Size Alignment Description

int

unsigned int

4 4

long

long int

unsigned long

unsigned long int

8 8

long long

long long int

unsigned long

long

unsigned long

long int

8 8

float 4 4 Single-precision real type.

double 8 8 Double-precision real type.

long double 16 16 Quadruple-precision real type.

float _Complex 8 4 Single precision complex type.

double _Complex 16 8 Double precision complex type.

long double

_Complex

32 16 Quadruple precision complex type.

pointer 8 8

enum 4 4 Corresponds with int type.

8 8 Corresponds with long type.

9.2.1.2 Size and alignment of derived type

The derived type is constructed from fundamental types. They are classified into the

array type, structure type, union type, pointer type, and function type in C language.

(1) Array type

 Size

(size-of-the-element) * (number-of-the-elements)

 Alignment

Requires the same size and alignment as the array element.

(2) Structure and union type (including class type)

 Size

Total size of members and the area for their alignment. For unions, the

Chapter9 Programming Notes Depending on the Language Specification

- 82 -

overlapped area of members is not included in the size.

 Alignment

Requires the alignment that has the largest value of the following:

‒ Maximum value of the alignments required by its member variables

‒ 4 bytes

Note The C++ compiler may add some internal data members to C++ language

classes, structures, or unions, in order to implement the C++ language

specification. In this case, their size and alignment may not comply with

the above.

9.2.1.3 Other types

In addition to the above data types, provides the following data types.

(1) size_t

Corresponds with unsigned long.

(2) ptrdiff_t

Corresponds with long. ptrdiff_t is defined in the header <stddef.h> and

<cstddef>.

(3) wchar_t

Corresponds with int.

(4) bit-fields

Specifies number of bits (including a sign bit, if any) to a member of a structure

or union.

9.2.2 Type Conversion

This section explains:

 Integral promotion

 Integral conversion

 Floating-point conversion

 Complex conversion

 Floating-point and integral conversion

Chapter9 Programming Notes Depending on the Language Specification

- 83 -

 Complex and integral conversion

 Complex and floating-point conversion

 Arithmetic conversion

9.2.2.1 Integral Promotion

The integer of a given type can be converted into a different type that has a wider

range than the source type. Such conversion is called integral promotion.

Integral promotion is performed according to the following rules:

 If the source value can be represented as int, convert it into int.

 If it cannot be represented as int but as unsigned int, convert it into unsigned

int.

 If it cannot be represented as unsigned int but as long, convert it into long.

 If it cannot be represented as long but as unsigned long, convert it into

unsigned long.

9.2.2.2 Integral Conversion

This section explains integral conversions such as the following:

 Conversion of signed integer into unsigned integer

 Conversion of unsigned integer into signed integer

Integral conversions are performed between the integer types char, short, int,

long, long long, and their unsigned versions.

(1) Conversion of signed integer into unsigned integer

A signed integer can be converted into the corresponding unsigned type. By this

conversion, the value may be interpreted as different from the source although its

bit-image is not changed.

Chapter9 Programming Notes Depending on the Language Specification

- 84 -

Example:

#include <iostream>

main()

{

 short s = -1;

 unsigned short u;

 std::cout << s << std::endl;

 u = s;

 std::cout << u << std::endl;

}

"-1" and "65535" are displayed by this program. The variable "s" which has

signed short is initialized to "-1", a negative value. The value is converted to

unsigned short and assigned to the variable "u" by the assignment "u = s".

(2) Conversion of unsigned integer into signed integer

An unsigned integer can be converted into the corresponding signed type. If the

value of the unsigned integer cannot be expressed as a signed type, the value

may be interpreted incorrectly.

Example:

#include <iostream>

main()

{

 short s;

 unsigned short u = 65535;

 std::cout << u << std::endl;

 s = u;

 std::cout << s << std::endl;

}

"65535" and "-1" are displayed by this program. The variable "u" is unsigned

short and it must be converted to a signed type to enable the assignment "s = u".

However, the value "65535" is interpreted as the wrong value "-1" because it

cannot be represented correctly as signed short.

9.2.2.3 Floating-point Conversion

A floating-point type can be converted safely into another floating-point type if the

destination type has more precision than the source type. "Safely" means that there

Chapter9 Programming Notes Depending on the Language Specification

- 85 -

is no loss of precision occurring during conversion. For example, conversion of float

to double and conversion of double to long double are safe.

A floating-point type can also be converted into another floating-point type that has

less precision than the source type. This conversion can be performed only if the

source value is in a range that can be expressed by the destination type. The result

is converted to the nearest value of the source value when a loss of precision occurs.

If the source value is not in a range that can be expressed by the destination type,

the conversion may create an undefined result.

Example:

#include <iostream>

main()

{

 double d = 1e+100;

 long double ld;

 float f;

 ld = d;

 std::cout << ld << std::endl;

 f = d;

 std::cout << f << std::endl;

}

"1e+100" and "inf" are displayed by this program. The first output means that the

conversion of double to long double is performed safely. The second output means

that the source value "1e+100" in double cannot be expressed in float and is

converted to infinity because the maximum value that can be expressed in the float

type is "3.40282347e+38".

9.2.2.4 Complex Conversion

A complex type can be converted into another complex type if the destination type

has more or less precision than the source type. When a complex type is converted

into another complex type, both the real and imaginary parts are converted

according to the same conversion rules as floating-point conversion. See Floating-

point Conversion for the details.

9.2.2.5 Floating-point and Integral Conversion

A floating-point type can be converted into an integer type and an integer type can

be converted into a floating-point type.

Chapter9 Programming Notes Depending on the Language Specification

- 86 -

(1) Conversion of floating-point into integer

When a floating-point type is converted into an integer type, the fractional part of

the source value is truncated; that is, "1.3" is converted to "1" and "-1.2" is

converted to "-1" for example. Rounding is not performed during conversion.

(2) Conversion of integer into floating-point

When an integer type is converted into a floating-point type, the result is exact if

possible. Otherwise, the source value is converted to the nearest value that can be

expressed by the destination type.

9.2.2.6 Complex and Integral Conversion

A complex type can be converted into an integer type and an integer type can be

converted into a complex type.

(1) Conversion of complex into integer

When a complex type is converted into an integer type, the imaginary part of the

complex value is discarded and the fractional part of the source value of the real

part is truncated. For example, when a complex value has a real part of "1.3" and

an imaginary part of "2.0", it is converted to "1". Rounding is not performed during

conversion.

(2) Conversion of integer into complex

When an integer type is converted into a complex type, the imaginary part of the

complex result value is signed zero and the real part of the complex result value is

exact if possible. Otherwise, the source value is converted to the nearest value

that can be expressed by the destination type.

9.2.2.7 Complex and Floating-point Conversion

A complex type can be converted into a floating-point type and a floating-point type

can be converted into a complex type.

(1) Conversion of complex into floating-point

When a complex type is converted into a floating-point type, the imaginary part of

the complex value is discarded and the real part of the complex value is converted

into the destination type according to the same conversion rules as floating-point

conversion. See Floating-point Conversion for the details.

Chapter9 Programming Notes Depending on the Language Specification

- 87 -

(2) Conversion of floating-point into complex

When a floating-point type is converted into a complex type, the imaginary part of

the complex result value is signed zero and the source value is converted into the

real part of the complex type according to the same conversion rules as floating-

point conversion. See Floating-point Conversion for the details.

9.2.2.8 Arithmetic Conversion

Many binary operators can have their operands converted and yield result types in a

similar way. The purpose is to yield a common type, which is also the type of the

result. This pattern is called usual arithmetic conversion, which is performed by the

C++ compiler according to the following rules:

 If either operand is long double _Complex, the other shall be converted to long

double _Complex.

‒ Otherwise, if either operand is long double, the other shall be converted to

long double.

 Otherwise, if either operand is double _Complex, the other shall be converted to

double _Complex.

‒ Otherwise, if either operand is double, the other shall be converted to double.

 Otherwise, if either operand is float _Complex, the other shall be converted to

float _Complex.

‒ Otherwise, if either operand is float, the other shall be converted to float.

 Otherwise (if neither of the operands are floating-point types nor complex types),

integral promotion (see Integral Promotion) shall be performed on both

operands as follows:

‒ If either operand is unsigned long, the other shall be converted to unsigned

long.

‒ Otherwise, if one operand is long and the other is unsigned int, both operands

shall be converted to unsigned long.

‒ Otherwise, if either operand is long, the other shall be converted to long.

‒ Otherwise, if either operand is unsigned int, the other shall be converted to

unsigned int.

‒ Otherwise, both operands are int.

Chapter9 Programming Notes Depending on the Language Specification

- 88 -

9.2.3 Internal Representation of Data

9.2.3.1 Integer Types

 signed char (1-byte signed integer)

SYNOPSIS

S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

-128 to 127 (-27 to 27-1)

 unsigned char (1-byte unsigned integer)

SYNOPSIS

EXPRESSIBLE VALUE

0 to 255

 short / short int (2-byte signed integer)

SYNOPSIS

S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

-32768 to 32767 (-215 to 215-1)

 unsigned short / unsigned short int (2-byte unsigned integer)

SYNOPSIS

EXPRESSIBLE VALUE

0 to 65535 (0 to 216 -1)

 int (4-byte signed integer)

SYNOPSIS

S:Sign bit (0:positive 1:negative)

S

7 0

15 0

S

31 0

S

15 0

7 0

Chapter9 Programming Notes Depending on the Language Specification

- 89 -

EXPRESSIBLE VALUE

-2147483648 to 2147783647 (-231 to 231-1)

 unsigned int (4-byte unsigned integer)

SYNOPSIS

EXPRESSIBLE VALUE

0 to 4294967295 (0 to 232 -1)

 long / long int / long long / long long int (8-byte signed integer)

SYNOPSIS

S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

-9223372036854775808 to 9223372036854775807 (-263 to 263 -1)

 unsigned long / unsigned long int / unsigned long long / unsigned long long

int (8-byte unsigned integer)

SYNOPSIS

EXPRESSIBLE VALUE

0 to 18446744073709551615 (0 to 264 -1)

9.2.3.2 Floating-Point Types

 float (single-precision floating-point)

SYNOPSIS

S: Sign bit of mantissa (0:positive 1:negative)

E: Exponent (0<=E<=255)

M: Mantissa (0<=M<1)

EXPRESSIBLE VALUE

63 0

S

31 0

S M

23 22

E

31 0

63 0

Chapter9 Programming Notes Depending on the Language Specification

- 90 -

(-1)S * 2E-127 * (1.M)

Decimal value of 7 digits, with an absolute value of 0 or in the range of 10-38 to

1037.

SPECIAL VALUE

NaN E == 255 and M != 0

Infinity E == 255 and M == 0

Signed Zero E == 0

Remarks:

The compiler does not support the denormalized value (E == 0 and M != 0).

The denormalized value is handled as zero at program execution.

 double (double-precision floating-point)

SYNOPSIS

S: Sign bit of mantissa (0:positive 1:negative)

E: Exponent (0<=E<=2047)

M: Mantissa (0<=M<1)

EXPRESSIBLE VALUE

(-1)S * 2E-1023 * (1.M)

Decimal value of 16 digits, with an absolute value of 0 or in the range of 10-308

to 10308.

SPECIAL VALUE

NaN E == 2047 and M != 0

Infinity E == 2047 and M == 0

Signed Zero E == 0

Remarks:

The compiler does not support the denormalized value (E == 0 and M != 0).

The denormalized value is handled as zero at program execution.

 long double (quadruple-precision floating-point)

SYNOPSIS

63 0

S

52 51

M E

Chapter9 Programming Notes Depending on the Language Specification

- 91 -

S: Sign bit of mantissa (0:positive 1:negative)

E: Exponent for leading digits

M: Mantissa for leading digits

EXPRESSIBLE VALUE

(-1)S * 2E-16383 * 1.M

Decimal value of 34 digits, with an absolute value of 0 or in the range of 10-4932

to 104932.

SPECIAL VALUE

NaN E == 32767 and M != 0

Infinity E == 32767 and M == 0

Signed Zero E == 0

Remarks:

The compiler does not support the denormalized value (E == 0 and M== 0).

The denormalized value is handled as zero at program execution.

9.2.3.3 Complex Types

 float _Complex (single-precision complex)

SYNOPSIS

RS, IS: Sign bit of mantissa (0:positive 1:negative)

RE, IE: Exponent (0<=RE<=255, 0<=IE<=255)

RM, IM: Mantissa (0<=M<1)

EXPRESSIBLE VALUE

(-1)RS * 2RE-127 * (1.RM)

(-1)IS * 2IE-127 * (1.IM)

Decimal value of 7 digits, with an absolute value of 0 or in the range of 10-38

127 64 112 111

S E M

Continuation of M

63 0

63 32 55

54

RS RE RM

31

IS IE IM

0 22 23

Chapter9 Programming Notes Depending on the Language Specification

- 92 -

to 1037.

SPECIAL VALUE

NaN RE == 255 and RM != 0 and IE == 255 and IM != 0

Infinity RE == 255 and RM == 0 and IE == 255 and IM == 0

Signed Zero RE == 0 and IE == 0

Remarks:

The compiler does not support the denormalized value (RE == 0 and RM != 0,

or IE == 0 and IM == 0) in the real part or the imaginary part of the complex

value. The denormalized value is handled as zero at program execution.

 double _Complex (double-precision complex)

SYNOPSIS

RS, IS: Sign bit of mantissa (0:positive 1:negative)

RE, IE: Exponent (0<=RE<=2047, 0<=IE<=2047)

RM, IM: Mantissa

EXPRESSIBLE VALUE

(-1)RS * 2RE-1023 * (1.RM)

(-1)IS * 2IE-1023 * (1.IM)

Decimal value of 16 digits, with an absolute value of 0 or in the range of 10-

308 to 10308.

SPECIAL VALUE

NaN RE == 2047 and RM != 0 and IE == 2047 and IM != 0

Infinity RE == 2047 and RM == 0 and IE == 2047 and IM == 0

Signed Zero RE == 0 and IE == 0

Remarks:

The compiler does not support the denormalized value (RE == 0 and RM != 0,

or IE == 0 and IM == 0) in the real part or the imaginary part of the complex

value. The denormalized value is handled as zero at program execution.

 long double _Complex (quadruple-precision complex)

127 64 116 115

RS RE RM

63 0 52 51

IE IM

Chapter9 Programming Notes Depending on the Language Specification

- 93 -

SYNOPSIS

RS, IS: Sign bit of mantissa (0:positive 1:negative)

RE, IE: Exponent (0<=RE<=32767, 0<=IE<=32767)

RM, IM: Mantissa

EXPRESSIBLE VALUE

(-1)RS * 2RE-16383 * 1.RM

(-1)IS * 2IE-16383 * 1.IM

Decimal value of 34 digits, with an absolute value of 0 or in the range of 10-4932

to 104932.

SPECIAL VALUE

NaN RE == 32767 and RM != 0 or IE == 32767 and IM != 0

Infinity RE == 32767 and RM == 0 or IE == 32767 and IM == 0

Signed Zero RE == 0 and IE == 0

Remarks:

The compiler does not support the denormalized value ((RE == 0 and RM != 0)

or (IE == 0 and IM != 0)) in the real part or the imaginary part of the complex

value. The denormalized value is handled as zero at program execution.

