

輸出する際の注意事項

本製品(ソフトウェアを含む)は、外国為替および外国 貿易法で規定される規制貨物(または役務)に該当するこ とがあります。

その場合、日本国外へ輸出する場合には日本国政府の輸出計可が必要です。

なお、輸出許可申請手続きにあたり資料等が必要な場合 には、お買い上げの販売店またはお近くの当社営業拠点に ご相談ください。

はしがき

本書は、Vector Engine 向けの NEC Fortran コンパイラの使用法について説明したものです。

備考

- (1) 本書は2025年10月発行の第37版です。
- (2) NEC Fortran コンパイラは、以下の言語仕様標準に準拠しています。
 - ISO/IEC 1539-1:2010 Programming languages Fortran
 - OpenMP Application Program Interface Version 4.5
- (3) ISO/IEC 1539-1:2018 Programming languages Fortran の一部機能にも対応 しています。
- (4) OpenMP Application Program Interface Version 5.0 の一部機能にも対応しています。
- (5) 本書では Vector Engine を略して VE と表記しています。
- (6) 本書の読者は、Linux 上での Fortran/C/C++言語でのソフトウェア開発の知識を有していることを前提としています。
- (7) 本書内の製品名、ブランド名、社名などは、一般に各社の表示、商標または登録商標です。

目 次

第1章	Fortran コンパイラ1
1.1	概要1
1.2	コンパイラの起動1
1.3	プログラムの実行3
1.4	コマンドラインの指定形式4
1.5	コンパイラオプションの指定4
1.6	モジュールファイルのサーチ5
1.7	INCLUDE 行、および、#include で取り込まれるファイルのサーチ6
1.8	ライブラリのサーチ6
1.9	演算例外6
1.9	.1 演算例外発生時の演算結果6
1.9	.2 演算例外マスクの変更8
1.9	.3 トレースバック機能との連携8
1.9	.4 演算例外マスクを変更するときの注意事項8
1.10	実行時の終了コード9
第2章	環境変数
2.1	コンパイル時に参照される環境変数10
2.2	実行時に参照される環境変数11
第3章	コンパイラオプション32
3.1	全体オプション
3.2	最適化・ベクトル化オプション34
3.3	並列化オプション42
3.4	インライン展開オプション43
3.5	コード生成オプション45
3.6	デバッグオプション46
3.7	言語仕様制御オプション
3.8	メッセージオプション50
3.9	リスト出力オプション52
3.10	プリプロセッサオプション53
3.11	アセンブラオプション54
3.12	リンカオプション54

3	.13	ディ	レクトリオプション	56
3	.14	その	他オプション!	56
3	.15	最適	「化レベルとオプションの既定値!	57
第4	1章		ンパイラ指示行	59
4	.1	コン	パイラ指示行の形式	59
4	.2	コン	パイラ指示オプション!	59
4	.3	opti	ons 指示オプションで指定できないコンパイラオプション	57
4	.4	opti	mize 指示オプションで指定できるコンパイラオプション	58
第5	章	最	適化・ベクトル化	71
5	.1	コー	· ドの最適化	71
	5.1	.1	コンパイラの適用する最適化	71
	5.1	.2	最適化による副作用	72
5	.2	ベク	⁷ トル化機能	72
	5.2	.1	ベクトル化	72
	5.2	.2	部分ベクトル化	72
	5.2	.3	マスク演算の最適化	73
	5.2	.4	マクロ演算	74
	5.2	.5	条件ベクトル化	78
	5.2	.6	外側ループストリップマイニング	78
	5.2	.7	ショートループ	79
	5.2	.8	パックドベクトル命令	79
	5.2	.9	その他のベクトル化コードに適用する最適化	30
	5.2	.10	ベクトル化機能使用時の注意事項	30
5	.3	その	他の高速化機能	31
	5.3	.1	配列一括出力の VH へのオフロード	31
	5.3	.2	バッファの効率的な利用	32
第6	5章	1	、ンライン展開機能	33
6	.1	自動)インライン展開	33
6	.2	明示	的インライン展開	33
	6.2	.1	説明	33
	6.2	.2	インライン展開指示行の指定	33
	6.2	.3	注意事項	34
6	.3	クロ	スファイルインライニング	35
6	.4	イン	・ ライン展開の阻害要因	36

6.5	イン	ライン展開機能使用時の注意事項	86
6.6	イン	ライン展開機能に対する制限事項	87
第7章	É	動並列化・OpenMP 並列化機能	88
7.1	自動	並列化機能	88
7.1	.1	自動並列化	88
7.1	.2	作業量による条件並列化	88
7.1	.3	依存関係による条件並列化	88
7.1	.4	最内側ループの並列化	88
7.1	.5	ループの強制並列化	89
7.2	Оре	nMP 並列化	90
7.2	.1	OpenMP 並列化の利用	90
7.2	.2	OpenMP Version 5.0	90
7.2	.3	OpenMP 並列化に対する拡張機能	90
7.2	.4	OpenMP 並列化に対する制限事項	91
7.3	スレ	·ッド制御	92
7.3	.1	スレッド数の指定・取得	92
7.3	.2	スレッドの生成・解放	92
7.3	.3	スレッド生成の遅延	94
7.4	注意	事項	94
第8章	=	ンパイルリスト	95
8.1	オフ	゚ションリスト	95
8.2	診断	· iメッセージリスト	96
8.2	.1	形式	96
8.2	.2	注意事項	96
8.3	編集	リスト	97
8.3	.1	形式	97
8.3	.2	ループのベクトル化、並列化、インライン展開に関する情報	98
8.3	.3	注意事項	100
8.4	モジ	ジュール別最適化情報リスト	100
8.4	.1	インライン展開モジュール	100
8.4	.2	ベクトル化モジュール	101
8.4	.3	コード生成モジュール	102
第9章	1	語仕様に関する補足	105
9.1	非標	準機能拡張	105

9.1.1	文10)5
9.1.2	プログラム11	١3
9.1.3	プログラム形式11	١3
9.1.4	式11	4
9.1.5	廃止事項	6
9.2 処理	里系定義	6
9.2.1	型11	6
9.2.2	データの内部表現11	٦
9.2.3	諸元の定義12	26
9.2.4	定義済みマクロ12	26
9.2.5	組込み手続に関する注意事項12	28
9.3 メモ	Eリの確保・解放12	28
9.3.1	メモリブロック12	28
9.3.2	メモリブロックのサイズ・しきい値の変更12	29
9.4 入는	出力12	<u>2</u> 9
9.4.1	書式付き記録12	<u>2</u> 9
9.4.2	書式なし記録13	30
9.4.3	事前接続	32
9.4.4	名前なしファイル 13	34
9.4.5	丸めモード13	34
9.4.6	NAMELIST の入力形式13	35
9.4.7	NAMELIST の出力形式13	35
9.5 For	rtran 2018 機能13	35
9.5.1	データ宣言13	36
9.5.2	データの使用13	36
9.5.3	実行制御	36
9.5.4	組込み手続と組込みモジュール13	37
9.5.5	入出力	38
9.5.6	プログラムと手続 13	}9
9.5.7	多言語プログラミング14	łO
9.5.8	廃止予定事項14	ł1
9.6 制剂	恨事項	ł1
第10章 多	多言語プログラミング14	ł2
10.1 多詞	言語プログラミングのポイント14	ł2

10.2 C/0	C++関数名・Fortran 手続名の対応	143
10.2.1	Fortran 手続の外部シンボル名	143
10.2.2	C++関数名の外部シンボル名	144
10.2.3	C/C++関数名、Fortran 手続の対応ルール	145
10.2.4	呼出し例	145
10.3 デ-	- 夕型	148
10.3.1	Fortran の整数型/論理型	148
10.3.2	Fortran の実数型/複素数型	149
10.3.3	Fortran の文字型	150
10.3.4	Fortran の派生型	150
10.3.5	C のポインタ	151
10.3.6	Fortran の共通ブロック	153
10.3.7	注意事項	154
10.4 関数	め・手続の型と返却値	154
10.5 関数	め・手続間の引数の受け渡し	157
10.5.1	Fortran 手続の引数	157
10.5.2	留意事項	160
10.6 プロ	コグラムのリンク	160
10.6.1	C プログラムと Fortran プログラムのリンク	160
10.6.2	C++プログラムと Fortran プログラムのリンク	160
10.7 実行	丁時の注意事項	161
第11章	ライブラリ・リファレンス	162
11.1 組建	込み手続	162
11.1.1	ABS(A) 個別名	162
11.1.2	ACOS(X) 個別名	163
11.1.3	ACOSH(X) 個別名	163
11.1.4	AIMAG(Z) 個別名	164
11.1.5	AINT(A) 個別名	165
11.1.6	AMT(<i>X</i>)	165
11.1.7	AND(<i>I</i> , <i>J</i>)	166
11.1.8	ANINT(A) 個別名	166
11.1.9	ASIN(X) 個別名	167
11.1.10	DASINH(X) 個別名	167
11.1.11	1 ATAN(X) 個別名	168

11.1.12 ATAN2(<i>Y,X</i>) 個別名169
11.1.13 ATANH(X) 個別名169
11.1.14 BTEST(<i>I,POS</i>) 個別名
11.1.15 CANG(X)
11.1.16 CBRT(X)
11.1.17 CLOCK(<i>D</i>)
11.1.18 CONJG(Z) 個別名
11.1.19 COS(X) 個別名
11.1.20 COSD(X)
11.1.21 COSH(X) 個別名
11.1.22 COTAN(X)
11.1.23 DATE(A)
11.1.24 DATIM(<i>A</i> , <i>B</i> , <i>C</i>)
11.1.25 DBLE(A) 個別名
11.1.26 DCMPLX(<i>X</i> , <i>Y</i>)
11.1.27 DFACT(<i>I</i>)
11.1.28 DFLOAT(A)
11.1.29 DIM(X,Y) 個別名
11.1.30 DREAL(A)
11.1.31 ERF(X) 個別名
11.1.32 ERFC(X) 個別名
11.1.33 ETIME(<i>D</i>)
11.1.34 EXIT(X)
11.1.35 EXP(X) 個別名
11.1.36 EXP10(X)
11.1.37 EXP2(X)
11.1.38 EXPC(X)
11.1.39 EXPC10(X)
11.1.40 EXPC2(X)
11.1.41 FACT(<i>I</i>)
11.1.42 FLUSH(<i>UNIT</i>)
11.1.43 GAMMA(X) 個別名
11.1.44 IAND(<i>I,J</i>) 個別名
11 1 45 IBCLD(I DOS) 個別名

11.1.46 IBITS(<i>I,POS,LEN</i>) 個別名
11.1.47 IBSET(<i>I,POS</i>) 個別名
11.1.48 IEOR(<i>I,J</i>) 個別名
11.1.49 IMAG(A)
11.1.50 INT(A[,KIND]) 個別名
11.1.51 IOR(<i>I,J</i>) 個別名
11.1.52 IRE(X)
11.1.53 ISHFT(<i>I,SHIFT</i>) 個別名
11.1.54 ISHFTC(<i>I,SHIFT</i> [, <i>SIZE</i>]) 個別名
11.1.55 ISNAN(X)
11.1.56 IXOR(<i>I,J</i>)
11.1.57 LGAMMA(X)
11.1.58 LOC(X)
11.1.59 LOG(X) 個別名
11.1.60 LOG10(X) 個別名
11.1.61 LOG2(X)
11.1.62 MAX(<i>A1,A2</i> [, <i>A3</i> ,]) 個別名
11.1.63 MAXVL()
11.1.64 MIN(<i>A1,A2</i> [, <i>A3</i> ,]) 個別名
11.1.65 MOD(A,P) 個別名
11.1.66 MVBITS(FROM,FROMPOS,LEN,TO,TOPOS) 個別名201
11.1.67 NINT(A[,KIND]) 個別名
11.1.68 NOT(I) 個別名
11.1.69 OR(<i>I,J</i>)
11.1.70 QCMPLX(<i>X</i> , <i>Y</i>)
11.1.71 QEXT(X)
11.1.72 QFACT(<i>I</i>)
11.1.73 QFLOAT(A)
11.1.74 QREAL(A)
11.1.75 REAL(A[,KIND]) 個別名206
11.1.76 RSQRT(X)
11.1.77 SIGN(A,B) 個別名
11.1.78 SIN(X) 個別名
11.1.79 SIND(X)

11.1.80	0 SINH(<i>X</i>) 個別名 21	LO
11.1.8	1 SQRT(<i>X</i>) 個別名21	1
11.1.82	2 TAN(X) 個別名21	1
11.1.83	3 TANH(<i>X</i>) 個別名21	2
11.1.84	4 TIME(A)	L3
11.1.8	5 XOR(<i>I,J</i>)21	L3
11.2 行列	列積ライブラリ21	L3
11.2.1	行列とベクトルの積(A, NAR, B, NBR, C)21	L3
11.2.2	行列とベクトルの積(A, NA, IAD, B, NB, C, NC, NAR, NBR)21	١5
11.2.3	行列と行列の積(A, NA, IAD, B, NB, IBD, C, NC, ICD, NAR, NAC, NBC	C)
	217	
11.3 UN	IIX システム関数インタフェース21	١9
11.3.1	F90_UNIX22	21
11.3.2	F90_UNIX_DIR	24
11.3.3	F90_UNIX_ENV	26
11.3.4	F90_UNIX_ERRNO22	29
11.3.5	F90_UNIX_FILE23	30
11.3.6	F90_UNIX_PROC23	34
11.4 군	の他のライブラリ23	39
11.4.1	ABORT()24	10
11.4.2	ACCESS(PATH,MODE)24	10
11.4.3	ALARM(SECS,PROC)24	10
11.4.4	CHDIR(<i>PATH</i>)24	11
11.4.5	CHMOD(<i>NAME,MODE</i>)24	11
11.4.6	CTIME(<i>I</i>)	12
11.4.7	DTIME(TARRAY)24	12
11.4.8	ETIME(<i>TARRAY</i>)24	12
11.4.9	FDATE()	13
11.4.10	0 FORK()24	14
11.4.1	1 FREE(<i>ADDR</i>)	14
11.4.17	2 FREE2(<i>ADDR</i>)24	14
11.4.13	3 FSEEK(<i>UNIT,OFFSET,WHENCE</i>)24	14
11.4.1	4 FSTAT(<i>UNIT,SXBUF</i>)24	15
11.4.1	5 FTFLL(<i>UNIT</i>)24	16

