SX-Aurora TSUBASA
C/C++ Compiler User’s Guide

<
W
<C
M
D
Ta
|_
Y,
| -
®)
| -
S
<
><
W

Proprietary Notice

Proprietary Notice

The information disclosed in this document is the property of NEC
Corporation (NEC) and/or its licensors. NEC and/or its licensors, as
appropriate, reserve all patent, copyright and other proprietary rights to
this document, including all design, manufacturing, reproduction, use and
sales rights thereto, except to the extent said rights are expressly granted

to others.

The information in this document is subject to change at any time, without

notice.

Remarks:
e This document is the revision 37th issued in Oct 2025.

* NEC C/C++ Compiler conforms to the following language standards.

ISO/IEC 9899:2011 Programming languages - C

ISO/IEC 14882:2014 Programming languages - C++

ISO/IEC 14882:2017 Programming languages - C++

OpenMP Application Program Interface Version 4.5

* NEC C/C++ Compiler also conforms a part of “ISO/IEC 14882:2020
Programming languages - C++" and "OpenMP Application Program

Interface Version 5.0”
» In this document, the Vector Engine is abbreviated as VE.

* The reader of this document assumes that you have knowledge of

software development in Fortran/C/C++ language on Linux.

* All product, brand, or trade names in this publication are the trademarks

or registered trademarks of their respective owners.

» The Apache License version 2.0 with LLVM Exceptions product is included
by this product.
(C) NEC Corporation 2018,2025

Contents

Contents

Chapterl C/CH4 ComMPiler . i e 1
B O 1Y L 1
1.2 Usage of the CompPiler.......vuviiiiii i 1
I N =T I [i 3
1.4 Command LiNE SYNEAX ..ueuiuiiiriii i e 3
1.5 Specifying Compiler OptiONS......viiriiii i e 4
1.6 Searching files specified by #include directive...........ccooiiiiiiiiiiiiinnn, 5
1.7 Searching Librarieso.iiuiiii i e 5
1.8 Arithmetic EXCEPioNS. ... civiiii i 5
1.8.1 Operation Result After Arithmetic Exception Occurrence 5
1.8.2 Changing Arithmetic Exception Mask.........ccooiiiiiiiiiiiiiiiiiiici, 7
1.8.3 Using Traceback Informationcccoviiiiiiiii e 7
1.8.4 Remarks on Changing Arithmetic Exception Maskccccvvvinnnnn. 7
Chapter2 Environment Variables.......c.coiiiiiiiiii e 9
2.1 Environment Variables Referenced During Compilation............c.ccevvnnnn. 9
2.2 Environment Variables Referenced During Execution............c.cccveenennnn. 11
Chapter3 Compiler OptioNSuvieiiie e e aeaens 15
3.1 OVerall OplioNS ..vviiiriii e 16
3.2 Optimization OPLiONS. e 17
3.3 Parallelization OptioNSoviiieiiie e 25
3.4 INlNING OPtIONS . .cuiiiiiiiie e 26
3.5 Code Generation OPtioNSc.viriiii i 28
3.6 Debugging OPtiONS ..c.veie it e 29

G 2 A =1 o T [U= Lo T @ o) [= P 30
3.7.1 C Language Control OptioNsSccoviiiiiiiiiiiin e 30
3.7.2 C++ Language Control OptioNS.......ovieviiiiieiiiiiieieeeiene e 31
3.8 MESSAGE OPHIONS ..viiiitiie it e 32
3.9 List OULPUL OptiONS .. ue it 33
3.10 PreproCessor OPLIONSo.eie et e e e e e e nenas 34

3.11 Assembler OptioNS. .. 36

Contents

G A W1 |G g @] o) o] - PP 36
3.13 DireCtory OptioNS .uuiei i e 37
3.14 Miscellaneous OPLiONSvirieiiiiiie e 38
3.15 Optimization Level and Options’ Defaultscccvviiiiiiiiiiiiiee 38
Chapterd Compiler DireCliVES ...oviiiiii i e 41
4.1 Format of Compiler Dir€CtiVe.......viiiiiii e e 41
4.2 Compiler DIrective OptiONS....uiuieiie i ie e ee e 41
4.3 Compiler options which cannot be specified by options directive........... 49
4.4 Compiler options which can be specified by optimize directive.............. 50
Chapter5 Optimization and Vectorization........cccooiiiiiiiiii e, 54
5.1 Code Optimization ... e 54
5.1.1 Optimizations ..o 54
5.1.2 Side Effects of Optimization.........ccoviiiiii e 55

5.2 Vectorization FEatures........ooviiiiiiiii 55
5.2.1 Vectorization ..o 55
5.2.2 Partial Vectorizationouviiiiiii i 56
5.2.3 MacCro OperationsS. ..ciuiiiii it i e e 56
5.2.4 Conditional Vectorization..........cooviiiiiiiiiii e 59
5.2.5 Outer Loop Strip-mMinNiNg ...cvieiiiiiiiiiii e s e e 59
5.2.6 ShOM-l00P . ueieiiiii i e 60
5.2.7 Packed vector iNStruCtiONS.......oviviiiiiiii e 61

5. 2.8 OO e 61
5.2.9 Remarks on Using Vectorizationccouiviiiiiiiiiiniiiineneeeeeeaee 61
Chaptert ININING ..ovieii e e ee e 64
6.1 AUtomMatic INliNING ...vei 64
6.2 EXPlCIE INIINING v 64
6.2.1 DESCHIPHION 1.t e e 64
6.2.2 Specifying Inling DIreCliVecviviiiiiii e 65
B.2.3 REIMIAIKS sttt ittt e 66

6.3 Cross-file ININING «.vovie e e 67
6.4 Inline Expansion INhibitOrs.......oveiiiiii i e 67
6.5 Notes on INlNINGoviiiei s 68
Chapter7 Parallelizationo.veieiii e e aeens 69

7.1 Automatic Parallelization.......vvviveeeii i e 69

Contents

7.1.1 DESCHIPHION 1ttt e 69
7.1.2 Conditional Parallelization Using Threshold Test...........cccvvviiiinnnen, 69
7.1.3 Conditional Parallelization Using Dependency Test..........cccvcvvnnnnnn. 69
7.1.4 Parallelization of iNNer LOOPS . ..vvuviriiiiiiiiiiieienee e ee e 69
7.1.5 Forced Loop Parallelizationccooviiiiiiiii e 70
7.2 OpenMP Parallelizationccoiiiiiiii e 71
7.2.1 Using OpenMP Parallelizationcccviiiiiiiiiiiccecene e 71
7.2.2 0penMP 5.0 Parallelizationccouiiiiiiii e 72
7.2.3 Extensions on OpenMP Parallelization........c.ccccoviiiiiiiiiiiiciiciicienn, 72
7.2.4 Restrictions on OpenMP Parallelizationccoviiiiiiiiiiiiineens 72
7.3 TRFEAAS . 73
7.3.1 Set and Get Number of Threads.........cooooviiiiiiiiie, 73
7.3.2 Thread Creation and DeStroyccvuviiiiiiiiiiiiiiei i 74
7.3.3 Postpone Thread Creationccovviiiiiii i 75
7.4 Notes on Using Parallelization........cccooiiiiiiiiiii e 75
Chapter8 Compiler LiStiNg.....ouiiiiiiii i e ae e 77
8.1 OPtION LISt .t e 77
8.2 DiagnoStiC LISt ..o s 77
8.2.1 Format of DIiagnostiC LIStcoviviiiiiiiii e 77
8.2.2 NOTES ..ttt 78
8.3 FOrmat LiSt. ... 78
8.3.1 Format of Format LiSt........oeieiiiiiii e 79

8.3.2 Loop Structure and Vectorization/Parallelization/Inlining Statuses... 79

8.3.3 NOTES ..t 82
8.4 Optimization List of Each Modulec.cooviiiiiiiiic e, 82
8.4.1 InlNING MOAUIE....c.iniiii e 82
8.4.2 Vectorization MOdUIEoeieiiiiii 83
8.4.3 Code Generation Modulecoiiiiiiiiiii e 83
Chapter9 Programming Notes Depending on the Language Specification 86
9.1 BUIltin FUNCHIONS ... v 86
9.1.1 Performance TuNING SUPPOIT ...ciuiiiiiiii e 86
9.1.2 Debugging SUPPOrt .. .cueiriiieiiiri e aeaens 86
0.2 AN DULES . e 86

9.3 Implementation-Defined Specificationscccooviiiiiiiiiiii s 88

Contents

O0.3.1 Data Ty PES vttt e 88
1T T B/ o T I o] 0 V7= =[] o HPE S 90
9.3.3 Internal Representation of Dataccccvieiiiiiiiiic e 95
9.3.4 Predefin@d MacCIOcivieiiiiiiiii e 103
9.4 CH+ Standard Libraryovviiiii i 105
S R O Y < 105
9.4.2 REMAIKS ...t 105
9.5 Vector Type EXLENSION ...viiiiii i e 107
O0.5.1 OVEINVIBW ...uiiiiiiii e 107
9.5.2 Type-definition of Vector TYPe.....cccvviiiiiiiiiiiiic e, 107
9.5.3 CoNStantsS ...iiiriii 108
O0.5.4 OPErAtOIS ittt e 108
9.5.5 BUIItiN FUNCLIONS ..cviiiic e e 109
1 T ST /<ot o gl (7 = 1] Gl Y o T O 109
O.5.7 REMAIKS ...t 109
0.5.8 EXAMIPIE ottt 110
9.6 Inline Assembly Languageccooeiiiiiiiiiiiii i 111
9.6.1 Basic Asm Statement ..o 111
9.6.2 Extended Asm Statement........ccooiiiiiiiii 111
9.6.3 Specifying name in assembler Codes.........coovviiiiiiiiiiiiiiiieens 114
0.6.4 NOTES ...t 115
0.7 REMAIKS ettt 115
9.7.1 Remarks for C language.........cooviiiiiiiiiii e 115
9.7.2 Remarks for C+4 [anguagecoovieiiiiiii i 116
Chapter1l0 Language-Mixed Programming........ccovevviininenenenenenenenenanennanns 117
10.1 Point of Mixed Language Programmingcc.vuvvuiiineninineneneienenanans 117
10.2 Correspondence of C/C++ Function Name and Fortran Procedure Name
118
10.2.1 External Symbol Name of Fortran Procedurecoovvvvvvnnnens 118
10.2.2 External Symbol Name of C++ Function............ccooviiiiinnnnnn.. 119
10.2.3 Rules for Corresponding C/C++ Functions with Fortran Procedures
120
10.2.4 Examples of Calling ..o.ovieiriiiiiie e 120

10.3 DaAta Ty DS ettt 123

Contents

10.3.1 Integer and Logical Types for Fortran..........coovvviiiiiiiiiiinnnnnnnns 123
10.3.2 Floating-point and Complex Types for Fortranccceenee. 124
10.3.3 Character Type for FOrtranc.ooovviiiiiiiii e 124
10.3.4 Derived Type for FOrtranccoviiiiiiii e 124
10.3.5 POINTEN cuiiiiiii 125
10.3.6 Common Block for FOrtrancoviiiiiiiiiiiceeeeea 128
10.3.7 NOEES ettt 129
10.4 Type and Return Value of Function and Procedure............ccocvvvininnnnns 129
10.5 Passing ArQUIMENTS . .oiuiiti i 131
10.5.1 Fortran Procedure ArgumentsSc.vvviiiviiiiii i e enee e 131
10.5.2 NOEES cutitiiet et 134
10.6 LINKING . enitieieii et e 135
10.6.1 Linking Fortran Program and C Programccvviviiviiiinennnnens 135
10.6.2 Linking Fortran Program and C++4 Programcccevivvniinnens 135
10.7 NOTES vt e 135
Chapterll MESSAgES. . .ttt ittt ettt et e et e e e eaeenens 136
11.1 DiagnostiC MESSAgES .. vt ittt i i i it rr st eaeanaeas 136
11.1.1 Diagnostic Message Formatocvoeiiiiiiii e 136
11.1.2 MeSSAQE LISE w.uviiiiiiiiiiie i 137
11.2 RUNEIME ErrOor MESSAGE . vuueie it et e e e e 148
Chapterl2 TroubleShOOtiNGveieiiii e aeaens 151
12.1 Troubleshooting for compilationcooiiiiiiiii e, 151
12.2 Troubleshooting for eXeCUtion...........ovvviiiiii e 155
12.3 Troubleshooting for tUNINGovviiei e 160
12.4 Troubleshooting for installation ..., 161
Chapterl3 VE1/VE3 Compatibility....ccoeiuiiiiiiii e 163
13.1 Executables Compatibilityoveiriiii e 163
13.2 Changes of Search Path.........c.coiiiii e 163
13.3 Changes of Compiler OptiONSviviiiiiiiii e 164
13.4 Half-Precision Floating-Point Typeccoiiiiiiiiiii e 164
13.4.1 Format of Half-Precision Floating-Point Typecocvvviiiinnnnnn. 164
13.4.2 Mixing binary16 and bfloat16.........cccoviiiiiiiiiiea 164
13,5 NOHICE et 165

(@l T o)< g I S Lo o [= PP 166

Contents

Appendix A Configuration fileoiiiiiii 167
S R O 1< Y 167
A2 FOIMIAt. e 167
A3 EXAMIDIE . it e 168

Appendix B SX Compatibilityccooeiiiiii 169
B.1 Compiler OptiONS...uuuiie i 169

B.1.1 Overall OplionS....couiuiie i 169
B.1.2 Vector/Scalar Optimization Options........cccveeiiiiiiiiiiiii 170
B.1.3 INliNiNg OplioNS . cuiiiiiiiii i 174
B.1.4 Parallelization OptioNSccoviiiiiiiii e 174
B.1.5 Code Generation OptioNSccciiiiiiiiiiii i e 175
B.1.6 Language OplioNS.....cciiiiiiiii i i e 176
B.1.7 Performance Measurement OpltioNsScccvviiiiiiiiii i 177
B.1.8 Debugging Oplions ...couiiiiiii i 178
B.1.9 PreproCessor OpliONS. . c.vii i i i e e eeas 178
B.1.10 List OUtpUL OptioNS «vieiiii i e 179
B.1.11 MeESSAgE OPLiONS. ..ttt 179
B.1.12 Assembler OptioNSoeieiii i 180
B.1.13 LinKer OptioNS ..cvieii i 180
B.1.14 Directory OpliONSo.iei i e 180
B.2 Compiler DIireCHIVES ... e ae s 181
B.3 Environment Variables ... 181
B.4 Implementation-Defined Specifications........cccovvviiiiiiiiiiiiciiin 181
B.4.1 Data Ty PES oeeiie i 181
B.4.2 Predefined MacroSouiuiiiiiiiiiii s 183

Appendix C Compiler Directive Conversion TOOl........cccviiiiiiiiiiiiiiiieieeaann 184
@ R ol [¢ oo | 184
G2 EXAMIPIES ottt e 185
C.3 Compiler DireCliVES . ..vu ittt e a 187
Cid NOEES o 191

Appendix D Change NOES. ...ui i e e aaas 192

1 T 1= < 193

Chapterl C/C++ Compiler

Chapterl C/C++ Compiler

1.1

1.2

Overview

The NEC C/C++ compiler is a compiler that compiles and links C/C++ programs and
creates binaries for execution on the CPU of the VE. This compiler implements the
following optimization function so that VE hardware performance can be easily drawn

to the limit.
* Vectorization
» Automatic Parallelization and OpenMP Parallelization
* Automatic Inlining

¢ Performance Information collection
With various compiler options, you can use these capabilities to the utmost while
selecting these functions. For details of the optimization function and compiler

options, refer to Chapter 2 and later.

Usage of the Compiler

(1) Setting Environment Variables
If you want to omit the path specification when starting the NEC C/C++ compiler,
set the path to the environment variable PATH. The NEC C/C++ compiler is
installed by default under /opt/nec/ve. Add /opt/nec/ve/bin to the environment
variable PATH.
Although the NEC C/C++ compiler provides environment variables for setting
paths such as header files and libraries, the NEC C/C++ compiler automatically
searches for the default path, so you can use it without setting these environment
variable. Set environment variables when you need to search nonstandard
directories, such as when you always want to add OSS header files and library
paths not included in the compiler.
For the environment variables, see “2.2 Environment Variables Referenced During

Execution”.

(2) Examples
The following shows examples of invoking the C/C++ compiler. See “Chapter3

Compiler Options” for details of the compiler options.

Chapter1

C/C++ Compiler

» Compiling and linking a C source file (a.c).

$ ncc a.c

» Compiling and linking more than one source file.

$ ncc a.c b.c

» Compiling, linking, and naming an executable file.

$ ncc -o prog.out a.c

« Compiling and linking with the highest vectorization and optimization.

$ ncc -04 a.c

¢ Compiling and linking with safe vectorization and optimization.

$ ncc -01 a.c

¢ Compiling and linking without vectorization and optimization.

$ ncc -00 a.c

* Compiling and linking using automatic parallelization.

$ ncc —mparallel a.c

* Compiling and linking using automatic inlining.

$ ncc —finline-functions a.c

* Compiling and linking using the half-precision floating-point. (VE3 only)

- IEEE binary16 format

$ ncc a.c

- bfloat16 format

$ ncc —-mfpl16—Fformat=bfloat a.c

* Compiling and linking using a compiler of specific version.

1.3

Chapterl C/C++ Compiler

$ /opt/nec/ve/bin/ncc-X X Xa.c (XX X is version of a compiler.)

Execution

The example when executing a program below.

* Executing a compiled program

$./a. out

» Executing with number of VE

$ env VE_NODE_NUMBER=1 . /a. out (Execute on number 1 of VE)

* Executing with input file and input parameter.

$./a.out datal.in 10 (input the file ” data. in” and value ” 10”)

» Executing with redirecting an input file.

$./a.out < data2. in

» Executing a parallelized program with specifying the number of threads.

$ ncc -mparallel -03 a.c b.c
$ export OMP_NUM_THREADS=4
$./a.out

» Using the profiler (ngprof).
The performance information file gmon.out is output at execution a program
which compiled with -pg at compiling and linking. The contents of gmon.out can

be analyzed and output using the command ngprof.

$ ncc -pg a.c

$./a. out

$ Is gmon. out

gmon. out

$ ngprof

(The performance information is output.)

1.4 Command Line Syntax

The command line syntax of invoking the compiler is as follows.

‘ncc [compiler-option | file] ...

Chapterl C/C++ Compiler

‘ nc++ [compiler-option | rize] ...

1.5 Specifying Compiler Options

* The compiler option must begin with a hyphen "-". In addition, there must be a

blank between compiler options.

Example:
$ ncc -v —¢c a.c (Correct)
$ ncc -vc a.c (Incorrect)

* The C/C++ Compiler recognizes the input file suffixes as follows. The other file

suffixes are treated as an object file.

Suffix Recognized File

.C i C source file
.h C header file
C .cc .cpp .cp .cxx .c++ i C++ source file
.H .hh .hpp .hp .hxx .h++ .tcc C++ header file
S

.S Assembler source file

» The compiler options and input files can be specified using option files.
An option file is used to specify compiler options that are always enabled at the
invoking of the C/C++ Compiler. Compiler options can be specified in the same
way as when the command line is used. The option files must be placed in the

home directory, to which the environment variable HOME has been set.

Compiler Type Option File Name
ncc $HOME/.nccinit
nc++ $HOME/.nc++init

Example:

$ cat “/.nccinit

-03 -finline-functions

$ ncc -v a.c

/opt/nec/ve/l ibexec/ccom -+ -03 -finline-functions -+ a.c

1.6

1.7

1.8

Chapterl C/C++ Compiler

Searching files specified by #include directive

The C/C++ compiler searches the following directories in the following order for
header files included by #include < file-name>. [/compat] is added when
-stdlib=compat is enabled.
Note The compiler also searches the directory where source file exists to find
the files included by #include "file-name”. The directory is searched at first.
(a) Directories specified by -I
(b) Subdirectory named “include[/compat]” under the directory specified by -B
(c) Directories specified by the environment variable NCC_INCLUDE_PATH
(d) Directory[/compat] specified by -isystem
(e) /opt/nec/ve/ncc/<version-number>/include[/compat]
(f) /opt/nec/ve/include (When -march=ve3 is enabled: /opt/nec/ve3/include)
When -isysroot is enabled, subdirectory named “include” under the directory

specified by -isysroot.

Searching Libraries

The compiler searches the following directories in the following order for libraries.
(a) Directories specified by -L
(b) Directories specified by -B
(¢) Directories specified by the environment variable NCC_LIBRARY_PATH
(d) /opt/nec/ve/ncc/<version-number>/lib

(When -march=ve3 is enabled: /opt/nec/ve3/ncc/<version-number>/lib)
(e) Directories specified by the environment variable VE_LIBRARY_PATH
(f) /opt/nec/ve/lib/gcc (When -march=ve3 is enabled: /opt/nec/ve3/lib/gcc)
(g) /opt/nec/ve/lib (When -march=ve3 is enabled: /opt/nec/ve3/lib)

Arithmetic Exceptions

1.8.1 Operation Result After Arithmetic Exception Occurrence

This section describes how an overflow, underflow, division by zero, invalid
operation, and accuracy degradation are handled when they occur during an

arithmetic operation.

(1) Division by zero

Chapterl C/C++ Compiler

When a division by zero occurs during an integer arithmetic operation, the result
is undefined. When a division by zero occurs during a non-integer arithmetic
operation, the result of the operation is the maximum expressible value if the
dividend is positive, or the minimum expressible value if the dividend is negative.
When the value of VE_FPE_ENABLE is “DIV”, this exception occurs and error
message is issued to the standard error output. When the value of
VE_FPE_ENABLE is not “DIV”, this exception does not occurs.

(2) Floating-point overflow
When an overflow occurs during an operation of type real and complex, the result
of the operation is the maximum expressible value if the value is positive, or the
minimum expressible value if the value is negative.
When the value of VE_FPE_ENABLE is "FOF”, this exception occurs and error
message is issued to the standard error output. When the value of
VE_FPE_ENABLE is not “FOF”, this exception does not occurs.

(3) Floating-point underflow
When an underflow occurs during an operation of type real and complex, the
result of the operation is zero.
When the value of VE_FPE_ENABLE is “FUF”, this exception occurs and error
message is issued to the standard error output. When the value of
VE_FPE_ENABLE is not “FUF”, this exception does not occurs.

(4) Invalid operation
When an invalid operation occurs during an operation of type real and complex,
the result of the operation is an undefined value or NaN.
When the value of VE_FPE_ENABLE is “INV”, this exception occurs and error
message is issued to the standard error output. When the value of
VE_FPE_ENABLE is not “INV”, this exception does not occurs.

(5) Accuracy degradation
When accuracy degradation occurs during an operation of type real and complex,
the result of the operation is a rounded value.
When the value of VE_FPE_ENABLE is “INE”", this exception occurs and error
message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “INE”, this exception does not occurs.

Chapterl C/C++ Compiler

(6) Exception while executing a vector instruction
When overflow, underflow, or division by zero occurs while executing a vector
instruction, the processing is the same as in the case of a scalar instruction.
However, if multiple operation exceptions occur at the same time while executing

one vector instruction, they appear as one exception.

1.8.2 Changing Arithmetic Exception Mask

By changing the mask setting, it can be specified whether an arithmetic exception
occurs or not.

The arithmetic exception mask can be changed by using VE_FPE_ENABLE. Which
kind of mask should be changed must be specified by VE_FPE_ENABLE.

Example:

$ export VE_FPE_ENABLE=FOF, DIV
$./a.out

In the above example, changing the mask setting so that Floating-point overflow

(FOF) or Divide-by-zero exception (DIV) can occur.

1.8.3 Using Traceback Information

Where the arithmetic exception occurred can be ascertained by changing the mask
and using the traceback information.

Example:

$ ncc —traceback=verbose below. ¢ out.c watch. ¢ hey.c ovf.c

$ export VE_TRACEBACK=VERBOSE
$ export VE_FPE_ENABLE=DIV

$./a.out

Runtime Error: Divide by zero at 0x600008001088
[0] 0x600008001088 below_ below.c:3
[1] 0x600018001168 out_ out.c:3

[2] 0x600020001168 watch_ watch. ¢:3
[3] 0x600010001168 hey_ hey.c:3

[4] 0x60000001cab8 MAIN__ ovf.c:5

In example, the exception of “Divide by zero” occurred in line 3 of below.c.

1.8.4 Remarks on Changing Arithmetic Exception Mask

Changing the arithmetic exception mask affects the system library functions called

Chapterl C/C++ Compiler

from a program. Therefore, the arithmetic exception is raised if precision degradation

or another exception occurs in the system library functions.

Chapter2 Environment Variables

Chapter2 Environment Variables

2.1 Environment Variables Referenced During Compilation

HOME

This variable is referenced by the compiler in order to search the user’s home
directory for an option file. When HOME is not set, the option file has no effect

even if it is put on the home directory.

NCC_COMPILER_PATH

Specified a list of directories separated by colon which are searched for the C/C++
compiler (ccom). The directory has high priority in the order of listing. If it is not
found in the specified directories, ncc/nc++ starts the C/C++4 compiler in the
standard directory. This environment variable is set when you want to always
search non-standard directories.

Example:

$ export NCC_COMPILER_PATH= “$HOME/|ibexec:$HOME/wk/| ibexec”

NCC_INCLUDE_PATH

Specifies a list of directories separated by colon which are searched for the header
files. The directory has high priority in the order of listing. This environment
variable is set when you want to always search non-standard directories. For
example, you want to always search the OSS header file directory that is not
attached to the NEC C/C++ compiler.

Example:

$ export NCC_INCLUDE_PATH= “$HOME/include:$HOME/wk/include”

NCC_LIBRARY_PATH

Specifies a list of directories separated by colon which are searched for the C/C++
libraries. The directory has high priority in the order of listing. This environment
variable is set when you want to always search non-standard directories. For
example, you want to always search the OSS library directory that is not attached
to the NEC C/C++ compiler.

Chapter2 Environment Variables

Example:

$ export NCC_LIBRARY_PATH= “$HOME/Iib:$HOME/wk/Iib”

NCC_PROGRAM_PATH

Specified a list of directories separated by colon which are searched for the
assembler and the linker for VE. The directory has high priority in the order of
listing. If they are not found in the specified directories, the NEC C/C++ compiler
automatically starts the assembler and linker in the standard directory. This
environment variable is set when you want to always search non-standard
directories.

Example:

$ export NCC_PROGRAM_PATH= “$HOME/bin:$HOME/wk/bin”

PATH

Add a list of directories separated by colon which are searched for the ncc/nc++.
The directory has high priority in the order of listing. Add the "bin" under the
directory where the NEC C/C++ compiler is installed. If you set this environment
variable, you can omit specifying the path when starting ncc/nc++. When
installing to the standard directory, add "/opt/nec/ve/bin". The environment
variable PATH also affects other applications of the NEC C/C++ compiler. Add it to
the existing environment variable PATH.

Example:

$ export PATH= “/opt/nec/ve/bin:$PATH”

TMPDIR

Specifies a directory where the compilers and commands temporarily use.

(default: /tmp)

VE_LIBRARY_PATH

Specifies a list of directories separated by colon which are searched for the system
libraries. The directory has high priority in the order of listing. This environment

variable is set when you want to always search non-standard directories.

- 10 -

Chapter2 Environment Variables

Example:

$ export VE_LIBRARY_PATH= “$HOME/Iib:$HOME/wk/Iib”

2.2 Environment Variables Referenced During Execution

OMP_NUM_THREADS / VE_OMP_NUM_THREADS

This variable sets the number of threads to use for OpenMP and/or automatic
parallelized programs. The number of threads is the number of cores of the VE
when it is not specified explicitly.

Example:

$ export OMP_NUM_THREADS=4

OMP_STACKSIZE / VE_OMP_STACKSIZE

This variable sets the upper limit of the stack size by the kilobytes used by each
threads for OpenMP and/or automatic parallelized programs. The value can be
specify the suffixes “B”(Bytes), “K”(Kilobytes), “M”(Megabytes), and
“G"(Gigabytes) as unit. The stack size used by each threads is 4 megabytes when
it is not specified explicitly.

Example:

$ export OMP_STACKSIZE=1G

OMP_TOOL / VE_OMP_TOOL

This variable is used to enable or disable OMPT interface. When “enabled” is set,
OMPT interface is enabled. In default, it is disabled.

Example:

$ export OMP_TOOL=enabled

OMP_TOOL_LIBRARIES / VE_OMP_TOOL_LIBRARIES

This variable is used to set a dynamic-loaded library for OMPT interface. Specify
colon (:) to specify two or more libraries.

Example:

- 11 -

Chapter2 Environment Variables

$ export OMP_TOOL_LIBRARIES=Iibomptool. so:/usr/myhome/|ibompt. so

VE_ADVANCEOFF

This variable is used to control the advance-off (lockstep execution) mode. When
“YES” is set, the advance-off mode is enabled.

If any other value is set or this variable is not set, the advance-off mode is
disabled.

If the advance-off mode is enabled, the execution time can be significantly
increased.

Example:

$ export VE_ADVANCEOFF=YES

VE_FPE_ENABLE

This variable is used to control over floating-point exception handling at run-time.
When this variable is set, then the specified exception is enabled.
The value of this variable is a comma separated list, each element of which is one
of the following values.
DIV
Divide-by-zero exception.
FOF
Floating-point overflow exception.
FUF
Floating-point underflow exception.
INV
Invalid operation exception.
INE
Inexact exception.

Example:

$ export VE_FPE_ENABLE=DIV

VE_INIT_STACK

This variable sets the value to initialize the stack area at the run-time. When the
value is not set, the stack area is initialized with zeros. -minit-stack=runtime is

needed at compilation. The following values can be specified.

- 12 -

Chapter2 Environment Variables

ZERO
Initializes with zeros.
NAN
Initializes with quiet NaN in double type (Ox7fffffff7fffffff).
NANF
Initializes with quiet NaN in float type (Ox7fffffff).
SNAN
Initializes with signaling NaN in double type (0x7ff4000000000000).
SNANF
Initializes with signaling NaN in float type (0x7fa00000).
OXXXXX
Initializes with the value specified in a hexadecimal format up to 16 digits.
When the specified value has more than 8 hexadecimal digits, the initialization
is done on an 8-byte cycle. Otherwise it is done on a 4-byte cycle.

Example:

$ ncc -minit-stack=runtime a.c
$ export VE_INIT_STACK=SNAN
$./a. out

VE_LD_LIBRARY_PATH

This variable set a list of directories separated by colon that the dynamic linker
searches for libraries. The dynamic linker automatically searches the standard
directories. This environment variable is set when you want to always search non-
standard directories. For example, you want to always search the OSS library
directory that is not attached to the NEC C/C++ compiler.

Example:

$ export VE_LD_LIBRARY_PATH= “$ {HOME}/Iib:$VE_LD_L IBRARY_PATH”

VE_NODE_NUMBER

This variable is set to designate a program to be executed on specified VE node.

VE_PROGINF

When “YES” or “DETAIL” is set, the program execution information is output to the

standard error output at the termination of execution. See the

- 13 -

Chapter2 Environment Variables

manual "PROGINF/FTRACE User’s Guide” for the detail.

VE_TRACEBACK

This variable is used to control to output traceback information when a fatal error
occurs at runtime. The program must be compiled and linked with -traceback to
output traceback information. When the value of this variable is “FULL" or “ALL”",
then at most depth which is specified by VE_ TRACEBACK_DEPTH environment
variable of traceback information is output. If any other value is set, only
traceback information of the function that a fatal error occurs is output. If this
variable is not set, no traceback information is output.

An occurrence line number of fatal error is found by address information in
traceback information.

Example:

$ export VE_TRACEBACK=FULL

$./a.out

Runtime Error: Divide by zero at 0x600000000cc0O
[1] Called from 0x7f5ca0062f60

[2] Called from 0x600000000b70

Floating point exception

When running the program which is compiled and linked with -
traceback=verbose and the value of this variable is “VERBOSE", filename and

line number is output in traceback information.

Example:
$ export VE_TRACEBACK=VERBOSE
$./a. out
Segmentation fault: Address not mapped to object at 0x600008001078
[0] 0x600008001078 below below.c:8
[1] 0x600018001170 out out.c:3
[2] 0x600020001170 watch watch. ¢:3
[3] 0x600010001170 hey hey.c:3
[4] 0x600000001500 main ovf.c:10

VE_TRACEBACK_DEPTH

This variable is used to control the maximum depth of traceback information when
it is output. When it is not specified explicitly, then 50 is set. If 0 is specified, then

the maximum depth is unlimited.

- 14 -

Chapter3 Compiler Options

Chapter3 Compiler Options

This chapter describes the operating procedures for compiling, linking, and executing

a C/C++ program using the C/C++ compiler system.

The compiler options of the C/C++ compiler can be divided into the following

categories.

Overall Options

Compiler options used to control the C/C++ compiler.
Optimization Options

Compiler options used to control optimization and vectorization.
Parallelization Options

Compiler options used to control parallelization.

Inlining Options

Compiler options used to control inlining.

Code Generation Options

Compiler options used to control code generation for performance measurement
and the stack area initialization.

Debug Options

Compiler options used to control debug code generation.
Language Options

Compiler options used to enable or disable language features.

Message Options

Compiler options used to control message output.

List Output Options

Compiler options used to control compiler listing.

Preprocessor Options

Compiler options used to control preprocessing.

Assembler Options

Compiler options used to specify assembler functions.

Linker Options

Compiler options used to specify linker functions.

- 15 -

Chapter3 Compiler Options

3.1

* Directory Options

Compiler options used to specify various directories.