9.2.3.4 Enumeration Type

 4-byte

SYNOPSIS

S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

-2147483648 to 2147783647 (-231 to 231-1)

 8-byte

SYNOPSIS

255 192 240 239

RS RE RM

63 0

IE IM

Continuation of M

Continuation of M

31 0

S

Chapter9 Programming Notes Depending on the Language Specification

- 94 -

S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

-9223372036854775808 to 9223372036854775807 (-263 to 263 -1)

9.2.3.5 Pointer Type

SYNOPSIS

9.2.3.6 Bit Fields

SYNOPSIS

L: Length of the field

DESCRIPTION

‒ When the field is signed, the leftmost bit is a sign bit.

‒ The allocation of a field is left-oriented and tries not to go beyond the boundary

of the field type. If among the allocation of several neighboring fields there is a

field that exceeds its field type boundary, the allocation of that field begins from

the start of the next address that has the boundary of that type.

9.2.4 Predefined Macro

All predefined macros can be shown by specifying -dM -E.

Example:

$ ncc -dM -E a.c | sort

The main predefined macros are as follows.

_LP64, __LP64__

Always defined as 1.

unix, __unix, __unix__

Always defined as 1.

linux, __linux, __linux__

Always defined as 1.

63 0

S

63 0

L-1 0

Chapter9 Programming Notes Depending on the Language Specification

- 95 -

__ve, __ve__

Always defined as 1.

__ELF__

Always defined as 1.

__STDC__

Always defined as 1.

__STDC_HOSTED__

Always defined as 1.

__STDC_NO_ATOMICS__

Always not defined.

__NEC__

Always defined as 1.

__FAST_MATH__

Defined as 1 when -ffast-math is enabled; Otherwise not defined.

_FTRACE

Defined as 1 when –ftrace is enabled; Otherwise not defined.

__NEC_VERSION__

Defined as the value obtained by calculation using the following formula when

compiler version is X.Y.Z.

X*10000 + Y*100 + Z

__OPTIMIZE__

Sets the optimization level n of -On which is effective at the compilation.

__VECTOR__

Defined as 1 when automatic vectorization is enabled; Otherwise not defined.

__VERSION__

Always defined as a string constant which describes the version of the compiler

in use.

9.3 Inline Assembly Language

9.3.1 Basic Asm Statement

Format:

asm [volatile] (Assembler-instructions)

Descriptions:

Chapter9 Programming Notes Depending on the Language Specification

- 96 -

Basic asm statement has no operands.

An optional qualifier volatile has no effect as all the basic asm statements are

implicitly volatile.

9.3.2 Extended Asm Statement

Format:

asm [volatile] (Assembler-Template

 : Output-Operands

 [: Input-Operands

 [: Clobbers]])

Assembler-Template is:

String-text of assembler instructions

Output-Operands are:

[[Symbolic-Name]] Constraint (C-variablename) , [Output-Operand] ...

Input-Operands are:

[[Symbolic-Name]] Constraint (C-expression) , [Input-Operand] ...

Clobbers are:

Register-name or “memory” , [Clobber] ...

Descriptions:

Extend asm statement can have operands. C variables can be read and written in

an extended asm statement as its operand.

An optional qualifier volatile can be used to disable an optimization which may

produce side effects while executing the asm statement.

Assembler-Template is a string text of assembler instructions. The compiler

replaces the tokens referring to input/output operands in the Assembler-Template

and outputs the resulting string text to the assembly codes. The Nth operand

specified in the Output-Operands and the Input-Operands can be referenced

with %N. %% in Assembler-Template is replaced with a single %.

Output-Operands are written as a comma-separated list of an output operand. An

output operand has constraints and a C variable name that is modified by the

assembler instructions in the Assembler-Template. An empty list is permitted.

Input-Operands are written as a comma-separated list of an input operand. An

input operand has constraints and a C variable name or expressions referenced by

the assembler instructions in the Assembler-Template. An empty list is permitted.

Chapter9 Programming Notes Depending on the Language Specification

- 97 -

Clobbers are written as a comma-separated list of registers destroyed in

assembler instructions in the Assembler-Template. “memory” is also available as a

special clobber argument. A “memory” clobber informs the compiler that the

assembly code generated from this asm statement may implicitly do memory

reads/writes to items other than the operands listed in Output-Operands and

Input-Operands. An empty list is permitted.

Available Constraints

Constraint Functional specification

m A memory operand is allowed in the form of AS or ASX.

r Scalar register operand is allowed.

i An integer immediate operand is allowed. This includes symbolic

constants that you do not know unless values are assembled.

0, 1, 2,…9 To specify in order to allocate same register to both input operand

and output operand. (Even if limited C Expression is same, the

compiler does not ensure to allocate same register.) This constraint

is called a matching constraint.

[Symbolic-

Name]

This is a symbolic matching constraint. You can refer

to %[Symbolic-Name] in the Assembler-Template.

f Temporary scalar register operand can be allowed. This should be

specified in order to store single precision floating point data in the

register allocated for the operand.

Constraint priority

When you list more than one constraint (for example, "=rm0") in the constraints,

the compiler selects a constraint in the order of descending priorities. The

priorities are as follows.

i > r > m > matching constraint

When all of constraints in the constraints are ignored because “#” or “*” of

constraint modifier characters has been specified, the compiler assumes that the r

constraint is specified. There are some cautions. Please refer to notes.

Constraint Modifier Characters

Modifier

Character
Functional specification

= Means that this operand is write-only for this instruction.

+ Means that this operand is both read and written by the instruction.

& Allocates different registers to input operand and output operand.

Chapter9 Programming Notes Depending on the Language Specification

- 98 -

Modifier

Character
Functional specification

% Specifies that this operand and the next operand are

interchangeable. With this specification, the compiler can exchange

two operands if it is the least expensive method to satisfy all the

constraints.

Ignores all constraints up to the next comma.

* Ignores the next character.

Example

#define FIVE 5

int main(void)

{

 int in=10, out;

 asm ("ldl.sx %%s50, %1\n\t"

 "adds.w.zx %0, %2, %%s50\n\t"

 : "=r"(out) /* Constraint "r" */

 : "m"(in), "i"(FIVE) /* Constraint "m", "i" */

 : "%s50"

);

 printf("out=%d\n", out);

}

9.3.3 Specifying name in assembler codes

Format:

Declarator asm (Name)

Descriptions:

You can specify the name of the function or variable in the assembler code.

Declarator is a declarator conforming to the C language syntax. Name is a

character string of the function name or variable name in assembler codes.

9.3.4 Notes

 Alternate keywords __asm, __asm__, __volatile, and __volatile__ are

acceptable.

 The only Extended asm syntax specified to scalar register, vector register, vector

mask register, vector index register in an Assembler-Template is to specify

clobbered register.

 Immediate value in the form of M must be directly specified in an Assembler-

Template. The operand of Extended asm syntax cannot be specified.

Chapter9 Programming Notes Depending on the Language Specification

- 99 -

 disp specified as AS operand of "br[cf].*.[bp]" ("*" is one of "l", "w", "d" or "s")

instruction must be specified with constraint character "i".

 The HM operand of lhm.* and shm.* ("*" is "b", "h", "w" or "l") instructions must

be specified with constraint character either "r" or "i".

 When immediate value outside the range of -2147483648 to 2147483647 is

specified as input/output operand in C-expression, the operand must be specified

with constraint character either "r" or "m".

 Instruction to jump outside asm statement is not allowed.

 When the "number" of %number in an assembler template is not smaller than or

equal to the total number of input "+" output operands, %number is not replaced

and is output to the assembler file.

 When quadruple precision floating-point arithmetic instructions such as FAQ, FSQ,

FMQ and FCQ instructions are used in an Assembler-Template, the extended asm

syntax cannot be used.

 Only automatic variable, register variable or immediate value can be specified as

input/output operand in C-expression.

9.4 Remarks

9.4.1 Remarks for C language

 _Atomic qualifier is not supported.

 CX_LIMITED_RANGE pragma is ignored.

 FENV_ACCESS and FP_CONTRACT are ignored.

 When the following C headers of the C standard library are used, specify -

pthread.

<stdatomic.h>, <threads.h>

 The following GCC extensions are unavailable.

‒ The forward declaration of function parameters (so they can participate in

variable-length array parameters).

‒ GNU-style complex integral types

‒ Nested functions

Chapter9 Programming Notes Depending on the Language Specification

- 100 -

‒ Local structure with a variable-length array field. Such a field is treated (with a

warning) as a zero-length array in GNU C mode, which is a useful

approximation in some circumstances, but not generally equivalent to the GNU

feature.

‒ Label as value

9.4.2 Remarks for C++ language

 Sized deallocation is unavailable.

 When the following C++ headers of the C++ standard library are used, specify

-pthread.

<atomic>, <condition_variable>, <mutex>, <thread>

 The following features which have been added and/or extended by C++17

standard are not available.

‒ Class template scoped_lock

‒ Class template specialization owner_less<void>

‒ Template member function merge() of associative containers defined in the

headers <map>, <set>, <unordered_map>, and <unordered_set>.

‒ Array support to class template shared_ptr.

Chapter10 Language-Mixed Programming

- 101 -

Chapter10 Language-Mixed Programming

Making an executable file by linking object files from different languages is called

mixed language programming. This chapter describes mixed language programming

techniques using C/C++ and Fortran programs.

10.1 Point of Mixed Language Programming

The following example shows how mixed language programming is used to make an

executable file by linking a C program and a Fortran program.

In this example, a Fortran program is called from a C program, and a C program is

called from a Fortran program. When these programs are called, the function name

and procedure name coded in the program are converted into an external symbol

name, and the data is shared between C and Fortran by passing arguments or return

values.

The features of mixed language programming are as follows.

 C/C++ function name and Fortran procedure name correspond.

 C/C++ and Fortran data types correspond.

 Return values are passed from C/C++ to Fortran.

 Values are passed from C/C++ to Fortran by arguments.

#include <stdlib.h>

#define N 1024

#define SIZE sizeof(double)

main()

{

 double *x = (double *)malloc(SIZE*N);

 double *y = (double *)malloc(SIZE*N);

 double *z = (double *)malloc(SIZE*N);

 int n;

 n = read_data(x, y);

 compute_(x, y, z, &n);

 write_data(z, n);

}

C program (file name: a.c) C program (file name: b.c)

#include <stdio.h>

int read_data(double *x, double *y)

{ ... }

SUBROUTINE COMPUTE (X, Y, Z, N)

REAL*8 X(N),Y(N),Z(N)

! calculation

I = CHECK_VALUE(Z(N))

IF (I.EQ.0) RETURN

END SUBROUTINE

Fortran program (file name: c.f90)

int check_value_(double *x)

{ ... }

C program (file name: d.c)

Chapter10 Language-Mixed Programming

- 102 -

 Executable files are created by compiling and linking.

10.2 Correspondence of C/C++ Function Name and Fortran

Procedure Name

The C++ function names and Fortran procedure names in the source files are

converted into external symbol names and placed in object files. Therefore, when

these functions and procedures are called, they must be called by their converted

external symbol names.

10.2.1 External Symbol Name of Fortran Procedure

(1) When binding labels for procedures are used:

A procedure name in a Fortran source file is converted to an external symbol

name of the string same as a binding label. In other words, when a Fortran

procedure has a NAME specifier, the procedure name is converted to the name

specified to the NAME specifier; otherwise the procedure name is converted to

lowercase.

Example:

SUBROUTINE SUB1(X) BIND(C, NAME="Fortran_Sub1")

...

END SUBROUTINE

SUBROUTINE SUB2(Y) BIND(C)

...

END SUBROUTINE

In this example, the following procedure names are converted to external symbol

names.

Procedure Name External Symbol Name

SUB1 -> Fortran_Sub1

SUB2 -> sub2

(2) When binding labels for procedures are not used:

A procedure name in a Fortran source file is converted to an external symbol

name according to the following rules.

‒ Procedure names are converted to lowercase.

‒ An underscore (_) is appended to a procedure name.

Chapter10 Language-Mixed Programming

- 103 -

Example:

SUBROUTINE COMPUTE (X, Y, Z, N)

REAL*8 X(N),Y(N),Z(N)

! calculation

I = CHECK_VALUE(Z(N))

IF (I.EQ.0) RETURN

END SUBROUTINE

In this example, the following procedure names are converted to external symbol

names.

Procedure Name External Symbol Name

COMPUTE -> compute_

CHECK_VALUE -> check_value_

10.2.2 External Symbol Name of C++ Function

The C++ compiler appends a string showing the return value and argument type to

a function name in a C++ source file. This operation is called mangling a function

name. By using this operation, the C++ compiler can declare functions with the

same name but whose argument types differ.

Example:

Function Name in A Source File Mangled Name

void func(double *x) -> _Z4funcPd

void func(float *x) -> _Z4funcPf

Note Converting a mangled name to a name in a C++ source file is called

demangling.

A C++ function called from a C function or a Fortran procedure should be declared

by C linkage so that the function name is not mangled, and the C++ function can be

called by the function name itself coded in the source file. In the same way, a

prototype declaration of a C function or a Fortran procedure called from a C++

function should also be declared by C linkage.

Chapter10 Language-Mixed Programming

- 104 -

Example:

extern "C" {

 void func(double *x);

 void func(float *x);

};

The linkage specification is available in C++ language only. When using a prototype

declaration in C language, the linkage specification should be coded using conditional

coding.

Example:

#ifdef __cplusplus // __cplusplus is automatically defined

 // by the C++ compiler.

extern "C" {

#endif

 void func(double *x);

 void func1(float *x);

#ifdef __cplusplus

};

#endif

10.2.3 Rules for Corresponding C/C++ Functions with Fortran Procedures

 When a Fortran procedure is called from a C function, the Fortran procedure

should be called using an external symbol name of the Fortran procedure.

 A name of a C function called from a Fortran procedure should be defined by an

external symbol name of the Fortran procedure.

 A C++ function called from a C function or a Fortran procedure should be declared

using C linkage.

 A prototype declaration of a C function or Fortran procedure called from a C++

function should be declared using C linkage.

10.2.4 Examples of Calling

Example: Calling Fortran procedure that has the BIND attribute from C function.

Caller (C function)

Chapter10 Language-Mixed Programming

- 105 -

extern void sub1();

void cfunc() {

 ...

 sub1();

 ...

}

Callee (Fortran procedure)

SUBROUTINE SUB1() BIND(C)

...

END SUBROUTINE SUB1

The Fortran procedure is declared as a prototype and called using a name that is

coded in lowercase.

Example: Calling Fortran procedure that does not have the BIND attribute from C

function.

Caller (C function)

extern int sub_();

void cfunc() {

 ...

 sub_();

 ...

}

Callee (Fortran procedure)

SUBROUTINE SUB

...

END SUBROUTINE SUB

The Fortran procedure is declared as a prototype and called using a name that is

appended with an underscore (_) and coded in lowercase.

Example: Calling C function from Fortran procedure that has the BIND attribute.

Caller (Fortran procedure)

Chapter10 Language-Mixed Programming

- 106 -

SUBROUTINE SUB

 USE, INTRINSIC :: ISO_C_BINDING

 INTERFACE

 SUBROUTINE CFUNC() BIND(C)

 END SUBROUTINE CFUNC

 END INTERFACE

 ...

 CALL CFUNC

 ...

END SUBROUTINE SUB

Callee (C function)

void cfunc() {

 ...

}

The C function is declared and defined using a name that is coded in lowercase,

and the Fortran procedure interface is defined and called using a name that is

coded in uppercase.