11.4.16 FTELLI8(<i>UNIT</i>)	246
11.4.17 GETARG(<i>POS,VAL</i>)	247
11.4.18 GETCWD(<i>PATH</i>)	247
11.4.19 GETENV(<i>NAME</i> , <i>VAL</i>)	247
11.4.20 GETGID()	248
11.4.21 GETLOG(<i>NAME</i>)	248
11.4.22 GETPID()	249
11.4.23 GETPOS(<i>UNIT</i>)	249
11.4.24 GETPOSI8(<i>UNIT</i>)	249
11.4.25 GETUID()	250
11.4.26 GMTIME(<i>I,IA9</i>)	250
11.4.27 HOSTNM(NAME)	250
11.4.28 IARGC()	251
11.4.29 IDATE(<i>IA3</i>)	251
11.4.30 IERRNO()	251
11.4.31 ISATTY(<i>UNIT</i>)	252
11.4.32 ITIME(<i>IA3</i>)	252
11.4.33 KILL(<i>PID,SIGNUM</i>)	252
11.4.34 LINK(<i>PATH1</i> , <i>PATH2</i>)	253
11.4.35 LSTAT(<i>PATH,SXBUF</i>)	253
11.4.36 LTIME(<i>I,IA9</i>)	254
11.4.37 MALLOC(<i>SIZE</i>)	254
11.4.38 MALLOC2(<i>SIZE</i>)	255
11.4.39 PERROR(<i>A</i>)	255
11.4.40 RENAME(<i>FROM</i> , <i>TO</i>)	255
11.4.41 SECNDS(<i>T</i>)	256
11.4.42 SIGNAL(SIGNUM, HANDLER)	256
11.4.43 SLEEP(<i>SECS</i>)	257
11.4.44 STAT(<i>PATH</i> , <i>SXBUF</i>)	257
11.4.45 SYMLNK(<i>PATH1</i> , <i>PATH2</i>)	258
11.4.46 SYSTEM(<i>CMD</i>)	258
11.4.47 TIME()	259
11.4.48 TTYNAM(<i>UNIT</i>)	259
11.4.49 UNLINK(<i>PATH</i>)	260

11.4	4.50 WAIT(<i>STATUS</i>)	260
11.5	注意事項	260
第 12 章	メッセージ	263
12.1	診断メッセージ	263
12.	1.1 メッセージの形式	263
12.	1.2 メッセージ ^一 覧	264
12.2	実行時エラーメッセージ	272
12.2	2.1 メッセージの形式	273
12.2	2.2 メッセージー覧	273
12.3	その他の実行時メッセージ	296
第 13 章	トラブルシューティング	298
13.1	プログラムのコンパイルに関するトラブルシューティング	298
13.2	プログラムの実行に関するトラブルシューティング	304
13.3	プログラムのチューニングに関するトラブルシューティング	309
13.4	インストールに関するトラブルシューティング	310
13.5	旧 SX コンパイラからの移行に関するトラブルシューティング	312
第 14 章	VE1/VE3 の互換性	315
14.1	実行ファイルの互換性	315
14.2	サーチパスの変更点	315
14.3	コンパイラオプションの変更点	317
14.4	半精度浮動小数点の利用	317
14.4	4.1 半精度浮動小数点の種別	317
14.4	4.2 binary16 と bfloat16 の混在リンク	317
14.5	注意事項	317
第 15 章	旧バージョンとの互換に関する注意事項	319
付録 A	コンフィギュレーションファイル	320
A.1	概要	320
A.2	記述方法	321
A.3	使用例	321
付録 B	SX シリーズ向けコンパイラとの対応	323
B.1	NEC Fortran 2003 コンパイラオプション	323
B.1	.1 全体オプション	323
B.1	.2 最適化/ベクトル化オプション	324
B.1	.3 インライン展開オプション	328

B.1	.4	並列化オプション	328
B.1	.5	コード生成オプション	330
B.1	.6	言語仕様制御オプション	330
B.1	.7	性能測定オプション	331
B.1	.8	デバッグオプション	331
B.1	.9	プリプロセッサオプション	332
B.1	.10	リスト出力オプション	332
B.1	.11	メッセージオプション	333
B.1	.12	アセンブラオプション	333
B.1	.13	C コンパイラオプション	334
B.1	.14	リンカオプション	334
B.1	.15	ディレクトリオプション	334
B.2	FOF	RTRAN90/SX コンパイラオプション	334
B.2	.1	f90/sxf90 コマンド基本オプション	335
B.2	.2	f90/sxf90 詳細オプション-最適化オプション	340
B.2	.3	f90/sxf90 詳細オプション-ベクトル化・並列化オプション	341
B.2	.4	f90/sxf90 詳細オプション-その他のオプション	345
B.3	コン	パイラ指示行	349
B.4	環境	竞变数	349
B.5	その)他のライブラリ	350
B.6	処理	Ľ系定義	352
B.6	.1	型	353
B.6	.2	諸元	354
B.6	.3	組込み手続	354
付録 C	=]ンパイラ指示行変換ツール	355
C.1	nfdi	irconv	355
C.2	使用]例	357
C.3	コン	パイラ指示行	359
C.4	留意	[事項	363
付録 D	7	7ァイル入出力解析情報	364
D.1	出力	7例	364
D.2	出力	」項目	365
付録 E	追	追加・変更点詳細	370
表 리			371

第1章 Fortran コンパイラ

1.1 概要

NEC Fortranコンパイラは、Fortranプログラムをコンパイル・リンクし、VEのCPUで実行するためのバイナリを作成するコンパイラです。本コンパイラは、VEのハードウェア性能を限界まで容易に引き出せるよう、次の最適化機能を実装しています。

- 自動ベクトル化機能
- 自動並列化機能、OpenMP並列化機能
- 自動インライン展開機能
- 性能情報取得機能

各種コンパイラオプションの指定により、これらの機能を選択しながら、その能力を最大限に利用することができます。最適化機能の詳細およびコンパイラオプションについては、2章以降を参照してください。

1.2 コンパイラの起動

(1) 環境変数の設定

NEC Fortranコンパイラ起動時にパスの指定を省略したいときに、環境変数PATHを設定してください。NEC Fortranコンパイラは、標準で/opt/nec/ve配下にインストールされます。環境変数PATHに/opt/nec/ve/binを追加してください。

NEC Fortranコンパイラには、モジュールファイルやライブラリなどのパスを設定する環境変数が用意されていますが、NEC Fortranコンパイラは、既定のパスを自動的にサーチするため、これらの環境変数を設定しなくてもご利用いただけます。環境変数は、コンパイラに付属しないOSSのライブラリのパスを常に追加したい場合など、標準以外のディレクトリをサーチする必要があるときに設定してください。

環境変数については、「第2章 環境変数 | を参照してください。

(2) 起動例

コンパイラの起動例を説明します。指定しているコンパイラオプションの詳細については、「第3章 コンパイラオプション」を参照してください。

• Fortranソースファイル(a.f90)のコンパイル、リンク

\$ nfort a. f90

• 複数のソースファイルのコンパイル、リンク

\$ nfort a. f90 b. f90

• 作成する実行ファイルの名前(prog.out)を指定するコンパイル、リンク

\$ nfort -o prog. out a. f90

• 最大限のベクトル化、最適化を行うコンパイル、リンク

\$ nfort -04 a.f90

• 副作用を伴わないレベルでベクトル化、最適化を行うコンパイル、リンク

\$ nfort -01 a.f90

• ベクトル化、最適化を行わないコンパイル、リンク

\$ nfort -00 a.f90

• 自動並列化を行うコンパイル、リンク

\$ nfort -mparallel a.f90

• 自動インライン展開を行うコンパイル、リンク

\$ nfort -finline-functions a.f90

- 半精度浮動小数点を使用したソースファイルのコンパイル、リンク(VE3のみ利用可能)
- IEEE binary16形式でのコンパイル、リンク

\$ nfort a.f90

- bfloat16形式でのコンパイル、リンク

\$ nfort -mfp16-format=bfloat a.f90

特定のバージョンのコンパイラを使用してコンパイル、リンク

\$ /opt/nec/ve/bin/nfort-X. X. X a. f90 (X. X. XIはコンパイラのバージョン番号)

1.3 プログラムの実行

プログラムを実行するときの例を以下に示します。

• プログラムを実行

\$. /a. out

• 利用するVEを指定してプログラムを実行

\$ env VE_NODE_NUMBER=1 . /a. out

(ノード番号1のVEで実行)

• 入力ファイル、入力パラメタを指定して実行

\$./a. out data1. in 10

(ファイルdata1. in、値10を入力)

入力ファイルをリダイレクトして実行

\$. /a. out < data2. in

• スレッド数を指定して並列プログラムを実行

\$ nfort -mparallel -03 a.f90 b.f90

\$ export OMP_NUM_THREADS=4

\$. /a. out

• 外部ファイル装置に事前にファイルを接続してプログラムを実行

\$ export VE_FORT9=DATA9

(装置番号9にファイルDATA9を接続)

\$. /a. out

• プロファイラ(ngprof)の使用

コンパイル、リンク時に**-pg**を指定し、コンパイルしたプログラムを実行すると性能測定結果がファイルgmon.outに出力されます。gmon.outをngprofコマンドで解析、表示できます。

\$ nfort -pg a. f90

\$. /a. out

\$ Is gmon.out

gmon. out

\$ ngprof

(性能情報が表示される)

1.4 コマンドラインの指定形式

• コンパイラのコマンドラインの指定形式は以下のとおりです。

nfort [コンパイラオプション | ファイル] ...

1.5 コンパイラオプションの指定

• コンパイラオプションはハイフン(-)に続けて指定します。複数のコンパイラオプションを 指定するとき、空白で区切って指定します。

例

\$ nfort -v -c a. f90	(正)	
\$ nfort -vc a.f90	(誤)	

• コンパイラはファイルとして以下の拡張子を認識します。その他の拡張子は、オブジェクトファイルとして扱われます。

拡張子	ファイル種別
.F .FOR .FTN .FPP .fpp	Fortranソースファイル (固定形式、プリプロセスあり)
.F90 .F95 .F03	Fortranソースファイル (自由形式、プリプロセスあり)
.f .for .ftn .i	Fortranソースファイル (固定形式、プリプロセスなし)
.f90 .f95 .f03 .i90	Fortranソースファイル (自由形式、プリプロセスなし)
.c	Cソースファイル
.S .s	アセンブラソース

• コンパイラオプションとファイルは、オプションファイルに記述することができます。 オプションファイルは、コンパイラの起動時に常に指定するコンパイラオプションやファ イルを指定するファイルです。コンパイラオプション、ファイルはコマンドラインと同じ 規則で指定します。オプションファイルは、環境変数**HOME**に設定されたホームディレク トリに".nfortinit"というファイル名で作成します。

\$ cat ~/.nfortinit

-03 -finline-functions

\$ nfort -v a. f90

/opt/nec/ve/libexec/fcom ··· -03 -finline-functions ··· a.f90

1.6 モジュールファイルのサーチ

ソースファイルがモジュールを含むとき、そのモジュールを他のソースファイルから引用するための情報として、モジュールごとにモジュールファイルが出力されます。組込みモジュールのモジュールファイルはあらかじめ所定の場所に用意されています。

- (1) 組込みでないモジュールのモジュールファイルのサーチ
 - 引用しているモジュールがコンパイル中のソースファイルに含まれていないとき、次のディレクトリからモジュールファイルをサーチします。モジュールファイルのサーチ順序は以下のとおりです。
 - (a) ソースファイルのあるディレクトリ
 - (b) -moduleで指定されたディレクトリ
 - (c) カレントディレクトリ
 - (d) **-I**で指定されたディレクトリ
 - (e) **-B**で指定されたディレクトリ直下のincludeディレクトリ
 - (f) 環境変数NFORT INCLUDE PATHで指定されたディレクトリ
 - (g) -isystemで指定されたディレクトリ
 - (h) /opt/nec/ve/nfort/バージョン番号/include
 - (i) /opt/nec/ve/include (-march=ve3が有効なとき、/opt/nec/ve3/include)ただし、-isysrootが指定されているとき、-isysrootで指定されたディレクトリ直下のincludeがサーチされます。
- (2) 組込みモジュールのモジュールファイルのサーチ

組込みモジュールは、INTRINSIC属性付きのUSE文で引用されます。INTRINSIC属性付きで引用されたモジュールのモジュールファイルは次のディレクトリ配下をサーチします。

- (a) **-fintrinsic-modules-path**が指定されているとき、**-fintrinsic-modules-path**で 指定されたディレクトリ。
- (b) **-fintrinsic-modules-path**が指定されていないとき、/opt/nec/ve/nfort/*バージョ* ン番号/include

1.7 INCLUDE行、および、#includeで取り込まれるファイルのサーチ

INCLUDE行、および、**#include** "ファイル名"で取り込まれるファイルがサーチされるディレクトリの順番は以下のとおりです。

- (1) ソースファイルのあるディレクトリ
- (2) カレントディレクトリ
- (3) I で指定されたディレクトリ
- (4) -B で指定されたディレクトリ直下の include ディレクトリ
- (5) 環境変数 NFORT_INCLUDE_PATH で指定されたディレクトリ
- (6) -isystem で指定されたディレクトリ
- (7) /opt/nec/ve/nfort/バージョン番号/include
- (8) /opt/nec/ve/include (-march=ve3 が有効なとき、/opt/nec/ve3/include) ただし、-isysroot が指定されているとき、-isysroot で指定されたディレクトリ直下の include がサーチされます。