Overall Options

-S
Suppresses the linking and outputs the assembler source file.
-C
Suppresses the linking and outputs the object file.
-cf=conf
Applies the configuration file specified by conf to compilation and linking.
-clear
Ignores all compiler options and input files specified before -clear.
-fsyntax-only
Performs only grammar analysis.
-0 filename
Specifies a filename to which output is written, where the output is preprocessed
text, assembler source file, object file or executable file. This option cannot be
specified when two or more source files are specified with -S, -c, or —E.
-stdlib=/ibrary-name
Specifies C/C++ system header and libraries for compilation and linking. You can
specify the following libraries.
compat
Use “NEC Compat C++ Standard Library”.
Default when NEC Compat C++ Standard Library is installed.
libc++
Use “libc++".
Default when NEC Compat C++ Standard Library is NOT installed.
-X language
Specifies the language kind for the input files. The effect of this option is prior to
the default setting according to the file suffix and the specification is applied to all
the input files following this option (until the next -x if any) on the command-line.
One of the following can be specified as language.
C

Compiles as a C source file.

- 16 -

Chapter3 Compiler Options

c++
Compiles as a C++ source file.
assembler
Assembles as an assembler source file.
assembler-with-cpp
Does preprocessing and assembles the preprocessed file.
@file-name
Reads options from file-name and inserts them in the place of the original @file-

name option.

3.2 Optimization Options

-O[n]
Specifies optimization level by n. The following are available as n:
4

Enables aggressive optimization which violates language standard.

Enables optimization which causes side-effects and nested loop optimization.

Enables optimization which causes side-effects. (default)

Enables optimization which does not cause any side effects.

Disables any optimizations, automatic vectorization, parallelization, and inlining.
-fargument-alias
Allows the compiler to assume that arguments are aliasing each other and non-
local-objects in all optimization. (default)
-fargument-noalias
Disallows the compiler to assume that arguments are aliasing each other and non-
local-objects in all optimization.
-f[no-]associative-math
Allow [Disallows] re-association of operands in series during optimization and loop
transformation. When -fno-associative-math is specified, the optimization which
transforms matrix multiply loops into a vector matrix library function call with -

fmatrix-multiply is not performed. (default: -fassociative-math)

- 17 -

Chapter3 Compiler Options

-f[no-]aggressive-associative-math
Allows [Disallow] aggressive re-association of operands in series during
optimization and loop transformation.
(default: -fno-aggressive-associative-math)
-f[no-]check-noexcept-violation
Enables [Disable] runtime checking weather C++ noexcept specification is violated
or not. When this option is not effective, std::terminate function is not called and
a program execution continues even if noexcept specification is violated.
(default: -fno-check-noexcept-violation)
-f[no-]cse-after-vectorization
[Does not] Re-apply common subexpression elimination after vectorization.
(default: -fcse-after-vectorization)
-f[no-]Jfast-math
[Does not] uses fast scalar version math functions outside of vectorized loops.
(default: -ffast-math)
-f[no-]fast-math-check
[Does not] Checks the value ranges of arguments in the mathematical function’s
fast scalar version.
(default: -fno-fast-math-check)
-f[no-Jignore-induction-variable-overflow
[Does not] Ignores induction variable overflow in optimization.
(default: -fno-ignore-induction-variable-overflow)
-f[no-]ignore-volatile
[Does not] Ignores volatile attribute in optimization.
(default: -fno-ignore-volatile)
-fivdep
Inserts ivdep directive before all loops.
-fivdep-omp-worksharing-loop
Inserts ivdep directive before an OpenMP parallelized loop that does not have
simd with safelen and/or simdlen clause.
-f[no-]loop-collapse
Allows [Disallows] loop collapsing. -On (n=2,3,4) must be effective.
(default: -fno-loop-collapse)

-floop-count=n

- 18 -

Chapter3 Compiler Options

Specifies n which is taken to assume the iteration count of the loop whose
iteration count cannot be decided at compilation to do optimization suitable for
loop count. (default: -floop-count=5000)
-f[no-]loop-fusion
Allows [Disallows] loop fusion. -On (n=2,3,4) must be effective.
(default: -fno-loop-fusion)
-f[no-]loop-interchange
Allows [Disallows] loop interchange. -On (n=2,3,4) must be effective.
(default: -fno-loop-interchange)
-f[no-]Jloop-normalize
Allows [Disallows] loop normalization. Compiler assumes that loop iteration count
is not changed in loop body. (default: -fno-loop-normalize)
-f[no-]loop-split
Allows [Disallows] splitting out of a function call in a loop from the loop. -On
(n=2,3,4) must be effective. (default: -fno-loop-split)
-f[no-]loop-strip-mine
Allows [Disallows] loop strip mining. -On (n=2,3,4) must be effective.
(default: -fno-loop-strip-mine)
-f[no-]loop-unroll
Allows [Disallows] loop unrolling. -On (n=2,3,4) must be effective.
(default: -floop-unroll)
-floop-unroll-complete=m
Allows loop expansion (complete loop unrolling) of a loop whose iteration count is
constant, can be calculated, and is less than or equal to m. -On (n=2,3,4) must
be effective. (default: -floop-unroll-complete=4)
Remark:
-floop-unroll-completely=m can be used as an alias option name.
-floop-unroll-max-times=n
Specifies maximum unrolled times by n. When this option is not effective, the
compiler automatically choose the suitable unroll times.
-f[no-]matrix-multiply
Allows [Disallows] to transform matrix multiply loops into a vector matrix library
function call. -On (n=2,3,4) and -fassociative-math must be effective.

(default: -fno-matrix-multiply)

- 19 -

Chapter3 Compiler Options

-f[no-]Jmove-loop-invariants
Enables [Disables] the loop invariant motion under if-condition.
(default: -fmove-loop-invariants)
-f[no-]Jmove-loop-invariants-if
Allows [Disallows] the loop invariant if-structure motion. -On (n=2,3,4) must be
effective. (default: -fno-move-loop-invariants-if)
-f[no-]Jmove-loop-invariants-unsafe
Allow [Disallow] motion of unsafe codes which may cause any side effects.
The example of unsafe codes are:
- divide
- memory reference to 1 byte or 2 byte area
(default: -fno-move-loop-invariants-unsafe)
-f[no-]Jmove-nested-loop-invariants-outer
Allows [Disallows] the compiler to move the loop invariant expressions to outer
loop. When this option is specified, they are moved before the current loop.
(default: -fmove-nested-loop-invariants-outer).
-fnaked-ivdep
Accepts “#pragma ivdep” as “#pragma _NEC ivdep”.
-fnamed-alias
The compiler will assume that the object pointed-to-by a named pointer have an
alias in applying optimization and vectorization.
-fnamed-noalias
The compiler will assume that the object pointed-to-by a nhamed pointer does not
have an alias in applying optimization and vectorization. (default)
-f[no-Jouterloop-unroll
Allows [Disallows] outer-loop unrolling. -On (n=2,3,4) must be effective.
(default: -fno-outerloop-unroll)
-fouterloop-unroll-max-size=n
Specifies maximum size of an innermost loop to be outer-loop-unrolled.
(default: -fouterloop-unroll-max-size=4)
-fouterloop-unroll-max-times=n
Specifies maximum outer-loop unrolled times by n. n must be power of 2. When
this option is not effective, the compiler automatically choose the suitable unroll

times.

- 20 -

Chapter3 Compiler Options

-f[no-]precise-math
[Does not] Apply high resolution algorithm in the vector versions of pow(3C) and
powf(3C) when the exponent is an integer value. Their results become more exact
but their calculation speeds become slower. (default: -fno-precise-math)
-f[no-]reciprocal-math
Allows [Disallows] change an expression “x/y” to “x * (1/y)".
(default: -freciprocal-math)
-f[no-]replace-loop-equation
Allows [Disallows] replacement of “!=" and “==" operator with “<=" or “>=" at
the loop backedge. (default: -fno-replace-loop-equation)
-f[no-]strict-aliasing
Allows [Disallows] the compiler to assume the ANSI aliasing rules in all
optimization.
(default: -fstrict-aliasing)
When this option is not effective, the compiler assumes the stored value is

accessed only by one of the following types.
- A type compatible with the effective type of the object
- A qualified version of a type compatible with the effective type of the object

- A type that is the signed or unsigned type corresponding to the effective type
of the object

- A type that is the signed or unsigned type corresponding to a qualified version

of the effective type of the object

- An aggregate or union type that includes one of the aforementioned types
among its members (including, recursively, a member of a sub aggregate or

contained union)

- A character type
-fthis-pointer-alias
Allows the compiler to assume that this-pointer has an alias in all optimization.
-fthis-pointer-noalias
Disallows the compiler to assume that this-pointer has an alias in all optimization.
(default)
-m[no-]Jconditional-index-test

Allows [Disallows] to conditional-index-testing optimization.

- 21 -

Chapter3 Compiler Options

(default: -mno-conditional-index-test)
-m[no-]list-vector
Allows [Disallows] the vectorization of the statement in a loop when an array
element with a vector subscript expression appears on both the left and right
sides of an assignment operator.
(default: -mno-list-vector)
-mretain-keyword
Sets higher priority to vector memory access results to retain on LLC (Last-Level
Cache). The following are available as keyword:
all
Sets higher priority to vector load/store/gather/scatter results. (default)
list-vector
Sets higher priority to vector gather/scatter results.
none
Does not set higher priority to vector memory access results.
-msched-keyword
Specifies whether and how the instruction scheduling. The following are available
as keyword.
none
Does not perform the instruction scheduling.
insns
Performs the instruction scheduling in a basic block.
block
Performs the instruction scheduling in a basic block, but to a wider range than
-msched-insns does, in order to schedule instructions aggressively. (default)
interblock
Performs the instruction scheduling beyond basic blocks.
-m[no-]vector
Enables [Disables] automatic vectorization. (default: -mvector)
-m[no-]vector-advance-gather
Allows [Disallows] motion of vector gather instructions so that they can be started
as advance as possible. (default: -mvector-advance-gather)
-mvector-advance-gather-limit=n

The number of vector gather operations which is moved by -mvector-advance-

- 22 -

Chapter3 Compiler Options

gather is up to n. (default: -mvector-advance-gather-limit=56)
-mvector-assignment-threshold=n
Use vector instructions to assign a class, struct, or union whose size is equal to or
greater than n byte. (default: -mvector-assignment-threshold=64)
-m[no-]vector-assume-loop-count
Allows [Disallows] the use of an array declaration to assume the loop iteration
count. (default: -mvector-assume-loop-count)
-m[no-]vector-dependency-test
Allows [Disallows] the conditional vectorization by dependency-test. -On
(n=2,3,4) must be effective. (default: -mvector-dependency-test)
-m[no-]vector-floating-divide-instruction
Allows [Disallows] to use vector-floating-divide instruction. By default,
approximate instruction sequence by using vector-floating-reciprocal instructions
is used.
(default: -mno-vector-floating-divide-instruction)
-m[no-]vector-fma
Allows [Disallows] to use vector fused-multiply-add instruction.
(default: -mvector-fma)
-m[no-]vector-intrinsic-check
[Does not] Checks the value ranges of arguments in the mathematical function’s
the vectorized version. (default: -mno-vector-intrinsic-check)
The target mathematical functions of this option are as follows.
acos, acosh, asin, atan, atan2, atanh, cos, cosh, cotan, exp, exp10, exp2,
expm1, log10, log2, log, pow, sin, sinh, sgrt, tan, tanh
-m[no-]vector-iteration
Allows [Disallows] to use vector iteration instruction in the vectorization.
(default: -mvector-iteration)
-m[no-]vector-iteration-unsafe
Allows [Disallows] to use vector iteration instruction in the vectorization when it
may give incorrect result. (default: -mvector-iteration-unsafe)
-m[no-]vector-loop-count-test
Allows [Disallows] the conditional vectorization by loop-iteration-count-test. -On
(n=2,3,4) must be effective. (default: -mno-vector-loop-count-test)

-m[no-]vector-low-precise-divide-function

- 23 -

Chapter3 Compiler Options

Allows [Disallows] to use low precise version for vector floating divide operation. It
is faster than the normal precise version but the result may include at most one
bit numerical error in mantissa. (default: -mno-vector-low-precise-divide-
function)
-m[no-]vector-merge-conditional
Allows [Disallows] to merge vector load and store in THEN block, ELSE IF block,
and ELSE block. (default: -mno-vector-merge-conditional)
-m[no-]vector-neighbors
Allows [Disallows] neighboring access optimization.
(default: -mno-vector-neighbors)
-mvector-neighbors is available when -march=ve3 is enabled.
-m[no-]vector-packed
Allows [Disallows] to use packed vector instruction.
(default: -mno-vector-packed)
-m[no-]vector-power-to-explog
Allows [Disallows] to replace pow(R1,R2) in a vectorized loop with
exp(R2*log(R1)). powf(3C) is replaced, too. By the replacement, the execution
time would be shortened, but numerical error occurs rarely in the calculation.
(default: -mno-vector-power-to-explog)
-m[no-]vector-power-to-sqrt
Allows [Disallows] to replace pow(R1,R2) in a vectorized loop with the expression
including sqrt(3C) or cbrt(3C) when R2 is a special value such as 0.5, 1.0/3.0 etc.
powf(3C) is not replaced, too. When it is replaced, the execution time would
become faster, but numerical error occurs rarely in the calculation.
(default: -mvector-power-to-sqrt)
-m[no-]vector-reduction
Allows [Disallows] to use vector reduction instruction in the vectorization.
(default: -mvector-reduction)
-m[no-]vector-shortloop-reduction
Allows [Disallows] the conditional vectorization by loop-iteration-test for
reduction. -On (n=2,3,4) must be effective.
(default: -mno-vector-shortloop-reduction)
-m[no-]vector-sqrt-instruction

Allows [Disallows] to use vector-sqgrt instruction. By default, approximate

- 24 -

3.3

Chapter3 Compiler Options

instruction sequence by using vector-floating-reciprocal instructions is used.
(default: -mno-vector-sqrt-instruction)

-mvector-threshold=n
Specifies the minimum iteration count (n) of a loop for vectorization.
(default: -mvecter-threshold=5)

-mwork-vector-kind=none

Disallows the partial vectorization using loop division.

Parallelization Options

-fopenmp
Enables OpenMP directives. -pthread is implicitly enabled.
-fopenmp-tools
Enables OMPT interface. (default: -fno-openmp-tools)
-m[no-]create-threads-at-startup
[Does not] Generates threads for OpenMP or automatic parallelization at the first
parallel region execution. The threads are generated at the startup of the
execution at default. -static-nec or -static must be specified when you specified -
mno-create-threads-at-startup. (default: -mcreate-threads-at-startup)
-mparallel
Allows automatic parallelization. -pthread is implicitly enabled.
-mparallel-innerloop
Allows to parallelize inner-loop.
-m[no-]parallel-omp-routine
Allows [Disallows] to apply automatic parallelization to a routine including OpenMP
directive.
(default: -mparallel-omp-routine)
-mparallel-outerloop-strip-mine
Allows to parallelize the nested loops that are outer-loop strip-mined.
-mparallel-sections
Allows to generate parallelized sections.
-mparallel-threshold=n
Specifies the threshold value n of the loop parallelization. When the value is larger
than the work of the loop, the loop is parallelized.
(default: -mparallel-threshold=2000)

- 25 -

Chapter3 Compiler Options

3.4

-mschedule-dynamic
-mschedule-runtime
-mschedule-static
-mschedule-chunk-size=n
Specifies a scheduling kind and chunk size of a thread when they are not specified
by schedule-clause in OpenMP parallelization and automatic parallelization.
-pthread
Enables support for multithreading with the pthread library.

Inlining Options

-f[no-Jinline
Allows [Disallows] the inlining of inline functions. (default: -finline)
-f[no-]inline-abort-at-error
Stops the compilation when generation of routines defined in source files fails.
Does not search them and continues the compilation when this option is not
effective.
(default: -fno-inline-abort-at-error)
-f[no-Jinline-attribute
Allows [Disallows] more powerful inlining of inline functions. Note that compile
time can be very long. (default: -finline-attribute)
-f[no-Jinline-copy-arguments
[Does not] Generate a copy of the argument of an inlined function call by
automatic inlining. When not generating a copy the function parameter is replaced
with a corresponding function argument.
(default: -finline-copy-arguments)
-finline-directory=directory name
Searches all source files under directories separated by colon for functions to
inline.
-fno-inline-directory=directory name
Does not search all source files under directories separated by colon for functions
to inline. This option is specified when you do not want to search the source files
specified by -finline-file or -finline-directory.
-finline-file=string

Searches source files separated by colon for functions to inline. Searches all input

- 26 -

Chapter3 Compiler Options

source files specified in command line when all is specified.
-fno-inline-file=string
Does not search source files separated by colon for functions to inline. This option
is specified when you do not want to search the source files specified by -finline-
file or -finline-directory.
-finline-functions
Allows automatic inlining.
~-finline-loop-test=keyword
Function calls that appear in initialization, conditional, and incremental expressions
in for, while, and do-while statements are targeted for automatic inlining.
Specify the type of function to be targeted by the following keywords.
no
No functions.
operator
Operator functions and pure functions not having any arguments. (default)
all
All functions.
-finline-max-depth=n
Specifies the level of functions to be inlined from the bottom of the calling tree by
automatic inlining. (default: -finline-max-depth=2)
-finline-max-function-size=n
Specifies the function size (= the amount of intermediate representations for a
function) to be inlined by automatic inlining.
(default: -finline-max-function-size=50)
-finline-max-times=n
Sets the limit of the function size (= the amount of intermediate representations
for a function) after automatic inlining to “(function-size-before-inlining) * n”.
(default: -finline-max-times=20)
-f[no-]inline-suppress-diagnostics
[Does not] Output diagnostics when generation of routines defined in source files
to search fails. The option -fno-inline-suppress-diagnostics is specified when
you want to check which source files you specified are searched normally.
(default: -finline-suppress-diagnostics)

-mgenerate-il-file

- 27 -

Chapter3 Compiler Options

3.5

Outputs an IL file for cross-file inlining. The file is created in the current directory,
under the name "source-file-name.cil".

-mread-il-file IL file name
Read IL files separated by colon for functions to inline. When -finline-directory,

-finline-file or -mgenerate-il-file are specified, this option is ignored.

Code Generation Options

-finstrument-functions
Inserts function calls for the instrumentation to entry and exit of functions. The

instrumented functions are;

void __cyg profile_func_enter (void xth/s_fn, void *cal/l_site) ;
void __cyg profile_func_exit(void *th/s_fn void *xcall_site);

-fpic
-fPIC
Generates position-independent code.
-ftrace
Creates an object file and the executable file for ftrace function.
(default: -no-ftrace)
-march=kind
Specifies the target architecture.
The following are available as kind:
vel
Produces object files available only on vel or later. (default)
ve3
Produces object files available only on ve3 or later.
(Defaults when installed for VE3.)
-mfp1l6-format=kind
Specifies format of the half-precision floating-point. -mfp16-format=kind can be
specified only when -march=ve3 is enabled.
The following are available as kind:
none
Does not use format of the half-precision floating-point.

Ieee

- 28 -

3.6

Chapter3 Compiler Options

Uses IEEE binary16 format.
Bfloat
Uses bfloat16 format.
-p
-P9
Creates an executable file for output profiler information (ngprof).
-[no-]proginf

[Does not] Create an executable file for PROGINF function. (default: -proginf)

Debugging Options

-9
Generates debugging information in DWARF. When -01, -02, -03, or -04 are
specified with -g, some of the debugging information may be inaccurate as a side-
effect of optimization.
-minit-stack=value
Initializes the stack area with the specified value at the run-time. The following
are available as value:
no
Do not initialize.
Zero
Initializes with zeros.
Nan
Initializes with quiet NaN in double type (Ox7fffffff7fffffff).
Nanf
Initializes with quiet NaN in float type (Ox7fffffff).
Snan
Initializes with signaling NaN in double type (0x7ff4000000000000).
Snanf
Initializes with signaling NaN in float type (0x7fa00000).
Runtime
Initializes with the value specified by the environment variable
VE_INIT_STACK.
OXXXXX

Initializes with the value specified in a hexadecimal format up to 16 digits.

- 29 -

Chapter3 Compiler Options

When the specified value has more than 8 hexadecimal digits, the initialization
is done on an 8-byte cycle. Otherwise it is done on a 4-byte cycle.
-traceback[=verbose]
Specifies to generate extra information in the object file and to link run-time
library due to provide traceback information when a fatal error occurs and the
environment variable VE_TRACEBACK is set at run-time.
When verbose is specified, generates filename and line number information in
addition to the above due to provide these information in traceback output. Set
the environment variable VE_TRACEBACK=VERBOSE to output these

information at run-time.

3.7 Language Options

3.7.1 C Language Control Options

-fno-allow-keyword-macros
Disallows to define any keyword macros.
-fgnu89-inline
Performs inlining according to semantic rules of the GNU C89 specification.
-f[no-]Jrestrict
[Does not] Treat restrict as C keyword. (default: -frestrict)
Remark:
The default is different in C and C++. In C++, the default is -fno-restrict.
-fsigned-char | -funsigned-char
Specifies whether to treat plain char type as signed or unsigned.
(default: -fsigned-char)
-std=standard
Specifies C Language standard. Available keywords as language are gnu89,
gnu99, gnull, c99 or cl11. (default: -std=gnui11l)
-traditional
Preprocesses C source file according to the K&R C language specification. This
option must be specified with -E.
-traditional-cpp
Preprocesses C source file according to the K&R C language specification.

-trigraphs

- 30 -

Chapter3 Compiler Options

Enables recognition of trigraph sequences.

3.7.2 C++ Language Control Options

-fdefer-inline-template-instantiation
Do not instantiate an inline function template at the function call position and
postpone it to appropriate timing. (default).
-fno-defer-inline-template-instantiation
Do instantiate an inline function template at the function call position.
(default: -fdefer-inline-template-instantiation).
-f[no-]exceptions
Enables [Disables] C++ exception handling feature. (default: -fexceptions)
-fext-numeric-literals
Treats a constant expression with a suffix I, i, J or j as a complex constant.
(default when -std=gnu++11, -std=gnu++14 or -std=gnu++17 is effective)
-fno-ext-numeric-literals
Treats a constant expression with a suffix I, i, J or j as a user-defined literal.
(default when -std=c++11, c++14, c++17 or c++20 is effective)
-ffor-scope
The scope of variables declared in a for-init-statement is limited to the "for" loop
itself. (default)
-fno-for-scope
The scope of variables declared in a for-init-statement is extended to the end of
the enclosing scope.
-fimplicit-include
Allows implicit inclusion of source files as a method of finding definitions of
template entities to be instantiated.
-f[no-]Jrestrict
[Does not] Treats restrict as C++ keyword. (default: -fno-restrict)
Remark:
The default is different in C and C++. In C, the default is -frestrict.
-f[no-]rtti
Enables [Disables] run-time-type-identification feature. (default: -frtti)
-ftemplate-depth=n

Specifies the maximum number of instantiations of a given template that may be

- 31 -

Chapter3 Compiler Options

3.8

in process of being instantiated at a given time. This is used to detect runaway
recursive instantiations. The value n can be between 0 and 1024. If n is zero,
there is no limit. (default: -ftemplate-depth=256)

-std=standard
Specifies C++ Language standard. Available keywords as language are gnu++11,
gnu++14, gnu++17, gnu++20, c++11, c++14, or c++17 or c++20.
(default: -std=gnu++14)

Message Options

-wall
Outputs all syntax warning messages.
-Wcomment
Outputs a warning message for a comment-start sequence /* which appears in a
/* */ comment.
-Werror
Treats all syntax warnings as fatal errors.
-Wno-div-by-zero
Suppresses a warning message for integer division by zero detected at the
compilation.
-Wunknown-pragma
Outputs a warning message when the compiler encounters unknown #pragma.
-Wunused
Same as -Wunused-variable.
-Wunused-but-set-parameter
Outputs a warning message for any parameters which is set but not used.
-Wunused-but-set-variable
Outputs a warning message for any local variables which is set but not used.
-Wunsued-parameter
Outputs a warning message for any parameters which is not used.
-Wunused-value
Outputs a warning message for any expressions whose value is computed but not
used.
-Wunused-variable

Outputs a warning message for any local variables or functions which is not used.

- 32 -

3.9

Chapter3 Compiler Options

-fdiag-inline=n
Specifies automatic inlining diagnostics level by n. (0: No output, 1: Information,
2: Detail) (default: -fdiag-inline=1)
-fdiag-parallel=n
Specifies automatic parallelization diagnostics level by n. (0: No output, 1:
Information, 2: Detail) (default: -fdiag-parallel=1)
-fdiag-vector=n
Specifies vector diagnostics level by n. (0: No output, 1: Information, 2: Detail)
(default: -fdiag-vector=1)
-fdiag-system-header
Outputs optimization diagnostics for a function defined in a system header.
-pedantic
Outputs the warnings for using of language extension.
-pedantic-errors
Outputs the errors for using of language extension.
-w

Suppresses all syntax warning messages.

List Output Options

-report-file=filename
Outputs the listing result to the specified file instead of the default one.
-report-append-mode
Opens the output file with “appending mode” instead of “overwriting mode”. This
option cannot be used unless the -report-file option is specified.
-report-all
Outputs the code generation list, diagnostic list, format list, inline list, option list
and vector list.
-[no-]report-cg
[Does not] Outputs optimization list of code generation module.
(default: -no-report-cg)
-[no-]report-diagnostics
[Does not] Outputs diagnostic list. (default: -no-report-diagnostics)
-[no-]report-format

[Does not] Outputs format list. (default: -no-report-format)

- 33 -

Chapter3 Compiler Options

-[no-]report-inline
[Does not] Outputs optimization list of inlining module. (default: -no-report-
inline)
-[no-]report-option
[Does not] Outputs option list. (default: -no-report-option)
-[no-]report-system-header
[Does not] Outputs compiler listings for a function defined in a system header.
(default: -no-report-system-header)
-report-userinfo=character-string
Outputs additional user information character-string at the top of the listing file.
-[no-]report-vector
[Does not] Outputs optimization list of vectorization module.

(default: -no-report-vector)

3.10 Preprocessor Options

-C
Keeps comments in the preprocessed output.

-dD
Outputs a list of #define or #undef for all the macros appear in #define and
#undef, in addition to the normal preprocessed text. When -E is not specified,
this option is ignored.

-dI
Outputs the #include used in the input file, in addition to the normal
preprocessed text. When -E is not specified, this option is ignored. When -dM is
specified, this option is ignored.

-dM
Outputs a list of #define with macro names and their values for all the macros
defined by #define or -D, instead of the normal preprocessed text. When -E is
not specified, this option is ignored.

-dN
Outputs a list of #define with macro names for all the macros defined by #define
or -D, in addition to the normal preprocessed text. When -E is not specified, this
option is ignored.

-Dmacro[=defn]

- 34 -

Chapter3 Compiler Options

Defines macro as the value defn as if #define does. When =defn is omitted,
macro is defined as decimal constant 1.
-E
Performs preprocessing only and outputs the preprocessed text to the standard
output.
-H
Outputs a list of files included by #include to the standard error output.
-Idirectory
Adds directory to the list of directories searched for files specified by #include.
-I-
Specifies that the directories specified with -I preceding this option are searched
only for the files specified by the form of #include “filename” and they are not
searched for the files specified by the form of #include < filename>.
-include file
Includes file at the beginning of the compilation.
-isysroot directory
Searches the directory named include under directory for header files specified
with #include.
-isystem directory
Searches directory after all the directories specified by -I but before the standard
system directories.
-M
Outputs a list of the file dependencies instead of the normal preprocessed text.
-MD
Same as -M -MF filename, where filename is a name suffixed by “.d” which is
based on input filename or the name specified with -o if any.
-MF filename
Specifies that the list of the file dependencies is output to filename instead of the
default. This option must be specified with -M.
-MP
Tells the preprocessor to add a phony target for each dependency output. This
option must be specified with -M.
-MT target
Changes the default target of dependency output to target. This option must be

- 35 -

Chapter3 Compiler Options

specified with -M.
-nostdinc
Omits searching the standard system directory for header files.
-P
Omits outputting line directives to preprocessed text.
-Umacro
Undefines the definition of macro.
-undef
Do not predefine any system-specific macros.
-Wp,option
Specifies option to be passed to preprocessor (cpp). Multiple options or arguments

can be specified to this option at once by separating them by commas.

3.11 Assembler Options

-Wa,option
Specifies option to be passed to assembler (nas). Multiple options or arguments
can be specified to this option at once by separating them by commas.
-Xassembler option
Specifies an option to be passed to assembler (nas). If an option requires an
argument, this option must be specified twice, once for the option and once for
the argument.
-assembly-list
Outputs assembly list to file. The output filename is a name suffixed by “.0"” which

is based on input filename.

3.12 Linker Options

-Bdynamic
Enables the linking of dynamic-link libraries at the run-time. This is default when
not specifying -Bstatic.

-Bstatic
Link user's libraries statically.

-Ldirectory

Searches directory for libraries specified subsequently to this option, before the

- 36 -

Chapter3 Compiler Options

directories searched by default.

-llibrary
Specifies a library to be linked. Prescribed directories are searched for the library
named liblibrary .a.

-nostartfiles
Does not link the standard system startup files.

-nostdlib
Does not link the standard system startup files or libraries.

-rdynamic
Adds all symbols including any unused symbols to the dynamic symbol table at
the linking.

-static
Link libraries statically.

-static-nec
Link the NEC SDK libraries statically.

-shared
Generates a shared object.

-WI,option
Specifies option to be passed to linker (nld). Multiple options or arguments can be
specified to this option at once by separating them by commas.

-Xlinker option
Specifies an option to be passed to linker (nld). If an option requires an argument,
this option must be specified twice, once for the option and once for the
argument.

-z keyword

Same as nld’s -z option.

3.13 Directory Options

--sysroot=directory
Specifies a directory name where header files and libraries are searched for. The
directory named “include” under directory is searched for the header files. The
directory named “lib” under directory is searched for the libraries.

-Bdirectory

Specifies a directory name where commands, header files and libraries are

- 37 -

Chapter3 Compiler Options

searched for. The specified directory is searched for the commands and libraries.

The directory named “include” under directory is searched for the header files.

3.14 Miscellaneous Options

--help
Displays usage of the compiler.
-print-file-name=/ibrary
Displays the full pathname of the library file named library which would be linked.
When this option is specified, actual compilation and linking are never done.
If the named library is not found, only the name specified as library is displayed.
-print-prog-name=program
Displays the command name named program in the compiler system which would
be invoked during the compilation through linking. When this option is specified,
actual compilation and linking are never done.
If the named command is not found, only the name specified as program is
displayed.
-noqueue
When the number of licenses exceeds use restriction, the compiler doesn’t stands
by until a license is freed.
-v
Displays the invoked commands at each stage of compilation.
--version

Displays the version number and copyrights of the compiler.

3.15 Optimization Level and Options’ Defaults

The relation between -On and independently optimization options are as follows.
Note that -On controls the overall level of optimization, and the same instruction
code cannot be created even if an independently optimization option are enabled or
disabled are equal. To effectively apply one optimization, optimizations are
interrelated such as applying another ancillary optimizations, and -On controls them
to work together. For example specifying the optimization option that is set as the

defaults of -O1 with -00, the instruction code cannot equal to -01.

- 38 -

Chapter3 Compiler Options

Option Name -04 -03 -02 -01 -00
-fargument-alias - v v v v
-fargument-noalias v - - - -
-fassociative-math v v v - -
-fcse-after-vectorization v v v - -
-ffast-math v v v v -
-fignore-induction-variable-overflow v - - - -
-fignore-volatile v - - - -
-finline-attribute v v v - -
-finline-copy-arguments - v v v v
-finline-loop-test=operator v v v - -
-floop-collapse v v - - -
-floop-fusion v v - - -
-floop-interchange v v - - -
-floop-normalize v v - - -
-floop-strip-mine v v - - -
-floop-unroll v v v - -
-floop-unroll-complete=4 v v v - -
-fmatrix-multiply v v - - -
-fmove-loop-invariants v v v v -
-fmove-loop-invariants-if v v - - -
-fmove-loop-invariants-unsafe v - - - -
-fmove-nested-loop-invariants-outer % v v v -
-fnamed-alias - - - v v
-fnamed-noalias v v v - -
-fouterloop-unroll v v - - -
-freciprocal-math v v v - -
-freplace-loop-equation v - - - -
-fstrict-aliasing v v v - -
-fthis-pointer-alias - - - v v
-fthis-pointer-noalias v v v - -

-39 -

Chapter3 Compiler Options

Option Name -04 -03 -02 -01 -00
-mconditional-index-test v v - - -
-msched-none - - - - v
-msched-block v v v v -
-mvector v v v v -
-mvector-dependency-test v v v - -
-mvector-fma v v v - -
-mvector-merge-conditional v v - - -

- 40 -

Chapter4 Compiler Directives

Chapter4 Compiler Directives
This chapter describes the compiler directive of C/C++ compiler.

4.1 Format of Compiler Directive

Format:

#pragma _NEC directive-option-name [clause]

4.2 Compiler Directive Options

[no]advance_gather
Allows [Disallows] motion of vector gather instructions in the following loop so
that they can be started as advance as possible.

always_inline
A function which includes this directive should be always inlined. This directive
must be specified in a called function. A function call which noinline is effective is
never inlined even if the called function includes this directive. -On[n=2,3,4], -
finline-functions, -fopenmp, or -mparallel is needed to enable this directive.

[no]assoc
Allows [Disallows] associative transformation in which the order of operations may
be different from the original.

[no]lassume
Allows [Disallows] the use of an array declaration to assume the loop iteration
count.

atomic

Specifies that the expression in the statement immediately after atomic is a macro
operation which is one of x binop=expr, x++, ++Xx, x-- or --x. See 7.1.5 Forced

Loop Parallelization for details.

cncall

Allows parallelization of a loop which includes function calls.

- 41 -

Chapter4 Compiler Directives

collapse

Allows parallelization of a loop which includes user defined function calls.