Example: Calling C function from Fortran procedure that does not have the BIND

attribute.

Caller (Fortran procedure)

SUBROUTINE SUB

...

CALL CFUNC

...

END SUBROUTINE SUB

Callee (C function)

int cfunc_() {

 ...

}

The C function is declared and defined using a name that is appended with an

underscore (_) and coded in lowercase.

Example: Calling Fortran procedure from C++ function.

Caller (C++ function)

Chapter10 Language-Mixed Programming

- 107 -

extern "C" {

 int sub_(void);

};

void cfunc() {

 ...

 sub_();

 ...

}

Callee (Fortran procedure)

SUBROUTINE SUB

...

END SUBROUTINE SUB

The Fortran procedure is declared as a prototype via C linkage and called using a

name that is appended with an underscore (_) and coded in lowercase.

Example: Calling C++ function from Fortran procedure.

Caller (Fortran procedure)

SUBROUTINE SUB

...

CALL CFUNC

...

END SUBROUTINE SUB

Callee (C++ function)

extern "C" {

 int cfunc_(void);

};

int cfunc_(void) {

 ...

}

The C++ function is declared and defined via C linkage using a name that is

appended with an underscore (_) and coded in lowercase.

10.3 Data Types

The correspondence between Fortran data types and C/C++ data types is shown

below.

Chapter10 Language-Mixed Programming

- 108 -

10.3.1 Integer and Logical Types for Fortran

Data Type Fortran C/C++

Integer INTEGER int (*)

INTEGER(KIND=1)

INTEGER*1

signed char

INTEGER(KIND=2)

INTEGER*2

short

INTEGER(KIND=4)

INTEGER*4

int

INTEGER(KIND=8)

INTEGER*8

long, long int, long long or long long int

Logical LOGICAL int (*)

LOGICAL(KIND=1) signed char

LOGICAL(KIND=2) short

LOGICAL(KIND=4) int

LOGICAL(KIND=8) long, long int, long long or long long int

(*) When -fdefault-integer=8 is enabled: long long int, long int, long long or

long long int.

10.3.2 Floating-point and Complex Types for Fortran

Data Type Fortran C/C++

Floating-

point

REAL float (*1)

REAL(KIND=4)

REAL*4

float

DOUBLE PRECISION double (*2)

REAL(KIND=8)

REAL*8

double

QUADRUPLE PRECISION

REAL(KIND=16)

REAL*16

long double

Complex COMPLEX float __complex__ (*3)

COMPLEX(KIND=4)

COMPLEX*8

float __complex__

COMPLEX(KIND=8)

COMPLEX*16

double __complex__

COMPLEX(KIND=16)

COMPLEX*32

long double __complex__

(*1) When -fdefault-real=8 is enabled: double

Chapter10 Language-Mixed Programming

- 109 -

(*2) When -fdefault-double=16 is enabled: long double

(*3) When -fdefault-real=8 is enabled: double __complex__

10.3.3 Character Type for Fortran

Data Type Fortran C/C++

Character CHARACTER(LEN=n) ch char ch[n];

10.3.4 Derived Type for Fortran

(1) Description

A Fortran derived type that defined with the BIND attribute can associate with a C

struct type.

Example:

Fortran program:

USE, INTRINSIC :: ISO_C_BINDING

TYPE, BIND(C) :: STR_TYPE ! Define a derived type with the BIND attribute

 REAL(C_DOUBLE) :: S1, S2

END TYPE STR_TYPE

INTERFACE

 SUBROUTINE FUNC(X) BIND(C)

 USE, INTRINSIC :: ISO_C_BINDING

 TYPE(C_PTR) :: X

 END SUBROUTINE FUNC

END INTERFACE

TYPE(C_PTR) :: P

TYPE(STR_TYPE),TARGET :: F_STR

P=C_LOC(F_STR) ! Get the C address of F_STR

CALL FUNC(P) ! Call C function, and

! pass the C address of F_STR

...

Chapter10 Language-Mixed Programming

- 110 -

C program:

struct str_type { // Definition of structure

// associated with STR_TYPE

 double s1, s2;

} *c_str;

void func(struct str_type **x) {

 c_str = *x; // c_str points to F_STR

 ...

}

(2) Remarks

‒ The names of the corresponding components of the Fortran derived type and

the C struct type need not be the same.

‒ A C struct type that contains a bit field or that contains a flexible array member

cannot associate.

‒ A C struct type that contains a quadruple-precision real type or that contains a

complex type cannot associate.

10.3.5 Pointer

A C pointer is associated with a Fortran data by using the derived type C_PTR.

(1) How to associate C pointer and Fortran data

When a C pointer is referred in a Fortran program, a derived type C_PTR is used.

Example:

Fortran program:

USE, INTRINSIC :: ISO_C_BINDING

 INTERFACE

 SUBROUTINE FUNC(X) BIND(C)

 USE, INTRINSIC :: ISO_C_BINDING

 TYPE(C_PTR) :: X

 END SUBROUTINE FUNC

END INTERFACE

TYPE(C_PTR) :: P

...

CALL FUNC(P) ! Call C function

...

Chapter10 Language-Mixed Programming

- 111 -

C program:

int *a;

void func(int **p) {

 *p = a; // P in Fortran program points to a

}

(2) How to get C address

A C address of a Fortran allocated allocatable variable can be got by using the

function C_LOC which returns a value of the C_PTR type.

Example:

Fortran program:

USE, INTRINSIC :: ISO_C_BINDING

INTEGER(C_INT),TARGET :: N

TYPE(C_PTR) :: N_ADDR

N_ADDR = C_LOC(N) ! C_LOC(N) returns C address of "N"

(3) How to compare C addresses

The Fortran intrinsic procedure C_ASSOCIATED can compare C addresses. When

its first argument and its second argument point the same area, C_ASSOCIATED

returns ".TRUE."; otherwise returns ".FALSE.". When its second argument is

omitted, C_ASSOCIATED returns ".FALSE." if its first argument is a C null pointer

and returns ".TRUE." otherwise.

Example:

Fortran program:

MODULE MOD

USE, INTRINSIC :: ISO_C_BINDING

...

INTEGER(C_INT), BIND(C) :: X, Y

TYPE(C_PTR) :: P1, P2

...

END MODULE

PROGRAM MAIN

USE MOD

...

CALL FUNC(P1, P2) ! Call C function

IF (C_ASSOCIATED(P1, P2)) THEN ! Compare the memory areas of

 ... ! P1 and P2

END IF

...

Chapter10 Language-Mixed Programming

- 112 -

END

C program:

int x, y;

void func_(int **px, int **py) {

 *px = &x; // When func() is called in Fortran program,

 *py = &y; // P1 points x, and P2 points y

}

(4) How to associate C pointer and Fortran data pointer

A C pointer is associated with a Fortran data pointer by using the Fortran intrinsic

procedure C_F_POINTER. C_F_POINTER associates a C_PTR type of its first

argument with a data pointer of its second argument.

Example:

Fortran program:

MODULE MOD

USE, INTRINSIC :: ISO_C_BINDING

...

INTEGER(C_INT), BIND(C) :: X

TYPE(C_PTR), BIND(C) :: CP

INTEGER(C_INT), POINTER :: FP

...

END MODULE

PROGRAM MAIN

USE MOD

...

CALL FUNC(CP) ! Call C function

CALL C_F_POINTER(CP, FP) ! Bind C pointer CP with

... ! data pointer FP

END

C program:

int x;

void func_(int **px) {

 *px = &x; // When func() is called in

} // Fortran program, CP points x

10.3.6 Common Block for Fortran

(1) Description

A Fortran common block defined with the BIND attribute can be interoperable

Chapter10 Language-Mixed Programming

- 113 -

with a C program. When the common block contains a single variable, it can

associate with the C variable. When the common block contains two or more

variables, it can associate with a C struct type. But, the Fortran common block

and the C struct type must have the same number of members, and the members

of the Fortran common block must have corresponding types with the

corresponding members of the C struct type.

Example:

Fortran program:

USE, INTRINSIC :: ISO_C_BINDING

COMMON /COM1/ F1, F2

COMMON /COM2/ F3

REAL(C_FLOAT) :: F1, F2, F3

BIND(C) :: /COM1/, /COM2/ ! Specify the BIND attribute

...

C program:

struct { float f1, f2; } com1;

// The common block "COM1" which contains two or more

// variables can associate with the struct "com1"

...

float com2;

// The common block "COM2" which contains single

// variable can associate with the variable "com2"

...

(2) Remarks

 The names of the corresponding components of the Fortran common block and

the C struct type need not be the same.

 A C struct type that contains a bit field or that contains a flexible array member

cannot associate.

 A C struct type that contains a quadruple-precision real type or that contains a

complex type cannot associate.

10.3.7 Notes

Complex, double-precision complex and quadruple-precision complex types for

Fortran cannot correspond to single precision complex, double precision complex and

quadruple precision complex types for C declared by using the keyword _Complex.

Chapter10 Language-Mixed Programming

- 114 -

10.4 Type and Return Value of Function and Procedure

This section describes how to pass the return values between C functions and

Fortran procedures. C++ functions can be regarded as C functions because C++

functions are called from C functions or Fortran procedures, or they are declared and

defined using C linkage when they are called.

(1) Integer, logical, real, double-precision and quadruple-precision type Fortran

procedures Please refer to "10.3 Data Types" for details of the correspondence

between Fortran and C/C++.

Example: Calling double-precision type Fortran procedure.

Caller (C function):

extern double func_();

...

double a;

a = func_(); // Call Fortran procedure

...

Callee (Fortran procedure):

REAL(KIND=8) FUNCTION FUNC()

...

FUNC = 10.0

...

END FUNCTION FUNC

Example: Calling double-precision type C++ function.

Caller (Fortran procedure):

REAL(KIND=8) A

...

A = CFUNC() ! Call C++ function

...

Callee (C++ function):

Chapter10 Language-Mixed Programming

- 115 -

extern "C" {

 double cfunc_();

}

double cfunc_()

{

 double a;

 ...

 return a;

}

(2) Complex type functions

C/C++ can neither return nor receive a complex, double-precision complex or

quadruple-precision complex type return value of Fortran.

(3) Character type functions

Two arguments are appended in order to return a value for a character type

function of Fortran. The arguments are for the address and the length (in bytes)

of the return value.

Example: Calling character-type Fortran procedure.

Caller (C++ function):

extern "C" {

 int chfunc_(char *res_p, long res_l);

}

char a[17]; // Allocate 16 bytes + 1 byte for terminating

...

chfunc_(a, 16L); // Call Fortran procedure

a[16] = '\0';

...

Callee (Fortran procedure):

CHARACTER*16 FUNCTION CHFUNC

CHFUNC = "THIS IS FORTRAN."

RETURN

END FUNCTION CHFUNC

A string data storage area is allocated in the C/C++ function. When a storage

area is allocated in a C/C++ function, an extra 1 byte must be allocated for a null-

terminator, because a Fortran string value is not null-terminated.

Example: Calling C function as character-type function.

Caller (Fortran procedure):

Chapter10 Language-Mixed Programming

- 116 -

SUBROUTINE SUB

CHARACTER*20 CHFUNC, CH

INTEGER M

...

CH = CFUNC(M) ! Call C function

...

END SUBROUTINE SUB

Callee (C function)

extern int cfunc_(char *a, long b, int *p);

int cfunc_(char *a, long b, int *p)

{

 strcpy(a, "THIS IS C++.");

}

The first argument of the Fortran procedure corresponds to the third argument of

the C/C++ function.

(4) Fortran subroutine

A Fortran subroutine is the same as a C/C++ int type function.

10.5 Passing Arguments

10.5.1 Fortran Procedure Arguments

The arguments in a Fortran procedure that does not have the VALUE attribute are

passed by addresses. And, the arguments in a Fortran procedure that have the

VALUE attribute are passed by value. Therefore, when arguments are passed to a

C/C++ function, the arguments are obtained as pointers by the C/C++ function.

And, when the arguments are passed to a Fortran procedure, the arguments are

passed as the addresses of the variables.

(1) Passing arguments to Fortran procedure that does not have the VALUE attribute

The arguments are passed to a Fortran procedure as the addresses of the

variables. A constant value should be assigned to a variable before passing

because constant values do not have storage areas.

Chapter10 Language-Mixed Programming

- 117 -

Example:

Caller (C++ function):

extern "C" {

 int func_(int *i, int *j);

}

void c_func()

{

 int a, b, ret;

 ...

 b = 100; // Assign the constant value

 // to a variable to pass

 ret = func_(&a, &b); // Call Fortran procedure

 ...

}

Callee (Fortran function):

INTEGER FUNCTION FUNC(I, J)

INTEGER I, J

...

END FUNCTION FUNC

(2) Passing arguments to Fortran procedure that have the VALUE attribute

The arguments are passed to a Fortran procedure as the values of the variables. A

constant value can be passed by the argument.

Example:

Caller (C++ function):

extern "C" {

 int func_(int i, int j);

}

void c_func()

{

 int a, ret;

 ...

 ret = func(a, 100); // Call Fortran procedure

 ...

}

Callee (Fortran function):

Chapter10 Language-Mixed Programming

- 118 -

INTEGER FUNCTION FUNC(I, J)

INTEGER,VALUE I, J ! Specify the VALUE attribute

...

END FUNCTION FUNC

(3) Obtaining arguments from a Fortran procedure that does not have the VALUE

attribute

The addresses of the arguments are received via pointer parameters.

Example:

Caller (Fortran procedure):

SUBROUTINE SUB

INTEGER K, I, J

...

K = C_FUNC(I, J)

...

END SUBROUTINE SUB

Callee (C function)

extern int c_func_(int *a, int *b);

int c_func_(int *a, int *b)

{

 ...

}

(4) Obtaining arguments from a Fortran procedure that have the VALUE attribute

The arguments are received by values.

Example:

Caller (Fortran procedure):

Chapter10 Language-Mixed Programming

- 119 -

SUBROUTINE SUB

 INTERFACE

 INTEGER(C_INT) FUNCTION C_FUNC(A, B)

 USE, INTRINSIC :: ISO_C_BINDING

 INTEGER(C_INT), VALUE :: A, B

! Specify the VALUE attribute

END FUNCTION C_FUNC

 END INTERFACE

INTEGER I, J

...

CALL C_FUNC(I, J)

...

END SUBROUTINE SUB

Callee (C function):

extern int c_func(int a, int b);

int c_func(int a, int b) // The arguments are received by values

{

 ...

}

10.5.2 Notes

10.5.2.1 Appending Arguments Implicitly

Arguments are implicitly appended to Fortran procedures as follows.

 When a called procedure is a character type Fortran function, the address

where the function value is stored and the length (in bytes) of the function

value are appended.

 When a procedure passes a character type argument, the length (in bytes) of

the argument is appended.

 When a procedure passes a procedure name argument, the size (in bytes) of

the return value from the procedure is appended. If the procedure is not a

character type function, the length is 0 (zero).

Arguments are passed to procedures in the following order.

(1) Address where the return value is stored (when the called procedure is a

character-type)

(2) Size of the return value (when the called procedure is a character-type)

Chapter10 Language-Mixed Programming

- 120 -

(3) For each type of argument

The length (in bytes) of the argument for a character-type argument or the size

(in bytes) of the return value for a procedure name argument is passed

immediately after each argument.

10.6 Linking

10.6.1 Linking Fortran Program and C Program

When linking a C program and a Fortran program, use the Fortran compiler (nfort).