1.8 ライブラリのサーチ

ライブラリがサーチされるディレクトリの順番は以下のとおりです。

- (1) **-L** で指定されたディレクトリ
- (2) **-B** で指定されたディレクトリ
- (3) 環境変数 NFORT_LIBRARY_PATH で指定されたディレクトリ
- (4) /opt/nec/ve/nfort/*バージョン番号*/lib (-march=ve3 が有効なとき、/opt/nec/ve3/nfort/*バージョン番号*/lib)
- (5) 環境変数 VE_LIBRARY_PATH で指定されたディレクトリ
- (6) /opt/nec/ve/lib/gcc (-march=ve3 が有効なとき、/opt/nec/ve3/lib/gcc)
- (7) /opt/nec/ve/lib (-march=ve3 が有効なとき、/opt/nec/ve3/lib)

1.9 演算例外

1.9.1 演算例外発生時の演算結果

浮動小数点数や整数の演算中にオーバーフロー、アンダーフロー、ゼロ除算、無効演算、または、精度落ちが発生したときの処置について説明します。

(1) ゼロ除算

整数型の演算において、除数がゼロの除算が行われたとき、演算結果は不定になります。 整数型でない演算において、除数がゼロの除算が行われたとき、被除数が正なら正の無限 大、負なら負の無限大の演算結果になります。

環境変数VE_FPE_ENABLEに"DIV"を設定したとき、例外が発生し、エラーメッセージが標準エラー出力に出力されます。環境変数VE_FPE_ENABLEに"DIV"を設定しなかったとき、ゼロ除算例外は発生しません。

(2) 浮動小数点オーバーフロー

実数型、複素数型の演算において、オーバーフローが発生したとき、値が正なら正の有限 の最大値を、負なら負の無限大が演算結果になります。

環境変数VE_FPE_ENABLEに"FOF"を設定したとき、例外が発生し、エラーメッセージが標準エラー出力に出力されます。環境変数VE_FPE_ENABLEに"FOF"を設定しなかったとき、浮動小数点オーバーフロー例外は発生しません。

(3) 浮動小数点アンダーフロー

実数型、複素数型の演算において、アンダーフローが発生したとき、ゼロが演算結果になります。

環境変数VE_FPE_ENABLEに"FUF"を設定したとき、例外が発生し、エラーメッセージが標準エラー出力に出力されます。環境変数VE_FPE_ENABLEに"FUF"を設定しなかったとき、浮動小数点アンダーフロー例外は発生しません。

(4) 無効演算

実数型、複素数型の演算において、無効演算が発生したとき、演算結果は不定、または、 NaNになります。

環境変数VE_FPE_ENABLEに"INV"を設定したとき、例外が発生し、エラーメッセージが標準エラー出力に出力されます。環境変数VE_FPE_ENABLEに"INV"を設定しなかったとき、無効演算例外は発生しません。

(5) 精度落ち

実数型、複素数型の演算において、精度落ちが発生したとき、丸めた値が演算結果となり ます。

環境変数VE_FPE_ENABLEに"INE"を設定したとき、例外が発生し、エラーメッセージが標準エラー出力に出力されます。環境変数VE_FPE_ENABLEに"INE"を設定しなかったとき、精度落ち例外は発生しません。

(6) ベクトル命令実行中の演算例外

ベクトル命令の実行中にオーバーフロー、アンダーフロー、ゼロ除算が発生したときの演

算結果は、スカラ命令のときと同じです。ただし、一つのベクトル命令の実行中に複数個の演算例外が発生するときでも、例外は1回しか発生しません。

1.9.2 演算例外マスクの変更

Fortranプログラムでは、演算例外マスクを変更することにより、演算例外発生時に例外を発生させるかどうかを制御できます。

環境変数VE_FPE_ENABLEにより、演算例外マスクを変更できます。環境変数VE_FPE_ENABLEの指定では、どの演算例外を発生させるかを指定します。

例

\$ export VE FPE ENABLE=F0F, DIV

\$. /a. out

浮動小数点オーバーフロー時(FOF)とゼロ除算時(DIV)に例外を発生させるように、演算例外マスクを変更します。

1.9.3 トレースバック機能との連携

演算例外マスクを変更し、演算例外を発生させることで、トレースバック機能で例外発生箇 所を容易に特定できます。

例

\$ nfort -traceback=verbose below.f90 out.f90 watch.f90 hey.f90 ovf.f90

. . .

\$ export VE_TRACEBACK=VERBOSE

\$ export VE_FPE_ENABLE=DIV

\$. /a. out

Runtime Error: Divide by zero at 0x600008001088

[0] 0x600008001088 below_ below. f90:3

[1] 0x600018001168 out_ out. f90:3

[2] 0x600020001168 watch_ watch. f90:3

[3] 0x600010001168 hey_ hey. f90:3

[4] 0x60000001cab8 MAIN ovf. f90:5

例ではbelow.f90の3行目付近でDivide by zeroの例外が発生したことがわかります。

1.9.4 演算例外マスクを変更するときの注意事項

演算例外マスクの変更は手続から呼び出しているシステムライブラリ関数にも適用されます。したがって、システムライブラリ関数で精度落ちなどの演算例外が発生したときも、エラーが発生することがあります。

1.10 実行時の終了コード

プログラムを実行したときの終了コードを以下に示します。

終了コード	意味
0	正常終了
1	実行時エラー
2	文字型の終了コードを指定した ERROR STOP 文で終了
137	実行時エラー(アボート時)
n	整数型の終了コードnを指定したSTOP文で終了、または、終了コードnを指定した組込みサブルーチンEXITで終了

第2章 環境変数

2.1 コンパイル時に参照される環境変数

HOME

コンパイラは、オプションファイルを取得するために環境変数**HOME**を参照し、ユーザのホームディレクトリを取得します。環境変数**HOME**に値が設定されていないとき、オプションファイルは参照されません。

NFORT COMPILER PATH

nfortから起動するFortranコンパイラ(fcom)をサーチするディレクトリを指定します。複数 指定するときはコロン(:)で区切って指定します。先に指定したディレクトリが優先されま す。Fortranコンパイラがみつからなかったとき、nfortは標準のディレクトリにあるFortran コンパイラを自動的に起動します。この環境変数は、標準以外のディレクトリを常にサーチ したい場合に設定します。

例

\$ export NFORT_COMPILER_PATH="\$HOME/libexec:\$HOME/wk/libexec"

NFORT_INCLUDE_PATH

#include、または、INCLUDE文で取り込まれるファイル、モジュールファイルをサーチするディレクトリを指定します。複数指定するときはコロン(:)で区切って指定します。先に指定したディレクトリが優先されます。この環境変数は、標準以外のディレクトリを常にサーチしたい場合に設定します。

例

\$ export NFORT_INCLUDE_PATH="\$HOME/include:\$HOME/wk/include"

NFORT_LIBRARY_PATH

ライブラリをサーチするディレクトリを指定します。複数指定するときはコロン(:)で区切って指定します。先に指定したディレクトリが優先されます。この環境変数は、標準以外のディレクトリを常にサーチしたい場合に設定します。

例

\$ export NFORT_LIBRARY_PATH="\$HOME/lib:\$HOME/wk/lib"

NFORT_PROGRAM_PATH

Fortranコンパイラから起動するVE用のアセンブラおよびリンカをサーチするディレクトリを指定します。複数指定するときはコロン(:)で区切って指定します。先に指定したディレクトリが優先されます。アセンブラおよびリンカがみつからなかったとき、Fortranコンパイラは標準のディレクトリにあるアセンブラおよびリンカを自動的に起動します。この環境変数は、標準以外のディレクトリを常にサーチしたい場合に設定します。

例

\$ export NFORT_PROGRAM_PATH="\$HOME/bin:\$HOME/wk/bin"

PATH

nfortをサーチするディレクトリを追加します。複数指定するときはコロン(:)で区切って指定します。先に指定したディレクトリが優先されます。Fortranコンパイラをインストールしたディレクトリ配下のbinディレクトリを追加してください。この環境変数を設定すると、nfortを起動するとき、パスの指定を省略できます。標準のディレクトリにインストールしたときは、/opt/nec/ve/binを追加します。環境変数PATHはFortranコンパイラ以外のアプリケーションにも影響を与えます。既存の環境変数PATHに追加する形で設定してください。

例

\$ export PATH="/opt/nec/ve/bin:\$PATH"

TMPDIR

コンパイラとコマンドが一時ファイルを作成するディレクトリを指定します。

(既定値: /tmp)

VE LIBRARY PATH

システムライブラリをサーチするディレクトリを指定します。複数指定するときはコロン(:) で区切って指定します。この環境変数は、標準以外のディレクトリを常にサーチしたい場合 に設定します。

例

\$ export VE_LIBRARY_PATH="\$HOME/lib:\$HOME/wk/lib"

2.2 実行時に参照される環境変数

LD_LIBRARY_PATH

書式付き配列一括出力、および、並び配列一括出力のVHへのオフロード機能で利用するライ

ブラリを格納するディレクトリを指定します。書式付き配列一括出力、および、並び配列一括出力のVHへのオフロード機能については、「5.3 その他の高速化機能」を参照してください。

例

\$ export LD_LIBRARY_PATH=/opt/nec/ve/nfort/lib64

OMP NUM THREADS / VE OMP NUM THREADS

OpenMPと自動並列化プログラムで使用するスレッド数を設定します。値を設定しないとき、スレッド数はVEのコア数と同じです。

例

\$ export OMP_NUM_THREADS=4

OMP_STACKSIZE / VE_OMP_STACKSIZE

OpenMPと自動並列化プログラムで各スレッドが使用するスタックサイズの上限をキロバイト単位で指定します。"B"(バイト)、"K"(キロバイト)、"M"(メガバイト)、"G"(ギガバイト)を単位として指定することができます。値を設定しないとき、各スレッドが使用するスタックサイズは4メガバイトとなります。

例

\$ export OMP STACKSIZE=1G

VE ADVANCEOFF

Advance-offモードを制御します。"YES"を設定するとAdvance-offモードが有効になります。他の値を設定したとき、Advance-offモードは無効になります。Advance-offモードを有効にしたとき、実行時間が大幅に長くなる場合があります。

例

\$ export VE_ADVANCEOFF=YES

VE_ERRCTL_ALLOCATE

割付け変数、または、ポインタの割付けに関する実行時エラーが発生したときのプログラムの実行を制御します。以下の値を指定できます。

ABORT

エラーメッセージを出力し、実行を異常終了させます。(既定値)

MSG

エラーメッセージを出力し、実行を継続させます。

NOMSG

エラーメッセージを出力せず、実行を継続させます。

例

\$ export VE_ERRCTL_ALLOCATE=MSG

VE ERRCTL DEALLOCATE

割付け変数、または、ポインタの解放に関する実行時エラーが発生したときのプログラムの 実行を制御します。以下の値を指定できます。

ABORT

エラーメッセージを出力し、実行を異常終了させます。

MSG

エラーメッセージを出力し、実行を継続させます。

NOMSG

エラーメッセージを出力せず、実行を継続させます。(既定値)

例

\$ export VE ERRCTL DEALLOCATE=ABORT

VE_FMTIO_OFFLOAD

書式付き配列一括出力、および、並び配列一括出力をVHにオフロードすることを制御します。"YES"、または、"ON"を指定するとVHへのオフロードが有効になります。書式付き配列一括出力、および、並び配列一括出力のVHへのオフロード機能については、「5.3 その他の高速化機能」を参照してください。

例

\$ export VE_FMTIO_OFFLOAD=YES

VE_FMTIO_OFFLOAD_THRESHOLD

書式付き配列一括出力、および、並び配列一括出力をVHにオフロードする配列の要素数の閾値を指定します。指定した値より要素数の小さい配列はVHにオフロードされません。既定値は10です。

\$ export VE_FMTIO_OFFLOAD_THRESHOLD=20

VE_FORT*n*

外部ファイル装置nに接続するファイル名を設定します。既定のファイル名は"fort.n"です。この変数を設定すると、既定のファイル名から設定したファイル名に変更されます。

例

\$ export VE_FORT9=DATA9

VE FORT ABORT

致命的エラーを検出したときにコアダンプを出力するかどうかを制御します。"YES"を指定することでコアダンプが出力されます。

備考 Fortranの「Runtime error」以外の原因によるコアダンプの出力は、環境変数 **VE_FORT_ABORT**では制御できません。

例

\$ export VE_FORT_ABORT=YES

VE_FORT_ACCUMULATE_THREAD_CPU_TIME

マルチスレッドのプログラムで、組込み手続**CPU_TIME**が返却する値を制御します。"YES" を指定すると全スレッドのCPU時間の合計を返却します。

例

\$ export VE_FORT_ACCUMULATE_THREAD_CPU_TIME=YES

VE_FORT_DEFAULTFILE

入出力ファイルのデフォルトのディレクトリパスの起点をカレントディレクトリから指定したディレクトリに変更します。OPEN文のFILE指定子、または、環境変数VE_FORTnで指定されたファイル名が絶対パス名で指定されているとき、本環境変数の指定は無視されます。指定されたデフォルトのディレクトリパス名の最後が"/"でないとき、指定されたデフォルトのディレクトリパス名の最後に"/"を付与します。既定のデフォルトのディレクトリパス名の最後に"/"を付与します。既定のデフォルトのディレクトリパス名はカレントディレクトリです。