[no]concurrent

Allows [Disallows] automatic parallelization of the following loop. -mparallel must
be effective. The following schedule-clause whose functionality is the same as
OpenMP can be specified.

schedule(static [,chunk-size])

schedule(dynamic [,chunk-size])

schedule(runtime)

[no]ldependency_test

Allows [Disallows] the conditional vectorization by dependency-test.

forced_collapse

Collapses a nested loop forcibly. The user have to guarantee that the loop collapse

does not give unexpected result, incorrect result etc.

gather_reorder

Allows the instruction reordering on the assumption that vector loads and vector
stores with non-linear subscripts appearing in the following loop do not overlap

each other.

ignore_feedback_scalar

Even though the definitions and references of a scalar variable within a loop are
under different if statement conditions, allows vectorization of the loop under the
assumption that within each iteration of the loop, there is a definition preceding
the reference (that is, there are no definition-reference relationships of a scalar

variable spanning across loop iterations).

[no]inline

A function call in a following statement, a compound statement, an iteration
statement, or a selection statement is [not] chosen as a candidate for inlining. -
On[n=2,3,4], -finline-functions, -fopenmp, or -mparallel is needed to enable

these directive.

- 42 -

Chapter4 Compiler Directives

inline_complete

Same as inline. But, if the inlined function includes a function call, the called
function is chosen as a candidate for inlining. The inlining applied until there is no
function calls if possible. -On[n=2,3,4], -finline-functions, -fopenmp, or -

mparallel is needed to enable this directive.
[no]linner

Allows [Disallows] parallelization of the innermost loop. When it is specified to the

innermost loop, it is effective.

[no]interchange
Allows [Disallows] loop interchanging.
ivdep

Regards the unknown dependency as vectorizable dependency during the
automatic vectorization. An execution result can be incorrect by vectorizing the

loop which is impossible to be vectorized.

[no]list_vector

Allows [Disallows] vectorization of the statement in a loop when an array element
with a vector subscript expression appears on both the left and right sides of an

assignment operator.

loop_count(n)

Assumes loop iteration count as n when compiler cannot determine the count by

loop controlling expression.

[no]loop_count_test

Allows [Disallows] the conditional vectorization by loop-iteration-count-test.

[no]lstval

loop transformation which does not guarantee the values of the variables in the

loop after the loop has been processed.

move_unsafe / move / homove

move_unsafe

- 43 -

Chapter4 Compiler Directives

Allows the loop invariant motion under if-condition, including side-effecting
unsafe code. The message opt(3008) is displayed if unsafe code is moved.

move
Allows the loop invariant motion under if-condition. The unsafe codes which
may cause any side effects are not moved.

nomove
Disallows the loop invariant motion under if-condition.

[no]lneighbors
Allows [Disallows] neighboring access optimization in the loop.
Neighboring access optimization is effective only when -march=ve3 is enabled.

nofma

Disallows to use vector fused-multiply-add instruction in the loop.

nofuse

Disallows the loop fusion with the previous loop.

nosync
Parallelizes the loop ignoring unknown dependencies when the array elements in
the loop have unknown dependencies.

options “compiler-option [compiler-option]...”

Compiles a source program by the compiler options in a command line and
compiler option(s) in this directive.

Rules
- This directive must be specified at the top of your source program.
- Two or more directives can be specified in succession.

- Blank line, comment line, #line and #ident can be placed before and between

these directives.

- This directive can be specified in the file included by #include at the top of
your source program.

Remarks:

- An options directive in a header file under the directory specified by -I in

- 44 -

Chapter4 Compiler Directives

options directive is not effective.
- The upper limits of nesting level of files included by #include is 1000.

- There are some compiler options which cannot be specified in options
directive. See “4.3 Compiler options which cannot be specified by options

directive”,

- When -fopenmp, -mparallel and/or —ftrace are specified by options

directive, they must be specified at linking.

optimize “compiler-option [compiler-option]...”

Specify the compiler options by this directive. The specified options are applied to
this function.
Rules

This directive must be placed at the top of a function definition. Two or more

directives can be specified.

void func(void)

{

#tpragma _NEC optimize “-03 —finline-functions”

#pragma _NEC optimize “-mvector-intrinsic—check”
int a;

Remarks:

- See “4.4 Compiler options which can be specified by optimize directive”.

outerloop_unroll(n) / noouterloop_unroli

outerloop_unroll(n)
Allows outer loop unrolling. The unroll time becomes a power of 2 that is less
than or equal to n.

noouterloop_unroll

Disallows outer loop unrolling.

[no]packed_vector

Allows [Disallows] to use packed vector instruction in the loop.

- 45 -

Chapter4 Compiler Directives

parallel for

Applies forced loop parallelization to the loop immediately after this directive. The
user must check the validity of the operation when the loop is parallelized. See
7.1.5 Forced Loop Parallelization for details.

pvreg(array-name)

Assign a vector register forcedly to the array “array-name” in this routine. The

array must satisfy the following conditions.

- Local array

- The type of array must be one of int, unsigned int, or float.
- One-dimensional array

- The number of the array elements is less than or equal to the maximum packed

vector length (=512).
- They must be referenced in the packed vectorized loops.
- Their subscript expressions must be the same in all loops.

- The array specified by vreg directive cannot be specified by pvreg directive.
In addition, When -march=vel is enabled, the following conditions must also be

satisfied:
- The loop length of loops defining/referencing arrays must be constant and
even.
retain(array-name)

Sets higher priority to array “array-name” to retain on LLC (Last-Level Cache) in

the vectorized loop immediately after this directive.

Note Please specify -mretain-list-vector or -mretain-none when you use this
directive.

select_concurrent

Choose the following loop rather than other loops in a nested loop when applying

automatic parallelization.

select_vector

Choose the following loop rather than other loops in a nested loop when applying

- 46 -

Chapter4 Compiler Directives

automatic vectorization.

shortloop

Vectorizes a loop as a short-loop. Compiler assume the iteration count would be
less than or equal to the maximum vector register length (=256) when the

iteration count is unknown.

[no]shortloop_reduction

Allows [Disallows] the conditional vectorization by iteration count test for a

reduction loop.

[no]sparse

sparse
Assumes that the number of mathematical function calling under a conditional
expression is only a small number of the total iterations at vectorization.
nosparse
Assumes that the number of mathematical function calling under a conditional

expression is a large number of the total iterations at vectorization.

unroll(n) / nounroll

unroll(n)
Allows loop unrolling. The unroll time is n.
nounroll

Disallows loop unrolling.

unroll_complete

Allows loop expansion (complete loop unrolling) of a loop whose iteration count is
constant and can be calculated at the compilation.

In order to calculate the number of iterations at compile time, the loop must be of
the following form. varN(N=1,2,...) are assumed to be variables. They shall not be
defined in the loop. Furthermore, the types of varN and constN must be the same.
When the value of const3 is 1, the ++ and -- operators may be used in

expressions that update the rightmost varl.
e for (varl = constl; varl <= const2; varl = varl + const3)

o for (varl = constl; varl < const2; varl = varl + const3)

- 47 -

Chapter4 Compiler Directives

e for (varl = constl; varl >const2; varl = varl - const3)

o for (varl = constl; varl >= const2; varl = varl - const3)

e for (varl = var2 + constl; varl <= var2 + const2; varl = varl + const3)
o for (varl = var2 + constl; varl < var2 + const2; varl = varl + const3)

e for (varl = var2 + constl; varl > var2 + const2; varl = varl - const3)

e for (varl = var2 + constl; varl >= var2 + const2; varl = varl - const3)

o for (varl = var2 - constl; varl <= var2 - const2; varl = varl + const3)

e for (varl = var2 - constl; varl < var2 - const2; varl = varl + const3)

e for (varl = var2 - constl; varl > var2 - const2; varl = varl - const3)

e for (varl = var2 - constl; varl >= var2 - const2; varl = varl - const3)

Remark: unroll_completely can be used as an alias directive name.

[no]vector

Allows [Disallows] automatic vectorization of the following loop.

vector_threshold(n)

Specifies the minimum loop iteration count for vectorization of the following loop.

[no]verror_check
[Not] Checks the value ranges of arguments in the mathematical functions in the
vectorized version.

[no]vob

Disallows [Allows] a scalar load, a scalar store or a vector load which is executed
after the loop immediately after this directive to overtake the vector store in the
loop.

[no]vovertake

Allows [Disallows] all vector stores in the loop are over-taken by the subsequent

scalar load, scalar store or vector load.

- An execution result becomes incorrect, if there actually is overlap of areas

between an array assignment statement or vector-storing in the loop and

- 48 -

Chapter4 Compiler Directives

scalar-loading, scalar-storing, vector-loading in the loop or behind the loop.

When it is specified to an outer-loop, it is not effective in the inner loops.

vreg(name)

Assign a vector register forcedly to the object “name” in this routine. The object

must be an array or vector-type object. They must satisfy the following

conditions.

When name is an array:

One-dimensional local array.

The type of array must be one of int, unsigned int, long, unsigned long,

long long, unsigned long long, float, or double.

The number of the array elements is less than or equal to the maximum vector

length (=256).

It must be referenced in the vectorized loops.

Its subscript expressions must have the same subscript values in all loops.
It is not a member of a class, struct, and union.

The array specified by pvreg directive cannot be specified by vreg directive.

When name is a vector-type object:

Function local object or a parameter

It is not an array whose element type is vector-type.

It is not a member of a class, struct, and union.

It is not an operand to get the address of vector-type’s element.

The vector-length is always same as the number of the vector-type element

when it is processed.

[no]vwork

Allows [Disallows] partial vectorization using loop division. When novwork is

specified, an outer loop or a loop that contains a nonvectorizable part becomes

nonvectorizable as a whole.

- 49 -

Chapter4 Compiler Directives

4.3 Compiler options which cannot be specified by options directive

The following compiler options cannot be specified by options directive.
e Overall Options
-S, -¢, -cf=conf, -fsyntax-only, -o file-name, -stdlib, -x language, @file-name
» Parallelization Options
-mno-create-threads-at-startup, -pthread
» Code Generation Options
-no-proginf
» Debugging Options
-traceback
* Language Options
-traditional, -cpp, -trigraphs
* Message Options
-Werror
* Preprocessor Options
-C, -dD, -dI, -dM, -dN, -Dmacro[=defn], -E, -H, -include file, -M, -MD,
-MF filename, -MP, -MT target, -P, -Umacro, -undef
* Assembler Options

-Wa,option, -Xassembler option, -assembly-list

* Linker Options
-Bdynamic, -Bstatic, -Ldirectory, -llibrary, -nostartfiles, -nostdlib,
-rdynamic, -shared, -static, -static-nec, -WI,option, -Xlinker option,
-z keyword
« Directory Options
--sysroot=directory, -Bdirectory
* Miscellaneous Options
--help, -print-file-name=/ibrary, -print-prog-name=program, -noqueue, -v,

--version

4.4 Compiler options which can be specified by optimize directive

The following compiler options can be specified by optimize directive. Be careful that

- 50 -

Chapter4 Compiler Directives

(*) marked options cannot be specified by optimize directive in a C++ template
function.
-On
-faggressive-associative-math
-fargument-alias
-fargument-noalias
-fassociative-math
-fcse-after-vectorization
-fdiag-inline=n
-fdiag-parallel=n
-fdiag-vector=n
-ffast-math
-ffast-math-check
-fignore-induction-variable-overflow
-fignore-volatile
-finline-attribute
-finline-copy-arguments
-finline-functions
~finline-loop-test=kind
-finline-max-depth=n
-finline-max-function-size=n
-finline-max-times=n
-fivdep
-fivdep-omp-worksharing-loop
-floop-collapse
-floop-count=n
-floop-fusion
-floop-interchange
-floop-normalize
-floop-split
-floop-strip-mine
-floop-unroll
-floop-unroll-complete=n

-floop-unroll-max-times=n

-5 -

Chapter4

Compiler Directives

-fmatrix-multiply
-fmove-loop-invariants
-fmove-loop-invariants-if
-fmove-loop-invariants-unsafe
-fmove-nested-loop-invariants-outer
-fnamed-alias

-fnamed-noalias
-fouterloop-unroll
-fouterloop-unroll-max-size=n
-fouterloop-unroll-max-times=n
-freciprocal-math
-freplace-loop-equation
-fthis-pointer-alias
-fthis-pointer-noalias
-mconditional-index-test
-minit-stack=value

-mlist-vector
-mparallel-innerloop
-mparallel-omp-routine
-mparallel-sections
-mparallel-threshold=n
-mretain-all

-mretain-list-vector
-mretain-none

-msched-keyword

-mvector
-mvector-assignment-threshold=n
-mvector-dependency-test
-mvector-floating-divide-instruction
-mvector-fma
-mvector-advance-gather
-mvector-advance-gather-limit=n
-mvector-intrinsic-check

-mvector-iteration

- 52 -

Chapter4 Compiler Directives

-mvector-iteration-unsafe
-mvector-loop-count-test
-mvector-low-precise-divide-function
-vector-merge-conditional
-mvector-neighbors
-mvector-packed
-mvector-power-to-explog
-mvector-poser-to-sqrt
-mvector-reduction
-mvector-shortloop-reduction
-mvector-sqgrt-instruction
-mvector-threshold=n
-mwork-vector-kind=none
-report-all

-report-cg
-report-diagnostics
-report-format (*)
-report-inline

-report-option (*)

-report-vector

- B3 -

Chapter5 Optimization and Vectorization

Chapter5 Optimization and Vectorization

This chapter describes optimization and automatic vectorization which are useful in

making user programs execute quickly.

5.1 Code Optimization

The code optimization eliminates unnecessary operations by analyzing program

control and data flow. Where possible, it minimizes the operations involved in a loop

and replaces them with equivalent faster operations.

5.1.1 Optimizations

The C/C++ compiler performs the following code optimizations. The parenthesis

indicates the options to enable the individual optimizations.

Common expression elimination (-0[n] (n=1,2,3,4))

Moving invariant expressions under a conditional expression outside a loop (-O[n]

(n=1,2,3,4), -fmove-loop-invariants, -fmove-loop-invariants-unsafe)
Simple assignment elimination (-0 [n] (n=1,2,3,4))

Deletion of unnecessary codes (-0 [n] (n=1,2,3,4))

Exponentiation optimization (-O [n] (n=1,2,3,4))

Converting division to equivalent multiplication (-O[n](n=2,3,4), -freciprocal-

math)
Loop fusion (-O[n] (n=3,4))
Ignoring of volatile-qualifier (-O[n](n=4), -fignore-volatile)

Compile-time computation of constant expressions and type conversions (-O[n]
(n=1,2,3,4))

Optimization of complex number computations (-0[n](n=1,2,3,4))
Removal of unary minus (-0[n] (n=1,2,3,4))

Optimization of branching (-0O[n] (n=1,2,3,4))

Strength reduction (-O[n] (n=1,2,3,4))

Removal of an unnecessary instruction to guarantee the last value (-O[n]

(n=1,2,3,4))

- 54 -

Chapter5 Optimization and Vectorization

- In-line expansion of Intrinsic functions (-O[n] (n=1,2,3,4))

- Optimizing by Instruction scheduling (-msched-keyword)

5.1.2 Side Effects of Optimization

Common expression elimination or code motion may change the points where a
calculation is performed. The number of times a calculation is performed also
changes the points where errors occur and the number of error occurrences, as

compared with the not-optimized object code.

By moving invariant expressions under a conditional expression outside the loop,
expressions which should not be executed are always executed. Therefore an

unexpected error and an arithmetic exception may occur.

When exponentiation optimization is effective, an exception is not detected even if

underflow exceptions occur.

Converting division to equivalent multiplication normally causes a slight error in
the result. Although this error can usually be ignored in floating point arithmetic, it
may change the result if floating point arithmetic operations are converted to
integer arithmetic operations. This conversion can be stopped and avoided by

compiler option.

Optimization by instruction scheduling may produce the following side effect. If a
calculation to be executed only when a certain condition is satisfied is moved
beyond basic blocks, and it is always executed, an error which should not occur
may occur. Also remarkably increases compile time and memory used by the

compiler.

5.2 Vectorization Features

5.2.1 Vectorization

Variables and each element of an array are called scalar data. An orderly arranged

scalar data sequence such as a line, column, or diagonal of a matrix is called vector

data.

Vectorization is the replacement of scalar instructions with vector instructions. In

automatic vectorization, the compiler analyzes the source code to detect parts that

can be executed by vector instructions.

Automatic vectorization is performed when -0O[n] (n=1,2,3,4) is valid.

- 55 -

Chapter5 Optimization and Vectorization

The compiler option which controls this vectorization is -mvector.

The compiler directive option which controls this vectorization is [no]vector.

5.2.2 Partial Vectorization

If a vectorizable part and an unvectorizable part exist together in a loop, the
compiler divides the loop into vectorizable and unvectorizable parts and vectorizes
just the vectorizable part. This vectorization is called partial vectorization.

This vectorization is performed when -0O[n] (n=1,2,3,4) is valid.

The compiler option which suppress this vectorization is -mwork-vector-kind=none.

The compiler directive option which controls this vectorization is [no]Jvwork.

5.2.3 Macro Operations

Although patterns like the following do not satisfy the vectorization conditions for
definitions and references, the compiler recognizes them to be special patterns and
performs vectorization by using proprietary vector instructions.

This vectorization is performed when -0O[n] (n=1,2,3,4) is valid.

e Sum or inner product

S= 3

I+

exp (exp: An expression)

A sum or inner product that consists of multiple statements is also vectorized.

ti= S =+ expl (exp/: An expression)
t2= 11 £ exp?
S= th £ exm

The compiler option which controls this vectorization is -mvector-reduction.

e Product

S=S x exw (exp: An expression)

A product that consists of multiple statements is also vectorized.

t1 =S * expl (exp/: An expression)
t2 = ti * exp?

S =1tn *x expn

The compiler option which controls this vectorization is -mvector-reduction.

- 56 -

Chapter5 Optimization and Vectorization

Iteration
ali] =exp’ + ali-1]; (expi: An expression)
ali] =exp’ * ali-1];
ali]l =exp’ + ali-1] * exp2
ali]l] =(expl = ali-1]1) * exp2:

An iteration consists of multiple statements and is also vectorized.

t = expl = ali-1]; (expi: An expression)
ali]l] =t * exp2;

The compiler option which controls this vectorization is -mvector-iteration and

-mvector-iteration-unsafe.
Maximum values and minimum values

- Finding the maximum or minimum value only

Example:

for (i =0; i < n; i+ |
if (ali]l > amx)
amx = ali];

- Finding the maximum or minimum value and the value of its subscript
expression

Example:

for (i =0; i <n; i+) |
if (ali]l > amx) {
amx = ali];
iX =1,

- Finding the maximum or minimum value, the values of its subscript
expressions, and other values

Example:

for (j =0; j<n; j++) |
for (i =0; i <n; i+y) {
if @lillj] > amx) {
amx = ali]ljl;
ix =i,

- 57 -

Chapter5 Optimization and Vectorization

* Search
A loop that searches for an element that satisfies a given condition is vectorized.

Example:

for (i =0; i <n; i+d) |
if (ali] == 0)
break;

All of the following conditions must be satisfied.

- This is the innermost loop.

- There is just one branch out of the loop.

- The condition for branching out of the loop depends on repetition of the loop.

- There must not be an assignment statement to an array element or an object

pointed to by a pointer expression before the branch out of the loop.

- All basic conditions for vectorization are satisfied except for not branching out

of the loop.

* Compression
A loop for compressing elements that satisfy a given condition is vectorized.

Example:

j=0;
for (i =0; i <N; i+ |
if (x[i] >=0.0) {
=i+
yLjl = z[jl:

* Expansion
A loop for expanding values to elements that satisfy a given condition is

vectorized.

- 58 -

Chapter5 Optimization and Vectorization

Example:

j=0;
for (i = 0; i <N; i+t {
if (x[i] >=0.0) {
=i+
z[j] = ylil;

5.2.4 Conditional Vectorization

The compiler generates a variety of codes for a loop, including vectorized codes and
scalar codes, as well as special codes and normal codes. The type of code is selected
by run-time testing at execution when conditional vectorization is performed. Run-

time testing are following.
- Data dependency
- Loop iteration count

- Loop iteration for reduction operation
This vectorization is performed when -0O[n] (n=2,3,4) and —mvector is valid.
The compiler option and the compiler directive option which controls this

vectorization is following.

Condition Compiler Option Compiler Directive Option
Data dependency -mvector-dependency-test dependency_test
Loop iteration -mvector-loop-count-test loop_count_test

Loop iteration for

) , -mvector-shortloop-reduction [no]shortloop_reduction
reduction operation

5.2.5 Outer Loop Strip-mining

When the iteration count of a loop is greater than the maximum-vector-register-
length (=256), the compiler puts a loop around the vector loop, which splits the total
vector operation into "strips" so that the vector length will not be exceeded.

When there are references of array elements whose subscript expressions do not
include the induction variables of the outer loop in the inner loop of a tightly nested
loop, the inner loop is split into a strip loop and the strip loop is moved outside of the

outer loop so that invariants can be kept in the vector register.

- 59 -

Chapter5 Optimization and Vectorization

This optimization is performed when -0[n] (n=3,4) is valid.

The compiler option which controls this vectorization is -floop-strip-mine.

Note In tightly nested loops, the loops nested together must look as shown in
Example 1. In this case, there is no executable statement between the inner
and outer loops.

Example: Tightly nested loop

for (k = 0; k < 10; k++) {
for (j =05 j <20; j++) {
for (i =0; i <30; i+ {
alk][j1[i] = b[kI[jILi] * c[kI[jILil;
}

Example: Not tightly nested loop

for (k = 0; k < 10; k++) |
for (j =0; j <20; j++) {
for (i =0; i <30; i++) {
alk][jI1[i] = bIkI[jICi] * c[kI[jILi];
}
x[j1[k] = y[j1lk] + z[j1[k];
}
}
for (k = 0; k < 10; k++) {
for (j =0; j <20; j++) {
for (i =0; i <30; i++) {
alk][jI1[i] = bIkI[jICi] * c[kI[jILi];
}
for (i =0; i <30; i++) |
skl [J10i] = tLkI[JI0i] = ulk] [5100T;
]

5.2.6 Short-loop

A loop code which does not have "terminate loop?" is generated for a loop whose
iteration count is less than or equal to the maximum-vector-register-length (=256).
This kind of loop is called a "short-loop".

This optimization is performed when -0[n] (n=1,2,3,4) is valid.

- 60 -

Chapter5 Optimization and Vectorization

The compiler directive option which controls this optimization is shortloop.

5.2.7 Packed vector instructions

A packed data is packed two 32bit data in each element of a vector register. Packed
vector instructions calculates a packed data. Packed vector instructions can calculate
twice the data of vector instructions by one instruction.

The compiler option which controls using packed vector instructions is -mvector-
packed.

The compiler directive option which controls using packed vector instructions is

[no]packed_vector.

5.2.8 Other

5.2.9

Deletion of common expression, deletion of simple assighnments, deletion of
unnecessary codes, conversion of division to equivalent multiplication and removal of
an unnecessary instruction to guarantee the last value are also performed for
vectorized codes.

Additionally the following optimizations are performed for vectorized codes. The

parenthesis indicates the options to enable the individual optimizations.
- Extracting scalar operations (-O[n] (n=1,2,3,4))

- Vectorization by Statement Replacement (-O[n] (n=1,2,3,4))

- Loop collapse (-O[n] (n=3,4), -floop-collapse)

- Outer loop unrolling (-O[n] (n=3,4), -fouterloop-unroll)

- Loop rerolling (-O[n] (n=3,4))

- Recognization matrix multiply loop (-O[n] (n=3,4), -fassociative-math,

-fmatrix-multiply)

- Loop expansion (-O[n] (n=2,3,4), -floop-unroll-complete=m)

Remarks on Using Vectorization

* The execution result of the summation, the inner product, the product and the
iteration may differ before and after vectorization because the order of their

operations may differ before and after vectorization.

* The 8 byte integer iteration is vectorized by using a floating-point instruction. So

when the result exceeds 52 bits or when a floating overflow occurs, the result

- 61 -

Chapter5

Optimization and Vectorization

differs from that of scalar execution.

To increase speed, the vector versions of mathematical functions do not always

use the same algorithms as the scalar versions.

Optimization techniques, such as conversion of division to multiplication, are

applied differently.

Optimization techniques, such as reordering of arithmetic operations, are applied

differently.

The detection of errors and arithmetic exceptions by intrinsic functions may differ

before and after vectorization.

When the compiler checks whether vectorization would preserve the proper
dependency between array definitions and references, it assumes that all values of
subscript expressions are within the upper and lower limits of the corresponding
size in the array declaration. If a loop violating this condition is vectorized, correct

results are not guaranteed.

When a loop containing if statement, switch statement, or a conditional operator
is vectorized, arithmetic operations are carried out only for the part that
conditionally requires them, but arrays are referenced as many times as the
iteration count called for by the loop structure and array elements that should not
be referenced are referenced. Unless the arrays have enough area reserved to

satisfy the iteration count, memory access exceptions can occur as a result.

When a loop containing a branch out of the loop is vectorized, arithmetic
operations are carried out unconditionally for the part before the branch point, as
many times as the iteration count called for by the loop structure. Therefore,
arithmetic operations that should not be carried out are carried out, or data that
should not be referenced are referenced. These events can cause errors or

exceptions.

The alignment size of vectorizable data must be same as size of the data type (4
bytes or 8 bytes). When a loop containing array elements or objects pointed to by
the pointer expressions which do not satisfy the vectorizable alignment conditions
is vectorized, errors or exceptions may occur. In such a case, specify #pragma
_NEC novector before the loop or -mno-vector to stop vectorization. The

following data may not satisfy the vectorizable alignment conditions.

- 62 -

Chapter5 Optimization and Vectorization

- Arguments

- Objects pointed to by the pointer
The compiler assumes these data to satisfy the alignment condition, and

vectorizes the loop.

- 63 -

Chapter6 Inlining

Chapter6 Inlining

6.1 Automatic Inlining

When automatic inlining is enabled, the compiler chooses the appropriate functions
by analyzing the source files, and inlines them automatically.

The compiler option which controls this optimization is -finline-functions.

6.2 Explicit Inlining

6.2.1 Description

When using the explicit inlining, an inlining directive which controls inlining must be
specified before a statement, a compound statement, an iteration statement, or a
selection statement including inlined function calling. The compiler option
-finline-functions is not needed, but -On[n=2,3,4], -finline-functions, -fopenmp,
or -mparallel is needed.

The compiler has the following directives for explicit inlining.

* always_inline
A function which includes this directive should be always inlined. This directive
must be specified in a called function. A function call has noinline is never inlined
even if the called function includes this directive.

* inline
A function call in a following statement, a compound statement, an iteration

statement, or a selection statement is chosen as a candidate for inlining.

* inline_complete
Same as inline. But, if the inlined function includes a function call, the called
function is chosen as a candidate for inlining. The inlining applied until there is no

function calls if possible.
* noinline
A function call in a following statement, a compound statement, an iteration

statement, or a selection statement is never inlined. The function which includes

always_inline is not inlined, too.

- 64 -

Chapter6 Inlining

6.2.2 Specifying Inline Directive

(1) Called function
always_inline must be specified in a called function.

double smal|_func (double a)

{

#pragma _NEC always_inline
return sgrt(a);

J

(2) Statement
inline / inline_complete / noinline affect all function calls in a following

statement.

#oragma _NEC inline
x = funcl (@) + func2(a)

x += func3(a);

funcl() and func2() are candidates for inlining, but func3() is not.

(3) Block
inline / inline_complete / noinline affect all function calls in a following block.

#toragma _NEC inline
{
func1 () ;
func2 () ;

funcl() and func2() are candidates for inlining.

(4) Loop
inline / inline_complete / noinline affect all function calls in a following for loop,

while loop, or do-while loop.

#tpragma NEC inline
for (i = ifunc(); i < 1000; i++) {

z[i] = funcl1();
wli]l = func2();

ifunc(), funcl(), and func2() are candidates for inlining.

(5) if-statement and switch-statement

- 65 -

Chapter6 Inlining

6.2.3

inline / inline_complete / noinline affect all function calls in a following if

statement, switch statement, and their sub-statements.

#toragma _NEC inline

if (ifunc1()) {
x = func1();

}

else if (ifunc2()) {
x = func2();

]

else |
x = func3();

}

ifuncl(), ifunc2(), funcl(), func2(), and func3() are candidates for inlining.

Remarks

always_inline, inline, inline_complete, and noinline are effective when -On

[n=2,3,4], -finline-functions, -fopenmp, or -mparallel are enabled.

always_inline is ignored when both __attribute__((noinline)) and

always_inline are specified.

The function definition which includes always_inline is not removed. Be careful
that the function definition is removed when __attribute__((always_inline)) is

specified.

A function call which noinline is effective is not inlined even if the called function

includes always_inline.

A block includes a block and each block has opposite directive, the immediately

before directive is effective for the inner block.

#oragma _NEC inline

{
x = funcl () ; // Candidate for inlining
#tpragma _NEC noinline

{
y = func2(); // Not inlined

J

- 66 -

6.3

6.4

Chapter6 Inlining

e A function call in an initializer in a declaration is not inlined even if inline is

effective.

Cross-file Inlining

The compiler inlines functions included in source files other than a source file of the
compilation target. This inlining is called cross-file inlining.

Cross-file inlining is enabled when automatic inlining is enabled and source files to
search for functions to inline are specified.

The following examples show how to specify the source files.

* A source file is specified.

$ ncc —-¢ —finline-functions -finline-file=sub.c call.c

* A source file and all input source files are specified.

$ ncc —¢ —finline-functions —finline-file=sub2.c:all call.c sub.c

» All source files under a directory are specified.

$ Is dir
sub. ¢ sub2.¢ sub3.c
$ ncc —¢ —finline—functions —finline-directory=dir sub.c

» All source files under a directory except for a specific source file are specified.

$ Is dir

sub. ¢ sub2.c¢ sub3.c

$ ncc —¢ -finline-functions -finline-directory=dir —fno—inline—file=sub2.c
call.c

IL files can be also specified as files to search. Compilation time can become shorter

when you specify IL files instead of source files.

* An IL file is generated and specified.

$ ncc —mgenerate-il-file sub.c
$ ncc -¢ -finline-functions -mread-il-file sub.cil main.c

Inline Expansion Inhibitors

Expansion inhibitors are used when one of the following conditions occurs.

- 67 -

Chapter6

Inlining

The function to be inlined cannot be located.

The arguments used in the calling sequence do not match the arguments in the

function to be inlined.

There is a conflict between unions of the calling function and the function to be

inlined.

A function name referenced in the function to be inlined conflicts with a

nonfunction name used in the calling function.
The function to be inlined contains OpenMP directives.

The function to be inlined contains a recursive call of it.

6.5 Notes on Inlining

If inlining is applied to too many functions in a program, the volume of the codes
may increase, causing the instruction cache to overflow and the performance of

the program to decrease. Choose the functions to be inlined carefully.
A function called recursively cannot be inlined.

In cross-file inlining, if large or many programs are searched, the compilation time

can become long or memory used at the compilation may increase.

In cross-file inlining, whether routines are inlined or not may change by the
compilation order, because the compiler does not search the source files and
continues the compilation when modules referred in programs of source files
specified by -finline-file or -finline-directory are not found. Specify -finline-

abort-at-error when you want to stop the compilation at the case.

Cross-file inlining can be used only in C language.

- 68 -

Chapter7 Parallelization

Chapter7 Parallelization

7.1 Automatic Parallelization

7.1.1 Description

The compiler automatically detects the parallelism of loop iterations and statement
groups, transforms a program to enable it to be executed in parallel, and generates
parallelization control structures when automatic parallelization is enabled.

The compiler option which controls this optimization is -mparallel.

7.1.2 Conditional Parallelization Using Threshold Test

Parallelization can slow down execution if the loop contains insufficient work to
compensate for the added overhead.

If the loop nest iteration count cannot be determined at compilation, the automatic
parallelization function generates codes to execute a threshold test at run time. If it
is calculated at run time that the loop has a lot of work, the loop is executed in
parallel mode. Otherwise the loop is executed serially. This parallelization is called
parallelization using a workload threshold test.

Automatic parallelization adjusts the threshold value based on the iteration count of
the loop and the number/type of operations in each loop. At run time, the iteration
count of the loop and the threshold value are compared. If the iteration count is
larger than the threshold value, the parallelized loop is executed. Otherwise, the
non-parallelized loop is executed.

The compiler option which controls this optimization is -mparallel-threshold=n.

7.1.3 Conditional Parallelization Using Dependency Test

If a loop is suitable for parallelization except that it is potentially dependent,
automatic parallelization may generate an if-then block in the same way as for
parallelization using a threshold test. When evaluated at run time, this test
determines whether the loop can execute correctly on multiple tasks, or must be run
on a single task. For single loops and double-nested loops, this test is combined with
a threshold test.

7.1.4 Parallelization of inner Loops

When no outer loop can be parallelized, inner loops are analyzed for parallelization

- 69 -

Chapter7 Parallelization

operations. However, inner loops that clearly exceed the threshold value are
automatically parallelized even if inner loops are not requested.

The compiler option which controls this optimization is -mparallel-innerloop.

7.1.5 Forced Loop Parallelization

#pragma _NEC parallel for parallelizes a for-loop that is not parallelized by the
compiler but the user knows that it can be parallelized. The user must check the

validity of the operation when the loop is parallelized.

The for-statements must be in the form of "for (init-expr; var relational-op b; incr-
expr)". The terms of the directive must fulfill the following conditions:

n n

- init-expr must be one of "var=I/b" or "integer-type var=I/b

- incr-expr must be one of ++var, var++, --var, var--, var+=incr, var-=incr,

var=var+incr or var=var-incr.

- varis a scalar variable whose type is int, long, long int, long long or long

long int.
- relational-op is one of <, <=, >=, > or 1=,

- Ib, b and incr must be loop invariant expressions.
The following schedule-clause whose functionality is the same as OpenMP can be
specified.

schedule(static [,chunk-size])

schedule(dynamic [,chunk-size])

schedule(runtime)
Additionally, private-clause whose functionality is the same as OpenMP can be
specified.

private(scalar-variable[,scalar-variable]...)
#pragma _NEC atomic must be specified when a statement immediately after
atomic is a macro operation which is one of x binop=expr, x++, ++x, x-- or --x.