Example:

$ nfort -c a.f (Compile Fortran program)

$ ncc -c b.c (Compile C program)

$ nfort a.o b.o (Linking by Fortran compiler)

10.6.2 Linking Fortran Program and C++ Program

When linking a C++ program and a Fortran program, use the Fortran compiler

(nfort).When linking, the runtime library of the C++ compiler (-cxxib) must be

specified.

Example:

$ nfort -c a.f (Compile Fortran program)

$ nc++ -c b.cpp (Compile C++ program)

$ nfort a.o b.o -cxxlib (Linking by Fortran compiler)

10.7 Notes

When a C/C++ program and a Fortran program are linked, stdin, stdout and stderr

must not be closed in the C/C++ program. If they are closed, execution of the

Fortran program is not guaranteed.

Chapter11 Messages

- 121 -

Chapter11 Messages

11.1 Diagnostic Messages

The compiler outputs diagnostic messages that indicate the optimization status of

the program to the standard error output and diagnostic message list. This section

describes their formats and the main messages.

11.1.1 Diagnostic Message Format

Diagnostic messages will be output in the following format.

Kind (Number): Position: Message [: Hint]

Kind (Number):

The message kind and the number assigned to the message body will be

displayed. The kinds include the following.

vec: Vectorization information

opt: Optimization and vectorization information

dtl: Detailed optimization and vectorization information

inl: Inlining information

par: OpenMP and automatic parallelization

err: Mainly, syntax error of OpenMP directive specification

Position:

The line number of the source code corresponding to the diagnostic message

will be output. When output to standard error output, the file name including

the line number is also output.

Message:

The text of the diagnostic message will be output.

Hint:

Depending on the diagnostic message, the procedure name, variable name,

and array name will be output.

 When the variable name or array name is unknown, the type name may

be output.

 A name of a procedure or variable generated by the compiler for

optimization may be output with "$number" appended.

Chapter11 Messages

- 122 -

11.1.2 Message List

vec(101): Vectorized loop.

An entire loop structure is vectorized.

vec(102): Partially vectorized loop.

Part of a loop structure is vectorized.

vec(103): Unvectorized loop.

A loop is not vectorized.

vec(107): Iteration count is too small.

A loop is not vectorized because the iteration count of the loop is smaller t

han the threshold value for vectorizing. The threshold value can be change

d by -mvector-threshold=n.

vec(108): Unvectorizable loop structure.

Loop structure does not meet vectorization conditions. This diagnostic is

mainly output in the following cases.

 The loop induction variable appears in type conversion operation. It may

be vectorized by -mreplace-loop-induction.

 The loop control expression is not an expression to compare an induction

variable and a loop invariant expression.

 A logical and (&&) or a logical or (||) operation appears in the loop control

expression.

 An equation operation (!= or ==) appears in the loop control expression.

It may be vectorized by -mreplace-loop-equation.

 There are two or more branches to outside of a loop.

 There is a jump from outside of a loop. This situation appears when the

loop is composed of if and goto statements.

 A work vector for partially-vectorization cannot be created. The following

code shows an example that a work vector for “a[0]” is required but its

type is unvectorizable and the compiler cannot prepare any work vector.

Chapter11 Messages

- 123 -

void func(

 int n,

 long double _Complex a[n],

 double _Complex b[n],

 double _Complex c[n],

 double _Complex d[n]

)

{

 for (int i = 0; i < n; i++) {

 a[0] = b[i] + d[i] + c[i];

 c[i] = a[0];

 }

}

vec(109): Vectorization obstructive statement.

A loop cannot be vectorized because a statement that makes a whole loop

unvectorizable appears.

vec(110): Vectorization obstructive function reference : Function-name

A loop cannot be vectorized because a function reference that makes a whole

loop or array expression unvectorizable appears.

vec(111): “novector” is specified.

A loop is not vectorized because novector directive is specified.

vec(112): “novwork” is specified.

A loop is not partially-vectorized because novwork directive is specified.

vec(113): Overhead of loop division is too large.

A loop cannot be partially-vectorized because the compiler judged the

overhead due to loop division to be large and the effect of the partially-

vectorization to be none.

vec(115): Internal table overflow.

A loop cannot be vectorized because an internal table used in vectorization

Chapter11 Messages

- 124 -

processing overflowed.

vec(116): Unvectorizable function reference. : Function-name

A loop cannot be vectorized because there is a function reference to an

external procedure, internal procedure, module procedure, or intrinsic

procedure that is not subject to vectorization.

vec(117): Unvectorizable statement.

A loop cannot be vectorized because a statement is not subject to

vectorization.

vec(118): Unvectorizable data type.

A loop cannot be vectorized because a data element reference is of a type that

is not subject to vectorization.

vec(119): Array is not aligned. : Variable-name

A loop cannot be vectorized because an array is not aligned on a vectorizable

memory boundary.

vec(120): Unvectorizable dependency. : Variable-name

A loop cannot be vectorized because there is an unvectorizable dependency in

a variable or array.

vec(121): Unvectorizable dependency.

A loop cannot be vectorized because there is an unvectorizable dependency in

a variable or array.

vec(122): Dependency unknown. Unvectorizable dependency is assumed. :

Variable-name

An unvectorizable dependency is assumed to exist because dependency

analysis is not possible. The compiler applies vectorization with the

Chapter11 Messages

- 125 -

assumption that the dependency is not unvectorizable if ivdep directive is

specified.

vec(124): Iteration count is assumed. Iteration count=n

The compiler assumes that the loop iteration count is n.

vec(126): Idiom detected. : Kind of macro

A vector macro operation is detected. The following kinds are detected.

Max/Min, List Vector, Sum, Product, Bit-op, Iteration, Search

vec(128): Fused multiply-add operation applied.

A fused-multiply-add operation is applied.

vec(129): Array is retained. : Array-name

A retain directive is applied to an array.

vec(130): Vector register is assigned.: Array-name

A vector register is assigned to an array by a vreg directive.

vec(131): Too many statements.

A loop cannot be vectorized because there are too many statements in a loop.

vec(132): Too many function calls.

A loop cannot be vectorized because there are too many function calls in a

loop.

vec(133): Too many memory refereneces.

A loop cannot be vectorized because there are too many memory references

in a loop.

Chapter11 Messages

- 126 -

vec(134): Too many branches.

A loop cannot be vectorized because there are too many branches.

vec(139): Packed loop.

A loop is vectorized by using packed-vector instructions.

vec(140): Unpacked loop. : Reason

-mvector-packed or packed_vector directive is specified, but any packed-

vector instruction is not used in vectorization.

vec(141): “nopacked_vector” is specified.

nopacked_vector directive is applied.

vec(142): pvreg is used in vector loop.

An array which is specified by pvreg directive appears in a vectorized loop

without packed-vector instructions.

vec(143): vreg is used in packed vector loop.

An array which is specified by vreg directive appears in a vectorized loop with

packed-vector instructions.

vec(161): Structure assignment obstructs vectorization.

A loop cannot be vectorized because there is a large struct, union, or class

assignment.

vec(163): Exception handling obstructs vectorization.

A loop cannot be vectorized because there are some expressions relaed to

C++ exception handling.

vec(184): Division obstructs vectorization.

A loop cannot be vectorized because there is unvectorizable division.

Chapter11 Messages

- 127 -

vec(185): Exponentiation obstructs vectorization.

A loop cannot be vectorized because there is unvectorizable exponentiation.

opt(1011): Too large to optimize -- reduce program or loop size.

Optimization of this loop is inhibited because the program or the loop is too

large. The program or the loop should be partitioned.

opt(1019): Feedback of scalar value from one loop pass to another.

A scalar variable accesses a value that is defined on another loop pass.

opt(1025): Reference to this function inhibits optimization.

Reference to this function inhibits optimization.

opt(1025): Reference to this procedure inhibits optimization.

Reference to this procedure inhibits optimization.

opt(1034): Multiple store conflict.

The same array element is defined more than once.

opt(1037): Feedback of array elements.

Same array element is referenced/defined on another loop pass.

opt(1038): Loop too complex -- optimization of this loop halted.

Optimization of this loop is halted because the loop is too complex.

opt(1056): Loop nest too deep for optimization.

Optimization of this loop is halted because nest of the loop is too deep.

opt(1057): Complicated use of variable inhibits loop optimization.

Optimization of this loop is inhibited because usage of the variable is too

Chapter11 Messages

- 128 -

complicated.

opt(1059): Unable to determine last value of scalar temporary.

Last value of the scalar temporary is unable to determine.

opt(1061): Use of scalar under different condition causes feedback.

A scalar variable is accessed under different conditions.

opt(1062): Too many data dependency problems.

Too many data dependency inhibits optimization.

opt(1082): Backward transfers inhibit loop optimization.

Optimization of this loop is inhibited because of backward transfer in the loop.

opt(1083): Last value of promoted scalar required.

A scalar variable that is changed to temporary array needs last value.

opt(1084): Branch out of the loop inhibits optimization.

Optimization of this loop is inhibited because of a branch out from the loop.

opt(1097): This statement prevents loop optimization.

This statement prevents loop optimization.

opt(1117): Indirect branch inhibits to optimization of loop.

Optimization of this loop is inhibited because of an indirect branch in the loop.

opt(1128): Branching too complex to optimize at this optimization level.

Optimization of this loop is inhibited because branchings in the loop are too

complex.

Chapter11 Messages

- 129 -

opt(1130): Conditional scalar inhibits optimization of outer loop.

A conditional scalar definition inhibits optimization of outer loop.

opt(1131): Function references in iteration count inhibits optimization.

Function references in iteration count inhibits optimization.

opt(1166): Potential dependency due to pointer -- use restrict qualifier if

ok.

Potential dependency due to pointer inhibits optimization. If ivdep directive is

specified, the compiler considers the dependency to be optimizable and

vectorizable.

inl(1214): Expansion routine is too big for automatic expansion.: Routine-

name

The size of routine is too big and the routine cannot be inlined. It may be

inlined by -finline-max-function-size=n or -finline-max-times=n.

inl(1219): Nesting level too deep for automatic expansion. : Routine-name

Nesting level of the expansion routine is too deep. It may be inlined by -fi

nline-max-depth=n.

inl(1222): Inlined.: Routine-name

A routine is inlined.

opt(1268): Use of pointer variable inhibits optimization.

Use of pointer variable inhibits optimization.

opt(1282): This store into array inhibits optimization of outer loop.

This store into array inhibits optimization of outer loop.

Chapter11 Messages

- 130 -

opt(1285): Not enough work to justify concurrency optimization.

Concurrency optimization is inhibited because of not enough works in the loop.

opt(1298): Use of induction variable outside the loop inhibits optimization.

Optimization of this loop is inhibited because of use of induction variable

outside the loop.

opt(1299): Redefinition of induction variable in loop inhibits optimization.

Optimization of this loop is inhibited because of redefinition of induction

variable in the loop.

opt(1315): Iterations peeled from loop in order to avoid dependence.

To eliminate unvectorizable dependency, forward/backward expansion of the

loop is performed.

opt(1339): User parallel directives inhibits to optimization.

Optimization is inhibited because of user parallel directive specifications.

opt(1376): User function reference inhibits optimization.

Optimization is inhibited because of user function reference.

opt(1377): Must synchronize to preserve order of accesses.

Synchronization is needed to preserve order of accesses.

opt(1378): Many synchronizations needed.

Too many synchronizations inhibits concurrency.

opt(1380): User function references not ok without "cncall".

Concurrency optimization is inhibited because of user function reference. It

may be optimized if cncall directive is specified.

Chapter11 Messages

- 131 -

inl(1388): Inlining inhibited: OpenMP or parallel directive.

Parallelization control option exists in a candidate for inlining.

opt(1395): Inner loop stripped and strip loop moved outside outer loop.

Outer loop strip mining is performed.

opt(1408): Loop interchanged.

Outer loop is interchanged with inner loop.

opt(1409): Alternate code is generated.

Alternate code is generated.

opt(1589): Outer loop moved inside inner loop(s).

Outer loop is switched with inner loop.

opt(1590): Inner loop moved outside outer loop(s).

Inner loop switched with outer loop.

opt(1592): Outer loop unrolled inside inner loop.

Outer loop unrolling is performed.

opt(1593): Loop nest collapsed into one loop.

Nested loop collapsing is performed.

opt(1772): Loop nest fused with following nest(s).

Loop fusion with following loop is performed.

opt(1800): Idiom detected (matrix multiply).

Replace matrix multiply loop with vectorized library call.

Chapter11 Messages

- 132 -

11.2 Runtime Error Message

The compiler runt-time routine outputs error messages that indicate the program

error to the standard error output. This section describes their main messages.

C++ runtime abort: terminate() called by the exception handling

mechanism.

terminate() function was called by the exception handling mechanism.

C++ runtime abort: returned from a user-defined terminate() routine.

A user-defined terminate() function returned.

C++ runtime abort: internal error: static object marked for destruction

more than once.

Static object marked for destruction was destroyed more than once.

C++ runtime abort: a pure virtual function was called.

A pure virtual function was called.

C++ runtime abort: invalid dynamic cast.

dynamic_cast to subobject was invalid.

C++ runtime abort: invalid typeid operation.

typeid operation was invalid.

C++ runtime abort: freeing array not allocated by an array new operation.

An array that was not allocated by new operator was freed.

C++ runtime abort: terminate() called itself recursively.

terminate() function was called recursively.

Chapter11 Messages

- 133 -

C++ runtime abort: a deleted virtual function was called.

A delete virtual function was called.

Compatibility Error: veos (older than v2.6.0) and ve_exec (vVEOS-verision)

are not compatible

veos version is old, so it does not have compatibility with ve_exec. If VE

program is running on a container, please install the latest veos packages to

the host machine.

Compatibility Error: veos (vVEOS-version-A) and ve_exec (vVEOS-verision-

B) are not compatible

veos version is old, so it does not have compatibility with ve_exec. If VE

program is running on a container, please install the latest veos packages to

the host machine.

Failed to load EXEC DATA (fixed): Error Message

Failed to load the data of exec file. VE memory shortage may be occured. If

there is executing VE process, please terminate it or reduce the size of data.

You can refer to the VE memory capacity and VE memory usage with

“/opt/nec/ve/bin/free -h”.

Failed to load EXEC DATA (fixed, fileback): Error Message

Failed to load the data of exec file. VE memory shortage may be occured. If

there is executing VE process, please terminate it or reduce the size of data.

You can refer to the VE memory capacity and VE memory usage with

“/opt/nec/ve/bin/free -h”.

Unable to grow stack

Size of stack is not enough. As following example, please increase the limit of

the available stack size with the environment variable VE_LIMIT_OPT.

Chapter11 Messages

- 134 -

export VE_LIMIT_OPT="-s 8192"

You can refer to the current limit of stack size by ve_exec command with “—

show-limit” as the argument.

$ ve_exec --show-limit

core file size (blocks, -c) 0 0

data seg size (kbytes, -d) unlimited unlimited

pending signals (-i) 379523 379523

max memory size (kbytes, -m) unlimited unlimited

stack size (kbytes, -s) unlimited unlimited <--

cpu time (seconds, -t) unlimited unlimited

virtual memory (kbytes, -v) unlimited unlimited

VE Node node-number is UNAVAILABLE

The VE card whose number is node-number is fault occurs. Please use other

VE node to execute job.

Chapter12 Troubleshooting

- 135 -

Chapter12 Troubleshooting

12.1 Troubleshooting for compilation

The error "Fatal: License: Unknown host." occurs.