指定した値の組み合わせで使用されるパス名を以下に示します。

OPEN文のFILE指	VE_FORT_DEFAULTFILE	VE_FORT <i>n</i> 環境変	使用されるパス名
定子の値 	環境変数値	数値	
指定なし	指定なし	指定なし	./fort. <i>n</i>
指定なし	指定なし	test.dat	./test.dat
指定なし	無効	/usr/tmp/t.dat	/usr/tmp/t.dat
指定なし	/tmp	指定なし	/tmp/fort. <i>n</i>
指定なし	/tmp	testdata	/tmp/testdata
指定なし	/usr	lib/testdata	/usr/lib/testdata
file.dat	/usr/group	無効	/usr/group/file.dat
/tmp/file.dat	無効	無効	/tmp/file.dat
file.dat	指定なし	無効	./file.dat

\$ export VE FORT DEFAULTFILE=/foo/

VE_FORT_EXPRCW

拡張されたフォーマットを使用する書式なし入出力の外部ファイル装置を設定します。 2ギガバイトを超える記録を扱うことができます。以下の形式を指定することができま す。

ALL

すべての装置番号を対象とします。

装置番号 | 装置番号,装置番号 | 装置番号-装置番号

対象とする装置番号を指定します。

コンマ区切りで、対象とする複数の装置番号を指定します。

ハイフンで、対象とする連続する複数の装置番号を指定します。

YES[: 装置番号] | NO[: 装置番号]

有効(YES)/無効(NO)を指定します。

コロンの後に、対象とする装置番号を指定します。

; (セミコロン)

セミコロンの前に指定した有効(YES)/無効(NO)から除外する有効(YES)/無効(NO)と

装置番号を指定します。

例(1) 外部ファイル装置10に対する指定

\$ export VE FORT EXPRCW=10

例(2) 外部ファイル装置10、11に対する指定

\$ export VE_FORT_EXPRCW=10, 11

例(3) 外部ファイル装置10、11、12に対する範囲指定

\$ export VE_FORT_EXPRCW=10-12

例(4) 外部ファイル装置10、11、12以外を有効(YES)とする指定

\$ export VE_FORT_EXPRCW=YES;N0:10-12

例(5) すべての外部ファイル装置を有効(YES)とする指定

\$ export VE_FORT_EXPRCW=ALL

VE_FORT_FILEINF

ファイル入出力解析情報を出力します。"YES"、または、"DETAIL"が設定されているとき、ファイルクローズ時に標準エラー出力にファイル入出力解析情報を出力します。この情報から、入出力に関して意図どおりの動作をしているか、あるいは、性能改善を検討しなければならない外部ファイル装置はないかなどの情報を得ることができます。表示項目(パスなど)にマルチバイト文字が含まれるとき、表示が正しくされない可能性があります。ファイル入出力解析情報の詳細については「付録 D ファイル入出力解析情報」を参照してください。

例

\$ export VE_FORT_FILEINF=DETAIL

VE_FORT_FMT_NO_WRAP_MARGIN

並び出力の折り返しを制御します。"YES"を指定したとき、最大レコード長まで列の折り返しが無効になります。

例

\$ export VE_FORT_FMT_NO_WRAP_MARGIN=YES

VE_FORT_FMTBUF[n]

入出力処理で使用するレコードバッファのサイズをバイト単位で指定します。このバッファは、装置ごとに用意します。使用するすべての装置や特定の装置に対して指定することができます。バッファのサイズは、135より小さくできません。135より小さい値を指定したとき、135になります。値が設定されていないとき、**OPEN**文に指定した**RECL**指定子の値となります。

環境変数VE_FORT_FMTBUF、RECL指定子どちらも設定されているとき、小さいほうの値となります。

標準入出力ファイル、標準エラー出力ファイルに対する本環境変数の指定は無視されます。 環境変数VE_FORT_FMTBUFとVE_FORT_RECORDBUFが指定されたとき、優先度は以 下になります。

高 VE_FORT_RECORDBUFu ・特定の外部ファイル装置指定

VE_FORT_FMTBUF*u* ・特定の外部ファイル装置指定

| **VE_FORT_RECORDBUF** ・すべての外部ファイル装置指定

低 VE_FORT_FMTBUF ・すべての外部ファイル装置指定

入出力処理で使用するレコードバッファの既定値は、以下になります。

- 標準入出力ファイル/ストリーム 65536バイト
- 順編成ファイル65536バイト または RECL指定値
- 直編成ファイル

RECL指定值

例(1) すべての外部ファイル装置に対する指定

\$ export VE_FORT_FMTBUF=32768

例(2) 外部ファイル装置1 に対する指定

\$ export VE_FORT_FMTBUF1=60000

VE_FORT_FOR_PRINT

PRINT文、または、アスタリスク(*)指定したWRITE文が出力に使用するファイル名を指定します。環境変数が指定されていないとき、出力先は標準出力になります。

\$ export VE_FORT_FOR_PRINT=FILENAME

備考

この環境変数を使用したときの論理装置番号は、使用していない論理装置番号が 自動的に割り当てられます。エラーメッセージなどに含まれる論理装置番号は、 マイナスを含む数値で表記されます。

VE_FORT_FOR_READ

論理装置番号の指定を省略、または、アスタリスク(*)指定したREAD文が入力に使用するファイル名を指定します。環境変数が指定されていないとき、入力先は標準入力になります。

\$ export VE_FORT_FOR_READ=FILENAME

備考

この環境変数を使用したときの論理装置番号は、使用していない論理装置番号が 自動的に割り当てられます。エラーメッセージなどに含まれる論理装置番号は、 マイナスを含む数値で表記されます。

VE_FORT_FOR_TYPE

TYPE文が出力に使用するファイル名を指定します。環境変数が指定されていないとき、出力 先は標準出力になります。

\$ export VE_FORT_FOR_TYPE=FILENAME

備考

この環境変数を使用したときの論理装置番号は、使用していない論理装置番号が 自動的に割り当てられます。エラーメッセージなどに含まれる論理装置番号は、 マイナスを含む数値で表記されます。

VE FORT MEM BLOCKSIZE

プログラムの開始時にメモリの確保/解放を高速化するために確保されるメモリのブロックサイズをメガバイト単位で指定します。単位として"M"を使用するとメガバイト、"G"を使用するとギガバイトとして指定することができます。指定する値は0または2のべき乗数でなければなりません。値を設定しないとき、ブロックサイズは64メガバイトとなります。プログラムの開始時に各プロセスで初期領域として3個のメモリブロックが確保されます。

例 16 メガバイトを指定

\$ export VE_FORT_MEM_BLOCKSIZE=16M

VE_FORT_NML_DELIM_BLANK

NAMELIST出力において、**DELIM**指定子が省略されたときの文字型配列の出力フォーマットを制御します。"YES"が設定されているとき、値を空白で区切って出力します。既定("NO")の動作では、値を連続で出力します。

DELIM指定子を指定したとき、本環境変数の指定は無視されます。

```
$ ./a.out
&NML
C = abcdefg
/
$ export VE_FORT_NML_DELIM_BLANK=YES
$ ./a.out
&NML C = a b c d e f g/
```

VE FORT NML REPEAT FORM

NAMELIST出力において、配列で同じ値が二つ以上連続するときの出力フォーマットを制御します。既定("YES")の動作では同じ値をまとめたフォーマット(連続する個数*値)で出力します。"NO"が指定されたとき、まとめずに出力します。

備考 バージョン3.0.7以前のコンパイラでは、常にまとめず出力されます。

例

```
$ ./a. out

&NML

R = 3*1.0000000, 2.0000000, 3.0000000

/

$ export VE_FORT_NML_REPEAT_FORM=NO

$ ./a. out

&NML R = 1.0000000 1.0000000 2.0000000 3.0000000/
```

VE_FORT_NORCW

制御レコードを一切付与しない形式の書式なし入出力の外部ファイル装置を設定します。 ストリームファイルの書式なし入出力と同じ扱いとなり、標準のレコード形式よりも入出力が高速化されます。

ただし、以下の制約が付くことに注意してください。

- 入力する記録の長さは、出力した記録の長さと一致する必要があります。違っているときは、結果不正となります。
 - BACKSPACE文は使用できません。

以下の形式を指定することができます。

ALL

すべての装置番号を対象とします。

装置番号 | 装置番号,装置番号 | 装置番号-装置番号

対象とする装置番号を指定します。

コンマ区切りで、対象とする複数の装置番号を指定します。

ハイフンで、対象とする連続する複数の装置番号を指定します。

YES[: 装置番号] | NO[: 装置番号]

有効(YES)/無効(NO)を指定します。

コロンの後に、対象とする装置番号を指定します。

;(セミコロン)

セミコロンの前に指定した有効(YES)/無効(NO)から除外する有効(YES)/無効(NO)と 装置番号を指定します。

例(1) 外部ファイル装置10に対する指定

\$ export VE_FORT_NORCW=10

例(2) 外部ファイル装置10、11に対する指定

\$ export VE_FORT_NORCW=10, 11

例(3) 外部ファイル装置10、11、12に対する範囲指定

\$ export VE_FORT_NORCW=10-12

例(4) 外部ファイル装置10、11、12以外を有効(YES)とする指定

\$ export VE_FORT_NORCW=YES;N0:10-12

例(5) すべての外部ファイル装置を有効(YES)とする指定

\$ export VE_FORT_NORCW=ALL

VE_FORT_PARTRCW

制御レコードの形式を変更して扱う書式なし入出力の外部ファイル装置を設定します。標準のレコード形式よりも入出力が高速化されます。

ただし、以下の制約が付くことに注意してください。

• 入力する記録の長さは、出力した記録の長さと一致する必要があります。違っているときは、実行時エラーになります。

以下の形式を指定することができます。

ALL

すべての装置番号を対象とします。

装置番号 | 装置番号,装置番号 | 装置番号-装置番号

対象とする装置番号を指定します。

コンマ区切りで、対象とする複数の装置番号を指定します。

ハイフンで、対象とする連続する複数の装置番号を指定します。

YES[: 装置番号] | NO[: 装置番号]

有効(YES)/無効(NO)を指定します。

コロンの後に、対象とする装置番号を指定します。

; (セミコロン)

セミコロンの前に指定した有効(YES)/無効(NO)から除外する有効(YES)/無効(NO)と 装置番号を指定します。

例(1) 外部ファイル装置10に対する指定

\$ export VE_FORT_PARTRCW=10

例(2) 外部ファイル装置10、11に対する指定

\$ export VE_FORT_PARTRCW=10, 11

例(3) 外部ファイル装置10、11、12に対する範囲指定

\$ export VE_FORT_PARTRCW=10-12

例(4) 外部ファイル装置10、11、12以外を有効(YES)とする指定

\$ export VE_FORT_PARTRCW=YES;N0:10-12

例(5) すべての外部ファイル装置を有効(YES)とする指定

\$ export VE_FORT_PARTRCW=ALL

VE_FORT_PAUSE

PAUSE文の実行を制御します。"NO"を指定するとPAUSE文は無視されます。

\$ export VE_FORT_PAUSE=NO

VE_FORT_RECLUNIT

書式なしファイルに対して**OPEN**文の実行時に扱う**RECL**指定子の値の単位を指定します。指定可能な単位は"BYTE"、または、"WORD"です。既定の単位は"BYTE"です。"WORD"は4 バイト単位です。

例

\$ export VE_FORT_RECLUNIT=WORD

VE_FORT_RECORDBUF[n]

入出力処理で使用するレコードバッファのサイズをバイト単位で指定します。レコードバッファは装置ごとに用意され、使用するすべての装置や特定の装置に対して指定できます。135より小さい値は設定できません。135より小さい値を指定したとき、135になります。値が指定されていないとき、**OPEN**文の**RECL**に指定した値となります。

環境変数VE_FORT_RECORDBUF、RECL指定子のどちらも指定されているとき、小さい方の値となります。

標準入出力ファイル、標準エラー出力ファイルに対する本環境変数の指定は無視されます。 環境変数VE_FORT_FMTBUFとVE_FORT_RECORDBUFが指定されたとき、優先度は以 下になります。

高 VE_FORT_RECORDBUFu ・特定の外部ファイル装置指定

VE_FORT_FMTBUFu・特定の外部ファイル装置指定

| **VE_FORT_RECORDBUF** ・すべての外部ファイル装置指定

低 **VE_FORT_FMTBUF** ・すべての外部ファイル装置指定

入出力処理で使用するレコードバッファの既定値は、以下になります。

- 標準入出力ファイル/ストリーム 65536バイト
- 順編成ファイル65536バイト または RECL指定値
- 直編成ファイルRECL指定値

例(1) すべての外部ファイル装置に対する指定

\$ export VE_FORT_RECORDBUF=32768

例(2) 外部ファイル装置1 に対する指定

\$ export VE_FORT_RECORDBUF1=60000

VE_FORT_SETBUF[n]

入出力処理が準備するI/Oバッファのサイズをキロバイト単位で指定します。I/Oバッファは装置ごとに用意され、使用するすべての装置や特定の装置に対して指定できます。値0を指定したとき、バッファレスI/Oとなり、入出力処理でI/Oバッファが使用されません。ただし、バッファレスI/Oは、実行時性能を大幅に低下させるため、注意が必要です。

標準入力に対する指定は無視されます。標準出力、および、標準エラー出力には、バッファレスI/Oのみ指定できます。

値が設定されていないとき、I/Oバッファのサイズは、以下になります。

• 順編成ファイル/ストリームファイル

レコードバッファの環境変数への設定値 ≦ 512キロバイト 512キロバイト

レコードバッファの環境変数への設定値 > 512キロバイト レコードバッファの環境変数への設定値をキロバイト単位に切り上げた値

• 直編成ファイル

記録の長さ≦4,096バイト

4キロバイト

記録の長さ>2,048,000,000バイト

2,000,000キロバイト

記録の長さが上記以外

記録の長さをキロバイト単位に切り上げた値

備考 "レコードバッファの環境変数への設定値"は、環境変数**VE_FORT_FMTBUF**、または、**VE_FORT_RECORDBUF**に設定した値(バイト単位)となります。