The statement must fulfill the following conditions:
- Xx must be a scalar variable which can be stored as a value.
- expr must be a scalar expression in which x does not appear.

- binop must be one of +, *, -, /, & ~, |, << or >>. It must not be overloaded.

The following code is an example inserting forced-loop parallelization directives.

- 70 -

Example:

Chapter7 Parallelization

double sub (double *a, int n)
{

int i, j;

double b[n];

double sum = 1.0;

#pragma _NEC parallel for schedule(dynamic, 16)
for (j =0; j<n; j+v |
for (i =0; i <n; i+t |
#toragma _NEC atomic
sum += a[j] + b[il;
}
}

return sum;

7.2 OpenMP Parallelization

7.2.1 Using OpenMP Parallelization

Specify -fopenmp to use OpenMP parallelization at compilation and linking. See the

OpenMP specifications for OpenMP directives and remarks.

Example: Inserting an OpenMP directive

double sub (double *a, int n)
{

int i, J;

double b[n];

double sum = 1.0;

#pragma omp parallel for reduction (+:sum)
for (j =0; j<n; j++) |
for (i =0; i <n; i+H) {
sum += a[j] + b[il;
}
}

return sum;

- 71 -

Chapter7 Parallelization

7.2.2 OpenMP 5.0 Parallelization

The following features of OpenMP Version 5.0 are supported.

* loop construct

parallel loop construct

parallel master construct

OMPT interface

7.2.3 Extensions on OpenMP Parallelization

The environment variables of OpenMP Version 4.5 whose name are prefixed with
“VE_" are also supported. If both environment variables with and without “VE_" are
specified, the value which is specified by the environment variable prefixed by “VE_"
is applied.

Example: Specify the environment variables (applied VE_OMP_NUM_THREADS)

$ export OMP_NUM_THREADS=4
$ export VE_OMP_NUM_THREADS=8

7.2.4 Restrictions on OpenMP Parallelization

The features of OpenMP Version 5.0 except for listed in section 7.2.2 is restricted.

The following features of OpenMP Version 4.5 is restricted.

e All directives/clauses described in "Device Constructs"

Compiler does not generate any device code and target regions run on the host
» All syntax described in “Array Sections” except in reduction clause
 All directives/clauses described in “Cancellation Constructs”
» All directives/clauses described in “Controlling OpenMP Thread Affinity”

» distribute, target, teams
distribute, target and teams in directives for combined construct and all clauses
related to them are ignored.

Example : “target parallel for” is treated as “parallel for”.
« taskloop constructs

» parallel for simd construct and for simd construct

Treated as parallel for and for respectively

- 72 -

7.3

Chapter7 Parallelization

simd construct

If saflen clause or simdlen clause is not specified, treated as ivdep directive.
declare reduction construct

allocate clause

bind clause

if clause with directive-name-modifier
in_reduction,task_reduction clause

ordered clause with parameter

schedule with modifier

depend clause with array variable

depend clause with source or sink of dependence-type
critical construct with hint

atomic construct with seq_cst

linear clause with modifier

nested parallelism

Threads

7.3.1 Set and Get Number of Threads

In automatic parallelized programs, parallel processing is realized based on OpenMP
parallel functions. Therefore, you can set the number of threads at execution by the
environment variable OMP_NUM_THREADS or VE_OMP_NUM_THREADS in
automatic parallelized and OpenMP parallelized programs.

OpenMP runtime library routines can set and get the number of threads at execution

in automatic parallelized programs.

extern void omp_set_num_threads (int num_threads) ; // Set number of threads
extern int omp_get_num_threads (void); // Get number of threads

extern int omp_get_max_threads (void); // Get upper bounds on number of threads
extern int omp_get_thread_num(void); // Get thread number

The number of threads at execution is the same as the number of available VE cores
if it is not set by the environment variable OMP_NUM_THREADS or
VE_OMP_NUM_THREADS before the program execution.

- 73 -

Chapter7 Parallelization

7.3.2 Thread Creation and Destroy

In automatic parallelized and OpenMP parallelized programs, the threads are created
before the routine main() or global variable constructor, and they are destroyed at
the program termination.

The following figure shows how threads are created and destroyed. Assume that the

environment variable OMP_NUM_THREADS is set to 4.

Set OMP_NUM_THREADS=4 Threads

#0 #1 #2 #3 a) Create threads

main() { , ,
spin—wait
#pragma omp paral lel
[b) Execute in 4 threads
}
spin—wait
_ ¢) Destroy all idle threads.
omp_set_num_threads (2) ; Set ICV to 2.
el d) Create a thread. The number of
#pragma omp paralle threads becomes 2.
{
e) Execute in 2 threads
}
spin—wait
} f) Destroy an idle thread.

(a) Three idle threads are created by master thread (#0) before main() starts. The
idle threads are spin-waiting and wait for the task to be assigned by the master
thread.

(b) Tasks are assigned to the threads by master task at the entry of parallel region,
and it is executed in four threads. At the end of parallel region, three threads are
spin-waiting and wait for the task to be assigned by the master thread again.

(¢) At the calling of omp_set_num_threads(2), all idle threads are destroyed and set
ICV to 2.

*ICV stands for "Internal Control Variable" and is an abbreviation used in

OpenMP. It is a variable used for controlling parallel processing.

- 74 -

Chapter7 Parallelization

(d) A thread is created at the entry of the next parallel region.
(e) The parallel region is executed in two threads.

(f) The idle thread is destroyed at the end of program execution.

7.3.3 Postpone Thread Creation

7.4

By default, idle threads are created before the routine main() or global variable
constructor. It can be change at the first parallel region by the following compiler

option at linking.

$ ncc -fopenmp —mno—create-threads-at-startup -static-nec a.o
$ ncc -mparallel -mno-create-threads-at—startup -static-nec b.o

Notes on Using Parallelization

» After parallelization, the total CPU time is increased due to the overhead of

parallelization.

* When parallelizing a function that includes function calls, the inside of the called
function must be checked to see if the definition and/or reference of shared data

is valid.

» Automatic parallelization is applied to the loops outside of a parallel region of
OpenMP when -fopenmp and -mparallel are specified at once. If you don't want
to apply automatic parallelization to a routine containing OpenMP directives,

specify -mno-parallel-omp-routine.

» Threads for parallelization are created for each MPI process when a program is a
MPI program. When a program uses 2 MPI processes and OMP_NUM_THREADS is
set as 4, the program requires 8 cores (= 2 MPI * 4 threads). When executing

MPI program on VE, be careful not to run out of cores for execution.

* When outputting execution analysis information an auto-parallelized program
using PROGINF and FTRACE, keep the following in check: See the
manual "PROGINF/FTRACE User’s Guide” for the detail of PROGINF or FTRACE.

- The number of operations for the spin-waiting of the thread created before
main() or global variable constructor starts is included in PROGINF, but not in
FTRACE.

- In PROGINF, the “Vector Operation Ratio” may decrease. This is due to

calculating the displayed value in PROGINF from the counter of the whole

- 75 -

Chapter7 Parallelization

process which includes the number of operations for the spin-waiting of the

thread created before main() or global variable constructor starts.

- 76 -

Chapter8 Compiler Listing

Chapter8 Compiler Listing

This chapter describes the output lists of the C/C++ compiler.

The compilation list is created in the current directory, under the name "source-file-

name.L".

8.1 Option List

An option list is output when -report-option or -report-all is specified.

Format:

NEC C/C++ Compiler (3.0.7) for Vector Engine
FILE NAME: fft.c (b)
COMPILER OPTIONS : -report-option (c)
OPTIONS DIRECTIVE: -04 (d)
PARAMETER :
Optimization Options :
(e)
-On
—fargument-alias

—fargument-noal ias
—fassociative-math

D4
 disable
. enable
. enable

Thu Jun 18 10:18:05 2020 (a)

(f)

(a) Compiler revision and compilation date

(b) Name of source file

(c) Compiler options which specify by command line

(d) Compiler options which specify by options directive

(e) Compiler option

(f) Value of Compiler option

8.2 Diagnostic List

A diagnostic list is output when -report-diagnostics or -report-all is specified.

8.2.1 Format of Diagnostic List

The format of the diagnostic list is as follows.

- 77 -

Chapter8 Compiler Listing

Format:

LINE

FILE NAME: fft.f90

FUNCTION NAME: FFT_3D
DIAGNOSTIC LIST

(d) (e)
7: inl (1222): Inlined
9: vec(101): Vectorized loop.

NEC C/C++ Compiler (1.0.0) for Vector Engine Wed Jan 17 14:55:20 2018

DIAGNOSTIC MESSAGE

(a)

(a) Compiler revision and compilation date

(b) Name of source file

(¢) Name of function that includes loops or statements corresponding to diagnostic

(d) Line number

(e) Kind of Diagnostic and message number

Kind of Diagnostic is as follows.
vec : Vectorization diagnostic
opt : Optimization diagnostic
inl : Inlining diagnostic

par : Parallelization diagnostic

(f) Diagnostic message

8.2.2 Notes

* A diagnostic message for a statement and a loop in an inlined function is not

output in a diagnostic list for a function that calls the inlined function. Refer to the

diagnostic list for the inlined function when you need to refer to its diagnostic

messages.

8.3 Format List

A format list is output when -report-format or -report-all is specified. The source

lines for each function together with the following information are output to the list.
* The vectorized status of loops.

* The parallelized status of loops.

- 78 -

Chapter8 Compiler Listing

» The status of inline expansion

8.3.1 Format of Format List

The format of the format list is as follows.

NEC C/C++ Compiler (1.0.0) for Vector Engine Wed Jan 17 14:55:16 2018 (a)
FILE NAME: a.c (b)
FUNCTION NAME: func (c)
FORMAT LIST
LINE LOOP STATEMENT
(d (e (f)
1: int func(int m, int n)
2: {
3: int i,j, alml[n], b[m][n];
4: +———— > for (i =0; i <m; i+ |
5. |V-——- > for (j =0; j <n; j++) |
6: || alillj]l = alilljl + b[illil;
70 |V——- }
8 +——- }
9: return a[0][0];
10:]

(a) Compiler revision and compilation date

(b) Name of source file

(c) Name of function

(d) Line number.

(e) Vectorization and parallelization status of each loop and inlining status of function
calls

(f) Corresponding source file line

8.3.2 Loop Structure and Vectorization/Parallelization/Inlining Statuses

The following examples show how the loop structure and vectorization,

parallelization and inlining statuses are output.

* The whole loop is vectorized.

V—— > for (i =0; i <n; i+ {

- 79 -

Chapter8 Compiler Listing

e The loop is partially vectorized.

§-———— > for (i =0; i <n; i+ {

* The loop is conditionally vectorized.

Cmmm > for (i =0; i <n; i+ {

* The loop is parallelized.

p————- > for (i =0; i <n; i+ {

* The loop is parallelized and vectorized.

Y > for (i =0; i <n; i+ |

* The loop is not vectorized.

o > for (i =0; i< n; i+ {

* The nested loops are collapsed and vectorized.

W——— > for (i =0; i <n; i+ {
| > for (j =00 j<m j+)

* The nested loops are interchanged and vectorized.

X———— > for (i =0; i <n; i+ {
[m— > for (j=0; j<m j+) {

- 80 -

Chapter8 Compiler Listing

» The outer loop is unrolled and inner loop is vectorized.

U-——— > for (i =0; i <n; i+ {
IV-——> for (j=0; j<m j+) {

» The loops are fused and vectorized.

Ve > for (i =0; i <n; i+ {

}
for (i =0; i <n; i+t {

e The loop is expanded.

K > for (i =0; i <4, i+) |

* A character in the 17th column indicates how the line is optimized.
- “I" indicates that the line includes a function call which is inlined.

- “M” indicates that the nested loop which includes this line is replaced with

vector-matrix-multiply routine.

- “F” indicates that a fused-multiply-add instruction is generated for an

expression in this line.
- “R"” indicates that retain directive is applied to an array in this line.

- “G” indicates that a vector gather instruction is generated for an expression in

this line.

- “C” indicates that a vector scatter instruction is generated for an expression in

this line.

- “V" indicates that vreg directive or pvreg directive is applied to an array in this

line.

-81 -

Chapter8

8.3.3

Compiler Listing

Notes

The loop structure or vectorization / parallelization statuses may be incorrect

when a part of the loop is included in a header file.

The loop structure or vectorization / parallelization statuses may be incorrect

when two or more loops are written in a line.

The format list of a function is not output when the entry point of the function is

included in a header file.

When a line after a loop is a pre-processor directive ling, it is treated as the end of

the loop as follows.

Ve > for (i =0; i <n; i+ {

8.4 Optimization List of Each Module

A

n optimization list of inlining module, vectorization module and code generation

module is output.

8.4.1

Inlining Module

An optimization list of inlining module is output when -report-inline or -report-all is

specified.

Format:

NEC C/C++ Compiler (3.1.0) for Vector Engine Thu Sep 17 07:33:16 2020 (a)
FILE NAME: fft.c (b)

FUNCTION NAME: func3 (c)

INLINE LIST

INLINE REPORT: func3 (fft.c:17)
(d)

—> INLINE: func2 (fft.c:19) (e)
—> NOINLINE: funcO (fft.c:12) (e)
#+k Source for routine not found. (f)

—> INLINE: funcl (fft.c:13) (e)

- 82 -

(a) Compiler revision and compilation date
(b) Name of source file

(¢) Name of procedure

Chapter8 Compiler Listing

(d) Level of procedures to be inlined from the bottom of the calling tree.

(e) Inlining status of procedure calls

(f) Diagnostic message

8.4.2 Vectorization Module

An optimization list of vectorization module is output when -report-vector or -

report-all is specified.

Format:

NEC C/C++ Compiler (3.1.0) for Vector Engine
FILE NAME: vec.c (b)

FUNCTION NAME: func (c)

VECTORIZATION LIST

LOOP BEGIN: (vec.c:3)
<{Unvectorized loop.> (d)

LOOP BEGIN: (vec.c:4)

Thu Sep 17 08:10:39 2020 (a)

<Vectorized loop.> (d)
s#+x The number of VGT, VSC. .0, 0.
#+x The number of VLOAD, VSTORE. : 1, 1.
LOOP END
LOOP END

(e)
(e)

(a) Compiler revision and compilation date
(b) Name of source file

(¢) Name of procedure

(d) Vectorization status of each loop

(e) Diagnostic message

8.4.3 Code Generation Module

An optimization list of code generation module is output when -report-cg or -

report-all is specified.

- 83 -

Chapter8 Compiler Listing

Format:

NEC C/C++ Compiler (3.1.0) for Vector Engine

Thu Sep 17 08:10:39 2020

(a)

FILE NAME: vec.c (b)
FUNCTION NAME: func (c)
CODE GENERATION LIST

Hardware registers (d)
Reserved
Cal lee-saved
Assigned
Scalar registers
Vector registers

10 [sl fp Ir sp s12 s13 tp got plt s17]
© 16 [s18-s33]

© 32 [s0-s12 s15-s16 s18-s21 s23-s32 s61-s63]
: 35 [v0 v30-v63]

Vector mask registers 0
VREG directive 2 [v18-v19]
Routine stack (e)

Total size : 256 bytes
Register spill area 16 bytes
Parameter area © 40 bytes
Register save area : 176 bytes
User data area : 16 bytes
Others 8 bytes

Note: Total size of Routine stack does not include
the size extended by alloca() and so on

LOOP BEGIN: (vec.c:3)

LOOP BEGIN: (vec.c:4)
sk The number of VECTOR REGISTER SPILL (f)
Total C 14
Across calls 1
Not enough registers o
Over basic blocks o
Others o
0k The number of VECTOR REGISTER RESTORE
Total C 14
Across calls 1
Not enough registers o
Over basic blocks o
Others o
0k The number of VECTOR REGISTER TRANSFER 212

-84 -

Chapter8 Compiler Listing

s+x The number of SCALAR REGISTER RESTORE
Total D14
Across calls 1
Not enough registers S
Over basic blocks o
Others 1
s+x The number of SCALAR REGISTER RESTORE
Total D14
Across calls 1
Not enough registers S
Over basic blocks o
Others 1
s+x The number of SCALAR REGISTER TRANSFER D21
LOOP END
LOOP END

(a) Compiler revision and compilation date
(b) Name of source file
(¢) Name of procedure

(d) Number of registers used for each type of register information

Reserved : System reserved registers
Callee-saved : Registers that save across procedure calls
Assigned : Registers assigned to calculations and user data

(e) Stack information

Register spill area : Stack area for register spill
Parameter area : Stack area for parameter area
Register save area : Stack area for register save area
User data area : Stack area for user data area
Others : Others

(f) Cause of register spill, restore and transfer for each loop
Across calls : Because it across procedure calls
Not enough registers : Because the registers are shortage
Over basic blocks : Because it is used across the basic blocks
Others : Others

- 85 -

Chapter9 Programming Notes Depending on the Language Specification

Chapter9 Programming Notes Depending on the

Language Specification

9.1 Builtin Functions

9.1.1 Performance Tuning Support

void _ builtin_vprefetch(const void *target, size t size)

Prefetches specified size of data started from the address target.

9.1.2 Debugging Support

void _ builtin_traceback (unsignd long *framepointer)

Outputs traceback information when the environment variable VE_TRACEBACK is
set.

Example:

__builtin_traceback ((unsigned long *)_ builtin_frame_address(0));
abort();

9.2 Attributes

NEC C/C++ Compiler supports NEC's unique attributes and some attributes of GCC

and Clang. The available attributes are as follows:

(1) Attributes in NEC C/C++ Compiler

- no_ftrace
When -ftrace is enabled, ftrace function calls are generated at entry and exit of
user-compiled functions. Such ftrace function calls are not generated for the
functions with this attribute and therefore the ftrace performance information is
not created.

Example:

int foo() __attribute__((no_ftrace));

- 86 -

Chapter9 Programming Notes Depending on the Language Specification

(2) Attributes in GCC

- Common Function Attributes

alias aligned always_inline constructor
deprecated destructor format format_arg
ifunc noinline nonnull noreturn
nothrow section sentinel unused
used visibility warn_unused_result weak

- Common Variable Attributes

alias aligned deprecated packed
section unused used vector_size
visibility weak

- Common Type Attribute

aligned deprecated packed transparent_union
unused vector_size visibility

(3) Attributes in Clang

abi_tag alias always_inline constructor
destructor ext_vector_type format ifunc
init_priority nodiscard noinline noreturn
nothrow section warn_unused_result weak

(4) Online document
For detailed descriptions of each attribute, please refer to the online document

below.
¢ Online document of GCC

- Common Function Attributes

- Common Variable Attributes

- Common Type Attribute

* Online document of Clang

- Attributes in Clang

(5) Notes

* always_inline compiler directive option is ignored when both

__attribute__ ((noinline)) and always_inline are specified.

* The function definition which includes always_inline is not removed. Be careful

that the function definition is removed when ___attribute__ ((always_inline))

- 87 -

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Common-Type-Attributes.html
https://clang.llvm.org/docs/AttributeReference.html

Chapter9 Programming Notes Depending on the Language Specification

is specified.

e A vector type, like to GCC and clang is available in NEC C/C++ compiler. Vector
type can be defined by vector_size and ext_vector_type attribute specifiers.

Please refer to "9.5 Vector Type Extension" for details.

9.3 Implementation-Defined Specifications
9.3.1 Data Types

9.3.1.1 Size and alighment

The following table shows the data types available in the C/C++ compiler and

their size and alignment. [Unit: Bytes]

Type Size Alighment Description
_Bool 1 1 Available in C.
bool 1 1 Available in C++.
char 1 1 char means sighed char by
signed char default. It can be changed to
unsigned char unsigned char by -funsigned-

char.

short 2 2

short int
unsigned short
unsigned short int

int 4 4
unsigned int

long 8 8
long int

unsigned long

unsigned long int

long long 8 8
long long int

unsigned long long

unsigned long long int

_ float16 2 2 half-precision real type.

float 4 4 Single-precision real type.
double 8 8 Double-precision real type.
long double 16 16 Quadruple-precision real type.
__ float16 _Complex 4 2 half precision complex type.

- 88 -

Chapter9 Programming Notes Depending on the Language Specification

Type Size Alignment Description
float _Complex 8 4 Single precision complex type.
double _Complex 16 8 Double precision complex type.
long double _Complex 32 16 Quadruple precision complex
type.
pointer 8 8
enum 4 4 Corresponds with int type.
8 8 Corresponds with long type.

9.3.1.2 Size and alignment of derived type
The derived type is constructed from fundamental types. They are classified into the
array type, structure type, union type, pointer type, and function type in C language.
(1) Array type
* Size
(size-of-the-element) * (number-of-the-elements)
e Alignment
Requires the same size and alignment as the array element.
(2) Structure and union type (including class type)
* Size
Total size of members and the area for their alignment. For unions, the

overlapped area of members is not included in the size.

¢ Alignment

Requires the alignment that has the largest value of the following:
- Maximum value of the alignments required by its member variables

- 4 bytes

Note The C++ compiler may add some internal data members to C++ language
classes, structures, or unions, in order to implement the C++ language
specification. In this case, their size and alignment may not comply with
the above.

-89 -

Chapter9 Programming Notes Depending on the Language Specification

9.3.1.3 Other types

In addition to the above data types, provides the following data types.

(1) size_t

Corresponds with unsigned long.

(2) ptrdiff_t
Corresponds with long. ptrdiff_t is defined in the header <stddef.h> and

<cstddef>.

(3) wchar_t

Corresponds with int.

(4) bit-fields
Specifies number of bits (including a sign bit, if any) to a member of a structure
or union.

9.3.2 Type Conversion

This section explains:

» Integral promotion

» Integral conversion

* Floating-point conversion

» Complex conversion

* Floating-point and integral conversion

* Complex and integral conversion

» Complex and floating-point conversion

e Arithmetic conversion

9.3.2.1 Integral Promotion
The integer of a given type can be converted into a different type that has a wider
range than the source type. Such conversion is called integral promotion.

Integral promotion is performed according to the following rules:
» If the source value can be represented as int, convert it into int.

» If it cannot be represented as int but as unsigned int, convert it into unsigned

int.

- 90 -

Chapter9 Programming Notes Depending on the Language Specification

» If it cannot be represented as unsigned int but as long, convert it into long.

» If it cannot be represented as long but as unsigned long, convert it into

unsigned long.

9.3.2.2 Integral Conversion

This section explains integral conversions such as the following:
» Conversion of signed integer into unsigned integer

» Conversion of unsigned integer into signed integer
Integral conversions are performed between the integer types char, short, int,

long, long long, and their unsigned versions.

(1) Conversion of signed integer into unsigned integer
A signed integer can be converted into the corresponding unsigned type. By this
conversion, the value may be interpreted as different from the source although its
bit-image is not changed.

Example:

#include <iostream>
main()
{
short s = -1;
unsigned short u;

std::cout << s << std::endl;
u=-s,;
std::cout << u << std::endl;

"-1" and "65535" are displayed by this program. The variable "s" which has
signed short is initialized to "-1", a negative value. The value is converted to

unsigned short and assigned to the variable "u" by the assignment "u = s".

(2) Conversion of unsigned integer into signed integer
An unsigned integer can be converted into the corresponding signed type. If the
value of the unsigned integer cannot be expressed as a signed type, the value
may be interpreted incorrectly.

Example:

#include <iostream>
main ()

-9 -

Chapter9 Programming Notes Depending on the Language Specification

short s;
unsigned short u = 65535;

std: icout << u <K std::endl;
S =u;
std: icout << s << std::endl;

"65535" and "-1" are displayed by this program. The variable "u" is unsigned
short and it must be converted to a signed type to enable the assignment "s = u".
However, the value "65535" is interpreted as the wrong value "-1" because it

cannot be represented correctly as signed short.

9.3.2.3 Floating-point Conversion
A floating-point type can be converted safely into another floating-point type if the
destination type has more precision than the source type. "Safely" means that there
is no loss of precision occurring during conversion. For example, conversion of float
to double and conversion of double to long double are safe.
A floating-point type can also be converted into another floating-point type that has
less precision than the source type. This conversion can be performed only if the
source value is in a range that can be expressed by the destination type. The result
is converted to the nearest value of the source value when a loss of precision occurs.
If the source value is not in a range that can be expressed by the destination type,
the conversion may create an undefined result.

Example:

#tinclude <iostream>

main ()

{
double d = 1e+100;
long double Id;
float f;

Id = d;

std: icout << |d << std::endl;
f=d;

std: icout << f << std::endl;

"1e+100" and "inf" are displayed by this program. The first output means that the

- 02 -

Chapter9 Programming Notes Depending on the Language Specification

conversion of double to long double is performed safely. The second output means
that the source value "1e+100" in double cannot be expressed in float and is
converted to infinity because the maximum value that can be expressed in the float
type is "3.40282347e+38".

9.3.2.4 Complex Conversion
A complex type can be converted into another complex type if the destination type
has more or less precision than the source type. When a complex type is converted
into another complex type, both the real and imaginary parts are converted
according to the same conversion rules as floating-point conversion. See Floating-

point Conversion for the details.

9.3.2.5 Floating-point and Integral Conversion
A floating-point type can be converted into an integer type and an integer type can

be converted into a floating-point type.

(1) Conversion of floating-point into integer
When a floating-point type is converted into an integer type, the fractional part of
the source value is truncated; that is, "1.3" is converted to "1" and "-1.2" is

converted to "-1" for example. Rounding is not performed during conversion.

(2) Conversion of integer into floating-point
When an integer type is converted into a floating-point type, the result is exact if
possible. Otherwise, the source value is converted to the nearest value that can be

expressed by the destination type.

9.3.2.6 Complex and Integral Conversion
A complex type can be converted into an integer type and an integer type can be

converted into a complex type.

(1) Conversion of complex into integer
When a complex type is converted into an integer type, the imaginary part of the
complex value is discarded and the fractional part of the source value of the real
part is truncated. For example, when a complex value has a real part of "1.3" and
an imaginary part of "2.0" it is converted to "1". Rounding is not performed during

conversion.

(2) Conversion of integer into complex

- 903 -

Chapter9 Programming Notes Depending on the Language Specification

When an integer type is converted into a complex type, the imaginary part of the
complex result value is signed zero and the real part of the complex result value is
exact if possible. Otherwise, the source value is converted to the nearest value

that can be expressed by the destination type.

9.3.2.7 Complex and Floating-point Conversion
A complex type can be converted into a floating-point type and a floating-point type

can be converted into a complex type.

(1) Conversion of complex into floating-point
When a complex type is converted into a floating-point type, the imaginary part of
the complex value is discarded and the real part of the complex value is converted
into the destination type according to the same conversion rules as floating-point

conversion. See Floating-point Conversion for the details.

(2) Conversion of floating-point into complex
When a floating-point type is converted into a complex type, the imaginary part of
the complex result value is signed zero and the source value is converted into the
real part of the complex type according to the same conversion rules as floating-

point conversion. See Floating-point Conversion for the details.

9.3.2.8 Arithmetic Conversion
Many binary operators can have their operands converted and yield result types in a
similar way. The purpose is to yield a common type, which is also the type of the
result. This pattern is called usual arithmetic conversion, which is performed by the

C++ compiler according to the following rules:

» If either operand is long double _Complex, the other shall be converted to long

double _Complex.

- Otherwise, if either operand is long double, the other shall be converted to

long double.

» Otherwise, if either operand is double _Complex, the other shall be converted to

double _Complex.
- Otherwise, if either operand is double, the other shall be converted to double.

» Otherwise, if either operand is float _Complex, the other shall be converted to

- 04 -

Chapter9 Programming Notes Depending on the Language Specification

float _Complex.
- Otherwise, if either operand is float, the other shall be converted to float.

Otherwise (if neither of the operands are floating-point types nor complex types),
integral promotion (see Integral Promotion) shall be performed on both

operands as follows:

If either operand is unsigned long, the other shall be converted to unsigned

long.

- Otherwise, if one operand is long and the other is unsigned int, both operands

shall be converted to unsigned long.
- Otherwise, if either operand is long, the other shall be converted to long.

- Otherwise, if either operand is unsigned int, the other shall be converted to

unsigned int.

- Otherwise, both operands are int.

9.3.3 Internal Representation of Data

9.3.3.1 Integer Types

signed char (1-byte signed integer)
SYNOPSIS

7 0
S S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE
-128 to 127 (-2” to 21)

unsigned char (1-byte unsigned integer)
SYNOPSIS

7 0

EXPRESSIBLE VALUE
0 to 255

short / short int (2-byte signed integer)

SYNOPSIS

- 95 -

Chapter9 Programming Notes Depending on the Language Specification

15 0
S S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE
-32768 to 32767 (-2 to 21°1)

» unsigned short / unsigned short int (2-byte unsigned integer)
SYNOPSIS

15 0

EXPRESSIBLE VALUE
0 to 65535 (0 to 2% 1)

* int (4-byte signed integer)
SYNOPSIS

31 0
S S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE
-2147483648 to 2147783647 (-23! to 23''1)

* unsigned int (4-byte unsigned integer)
SYNOPSIS
31 0

EXPRESSIBLE VALUE
0 to 4294967295 (0 to 2°% ™)
* long / long int / long long / long long int (8-byte signed integer)
SYNOPSIS

63 0
S

S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE
-9223372036854775808 to 9223372036854775807 (-2°%° to 2% 1)

* unsigned long / unsigned long int / unsigned long long / unsigned long long

int (8-byte unsigned integer)

- 96 -

Chapter9 Programming Notes Depending on the Language Specification

SYNOPSIS

63 0

EXPRESSIBLE VALUE
0 to 18446744073709551615 (0 to 2% 1)
9.3.3.2 Floating-Point Types
» _ float16 (half-precision floating-point)
SYNOPSIS

15 10 9 0
S E M
S: Sign bit of mantissa (0:positive 1:negative)

E: Exponent (0<=E<=31)

M: Mantissa (0<=M<1)
EXPRESSIBLE VALUE

(-1)% * 281> * (1.M)

Decimal value of 7 digits, with an absolute value of 0 or in the range of 107 to

10%
SPECIAL VALUE
NaN E==31andM!=0

Signed Zero E ==
Remarks:
The compiler does not support the denormalized value (E == 0 and M != 0).

The denormalized value is handled as zero at program execution.

» float (single-precision floating-point)

SYNOPSIS
31 23 22 0
S E M

S: Sign bit of mantissa (0:positive 1:negative)
E: Exponent (0<=E<=255)
M: Mantissa (0<=M<1)

- 97 -

Chapter9 Programming Notes Depending on the Language Specification

EXPRESSIBLE VALUE
(-1)% * 28127 % (1. M)

Decimal value of 7 digits, with an absolute value of 0 or in the range of 107 to

107,

SPECIAL VALUE
NaN E==255and M !=0
Infinity E==255and M ==

Signed Zero E ==
Remarks:
The compiler does not support the denormalized value (E == 0 and M != 0).

The denormalized value is handled as zero at program execution.
* double (double-precision floating-point)

SYNOPSIS

63 52 51 0
S E M

S: Sign bit of mantissa (0:positive 1:negative)

E: Exponent (0<=E<=2047)
M: Mantissa (0<=M<1)

EXPRESSIBLE VALUE
(_1)5 * 2E-1023 * (].M)
Decimal value of 16 digits, with an absolute value of 0 or in the range of 1073%

to 10°%.
SPECIAL VALUE
NaN E==2047andM!=0
Infinity E==2047and M ==
Signed Zero E ==
Remarks:
The compiler does not support the denormalized value (E == 0 and M I= 0).

The denormalized value is handled as zero at program execution.
* long double (quadruple-precision floating-point)

SYNOPSIS

- 908 -

Chapter9 Programming Notes Depending on the Language Specification

127 112 111 64
S E | M

Continuation of M
63 0

S: Sign bit of mantissa (0:positive 1:negative)
E: Exponent for leading digits
M: Mantissa for leading digits

EXPRESSIBLE VALUE
(_1)5 * 2E-16383 * 1M
Decimal value of 34 digits, with an absolute value of 0 or in the range of 10732

to 10%°32,

SPECIAL VALUE
NaN E==32767andM!=0
Infinity E==32767and M ==
Signhed Zero E ==

Remarks:
The compiler does not support the denormalized value (E == 0 and M== 0).

The denormalized value is handled as zero at program execution.

9.3.3.3 Complex Types

e _ float16 _Complex (half-precision complex)

SYNOPSIS
31 26 25 16
RS RE RM
IS IE IM
15 10 9 0

RS, IS: Sign bit of mantissa (0:positive 1:negative)
RE, IE: Exponent (0<=RE<=31, 0<=IE<=31)
RM, IM: Mantissa (0<=M<1)
EXPRESSIBLE VALUE
(-1)R® * 2RE1> % (1 RM)
(-1)° * 2E15 % (1 IM)

Decimal value of 3 digits, with an absolute value of 0 or in the range of 107 to

- 99 -

Chapter9 Programming Notes Depending on the Language Specification

10%.

SPECIAL VALUE

NaN RE==31and RM!=0and IE==31and IM!=0

Infinity RE == 31and RM == 0 and IE == 31 and IM ==

Signed Zero RE == 0 and IE ==

Remarks:

The compiler does not support the denormalized value (RE == 0 and RM != 0,
or IE == 0 and IM == 0) in the real part or the imaginary part of the complex

value. The denormalized value is handled as zero at program execution.

» float _Complex (single-precision complex)

SYNOPSIS
63 55 54 32
RS RE RM
IS IE M
31 23 22 0

RS, IS: Sign bit of mantissa (0:positive 1:negative)
RE, IE: Exponent (0<=RE<=255, 0<=IE<=255)
RM, IM: Mantissa (0<=M<1)

EXPRESSIBLE VALUE

(_1)RS * 2RE—127 * (].RM)
(_1)15 * 21E—127 * (1IM)
Decimal value of 7 digits, with an absolute value of 0 or in the range of 1078 to

10%.