There is a possibility that the problem that the machine can't access a license

server occurs to the time of license check of a compiler. Please refer to the FAQ

indicated on a following page of HPC software license issue.

https://www.hpc-license.nec.com/aurora/

When not solving it, please contact us from the said page.

The error "Syntax error" occurs at a compiler directive.

Please confirm whether the spelling of compiler directive and the how to use

aren't wrong. When it's an error to compiler directive of a SX compiler, please

change to it of a VE compiler by a compiler directive line change tool.

Please refer to "Appendix C Compiler Directive Conversion Tool" to confirm the

usage of the tool.

The error "Error: Invalid suffix" occurs.

There is a possibility that binutils-ve package is old. Please confirm whether

binutils-ve package is the latest edition.

When using a header file and a library, I want to confirm the directory to

which a compiler and a linker refer.

Please refer to "1.6 Searching files specified by #include directive" and "1.7

Searching Libraries".

The error "undefined reference to 'ftrace_region_begin' / 'ftrace_region_end'"

occurs at linking.

The FTRACE function is used. Specify -ftrace at linking.

Please refer to "PROGINF/FTRACE User's guide" about the FTRACE function.

$ ncc a.o b.o -ftrace

Chapter12 Troubleshooting

- 136 -

The error "undefined reference to '__vthr$_barrier'" occurs at linking.

Please specify -mparallel or -fopenmp at linking.

The error "undefined reference to '__vthr$_pcall_va'" occurs at linking.

Please specify -mparallel or -fopenmp at linking.

The error "cannot find -lveproginf" and "cannot find -lveperfcnt" occurs at

linking.

Please install nec-veperf package.

I want to confirm whether they are executable file for VE.

Please execute "/opt/nec/ve/bin/nreadelf -h" that specified the executable file as

an argument of command. When "NEC VE architecture" is output in the line of

"Machine:", it show that a file is an executable file for VE.

$ /opt/nec/ve/bin/nreadelf -h a.out

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: NEC VE architecture

(...)

When linking OpenMP and automatic parallelized program, which of -fopenmp

and -mparallel should I specify?

Please specify either -fopenmp or -mparallel.

$ ncc -c -mparallel a.c

$ ncc -c -fopenmp b.c

$ ncc -fopenmp a.o b.o

When specifying -ftrace, execution time becomes so long.

It becomes long because the routine for getting performance information is

Chapter12 Troubleshooting

- 137 -

executed. It is called at entrance/exit of functions and user specified region.

Please specify -ftrace to only the source file which includes routine which

performance information is required.

Even if setting value bigger than 8 to OMP_NUM_THREADS, threads more than

8 is not generated.

8 threads are the upper limit because the number of cores of VE is 8.

I want to know the name of predefined macro and the value.

Please refer to “9.2.4 Predefined Macro”.

The following error occur when linking C++ program.

/opt/nec/ve/bin/nld: __curr_eh_stack_entry: TLS reference in /tmp/nccwvkaaa.o

mismatches non-TLS reference in /opt/nec/ve/ncc/2.x.x/lib/libnc++.a(iostream.o)

/opt/nec/ve/ncc/2.x.x/lib/libnc++.a: error adding symbols: Bad value

Please recompile the program by the compiler of version 2.2.1 or later.

When compiling a program which code size is large, the compiler aborts by

SIGSEGV.

The stack size needed by the compiler may exceed upper limit of the setting. It

may solve to extend the upper limit of it. It can be confirm and setting to invoke

“ulimit -s” as follows. Please increase the upper limit of stack size and recompile

the program.

$ ulimit -s (Check the current limit)

8192

$ ulimit -s 16384 (Change the limit)

The compiler aborts by SIGKILL.

The memory of the machine may be exhausted. The memory used amount can be

somewhat reduced to compile with -O0 or -O1.

I want to link Fortran program and C/C++ program.

Please refer to “10.6 Linking”.

Chapter12 Troubleshooting

- 138 -

I want to change the options of SX series to it of Vector Engine.

Please change it to refer to “Appendix B SX Compatibility”.

I want to change the compiler directives of SX series to it of Vector Engine.

Please use the “Compiler Directive Conversion Tool” or change by hand by

confirming “Appendix B SX Compatibility”. Please refer to “Appendix C Compiler

Directive Conversion Tool” about the tool.

The variable or routine name which name is “$” and number as ‘$1’ is

displayed in diagnostic message. What is it?

It is created by compiler to do vectorization and parallelization.

The type name as “DOUBLE” or “float” is displayed instead of variable name in

diagnostic message. What is it?

It is unnamed variable created by compiler to do vectorization and parallelization.

It is displayed type name because it has no name.

A compiler option which is not specified in command line is enabled.

A compiler option may be specified in option file. Please refer to “1.5 Specifying

Compiler Options” to confirm details of option file.

I want to confirm version of the compiler.

Please compile with --version.

12.2 Troubleshooting for execution

The error “Node 'N' is Offline” occur at execution.

The state of VE node of number N is OFFLINE. Please make it ONLINE.

The example which make VE node of number 0 ONLINE state is as follows.

Chapter12 Troubleshooting

- 139 -

/opt/nec/ve/bin/vecmd -N 0 state set on

...

Result: Success

/opt/nec/ve/bin/vecmd state get

...

VE0 [03:00.0] [ONLINE] Last Modif:2017/11/29 10:18:00

Result: Success

I want to confirm the used node at execution.

Please execute the command /opt/nec/ve/bin/ps. The command ps outputs

snapshot of executing processes by VE node. In the following example, it can be

confirmed that the program named “a.out” is executing on VE node of number 2.

/opt/nec/ve/bin/ps -a

VE Node: 3

 PID TTY TIME CMD

VE Node: 1

 PID TTY TIME CMD

VE Node: 2

 PID TTY TIME CMD

50727 pts/1 00:01:36 a.out

VE Node: 0

 PID TTY TIME CMD

The error ”./a.out: error while loading shared libraries: libncc.so.2: cannot

open shared object file: No such file or directory” is output at execution.

Please install the package “nec-nc++-shared” and “nec-nc++-shared-inst”. Please

follow the instructions described in the "Installation Guide".

The error which a dynamic link library is not found occurs at execution.

Please set the directory which dynamic link library is put to the environment

variable VE_LD_LIBRARY_PATH. Please refer to “2.2 Environment Variables

Referenced During Execution”.

I want to confirm which line of source file corresponds to an exception

occurrence point.

Chapter12 Troubleshooting

- 140 -

It can be check by traceback information. Please refer to “1.8.3 Using Traceback

Information” to check process of it.

The exception occurrence point which output by traceback information is

incorrect.

The exception occurrence point output by traceback information can be incorrect

by the advance control of HW. The advance control can be stopped to set the

environment variable ADVANCEOFF=YES. An execution time may increase

substantially to stop the advance control. Please take care it.

$ export VE_ADVANCEOFF=YES

I want to confirm whether use uninitialized local variable or not.

It may be checked by detecting an exception to compile with -minit-stack=snan

and execute for double type variables. For float type variables, specify snanf

instead of snan. This approach can be used only if the variable is floating-point

type.

I want to avoid abnormal termination caused by reference of uninitialized

variable.

It may avoid by initializing the area to zero to compile with -minit-stack=zero

and execute. Correction of a program is recommended to resolve a potential

problem.

A program which uses automatic parallelization and/or OpenMP is abnormally

terminated by "Unable to grow stack" or SIGSEGV at execution.

It may occur because the amount of stack usage exceeds the limit. Please

increase the limit of stack size.

 The limit of stack size can be increased by setting the environment variable

OMP_STACKSIZE.

$ export OMP_STACKSIZE=2G

Chapter12 Troubleshooting

- 141 -

I want to confirm how many thread was used at execution.

It can be confirmed to check “Max Active Threads” in PROGINF. “Max Active

Threads” is output to stderr at termination when setting the environment variable

VE_PROGINF=DETAIL. Please refer to “PROGINF/FTRACE user’s Guide” to

confirm usage of PROGINF.

In the following example, it can be confirmed that 4 thread was used because

“Max Active Threads” is 4.

******** Program Information ********

(...)

Power Throttling (sec) : 0.000000

Thermal Throttling (sec) : 0.000000

Max Active Threads : 4

Available CPU Cores : 8

Average CPU Cores Used : 3.323850

Memory Size Used (MB) : 7884.000000

Start Time (date) : Mon Feb 19 04:43:34 2018 JST

End Time (date) : Mon Feb 19 04:44:08 2018 JST

When the threads for automatic or OpenMP parallelized program execution

are created or destroyed?

By default, the threads are created at the start of execution and destroyed at

termination. The number of threads are the specified value by the environment

variable OMP_NUM_THREADS or VE_OMP_NUM_THREADS. If it is not

specified, the number is the same as the number of available VE cores.

Please refer to “7.3.2 Thread Creation and Destroy” for details.

The bus errors occur when promoting vectorization.

It may occur because vector load/store for 8 bytes elements is executed for the

array aligned in 4 bytes. In the following example, the float type (aligned in 4

bytes) arrays “a” and “b” are which passed as arguments are casted to

uint64_t. Therefore, it is vector load/store for 8 bytes elements.

Chapter12 Troubleshooting

- 142 -

void func1(){

float a[511],b[511];

...

func2(a,b);

}

void func2(void* a, void* b){

for(int i=0; i<255; ++i){ //!!!<---vectorized loop

((uint64_t*)b)[i] = ((uint64_t*)a)[i];

}

}

Please align them in 8 bytes as follows or specify the novector directive to the

loop to stop vectorization.

float a[511] __attribute__((aligned(8)));

float b[511] __attribute__((aligned(8)));

12.3 Troubleshooting for tuning

I want to confirm which optimization was applied to a program.

Please refer to output diagnostics and the format list when compiling.

The diagnostics list is output when the compiler option -report-diagnostics, and

the format list is output when the compiler option -report-format is specified. For

details, refer to “Chapter8 Compiler Listing”.

The performance decreases, though vectorization was promoted.

The performance decreases by an overhead of vectorization of the few iteration

loop.

Please specify the novector directive to such loop to stop vectorization.

When automatic or OpenMP parallelized program is executed, the values

displayed in the same item of PROGINF and FTRACE are different.

The number of operations for the spin-waiting of the thread created before main

program starts is added in PROGINF, but not in FTRACE.

Chapter12 Troubleshooting

- 143 -

When using the $omp parallel num_threads (4) and executing with the

environment variable OMP_NUM_THREADS =4 or OMP_NUM_THREADS=5, the

execution time with OMP_NUM_THREADS=5 is a longer than with

OMP_NUM_THREADS=4. Even though there are more parallel numbers.

When the value passed with the num_threads clause is different from the value

specified with the environment variable OMP_NUM_THREADS, the execution time

increases due to thread regeneration.

Threads are automatically generated before the main program starts. The number

of threads is determined by the the environment variable OMP_NUM_THREADS.

When the number of threads changes in the program with the function

omp_set_thread_num() or num_threads clause in OpenMP, the threads generated

before the main program starts is freed and the new threads are regenerated.

12.4 Troubleshooting for installation

I want to check if the installation is correct.

Please specify the --version option to check the version. If the displayed version

number is the same as the installed property, it has been installed correctly. The

version number is output to X.X.X in the following example.

$ /opt/nec/ve/bin/ncc --version

ncc (NCC) X.X.X (Build 14:10:47 Apr 23 2020)

Copyright (C) 2018,2020 NEC Corporation.

I want to install an older version of the compiler.

Please refer to “A.1.1 Installation of a Specific Version of the Compilers” in the SX-

Aurora TSUBASA Installation Guide to install old versions of the compiler.

I want to use an older version of the compiler.

Please invoke /opt/nec/ve/bin/nfort-X.X.X, ncc-X.X.X, or nc++-X.X.X (X.X.X is

the version number of the compiler) at compilation.

For detail, refer to "1.2 Usage of the Compiler".

Chapter12 Troubleshooting

- 144 -

I want to start an older version of compiler by default.

The substance of each version of ncc/nc++/nfort commands are installed as

follows.

X.X.X is the version number of the compiler.

/opt/nec/ve/ncc/X.X.X/bin/ncc

/opt/nec/ve/ncc/X.X.X/bin/nc++

/opt/nec/ve/nfort/X.X.X/bin/nfort

Set the bin directory of the version you want to invoke by default to the command

search path (environment variable PATH).

Chapter13 Notice

- 145 -

Chapter13 Notice

1. The version 2.0.0 or later is not compatible with the version 1.X.X. Therefore, an object

file compiled by version 2.0.0 or later cannot be linked with an object file compiled by

version 1.X.X.

2. Runtime library is also provided as shared library in version 2.2.2 or later. Therefore,

please re-compile and re-build the shared library by version 2.2.2 or later when they

were compiled by version 2.1.2 or earlier.

3. When the following error occurs at compiling of C++ program, please re-compile the

source file by version 2.2.2 or later.

/opt/nec/ve/bin/nld: __curr_eh_stack_entry: TLS reference in /tmp/nccwvkaaa.o misma

tches non-TLS reference in /opt/nec/ve/ncc/2.2.2/lib/libnc++.a(iostream.o)

/opt/nec/ve/ncc/2.2.2/lib/libnc++.a: error adding symbols: Bad value

4. The dynamic linker included in glibc-ve package version 2.21-4 or later is needed to

execute the executable file compiled by version 2.2.2 or later. Confirm the version of

glibc-ve package if an error occurs at execution.

$ rpm -q glibc-ve

glibc-ve-2.21-4.el7.x86_64

5. The execution performance of version 2.2.2 or later may fall compared with version

2.1.2 or earlier by overhead of dynamic-link process, because the compiler links a

shared library at default. It can be avoided by the compilation by -static or -static-

nec.

Notes:

When executing the executable file compiled with -static or -static-nec option, the

execution may be failed rarely. For example a result is wrong, and program aborts

and so on.

Appendix A Configuration file

- 146 -

Appendix A Configuration file

A.1 Overview

The configuration file can be used in order to override the defaults which the

compiler uses. To use the configuration file, use -cf=conf compiler option.

The syntax of configuration file is as follow:

keyword : value

The following table shows currently available keywords.

Keyword Description

veroot The root directory of the VE component

(default: /opt/nec/ve)

system The root directory of the compiler component

(default: /opt/nec/ve/ncc/version)

as The path of assembler command

(default: <veroot>/bin/nas)

ccom The path of C/C++ compiler

(default: <system>/libexec/ccom)

ld The path of linker command

(default: <veroot>/bin/nld)

cc_pre_options

cc_post_options

The Compiler options. The options are specified in the follow order.

<cc_pre_options> <user-specified-options> <cc_post_options>

as_pre_options

as_post_options

The Assembler options. The options are specified in the follow order.

<as_pre_options> <user-specified-options> <as_post_options>

ld_pre_options

ld_post_options

The Linker options. The options are specified in the follow order.

<ld_pre_options> <user-specified-options> <ld_post_options>

startfile The start up file.

endfile The start up file. The file specified as an end of a linker options.

A.2 Format

 A keyword and the value are separated by the colon.

 When a keyword is not set, it set the default value.

 A blank can be specified around the separator colon.

 When ‘\’ is specified as an end of a line, the value can be specified continuous in

Appendix A Configuration file

- 147 -

the next line.

Example:

cc_pre_options: -I /tmp \

-I /tmp2

 When specifying two or more the same keyword, the last keyword becomes

effective.