例(1) すべての外部ファイル装置に対する指定

\$ export VE_FORT_SETBUF=10

例(2) 外部ファイル装置 1 に対する指定

\$ export VE_FORT_SETBUF1=20

VE_FORT_SUBRCW

レコード分割するフォーマットを使用する書式なし入出力の外部ファイル装置を設定します。2ギガバイトを超える記録を扱うことができます。

環境変数VE_FORT_EXPRCW、VE_FORT_NORCW、または、VE_FORT_PARTRC Wのいずれかに同じ装置番号を指定したとき、その装置番号に対する本環境変数の指定は無視されます。

以下の形式を指定することができます。

ALL

すべての装置番号を対象とします。

装置番号 | 装置番号,装置番号 | 装置番号-装置番号

対象とする装置番号を指定します。

コンマ区切りで、対象とする複数の装置番号を指定します。

ハイフンで、対象とする連続する複数の装置番号を指定します。

YES[: 装置番号] | NO[: 装置番号]

有効(YES)/無効(NO)を指定します。

コロンの後に、対象とする装置番号を指定します。

; (セミコロン)

セミコロンの前に指定した有効(YES)/無効(NO)から除外する有効(YES)/無効(NO)と 装置番号を指定します。

例(1) 外部ファイル装置10に対する指定

\$ export VE_FORT_SUBRCW=10

例(2) 外部ファイル装置10、11に対する指定

\$ export VE_FORT_SUBRCW=10, 11

例(3) 外部ファイル装置10、11、12に対する範囲指定

\$ export VE_FORT_SUBRCW=10-12

例(4) 外部ファイル装置10、11、12以外を有効(YES)とする指定

\$ export VE_FORT_SUBRCW=YES;N0:10-12

例(5) すべての外部ファイル装置を有効(YES)とする指定

\$ export VE_FORT_SUBRCW=ALL

VE_FORT_UFMTADJUST[n]

書式なし入出力時のデータの長さ調整を制御します。使用するすべての装置や特定の装置に対して指定できます。この環境変数が設定されているとき、入出力並びの型とは異なる精度のデータの入出力が可能になります。以下の値が指定できます。値はコンマで区切って複数指定できます。

ALL

INT,LOG,REAL,DBLが指定されたものとみなします。

DBL

入出力並びの型が4倍精度実数型または4倍精度複素数型のとき、ファイル上の型は倍精度 実数型または倍精度複素数型とみなして入出力を行います。

INT

入出力並びの型が8バイト整数型のとき、ファイル上の型は4バイト整数型とみなして入出力を行います。

LOG

入出力並びの型が8バイト論理型のとき、ファイル上の型は4バイト論理型とみなして入出力を行います。

NO

精度の調整は行いません。

REAL

入出力並びの型が倍精度実数型または倍精度複素数型のとき、ファイル上の型は単精度実 数型または単精度複素数型とみなして入出力を行います。

例(1) 外部ファイル装置10に対してすべての型の調整を指定

\$ export VE_FORT_UFMTADJUST10=ALL

例(2) 外部ファイル装置10以外の装置に対してすべての型の調整を指定

\$ export VE FORT UFMTADJUST=ALL

\$ export VE_FORT_UFMTADJUST10=N0

例(3) 外部ファイル装置10に対して実数型と複素数型のみ調整を指定

\$ export VE_FORT_UFMTADJUST10=REAL, DBL

VE_FORT_UFMTENDIAN

ビッグエンディアンモードのファイルとして扱う書式なし入出力の外部ファイル装置を設定 します。以下の形式を指定することができます。

ALL

すべての装置番号を対象とします。

装置番号 | 装置番号,装置番号 | 装置番号-装置番号

対象とする装置番号を指定します。

コンマ区切りで、対象とする複数の装置番号を指定します。

ハイフンで、対象とする連続する複数の装置番号を指定します。

big[: 装置番号] | little[: 装置番号]

エンディアン形式を指定します。

コロンの後に、対象とする装置番号を指定します。

; (セミコロン)

セミコロンの前に指定したエンディアン形式から除外するエンディアン形式と装置番号を 指定します。

例(1) 外部ファイル装置10に対する指定

\$ export VE_FORT_UFMTENDIAN=10

例(2) 外部ファイル装置10、11に対する指定

\$ export VE_FORT_UFMTENDIAN=10, 11

例(3) 外部ファイル装置10、11、12に対する範囲指定

\$ export VE_FORT_UFMTENDIAN=10-12

例(4) 外部ファイル装置10、11、12以外をビッグエンディアンとする指定

\$ export VE_FORT_UFMTENDIAN=big;little:10-12

例(5) すべての外部ファイル装置をビッグエンディアンとする指定

\$ export VE_FORT_UFMTENDIAN=ALL

VE_FORT_UFMTENDIAN_NOVEC

ビッグエンディアンモードのファイルとして扱う書式なし入出力の外部ファイル装置のうち、エンディアン変換処理をスカラで行う外部ファイル装置を設定します。

以下の形式を指定することができます。

ALL

すべての装置番号を対象とします。

装置番号 | 装置番号,装置番号 | 装置番号-装置番号

対象とする装置番号を指定します。

コンマ区切りで、対象とする複数の装置番号を指定します。

ハイフンで、対象とする連続する複数の装置番号を指定します。

YES[: 装置番号] | NO[: 装置番号]

有効(YES)/無効(NO)を指定します。

コロンの後に、対象とする装置番号を指定します。

; (セミコロン)

セミコロンの前に指定した有効(YES)/無効(NO)から除外する有効(YES)/無効(NO)と 装置番号を指定します。

例(1) 外部ファイル装置10に対する指定

\$ export VE_FORT_UFMTENDIAN_NOVEC=10

例(2) 外部ファイル装置10、11に対する指定

\$ export VE_FORT_ UFMTENDIAN_NOVEC =10, 11

例(3) 外部ファイル装置10、11、12に対する範囲指定

\$ export VE_FORT_ UFMTENDIAN_NOVEC =10-12

例(4) 外部ファイル装置10、11、12以外を有効(YES)とする指定

\$ export VE_FORT_ UFMTENDIAN_NOVEC =YES;N0:10-12

例(5) すべての外部ファイル装置を有効(YES)とする指定

\$ export VE_FORT_UFMTENDIAN_NOVEC=ALL

VE FPE ENABLE

実行時の浮動小数点例外を制御します。この変数が設定されているとき、特定の例外が有効 になります。以下の値を指定できます。値はコンマで区切って複数指定できます。

DIV

ゼロ除算例外

FOF

浮動小数点オーバーフロー例外

FUF

浮動小数点アンダーフロー例外

INV

無効演算例外

INE

精度落ち例外

例

\$ export VE_FPE_ENABLE=DIV

VE INIT HEAP

実行時にヒープに割り付ける領域を初期化する値を設定します。値を設定しないとき、初期 化は行われません。以下の値を指定できます。

ZERO

0(ゼロ)で初期化します。

NAN

倍精度実数型のQuiet NaN(0x7ffffffffffff)で初期化します。

NANF

単精度実数型のQuiet NaN(0x7ffffff)で初期化します。

SNAN

倍精度実数型のSignaling NaN(0x7ff400000000000)で初期化します。

SNANF

単精度実数型のSignaling NaN(0x7fa00000)で初期化します。

0xXXXX

最大16桁の16進数で指定された値で初期化します。指定された値が8桁以上の16進数であるとき、8バイト単位で初期化します。そうでないときは4バイト単位で初期化します。

例

\$ export VE_INIT_HEAP=ZER0

VE INIT STACK

実行時にスタックに割り付ける変数を初期化する値を設定します。値が設定されなかったとき、0(ゼロ)で初期化されます。コンパイル時には-minit-stack=runtimeを指定してください。

以下の値を指定できます。

ZERO

0(ゼロ)で初期化します。

NAN

倍精度実数型のQuiet NaN(0x7ffffffffffffffffff)で初期化します。

NANF

単精度実数型のQuiet NaN(0x7ffffff)で初期化します。

SNAN

倍精度実数型のSignaling NaN(0x7ff400000000000)で初期化します。

SNANF

単精度実数型のSignaling NaN(0x7fa00000)で初期化します。

0xXXXX

最大16桁の16進数で指定された値で初期化します。指定された値が8桁以上の16進数であるとき、8バイト単位で初期化します。そうでないときは4バイト単位で初期化します。

例

- \$ nfort -minit-stack=runtime a.f90
- \$ export VE_INIT_STACK=SNAN
- \$./a. out

VE_LD_LIBRARY_PATH

実行時に動的リンカが共有ライブラリをサーチするディレクトリを指定します。複数指定す

るときはコロン(:)で区切って指定し、先に指定したディレクトリが優先されます。動的リンカは標準のディレクトリを自動的にサーチします。この環境変数は、標準以外のディレクトリを常にサーチしたい場合に設定します。例えば、Fortranコンパイラに付属しないOSSの共有ライブラリのディレクトリを常にサーチしたいときに設定します。

例

\$ export VE_LD_LIBRARY_PATH="\${HOME}/lib:\$VE_LD_LIBRARY_PATH"

VE_NODE_NUMBER

プログラムが実行される VEノード番号を指定します。

VE_PROGINF

"YES"、または、"DETAIL"が設定されているとき、プログラムの実行終了時に標準エラー出力にプログラム実行解析情報を出力します。プログラム実行解析情報の詳細については「PR OGINF/FTRACE ユーザーズガイド」を参照してください。

VE TRACEBACK

実行時に致命的エラーが発生したときのトレースバック情報の出力を制御します。トレースバック情報を出力するとき、プログラムのコンパイル時とリンク時に-tracebackを指定する必要があります。この変数に"FULL"、または、"ALL"が設定されたとき、環境変数VE_TRAC EBACK_DEPTHで指定した値を上限にトレースバック情報が出力されます。その他の値が設定されたとき、エラーが発生した手続のトレースバック情報のみ出力されます。値が設定されなかったとき、トレースバック情報は出力されません。

トレースバック情報に表示されたアドレス情報から、致命的エラーの発生個所がわかります。

例

\$ nfort -traceback a. f90

. . .

\$ export VE_TRACEBACK=FULL

\$ export VE_FPE_ENABLE=DIV

\$. /a. out

Runtime Error: Divide by zero at 0x60000000cc0

[1] Called from 0x7f5ca0062f60

[2] Called from 0x600000000b70

Floating point exception

また、コンパイル時とリンク時に-traceback=verboseを指定して作成したプログラムの実

行時に、環境変数**VE_TRACEBACK**に"VERBOSE"を指定すると、ファイル名や行番号情報が出力されます。

例

\$ export VE_TRACEBACK=VERBOSE
\$./a. out
Runtime Error: Overflow at 0x600008001088

[0] 0x600008001088 below_ below. f90:3

[1] 0x600018001168 out_ out. f90:3

[2] 0x600020001168 watch_ watch. f90:3

[3] 0x600010001168 hey_ hey. f90:3

[4] 0x60000001cab8 MAIN_ ovf. f90:5

VE_TRACEBACK_DEPTH

環境変数VE_TRACEBACKにてトレースバック情報を出力する際に、トレースバック情報の 上限の値を設定します。値を指定しない場合は、"50"が設定されます。この環境変数に"0"を 設定した場合、上限なしとなります。

第3章 コンパイラオプション

本章では、Fortranコンパイラのコンパイラオプションについて説明します。 コンパイラオプションは、次のカテゴリに分類できます。

- 全体オプション コンパイラシステム全体を制御するオプションです。
- 最適化・ベクトル化オプション 最適化、および、ベクトル化を制御するためのコンパイラオプションです。
- 並列化オプション 自動並列化機能を制御するためのコンパイラオプションです。
- インライン展開オプション インライン展開機能を制御するためのコンパイラオプションです。
- コード生成オプション 性能測定やスタック領域の初期化を行う付加的なコードを生成するためのコンパイラオプションです。
- デバッグオプション デバッグをサポートするオブジェクトファイルを生成するためのコンパイラオプションです。
- 言語仕様制御オプション Fortranの言語仕様を制御するためのコンパイラオプションです。
- メッセージオプション コンパイルメッセージの出力を制御するためのコンパイラオプションです。
- リスト出力オプション コンパイルリストの出力を制御するためのコンパイラオプションです。
- プリプロセッサオプション プリプロセスを制御するためのコンパイラオプションです。
- アセンブラオプション コンパイラのコマンドラインで指定できるアセンブラを制御するためのオプションです。
- リンカオプション コンパイラのコマンドラインで指定できるリンカを制御するためのオプションです。

• ディレクトリオプション

コンパイラシステムを構成するコマンドや、リンカ、システムヘッダファイル、システム ライブラリのあるディレクトリを指定するためのコンパイラオプションです。

3.1 全体オプション

-S

コンパイルのみ行いアセンブラソースを出力する。

-c

コンパイルのみ行いオブジェクトファイルを出力する。

-cf=conf

コンパイル、リンクするときconfで指定されたコンフィギュレーションファイルを適用する。

-clear

本オプションより前に指定されたコンパイラオプション、ファイルをすべて無視する。

-fsyntax-only

文法チェックのみ行う。

-o ファイル名

出力するプリプロセス結果、アセンブラソース、オブジェクトファイル、実行ファイルの名前を指定する。複数のソースファイルを指定し、**-S**、-c、または、-Eを指定するとき、指定できない。