SPECIAL VALUE

NaN RE ==255and RM !'=0and IE == 255and IM =0

Infinity RE == 255 and RM == 0 and IE == 255 and IM ==

Signed Zero RE == 0 and IE ==

Remarks:

The compiler does not support the denormalized value (RE == 0 and RM != 0,
or IE == 0 and IM == 0) in the real part or the imaginary part of the complex

value. The denormalized value is handled as zero at program execution.

double _Complex (double-precision complex)

- 100 -

Chapter9 Programming Notes Depending on the Language Specification

SYNOPSIS
127 116 115 64
RS| RE RM
IE M
63 52 51 0

RS, IS: Sign bit of mantissa (0:positive 1:negative)
RE, IE: Exponent (0<=RE<=2047, 0<=IE<=2047)
RM, IM: Mantissa

EXPRESSIBLE VALUE
(_1)RS * 2RE—1023 * (lRM)
(_1)15 * 21E-1023 * (1IM)
Decimal value of 16 digits, with an absolute value of 0 or in the range of 1

to 1038,

0-308

SPECIAL VALUE
NaN RE == 2047 and RM != 0 and IE == 2047 and IM =0
Infinity RE == 2047 and RM == 0 and IE == 2047 and IM ==
Signed Zero RE == 0and IE ==
Remarks:
The compiler does not support the denormalized value (RE == 0 and RM = 0,
or IE == 0 and IM == 0) in the real part or the imaginary part of the complex

value. The denormalized value is handled as zero at program execution.

* long double _Complex (quadruple-precision complex)

SYNOPSIS
255 240 239 192
RS RE RM
Continuation of M
IE IM
Continuation of M
63 0

RS, IS: Sign bit of mantissa (0:positive 1:negative)
RE, IE: Exponent (0<=RE<=32767, 0<=IE<=32767)
RM, IM: Mantissa

EXPRESSIBLE VALUE

- 101 -

Chapter9 Programming Notes Depending on the Language Specification

(_1)RS * 2RE-16383 * 1. RM
(_1)15 * 21E-16383 * 1.IM
Decimal value of 34 digits, with an absolute value of 0 or in the range of 10732

to 10%32,

SPECIAL VALUE

NaN RE == 32767 and RM != 0 or IE == 32767 and IM =0

Infinity RE == 32767 and RM == 0 or IE == 32767 and IM ==

Signed Zero RE == 0 and IE ==

Remarks:

The compiler does not support the denormalized value ((RE == 0 and RM != 0)
or (IE == 0 and IM != 0)) in the real part or the imaginary part of the complex

value. The denormalized value is handled as zero at program execution.

9.3.3.4 Enumeration Type

4-byte

SYNOPSIS

31 0
S S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

-2147483648 to 2147783647 (-23! to 23')

8-byte

SYNOPSIS

63 0
S

S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

-9223372036854775808 to 9223372036854775807 (-2°%° to 2% 1)

9.3.3.5 Pointer Type

SYNOPSIS

63 0

- 102 -

Chapter9 Programming Notes Depending on the Language Specification

9.3.3.6 Bit Fields

SYNOPSIS

-1 0

L: Length of the field

DESCRIPTION
- When the field is signed, the leftmost bit is a sign bit.

- The allocation of a field is left-oriented and tries not to go beyond the boundary
of the field type. If among the allocation of several neighboring fields there is a

field that exceeds its field type boundary, the allocation of that field begins from

the start of the next address that has the boundary of that type.

9.3.4 Predefined Macro

All predefined macros can be shown by specifying -dM -E.

Example:

$ ncc -dM -E a.c | sort

The main predefined macros are as follows.
_LP64, _ LP64_
Always defined as 1.
unix, __unix, __unix___
Always defined as 1.
linux, __linux, ___linux___
Always defined as 1.
__ve,__ve__
Always defined as 1.
__VE_ARCH_1__
Always defined as 1.
_ VE_ARCH_3_
Defined as 1 when —march=ve3 is enabled; Otherwise not defined.
__ELF__
Always defined as 1.
__FP16_FORMAT___
Sets the format of half-precision floating-point.

Defined as 1 when —march=ve3 and -mfp16-format=ieee are enabled;

- 103 -

Chapter9 Programming Notes Depending on the Language Specification

Defined as 2 when —march=ve3 and -mfp16-format=bfloat are enabled;
Otherwise not defined.
__ FP16_IEEE
Always defined as 1.
__FP16_BFLOAT
Always defined as 2.
__STDC__
Always defined as 1.
__STDC_HOSTED___
Always defined as 1.
__STDC_NO_ATOMICS___
Always not defined.
__SUPPORT_SNAN___
Defined as 1 when -march=ve3 is enabled; Otherwise not defined.
__NEC__
Always defined as 1.
_ _FAST_MATH__
Defined as 1 when -ffast-math is enabled; Otherwise not defined.
_FTRACE
Defined as 1 when —ftrace is enabled; Otherwise not defined.
__NEC_VERSION_
Defined as the value obtained by calculation using the following formula when
compiler version is X.Y.Z.
X*10000 + Y*100 + Z
__OPTIMIZE__
Sets the optimization level n of -On which is effective at the compilation.
__VECTOR__
Defined as 1 when automatic vectorization is enabled; Otherwise not defined.
__VERSION___
Always defined as a string constant which describes the version of the compiler

in use.

- 104 -

Chapter9 Programming Notes Depending on the Language Specification

9.4 C++ Standard Library

9.4.1 Overview

NEC C/C++ Compiler has two C++ standard libraries. One is “libc++ C++
standard library” and another is “NEC Compat C++ Standard Library”.
libc++
This C++ standard library is based on “libc++"” C++ Standard Library 14.0.0. It
is customized for VE. Please refer to the following URL for the detail.

Libc++ 14.0.0 (In-Progress) Release Notes — libc++ documentation (llvm.

org)
NEC Compat C++ Standard Library
This C++ standard library has been released since the first release of NEC
C/C++ compiler for VE.
Specify -stdlib compiler option to choose the library at both compilation and

linking as follows.

$ nc++ —stdlib=1ibc++ a. cpp (Choose |ibc++)
$ nc++ —stdl ib=compat a. cpp (Choose NEC Compat C++ Standard Library)

9.4.2 Remarks

(1) Remarks for libc++
» Please refer to the above Release Notes for the detail of language specification.

* The PSTL (Parallel Standard Template Library) is configured with
“PSTL_PARALLEL_BACKEND=serial".

* MPI C++ Bindings cannot be used when -stdlib=libc++ is enabled. MPI C++

Bindings were removed in MPI-3.0.

» -shared-mpi and -shared cannot be specified in mpinc++ command line
before NEC MPI Version 2.23.0/Version 3.2.0. Then, specify “mpincc -compiler
nc++" instead of the command name string “mpinc++". Add -WI,--export-

dynamic if necessary.

* VEDA (VE Driver API) cannot be used on VE1 when -stdlib=libc++ is enabled.

(2) Remarks for NEC Compat C++ Standard Library

¢ When the following C++ headers of the C++ standard library are used, specify

- 105 -

https://releases.llvm.org/14.0.0/projects/libcxx/docs/ReleaseNotes.html
https://releases.llvm.org/14.0.0/projects/libcxx/docs/ReleaseNotes.html

Chapter9 Programming Notes Depending on the Language Specification

(3)

-pthread.

<atomic>, <condition_variable>, <mutex>, <thread>

The following features which have been added and/or extended by C++17

standard are not available.
Class template scoped_lock
Class template specialization owner_less<void>

Template member function merge() of associative containers defined in the

headers <map>, <set>, <unordered_map>, and <unordered_set>.
Array support to class template shared_ptr.
VEDA (VE Driver API) cannot be used on VE3 when -stdlib=compat is
enabled.
Remarks for both libraries

The default C++ standard library can be set by a configuration file.

Set to libc++:

$ cat /opt/nec/ve/ncc/<version>/etc/defaul t. conf

stdlib: libc++

$ nc++ a. cpp (libc++ is chosen)

$ nc++ —stdlib=compat a.cpp (NEC Compat C++ Standard Library is chosen)

Set to NEC Compat C++ Standard Library:

$ cat /opt/nec/ve/ncc/<version>/etc/default. conf

stdlib: compat

$ nc++ a. cpp (NEC Compat C++ Standard Library is chosen)
$ nc++ —stdlib=Ilibc++ a.cpp (libc++ is chosen)

Do not link the object files generated by -stdlib=libc++, and generated by
-stdlib=compat or before version 4.0.0. Then the behavior of the executabl

e is undefined.

The optimization status, compilation time, and execution time of a program are

different between -stdlib=libc++ and -stdlib=compat.

“libc++" C++ standard library in NEC C/C++ compiler will be updated and
enhanced as LLVM Project progresses, and NEC Compat C++ Standard Library

will no longer enhanced. Please consider migrating to and using libc++.

- 106 -

Chapter9 Programming Notes Depending on the Language Specification

9.5 Vector Type Extension
Vector type extension of NEC C/C++ compiler is described in this section.

9.5.1 Overview

A vector type, like to GCC and clang is available in NEC C/C++ compiler.

// Define a vector type whose element type is double and length is 256
typedef double vf256 _ attribute ((vector_size(sizeof (double)*256))) ;
vf256 a; // Declare a vector type variable
vf256 func(vf256 b, vf256 ¢) // Declare a vector type function

{
return a + b * ¢; // Multiply and add of vector types

9.5.2 Type-definition of Vector Type
Vector type can be defined by two kind of attribute specifiers.

(1) vector_size
Form:
typedef element-type type-name __attribute__ ((vector_size(size)));
Description:
element-type:
Type of vector element.
type-name:
Name of vector type.
size:
Size of vector-type. Unit is byte. It is equal to “size-of-element-
type*number-of-elements”. It must be a power of 2. The maximum size is
2048 when the size of element type is 8 bytes. It is 1024 when the size is
4 bytes.

(2) ext_vector_type
Form:
typedef element-type type-name __attribute__ ((ext_vector_type(num)));
Description:
element-type:

Type of vector element.

- 107 -

Chapter9 Programming Notes Depending on the Language Specification

type-name:
Name of vector type.

num:
Number of vector elements. The number that is not a power of 2 is
acceptable. The size of vector type is equal to “size-of-element-

type*number-of-elements”.

(3) Remarks

- The following types can be specified as an element-type.
int, long, long long, and their unsigned types

float and double

- The alignment value of a vector type is a minimum value that is a power of 2

and equal to or greater than its size.

- V.xyzw is not supported.

9.5.3 Constants

A vector type constant is composed of element values enclosed in curly braces.

typedef double vf4 _ attribute_ ((vector_size(sizeof (double)*4))) ;
vfd a={1.0 2.0, 3.0, 4.0}; // The right-hand expression is a constant.
vfd b =1{20 3.0}, // The 3rd and 4™ elements are undefined.

9.5.4 Operators

The following table shows the operators that can accept vector-type objects.

Operators Description
[n] Refer the n-th element.
+,-,~ Unary arithmetic operators.
+,-, % /,% Additive and multiplicative operators.
& |, N Bitwise AND, OR, exclusive OR operators.
>>, << Bitwise shift operators.
1, &&, || Logical NOT, AND, OR operators.
==, 1=, >, <, >=, <= Equality and relational operators.

Assighment operator.

"~

Conditional operator.

- 108 -

Chapter9 Programming Notes Depending on the Language Specification

Operators Description

sizeof sizeof operator.

&v[i] Get address of a vector element.

9.5.5 Builtin Functions

(1) Type conversion
e _ builtin_shufflevector

e builtin_convertvector

(2) Vector builtin functions
An intrinsic function which are replaced by a vector instruction of VE. Their

operands are vector-type etc. Please refer to a header file “_vector.h” for the
detail.

(3) Vector version of mathematical functions

Mathematical functions (sin, cos, pow etc.) using vector instructions. Please

refer to a header file “_vector.h” for the detail.

9.5.6 Vector Mask Type

NEC C/C++ Compiler has NEC specific vector mask type __vm which can be
specified as an argument of vector builtin functions and vector versions of
mathematical functions. The size of vector mask type is 32 bytes (= 256 bits) and
each bit is corresponding to each vector element of a vector type. The first bit of a
vector mask type is for the first element of a vector type. The alignment of a vector
mask type is 32 bytes. The vector elements whose vector mask bit is 1 are updated

by vector instructions.

9.5.7 Remarks
* A true value of vector logical operation is all 1.

* A type conversion from a vector type to a vector type whose size is different is not

permitted.

* A type conversion from a vector type to a vector type whose size is same but

element type is different works as if memory copy of the types.

- 109 -

Chapter9 Programming Notes Depending on the Language Specification

9.5.8 Example

This section describes programming examples using vector types.

Since it is not easy to write constants for vector types, they are generally initialized

using unions.

#tinclude <iostream>

// Vector type definition by using alias template
template <typename T, int N>
using vector type = T _ attribute_ ((ext_vector_type(N)));

// Declare a union to manipulate vector elements
template <typename T, int N>

union Vec {
vector_type<T, N> v;
T e[N];

// Declare a union for vector mask type.
typedef union {

_vm v,
unsigned int m(8];
} vmask;

template <typename T, int N>
T vector_sum(Vec<T, N> &a, Vec<T, N> &b, vmask &vm)

{
vector_type<T, N> o¢;

c=a.vVvx*xhbv;
__builtin_ve_vfsum(c, ¢, vm.v); // Vector builtin function for summation.

return c[0]; // Result is set in the first element

int main()

double sum;
vmask vm;

Vec<double, 64> a, b;

// Set initial values in vector type.
for (int i =0; i < 64; i++) {

- 110 -

Chapter9 Programming Notes Depending on the Language Specification

i
64 - i;

a.eli]
b.eli]

J

// Set vector mask value
for (int i =0; i <8, i++) {

vim.m[i] = OxAAAAAAAAU; // 0b10101010101010. . . .
]

sum = vector_sum<double, 64> (a, b, vm);
std: :cout << sum << “ (Result must be 21824)” << std::endl;

9.6 Inline Assembly Language

9.6.1 Basic Asm Statement

Format:
asm [volatile] (Assembler-instructions)
Descriptions:
Basic asm statement has no operands.
An optional qualifier volatile has no effect as all the basic asm statements are

implicitly volatile.

9.6.2 Extended Asm Statement

Format:
asm [volatile] (Assembler-Template
: Output-Operands
[: Input-Operands
[: Clobbers 11)
Assembler-Template is:
String-text of assembler instructions
Output-Operands are:
[[Symbolic-Name]] Constraint (C-variablename) , [Output-Operand] ...
Input-Operands are:
[[Symbolic-Name]] Constraint (C-expression) , [Input-Operand] ...
Clobbers are:
Register-name or “memory” , [Clobber] ...

Descriptions:

- 1M1 -

Chapter9 Programming Notes Depending on the Language Specification

Extend asm statement can have operands. C variables can be read and written in
an extended asm statement as its operand.

An optional qualifier volatile can be used to disable an optimization which may
produce side effects while executing the asm statement.

Assembler-Template is a string text of assembler instructions. The compiler
replaces the tokens referring to input/output operands in the Assembler-Template
and outputs the resulting string text to the assembly codes. The Nth operand
specified in the Output-Operands and the Input-Operands can be referenced

with %N. %% in Assembler-Template is replaced with a single %.
Output-Operands are written as a comma-separated list of an output operand. An
output operand has constraints and a C variable name that is modified by the
assembler instructions in the Assembler-Template. An empty list is permitted.
Input-Operands are written as a comma-separated list of an input operand. An
input operand has constraints and a C variable name or expressions referenced by
the assembler instructions in the Assembler-Template. An empty list is permitted.
Clobbers are written as a comma-separated list of registers destroyed in
assembler instructions in the Assembler-Template. “memory” is also available as a
special clobber argument. A “memory” clobber informs the compiler that the
assembly code generated from this asm statement may implicitly do memory
reads/writes to items other than the operands listed in Output-Operands and

Input-Operands. An empty list is permitted.

Available Constraints

Constraint Functional specification
m A memory operand is allowed in the form of AS or ASX.
r Scalar register operand is allowed.

i An integer immediate operand is allowed. This includes symbolic
constants that you do not know unless values are assembled.

0,1, 2,9 To specify in order to allocate same register to both input operand
and output operand. (Even if limited C Expression is same, the
compiler does not ensure to allocate same register.) This constraint
is called a matching constraint.

[Symbolic- This is a symbolic matching constraint. You can refer

Name] to %[Symbolic-Name] in the Assembler-Template.

f Temporary scalar register operand can be allowed. This should be
specified in order to store single precision floating point data in the
register allocated for the operand.

- 12 -

Chapter9 Programming Notes Depending on the Language Specification

Constraint priority
When you list more than one constraint (for example, "=rm0") in the constraints,
the compiler selects a constraint in the order of descending priorities. The
priorities are as follows.

i > r > m > matching constraint
When all of constraints in the constraints are ignored because “#" or “*" of
constraint modifier characters has been specified, the compiler assumes that the r

constraint is specified. There are some cautions. Please refer to notes.

Constraint Modifier Characters

Modifier . e e
Functional specification

Character

= Means that this operand is write-only for this instruction.

+ Means that this operand is both read and written by the instruction.

& Allocates different registers to input operand and output operand.

% Specifies that this operand and the next operand are
interchangeable. With this specification, the compiler can exchange
two operands if it is the least expensive method to satisfy all the
constraints.

Ignores all constraints following "#".

* Ignores the next character.

Example

#tdefine FIVE 5
int main(void)
{
int in=10, out;
asm (“Idl.sx %%sb0, %1¥n¥t”
“adds. w. zx %0, %2, %%s50¥n¥t”

© "=r” (out) /* Constraint “r” %/
S "m” (in), “i” (FIVE) /* Constraint “m”, “i” %/
. "%sh0”

)
printf (“out=%d¥n”, out);

- 113 -

Chapter9 Programming Notes Depending on the Language Specification

Example: Constraint Modifier "*"

The constraint "m" next to "*" is ignored.

#tdefine FIVE 5
int main(void)
{
int in=10, out=0;
asm (“ldl.sx %%s50, %1¥n¥t”
“adds. w. zx %0, %2, %%sb0¥n¥t”
2"=r" (out)
2“m” (in), “*xmi” (FIVE) /* Constraint Modifier “*” */
2 "%s50”
)
printf (“out=%d¥n”, out);

Example: Constraint Modifier "#"

The constraints "m" and "r" following "#" are ignored.

#tdefine FIVE 5
int main(void)
{
int in=10, out=0;
asm (“ldl.sx %%s50, %1¥n¥t”
“adds. w. zx %0, %2, %%sbH0¥n¥t”
2"=r" (out)
2“m” (in), “i#tmr” (FIVE) /* Constraint Modifier “#” */
- "%s50”
)
printf (“out=%d¥n”, out) ;

9.6.3 Specifying name in assembler codes

Format:
Declarator asm (Name)

Descriptions:
You can specify the name of the function or variable in the assembler code.
Declarator is a declarator conforming to the C language syntax. Name is a

character string of the function name or variable name in assembler codes.

- 114 -

Chapter9 Programming Notes Depending on the Language Specification

9.6.4 Notes

* Alternate keywords __asm, __asm__, __volatile, and __volatile__ are

acceptable.

* The only Extended asm syntax specified to scalar register, vector register, vector
mask register, vector index register in an Assembler-Template is to specify

clobbered register.

* The Output-Operands and Input-Operands of Extended asm syntax cannot be
specified for vector registers, vector mask registers, and vector index registers in

an Assembler-Template.

* Immediate value in the form of M must be directly specified in an Assembler-
Template. The operand of Extended asm syntax cannot be specified.
» disp specified as AS operand of "br[cf].*.[bp]" ("*" is one of "I", "w", "d" or "s")

instruction must be specified with constraint character "i".

e The HM operand of lhm.* and shm.* ("*" is "b", "h", "w" or "I") instructions must

be specified with constraint character either "r" or "i".

* When immediate value outside the range of -2147483648 to 2147483647 is
specified as input/output operand in C-expression, the operand must be specified

with constraint character either "r" or "m".
» Instruction to jump outside asm statement is not allowed.

* When the "number" of % number in an assembler template is not smaller than or
equal to the total number of input "+" output operands, %number is not replaced

and is output to the assembler file.

* When quadruple precision floating-point arithmetic instructions such as FAQ, FSQ,
FMQ and FCQ instructions are used in an Assembler-Template, the extended asm

syntax cannot be used.

* Only automatic variable, register variable or immediate value can be specified as

input/output operand in C-expression.

9.7 Remarks

9.7.1 Remarks for C language

e _Atomic qualifier is not supported.

- 115 -

Chapter9 Programming Notes Depending on the Language Specification

* CX_LIMITED_RANGE pragma is ignored.
* FENV_ACCESS and FP_CONTRACT are ignored.

* When the following C headers of the C standard library are used, specify -
pthread.

<stdatomic.h>, <threads.h>
* The following GCC extensions are unavailable.

- The forward declaration of function parameters (so they can participate in

variable-length array parameters).
- GNU-style complex integral types
- Nested functions

- Local structure with a variable-length array field. Such a field is treated (with a
warning) as a zero-length array in GNU C mode, which is a useful
approximation in some circumstances, but not generally equivalent to the GNU

feature.

- Label as value

9.7.2 Remarks for C++ language
e Sized deallocation is unavailable.

» Refer to section 9.4.2 for remarks of C++ standard library.

- 116 -

Chapter10 Language-Mixed Programming

Chapter10 Language-Mixed Programming

Making an executable file by linking object files from different languages is called

mixed language programming. This chapter describes mixed language programming

techniques using C/C++ and Fortran programs.

10.1 Point of Mixed Language Programming

The following example shows how mixed language programming is used to make an

executable file by linking a C program and a Fortran program.

C program (file name: a.c)

#include <stdlib.h>
#tdefine N 1024
#tdefine SIZE sizeof (double)

main ()

{

double *x = (double *)malloc (SIZE*N) ;
double *y = (double *)malloc (SIZExN) ;
(double *)mal loc (SIZE*N) ;

double *z
int n;

n = read_data(x, y);
compute_(x, vy, z, &n);
write_data(z, n);

C program (file name: b.c)

—>

#include <stdio.h>
int read_data(double *x, double *y)

{...}

Fortran program (file name: ¢.f90)

SUBROUTINE GOMPUTE (X, Y, Z, N)
REALx8 X (N), Y(N), Z(N)
| calculation
I = GHECK_VALUE (Z(N))
IF (I.EQ.0) RETURN
END SUBROUTINE

C program (file name: d.c)

int check_value_(double *x)

{...}

In this example, a Fortran program is called from a C program, and a C program is

called from a Fortran program. When these programs are called, the function name

and procedure name coded in the program are converted into an external symbol

name, and the data is shared between C and Fortran by passing arguments or return

values.

The features of mixed language programming are as follows.

C/C++ function name and Fortran procedure name correspond.

C/C++ and Fortran data types correspond.

Return values are passed from C/C++ to Fortran.

Values are passed from C/C++ to Fortran by arguments.

- 17 -

Chapterl0 Language-Mixed Programming

» Executable files are created by compiling and linking.

10.2 Correspondence of C/C++ Function Name and Fortran

Procedure Name

The C++ function names and Fortran procedure names in the source files are
converted into external symbol names and placed in object files. Therefore, when
these functions and procedures are called, they must be called by their converted

external symbol names.
10.2.1 External Symbol Name of Fortran Procedure

(1) When binding labels for procedures are used:
A procedure name in a Fortran source file is converted to an external symbol
name of the string same as a binding label. In other words, when a Fortran
procedure has a NAME specifier, the procedure name is converted to the name
specified to the NAME specifier; otherwise the procedure name is converted to
lowercase.

Example:

SUBROUTINE SUBT (X) BIND(C, NAME="Fortran_Sub1”)

END SUBROUTINE
SUBROUTINE SUB2(Y) BIND(C)

END SUBROUTINE

In this example, the following procedure names are converted to external symbol

names.
Procedure Name External Symbol Name
SUB1 -> Fortran_Sub1l
SuUB2 -> sub2

(2) When binding labels for procedures are not used:
A procedure name in a Fortran source file is converted to an external symbol

name according to the following rules.
- Procedure names are converted to lowercase.

- An underscore (_) is appended to a procedure name.

- 118 -

Chapter10 Language-Mixed Programming

Example:

SUBROUTINE COMPUTE (X, Y, Z, N)
REAL*8 X(N), Y(N), Z(N)

I calculation

I = CHECK_VALUE (Z(N))

IF (I.EQ.0) RETURN

END SUBROUTINE

In this example, the following procedure names are converted to external symbol

names.
Procedure Name External Symbol Name
COMPUTE -> compute_
CHECK_VALUE -> check_value_

10.2.2 External Symbol Name of C++ Function

The C++ compiler appends a string showing the return value and argument type to
a function name in a C++ source file. This operation is called mangling a function
name. By using this operation, the C++ compiler can declare functions with the
same name but whose argument types differ.

Example:

Function Name in A Source File Mangled Name
void func (double *x) -> _Z4funcPd
void func (float *x) -> _Z4funcPf

Note Converting a mangled name to a name in a C++ source file is called
demangling.

A C++ function called from a C function or a Fortran procedure should be declared
by C linkage so that the function name is not mangled, and the C++ function can be
called by the function name itself coded in the source file. In the same way, a
prototype declaration of a C function or a Fortran procedure called from a C++
function should also be declared by C linkage.

Example:

extern "C” {
void func (double *x) ;
void func (float *x);

- 19 -

Chapterl0 Language-Mixed Programming

The linkage specification is available in C++ language only. When using a prototype

declaration in C language, the linkage specification should be coded using conditional

coding.

Example:

#ifdef __cplusplus // __cplusplus is automatically defined
// by the C++ compiler.
extern “C” {
ftendif
void func (double *x);
void funcl (float *x);
#ifdef __oplusplus
}s
#tendif

10.2.3 Rules for Corresponding C/C++ Functions with Fortran Procedures

When a Fortran procedure is called from a C function, the Fortran procedure

should be called using an external symbol name of the Fortran procedure.

A name of a C function called from a Fortran procedure should be defined by an

external symbol name of the Fortran procedure.

A C++ function called from a C function or a Fortran procedure should be declared

using C linkage.

A prototype declaration of a C function or Fortran procedure called from a C++

function should be declared using C linkage.

10.2.4 Examples of Calling

Example: Calling Fortran procedure that has the BIND attribute from C function.

Caller (C function)

extern void sub1();
void cfunc() {

sub 0

Callee (Fortran procedure)

SUBROUTINE SUB1() BIND(C)

- 120 -

Chapter10 Language-Mixed Programming

END SUBROUTINE SUBT

The Fortran procedure is declared as a prototype and called using a name that is

coded in lowercase.

Example: Calling Fortran procedure that does not have the BIND attribute from C

function.

Caller (C function)

extern int sub_Q;
void cfunc() {

sub_ 0

Callee (Fortran procedure)

SUBROUTINE SUB

END SUBROUTINE SUB

The Fortran procedure is declared as a prototype and called using a name that is

appended with an underscore (_) and coded in lowercase.

Example: Calling C function from Fortran procedure that has the BIND attribute.

Caller (Fortran procedure)

SUBROUTINE SUB
USE, INTRINSIC :: ISO_G_BINDING
INTERFACE
SUBROUTINE CFUNC() BIND (C)
END SUBROUTINE CFUNC
END INTERFACE

CALL CFUNC

END SUBROUTINE SUB

Callee (C function)

void cfunc() {

The C function is declared and defined using a name that is coded in lowercase,

- 121 -

Chapterl0 Language-Mixed Programming

and the Fortran procedure interface is defined and called using a name that is
coded in uppercase.
Example: Calling C function from Fortran procedure that does not have the BIND
attribute.

Caller (Fortran procedure)

SUBROUTINE SUB
CALL CFUNC

END SUBROUTINE SUB

Callee (C function)

int cfunc_({

J

The C function is declared and defined using a hame that is appended with an
underscore (_) and coded in lowercase.
Example: Calling Fortran procedure from C++ function.

Caller (C++ function)

extern “C” {
int sub_(void);
};

void cfunc() {

sub_Q;

Callee (Fortran procedure)

SUBROUTINE SUB

END SUBROUTINE SUB

The Fortran procedure is declared as a prototype via C linkage and called using a
name that is appended with an underscore (_) and coded in lowercase.
Example: Calling C++ function from Fortran procedure.

Caller (Fortran procedure)

- 122 -

Chapter10 Language-Mixed Programming

SUBROUTINE SUB
CALL CFUNC

END SUBROUTINE SUB

Callee (C++ function)

extern “C” {
int ¢func_(void);
}s

int cfunc_(void) {

The C++ function is declared and defined via C linkage using a nhame that is
appended with an underscore (_) and coded in lowercase.
10.3 Data Types

The correspondence between Fortran data types and C/C++ data types is shown

below.

10.3.1 Integer and Logical Types for Fortran

Data Type Fortran C/C++
Integer INTEGER int (*)
INTEGER(KIND=1) signed char
INTEGER*1
INTEGER(KIND=2) short
INTEGER*2
INTEGER(KIND=4) int
INTEGER*4
INTEGER(KIND=8) long, long int, long long or long long int
INTEGER*8
Logical LOGICAL int (*)

LOGICAL(KIND=1) signed char
LOGICAL(KIND=2) short
LOGICAL(KIND=4) int

LOGICAL(KIND=8) long, long int, long long or long long int

(*) When -fdefault-integer=8 is enabled: long long int, long int, long long or

- 123 -

Chapterl0 Language-Mixed Programming

long long int.

10.3.2 Floating-point and Complex Types for Fortran

Data Type Fortran C/C++
Floating- REAL float (*1)
oint
pomn REAL(KIND=4) float
REAL*4
DOUBLE PRECISION double (*2)
REAL(KIND=8) double
REAL*8

QUADRUPLE PRECISION long double
REAL(KIND=16)

REAL*16

Complex COMPLEX float __complex__ (*3)
COMPLEX(KIND=4) float __complex___
COMPLEX*8
COMPLEX(KIND=8) double ___complex___
COMPLEX*16
COMPLEX(KIND=16) long double ___complex___
COMPLEX*32

(*1) When -fdefault-real=8 is enabled: double
(*2) When -fdefault-double=16 is enabled: long double

(*3) When -fdefault-real=8 is enabled: double __complex___

10.3.3 Character Type for Fortran

Data Type Fortran C/C++
Character CHARACTER(LEN=nNn) ch char ch[n];

10.3.4 Derived Type for Fortran

(1) Description
A Fortran derived type that defined with the BIND attribute can associate with a C
struct type.
Example:

Fortran program:

USE, INTRINSIC :: I1SO_C BINDING

TYPE, BIND(C) :: STR_.TYPE ! Define a derived type with the BIND attribute
REAL (C_DOUBLE) :: S1, S2

END TYPE STR_TYPE

- 124 -

Chapter10 Language-Mixed Programming

INTERFACE
SUBROUTINE FUNC (X) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_PTR) :: X
END SUBROUTINE FUNC
END INTERFACE

TYPE(C_PTR) :: P
TYPE (STR_TYPE), TARGET :: F_STR

P=C_LOC (F_STR) I Get the C address of F_STR
CALL FUNC (P) I Call C function, and
| pass the C address of F_STR

C program:
struct str_type { // Definition of structure
// associated with STR_TYPE
double s1, s2;
} *c_str;

void func (struct str_type *xx) |
c_str = *xx; // c_str points to F_STR

(2) Remarks

- The names of the corresponding components of the Fortran derived type and

the C struct type need not be the same.

- A C struct type that contains a bit field or that contains a flexible array member

cannot associate.

- A C struct type that contains a quadruple-precision real type or that contains a

complex type cannot associate.
10.3.5 Pointer
A C pointer is associated with a Fortran data by using the derived type C_PTR.

(1) How to associate C pointer and Fortran data

When a C pointer is referred in a Fortran program, a derived type C_PTR is used.

- 125 -

Chapterl0 Language-Mixed Programming

Example:

Fortran program:

USE, INTRINSIC :: ISO_C_BINDING
INTERFACE
SUBROUTINE FUNC (X) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_PTR) :: X
END SUBROUTINE FUNC
END INTERFACE

TYPE(C_PTR) :: P

CALL FUNC (P) I Call C function

C program:

int *a;

void func(int **p) {
*p = a; // P in Fortran program points to a

J

(2) How to get C address
A C address of a Fortran allocated allocatable variable can be got by using the
function C_LOC which returns a value of the C_PTR type.
Example:

Fortran program:

USE, INTRINSIC :: I1SO_C_BINDING

INTEGER (C_INT), TARGET :: N

TYPE (C_PTR) :: N_ADDR

N_ADDR = G_LOG(N) I C_LOC(N) returns G address of “N”

(3) How to compare C addresses
The Fortran intrinsic procedure C_ASSOCIATED can compare C addresses. When
its first argument and its second argument point the same area, C_ASSOCIATED
returns " TRUE."; otherwise returns ".FALSE.". When its second argument is
omitted, C_ASSOCIATED returns ".FALSE." if its first argument is a C null pointer

and returns ".TRUE." otherwise.