A.3 Example

 Change the root directory of VE component and compiler component.

A configuration file is made and set the value to ‘veroot’ and ‘system’.

veroot: /foo/ve

system: /foo/ve/ncc/X.X.X

 When the configuration file is specified by -cf option. The configuration file name

is ve.conf here.

$ ncc –cf=ve.conf test.c

 Change the using compiler.

Only the used compiler is changed. Set the value to the “ccom” when only the

used compiler is changed.

ccom: /foo/ve/ncc/X.X.X/libexec/ccom

When the configuration file is specified by -cf option. An assembler, a linker and

so on can also be changed in the same way.

Appendix B SX Compatibility

- 148 -

Appendix B SX Compatibility

This appendix describes the correspondence tables of major compiler options,

compiler directives, and environment variables referred at the execution between SX

compilers and compilers for the Vector Engine.

B.1 Compiler Options

B.1.1 Overall Options

SX Compiler Vector Engine Compiler

-Caopt -O4

-Chopt -O3

-Cvopt -O2

-Csopt -O2 –mno-vector

-Cvsafe -O1

-Cssafe -O1 –mno-vector

-Cnoopt -O0

-Cdebug -O0 -g

-S -S

-NS none

-V

Note: Continue the compilation process.

--version

Note: Display the version and exit.

-NV none

-c -c

-Nc none

-cf string -cf=string

-clear -clear

-continst | -Ncontinst none

-dir { opt | noopt } none

Appendix B SX Compatibility

- 149 -

SX Compiler Vector Engine Compiler

-f03lib none

-f90lib [{ dw | dW | ew | eW }] none

-o file-name -o file-name

-prelink none

-size_t32 none

-size_t64 none

 Note: Always effective.

-syntax -fsyntax-only

-Nsyntax -fno-syntax-only

-to directory-name none

-verbose -v

-Nverbose none

B.1.2 Vector/Scalar Optimization Options

SX Compiler Vector Engine Compiler

-Ochg -fassociative-math or

-faggressive-associative-math

-Onochg -fno-associative-math

-Odiv -freciprocal-math

-Onodiv -fno-reciprocal-math

-Oextendreorder -msched-interblock

-Oignore_volatile -fignore-volatile

-Onoignore_volatile -fno-ignore-volatile

-Omove -fmove-loop-invariants-unsafe

-Onomovediv -fmove-loop-invariants

-Onomove -fno-move-loop-invariants

-Ooverlap -fnamed-alias

-Onooverlap -fnamed-noalias

Appendix B SX Compatibility

- 150 -

SX Compiler Vector Engine Compiler

-Orestrict=arg -fargument-noalias

-Orestrict=this -fthis-pointer-noalias

-Orestrict=type -fstrict-aliasing

-Orestrict=no -fargument-alias

-fthis-pointer-alias

-fno-strict-aliasing

-Osafe_longjmp none

-Onosafe_longjmp none

-Ounroll -floop-unroll

-Ounroll=nlevel -floop-unroll

-floop-unroll-max-times=n

Note: Specify two at the same time.

-Onounroll -fno-loop-unroll

-alias { pointer | nopointer } none

-alias { type | notype } none

-alias { variable | novariable } none

-dir { vec | novec } none

-ipa -fipa

-Nipa -fno-ipa

-math,scalar -ffast-math

-math,vector none

-math,nofast=function-name none

-math { inline | noinline } none

-math,round=tonearest none

-math,round=towardzero none

-math,round=upward none

-math,round=downward none

-math,strict_prototype none

-math,nostrict_prototype none

Appendix B SX Compatibility

- 151 -

SX Compiler Vector Engine Compiler

-Nmath none

-pvctl,altcode -mvector-dependency-test

-mvector-loop-count-test

-mvector-shortloop-reduction

Note: Specify three at the same time.

-pvctl,altcode=dep -mvector-dependency-test

-pvctl,altcode=nodep -mno-vector-dependency-test

-pvctl,altcode=loopcnt -mvector-loop-count-test

-pvctl,altcode=noloopcnt -mno-vector-loop-count-test

-pvctl,altcode=shortloop -mvector-shortloop-reduction

-pvctl,altcode=noshortloop -mno-vector-shortloop-reduction

-pvctl,noaltcode -mno-vector-dependency-test

-mno-vector-loop-count-test

-mno-vector-shortloop-reduction

Note: Specify three at the same time.

-pvctl,assoc -fassociative-math

-pvctl,noassoc -fno-associative-math

-pvctl { assume | noassume } none

-pvctl,collapse -floop-collapse

-pvctl,nocollapse -fno-loop-collapse

-pvctl { compress | nocompress } none

-pvctl { conflict | noconflict } none

-pvctl { delinearize | nodelinearize } none

-pvctl,divloop none

-pvctl,nodivloop -mwork-vector-kind=none

-pvctl,expand=n -floop-unroll-complete=n

-pvctl,noexpand -fno-loop-unroll-complete

-pvctl,listvec -mlist-vector

-pvctl,nolistvec -mno-list-vector

-pvctl,loopchg -floop-interchange

Appendix B SX Compatibility

- 152 -

SX Compiler Vector Engine Compiler

-pvctl,noloopchg -fno-loop-interchange

-pvctl,loopcnt=n -floop-count=n

-pvctl,loop_eq -freplace-loop-equation

-pvctl,noloop_eq -fno-replace-loop-equation

-pvctl,lstval -floop-last-value

-pvctl,matmul -fmatrix-multiply

-pvctl,nomatmul -fno-matrix-multiply

-pvctl { neighbors | noneighbors } none

-pvctl,nodep -fivdep

-pvct,on_adb none

-pvctl,outerunroll=n -fouterloop-unroll

-fouterloop-unroll-max-times=n

Note: Specify two at the same time.

-pvctl,outerunroll_lim=n none

-pvctl,replace_induction none

-pvctl,noreplace_induction none

-pvctl,split -floop-split

-pvctl,nosplit -fno-loop-split

-pvctl { vchg | novchg } none

-pvctl,vecthreshold=n -mvector-threshold=n

-pvctl,verrchk -mvector-intrinsic-check

-pvctl,noverrchk -mno-vector-intrinsic-check

-pvctl { vlchk | novlchk } none

-pvctl,vregs=n none

-pvctl,vwork={hybrid|stack|static} none

-pvctl,vworksz=n none

-struct,loop=n none

-v -mvector

-Nv -mno-vector

Appendix B SX Compatibility

- 153 -

SX Compiler Vector Engine Compiler

-xint -mno-vector-iteration

-Nxint -mvector-iteration

B.1.3 Inlining Options

SX Compiler Vector Engine Compiler

-dir { inline | noinline } none

-pi,auto -finline-functions

-pi,copy_arg -finline-copy-arguments

-pi,nocopy_arg -fno-inline-copy-arguments

-pi,directory=directory-name none

-pi,file=file-name none

-pi,func_size=n none

-pi,inline -finline

-pi,noinline -fno-inline

-pi,max_depth=n -finline-max-depth=n

-pi,max_size=n -finline-max-function-size=n

-pi,search_all none

-pi,times=n -finline-max-times=n

B.1.4 Parallelization Options

SX Compiler Vector Engine Compiler

-dir { par | nopar } none

-Pauto -mparallel

-Pmulti none

-Popenmp -fopenmp

-Pstack none

Appendix B SX Compatibility

- 154 -

SX Compiler Vector Engine Compiler

-pvctl,for[=n] none

 Note: Parallelization schedule can be

controlled by -mschedule-static etc.

-pvctl,by=m none

 Note: Parallelization schedule can be

controlled by -mschedule-static etc.

-pvctl,inner -mparallel-innerloop

-pvctl,noinner -mno-parallel-innerloop

-pvctl,outerstrip -mparallel-outerloop-strip-mine

-pvctl,noouterstrip -mno-parallel-outerloop-strip-mine

-pvctl,parcase -mparallel-sections

-pvctl,noparcase -mno-parallel-sections

-pvctl,parthreshold=n -mparallel-threshold=n

-pvctl,noparthreshold -mno-parallel-threshold

-pvctl,res={ whole | parunit | no } none

-reserve=n none

B.1.5 Code Generation Options

SX Compiler Vector Engine Compiler

-mask { nosetall | setall | setmain } none

-mask { flovf | flunf | fxovf | inv |

inexact | zdiv }

none

Note: It can be controlled by the

environment variable VE_FPE_ENABLE.

-stkchk | -Nstkchk none

-sx9 | -sxace none

B.1.6 Language Options

C++/SX Compiler Vector Engine Compiler

-Xa none

-Xc none

Appendix B SX Compatibility

- 155 -

C++/SX Compiler Vector Engine Compiler

-Xkr none

-Xp none

-Xs none

-K { align8 | noalign8 } none

-K { complex | nocomplex } none

-Kcompound_literals none

-Knocompound_literals none

-Kconst_string_literals none

-Knoconst_string_literals none

-K { designators | nodesignators } none

-Kexceptions -fexceptions

Note: Enabled by default.

-Knoexceptions

Note: Enabled by default.

-fno-exceptions

-K { gcc | nogcc } -std=keyword

-Kgnu89_inline -fgnu89-inline

-Knognu89_inline none

-Kmultibyte_chars none

-Knomultibyte_chars none

-Knew_for_init -ffor-scope

-Kold_for_init -fno-for-scope

-Knonstd_gnu_keywords none

-Knononstd_gnu_keywords none

-K { nullptr | nonullptr } none

-Kopenmp_fatal none

-Kopenmp_warning none

-Krestrict -frestrict

-Knorestrict -fno-restrict

-Kstd=keyword -std=keyword

Appendix B SX Compatibility

- 156 -

C++/SX Compiler Vector Engine Compiler

-Ktrigraphs

Note: Enabled by default.

-trigraphs

-Knotrigraphs none

Note: Enabled by default.

-Kunsigned_char

Note: Enabled by default.

-funsigned-char

-Ksigned_char -fsigned-char

Note: Enabled by default.

-K { using_std | nousing_std } none

-Kvariadic_templates none

-Knovariadic_templates none

-K { vla | novla } none

-T { auto | noauto } none

-T { none | all | used | local } none

-Timplicit_include -fimplicit-include

B.1.7 Performance Measurement Options

SX Compiler Vector Engine Compiler

-acct -proginf

-Nacct -no-proginf

-ftrace -ftrace

-ftrace { simple | demangled } none

-Nftrace -no-ftrace

-p -p

-Np none

B.1.8 Debugging Options

SX Compiler Vector Engine Compiler

-dir { debug | nodebug } none

Appendix B SX Compatibility

- 157 -

SX Compiler Vector Engine Compiler

-g -g

-gv none

-Ng -g0

-init,stack={ zero | nan | 0xXXXX } -minit-stack={ zero | snan | snanf |

0xXXXX }

-traceback -traceback

-traceback { simple | demangled } none

-Ntraceback none

B.1.9 Preprocessor Options

SX Compiler Vector Engine Compiler

-Dname[=def] -Dname[=def]

-E -E

-EP none

-H -H

-I directory-name -I directory-name

-K gcc_predefines none.

Note: Macros are defined by default.

-K nogcc_predefines none

-Kkeep_comments -C

-Knokeep_comments none

-Kkeep_line_dirs none

-Knokeep_line_dirs none

-Knew_preprocessing none

-Kold_preprocessing -traditional-cpp

Note: -E option is needed.

-Kvariadic_macros none

-Knovariadic_macros none

Appendix B SX Compatibility

- 158 -

SX Compiler Vector Engine Compiler

-M -M

-Uname -Uname

-dD -dD

-dI -dI

-dM -dM

-dN -dN

B.1.10 List Output Options

SX Compiler Vector Engine Compiler

-Rappend -report-append-mode

-Rnoappend none

-Rdiaglist -report-diagnostics

-Rnodiaglist none

-Rfile={ file-name | stdout } -report-file={ file-name | stdout }

-Rfmtlist -report-format

-Rnofmtlist none

-Robjlist -assembly-list

-Rnoobjlist none

-R { summary | nosummary } none

-Rsystem_header -fdiag-system-header

-R { transform | notransform } none

B.1.11 Message Options

SX Compiler Vector Engine Compiler

-O { fullmsg | infomsg | nomsg } none

-pi { fullmsg | infomsg | nomsg } -fdiag-inline={ 2 | 1 | 0 }

-pvctl { fullmsg | infomsg | nomsg } -fdiag-parallel={ 2 | 1 | 0 }

-fdiag-vector={ 2 | 1 | 0 }

Appendix B SX Compatibility

- 159 -

SX Compiler Vector Engine Compiler

-wall -Wall

-wno_unset_use none

-wnone -w

-wfatal=n none

-woff=n none

-wlongjmp none

B.1.12 Assembler Options

SX Compiler Vector Engine Compiler

-Wa,option-strings -Wa,option-strings

B.1.13 Linker Options

SX Compiler Vector Engine Compiler

-G none

-Ldirectory-name -Ldirectory-name

-llibrary-name -llibrary-name

-Wl,option-strings -Wl,option-strings

B.1.14 Directory Options

SX Compiler Vector Engine Compiler

-YI,directory-name none

-YL,directory-name none

-YS,directory-name none

-Ya,directory-name none

-Yc,directory-name none

-Yl,directory-name none

-Ys,directory-name none

Appendix B SX Compatibility

- 160 -

SX Compiler Vector Engine Compiler

-Yt,directory-name none

B.2 Compiler Directives

Please refer to “C.3 Compiler Directives” to confirm the correspondence tables of

compiler directives between SX compilers and compilers for the Vector Engine.

Please use the “compiler directive conversion tool” for converting from the SX

compiler directive to the Vector Engine. Please refer to “Appendix C Compiler

Directive Conversion Tool” for detail.

B.3 Environment Variables

SX Compiler Vector Engine Compiler

C_PROGINF VE_PROGINF

C_TRACEBACK VE_TRACEBACK

B.4 Implementation-Defined Specifications

B.4.1 Data Types

Type
SX Compiler Vector Engine Compiler

Size Alignment Size Alignment

_Bool 4 4 1 1

bool 4 4 1 1

char

signed char

unsigned char

1 1 1 1

short

short int

unsigned short

unsigned short int

2 2 2 2

Appendix B SX Compatibility

- 161 -

Type
SX Compiler Vector Engine Compiler

Size Alignment Size Alignment

int

unsigned int

4 4 4 4

long

long int

unsigned long

unsigned long int

8 8 8 8

long long

long long int

unsigned long long

unsigned long long int

8 8 8 8

float 4 4 4 4

double 8 8 8 8

long double 16 16 16 16

float _Complex 8 4 8 4

double _Complex 16 8 16 8

long double _Complex 32 16 32 16

pointer 8 8 8 8

enum 4 4 4 4

Array type (*1) (*2) (*1) (*3)

Structure type

union type

Class type

(*1) (*1) (*1) (*1)

Bit-fields 4 (*4) 4 (*4) (*5) (*5)

(*1) The specifications of SX Compiler and Vector Engine Compiler are the same.

See “9.2.1 Data Types”.

(*2) Requires the same size and alignment as the array element, except for the

char type array. The char type array requires a 16-byte alignment.

(*3) Requires the same size and alignment as the array element.

(*4) Correspond with int.

(*5) Bit-filelds obey the same size and alignment rules as other structure and

union members.

Appendix B SX Compatibility

- 162 -

B.4.2 Predefined Macros

The following predefined macros of the SX compiler are not defined by the Vector

Engine compiler.