-x language

ファイルの言語の種類を指定する。このオプションはファイル拡張子に従う自動選択より優先される。仕様は、コマンドライン上のこのオプションに続く(もし次の-xがあればそれまで)すべてのファイルに適用される。languageに指定できる言語の種類は以下である。

f77

固定形式のFortranソースファイルとしてコンパイルする。

f77-cpp-input

プリプロセスし、固定形式のFortranソースファイルとしてコンパイルする。

f95

自由形式のFortranソースファイルとしてコンパイルする。

f95-cpp-input

プリプロセスし、自由形式のFortranソースファイルとしてコンパイルする。

assembler

アセンブラソースファイルとしてアセンブルする。

assembler-with-cpp

プリプロセスし、プリプロセスされたファイルをアセンブルする。

@file-name

コンパイラオプションをfile-nameで指定されたファイルから読み込む。読み込んだコンパイラオプションは、**@file-name**を指定した位置に挿入される。

3.2 最適化・ベクトル化オプション

-O[*n*]

最適化レベル(n)を指定する。nに指定できる値は以下である。

4

Fortran言語仕様を逸脱した副作用を伴う最大限の最適化・自動ベクトル化を適用する。

3

副作用を伴う最適化・自動ベクトル化、および、多重ループの最適化を適用する。

2

副作用を伴う最適化・自動ベクトル化を適用する。(既定値)

1

副作用を伴わない最適化・自動ベクトル化を適用する。

0

最適化、自動ベクトル化、並列化、インライン展開を適用しない。

-fargument-alias

引数が互いに、または、非局所オブジェクトへのエイリアスであると仮定して最適化・自動ベクトル化を適用する。

-fargument-noalias

引数が互いに、または、非局所オブジェクトへのエイリアスでないと仮定して最適化・自動ベクトル化を適用する。(既定値)

-f[no-]associative-math

演算順序の変更を伴う最適化・自動ベクトル化を適用する[しない]。-fno-associative-mathを指定したとき、-fmatrix-multiplyによる行列積の高速なベクトルライブラリ呼出しへの変換を行わない。

(既定值: -fassociative-math)

-f[no-]aggressive-associative-math

より激しく演算順序の変更を伴う最適化・自動ベクトル化を適用する[しない]。

(既定値: -fno-aggressive-associative-math)

-f[no-]assume-contiguous

形状引継ぎ配列を連続であると仮定し、最適化・自動ベクトル化を適用する[しない]。

(既定値: -fno-assume-contiguous)

-f[no-]copyin-intent-out

INTENT(OUT)属性を持つ仮引数に対応する実引数のcopy-inの処理を省略する[しない]。(既定値: -fcopyin-intent-out)

-f[no-]cse-after-vectorization

ベクトル化後にも共通式削除の最適化を適用する[しない]。

(既定値: -fcse-after-vectorization)

-f[no-]fast-formatted-io

書式付き入出力の高速バージョンを使用する[しない]。

(既定値: -ffast-formatted-io)

-f[no-]fast-math

ベクトル化されたループ外でスカラ高速バージョンの数学関数を使用する[しない]。

(既定值: -ffast-math)

-f[no-]fast-math-check

スカラ高速バージョンの数学関数の引数の値の範囲を実行時に検査する[しない]。

(既定値: -fno-fast-math-check)

-f[no-]ignore-asynchronous

ASYNCHRONOUS属性を無視する[しない]。(既定値: -fno-ignore-asynchronous)

-f[no-]ignore-induction-variable-overflow

最適化を行うためにインダクション変数のオーバーフローを無視する[しない]。

(既定値: -fno-ignore-induction-variable-overflow)

-f[no-]ignore-volatile

VOLATILE属性を無視する[しない]。(既定値: -fno-ignore-volatile)

-fivdep

すべてのループにivdep指示行を指定する。

-f[no-]ivdep-do-concurrent-loop

DO CONCURRENT文の前にivdep指示行を挿入する[しない]。(既定値: **-fivdep-do-c** oncurrent-loop)

-fivdep-omp-worksharing-loop

OpenMP機能により並列化されたループに**ivdep**指示行を指定する。ただし、**safelen**、**simdlen**句の指定された**simd**が指定されたループを除く。

-f[no-]loop-collapse

多重ループの一重化を許可する[しない]。-On (n=2,3,4)が有効でなければならない。 (既定値: -fno-loop-collapse)

-floop-count=n

繰返し数に合った最適化を行うため、コンパイル時に繰返し数を算定できないループの繰返し数をn回と仮定する。(既定値: **-floop-count**=5000)

-f[no-]loop-fusion

ループ融合を許可する[しない]。-On (n=2,3,4)が有効でなければならない。(既定値: -fno-loop-fusion)

-f[no-]loop-interchange

ループ入れ換えを許可する[しない]。-On (n=2,3,4)が有効でなければならない。 (既定値: -fno-loop-interchange)

-f[no-]loop-normalize

ループの正規化を許可する[しない]。このとき、コンパイラは、ループの繰返し数がループ本体で変更されないと仮定する。(既定値: -fno-loop-normalize)

-f[no-]loop-split

外部手続の呼出し前後でのループ分割を許可する[しない]。-On (n=2,3,4)が有効でなければならない。(既定値: -fno-loop-split)

-f[no-]loop-strip-mine

ループストリップマイニングを許可する[しない]。-On (n=2,3,4)が有効でなければならない。(既定値: -fno-loop-strip-mine)

-f[no-]loop-unroll

ループアンローリングを許可する[しない]。**-O**n (n=2,3,4)が有効でなければならない。 (既定値: **-floop-unroll**)

-floop-unroll-complete=*m*

ループの繰返し数が定数でコンパイル時に算定できm回以下であるとき、そのループのループ展開(完全ループアンローリング)を許可する。-**O**n (n=2,3,4)が有効でなければならない。(既定値: -floop-unroll-complete=4)

備考 別名オプションとして-floop-unroll-completely=mも使用できる。

-floop-unroll-complete-nest=*m*

DOループをループ展開(完全ループアンローリング)する際、最内側から数えてm重目のループまで展開する。ただし、最外側のDOループを除く。

配列式に対応するループをループ展開(完全ループアンローリング)する際、1次元目から m次元目まで展開する。(既定値: **-floop-unroll-complete-nest**=3)

備考 別名オプションとして-floop-unroll-completely-nest=mも使用できる。

-floop-unroll-max-times=n

最大アンロール段数をn段とする。本オプションが有効でないとき、コンパイラは適切なアンロール段数を自動的に決定する。

-f[no-]matrix-multiply

行列積の高速なベクトルライブラリ呼出しへの変換を許可する[しない]。 $-\mathbf{O}n$ (n=2,3,4)、かつ、 $-\mathbf{fassociative-math}$ が有効でなければならない。

(既定值: -fno-matrix-multiply)

-f[no-]move-loop-invariants

条件下の不変式のループ外への移動を許可する[しない]。

(既定值: -fmove-loop-invariants)

-f[no-]move-loop-invariants-if

ループ内不変のIF構造のループ外への移動を許可する[しない]。- $\mathbf{O}n$ (n=2,3,4)が有効でなければならない。(既定値: - \mathbf{f} no-move-loop-invariants-if)

-f[no-]move-loop-invariants-unsafe

副作用を伴う可能性のあるコードのループ外への移動を許可する[しない]。副作用を伴う可能性のあるコードの例は以下のとおり。

- 除算
- 1バイト、または、2バイトの記憶領域へのメモリ参照

(既定值: -fno-move-loop-invariants-unsafe)

-f[no-]move-nested-loop-invariants-outer

多重ループ内の不変式の外側ループ外への移動を許可する[しない]。このオプションが指定されたとき、不変式は直前のループ前に移動される。

(既定值: -fmove-nested-loop-invariants-outer)

-fnamed-alias

ポインタの指示先がエイリアスをもつと仮定して最適化・自動ベクトル化を適用する。

-fnamed-noalias

ポインタの指示先がエイリアスをもたないと仮定して最適化・自動ベクトル化を適用する。(既定値)

-fnamed-noalias-aggressive

ポインタの指示先がエイリアスをもたないと仮定してより激しく最適化・自動ベクトル化 を適用する。

-f[no-]outerloop-unroll

外側ループのアンローリングを許可する[しない]。-On (n=2,3,4)が有効でなければならない。(既定値: -fno-outerloop-unroll)

-fouterloop-unroll-max-size=n

外側ループアンローリングの対象とするループの最大サイズをnとする。

(既定值: -fouterloop-unroll-max-size=4)

-fouterloop-unroll-max-times=n

外側ループの最大アンロール段数をn段とする。nは2のべき乗数でなければならない。本 オプションが有効でないとき、コンパイラは適切なアンロール段数を自動的に決定する。

-f[no-]precise-math

べき乗算のベクトル演算において、べき指数(exponent)が整数値であるときの計算精度を 高めたべき乗算アルゴリズムを適用する[しない]。計算精度は高まるが、計算速度は低下 する。(既定値: -fno-precise-math)

-f[no-]reciprocal-math

"x/y"の"x * (1/y)"への変更を許可する[しない]。(既定値: -freciprocal-math)

-f[no-]reorder-logical-expression

論理式の各項を任意の順番で評価することを許可する[しない]。左から右へと順に評価する。(既定値: -freorder-logical-expression)

-f[no-]replace-loop-equation

ループ繰返し条件の「!=」、「==」、「.NE.」、「.EQ.」を「<=」、または、「>=」に置換する[しない]。(既定値: -fno-replace-loop-equation)

-f[no-]replace-matmul-to-matrix-multiply

MATMULの手続呼出しのベクトル行列積ライブラリ呼出しへの置換を許可する[しない]。

(既定值: -freplace-matmul-to-matrix-multiply)

-m[no-]array-io

入出力文中の配列式、および、DO形並びの最適化を許可する[しない]。

(既定值: -marray-io)

-m[no-]conditional-index-test

conditional index testingの最適化を適用する[しない]。

(既定值: -mno-conditional-index-test)

-m[no-]list-vector

同一の非線形添字をもつ同一配列が左辺と右辺に現れる代入文のベクトル化を許可する 「しない」。

(既定值: -mno-list-vector)

-mretain-keyword

優先的にLLC(Last-Level Cache)に保持する配列、または、ポインタのベクトルメモリアクセスの種類を指定する。keywordに指定できるメモリアクセスの種類は以下である。

all

すべてのベクトルメモリアクセス。(既定値)

list-vector

非線形添字をもつベクトルメモリアクセス。

none

優先度は指定しない。

-msched-keyword

命令の並べ換えのレベルを指定する。keywordで指定できる命令の並べ換えのレベルは以下である。

none

命令の並べ換えを行わない。

insns

基本ブロック内での命令の並べ換えを行う。

block

基本ブロック内での命令の並べ換えを行う。-msched-insnsより命令の並べ換えを適用する範囲を広くし、より強力に命令を並べ換える。(既定値)

interblock

基本ブロックをまたがって命令の並べ換えを行う。

-mstack-arrays

自動配列、作業配列をスタックに割り付ける。(既定値)

-mno-stack-arrays

自動配列、作業配列をヒープ領域に割り付ける。

-muse-mmap

ALLOCATE文/DEALLOCATE文でのメモリの確保/解放にmmap/munmap関数を使用する。

-m[no-]vector

自動ベクトル化を適用する[しない]。(既定値: -mvector)

-m[no-]vector-advance-gather

ベクトル収集命令をループ本体の前方に移動する[しない]。前方に移動することにより、 後続の演算命令などとオーバーラップさせ、計算時間を短縮できることがある。

(既定値: -mvector-advance-gather)

-mvector-advance-gather-limit=n

前方に移動するベクトル収集命令の個数の上限を指定する。

(既定值: -mvector-advance-gather-limit=56)

-mvector-assignment-threshold=n

nバイト以上の大きさの派生型の代入をベクトル命令で行う。

(既定值: -mvector-assignment-threshold=64)

-m[no-]vector-assume-loop-count

配列式の形状、または、**DO**ループのループ長を仮定するとき、配列宣言の利用を許可する[しない]。

(既定値: -mvector-assume-loop-count)

-m[no-]vector-dependency-test

依存関係の判定を用いた条件ベクトル化を適用する[しない]。**-O**n(n=2,3,4)が有効でなければならない。(既定値: **-mvector-dependency-test**)

-m[no-]vector-floating-divide-instruction

ベクトル浮動小数点除算において、ベクトル浮動小数点除算命令を使用する[しない]。使用しないとき、逆数近似命令を用いてベクトル浮動小数点除算する。

(既定值: -mno-vector-floating-divide-instruction)

-m[no-]vector-fma

ベクトル積和演算命令の使用を許可する[しない]。(既定値: -mvector-fma)

-m[no-]vector-intrinsic-check

ベクトル化された部分から呼び出された数学関数、組込み演算の引数の値の範囲を実行時に検査する[しない]。(既定値:-mno-vector-intrinsic)

本機能の対象となる数学関数、組込み演算は以下のとおり。(ただし、引数は倍精度実数型のみで同型の引数をもつ個別名も対象となる。)

ACOS、ACOSH、ASIN、ATAN、ATAN2、ATANH、COS、COSD、COSH、COTA N、EXP、EXP10、EXP2、EXPC、FACT、LOG10、LOG2、LOG、SIN、SIND、SI NH、SQRT、TAN、TANH、 $^{\wedge}$

-m[no-]vector-iteration

ベクトル漸化式命令の使用を許可する[しない]。(既定値: -mvector-iteration)

-m[no-]vector-iteration-unsafe

結果不正を伴うことがあるベクトル漸化式命令の使用を許可する[しない]。

(既定值: -mvector-iteration-unsafe)

-m[no-]vector-loop-count-test

ループの繰返し数判定を用いた条件ベクトル化を適用する[しない]。-On(n=2,3,4)が有効でなければならない。(既定値: -mno-vector-loop-count-test)

-m[no-]vector-low-precise-divide-function

低精度のベクトル浮動小数点数除算を使用する[しない]。通常精度版と比較して高速に処理されるが、除算結果の仮数部に最大1ビットの誤差が含まれることがある。

(既定值: -mno-vector-low-precise-divide-function)