- 126 -

Chapter10 Language-Mixed Programming

Example:

Fortran program:

MODULE MOD
USE, INTRINSIC :: ISO_C_BINDING

INTEGER (C_INT), BIND(C) :: X, Y
TYPE(C_PTR) :: P1, P2

END MODULE

PROGRAM MAIN

USE MOD

CALL FUNC(P1, P2) I Call G function

IF (C_ASSOCIATED(P1, P2)) THEN'! Compare the memory areas of
o I P1 and P2

END IF

END

C program:

int x, v;

void func_(int *kpx, int *xpy) |{
*px = &X; // When func() is called in Fortran program,
*py = &y; // P1 points x, and P2 points y

(4) How to associate C pointer and Fortran data pointer
A C pointer is associated with a Fortran data pointer by using the Fortran intrinsic
procedure C_F_POINTER. C_F_POINTER associates a C_PTR type of its first
argument with a data pointer of its second argument.
Example:

Fortran program:

MODULE MOD
USE, INTRINSIC :: I1SO_C_BINDING

INTEGER (C_INT), BIND(C) :: X
TYPE (C_PTR), BIND(C) :: CP
INTEGER (C_INT), POINTER :: FP
END MODULE

PROGRAM MAIN

USE MOD

- 127 -

Chapterl0 Language-Mixed Programming

CALL FUNC (CP) I Call C function

CALL C_F_POINTER(CP, FP) I Bind G pointer CP with
o | data pointer FP
END
C program:
int x;
void func_(int #xpx) {
*pX = &X; // When func() is called in
] // Fortran program, CP points x

10.3.6 Common Block for Fortran

(1) Description
A Fortran common block defined with the BIND attribute can be interoperable
with a C program. When the common block contains a single variable, it can
associate with the C variable. When the common block contains two or more
variables, it can associate with a C struct type. But, the Fortran common block
and the C struct type must have the same number of members, and the members
of the Fortran common block must have corresponding types with the
corresponding members of the C struct type.
Example:

Fortran program:

USE, INTRINSIC :: ISO_C BINDING

COMMON /COM1/ F1, F2

COMMON /COM2/ F3

REAL (C_FLOAT) :: F1, F2, F3

BIND(C) :: /COM1/, /COM2/ I Specify the BIND attribute

C program:

struct { float f1, f2; } coml;
// The common block “COM1” which contains two or more
// variables can associate with the struct “com1”

float com2;
// The common block “COM2” which contains single
// variable can associate with the variable “com2”

- 128 -

Chapter10 Language-Mixed Programming

(2) Remarks

¢ The names of the corresponding components of the Fortran common block and

the C struct type need not be the same.

» A C struct type that contains a bit field or that contains a flexible array member

cannot associate.

¢ A C struct type that contains a quadruple-precision real type or that contains a

complex type cannot associate.

10.3.7 Notes

Complex, double-precision complex and quadruple-precision complex types for
Fortran cannot correspond to single precision complex, double precision complex and

quadruple precision complex types for C declared by using the keyword _Complex.

10.4 Type and Return Value of Function and Procedure

This section describes how to pass the return values between C functions and
Fortran procedures. C++ functions can be regarded as C functions because C++
functions are called from C functions or Fortran procedures, or they are declared and

defined using C linkage when they are called.

(1) Integer, logical, real, double-precision and quadruple-precision type Fortran
procedures Please refer to "10.3 Data Types" for details of the correspondence
between Fortran and C/C++.

Example: Calling double-precision type Fortran procedure.

Caller (C function):

extern double func_();
double a;
a = func_(); // Call Fortran procedure

Callee (Fortran procedure):

REAL (KIND=8) FUNCTION FUNC ()
FUNC = 10.0

END FUNCTION FUNC

- 129 -

Chapterl0 Language-Mixed Programming

Example: Calling double-precision type C++ function.

Caller (Fortran procedure):

REAL (KIND=8) A

A = CFUNC () | Call C++ function

Callee (C++ function):

extern “C” {
double cfunc_();

J

double cfunc_()

{

double a;

return a;

(2) Complex type functions
C/C++ can neither return nor receive a complex, double-precision complex or

quadruple-precision complex type return value of Fortran.

(3) Character type functions
Two arguments are appended in order to return a value for a character type
function of Fortran. The arguments are for the address and the length (in bytes)
of the return value.
Example: Calling character-type Fortran procedure.

Caller (C++ function):

extern “C” {
int chfunc_(char *res_p, long res_I);

}

char a[l17]; // Allocate 16 bytes + 1 byte for terminating
chfunc_(a, 16L); // Call Fortran procedure
a[16] = "¥0';

Callee (Fortran procedure):

CHARACTER*16 FUNCTION CHFUNC
CHFUNC = “THIS IS FORTRAN.”

- 130 -

Chapter10 Language-Mixed Programming

RETURN
END FUNCTION CHFUNC

A string data storage area is allocated in the C/C++ function. When a storage
area is allocated in a C/C++ function, an extra 1 byte must be allocated for a null-
terminator, because a Fortran string value is not null-terminated.

Example: Calling C function as character-type function.

Caller (Fortran procedure):

SUBROUTINE SUB

CHARACTER*20 CHFUNC, CH

INTEGER M

CH = CFUNG (M) I Call C function

END SUBROUTINE SUB

Callee (C function)

extern int cfunc_(char *a, long b, int *p);

int cfunc_(char *a, long b, int *p)

{
strepy(a, “THIS IS G++. 7);

The first argument of the Fortran procedure corresponds to the third argument of

the C/C++ function.

(4) Fortran subroutine

A Fortran subroutine is the same as a C/C++ int type function.

10.5 Passing Arguments

10.5.1 Fortran Procedure Arguments

The arguments in a Fortran procedure that does not have the VALUE attribute are
passed by addresses. And, the arguments in a Fortran procedure that have the
VALUE attribute are passed by value. Therefore, when arguments are passed to a
C/C++ function, the arguments are obtained as pointers by the C/C++ function.
And, when the arguments are passed to a Fortran procedure, the arguments are

passed as the addresses of the variables.

- 131 -

Chapterl0 Language-Mixed Programming

(1) Passing arguments to Fortran procedure that does not have the VALUE attribute
The arguments are passed to a Fortran procedure as the addresses of the
variables. A constant value should be assigned to a variable before passing
because constant values do not have storage areas.

Example:

Caller (C++ function):

extern "C” {
int func_(int *i, int *j);
]

void ¢_func()

{

int a, b, ret;

b = 100; // Assign the constant value
// to a variable to pass

ret = func_(&a, &b); // Call Fortran procedure

Callee (Fortran function):

INTEGER FUNCTION FUNC(I, J)
INTEGER I, J

END FUNCTION FUNC

(2) Passing arguments to Fortran procedure that have the VALUE attribute
The arguments are passed to a Fortran procedure as the values of the variables. A
constant value can be passed by the argument.
Example:

Caller (C++ function):

extern “C” {
int func_C(int i, int j);
}

void ¢_func ()

{

int a, ret;

ret = func(a, 100); // Gall Fortran procedure

- 132 -

Callee (Fortran function):

Chapter10 Language-Mixed Programming

INTEGER FUNCTION FUNC(I, J)
INTEGER, VALUE 1, J

END FUNCTION FUNC

| Specify the VALUE attribute

(3) Obtaining arguments from a Fortran procedure that does not have the VALUE

attribute

The addresses of the arguments are received via pointer parameters.

Example:

Caller (Fortran procedure):

SUBROUTINE SUB
INTEGER K, I, J

K = C_FUNC(I, J)

END SUBROUTINE SUB

Callee (C function)

extern int c_func_(int *a, int *b);

int ¢_func_(int *a

{

int *b)

J

(4) Obtaining arguments from a Fortran procedure that have the VALUE attribute

The arguments are received by values.
Example:

Caller (Fortran procedure):

SUBROUTINE SUB
INTERFACE
INTEGER (C_INT) FUNGTION C_FUNC (A, B)
USE, INTRINSIC :: ISO_C_BINDING
INTEGER (C_INT), VALUE :: A, B
I Specify the VALUE attribute
END FUNCTION C_FUNC
END INTERFACE
INTEGER I, J

- 133 -

Chapterl0 Language-Mixed Programming

CALL C_FUNC(I, J)

END SUBROUTINE SUB

Callee (C function):

extern int c_func(int a, int b);
int ¢_func(int a, int b) // The arguments are received by values
{
}
10.5.2 Notes

10.5.2.1 Appending Arguments Implicitly

Arguments are implicitly appended to Fortran procedures as follows.

* When a called procedure is a character type Fortran function, the address
where the function value is stored and the length (in bytes) of the function

value are appended.

 When a procedure passes a character type argument, the length (in bytes) of

the argument is appended.

* When a procedure passes a procedure name argument, the size (in bytes) of
the return value from the procedure is appended. If the procedure is not a
character type function, the length is O (zero).

Arguments are passed to procedures in the following order.

(1) Address where the return value is stored (when the called procedure is a

character-type)
(2) Size of the return value (when the called procedure is a character-type)

(3) For each type of argument
The length (in bytes) of the argument for a character-type argument or the size
(in bytes) of the return value for a procedure name argument is passed

immediately after each argument.

- 134 -

Chapter10 Language-Mixed Programming

10.6 Linking

10.6.1 Linking Fortran Program and C Program

When linking a C program and a Fortran program, use the Fortran compiler (nfort).

Example:
$ nfort —¢c a. f (Compile Fortran program)
$ ncc -¢c b.c (Compile G program)
$ nfort a.o b.o (Linking by Fortran compiler)

10.6.2 Linking Fortran Program and C++ Program

When linking a C++ program and a Fortran program, use the Fortran compiler

(nfort). When linking, the runtime library of the C++ compiler (-cxxlib) must be

specified.
Example:
$ nfort —¢c a. f (Compile Fortran program)
$ nc++ —c b. cpp (Compile GC++ program)
$ nfort a.o b.o —cxxlib (Linking by Fortran compiler)
10.7 Notes

When a C/C++ program and a Fortran program are linked, stdin, stdout and stderr
must not be closed in the C/C++ program. If they are closed, execution of the

Fortran program is not guaranteed.

- 135 -

Chapterll Messages

Chapterll Messages

11.1 Diagnostic Messages

The compiler outputs diagnostic messages that indicate the optimization status of
the program to the standard error output and diagnostic message list. This section

describes their formats and the main messages.

11.1.1 Diagnostic Message Format

Diagnostic messages will be output in the following format.

Kind (Number) : Position: Message [: Hint]

Kind (Number):
The message kind and the number assigned to the message body will be

displayed. The kinds include the following.

vec: Vectorization information

opt: Optimization and vectorization information

dtl: Detailed optimization and vectorization information

inl: Inlining information

par: OpenMP and automatic parallelization

err: Mainly, syntax error of OpenMP directive specification
Position:

The line number of the source code corresponding to the diagnostic message
will be output. When output to standard error output, the file name including
the line number is also output.

Message:
The text of the diagnostic message will be output.

Hint:
Depending on the diagnostic message, the procedure name, variable name,
and array name will be output.
 When the variable name or array name is unknown, the type name may

be output.

* A name of a procedure or variable generated by the compiler for

optimization may be output with "$number" appended.

- 136 -

Chapterll Messages

11.1.2 Message List

vec(101): Vectorized loop.

An entire loop structure is vectorized.

vec(102): Partially vectorized loop.

Part of a loop structure is vectorized.

vec(103): Unvectorized loop.

A loop is not vectorized.

vec(107): Iteration count is too small.

A loop is not vectorized because the iteration count of the loop is smaller t

han the threshold value for vectorizing. The threshold value can be change

d by -mvector-threshold=n.

vec(108): Unvectorizable loop structure.

Loop structure does not meet vectorization conditions. This diagnostic is

mainly output in the following cases.

The loop induction variable appears in type conversion operation. It may
be vectorized by -mreplace-loop-induction.

The loop control expression is not an expression to compare an induction
variable and a loop invariant expression.

A logical and (&&) or a logical or (||) operation appears in the loop control
expression.

An equation operation (!= or ==) appears in the loop control expression.
It may be vectorized by -mreplace-loop-equation.

There are two or more branches to outside of a loop.

There is a jump from outside of a loop. This situation appears when the
loop is composed of if and goto statements.

A work vector for partially-vectorization cannot be created. The following
code shows an example that a work vector for “a[0]” is required but its

type is unvectorizable and the compiler cannot prepare any work vector.

- 137 -

Chapterll Messages

void func(
int n,
long double _Complex aln]
double Complex b[n],
double _Complex c[n],
double Complex d[n]

for (int i =0; i <n; i+ {
al0] = b[i] + d[i] + c[il;
clil = a[0];

vec(109): Vectorization obstructive statement.
A loop cannot be vectorized because a statement that makes a whole loop

unvectorizable appears.

vec(110): Vectorization obstructive function reference : Function-name
A loop cannot be vectorized because a function reference that makes a whole

loop or array expression unvectorizable appears.

vec(111): “novector” is specified.

A loop is not vectorized because novector directive is specified.

vec(112): “novwork” is specified.

A loop is not partially-vectorized because novwork directive is specified.

vec(113): Overhead of loop division is too large.
A loop cannot be partially-vectorized because the compiler judged the
overhead due to loop division to be large and the effect of the partially-

vectorization to be none.

vec(115): Internal table overflow.

A loop cannot be vectorized because an internal table used in vectorization

- 138 -

Chapterll Messages

processing overflowed.

vec(116): Unvectorizable function reference. : Function-name
A loop cannot be vectorized because there is a function reference to an
external procedure, internal procedure, module procedure, or intrinsic

procedure that is not subject to vectorization.

vec(117): Unvectorizable statement.
A loop cannot be vectorized because a statement is not subject to

vectorization.

vec(118): Unvectorizable data type.
A loop cannot be vectorized because a data element reference is of a type that

is not subject to vectorization.

vec(119): Array is not aligned. : Variable-name
A loop cannot be vectorized because an array is not aligned on a vectorizable

memory boundary.

vec(120): Unvectorizable dependency. : Variable-name
A loop cannot be vectorized because there is an unvectorizable dependency in

a variable or array.

vec(121): Unvectorizable dependency.
A loop cannot be vectorized because there is an unvectorizable dependency in

a variable or array.

vec(122): Dependency unknown. Unvectorizable dependency is assumed. :
Variable-name
An unvectorizable dependency is assumed to exist because dependency

analysis is not possible. The compiler applies vectorization with the

- 139 -

Chapterll Messages

assumption that the dependency is not unvectorizable if ivdep directive is

specified.

vec(124): Iteration count is assumed. Iteration count=n

The compiler assumes that the loop iteration count is n.

vec(126): Idiom detected. : Kind of macro
A vector macro operation is detected. The following kinds are detected.

Max/Min, List Vector, Sum, Product, Bit-op, Iteration, Search

vec(128): Fused multiply-add operation applied.
A fused-multiply-add operation is applied.

vec(129): Array is retained. : Array-name

A retain directive is applied to an array.

vec(130): Vector register is assigned.: Array-name

A vector register is assigned to an array by a vreg directive.

vec(131): Too many statements.

A loop cannot be vectorized because there are too many statements in a loop.

vec(132): Too many function calls.
A loop cannot be vectorized because there are too many function calls in a

loop.

vec(133): Too many memory refereneces.
A loop cannot be vectorized because there are too many memory references

in a loop.

- 140 -

Chapterll Messages

vec(134): Too many branches.

A loop cannot be vectorized because there are too many branches.

vec(135): vreg canceled.: Array-name

vreg directive is canceled.

vec(136): pvreg canceled.: Array-name

pvreg directive is canceled.

vec(139): Packed loop.

A loop is vectorized by using packed-vector instructions.

vec(140): Unpacked loop. : Reason
-mvector-packed or packed_vector directive is specified, but any packed-

vector instruction is not used in vectorization.

vec(141): “nopacked_vector” is specified.

nopacked_vector directive is applied.

vec(142): pvreg is used in vector loop.
An array which is specified by pvreg directive appears in a vectorized loop

without packed-vector instructions.

vec(143): vreg is used in packed vector loop.
An array which is specified by vreg directive appears in a vectorized loop with

packed-vector instructions.

vec(144): No mask for vector load under condition.: Array-name
Vector loads executed under if conditions are not masked. It is necessary to

prepare areas for the number of iterations.

- 141 -

Chapterll Messages

vec(161): Structure assignment obstructs vectorization.
A loop cannot be vectorized because there is a large struct, union, or class
assignment.

It may be vectorized by -mvector-assignment-threshold=n.

vec(163): Exception handling obstructs vectorization.
A loop cannot be vectorized because there are some expressions related to

C++ exception handling.

vec(184): Division obstructs vectorization.

A loop cannot be vectorized because there is unvectorizable division.

vec(185): Exponentiation obstructs vectorization.

A loop cannot be vectorized because there is unvectorizable exponentiation.

opt(1011): Too large to optimize -- reduce program or loop size.

Optimization of this loop is inhibited because the program or the loop is too

large. The program or the loop should be partitioned.

opt(1019): Feedback of scalar value from one loop pass to another.

A scalar variable accesses a value that is defined on another loop pass.

opt(1025): Reference to this function inhibits optimization.

Reference to this function inhibits optimization.

opt(1025): Reference to this procedure inhibits optimization.

Reference to this procedure inhibits optimization.

opt(1034): Multiple store conflict.

The same array element is defined more than once.

- 142 -

Chapterll Messages

opt(1037): Feedback of array elements.

Same array element is referenced/defined on another loop pass.

opt(1038): Loop too complex -- optimization of this loop halted.

Optimization of this loop is halted because the loop is too complex.

opt(1056): Loop nest too deep for optimization.

Optimization of this loop is halted because nest of the loop is too deep.

opt(1057): Complicated use of variable inhibits loop optimization.
Optimization of this loop is inhibited because usage of the variable is too

complicated.

opt(1059): Unable to determine last value of scalar temporary.

Last value of the scalar temporary is unable to determine.

opt(1061): Use of scalar under different condition causes feedback.

A scalar variable is accessed under different conditions.

opt(1062): Too many data dependency problems.

Too many data dependency inhibits optimization.

opt(1082): Backward transfers inhibit loop optimization.

Optimization of this loop is inhibited because of backward transfer in the loop.

opt(1083): Last value of promoted scalar required.

A scalar variable that is changed to temporary array needs last value.

opt(1084): Branch out of the loop inhibits optimization.

- 143 -

Chapterll Messages

Optimization of this loop is inhibited because of a branch out from the loop.

opt(1097): This statement prevents loop optimization.

This statement prevents loop optimization.

opt(1108): Reduction function suppressed -- need associative
transformation.
The optimization with -fmatrix-multiply is suppressed due to -fassociative-

math is disabled.

opt(1117): Indirect branch inhibits to optimization of loop.

Optimization of this loop is inhibited because of an indirect branch in the loop.

opt(1128): Branching too complex to optimize at this optimization level.
Optimization of this loop is inhibited because branchings in the loop are too

complex.

opt(1130): Conditional scalar inhibits optimization of outer loop.

A conditional scalar definition inhibits optimization of outer loop.

opt(1131): Function references in iteration count inhibits optimization.

Function references in iteration count inhibits optimization.

opt(1166): Potential dependency due to pointer -- use restrict qualifier if
ok.
Potential dependency due to pointer inhibits optimization. If ivdep directive is
specified, the compiler considers the dependency to be optimizable and

vectorizable.

inl(1214): Expansion routine is too big for automatic expansion.: Routine-
name

The size of routine is too big and the routine cannot be inlined. It may be

- 144 -

Chapterll Messages

inlined by -finline-max-function-size=n or -finline-max-times=n.

inl(1219): Nesting level too deep for automatic expansion. : Routine-name
Nesting level of the expansion routine is too deep. It may be inlined by -fi

nline-max-depth=n.

inl(1222): Inlined.: Routine-name

A routine is inlined.

opt(1268): Use of pointer variable inhibits optimization.

Use of pointer variable inhibits optimization.

opt(1282): This store into array inhibits optimization of outer loop.

This store into array inhibits optimization of outer loop.

opt(1285): Not enough work to justify concurrency optimization.

Concurrency optimization is inhibited because of not enough works in the loop.

opt(1298): Use of induction variable outside the loop inhibits optimization.
Optimization of this loop is inhibited because of use of induction variable

outside the loop.

opt(1299): Redefinition of induction variable in loop inhibits optimization.
Optimization of this loop is inhibited because of redefinition of induction

variable in the loop.

opt(1315): Iterations peeled from loop in order to avoid dependence.
To eliminate unvectorizable dependency, forward/backward expansion of the

loop is performed.

- 145 -

Chapterll Messages

opt(1339): User parallel directives inhibits to optimization.

Optimization is inhibited because of user parallel directive specifications.

opt(1376): User function reference inhibits optimization.

Optimization is inhibited because of user function reference.

opt(1377): Must synchronize to preserve order of accesses.

Synchronization is needed to preserve order of accesses.

opt(1378): Many synchronizations needed.

Too many synchronizations inhibits concurrency.

opt(1380): User function references not ok without "cncall".
Concurrency optimization is inhibited because of user function reference. It

may be optimized if cncall directive is specified.

inl(1388): Inlining inhibited: OpenMP or parallel directive.

Parallelization control option exists in a candidate for inlining.

opt(1394): Moved invariant if outside of an inner loop.

if-clause has invariant condition moved outside the loop.

opt(1395): Inner loop stripped and strip loop moved outside outer loop.

Outer loop strip mining is performed.

opt(1408): Loop interchanged.

Outer loop is interchanged with inner loop.

opt(1409): Alternate code is generated.

Alternate code is generated.

- 146 -

opt(1589): Outer loop moved inside inner loop(s).

Outer loop is switched with inner loop.

opt(1590): Inner loop moved outside outer loop(s).

Inner loop switched with outer loop.

opt(1592): Outer loop unrolled inside inner loop.

Outer loop unrolling is performed.

opt(1593): Loop nest collapsed into one loop.

Nested loop collapsing is performed.

opt(1772): Loop nest fused with following nest(s).

Loop fusion with following loop is performed.

opt(1800): Idiom detected (matrix multiply).

Replace matrix multiply loop with vectorized library call.

Chapterll Messages

opt(3008): Reference within a conditional branch moved outside loop - use

"move" directive to suppress this optimization.

Unsafe memory reference under if-condition moved outside the loop.

opt(3012): Division within a conditional branch moved outside loop - use

"move" directive to suppress this optimization.

Unsafe division under if-condition moved outside the loop.

opt(3013): Moved division within a conditional branch.

Unsafe division under if-condition moved.

- 147 -

Chapterll Messages

opt(3014): Moved reference within a conditional branch.

Unsafe memory reference under if-condition moved.

11.2 Runtime Error Message

The compiler runt-time routine outputs error messages that indicate the program

error to the standard error output. This section describes their main messages.

C++ runtime abort: terminate() called by the exception handling
mechanism.

terminate() function was called by the exception handling mechanism.

C++ runtime abort: returned from a user-defined terminate() routine.

A user-defined terminate() function returned.

C++ runtime abort: internal error: static object marked for destruction
more than once.

Static object marked for destruction was destroyed more than once.

C++ runtime abort: a pure virtual function was called.

A pure virtual function was called.

C++ runtime abort: invalid dynamic cast.

dynamic_cast to subobject was invalid.

C++ runtime abort: invalid typeid operation.

typeid operation was invalid.

C++ runtime abort: freeing array not allocated by an array new operation.

An array that was not allocated by new operator was freed.

- 148 -

Chapterll Messages

C++ runtime abort: terminate() called itself recursively.

terminate() function was called recursively.

C++ runtime abort: a deleted virtual function was called.

A delete virtual function was called.

Compatibility Error: veos (older than v2.6.0) and ve_exec (vVEQOS-verision)
are not compatible
veos version is old, so it does not have compatibility with ve_exec. If VE
program is running on a container, please install the latest veos packages to

the host machine.

Compatibility Error: veos (VVEOS-version-A) and ve_exec (vVEOS-verision-B)
are not compatible
veos version is old, so it does not have compatibility with ve_exec. If VE
program is running on a container, please install the latest veos packages to

the host machine.

Failed to load EXEC DATA (fixed): Error Message
Failed to load the data of exec file. VE memory shortage may be occurred. If
there is executing VE process, please terminate it or reduce the size of data.
You can refer to the VE memory capacity and VE memory usage with

“/opt/nec/ve/bin/free -h".

Failed to load EXEC DATA (fixed, fileback): Error Message
Failed to load the data of exec file. VE memory shortage may be occurred. If
there is executing VE process, please terminate it or reduce the size of data.
You can refer to the VE memory capacity and VE memory usage with

“/opt/nec/ve/bin/free -h".

- 149 -

Chapterll Messages

Unable to grow stack
Size of stack is not enough. As following example, please increase the limit of

the available stack size with the environment variable VE_LIMIT_OPT.

export VE_LIMIT_OPT="-s 8192”

You can refer to the current limit of stack size by ve_exec command with “—

show-limit” as the argument.

$ ve_exec —show-1limit

core file size (blocks, -¢) 0 0

data seg size (kbytes, —-d) unlimited unlimited
pending signals (-i) 379523 379523

max memory size (kbytes, -m) unlimited unlimited
stack size (kbytes, -s) unlimited unlimited <—
cpu time (seconds, —t) unlimited unlimited
virtual memory (kbytes, -v) unlimited unlimited

VE Node node-number is UNAVAILABLE
The VE card whose number is node-number is fault occurs. Please use other

VE node to execute job.

- 150 -

Chapter12 Troubleshooting

Chapter12 Troubleshooting

12.1 Troubleshooting for compilation

The error "Fatal: License: Unknown host." occurs.
There is a possibility that the problem that the machine can't access a license
server occurs to the time of license check of a compiler. Please refer to the FAQ
indicated on a following page of HPC software license issue.
https://www.hpc-license.nec.com/aurora/

When not solving it, please contact us from the said page.

The error "Syntax error" occurs at a compiler directive.
Please confirm whether the spelling of compiler directive and the how to use
aren't wrong. When it's an error to compiler directive of a SX compiler, please
change to it of a VE compiler by a compiler directive line change tool.
Please refer to "Appendix C Compiler Directive Conversion Tool" to confirm the

usage of the tool.

The error "Error: Invalid suffix" occurs.
There is a possibility that binutils-ve package is old. Please confirm whether

binutils-ve package is the latest edition.

When using a header file and a library, I want to confirm the directory to
which a compiler and a linker refer.
Please refer to "1.6 Searching files specified by #include directive" and "1.7

Searching Libraries".

The error "undefined reference to 'ftrace_region_begin' / 'ftrace_region_end""
occurs at linking.

The FTRACE function is used. Specify -ftrace at linking.

Please refer to "PROGINF/FTRACE User's guide" about the FTRACE function.

$ ncc a.o b.o —ftrace

- 151 -

Chapter12 Troubleshooting

The error "undefined reference to '__ vthr$_barrier' occurs at linking.

Please specify -mparallel or -fopenmp at linking.

The error "undefined reference to '__vthr$_pcall_va' occurs at linking.

Please specify -mparallel or -fopenmp at linking.

The error "cannot find -lveproginf" and "cannot find -lveperfcnt” occurs at
linking.

Please install nec-veperf package.

I want to confirm whether they are executable file for VE.
Please execute "/opt/nec/ve/bin/nreadelf -h" that specified the executable file as
an argument of command. When "NEC VE architecture" is output in the line of

"Machine:", it show that a file is an executable file for VE.

$ /opt/nec/ve/bin/nreadelf -h a.out

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64

Data: 2's complement, little endian
Version: 1 (current)

0S/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)
Machine: NEC VE architecture
(...)

I want to confirm whether they are object file for VE3.
Please execute "/opt/nec/ve/bin/nreadelf -h" that specified the object file as an
argument of command. When the last digit output in the line of "Flags:" is "0", it
show that a file is an object file for VE1; when it is "1", it show that a file is an
object file for VE3. In the following example, the last digit output in the line of

"Flags:" is "1", so it show that a file is an object file for VE3.

- 162 -

Chapter12 Troubleshooting

$ /opt/nec/ve/bin/nreadelf -h a.o

ELF Header:
(..)
Version: 0x1
Start of program headers: 0 (bytes into file)
Start of section headers: 720 (bytes into file)
Flags: 0x10101
..)

When linking OpenMP and automatic parallelized program, which of -fopenmp
and -mparallel should I specify?

Please specify either -fopenmp or -mparallel.

$ ncc -¢c -mparallel a.c
$ ncc —¢ —fopenmp b. c
$ ncc -fopenmp a.o b.o

When specifying -ftrace, execution time becomes so long.
It becomes long because the routine for getting performance information is
executed. It is called at entrance/exit of functions and user specified region.
Please specify -ftrace to only the source file which includes routine which

performance information is required.
Even if setting value bigger than 8 to OMP_NUM_THREADS, threads more than
8 is not generated.

8 threads are the upper limit because the number of cores of VE is 8.

I want to know the name of predefined macro and the value.

Please refer to “9.3.4 Predefined Macro”.

The following error occur when linking C++ program.

/opt/nec/ve/bin/nld: _ curr_eh_stack_entry: TLS reference in /tmp/nccwvkaaa. o
mismatches non-TLS reference in /opt/nec/ve/ncc/2.x.x/1ib/|libnc++. a(iostream. o)
/opt/nec/ve/ncc/2. x. x/1ib/libnc++. a: error adding symbols: Bad value

Please recompile the program by the compiler of version 2.2.1 or later.

- 153 -

Chapter12 Troubleshooting

When compiling a program which code size is large, the compiler aborts by
SIGSEGV.
The stack size needed by the compiler may exceed upper limit of the setting. It
may solve to extend the upper limit of it. It can be confirm and setting to invoke
“ulimit -s” as follows. Please increase the upper limit of stack size and recompile

the program.

$ulimit -s (Check the current limit)
8192
$ ulimit —s 16384 (Change the limit)

The compiler aborts by SIGKILL.
The memory of the machine may be exhausted. The memory used amount can be

somewhat reduced to compile with -00 or -O1.

I want to link Fortran program and C/C++ program.

Please refer to “10.6 Linking”.

I want to change the options of SX series to it of Vector Engine.

Please change it to refer to “Appendix B SX Compatibility”.

I want to change the compiler directives of SX series to it of Vector Engine.
Please use the “Compiler Directive Conversion Tool” or change by hand by
confirming “Appendix B SX Compatibility”. Please refer to “Appendix C Compiler

Directive Conversion Tool” about the tool.

The variable or routine name which name is “$” and number as ‘$1’ is
displayed in diagnostic message. What is it?

It is created by compiler to do vectorization and parallelization.

The type name as “DOUBLE" or “float” is displayed instead of variable nhame in
diagnostic message. What is it?
It is unnamed variable created by compiler to do vectorization and parallelization.

It is displayed type name because it has no name.

- 154 -

Chapter12 Troubleshooting

A compiler option which is not specified in command line is enabled.
A compiler option may be specified in option file. Please refer to “1.5 Specifying

Compiler Options” to confirm details of option file.

I want to confirm version of the compiler.

Please compile with --version.

When building a program that includes multi-stage dependencies such as

a.out->foo.so->bar.so, the following link error occurs.

/opt/nec/ve/bin/nld: warning: libbar.so, needed by ./libfoo.so, not found
(try using -rpath or -rpath-Iink)
./libfoo. so: undefined reference to "bar’

It is a GNU Linker specification from which nid is derived. The nld links SX-Aurora
TSUBASA objects on Linux/x86_64, so it works with cross linker. Since Cross
Linker is not always the same as the actual execution environment, nld ignores
the -rpath option and RPATH set in the shared library. Please specify -WI,-rpath-
link,library-path.

12.2 Troubleshooting for execution

The error “Node 'N' is Offline” occurs at execution.
The state of VE node of number N is OFFLINE. Please make it ONLINE.

The example which make VE node of number O ONLINE state is as follows.

/opt/nec/ve/bin/vecmd -N 0 state set on

Result: Success
%t /opt/nec/ve/bin/vecmd state get

VEO [03:00.0] [ONLINE] Last Modif:2017/11/29 10:18:00

Result: Success

I want to confirm the used node at execution.

Please execute the command /opt/nec/ve/bin/ps. The command ps outputs

- 155 -

Chapter12 Troubleshooting

snapshot of executing processes by VE node. In the following example, it can be

confirmed that the program named “a.out” is executing on VE node of number 2.

/opt/nec/ve/bin/ps -a
VE Node: 3

PID TTY TIME CMD
VE Node: 1

PID TTY TIME CMD
VE Node: 2

PID TTY TIME CMD
50727 pts/1 00:01:36 a.out
VE Node: 0

PID TTY TIME CMD

The error "./a.out: error while loading shared libraries: libncc.so.2: cannot
open shared object file: No such file or directory” is output at execution.
Please install the package “nec-nc++-shared” and “nec-nc++-shared-inst”. Please

follow the instructions described in the "Installation Guide".

The error which a dynamic link library is not found occurs at execution.
Please set the directory which dynamic link library is put to the environment
variable VE_LD_LIBRARY_PATH. Please refer to “2.2 Environment Variables

Referenced During Execution”.

The error "VE mmap failed on INTERP - TEXT: Cannot allocate memory"
occurs at execution.
The total size of text and static data of the VE program exceeds 48GB. Please
modify the source files to dynamically allocate large-sized data so that the total
size of the text and static data of the VE program is 48GB or less. Static data
includes global variables, static variables, and initialized string literals.
You can check the symbol sizes in descending order by executing the following

command for reference:

$ /opt/nec/ve/bin/nnm -C ——size-sort -r ./a.out

In addition, you can check the size of each section with the following command:

- 156 -

Chapter12 Troubleshooting

$ /opt/nec/ve/bin/nreadelf —e ./a. out

I want to confirm which line of source file corresponds to an exception
occurrence point.
It can be check by traceback information. Please refer to “1.8.3 Using Traceback

Information” to check process of it.

The exception occurrence point which output by traceback information is
incorrect.
The exception occurrence point output by traceback information can be incorrect
by the advance control of HW. The advance control can be stopped to set the
environment variable ADVANCEOFF=YES. An execution time may increase

substantially to stop the advance control. Please take care it.

$ export VE_ADVANCEOFF=YES

I want to confirm whether use uninitialized local variable or not.
It may be checked by detecting an exception to compile with -minit-stack=snan
and execute for double type variables. For float type variables, specify snanf

instead of snan. This approach can be used only if the variable is floating-point

type.

I want to avoid abnormal termination caused by reference of uninitialized
variable.
It may avoid by initializing the area to zero to compile with -minit-stack=zero
and execute. Correction of a program is recommended to resolve a potential

problem.

A program which uses automatic parallelization and/or OpenMP is abnormally
terminated by "Unable to grow stack” or SIGSEGV at execution.
It may occur because the amount of stack usage exceeds the limit. Please
increase the limit of stack size.
The limit of stack size can be increased by setting the environment variable
OMP_STACKSIZE. Please refer to “2.2 Environment Variables Referenced During

- 157 -

Chapter12 Troubleshooting

Execution”.