Name

__BUILTIN_ABS

_C99

_C99_COMPLEX

_C99LIB

_EXCEPTION_ENABLE

_FLOAT0

_LONG64

_RESTRICT

_SIGNED_CHAR

_SIZE_T64

__STDC_NO_THREADS__

SX

_SX

__SXCXX_EXTENSIONS

__SXCXX_REVISION

_VECLIB

Appendix C Compiler Directive Conversion Tool

- 163 -

Appendix C Compiler Directive Conversion Tool

This appendix describes the tool for converting from the SX compiler directive to the

Vector Engine.

C.1 ncdirconv

Name:

ncdirconv

SYNOPSIS:

ncdirconv [OPTION...] [FILE | DIRECTORY]...

DESCRIPTION:

This tool converts the sxf90/sxf03/sxcc/sxc++ directive to the nfort/ncc/nc++

directive in source file.

When this tool specifies a directory, it convert files with the following extensions in

that directory at once.

.c .i .h .C .cc .cpp .cp .cxx .c++ .ii .H .hh .hpp

.hp .hxx .h++ .tcc .F .FOR .FTN .FPP .F90 .F95 .F03 .f

.for .ftn .fpp .f90 .f95 .f03 .i90

The original file is saved as file-name.bak.

The sxf90/sxf03/sxcc/sxc++ directives can be left after conversion or deleted by

option.

OPTIONS:

Option Description

-a, --append Append the nfort/ncc/nc++ directive. Do not delete the

sxf90/sxf03/sxcc/sxc++ directives.

-d, --delete If the nfort/ncc/nc++ directive is not supported, delete the

sxf90/sxf03/sxcc/sxc++ directive.

-f, --force Do not check file suffix.

-h, --help Display this help and exit.

-o file, --output

file

Specify output file-name. When multiple input files are specified,

or when a directory is specified, this option is ignored.

-p, --preserve If the nfort/ncc/nc++ directive is not supported, do not delete

the sxf90/sxf03/sxcc/sxc++ directive.

-q, --quiet Do not report about conversion.

Appendix C Compiler Directive Conversion Tool

- 164 -

Option Description

-r, --recursive Recursively conversion any subdirectories found.

-v, --version Output version information and exit.

Messages:

If the compiler directive is converted or the nfort/ncc/nc++ does not support the

compiler directive, the message is output to the standard error.

Format:

file-name: line Line-number: message

file-name: Input file name

Line-number: Line number of file before conversion

message:

 converted "SX compiler directive" to "VE compiler directive" (Converted |

Substitute)

Indicates that the compiler directive has been converted. "Converted" is output

if compiler directive of the SX and VE have equivalent functions. "Substitute" is

output if compiler directive of SX and VE have nearly equivalent functions.

 "SX compiler directive" is not supported [(Remained| Removed/Obsolescent)]

The sxf90/sxf03/sxcc/sxc++ directive is not supported by VE. "Remained" is

output to the compiler directive scheduled for future implementation in the VE.

"Removed/Obsolescent" is output to the compiler directive that is not planned

to be supported.

Exit status:

The exit status is 0 if conversion is successful, otherwise it is nonzero.

Notes:

This tool is creates a temporary file for work in /tmp. This temporary file is

automatically deleted at the end of the execution. The directory can be changed

with the environment variable TMPDIR.

C.2 Examples

Example1: When a file specified.

Convert the sxf90/sxf03/sxcc/sxc++ directive contained in a file to the

nfort/ncc/nc++ directive.

Appendix C Compiler Directive Conversion Tool

- 165 -

$ cat sample.c

int func(int max)

{

 int i;

 int sum = 0;

#pragma cdir novector

 for (i=0; i<max; i++) {

 sum += i;

 }

 return sum;

}

$ ncdirconv sample.c

sample.c: line 6: converted 'novector' to 'novector' (Converted)

$ cat sample.c

int func(int max)

{

 int i;

 int sum = 0;

#pragma _NEC novector

 for (i=0; i<max; i++) {

 sum += i;

 }

 return sum;

}

Example2: When a directory is specified.

Take the following directory as an example.

dir/

 + Makefile

 + sample1.c

 + sample2.c

 + subdir/

 + Makefile

 + sample3.c

Appendix C Compiler Directive Conversion Tool

- 166 -

$ ncdirconv dir

dir/sample1.c: line 5: converted 'loopcnt=5' to 'loop_count(5)' (Converted)

dir/sample2.c: line 16: converted 'nodep' to 'ivdep' (Substitute)

In the above case, sample1.c and sample2.c are converted. Makefile is out of

scope because there is no file extension. Files in subdirectory 'subdir' are also

excluded.

$ ncdirconv -r dir

dir/sample2.c: line 5: converted 'nodep' to 'ivdep' (Substitute)

dir/sample1.c: line 16: converted 'loopcnt=5' to 'loop_count(5)' (Converted)

dir/subdir/sample3.c: line 12: converted 'loopcnt=5' to 'loop_count(5)'

(Converted)

Specify -r option to convert files in subdirectories. If -r option is specified,

directory is recursively checked and converted.

C.3 Compiler Directives

SX Compiler VE Compiler

alias (Removed/Obsolescent)

alloc_on_vreg(identifier, n) vreg(identifier)

altcode dependency_test

loop_count_test

shortloop_reduction

altcode=dep dependency_test

altcode=loopcnt loop_count_test

altcode=nodep nodependency_test

altcode=noshort noshortloop_reduction

altcode=short shortloop_reduction

noaltcode nodependency_test

noloop_count_test

noshort_loop_reduction

assoc assoc

noassoc noassoc

assume assume

noassume noassume

atomic atomic

Appendix C Compiler Directive Conversion Tool

- 167 -

SX Compiler VE Compiler

cncall cncall

collapse collapse

compress (Removed/Obsolescent)

nocompress (Removed/Obsolescent)

concur concurrent

concur(by=m) concurrent schedule(dynamic, m)

concur(for=n) concurrent

noconcur noconcurrent

data_prefetch (Removed/Obsolescent)

delinearize (Removed/Obsolescent)

nodelinearize (Removed/Obsolescent)

divloop vwork

nodivloop novwork

expand unroll_complete

expand=n (Removed/Obsolescent)

noexpand nounroll

extend (Removed/Obsolescent)

extend_free (Removed/Obsolescent)

fixed (Removed/Obsolescent)

free (Removed/Obsolescent)

gthreorder gather_reorder

nogthreorder (Removed/Obsolescent)

iexpand(function) inline

noiexpand(function) noinline

inline(function) inline

inline(function) complete inline_complete

noinline(function) noinline

inner inner

noinner noinner

listvec list_vector

Appendix C Compiler Directive Conversion Tool

- 168 -

SX Compiler VE Compiler

nolistvec nolist_vector

loop_eq (Removed/Obsolescent)

noloop_eq (Removed/Obsolescent)

loopchg interchange

noloopchg nointerchange

loopcnt=n loop_count(n)

lstval lstval

nolstval nolstval

move move_unsafe

nomove nomove

nomovediv move

neighbors (Removed/Obsolescent)

noneighbors (Removed/Obsolescent)

nexpand inline_complete

noconflict(identifier) (Removed/Obsolescent)

nodep ivdep

on_adb(identifier) (Removed/Obsolescent)

outerunroll=n outerloop_unroll(n)

noouterunroll noouterloop_unroll

overlap (Removed/Obsolescent)

nooverlap (Removed/Obsolescent)

parallel for parallel for

parallel for private(identifier) parallel for private(identifier)

parallel sections (Removed/Obsolescent)

section (Removed/Obsolescent)

select(keyword) (Remained)

shape (Removed/Obsolescent)

shortloop shortloop

skip (Removed/Obsolescent)

sparse (Remained)

Appendix C Compiler Directive Conversion Tool

- 169 -

SX Compiler VE Compiler

nosparse (Remained)

split (Remained)

nosplit (Remained)

sync (Remained)

nosync nosync

threshold (Removed/Obsolescent)

nothreshold (Removed/Obsolescent)

traceback (Remained)

unroll=n unroll(n)

nounroll nounroll

unshared (Removed/Obsolescent)

vecthreshold vector_threshold(n)

vector vector

novector novector

verrchk verror_check

noverrchk noverror_check

vlchk (Removed/Obsolescent)

novlchk (Removed/Obsolescent)

vob vob

novob novob

vovertake(identifier) vovertake

novovertake novovertake

vprefetch (Remained)

novprefetch (Removed/Obsolescent)

vreg(identifier) vreg(identifier)

vwork=keyword (Removed/Obsolescent)

vworksz=n (Removed/Obsolescent)

C.4 Notes

 If -a or -p is specified, the SX compiler directive will remain and a warning will be

Appendix C Compiler Directive Conversion Tool

- 170 -

output at compile time.

$ ncc -c sample.c

"sample.c", line 6: warning: unrecognized #pragma

 #pragma cdir novector

 ^

ncc: vec(103): sample.c, line 8: Unvectorized loop.

 The original file is saved as file-name.bak. When file-name.bak already exists,

rename file-name.bak to file-name.bak2, then save the new file as file-name.bak.

Up to five files are saved. Please delete files as necessary.

 This tool does not check the format of the input file. If the format of the SX

compiler directive is incorrect, conversion may not be performed correctly.

 If the input file is a symbolic link file, the symbolic link destination file is updated.

The "file-name.bak" is created as a regular file.

Appendix D Change Notes

- 171 -

Appendix D Change Notes

The following changes are done from the previous version (Rev.26 Mar.2022

released).

 The descriptions of the following environment variables in Chapter 2 are added.

‒ OMP_TOOL / VE_OMP_TOOL

‒ OMP_TOOL_LIBRARIES / VE_OMP_TOOL_LIBRARIES

 The descriptions of the following compiler option in Chapter 3 are added and

changed.

‒ Add -fopenmp-tools.

‒ Change the description of -fnamed-alias and -fnamed-noalias.

‒ Change the default value of -ftemplate-depth and added a description of the

value that can be specified.

 OMPT interface is added as a supported OpenMP 5.0 feature.