-m[no-]vector-merge-conditional

THEN節、ELSE IF節、ELSE節のベクトルロードとストアをマージすることを許可する [しない]。(既定値: -mno-vector-merge-conditional)

-m[no-]vector-neighbors

隣接アクセスの最適化を許可する[許可しない]。(既定値: -mno-vector-neighbors) -mvector-neighborsは-march=ve3が有効なとき利用できる。

-m[no-]vector-packed

パックドベクトル命令の使用を許可する[しない]。(既定値: -mno-vector-packed)

-m[no-]vector-power-to-explog

ベクトル化されたループ中のべき乗算R1**R2をEXP(R2*LOG(R1))の呼び出しに置き換えることを許可する[しない]。R1、R2は単精度、または、倍精度実数型である。置き換え前のべき乗算に比べて実行時間は短縮されるが、計算結果が誤差レベルで変わることがある。(既定値: -mno-vector-power-to-explog)

-m[no-]vector-power-to-sqrt

ベクトル化されたループ中のべき乗算R1**R2において、R2の値が0.5、または、1.0/3.0 などの特別な値のとき、べき乗算をSQRT、CBRTを使用した計算に置き換えることを許可する[しない]。R1、R2は単精度、または、倍精度実数型である。SQRT、CBRTを使用した計算のとき、べき乗算に比べて実行時間は短縮されるが、計算結果が誤差レベルで変わることがある。(既定値: -mvector-power-to-sqrt)

-m[no-]vector-reduction

ベクトルリダクション命令の使用を許可する[しない]。(既定値: -mvector-reduction)

-m[no-]vector-shortloop-reduction

リダクション演算を含むループにおいてループの繰返し数判定を用いた条件ベクトル化を 適用する[しない]。**-O**n(n=2,3,4)が有効でなければならない。

(既定值: -mno-vector-shortloop-reduction)

-m[no-]vector-sqrt-instruction

ベクトルSQRTにおいて、ベクトルSQRT命令を使用する[しない]。使用しないとき、逆数 近似命令を用いてベクトルSQRT演算する。

(既定値: -mno-vector-sqrt-instruction)

-mvector-threshold=n

ベクトル化の対象とするループの最小繰返し数(n)を指定する。

(既定值: -mvector-threshold=5)

-mwork-vector-kind=none

部分ベクトル化(ループ分割によるベクトル化)を許可しない。

3.3 並列化オプション

-fopenmp

OpenMP機能を使用する。-pthreadは暗黙的に有効となる。

-m[no-]create-threads-at-startup

最初に実行されるParallelリージョン、または、並列ループの開始時に、OpenMP・自動 並列化のためのスレッドを生成する[しない]。既定値では、プログラムの実行開始時にスレッドを生成する。-mno-create-threads-at-startupを指定するとき、-static-ne c、または、-staticを指定してください。(既定値: -mcreate-threads-at-startup)

-mparallel

自動並列化を適用する。-pthreadは暗黙的に有効となる。

-mparallel-innerloop

内側ループの並列化を許可する。

-m[no-]parallel-omp-routine

-fopenmpと-mparallelが同時に指定されたとき、OpenMPディレクティブを含む手続を自動並列化する[しない]。(既定値: -mparallel-omp-routine)

-mparallel-outerloop-strip-mine

外側ループストリップマイニングで得られる多重ループの並列化を許可する。

-mparallel-sections

並列化されたセクションの生成を許可する。

-mparallel-threshold=n

自動並列化を適用するループを選択する際のしきい値(n)を指定する。

しきい値以上の作業量を持つループに自動並列化を適用する。

(既定值: -mparallel-threshold=2000)

-mschedule-dynamic

-mschedule-runtime

-mschedule-static

-mschedule-chunk-size=n

OpenMP並列化、自動並列化において、**schedule**句によりスレッドのスケジューリング種別、サイズの指定が行われなかった場合のスケジューリング種別、サイズを指定する。

-pthread

pthreadライブラリを用いたマルチスレッドのサポートを有効にする。

3.4 インライン展開オプション

-f[no-]inline-abort-at-error

サーチ対象のソースファイル内で定義された手続の生成に失敗した際、コンパイルを終了する。-fno-inline-abort-at-errorが有効なとき、エラーのあったファイルをサーチせず、コンパイルを継続する。(既定値: -fno-inline-abort-at-error)

-f[no-]inline-copy-arguments

自動インライン展開する手続の実引数のコピーを生成する[しない]。コピーを生成しないとき、手続の仮引数が対応する実引数に置き換えられる。

(既定值: -finline-copy-arguments)

-finline-directory=ディレクトリ名

インライン展開する手続をサーチするとき、指定されたディレクトリにあるすべてのソースファイルをサーチする。複数指定するときにコロン(:)で区切って指定する。

-fno-inline-directory=ディレクトリ名

インライン展開する手続をサーチするとき、指定されたディレクトリにあるすべてのソースファイルをサーチしない。複数指定するときにコロン(:)で区切って指定する。-finline-file、または、-finline-directoryでサーチ対象となったソースファイルをサーチしないとき指定する。

-finline-file= 文字列

インライン展開する手続をサーチするとき、指定されたソースファイルをサーチする。複数指定するときにコロン(:)で区切って指定する。**all**が指定されたとき、コマンドラインで指定されたコンパイル対象のすべてのソースファイルもサーチする。

-fno-inline-file=文字列

インライン展開する手続をサーチするとき、指定されたソースファイルをサーチしない。 複数指定するときにコロン(:)で区切って指定する。-finline-file、または、-finline-dir ectoryでサーチ対象となったソースファイルをサーチしないとき指定する。

-finline-functions

自動インライン展開を適用する。

-finline-max-depth=n

自動インライン展開する手続の深さを指定する。 (既定値: -finline-max-depth=2)

-finline-max-function-size=*n*

自動インライン展開する手続の大きさ(手続の中間言語の量)を指定する。

(既定值: -finline-max-function-size=50)

-finline-max-times=n

自動インライン展開後の手続の大きさ(手続の中間言語の量)の上限を「インライン展開前

の手続の大きさ×n」とする。 (既定値: -finline-max-times=6)

-f[no-]inline-suppress-diagnostics

サーチ対象のソースファイル内で定義された手続の生成に失敗した際、エラーメッセージを出力しない[する]。-finline-file、または、-finline-directoryでサーチ対象となったソースファイルの内、正常にサーチされているものを確認したいときに-fno-inline-suppres s-diagnosticsを指定する。

(既定值: -finline-suppress-diagnostics)

-mgenerate-il-file

クロスファイルインライニングのためのILファイルをカレントディレクトリに出力する。 ファイル名は、「ソースファイル名.fil」である。**-o** ファイル名で名前を変更できる。

-mread-il-file *ILファイル名*

インライン展開する手続をサーチするとき、指定されたILファイルをサーチする。複数指定するときにコロン(:)で区切って指定する。-finline-file、-finline-directory、または、-mgenerate-il-fileのいずれかと同時に指定されたとき無視される。

3.5 コード生成オプション

-finstrument-functions

手続の入口と出口にトレース用の関数呼出しを挿入する。挿入する関数は以下。

```
void __cyg_profile_func_enter(void *this_fn, void *call_site);
void __cyg_profile_func_exit(void *this_fn, void *call_site);
```

-fpic

-fPIC

位置独立コードを生成する。

-ftrace

ftrace機能用のオブジェクトファイル、および、実行ファイルを生成する。

(既定值: -no-ftrace)

-march=kind

ターゲットのアーキテクチャを指定する。kindに指定できる値は以下である。

ve1

VE1以降で使用できるオブジェクトを生成する。(既定値)

ve3

VE3以降で使用できるオブジェクトを生成する。

(VE3向けにインストールしたときは-march=ve3が既定値である。)

-mfp16-format=kind

半精度浮動小数点の形式を指定する。kindに指定できる値は以下である。-march=ve3有効時のみ指定できる。

none

半精度浮動小数点の形式を指定しない。(既定値)

ieee

IEEE binary16形式を使用する。(-march=ve3有効時の既定値)

bfloat

bfloat16形式を使用する。

-р

-pg

プロファイラ情報(ngprof)を出力するオブジェクトファイル、実行ファイルを生成する。

-[no-]proginf

PROGINF機能用の実行ファイルを生成する「しない」。(既定値: -proginf)

3.6 デバッグオプション

-fbounds-check

-fcheck=boundsと同じ。

-fcheck=keyword

keywordに応じた実行時のチェックを有効にする。複数指定するときにはコロン(:)で区切って指定する。例えば「-fcheck=all:noalias」のように指定するとalias以外の全てのチェックを有効にすることができる。

all

下記すべてのチェックを有効にする。

[no]alias

仮引数のエイリアスへの代入のチェックを有効にする[無効にする]。

[no]bits

ビットintrinsicな引数のチェックを有効にする[無効にする]。

[no]bounds

配列の上下限のチェックを有効にする[無効にする]。

[no]dangling

不正なポインタのチェックを有効にする[無効にする]。

[no]do

DOループのステップ値が0かどうかのチェックを有効にする[無効にする]。

[no]iovf

整数オーバーフローのチェックを有効にする[無効にする]。

[no]pointer

ポインタ参照のチェックを有効にする[無効にする]。

[no]present

省略可能な引数の参照のチェックを有効にする[無効にする]。

[no]recursion

不正な再帰呼出しのチェックを有効にする[無効にする]。

-g

DWARFフォーマットでデバッグ情報を生成する。**-g**とともに**-O1**、**-O2**、**-O3**、または**-O4**を指定したとき、最適化の影響でデバッグ情報の一部が不正確になることがある。

-minit-stack=value

実行時にスタックに割り付ける領域を指定された値で初期化する。*value*に指定できる値は以下である。

no

初期化しない。

zero

0(ゼロ)で初期化する。

nan

倍精度浮動小数点型のQuiet NaN(0x7fffffffffffffffff)で初期化する。

nanf

単精度浮動小数点型のQuiet NaN(0x7fffffff)で初期化する。

snan

倍精度浮動小数点型のSignaling NaN(0x7ff400000000000)で初期化する。

snanf

単精度浮動小数点型のSignaling NaN(0x7fa00000)で初期化する。

runtime

環境変数VE_INIT_STACKに設定された値で初期化する。

0xXXXX

最大16桁の16進数で指定された値で初期化する。指定された値が8桁以上の16進数であるとき、8バイト単位で初期化する。そうでないときは4バイト単位で初期化する。

-mmemory-trace

メモリ領域の確保/解放のトレース情報を出力するためのコードを生成する。

-mmemory-trace-full

ソースコードの情報とともにメモリ領域の確保/解放のトレース情報を出力するためのコードを生成する。

-traceback[=verbose]

実行時に環境変数VE_TRACEBACKがセットされているとき、トレースバック情報を出力するオブジェクトファイル、実行ファイルを生成する。

verboseを指定した場合、トレースバック情報を出力する際に、ファイル名や行番号情報を出力するための情報を追加したオブジェクトファイル、実行ファイルを生成する。トレースバック情報を出力する際に、これらの情報を出力するためには、実行時に環境変数**VE**_**TRACEBACK=VERBOSE**を指定する必要がある。

3.7 言語仕様制御オプション

-bss

局所変数を.bssセクションに割り付ける。

-fdefault-integer=*n*

基本整数型、および、基本論理型の大きさをバイトサイズで指定する。nは4、または、8でなければならない。 (既定値: -fdefault-integer=4)

結果の型や引数の型が基本整数型、または、基本論理型である組込み手続にも影響し、その結果や引数には以下のいずれかの型を指定しなければならない。

- 基本整数型

n=4の場合、基本整数型、または、**INTEGER**(4) *n*=8の場合、基本整数型、または、**INTEGER**(8)

- 基本論理型

n=4の場合、基本論理型、または、LOGICAL(4) n=8の場合、基本論理型、または、LOGICAL(8)

-fdefault-double=n

DOUBLE PRECISION型、および、**DOUBLE COMPLEX**型の実部、虚部の大きさをバイトサイズで指定する。*n*は8、または、16でなければならない。 (既定値: **-fdefault-double=**8)

-fdefault-real=n

基本実数型、および、基本複素数型の実部、虚部の大きさをバイトサイズで指定する。nは4、または、8でなければならない。 (既定値: -fdefault-real=4)

結果の型や引数の型が基本実数型、または、基本複素数型である組込み手続にも影響し、 その結果や引数には以下のいずれかの型を指定しなければならない。

- 基本実数型

n=4の場合、基本実数型、または、REAL(4) n=8の場合、基本実数型、または、REAL(8)

- 基本複素数型

n=4の場合、基本複素数型、または、COMPLEX(4)

n=8の場合、基本複素数型、または、COMPLEX(8)

-fextend-source

固定形式のソースファイルに記述できる1行の最大文字数を2048文字に拡張する。

-ffree-form

ソースファイルが自由形式であることを指定する。ソースファイルの拡張子が**.f90、.f9 5、.f03、.F90、.F95、.F03**のときの既定値。

-ffixed-form

ソースファイルが固定形式であることを指定する。ソースファイルの拡張子が**.f**、.**F**のときの既定値。

-ff90-sign

組込み関数SIGNの第二引数において、正の実数0.0と負の実数-0.0を区別しない。第二引数が負の実数-0.0のとき、結果の値の符号は正となる。

-fmax-continuation-lines=n

継続行の行数の上限を指定する。*n*は511以上、かつ、4095以下でなければならない。 (既定値: **-fmax-continuation-lines**=1023)

-fno-realloc-lhs

-fno-realloc-lhs-arrayと-fno-realloc-lhs-scalarを同時に有効にする[しない]。

(既定値: -frealloc-lhs)