$ export OMP_STACKSIZE=2G

I want to confirm how many thread was used at execution.
It can be confirmed to check “Max Active Threads” in PROGINF. “Max Active
Threads” is output to stderr at termination when setting the environment variable
VE_PROGINF=DETAIL. Please refer to “PROGINF/FTRACE user’s Guide” to
confirm usage of PROGINF.
In the following example, it can be confirmed that 4 thread was used because

“Max Active Threads” is 4.

shrkkkk Program Information sk

(..)

Power Throttling (sec) : 0. 000000

Thermal Throttling (sec) : 0. 000000

Max Active Threads : 4

Available GPU Cores : 8

Average CPU Cores Used : 3. 323850

Memory Size Used (MB) : 7884. 000000

Start Time (date) : Mon Feb 19 04:43:34 2018 JST
End Time (date) 2 Mon Feb 19 04:44:08 2018 JST

When the threads for automatic or OpenMP parallelized program execution
are created or destroyed?
By default, the threads are created at the start of execution and destroyed at
termination. The number of threads are the specified value by the environment
variable OMP_NUM_THREADS or VE_OMP_NUM_THREADS. If it is not
specified, the number is the same as the number of available VE cores.

Please refer to “7.3.2 Thread Creation and Destroy” for details.

When running a program that utilizes automatic or OpenMP parallelized, how
is the number of threads determined at the runtime?
The number of threads at runtime can be specified through the environment
variables OMP_NUM_THREADS or VE_OMP_NUM_THREADS, the OpenMP
num_threads clause, and the omp_set_num_threads() function. The priority is as

follows:

- 158 -

Chapter12 Troubleshooting

1. Value specified by num_threads clause

2. Value specified by omp_set_num_threads() function

3. Value specified by the environment variable VE_OMP_NUM_THREADS
4. Value specified by the environment variable OMP_NUM_THREADS

5. The same value as the number of available VE cores.

The number of threads at execution is the same as the number of available VE
cores if it is set a value greater than the number of available VE cores in
num_threads clause, omp_set_num_threads(), VE_OMP_NUM_THREADS, or
OMP_NUM_THREADS.

The bus errors occur when promoting vectorization.
It may occur because vector load/store for 8 bytes elements is executed for the
array aligned in 4 bytes. In the following example, the float type (aligned in 4
bytes) arrays “a” and “b” are which passed as arguments are casted to

uint64_t. Therefore, it is vector load/store for 8 bytes elements.

void funcl({
float a[b11],b[511];

func2(a, b) ;

void func2(voidx a, voidx b) {
for (int i=0; i<255; ++i){ //111<{—-vectorized loop
(uint64_t*)b) [i] = ((uint64_tx)a)[i];
}

Please align them in 8 bytes as follows or specify the novector directive to the

loop to stop vectorization.

float a[b11] __attribute__((aligned(8)));
float b[b11] __attribute__((aligned(8)));

I want to conform the stack size required to run the program.
There is no way to find out the required stack size because you will not know it

until you try it.

- 159 -

Chapter12 Troubleshooting

12.3 Troubleshooting for tuning

I want to confirm which optimization was applied to a program.
Please refer to output diagnostics and the format list when compiling.
The diagnostics list is output when the compiler option -report-diagnostics, and
the format list is output when the compiler option -report-format is specified. For

details, refer to “Chapter8 Compiler Listing”.

The performance decreases, though vectorization was promoted.
The performance decreases by an overhead of vectorization of the few iteration
loop.

Please specify the novector directive to such loop to stop vectorization.

When automatic or OpenMP parallelized program is executed, the values
displayed in the same item of PROGINF and FTRACE are different.
The number of operations for the spin-waiting of the thread created before main
program starts is added in PROGINF, but not in FTRACE.

When using the $omp parallel num_threads (4) and executing with the
environment variable OMP_NUM_THREADS =4 or OMP_NUM_THREADS=5, the
execution time with OMP_NUM_THREADS=5 is a longer than with
OMP_NUM_THREADS=4. Even though there are more parallel numbers.
When the value passed with the num_threads clause is different from the value
specified with the environment variable OMP_NUM_THREADS, the execution
time increases due to thread regeneration.
Threads are automatically generated before the main program starts. The number
of threads is determined by the environment variable OMP_NUM_THREADS.
When the number of threads changes in the program with the function
omp_set_thread_num() or num_threads clause in OpenMP, the threads generated

before the main program starts is freed and the new threads are regenerated.
The routine name which name is “$” and nhumber as ‘$1’ is displayed in

FTRACE output. What is it?

It is created by compiler to do vectorization and parallelization.

- 160 -

Chapter12 Troubleshooting

12.4 Troubleshooting for installation

I want to check if the installation is correct.
Please specify the --version option to check the version. If the displayed version

number is the same as the installed property, it has been installed correctly. The

version number is output to X.X.X in the following example.

$ /opt/nec/ve/bin/ncc ——version
ncc (NCC) X.X.X (Build 14:10:47 Apr 23 2020)
Copyright (C) 2018,2020 NEC Corporation

I want to install an older version of the compiler.

Please refer to “A.1.1 Installation of a Specific Version of the Compilers” in the SX-

Aurora TSUBASA Installation Guide to install old versions of the compiler.

I want to use an older version of the compiler.

Please invoke /opt/nec/ve/bin/nfort-X.X. X, ncc-X.X. X, or nc++-X.X.X (X.X. X is
the version humber of the compiler) at compilation.

For detail, refer to "1.2 Usage of the Compiler".

I want to start an older version of compiler by default.

There are two ways to do it. Please choose one.

(1) Setting the environment variable PATH

The substance of each version of ncc/nc++/nfort commands are installed as
follows.

X.X.X is the version number of the compiler.

/opt/nec/ve/ncc/X. X.X/bin/ncc
/opt/nec/ve/ncc/X. X.X/bin/nc++
/opt/nec/ve/nfort/X.X.X/bin/nfort

Set the bin directory of the version you want to invoke by default to the command
search path (environment variable PATH).

(2) Installing an older version of compiler.

- 161 -

Chapter12 Troubleshooting

Install the package of the compiler version you want to set as default. For details,
refer to "A.1.2 Change of the Compiler Versions Invoked with the Command
/opt/nec/ve/bin/[nfort|ncc|nc++]" in the SX-Aurora TSUBASA Installation Guide.
Please note that this method will affect all users who use /opt/nec/ve/bin/ncc

(nc++,nfort).

- 162 -

Chapter13 VE1/VE3 Compatibility

Chapterli3 VE1/VE3 Compatibility

13.1 Executables Compatibility

VE1/VE3 machine can execute the following executables generated by VE1/VE3

compiler/assembler/linker.

Executables VE1 Machine VE3 Machine
Executables for VE1 v v
Executables for VE3 - v

(v) Can be executed (-) Cannot be executed

13.2 Changes of Search Path

Search path of files included by #include and libraries are changed as follows:

(1) Searching files specified by #include directive

VE1 VE3

Directories specified by -I (Same as VE1)

Subdirectory named “include[/compat]”
under the directory specified by -B (*1)
Directories specified by the environment
variable NCC_INCLUDE_PATH
Directory[/compat] specified by -
isystem (*1)
/opt/nec/ve/ncc/<version-
number>/include[/compat] (*1)

/opt/nec/ve/include (*2) /opt/nec/ve3/include (*2)

(Same as VE1)

(Same as VE1)

(Same as VE1)

(Same as VE1)

(*1) [/compat] is added when -stdlib=compat is enabled.
(*2) When -isysroot is enabled, subdirectory named “include” under the directory

specified by -isysroot.

- 163 -

Chapter13 VE1/VE3 Compatibility

(2) Searching Libraries

VE1 VE3
Directories specified by -L (Same as VE1)
Directories specified by -B (Same as VE1)

Directories specified by the environment
variable NCC_LIBRARY_PATH (Same as VEL)

opt/nec/ve3/nfort/<version-

Jopt/nec/ve/ncc/<version-number>/lib /opt/ / . / /

number>/lib

Directories specified by the environment

variable VE_LIBRARY_PATH
/opt/nec/ve/lib/gcc /opt/nec/ve3/lib/gcc

(Same as VE1)

/opt/nec/ve/lib /opt/nec/ve3/lib

13.3 Changes of Compiler Options

VE1/VE3 changes the defaults of compiler options as follows:

VE1 VE3

-march=vel -march=ve3

-mfpl6-format=none -mfpl6-format=ieee

13.4 Half-Precision Floating-Point Type

VE3 can generate and execute object files using half-precision floating point. Object

files using half-precision floating point cannot be generated or executed on VE1.

13.4.1 Format of Half-Precision Floating-Point Type

The format of half-precision floating-point type is determined by -mfp16-

format=type and whether or not half-precision floating-point is used in the program.

Use Half-Precision -mfp16-format=type

Floating-Point or Not none iece bfloat
Not Use none none none
Use none binary16 bfloat16

13.4.2 Mixing binary16 and bfloat16

When both binary16 and bfloat16 object files are mixed, an object file, executable

- 164 -

Chapter13 VE1/VE3 Compatibility

file or shared library cannot be generated.

13.5 Notice

* VE3 executables cannot be executed on VE1.

e In VE1, it is not possible to generate or execute object files using half-precision
floating-point.
» The command ngprof cannot output a performance information when executing

the VE1 executables on VE3 and output "gmon.out".

* Unable to generate static libraries, shared libraries, or executables with a mix of

VE1 and VE3 object files. The following error occurs when linking.

/opt/nec/ve/bin/nld: a.o: this object cannot use on VE3.

/opt/nec/ve/bin/nld: failed to merge target specific data of file a.o

* When using the "traceback" function of the compiler with VE1 binaries, please
ensure that version 5.0.1 or later is used. Additionally, if using the "traceback"
function of MPI, please ensure that MPI version 3.4.0 or later is also used in
conjunction with the compiler. Otherwise, the generated traceback may not be

outputted correctly.

- 165 -

Chapter14 Notice

Chapter14 Notice

1. The version 2.0.0 or later is not compatible with the version 1.X.X. Therefore, an object
file compiled by version 2.0.0 or later cannot be linked with an object file compiled by
version 1.X.X.

2. Runtime library is also provided as shared library in version 2.2.2 or later. Therefore,
please re-compile and re-build the shared library by version 2.2.2 or later when they
were compiled by version 2.1.2 or earlier.

3. When the following error occurs at compiling of C++ program, please re-compile the

source file by version 2.2.2 or later.

/opt/nec/ve/bin/nld: _ curr_eh_stack entry: TLS reference in /tmp/nccwvkaaa. o misma
tches non-TLS reference in /opt/nec/ve/ncc/2.2.2/1ib/1ibnc++. a(iostream. o)
/opt/nec/ve/ncc/2.2.2/1ib/libnc++. a: error adding symbols: Bad value

4. The dynamic linker included in glibc-ve package version 2.21-4 or later is needed to
execute the executable file compiled by version 2.2.2 or later. Confirm the version of

glibc-ve package if an error occurs at execution.

$ rpm —q glibc-ve
glibc-ve-2.21-4.el7. x86_64

5. The execution performance of version 2.2.2 or later may fall compared with version
2.1.2 or earlier by overhead of dynamic-link process, because the compiler links a
shared library at default. It can be avoided by the compilation by -static or -static-
nec.

Notes:
When executing the executable file compiled with -static or -static-nec option, the
execution may be failed rarely. For example a result is wrong, and program aborts
and so on.

6. The header files of C++ standard library in version 3.5.x or earlier were moved to

under the directory “/opt/nec/ve/ncc/<version>/include/compat”.

- 166 -

Appendix A Configuration file

Appendix A Configuration file

A.1 Overview

The configuration file can be used in order to override the defaults which the

compiler uses. To use the configuration file, use -cf=conf compiler option.

The syntax of configuration file is as follow:

keyword : value

The following table shows currently available keywords.

Keyword Description

veroot The root directory of the VE component
(default: /opt/nec/ve)

system The root directory of the compiler component
(default: /opt/nec/ve/ncc/version)

as The path of assembler command
(default: <veroot>/bin/nas)

ccom The path of C/C++ compiler
(default: <system>/libexec/ccom)

Id The path of linker command

CC_pre_options
cc_post_options
as_pre_options
as_post_options
Id_pre_options
Id_post_options

startfile

endfile

(default: <veroot>/bin/nld)

The Compiler options. The options are specified in the follow order.
<cc_pre_options> <user-specified-options> <cc_post_options>
The Assembler options. The options are specified in the follow order.
<as_pre_options> <user-specified-options> <as_post_options>
The Linker options. The options are specified in the follow order.
<ld_pre_options> <user-specified-options> <Id_post_options>

The start up file.

The start up file. The file specified as an end of a linker options.

A.2 Format

* A keyword and the value are separated by the colon.

* When a keyword is not set, it set the default value.

* A blank can be specified around the separator colon.

 When ‘¥’ is specified as an end of a line, the value can be specified continuous in

- 167 -

Appendix A Configuration file

the next line.

Example:

cc_pre_options: -1 /tmp ¥
-1 /tmp2

When specifying two or more the same keyword, the last keyword becomes

effective.

A.3 Example

Change the root directory of VE component and compiler component.

A configuration file is made and set the value to ‘veroot” and ‘system’.

veroot: /foo/ve
system: /foo/ve/ncc/X. X. X

When the configuration file is specified by -cf option. The configuration file name

is ve.conf here.

$ ncc -cf=ve. conf test.c

Change the using compiler.
Only the used compiler is changed. Set the value to the “ccom” when only the

used compiler is changed.

ccom: /foo/ve/ncc/X. X. X/l ibexec/ccom

When the configuration file is specified by -cf option. An assembler, a linker and

SO on can also be changed in the same way.

- 168 -

Appendix B SX Compatibility

Appendix B SX Compatibility

This appendix describes the correspondence tables of major compiler options,

compiler directives, and environment variables referred at the execution between SX

compilers and compilers for the Vector Engine.

B.1 Compiler Options

B.1.1 Overall Options

SX Compiler Vector Engine Compiler
-Caopt -04
-Chopt -03
-Cvopt -02
-Csopt -02 —-mno-vector
-Cvsafe -01
-Cssafe -01 -mno-vector
-Cnoopt -00
-Cdebug -00 g
-S -S
-NS none
-V --version

Note: Continue the compilation process.

Note: Display the version and exit.

-NV none

-C -C

-Nc none

-cf string -cf=string
-clear -clear
-continst | -Ncontinst none

-dir { opt | noopt } none

- 169 -

Appendix B SX Compatibility

B.1.2

SX Compiler Vector Engine Compiler
-f03lib none
-fo0lib [{dw | dW | ew | eW }] none
-o file-name -o file-name
-prelink none
-size_t32 none
-size_t64 none

Note: Always effective.

-syntax -fsyntax-only
-Nsyntax -fno-syntax-only
-to directory-name none
-verbose -V
-Nverbose none

Vector/Scalar Optimization Options
SX Compiler Vector Engine Compiler
-Ochg -fassociative-math or
-faggressive-associative-math
-Onochg -fno-associative-math
-0div -freciprocal-math
-Onodiv -fno-reciprocal-math
-Oextendreorder -msched-interblock

-Oignore_volatile

-fignore-volatile

-Onoignore_volatile

-fno-ignore-volatile

-Omove

-fmove-loop-invariants-unsafe

-Onomovediv

-fmove-loop-invariants

-Onomove -fno-move-loop-invariants
-Ooverlap -fnamed-alias
-Onooverlap -fnamed-noalias

- 170 -

Appendix B SX Compatibility

SX Compiler Vector Engine Compiler
-Orestrict=arg -fargument-noalias
-Orestrict=this -fthis-pointer-noalias
-Orestrict=type -fstrict-aliasing
-Orestrict=no -fargument-alias

-fthis-pointer-alias
-fno-strict-aliasing

-Osafe_longjmp none
-Onosafe_longjmp none
-Ounroll -floop-unroll
-Ounroll=nlevel -floop-unroll

-floop-unroll-max-times=n
Note: Specify two at the same time.

-Onounroll -fno-loop-unroll
-alias { pointer | nopointer } none

-alias { type | notype } none

-alias { variable | novariable } none

-dir { vec | novec } none

-ipa -fipa

-Nipa -fno-ipa
-math,scalar -ffast-math
-math,vector none
-math,nofast=function-name none

-math { inline | noinline } none
-math,round=tonearest none
-math,round=towardzero none
-math,round=upward none
-math,round=downward none
-math,strict_prototype none

-math, nostrict_prototype none

- 171 -

Appendix B SX Compatibility

SX Compiler

Vector Engine Compiler

-Nmath

none

-pvctl,altcode

-mvector-dependency-test
-mvector-loop-count-test
-mvector-shortloop-reduction

Note: Specify three at the same time.

-pvctl,altcode=dep

-mvector-dependency-test

-pvctl,altcode=nodep

-mno-vector-dependency-test

-pvctl,altcode=loopcnt

-mvector-loop-count-test

-pvctl,altcode=noloopcnt

-mno-vector-loop-count-test

-pvctl,altcode=shortloop

-mvector-shortloop-reduction

-pvctl,altcode=noshortloop

-mno-vector-shortloop-reduction

-pvctl,noaltcode

-mno-vector-dependency-test

-mno-vector-loop-count-test

-mno-vector-shortloop-reduction
Note: Specify three at the same time.

-pvctl,assoc

-fassociative-math

-pvctl,noassoc

-fno-associative-math

-pvctl,assume

-mvector-assume-loop-count

-pvctl,noassume

-mno-vector-assume-loop-count

-pvcti,collapse

-floop-collapse

-pvctl,nocollapse

-fno-loop-collapse

-pvctl { compress | nocompress } none
-pvctl { conflict | noconflict } none
-pvctl { delinearize | nodelinearize } none
-pvctl,divioop none

-pvctl,nodivioop

-mwork-vector-kind=none

-pvctl,expand=n

-floop-unroll-complete=n

-pvctl,noexpand

-fno-loop-unroll-complete

-pvctl,listvec

-mlist-vector

-pvctl,nolistvec

-mno-list-vector

- 172 -

Appendix B SX Compatibility

SX Compiler

Vector Engine Compiler

-pvctl,loopchg

-floop-interchange

-pvctl,noloopchg

-fno-loop-interchange

-pvctl,loopcnt=n

-floop-count=n

-pvctl,loop_eq

-freplace-loop-equation

-pvctl,noloop_eq

-fno-replace-loop-equation

-pvctl,istval

-floop-last-value

-pvctl,matmul

-fmatrix-multiply

-pvctl,nomatmul

-fno-matrix-multiply

-pvctl,neighbors

-mvector-neighbors
Note: This option is available when
-march=ve3 is enabled.

-pvctl,noneighbors

-mno-vector-neighbors

-pvctl,nodep

-fivdep

-pvct,on_adb

none

-pvctl,outerunroll=n

-fouterloop-unroll
-fouterloop-unroll-max-times=n
Note: Specify two at the same time.

-pvctl,outerunroll_lim=n none
-pvctl, replace_induction none
-pvctl,noreplace_induction none
-pvctl,split -floop-split

-pvctl,nosplit

-fno-loop-split

-pvctl { vchg | novchg }

none

-pvctl,vecthreshold=n

-mvector-threshold=n

-pvctl,verrchk

-mvector-intrinsic-check

-pvctl,noverrchk

-mno-vector-intrinsic-check

-pvctl { vichk | novichk } none
-pvctl,vregs=n none
-pvctl,vwork={hybrid|stack|static} none

- 173 -

Appendix B SX Compatibility

B.1.3

SX Compiler Vector Engine Compiler
-pvctl,vworksz=n none
-struct,loop=n none
-V -mvector
-Nv -mno-vector
-xint -mno-vector-iteration
-Nxint -mvector-iteration
Inlining Options
SX Compiler Vector Engine Compiler
-dir { inline | noinline } none
-pi,auto -finline-functions
-pi,copy_arg -finline-copy-arguments

-pi,nocopy_arg

-fno-inline-copy-arguments

B.1.4

-pi,directory=directory-name none
-pi,file=file-name none
-pi,func_size=n none
-pi,inline ~finline
-pi,noinline -fno-inline
-pi,max_depth=n -finline-max-depth=n
-pi,max_size=n -finline-max-function-size=n
-pi,search_all none
-pi,times=n -finline-max-times=n
Parallelization Options
SX Compiler Vector Engine Compiler
-dir { par | nopar } none
-Pauto -mparallel

- 174 -

B.1.5

Appendix B SX Compatibility

SX Compiler Vector Engine Compiler
-Pmulti none
-Popenmp -fopenmp
-Pstack none
-pvctl,for[=n] none

Note: Parallelization schedule can be
controlled by -mschedule-static etc.

-pvctl,by=m none
Note: Parallelization schedule can be
controlled by -mschedule-static etc.
-pvctl,inner -mparallel-innerloop

-pvctl,noinner

-mno-parallel-innerloop

-pvctl,outerstrip

-mparallel-outerloop-strip-mine

-pvctl,noouterstrip

-mno-parallel-outerloop-strip-mine

-pvctl,parcase

-mparallel-sections

-pvctl,noparcase

-mno-parallel-sections

-pvctl,parthreshold=n

-mparallel-threshold=n

-pvctl,noparthreshold

-mno-parallel-threshold

-pvctl,res={ whole | parunit | no } none
-reserve=n none
Code Generation Options
SX Compiler Vector Engine Compiler
-mask { nosetall | setall | setmain } none
-mask { flovf | flunf | fxovf | inv | none

inexact | zdiv }

Note: It can be controlled by the
environment variable VE_FPE_ENABLE.

-stkchk | -Nstkchk

none

-sx9 | -sxace

none

- 175 -

Appendix B SX Compatibility

B.1.6 Language Options

C++/SX Compiler

Vector Engine Compiler

-Xa none
-Xc none
-Xkr none
-Xp none
-Xs none
-K { align8 | noalign8 } none
-K { complex | nocomplex } none
-Kcompound_literals none
-Knocompound_literals none
-Kconst_string_literals none
-Knoconst_string_ literals none
-K { designators | nodesignators } none

-Kexceptions

-fexceptions

Note: Enabled by default.

-Knoexceptions
Note: Enabled by default.

-fno-exceptions

-K { gcc | nogcc }

-std=keyword

-Kgnu89_.inline -fgnu89-inline
-Knognu89_.inline none
-Kmultibyte_chars none
-Knomultibyte_chars none
-Knew_for_init -ffor-scope
-Kold_for_init -fno-for-scope
-Knonstd_gnu_keywords none
-Knononstd_gnu_keywords none

-K { nullptr | nonullptr } none
-Kopenmp_fatal none

- 176 -

B.1.7

Appendix B SX Compatibility

C++/SX Compiler

Vector Engine Compiler

-Kopenmp_warning

none

-Krestrict

-frestrict

-Knorestrict

-fno-restrict

-Kstd=keyword

-std=keyword

-Ktrigraphs -trigraphs
Note: Enabled by default.
-Knotrigraphs none

Note: Enabled by default.

-Kunsigned_char
Note: Enabled by default.

-funsigned-char

-Ksigned_char

-fsigned-char
Note: Enabled by default.

-K { using_std | nousing_std } none
-Kvariadic_templates none
-Knovariadic_templates none
-K { vla | novla } none
-T { auto | noauto } none
-T { none | all | used | local } none

-Timplicit_include

-fimplicit-include

Performance Measurement Options
SX Compiler Vector Engine Compiler

-acct -proginf
-Nacct -no-proginf
-ftrace -ftrace
-ftrace { simple | demangled } none
-Nftrace -no-ftrace
-p -p
-Np none

- 177 -

Appendix B SX Compatibility

B.1.8 Debugging Options

B.1.9

SX Compiler Vector Engine Compiler
-dir { debug | nodebug } none
-9 -9
-gv none
-Ng -go0

-init,stack={ zero | nan | OxXXXX }

-minit-stack={ zero | snan | snanf |
OxXXXXX ¥}

-traceback -traceback
-traceback { simple | demangled } none
-Ntraceback none

Preprocessor Options
SX Compiler Vector Engine Compiler
-Dname[=def] -Dname[=def]
-E -E
-EP none
-H -H

-1 directory-name

-1 directory-name

-K gcc_predefines

none.
Note: Macros are defined by default.

-K nogcc_predefines none
-Kkeep_comments -C

-Knokeep_comments none
-Kkeep_line_dirs none
-Knokeep_line_dirs none
-Knew_preprocessing none

-Kold_preprocessing

-traditional-cpp
Note: -E option is needed.

- 178 -

Appendix B SX Compatibility

SX Compiler Vector Engine Compiler
-Kvariadic_macros none
-Knovariadic_macros none
-M -M
-Uname -Uname
-dD -dD
-dI -dI
-dM -dM
-dN -dN

B.1.10 List Output Options

SX Compiler Vector Engine Compiler
-Rappend -report-append-mode
-Rnoappend none
-Rdiaglist -report-diagnostics
-Rnodiaglist none

-Rfile={ file-name | stdout }

-report-file={ file-name | stdout }

-Rfmtlist -report-format
-Rnofmtlist none
-Robjlist -assembly-list
-Rnoobijlist none
-R { summary | nosummary 3} none

-Rsystem_header

-fdiag-system-header

-R { transform | notransform } none
B.1.11 Message Options
SX Compiler Vector Engine Compiler
-0 { fullmsg | infomsg | nomsg } none

- 179 -

Appendix B SX Compatibility

SX Compiler

Vector Engine Compiler

-pi { fullmsg | infomsg | nomsg }

-fdiag-inline={ 2| 1] 0}

-pvctl { fullmsg | infomsg | nomsg }

-fdiag-parallel={ 2| 1] 0}
-fdiag-vector={ 21|03}

-wall -Wall
-whno_unset_use none
-wnhone -w

-wfatal=n none
-woff=n none
-wlongjmp none

B.1.12 Assembler Options

SX Compiler

Vector Engine Compiler

-Wa,option-strings

-Wa,option-strings

B.1.13 Linker Options

SX Compiler

Vector Engine Compiler

-G

none

-Ldirectory-name

-Ldirectory-name

-llibrary-name

-llibrary-name

-WI,option-strings

-WI,option-strings

B.1.14 Directory Options

SX Compiler Vector Engine Compiler
-Y1,directory-name none
-YL,directory-name none
-YS,directory-name none
-Ya,directory-name none
-Yc¢,directory-name none

- 180 -

Appendix B SX Compatibility

SX Compiler Vector Engine Compiler
Y|, directory-name none
-Ys,directory-name none
-Yt,directory-name none

B.2 Compiler Directives

Please refer to “C.3 Compiler Directives” to confirm the correspondence tables of
compiler directives between SX compilers and compilers for the Vector Engine.
Please use the “compiler directive conversion tool” for converting from the SX
compiler directive to the Vector Engine. Please refer to “Appendix C Compiler

Directive Conversion Tool” for detail.

B.3 Environment Variables

SX Compiler Vector Engine Compiler
C_PROGINF VE_PROGINF
C_TRACEBACK VE_TRACEBACK

B.4 Implementation-Defined Specifications

B.4.1 Data Types

SX Compiler Vector Engine Compiler
Type

Size Alighment Size Alignment
_Bool 4 4 1 1
bool 4 4 1 1
char 1 1 1 1
signed char
unsigned char

- 181 -

Appendix B SX Compatibility

SX Compiler Vector Engine Compiler
Type
Size Alignment Size Alignment
short 2 2 2 2
short int
unsigned short
unsigned short int
int 4 4 4 4
unsigned int
long 8 8 8 8
long int
unsigned long
unsigned long int
long long 8 8 8 8
long long int
unsigned long long
unsigned long long int
float 4 4 4 4
double 8 8 8 8
long double 16 16 16 16
float _Complex 8 4 8 4
double _Complex 16 8 16 8
long double _Complex 32 16 32 16
pointer 8 8 8 8
enum 4 4 4 4
Array type (*1) (*2) (*1) (*3)
Structure type (*1) (*1) (*1) (*1)
union type
Class type
Bit-fields 4 (*4) 4 (*4) (*5) (*5)

(*1) The specifications of SX Compiler and Vector Engine Compiler are the same.
See “9.3.1 Data Types”.

(*2) Requires the same size and alignment as the array element, except for the
char type array. The char type array requires a 16-byte alignment.

(*3) Requires the same size and alignment as the array element.

- 182 -

Appendix B SX Compatibility

(*4) Correspond with int.
(*5) Bit-fields obey the same size and alignment rules as other structure and union

members.

B.4.2 Predefined Macros

The following predefined macros of the SX compiler are not defined by the Vector

Engine compiler.

Name

__BUILTIN_ABS

_C99

_C99_COMPLEX
_Co9oLIB
_EXCEPTION_ENABLE
_FLOATO

_LONG64

_RESTRICT
_SIGNED_CHAR
_SIZE_T64
__STDC_NO_THREADS___
SX

_SX
__SXCXX_EXTENSIONS
__SXCXX_REVISION

_VECLIB

- 183 -

Appendix C Compiler Directive Conversion Tool

Appendix C Compiler Directive Conversion Tool

This appendix describes the tool for converting from the SX compiler directive to the

Vector Engine.

C.1 ncdirconv

Name:
ncdirconv
SYNOPSIS:
ncdirconv [OPTION...] [FILE | DIRECTORY]...
DESCRIPTION:
This tool converts the sxf90/sxf03/sxcc/sxc++ directive to the nfort/ncc/nc++
directive in source file.
When this tool specifies a directory, it convert files with the following extensions in
that directory at once.
. i .h .C .cc .cpp .cp .cxx .c++ .ii .H .hh .hpp
.hp .hxx .h++ .tcc.F .FOR .FTN .FPP .F90 .F95 .FO3 .f
for .ftn .fpp .f90 .f95 .f03 .90
The original file is saved as file-name.bak.

The sxf90/sxf03/sxcc/sxc++ directives can be left after conversion or deleted by

option.
OPTIONS:
Option Description

-a, --append Append the nfort/ncc/nc++ directive. Do not delete the
sxf90/sxf03/sxcc/sxc++ directives.

-d, --delete If the nfort/ncc/nc++ directive is not supported, delete the
sxf90/sxf03/sxcc/sxc++ directive.

-f, --force Do not check file suffix.

-h, --help Display this help and exit.

-o file, --output Specify output file-name. When multiple input files are specified,

file or when a directory is specified, this option is ignored.

-p, --preserve If the nfort/ncc/nc++ directive is not supported, do not delete
the sxf90/sxf03/sxcc/sxc++ directive.

-q, --quiet Do not report about conversion.

- 184 -

Appendix C Compiler Directive Conversion Tool

Option Description

-r, --recursive Recursively conversion any subdirectories found.

-v, =--version Output version information and exit.

Messages:
If the compiler directive is converted or the nfort/ncc/nc++ does not support the
compiler directive, the message is output to the standard error.

Format:

file-name: line Line-number: message

file-name: Input file name
Line-number: Line number of file before conversion

message:

e converted "SX compiler directive" to "VE compiler directive" (Converted |
Substitute)
Indicates that the compiler directive has been converted. "Converted" is output
if compiler directive of the SX and VE have equivalent functions. "Substitute" is

output if compiler directive of SX and VE have nearly equivalent functions.

« "SX compiler directive" is not supported [(Remained| Removed/Obsolescent)]
The sxf90/sxf03/sxcc/sxc++ directive is not supported by VE. "Remained" is
output to the compiler directive scheduled for future implementation in the VE.
"Removed/Obsolescent"” is output to the compiler directive that is not planned
to be supported.

Exit status:
The exit status is 0 if conversion is successful, otherwise it is nonzero.
Notes:

This tool is creates a temporary file for work in /tmp. This temporary file is

automatically deleted at the end of the execution. The directory can be changed

with the environment variable TMPDIR.

Examples

Examplel: When a file specified.
Convert the sxf90/sxf03/sxcc/sxc++ directive contained in a file to the

nfort/ncc/nc++ directive.

- 185 -

Appendix C Compiler Directive Conversion Tool

$ cat sample.c
int func(int max)
{

int i,

int sum = 0;

#pragma cdir novector
for (i=0; i<max; i++) {
sum += i;
}

return sum,

$ nedirconv sample. ¢
sample.c: line 6: converted "novector’ to 'novector’ (Converted)

$ cat sample.c
int func(int max)
{

int i,

int sum = 0;

#pragma _NEC novector
for (i=0; i<max; i++) {
sum += i;
}

return sum,

Example2: When a directory is specified.
Take the following directory as an example.
dir/

+ Makefile
+ samplel.c
+ sample2.c
+ subdir/
+ Makefile

+ sample3.c

- 186 -

Appendix C Compiler Directive Conversion Tool

$ nedirconv dir

dir/samplel.c: line 5: converted ' loopcnt=5" to ' loop _count(5)’ (Converted)
dir/sample2.c: line 16: converted 'nodep’ to '"ivdep (Substitute)

In the above case, samplel.c and sample2.c are converted. Makefile is out of

scope because there is no file extension. Files in subdirectory 'subdir' are also

excluded.

$ nedirconv -r dir

(Converted)

dir/sample2.c: line 5: converted 'nodep’ to "ivdep’ (Substitute)
dir/samplel.c: line 16: converted ' loopcnt=5" to ' loop _count(5)’ (Converted)

dir/subdir/sample3.c: line 12: converted ' loopcnt=5" to ' loop_count(b)’

Specify -r option to convert files in subdirectories. If -r option is specified,

directory is recursively checked and converted.