Index

@

@file-name .. 16

1

1-byte signed integer 86

1-byte unsigned integer 87

2

2-byte signed integer 87

2-byte unsigned integer 87

4

4-byte signed integer 87

4-byte unsigned integer 87

8

8-byte signed integer 88

8-byte unsigned integer 88

A

Accuracy degradation 6

advance_gather ... 39

alignment .. 79

always_inline ... 39, 57

Arithmetic Conversion 85

Arithmetic Exceptions 5

Accuracy degradation 6

Exception while executing a vector instruction 6

Floating-point overflow 5

Floating-point underflow 6

Invalid operation .. 6

Using Traceback Information 7

array type ... 80

-assembly-list .. 34

assoc ... 39

assume .. 39

atomic .. 39

Automatic inlining .. 57

Automatic Parallelization 62

B

-B .. 36

Basic Asm Statement 94

-Bdynamic .. 34

Bit Fields .. 93

bit-fields ... 81

-Bstatic .. 35

Builtin Functions .. 79

C

-c .. 16

-C .. 32

-cf ... 16

-clear ... 16

cncall ... 39

Code Generation Module 76

collapse .. 39

Compiler Directive Conversion Tool 162

Complex and Floating-point Conversion 85

Complex and Integral Conversion 85

Complex Conversion 84

Complex Types .. 90

Compression ... 51

concurrent .. 40

Conditional Parallelization Using Dependency Test

 ... 62

Conditional Parallelization Using Threshold Test 62

Conditional Vectorization 52

configuration file .. 145

Configuration file .. 145

cross-file inlining .. 60

D

-D .. 33

Data Types .. 79

-dD ... 32

demangling ... 102

dependency_test .. 40

derived type .. 80

-dI .. 32

Diagnostic List ... 69

-dM .. 32

-dN ... 33

double .. 89

double _Complex ... 90

double-precision complex 90

double-precision floating-point 89

E

-E ... 33

Enumeration Type .. 92

Environment Variables 8

Expansion.. 52

Explicit inlining ... 57

Extended Asm Statement 94

F

-faggressive-associative-math 17

-fargument-alias .. 17

-fargument-noalias 17

-fassociative-math .. 17

-fcheck-noexcept-violation 17

-fcse-after-vectorization 18

-fdefer-inline-template-instantiation 29

-fdiag-inline ... 31

-fdiag-parallel .. 31

-fdiag-system-header 31

-fdiag-vector ... 31

-fexceptions .. 29

-fext-numeric-literals.................................... 29

-ffast-math ... 18

-ffor-scope .. 29

-fgnu89-inline ... 28

-fignore-induction-variable-overflow 18

-fignore-volatile ... 18

-fimplicit-include .. 29

-finline ... 25

-finline-abort-at-error 25

-finline-copy-arguments 25

-finline-directory .. 25

-finline-file .. 26

-finline-functions ... 26

-finline-max-depth 26

-finline-max-function-size 26

-finline-max-times 26

-finline-suppress-diagnostics 26

-finstrument-functions 27

-fivdep ... 18

-fivdep-omp-worksharing-loop 18

float ... 88

float _Complex .. 90

Floating-point and Integral Conversion 84

Floating-point Conversion 83

Floating-point overflow 5

Floating-Point Types 88

Floating-point underflow 6

-floop-collapse ... 18

-floop-count .. 18

-floop-fusion ... 18

-floop-interchange 18

-floop-normalize .. 18

-floop-split .. 18

-floop-strip-mine ... 19

-floop-unroll .. 19

-floop-unroll-complete 19

-floop-unroll-max-times 19

-fmatrix-multiply .. 19

-fmove-loop-invariants 19

-fmove-loop-invariants-if 19

-fmove-loop-invariants-unsafe 19

-fmove-nested-loop-invariants-outer 19

-fnaked-ivdep .. 20

-fnamed-alias .. 20

-fnamed-noalias ... 20

-fno-allow-keyword-macros 28

-fno-ext-numeric-literals 29

-fno-inline-directory 25

-fno-inline-file .. 26

-fopenmp .. 24

-fopenmp-tools .. 24

Forced Loop Parallelization 63

forced_collapse .. 40

Format List .. 70

-fouterloop-unroll ... 20

-fouterloop-unroll-max-size 20

-fouterloop-unroll-max-times 20

-fpic .. 27

-fPIC ... 27

-fprecise-math ... 20

-freciprocal-math ... 20

-freplace-loop-equation 20

-frestrict .. 28, 30

-frtti ... 30

-fsigned-char ... 28

-fstrict-aliasing ... 20

-fsyntax-only ... 16

-ftemplate-depth .. 30

-fthis-pointer-alias .. 21

-fthis-pointer-noalias 21

-ftrace .. 27

-funsigned-char ... 28

G

-g ... 27

gather_reorder .. 40

H

-H .. 33

--help ... 36

HOME ... 8

I

-I ... 33

-I- .. 33

Implementation-Defined Specifications 79

-include .. 33

inline ... 40, 57

Inline Assembly Language 94

inline directive ... 57

inline_complete 40, 57

Inlining ... 57

Inlining Module .. 74

inner .. 40

int .. 87

Integer Types .. 86

Integral Conversion 82

Integral Promotion 82

interchange ... 41

Invalid operation.. 6

-isysroot ... 33

-isystem ... 33

Iteration ... 50

ivdep .. 41

L

-L .. 35

Language-Mixed Programming 100

list_vector ... 41

-llibrary .. 35

long ... 88

long double ... 89

long double _Complex 91

long long ... 88

loop .. 65

loop_count .. 41

loop_count_test ... 41

lstval ... 41

M

-M .. 33

Macro Operations ... 49

Compression .. 51

Expansion .. 52

Iteration .. 50

Maximum values and minimum values 50

Product .. 49

Search ... 51

Sum or inner product 49

mangling ... 102

Maximum values and minimum values 50

-mcreate-threads-at-startup 24

-MD .. 33

Messages .. 120

-MF .. 33

-mgenerate-il-file ... 26

-minit-stack ... 27

-mlist-vector .. 21

move .. 41

move_unsafe ... 41

-MP .. 34

-mparallel .. 24

-mparallel-innerloop 24

-mparallel-omp-routine 24

-mparallel-outerloop-strip-mine 25

-mparallel-sections 25

-mparallel-threshold 25

-mread-il-file ... 26

-mretain .. 21

-msched .. 21

-mschedule-chunk-size 25

-mschedule-dynamic 25

-mschedule-runtime 25

-mschedule-static .. 25

-MT .. 34

-mvector .. 22

-mvector-advance-gather 22

-mvector-advance-gather-limit 22

-mvector-dependency-test 22

-mvector-floating-divide-instruction 22

-mvector-fma .. 22

-mvector-intrinsic-check 22

-mvector-iteration .. 23

-mvector-iteration-unsafe 23

-mvector-loop-count-test 23

-mvector-low-precise-divide-function 23

-mvector-merge-conditional 23

-mvector-packed ... 23

-mvector-power-to-explog 23

-mvector-power-to-sqrt 23

-mvector-reduction 23

-mvector-shortloop-reduction 24

-mvector-sqrt-instruction 24

-mvector-threshold 24

-mwork-vector-kind 24, 49

N

NCC_COMPILER_PATH 8

NCC_INCLUDE_PATH 8

NCC_LIBRARY_PATH 8

NCC_PROGRAM_PATH 9

ncdirconv .. 162

noadvance_gather 39

noassoc .. 39

noassume ... 39

noconcurrent ... 40

nodependency_test 40

nofma .. 41

nofuse .. 42

noinline ... 40, 57

noinner... 40

nointerchange .. 41

nolist_vector .. 41

noloop_count_test .. 41

nolstval ... 41

nomove ... 41

noouterloop_unroll 42

nopacked_vector .. 43

-noqueue .. 36

noshortloop_reduction 44

nosparse ... 44

-nostartfiles ... 35

-nostdinc ... 34

-nostdlib.. 35

nosync .. 42

nounroll .. 44

novector .. 45

noverror_check .. 45

novob ... 45

novovertake... 45

novwork .. 46

O

-o ... 16

-O .. 17

OMP_NUM_THREADS 10

OMP_STACKSIZE .. 10

OMP_TOOL .. 10

OMP_TOOL_LIBRARIES 10

OMPT interface .. 65

OpenMP Parallelization 64

Optimizations ... 47

Option List ... 69

options .. 42

Outer Loop Strip-mining 52

outerloop_unroll ... 42

P

-p ... 27

-P ... 34

Packed vector instructions 54

packed_vector ... 43

parallel for .. 43

parallel loop .. 65

parallel master .. 65

Parallelization of inner Loops 62

Partial Vectorization 49

PATH .. 9

-pedantic .. 31

-pedantic-errors .. 31

-pg .. 27

Pointer Type .. 92

Predefined Macro ... 93

-print-file-name ... 36

-print-prog-name ... 36

Product .. 49

-proginf .. 27

-pthread ... 25

ptrdiff_t .. 81

pvreg ... 43

Q

quadruple-precision complex 91

quadruple-precision floating-point.................. 89

R

-rdynamic ... 35

-report-all ... 31

-report-append-mode................................... 31

-report-cg ... 32

-report-diagnostics 32

-report-file .. 31

-report-format ... 32

-report-inline ... 32

-report-option ... 32

-report-system-header 32

-report-vector ... 32

retain ... 43

S

-S ... 16

Search .. 51

select_concurrent ... 43

select_vector ... 44

-shared ... 35

short... 87

shortloop ... 44

Short-loop ... 54

shortloop_reduction 44

Side Effects of Optimization 48

signed char .. 86

single-precision complex 90

single-precision floating-point 88

size_t .. 81

sparse ... 44

-static ... 35

-static-nec ... 35

-std .. 28, 30

structure type .. 80

Sum or inner product 49

--sysroot ... 36

T

TMPDIR .. 9

-traceback ... 28

-traditional .. 29

-traditional-cpp .. 29

-trigraphs .. 29

Troubleshooting ... 134

Type Conversion ... 81

Arithmetic Conversion 85

Complex and Floating-point Conversion 85

Complex and Integral Conversion................ 85

Complex Conversion 84

Floating-point and Integral Conversion 84

Floating-point Conversion 83

Integral Conversion 82

Integral Promotion 82

U

-U .. 34

-undef .. 34

union type .. 80

unroll ... 44

unroll_complete ... 44

unsigned char ... 87

unsigned int .. 87

unsigned long.. 88

unsigned long long 88

unsigned short .. 87

V

-v .. 36

VE_ADVANCEOFF .. 10

VE_FPE_ENABLE ... 11

VE_INIT_STACK .. 11

VE_LD_LIBRARY_PATH 12

VE_LIBRARY_PATH .. 9

VE_NODE_NUMBER 12

VE_OMP_NUM_THREADS 10

VE_OMP_STACKSIZE 10

VE_OMP_TOOL .. 10

VE_OMP_TOOL_LIBRARIES 10

VE_PROGINF ... 12

VE_TRACEBACK .. 12

VE_TRACEBACK_DEPTH 13

vector .. 45

Vector Module ... 75

vector_threshold ... 45

Vectorization ... 48

Vectorization Features 48

verror_check ... 45

--version ... 36

vob .. 45

vovertake ... 45

vreg ... 46

vwork ... 46

W

-w .. 31

-Wa .. 34

-Wall ... 30

wchar_t .. 81

-Wcomment .. 30

-Werror ... 30

-Wl ... 35

-Wno-div-by-zero ... 30

-Wp .. 34

-Wunknown-pragma 30

-Wunsued-parameter 31

-Wunused ... 30

-Wunused-but-set-parameter 30

-Wunused-but-set-variable 30

-Wunused-value .. 31

-Wunused-variable 31

X

-x .. 16

-Xassembler .. 34

-Xlinker .. 35

Z

-z... 35

	Chapter1 C/C++ Compiler
	1.1 Overview
	1.2 Usage of the Compiler
	1.3 Execution
	1.4 Command Line Syntax
	1.5 Specifying Compiler Options
	1.6 Searching files specified by #include directive
	1.7 Searching Libraries
	1.8 Arithmetic Exceptions
	1.8.1 Operation Result After Arithmetic Exception Occurrence
	1.8.2 Changing Arithmetic Exception Mask
	1.8.3 Using Traceback Information
	1.8.4 Remarks on Changing Arithmetic Exception Mask

	Chapter2 Environment Variables
	2.1 Environment Variables Referenced During Compilation
	HOME
	NCC_COMPILER_PATH
	NCC_INCLUDE_PATH
	NCC_LIBRARY_PATH
	NCC_PROGRAM_PATH
	PATH
	TMPDIR
	VE_LIBRARY_PATH

	2.2 Environment Variables Referenced During Execution
	OMP_NUM_THREADS / VE_OMP_NUM_THREADS
	OMP_STACKSIZE / VE_OMP_STACKSIZE
	OMP_TOOL / VE_OMP_TOOL
	OMP_TOOL_LIBRARIES / VE_OMP_TOOL_LIBRARIES
	VE_ADVANCEOFF
	VE_FPE_ENABLE
	VE_INIT_STACK
	VE_LD_LIBRARY_PATH
	VE_NODE_NUMBER
	VE_PROGINF
	VE_TRACEBACK
	VE_TRACEBACK_DEPTH

	Chapter3 Compiler Options
	3.1 Overall Options
	3.2 Optimization Options
	3.3 Parallelization Options
	3.4 Inlining Options
	3.5 Code Generation Options
	3.6 Debugging Options
	3.7 Language Options
	3.7.1 C Language Control Options
	3.7.2 C++ Language Control Options

	3.8 Message Options
	3.9 List Output Options
	3.10 Preprocessor Options
	3.11 Assembler Options
	3.12 Linker Options
	3.13 Directory Options
	3.14 Miscellaneous Options
	3.15 Compiler options which cannot specify by options directive
	3.16 Optimization Level and Options’ Defaults

	Chapter4 Compiler Directives
	[no]advance_gather
	always_inline
	[no]assoc
	[no]assume
	atomic
	cncall
	collapse
	[no]concurrent
	[no]dependency_test
	forced_collapse
	gather_reorder
	[no]inline
	inline_complete
	[no]inner
	[no]interchange
	ivdep
	[no]list_vector
	loop_count(n)
	[no]loop_count_test
	[no]lstval
	move / move_unsafe / nomove
	nofma
	nofuse
	nosync
	options “compiler-option [compiler-option]...”
	outerloop_unroll(n) / noouterloop_unroll
	[no]packed_vector
	parallel for
	pvreg(array-name)
	retain(array-name)
	select_concurrent
	select_vector
	shortloop
	[no]shortloop_reduction
	[no]sparse
	unroll(n) / nounroll
	unroll_complete
	[no]vector
	vector_threshold(n)
	[no]verror_check
	[no]vob
	[no]vovertake
	vreg(array-name)
	[no]vwork

	Chapter5 Optimization and Vectorization
	5.1 Code Optimization
	5.1.1 Optimizations
	5.1.2 Side Effects of Optimization

	5.2 Vectorization Features
	5.2.1 Vectorization
	5.2.2 Partial Vectorization
	5.2.3 Macro Operations
	5.2.4 Conditional Vectorization
	5.2.5 Outer Loop Strip-mining
	5.2.6 Short-loop
	5.2.7 Packed vector instructions
	5.2.8 Other
	5.2.9 Remarks on Using Vectorization

	Chapter6 Inlining
	6.1 Automatic Inlining
	6.2 Explicit Inlining
	6.2.1 Description
	6.2.2 Specifying Inline Directive
	6.2.3 Remarks

	6.3 Cross-file Inlining
	6.4 Inline Expansion Inhibitors
	6.5 Notes on Inlining

	Chapter7 Parallelization
	7.1 Automatic Parallelization
	7.1.1 Description
	7.1.2 Conditional Parallelization Using Threshold Test
	7.1.3 Conditional Parallelization Using Dependency Test
	7.1.4 Parallelization of inner Loops
	7.1.5 Forced Loop Parallelization

	7.2 OpenMP Parallelization
	7.2.1 Using OpenMP Parallelization
	7.2.2 OpenMP 5.0 Parallelization
	7.2.3 Extensions on OpenMP Parallelization
	7.2.4 Restrictions on OpenMP Parallelization

	7.3 Threads
	7.3.1 Set and Get Number of Threads
	7.3.2 Thread Creation and Destroy
	7.3.3 Postpone Thread Creation

	7.4 Notes on Using Parallelization

	Chapter8 Compiler Listing
	8.1 Option List
	8.2 Diagnostic List
	8.2.1 Format of Diagnostic List
	8.2.2 Notes

	8.3 Format List
	8.3.1 Format of Format List
	8.3.2 Loop Structure and Vectorization/Parallelization/Inlining Statuses
	8.3.3 Notes

	8.4 Optimization List of Each Module
	8.4.1 Inlining Module
	8.4.2 Vectorization Module
	8.4.3 Code Generation Module

	Chapter9 Programming Notes Depending on the Language Specification
	9.1 Builtin Functions
	9.1.1 Performance Tuning Support
	9.1.2 Debugging Support

	9.2 Implementation-Defined Specifications
	9.2.1 Data Types
	9.2.1.1 Size and alignment
	9.2.1.2 Size and alignment of derived type
	9.2.1.3 Other types

	9.2.2 Type Conversion
	9.2.2.1 Integral Promotion
	9.2.2.2 Integral Conversion
	9.2.2.3 Floating-point Conversion
	9.2.2.4 Complex Conversion
	9.2.2.5 Floating-point and Integral Conversion
	9.2.2.6 Complex and Integral Conversion
	9.2.2.7 Complex and Floating-point Conversion
	9.2.2.8 Arithmetic Conversion

	9.2.3 Internal Representation of Data
	9.2.3.1 Integer Types
	9.2.3.2 Floating-Point Types
	9.2.3.3 Complex Types
	9.2.3.4 Enumeration Type
	9.2.3.5 Pointer Type
	9.2.3.6 Bit Fields

	9.2.4 Predefined Macro

	9.3 Inline Assembly Language
	9.3.1 Basic Asm Statement
	9.3.2 Extended Asm Statement
	9.3.3 Specifying name in assembler codes
	9.3.4 Notes

	9.4 Remarks
	9.4.1 Remarks for C language
	9.4.2 Remarks for C++ language

	Chapter10 Language-Mixed Programming
	10.1 Point of Mixed Language Programming
	10.2 Correspondence of C/C++ Function Name and Fortran Procedure Name
	10.2.1 External Symbol Name of Fortran Procedure
	10.2.2 External Symbol Name of C++ Function
	10.2.3 Rules for Corresponding C/C++ Functions with Fortran Procedures
	10.2.4 Examples of Calling

	10.3 Data Types
	10.3.1 Integer and Logical Types for Fortran
	10.3.2 Floating-point and Complex Types for Fortran
	10.3.3 Character Type for Fortran
	10.3.4 Derived Type for Fortran
	10.3.5 Pointer
	10.3.6 Common Block for Fortran
	10.3.7 Notes

	10.4 Type and Return Value of Function and Procedure
	10.5 Passing Arguments
	10.5.1 Fortran Procedure Arguments
	10.5.2 Notes
	10.5.2.1 Appending Arguments Implicitly

	10.6 Linking
	10.6.1 Linking Fortran Program and C Program
	10.6.2 Linking Fortran Program and C++ Program

	10.7 Notes

	Chapter11 Messages
	11.1 Diagnostic Messages
	11.1.1 Diagnostic Message Format
	11.1.2 Message List

	11.2 Runtime Error Message

	Chapter12 Troubleshooting
	12.1 Troubleshooting for compilation
	12.2 Troubleshooting for execution
	12.3 Troubleshooting for tuning
	12.4 Troubleshooting for installation

	Chapter13 Notice
	Appendix A Configuration file
	A.1 Overview
	A.2 Format
	A.3 Example

	Appendix B SX Compatibility
	B.1 Compiler Options
	B.1.1 Overall Options
	B.1.2 Vector/Scalar Optimization Options
	B.1.3 Inlining Options
	B.1.4 Parallelization Options
	B.1.5 Code Generation Options
	B.1.6 Language Options
	B.1.7 Performance Measurement Options
	B.1.8 Debugging Options
	B.1.9 Preprocessor Options
	B.1.10 List Output Options
	B.1.11 Message Options
	B.1.12 Assembler Options
	B.1.13 Linker Options
	B.1.14 Directory Options

	B.2 Compiler Directives
	B.3 Environment Variables
	B.4 Implementation-Defined Specifications
	B.4.1 Data Types
	B.4.2 Predefined Macros

	Appendix C Compiler Directive Conversion Tool
	C.1 ncdirconv
	C.2 Examples
	C.3 Compiler Directives
	C.4 Notes

	Appendix D Change Notes
	Index