C.3 Compiler Directives

SX Compiler

VE Compiler

alias
alloc_on_vreg(identifier, n)

altcode

altcode=dep
altcode=loopcnt
altcode=nodep
altcode=noshort
altcode=short

noaltcode

assoC
noassocC
assume
noassume

atomic

(Removed/Obsolescent)
vreg(identifier)

dependency_test
loop_count_test
shortloop_reduction
dependency_test

loop_count_test
nodependency_ test
noshortloop_reduction
shortloop_reduction

nodependency_test
noloop_count_test
noshort_loop_reduction
assoc

noassoc
assume
noassume

atomic

- 187 -

Appendix C Compiler Directive Conversion Tool

SX Compiler VE Compiler
cncall cncall
collapse collapse
compress (Removed/Obsolescent)
nocompress (Removed/Obsolescent)
concur concurrent

concur(by=m)
concur(for=n)
noconcur
data_prefetch
delinearize
nodelinearize
divioop
nodivioop
expand
expand=n
noexpand
extend
extend_free
fixed

free

gthreorder
nogthreorder
iexpand(function)
noiexpand(function)
inline(function)
inline(function) complete
noinline(function)
inner

noinner

listvec

concurrent schedule(dynamic, m)

concurrent
noconcurrent
(Removed/Obsolescent)
(Removed/Obsolescent)
(Removed/Obsolescent)
vwork

novwork
unroll_complete
(Removed/Obsolescent)
nounroll
(Removed/Obsolescent)
(Removed/Obsolescent)
(Removed/Obsolescent)
(Removed/Obsolescent)
gather_reorder
(Removed/Obsolescent)
inline

noinline

inline

inline_complete
noinline

inner

noinner

list_vector

- 188 -

Appendix C Compiler Directive Conversion Tool

SX Compiler

VE Compiler

nolistvec
loop_eq
noloop_eq
loopchg
noloopchg
loopcnt=n
Istval
nolstval
move
nomove
nomovediv

neighbors

noneighbors
nexpand
noconflict(identifier)
nodep
on_adb(identifier)
outerunroll=n
noouterunroll
overlap

nooverlap

parallel for

parallel for private(identifier)

parallel sections
section
select(keyword)
shape

shortloop

nolist_vector
(Removed/Obsolescent)
(Removed/Obsolescent)
interchange
nointerchange
loop_count(n)

Istval

nolstval

move_unsafe

nomove

move

neighbors
Note: Neighboring access optimization is
effective only when -march=ve3 is
enabled.
noneighbors

inline_complete
(Removed/Obsolescent)
ivdep
(Removed/Obsolescent)
outerloop_unroll(n)
noouterloop_unroll
(Removed/Obsolescent)
(Removed/Obsolescent)
parallel for

parallel for private(identifier)
(Removed/Obsolescent)
(Removed/Obsolescent)
(Remained)
(Removed/Obsolescent)

shortloop

- 189 -

Appendix C Compiler Directive Conversion Tool

SX Compiler

VE Compiler

skip

sparse
nosparse

split

nosplit

sync

nosync
threshold
nothreshold
traceback
unroll=n
nounroll
unshared
vecthreshold
vector
novector
verrchk
noverrchk
vichk

novichk

vob

novob
vovertake(identifier)
novovertake
vprefetch
novprefetch
vreg(identifier)
vwork=keyword

vworksz=n

(Removed/Obsolescent)
(Remained)

(Remained)

(Remained)

(Remained)

(Remained)

nosync
(Removed/Obsolescent)
(Removed/Obsolescent)
(Remained)

unroll(n)

nounroll
(Removed/Obsolescent)
vector_threshold(n)
vector

novector
verror_check
noverror_check
(Removed/Obsolescent)
(Removed/Obsolescent)
vob

novob

vovertake
novovertake
(Remained)
(Removed/Obsolescent)
vreg(identifier)
(Removed/Obsolescent)

(Removed/Obsolescent)

- 190 -

C.4

Appendix C Compiler Directive Conversion Tool

Notes

» If -a or -p is specified, the SX compiler directive will remain and a warning will be

output at compile time.

$ ncc -c sample. ¢
“sample.c”, line 6: warning: unrecognized #pragma
#pragma cdir novector

A

ncc: vec(103) : sample.c, line 8: Unvectorized loop.

* The original file is saved as file-name.bak. When file-name.bak already exists,

rename file-name.bak to file-name.bak2, then save the new file as file-name.bak.

Up to five files are saved. Please delete files as necessary.

* This tool does not check the format of the input file. If the format of the SX

compiler directive is incorrect, conversion may not be performed correctly.

» If the input file is a symbolic link file, the symbolic link destination file is updated.

The "file-name.bak" is created as a regular file.

- 191 -

Appendix D Change Notes

Appendix D Change Notes

The following changes are done from the previous version (Rev.36 Dec.2024

released).
» The description of the following compiler option is added in "Section 3.2".
- -m[no-]vector-assume-loop-count

» Add descriptions for messages vec(135), vec(136), vec(144), opt(1394),
opt(3008), opt(3012), opt(3013), and opt(3014) in Section "11.1.2 Message List".

- 192 -

Index

@filE-NAME......ciiiiiiii i 17

_flo@tll o 97

_ floatle _CompleX ..voveveiiiiiiiiiiiiieieieeaans 99
1

1-byte signed integer........cocveveviiiiiiiinnineenn, 95

1-byte unsigned integer........cocovviiiiiiininennnnn. 95
2

2-byte signed integer.........cocvvviiiiiiiiiiins 95

2-byte unsigned integer........cccoeviviiieiiiiinnns 96
4

4-byte signed integer......cccoovvvviiiiiiiiiiieen 96

4-byte unsigned integer........cvevvveiiiiiiiiininenen 96
8

8-byte signed integer.........cocvviiiiiiiiiiii 96

8-byte unsigned integer.........ccoviviiiiiiiiiinnns 96
A

Accuracy degradationcoceieiiiiiiiiin 6

advance_gathercooviiiiiiiiiini e 41

alignment ... 88

always_inline ..o 41, 64

Arithmetic Conversion.........cocvvvviiiiiiinnineennn, 94

Arithmetic EXceptionsc.coiviiiiiniiiiiinnns 5

Accuracy degradationcccveviiiiiiiininnnnn. 6

Exception while executing a vector instruction7

Floating-point overflowccooveiiiiiiiiinn, 6

Floating-point underflowcccoveiiiiiiiiins 6

Invalid operationcccoeviiiiiiiiiii 6

Using Traceback Informationooevienns 7
array type..oooviiii 89
—assembly-list... ..o 36
= 1577 Lo 41
£= 15757 [[41
ALOMIC. i 41
ALEFDULES .o, 86
Automatic inliningcoviviiiici 64
Automatic Parallelization.............ooceviiniinnnn, 69

B
B 37
Basic Asm Statementocoooiiiiiinenns 111
=BAYNamic ..o 36
Bit FieldS ..o.veieiiie e 103
bit-fieldsveee e, 90
“BStatic v 36
Builtin FUNCtioNS ..., 86
C

S 16
2 34
SO 16
“ClEAN e 16
CNCAIL e 41
Code Generation Module...........cccoviiieinnnne. 83
COIAPSE e 42
Compiler Directive Conversion Tool 184
Complex and Floating-point Conversion.......... 94
Complex and Integral Conversion 93
Complex CONVErSIONc.vveveiiieiiieieieeaennes 93
CoMPIEX TYPES . 99

COMPIrESSION ...cuieieieieiece e e 58
CONCUITENE . 1t as 42

Conditional Parallelization Using Dependency Test

.. 69
Conditional Parallelization Using Threshold Test69
Conditional Vectorization.............cocovvvinninnnnn. 59
configuration fileooiiiiiii 167
Configuration file ..o, 167
cross-file INliNiNGcooveiiii e 67
D
D 34
Data TYPeS ...vviviiiii 88
D e 34
demangling ...c.oevveiiii 119
dependency_test.....cccovviiiiiiiiiii 42
derived type .o 89
s PP 34
Diagnostic List ...o.vviviiiiiiiiiiiceneneee e 77
=AM 34
AN e 34
dOUDIE .. 98
double _Complexcooevviiiiiiiiiiiee e, 100
double-precision complex........ccccveveiinneninnen. 100
double-precision floating-point...............cevvne. 98
E
= 35
Enumeration Type ...coovviiiiiiiiiiiiiieieee e 102
Environment Variablesocooiiiiiinininnn 9
EXPANSION. . .uvuiiiiiiir e 58
EXplicit inlining ...c.oeeie s 64
Extended Asm Statement............cocevviiiinnnnns 111
F
-faggressive-associative-math........................ 18
-fargument-alias ... 17
-fargument-noalias..........ccoviviiiiiiiiiinies 17

-fassociative-mathccooiiiiiii 17

-fcheck-noexcept-violationcooovevviiiiinnns 18
-fcse-after-vectorizationcooviviiiin, 18
-fdefer-inline-template-instantiation............... 31
-fdiag-inline ... 33
-fdiag-parallel..........ccoovoiiiiiiii 33
-fdiag-system-header.............cocooviiiiiinnn, 33
-fdiag-VeCtor ..o 33
-fEXCEPLIONS .. veeee e 31
-fext-numeric-literals...........coocovviiiinnn, 31
-ffast-math ..o 18
-ffast-math-check.............cooviiiiiinnn, 18
I Or-SCOPE. vt 31
-fgNU89-inline ...ovviii 30
-fignore-induction-variable-overflow 18
-fignore-volatile.........cocoiiiiiii e 18
-fimplicit-include..........cooviiiii 31
-finline oo 26
~finline-abort-at-error.............coovvviiiiinn, 26
-finline-attributeocooi 26
-finline-copy-argumentscccoovivveniiininnnns 26
-finline-directory......ccocveviiiiiiii 26
finline-file ..o 26
-finline-functionscocoviiii 27
-finline-loop-test.......ooviiii 27
-finline-max-depthcoocoiiii 27
-finline-max-function-sizecooeviiinn, 27
-finline-max-timesocoviviii, 27
-finline-suppress-diagnostiCS.........cvcvevviiinnnns 27
-finstrument-functions.............oooevvini, 28
SIVAED i 18
-fivdep-omp-worksharing-loope.e. 18
110} | P 97
float _CompleXoevirviiiiiiiiiieee e, 100
Floating-point and Integral Conversion 93
Floating-point Conversionccocovveeeninnen. 92
Floating-point overflow.........cccooiiiiiiiiiinennn, 6
Floating-Point Types........ccooviiiiiiiiiiee, 97
Floating-point underflow.........ccocoviviiiniiinnnnen, 6

-floop-COllAaPSE.....vvivii i 18

-floop-CoUNE .eeeee s 18

-floop-fUSION ...ceee s 19
-floop-interchange..........cooiiiiiiiiiens 19
-floop-normalize.........cooiiiiii e 19
=FloOP-SPlit.. . 19
-floop-strip-Mine......cocviiiii 19
-floop-unroll ... 19
-floop-unroll-complete ... 19
-floop-unroll-max-timescccooiiieiiiiiennenns 19
-fmatrix-multiply ... 19
-fmove-loop-invariants.........ccoeviiiiiiniieenns 20
-fmove-loop-invariants-if..........cooiiiinn. 20
-fmove-loop-invariants-unsafe 20
-fmove-nested-loop-invariants-outer 20
-fnaked-ivdep ..o 20
-fnamed-aliascoovviiiii 20
-fnamed-noalias........cooiiiiiiiiii 20
-fno-allow-keyword-macros...........ccocvevvenennenns 30
-fho-ext-numeric-literalsccooviiiiiiinenns 31
-fno-inline-directory.......ccoviiiiiiiiiiiiin 26
-fho-inline-file ... 27
SfOPENMIP cei 25
-fopenMpP-to0IS ..o 25
Forced Loop Parallelizationccocvevviiinnns 70
forced_collapsSecooviviiiiiiiiiii 42
FOrmat LiSt....cooieiiii s 78
-fouterloop-unroll ..o 20
-fouterloop-unroll-max-sizecccevvevevnnnnnn. 20
-fouterloop-unroll-max-times.............ccoceveeeee. 20
DI e 28
AEPIC i 28
-fprecise-mathcovviiii 21
-freciprocal-math ..o 21
-freplace-loop-equation...........ccoeviiiiiinininnenns 21
-frestriCt. 30, 31
S e 31
-fsigned-char ..o 30
-fstrict-aliasing ..o 21
-fSYNTax-onlyooveeiiii 16

-ftemplate-depth......cccooiiiiii 31

-fthis-pointer-aliasc.ccocoviiiiiiens 21
-fthis-pointer-noalias.........c.ccocoviiiiiiiininenss 21
rACE e 28
-funsigned-char.........cccooiiiii 30
G
T 29
gather_reorder......cccooeiiiiiiiiiie e 42
H
H 35
half-precision compleX........cocovviiiiiiiiiininnen. 99
half-precision floating-point...........c..coeevvinne. 97
Half-Precision Floating-Point Type................ 164
——help 38
HOME it 9
I
PP 35
PP 35
ignore_feedback_scalar..........ccoeviiiiiinennnnn. 42
Implementation-Defined Specifications........... 88
SINCIUAE e 35
INHNE . 42, 64
Inline Assembly Languagecccvvenennenne. 111
inline directivec..ooeviiiii e, 64
inline_completeccoooeiiiiiiiiiiiiiien, 43, 64
INliNING .o 64
Inlining Module.......cooiiiiiii 82
0T 43
] 96
Integer TYPES ...ccvviiiiii 95
Integral ConversioN.......cvcvevviiiiiiiiiieieeaees 91
Integral Promotion.......c.coovviiiiiiiiniens 90
iNterchange. ..o, 43
Invalid operation........cocovieiiiiii e, 6
SISYSFOOL .. vt 35
SISYSEEM L 35

Tteration ..o 57
IVABD vt 43
L
] TP 36
Language-Mixed Programming............ccc.ueues 117
DCH+ oo 105
ISt _VECEOr e 43
SHIDrary cu 37
JONG et 96
loNg double ...cvvniii 98
long double _CompleXcccceviviviniiiiiininnns 101
[ONG IONG ceniiiiee e 96
[oTo] o J PP 72
00P_COUNE 1.t 43
loop_count_test ...oiviiiiiiiiiiiiii 43
ISEVAL e 43
M
M s 35
Macro Operationscovvvviiiiiinree s 56

COMPIESSION v e aas 58
EXPanNSioN ..o 58
Iterationcoovviii 57
Maximum values and minimum values 57
Product. ..o 56
SEAMCH et 58
Sum or inner productc.cooeiviiiiiniieane. 56
MaNGHNG .euiiiiii 119
“MAFCH 28
Maximum values and minimum values............ 57
-mconditional-index-testccooiiiiiinnns 21
-mcreate-threads-at-startup............coceeivinins 25
MDD 35
MESSAGES ...iviiiriiir 136
M 35
-mfple-format......c.oooiiii 28
-mgenerate-il-fileccooivii 27
=MINIE-StACK e 29

MOV ittt 43
MOVE_UNSAfE ot 43
SMP 35
-mparallel ... 25
-mparallel-innerloop......ccovviiiiiiiiii 25
-mparallel-omp-routinecocoeviiiiiciennn. 25
-mparallel-outerloop-strip-mine..................... 25
-mparallel-sectionscocoviiiiiiiiiiens 25
-mparallel-threshold..........c.coooiiiiiiiinenns 25
-mread-il-file.......ooiii 28
SMFELAIN Lo 22
“MSChEA ..o 22
-mschedule-chunk-size...........coooviiiiiiininenns 26
-mschedule-dynamicC.........ccoovviiiiiiiiinnnnnn. 26
-mschedule-runtime........c.coiviiiiiiiiiniiens 26
-mschedule-statiC........cooviiiiiiies 26
T 35
SMVECEOLN it 22
-mvector-advance-gatherccoevviiiinnns 22
-mvector-advance-gather-limit...................... 22
-mvector-assignment-threshold..................... 23
-mvector-assume-loop-countccceveinnnn. 23
-mvector-dependency-test...........cooeviiiiinenns 23
-mvector-floating-divide-instruction 23
-MVECEOr-fMa ..o 23
-mvector-intrinsic-checkcoovviiiiinenss 23
-mvector-iteration.........cococviiiiiiii 23
-mvector-iteration-unsafe................ocoeiienis 23
-mvector-loop-count-test...........coevviiiiiinnnn. 23
-mvector-low-precise-divide-function 23
-mvector-merge-conditional..............coiiiennns 24
-mvector-neighborscociviiiiiiiiices 24
-mvector-packed ... 24
-mvector-power-to-explogc..cooeveviiininnenns 24
-mvector-power-to-sqrt.........ccocviiiiiiiini 24
-mvector-reductioncocovoviiiiiiin e 24
-mvector-shortloop-reduction...............c....c... 24
-mvector-sgrt-instruction..............cocoeiiiins 24

-mvector-thresholdcccviiiiiiiiiii 25

-mwork-vector-Kindcococveiiiiiiiininenn, 25, 56

N
NCC_COMPILER_PATHcciiiiiiiiieieeeeeeee 9
NCC_INCLUDE_PATH ...ttt 9
NCC_LIBRARY_PATH ...cooiiiiiiiiiiiicieeeeeeee 9
NCC_PROGRAM_PATH ..ot 10
NCAIFCONY .eieiee e ee e 184
NEC Compat C++ Standard Library.............. 105
NEIGhDOIS ... 44
NO_FErace ... 86
noadvance_gather.......cocvviiiiiiiiiiniiiieeans 41
0= 7] o 41
(L0 = ES1]] 41
NOCONCUITENT ..t s 42
nodependency_testcocviiiiiiiiiiiiieeas 42
NOFMA ..t 44
NOFUSE L.veii e 44
NOINIINE .. e 42, 64
1)1] = PSPPI 43
NOINtErChaNge......cvvveiiiieie e 43
T0] 11 V=T o | 43
noloop_count_test.......cocviiiiiiiiiiiiiiiis 43
NOISEVAL .. e 43
L0} 0 8T 1Y 43
noouterloop_unrollcoooiiiiiiiii 45
nopacked_VeCtOr......cocviiiiiiiiiii i 45
B 1076 18 1T < 38
noshortloop_reductioncooviviviiiiiiiiinnns 47
NOSPAISE ..viutiniitit it 47
-NOSEArtfiles .ovuveii 37
“NOSEAINC. e 36
SNOSEANID. e 37
110753 0 44
NOUNFOIL e e 47
(L0177 < o{ ¥ 48
NOVEITOr_CheCK ..oviiiii i 48
NOVOD ..t 48
NOVOVEITAKE. . euiniiiie i 48

NOVWOIK ettt ens 49
0)
L T 16
S0 17
OMP_NUM_THREADScciiiiieieieeeeeee 11
OMP_STACKSIZE ...c.iviiiiiiiiieieieeeeeeeeee 11
OMP_TOOL .eiiiiiiieeeeeeee e 11
OMP_TOOL_LIBRARIEScciiiiiiiieieieeinenen, 11
OMPT interface......coovviviiiiiniiiiee 72
OpenMP Parallelizationccccooviiiiiiiinnnn.. 71
Optimizationscocoviiii 54
OPEIMIZE .. 45
OptioN LISt ..o 77
OPLIONS e 44
Outer Loop Strip-miningcooveveviiiininnnnenes 59
outerloop_unroll ... 45
P
D 29
P 36
Packed vector instructionscocoveevvninnen. 61
pPacked_VeCTOr......civviiiiiiiiii i 45
parallel for ... 45
parallel 00Pvvvveiiei 72
parallel mastercoeviiiiiiii 72
Parallelization of inner LOOPScvvvvviineeninnen. 69
Partial Vectorizationccooviiiiiiiiiii, 56
PATH .. 10
—PEAANTIC .. 33
-pedantiC-errorsooveiiiiieiece e 33
01« P 29
Pointer TYPe. ..o v 102
Predefined MacCro.......couveiiiiiiiiiiniieenaens 103
-print-file-Nname........oocviiiiii 38
~PriNt-Prog-Name.......cvvviiiiiiiiee e 38
Product ... 56
“PrOGINT e 29

—pthread ... 26

quadruple-precision complexcocovevivenenn. 101
quadruple-precision floating-point.................. 98
R
SFAYNAMIC. it 37
SrePOrt-all. e 33
-report-append-modecoeuveiiiiiiiniieeenns 33
“FEPOIE=C wviviiiiiiir e 33
-report-diagnosticscovviiiiiiiii e 33
—report-file....oo i 33
—report-format ... 33
—report-inline ..o 34
—report-OptioN ... 34
-report-system-header............ccooviviiiiiiininnnns 34
-report-Userinfoovvveiiiiiiiieire e 34
~FEPOIt-VECLOr . v 34
FELAIN. . 46
S
S T PP PP 16
SEArCh o 58
select_concurrent.......ooevvvviiiiiniiinii, 46
select_vectorocevvivinin 46
sshared ..o 37
L] T 95
ShOrEIOOP . e 47
ShOME-100P c.vee e 60
shortloop_reduction.........ccocviiiiiiiiiniiiiieieen, 47
Side Effects of Optimizationccocvvvveinnenns 55
signed Char......oooi i 95
single-precision cCOmMpleXcccovvveienienennen. 100
single-precision floating-point 97
LS 7 < 90

SSEATIC v 37
=StAtIC-NEC v 37
SSE 30, 32
SSEANID e 16
structure type oo 89
Sum or inner product........ooeviiiiiiiiiiiineaaes 56
==SYSIOOL ettt 37
T

TMPDIR ...t 10
-traceback ... 30
-traditional........oooiiii 30
-traditional-cpp.....cccvviii 30
SErgraphs oo 30
Troubleshootingcovvvveiiiiiiieee e, 151
Type CONVEISION ..vuiiieiiiiiiieieieie e e 90

Arithmetic Conversion.........cccovveviiieninnenns 94

Complex and Floating-point Conversion 94

Complex and Integral Conversion............... 93

Complex CONVErSiONccvvvveviiiiniiiieiaeaennss 93

Floating-point and Integral Conversion........ 93

Floating-point Conversion...........ccccvevvnnne. 92

Integral Conversionccooveeiiiiinieeneeen, 91

Integral Promotioncooviiiiiiiniinenn, 90

)

U 36
SUNAES e 36
UNION EYPE v e 89
UNFOHL L 47
unroll_complete....cococviiiiiiiiii, 47
unsigned charcooviiii 95
unsigned iNt......oviiiiii 96
UNSigNed I0Ng....vvvieiiiiiiier e 96
unsigned 1oNg 10Ng.....oocviiiiiiiiiiee, 96
unsigned short ... 96

\")
TV e 38
VE_ADVANCEOFF ..ot 12
VE_FPE_ENABLE ...c.iiiiiiiiiicceeeeeeee 12
VE_INIT_STACK ...t 12
VE_LD_LIBRARY_PATH ...cciiiiiiiiiieiiieeieeieanas 13
VE_LIBRARY_PATH...coiiiiiiiiiiicieeeeeeeees 10
VE_NODE_NUMBER.......ctiiiiiiiiiiiiieeeeees 13
VE_OMP_NUM_THREADSccciiiiiiiiniiniiannns 11
VE_OMP_STACKSIZE ... 11
VE_OMP_TOOL ..cuuiviiiieieieeeeeeeeeeieeee e 11
VE_OMP_TOOL_LIBRARIEScovviiiiiniininnnens 11
VE_PROGINF ..ottt 13
VE_TRACEBACKciiiiii e 14
VE_TRACEBACK_DEPTH.....cccoviiiiiiiiiiiiiieens 14
VE1/VE3 Compatibilitycccoviiiiiiiiiieenn, 163
VECEON e 48
vector mask type ..o 109
Vector Module......ccoviiiiiii e, 83
VECLOr LYPE .. 107
vector_thresholdcccooviiiiiiii 48
Vectorization......ovvvviiiii 55
Vectorization Features.........cocovviiiiininennnnn. 55
Verror_Checkooveiiiiii e, 48
V4181 [o 38
VOD . 48
VOVEITAKE ..uei e 48

w
W e e 33
W 36
SWall 32
WChar_ L. 90
SWEOMMENE .o 32
“WEITOF v 32
W 37
-Wno-div-by-zeroccoeviiiiiiiiiiiii 32
D 36
-WUNKNOWN-Pragmaveevvieeiiiiiiiieeanenns 32
-Wunsued-parameter........cooveeiiiiiniienienns 32
SWUNUSEA e 32
-Wunused-but-set-parameter............coceveinnis 32
-Wunused-but-set-variable 32
-Wunused-value ... 32
-Wunused-variable..........ccooviiiiiiiniens 32

X
SX 16
=Xassembler... ..o 36
“XHNKEE e 37

y4
S 37

	Chapter1 C/C++ Compiler
	1.1 Overview
	1.2 Usage of the Compiler
	1.3 Execution
	1.4 Command Line Syntax
	1.5 Specifying Compiler Options
	1.6 Searching files specified by #include directive
	1.7 Searching Libraries
	1.8 Arithmetic Exceptions
	1.8.1 Operation Result After Arithmetic Exception Occurrence
	1.8.2 Changing Arithmetic Exception Mask
	1.8.3 Using Traceback Information
	1.8.4 Remarks on Changing Arithmetic Exception Mask

	Chapter2 Environment Variables
	2.1 Environment Variables Referenced During Compilation
	HOME
	NCC_COMPILER_PATH
	NCC_INCLUDE_PATH
	NCC_LIBRARY_PATH
	NCC_PROGRAM_PATH
	PATH
	TMPDIR
	VE_LIBRARY_PATH

	2.2 Environment Variables Referenced During Execution
	OMP_NUM_THREADS / VE_OMP_NUM_THREADS
	OMP_STACKSIZE / VE_OMP_STACKSIZE
	OMP_TOOL / VE_OMP_TOOL
	OMP_TOOL_LIBRARIES / VE_OMP_TOOL_LIBRARIES
	VE_ADVANCEOFF
	VE_FPE_ENABLE
	VE_INIT_STACK
	VE_LD_LIBRARY_PATH
	VE_NODE_NUMBER
	VE_PROGINF
	VE_TRACEBACK
	VE_TRACEBACK_DEPTH

	Chapter3 Compiler Options
	3.1 Overall Options
	3.2 Optimization Options
	3.3 Parallelization Options
	3.4 Inlining Options
	3.5 Code Generation Options
	3.6 Debugging Options
	3.7 Language Options
	3.7.1 C Language Control Options
	3.7.2 C++ Language Control Options

	3.8 Message Options
	3.9 List Output Options
	3.10 Preprocessor Options
	3.11 Assembler Options
	3.12 Linker Options
	3.13 Directory Options
	3.14 Miscellaneous Options
	3.15 Optimization Level and Options’ Defaults

	Chapter4 Compiler Directives
	4.1 Format of Compiler Directive
	4.2 Compiler Directive Options
	[no]advance_gather
	always_inline
	[no]assoc
	[no]assume
	atomic
	cncall
	collapse
	[no]concurrent
	[no]dependency_test
	forced_collapse
	gather_reorder
	ignore_feedback_scalar
	[no]inline
	inline_complete
	[no]inner
	[no]interchange
	ivdep
	[no]list_vector
	loop_count(n)
	[no]loop_count_test
	[no]lstval
	move_unsafe / move / nomove
	[no]neighbors
	nofma
	nofuse
	nosync
	options “compiler-option [compiler-option]...”
	optimize “compiler-option [compiler-option]...”
	outerloop_unroll(n) / noouterloop_unroll
	[no]packed_vector
	parallel for
	pvreg(array-name)
	retain(array-name)
	select_concurrent
	select_vector
	shortloop
	[no]shortloop_reduction
	[no]sparse
	unroll(n) / nounroll
	unroll_complete
	[no]vector
	vector_threshold(n)
	[no]verror_check
	[no]vob
	[no]vovertake
	vreg(name)
	[no]vwork

	4.3 Compiler options which cannot be specified by options directive
	4.4 Compiler options which can be specified by optimize directive

	Chapter5 Optimization and Vectorization
	5.1 Code Optimization
	5.1.1 Optimizations
	5.1.2 Side Effects of Optimization

	5.2 Vectorization Features
	5.2.1 Vectorization
	5.2.2 Partial Vectorization
	5.2.3 Macro Operations
	5.2.4 Conditional Vectorization
	5.2.5 Outer Loop Strip-mining
	5.2.6 Short-loop
	5.2.7 Packed vector instructions
	5.2.8 Other
	5.2.9 Remarks on Using Vectorization

	Chapter6 Inlining
	6.1 Automatic Inlining
	6.2 Explicit Inlining
	6.2.1 Description
	6.2.2 Specifying Inline Directive
	6.2.3 Remarks

	6.3 Cross-file Inlining
	6.4 Inline Expansion Inhibitors
	6.5 Notes on Inlining

	Chapter7 Parallelization
	7.1 Automatic Parallelization
	7.1.1 Description
	7.1.2 Conditional Parallelization Using Threshold Test
	7.1.3 Conditional Parallelization Using Dependency Test
	7.1.4 Parallelization of inner Loops
	7.1.5 Forced Loop Parallelization

	7.2 OpenMP Parallelization
	7.2.1 Using OpenMP Parallelization
	7.2.2 OpenMP 5.0 Parallelization
	7.2.3 Extensions on OpenMP Parallelization
	7.2.4 Restrictions on OpenMP Parallelization

	7.3 Threads
	7.3.1 Set and Get Number of Threads
	7.3.2 Thread Creation and Destroy
	7.3.3 Postpone Thread Creation

	7.4 Notes on Using Parallelization

	Chapter8 Compiler Listing
	8.1 Option List
	8.2 Diagnostic List
	8.2.1 Format of Diagnostic List
	8.2.2 Notes

	8.3 Format List
	8.3.1 Format of Format List
	8.3.2 Loop Structure and Vectorization/Parallelization/Inlining Statuses
	8.3.3 Notes

	8.4 Optimization List of Each Module
	8.4.1 Inlining Module
	8.4.2 Vectorization Module
	8.4.3 Code Generation Module

	Chapter9 Programming Notes Depending on the Language Specification
	9.1 Builtin Functions
	9.1.1 Performance Tuning Support
	9.1.2 Debugging Support

	9.2 Attributes
	9.3 Implementation-Defined Specifications
	9.3.1 Data Types
	9.3.1.1 Size and alignment
	9.3.1.2 Size and alignment of derived type
	9.3.1.3 Other types

	9.3.2 Type Conversion
	9.3.2.1 Integral Promotion
	9.3.2.2 Integral Conversion
	9.3.2.3 Floating-point Conversion
	9.3.2.4 Complex Conversion
	9.3.2.5 Floating-point and Integral Conversion
	9.3.2.6 Complex and Integral Conversion
	9.3.2.7 Complex and Floating-point Conversion
	9.3.2.8 Arithmetic Conversion

	9.3.3 Internal Representation of Data
	9.3.3.1 Integer Types
	9.3.3.2 Floating-Point Types
	9.3.3.3 Complex Types
	9.3.3.4 Enumeration Type
	9.3.3.5 Pointer Type
	9.3.3.6 Bit Fields

	9.3.4 Predefined Macro

	9.4 C++ Standard Library
	9.4.1 Overview
	9.4.2 Remarks

	9.5 Vector Type Extension
	9.5.1 Overview
	9.5.2 Type-definition of Vector Type
	9.5.3 Constants
	9.5.4 Operators
	9.5.5 Builtin Functions
	9.5.6 Vector Mask Type
	9.5.7 Remarks
	9.5.8 Example

	9.6 Inline Assembly Language
	9.6.1 Basic Asm Statement
	9.6.2 Extended Asm Statement
	9.6.3 Specifying name in assembler codes
	9.6.4 Notes

	9.7 Remarks
	9.7.1 Remarks for C language
	9.7.2 Remarks for C++ language

	Chapter10 Language-Mixed Programming
	10.1 Point of Mixed Language Programming
	10.2 Correspondence of C/C++ Function Name and Fortran Procedure Name
	10.2.1 External Symbol Name of Fortran Procedure
	10.2.2 External Symbol Name of C++ Function
	10.2.3 Rules for Corresponding C/C++ Functions with Fortran Procedures
	10.2.4 Examples of Calling

	10.3 Data Types
	10.3.1 Integer and Logical Types for Fortran
	10.3.2 Floating-point and Complex Types for Fortran
	10.3.3 Character Type for Fortran
	10.3.4 Derived Type for Fortran
	10.3.5 Pointer
	10.3.6 Common Block for Fortran
	10.3.7 Notes

	10.4 Type and Return Value of Function and Procedure
	10.5 Passing Arguments
	10.5.1 Fortran Procedure Arguments
	10.5.2 Notes
	10.5.2.1 Appending Arguments Implicitly

	10.6 Linking
	10.6.1 Linking Fortran Program and C Program
	10.6.2 Linking Fortran Program and C++ Program

	10.7 Notes

	Chapter11 Messages
	11.1 Diagnostic Messages
	11.1.1 Diagnostic Message Format
	11.1.2 Message List

	11.2 Runtime Error Message

	Chapter12 Troubleshooting
	12.1 Troubleshooting for compilation
	12.2 Troubleshooting for execution
	12.3 Troubleshooting for tuning
	12.4 Troubleshooting for installation

	Chapter13 VE1/VE3 Compatibility
	13.1 Executables Compatibility
	13.2 Changes of Search Path
	13.3 Changes of Compiler Options
	13.4 Half-Precision Floating-Point Type
	13.4.1 Format of Half-Precision Floating-Point Type
	13.4.2 Mixing binary16 and bfloat16

	13.5 Notice

	Chapter14 Notice
	Appendix A Configuration file
	A.1 Overview
	A.2 Format
	A.3 Example

	Appendix B SX Compatibility
	B.1 Compiler Options
	B.1.1 Overall Options
	B.1.2 Vector/Scalar Optimization Options
	B.1.3 Inlining Options
	B.1.4 Parallelization Options
	B.1.5 Code Generation Options
	B.1.6 Language Options
	B.1.7 Performance Measurement Options
	B.1.8 Debugging Options
	B.1.9 Preprocessor Options
	B.1.10 List Output Options
	B.1.11 Message Options
	B.1.12 Assembler Options
	B.1.13 Linker Options
	B.1.14 Directory Options

	B.2 Compiler Directives
	B.3 Environment Variables
	B.4 Implementation-Defined Specifications
	B.4.1 Data Types
	B.4.2 Predefined Macros

	Appendix C Compiler Directive Conversion Tool
	C.1 ncdirconv
	C.2 Examples
	C.3 Compiler Directives
	C.4 Notes

	Appendix D Change Notes
	Index