-fno-realloc-lhs-array

Fortran 2003言語仕様では、代入文の左辺が割り付けられていない、または、右辺と異なる形状で割り付けられた割付け配列のとき、右辺の形状に再割り当てするよう定められている。

この仕様を無視する。このとき、左辺の割付け配列が、右辺の形状通りに割り付けられて いなければプログラムは正しく動作しない。

(既定値: -frealloc-lhs-array)

-fno-realloc-lhs-scalar

Fortran 2003 言語仕様では、代入文の左辺が割り付けられていないとき、再割り当てするよう定められている。

この仕様を無視する。このとき、左辺の割付け変数が割り付けられていなければプログラムは正しく動作しない。

(既定値: -frealloc-lhs-scalar)

-masync-io

READ文または**WRITE**文に**ASYNCHRONOUS**="YES"が指定されたとき、非同期でデータを転送することを指定する。書式なし入出力で非同期入出力が有効になる。

-save

各プログラム単位において(RECURSIVEであるものは例外とする)、**SAVE**文がすべての局所変数に指定されているものとする。

-std=standard

Fortran言語仕様を指定する。*standard*はf95、f2003、f2008、f2018のいずれかである。これは拡張仕様に関するメッセージ出力にのみ影響します。

(既定值: -std=f2008)

-use module

moduleで指定したモジュールファイル内のすべての公開要素を引用する。moduleはコンマで区切って複数指定できる。

3.8 メッセージオプション

-Wall

すべての警告レベルの文法診断メッセージを出力する。

-Werror

すべての警告レベルの文法診断メッセージを致命的エラーとして扱う。

-Wextension

Fortran拡張言語仕様に対する警告メッセージを出力する。

-Wobsolescent

旧Fortran言語仕様に対する警告メッセージを出力する。

-Woverflow

整数オーバーフローに対する警告メッセージを出力する。

-Woverflow-errors

整数オーバーフローに対するエラーを出力し、コンパイルを中断する。

-Wunmatched-subscript

配列参照の添字並び中の添字式の数が配列の次元数よりも小さいとき、警告メッセージを 出力する。

-Wunmatched-subscript-errors

配列参照の添字並び中の添字式の数が配列の次元数よりも小さいとき、エラーを出力し、 コンパイルを中断する。

-fdiag-inline=n

自動インライン展開に関する診断メッセージのレベル*n*を指定する。 (0: 出力しない、1: 通常レベル、2: 詳細レベル) (既定値: **-fdiag-inline**=1)

-fdiag-parallel=n

自動並列化に関する診断メッセージのレベル*n*を指定する。 (0: 出力しない、1: 通常レベル、2: 詳細レベル) (既定値: **-fdiag-parallel**=1)

-fdiag-vector=n

ベクトル化に関する診断メッセージのレベルnを指定する。 (0: 出力しない、1: 通常レベル、2: 詳細レベル) (既定値: **-fdiag-vector**=1)

-pedantic-errors

言語仕様から逸脱している場合に致命的エラーを出力する。

-w

すべての警告レベルの文法診断メッセージを抑止する。

3.9 リスト出力オプション

-report-file=ファイル名

既定のファイルの代わりに指定されたファイルにリスト結果を出力する。

-report-append-mode

「上書きモード」の代わりに「追加モード」で出力ファイルを開く。このオプションは **-report-file**の指定が無いと使用できない。

-report-all

コード生成リスト、診断メッセージリスト、編集リスト、インラインリスト、オプション リスト、ベクトルリストを出力する。

-[no-]report-cg

コード生成モジュールの最適化情報リストを出力する[しない]。

(既定值: -no-report-cg)

-[no-]report-diagnostics

診断メッセージリストを出力する[しない]。

(既定値: -no-report-diagnostics)

-[no-]report-format

編集リストを出力する[しない]。

(既定值: -no-report-format)

-[no-]report-inline

インライン展開モジュールの最適化情報リストを出力する[しない]。

(既定值: -no-report-inline)

-[no-]report-option

オプションリストを出力する[しない]。

(既定值: -no-report-option)

-report-userinfo=character-string

コンパイルリストの先頭にユーザによる付加情報としてcharacter-stringを出力する。

-[no-]report-vector

ベクトル化モジュールの最適化情報リストを出力する[しない]。

(既定值: -no-report-vector)

3.10 プリプロセッサオプション

-Dmacro[=defn]

#defineと同様に*macro*を値*defn*で定義する。=*defn*が指定されなかったとき*macro*は10進整数1に定義される。

-E

プリプロセスのみ行いプリプロセス結果を標準出力に出力する。

-dM

プリプロセス結果の代わりに、**#define**、-Dで定義されたマクロ定義、および、定義済みマクロを標準出力に出力する。-Eと同時に指定されていないとき無視される。

-fpp

ソースファイルをコンパイル前に**fpp**でプリプロセスすることを指定する。ファイルの拡張子が**.F、.F90、.F95、.F03**のときの既定値。

-nofpp

ソースファイルをコンパイル前に**fpp**でプリプロセスしないことを指定する。ファイルの 拡張子が**.f、.f90、.f95**、.**f03**のときの既定値。

-fpp-name=name

デフォルトで使用されるFortranプリプロセッサの代わりのFortranプリプロセッサ名を指定する(パスの有無は任意)。

-Iディレクトリ名

#includeで指定されたファイルをディレクトリ名で指定するディレクトリからサーチする。

-isysroot ディレクトリ名

#includeで指定されたヘッダファイルをディレクトリ名で指定されたディレクトリ配下のin cludeディレクトリからサーチする。

-isystem ディレクトリ名

#includeで指定されたヘッダファイルを-Iで指定されるディレクトリの後、かつ、標準のシステムディレクトリより前に、*ディレクトリ名*で指定されたディレクトリからサーチする。

-M

プリプロセス結果の代わりにファイルの依存情報を出力する。

-nostdinc

ヘッダファイルについて標準のシステムディレクトリはサーチしない。

-P

行ディレクティブをプリプロセス結果に出力しない。

-traditional

C言語のコメント(/**/)を1つの空白文字に置き換えるのではなく削除する。

-Umacro

macroの定義を削除する。

-Wp,option

プリプロセッサ(**fpp**)のオプションを指定する。複数のオプションや引数はコンマ(,)で区切って指定する。

3.11 アセンブラオプション

-Wa,option

アセンブラ(**nas**)のオプションを指定する。複数のオプションや引数はコンマ(,)で区切って指定する。

-Xassembler option

アセンブラ(nas)のオプションを指定する。引数を持ったオプションのとき、オプションと引数をそれぞれ本オプションで指定する。

-assembly-list

アセンブリリストを出力する。出力ファイル名は、入力ファイル名の拡張子を「.O」に変更したものとなる。

3.12 リンカオプション

-cxxlib

C++ライブラリをリンクする。

-Bdynamic

実行時にダイナミックリンクライブラリをリンクする。**-Bstatic**を指定しない場合の既定値である。

-Bstatic

利用者のライブラリを静的リンクする。

-Lディレクトリ名

ライブラリを既定のディレクトリより先に*ディレクトリ名*で指定したディレクトリからサー

チする。

- I ライブラリ名

規定したディレクトリからライブラリ名が"lib*ライブラリ名*"であるライブラリをサーチする。

-nostartfiles

リンク時に標準のシステムのスタートアップファイルを使用しない。

-nostdlib

リンク時に標準のシステムライブラリとスタートアップファイルを使用しない。

-rdynamic

リンク時に未使用のシンボルを含むすべてのシンボルをダイナミックなシンボルテーブル に追加する。

-shared

共有オブジェクトを生成する。

-static

ライブラリを静的リンクする。

-static-nec

NEC SDKのライブラリを静的リンクする。

-stdlib=library-name

-cxxlib指定時にリンクするC++ライブラリを指定する。指定できるライブラリは以下である。

compat

NEC Compat C++標準ライブラリを使用する。

(NEC Compat C++標準ライブラリインストール時の既定値)

libc++

libc++を使用する。(上記以外時の既定値)

-WI,option

リンカ(**nld**)のオプションを指定する。複数のオプションや引数はコンマ(,)で区切って指定する。

-Xlinker option

リンカ(nld)のオプションを指定する。引数を持ったオプションのとき、引数それぞれを 本オプションで指定する。

-z keyword

リンカ(nld)の-zと同じ。

3.13 ディレクトリオプション

--sysroot= ディレクトリ名

ヘッダファイルとライブラリをサーチするディレクトリを指定する。ヘッダファイルはディレクトリ名で指定されたディレクトリ配下のincludeディレクトリ配下、ライブラリはディレクトリ名で指定されたディレクトリ配下のlibディレクトリ配下からサーチする。

-B ディレクトリ名

コマンド、ヘッダファイル、ライブラリをサーチするディレクトリを指定する。コマンド とライブラリは*ディレクトリ名*で指定されたディレクトリ、ヘッダファイルは*ディレクトリ名*で 指定されたディレクトリ配下の**include**ディレクトリ配下からサーチする。

-fintrinsic-modules-path ディレクトリ名

組込みモジュールのモジュールファイルをサーチするディレクトリを指定する。

-module ディレクトリ名

-J ディレクトリ名

モジュールファイルの出力先ディレクトリを指定する。また、指定したディレクトリはモ ジュールファイルのサーチにも使用される。

3.14 その他オプション

--help

コンパイラの用法を表示する。

-print-file-name=library

リンク時に使用されるライブラリファイル(*library*)の絶対パスを出力する。このオプションを指定したとき、コンパイル、および、リンクを行わない。ライブラリファイルが存在しないときは*library*に指定した文字列を出力する。

-print-prog-name=program

コンパイル中に呼びだされるコンパイラシステムのコマンド名(*program*)を表示する。このオプションを指定したとき、コンパイル、および、リンクを行わない。指定されたコマンドが存在しないときは*program*で指定した名前を表示する。

-noqueue

コンパイラのライセンス数が使用制限に達しているとき、使用可能になるまで待ち合わせ

ずに終了する。

-V

コンパイルの各ステージで起動されたコマンドを表示する。

--version

コンパイラのバージョンと著作権を表示する。

3.15 最適化レベルとオプションの既定値

-Onと最適化を個別に制御するオプションの対応は以下のとおりです。

ただし、**-O**nは最適化全体のレベルを制御するもので、最適化を個別に制御するオプションの有効、無効を同等にしても同じ命令コードが作成されるとは限りませんので注意してください。ある最適化を効果的に適用するには、別の補助的な最適化も適用するなど最適化同士が相互に関連しており、それらが連携して動作するよう**-O**nで制御しています。例えば**-OO**に対して、**-O1**指定時に既定値として設定される最適化オプションを指定しても **-O1**と同じにはなりません。

オプション名	-04	-03	-02	-01	-00
-fassociative-math	V	V	V	-	-
-fcse-after-vectorization	V	V	V	-	-
-ffast-math	V	V	V	V	-
-fignore-induction-variable-overflow	V	-	-	-	-
-fignore-volatile	V	-	-	-	-
-finline-copy-arguments	-	V	V	V	V
-floop-collapse	V	V	-	-	-
-floop-fusion	V	V	-	-	-
-floop-interchange	V	V	-	-	-
-floop-normalize	V	V	-	-	-
-floop-strip-mine	V	V	-	-	-
-floop-unroll	V	V	V	-	-
-floop-unroll-complete=4	V	V	V	-	-
-floop-unroll-complete-nest=3	~	V	V	-	-

オプション名	-04	-03	-02	-01	-00
-fmatrix-multiply	V	V	-	-	-
-fmove-loop-invariants	V	V	V	V	-
-fmove-loop-invariants-if	V	V	-	-	-
-fmove-loop-invariants-unsafe	V	-	-	-	-
-fmove-nested-loop-invariants-outer	V	V	V	V	-
-fnamed-alias	-	-	-	V	V
-fnamed-noalias	V	V	V	-	-
-fouterloop-unroll	V	V	-	-	-
-freciprocal-math	V	V	V	-	-
-freplace-loop-equation	V	-	-	-	-
-freplace-matmul-to-matrix-multiply	V	V	V	V	-
-marray-io	V	V	V	V	-
-mconditional-index-test	V	V	-	-	-
-msched-none	-	-	-	-	V
-msched-block	V	V	V	V	-
-mvector	V	V	V	V	-
-mvector-dependency-test	V	V	V	-	-
-mvector-fma	V	V	V	-	-
-mvector-merge-conditional	V	V	-	-	-

第4章 コンパイラ指示行

4.1 コンパイラ指示行の形式

コンパイラ指示行は以下の形式で記述します。

!NEC\$ コンパイラ指示オプション(自由形式)

*NEC\$ コンパイラ指示オプション(固定形式)

cNEC\$ コンパイラ指示オプション(固定形式)

備考 以下の形式でも記述できます。ただし、この形式は将来廃止予定のため、上記 形式での記述を推奨します。

!\$NEC コンパイラ指示オプション(自由形式)

*\$NEC コンパイラ指示オプション(固定形式)

c\$NEC コンパイラ指示オプション(固定形式)

4.2 コンパイラ指示オプション

[no]advance_gather

直後のベクトルループ中のベクトル収集命令をループ本体の前方に移動する[しない]。前方 に移動することにより、後続の演算命令などとオーバーラップさせ、計算時間を短縮できる ことがある。

[no]always_inline

本指示行の指定された手続を常にインライン展開の対象とする。呼び出される手続に指定する。ただし、本手続の手続呼出しに**noinline**が有効であるとき、インライン展開されない。**-On**[n=2,3,4]、**-finline-functions**、**-fopenmp**、または、**-mparallel**が指定されたときのみ有効である。

[no]assoc

演算順序の変更を伴うループ変形を許可する[しない]。

[no]assume

直後の配列式の形状、または、**DO**ループのループ長を仮定するとき、配列宣言の利用を許可する[しない]。

atomic

直後の文が、総和、累積などのマクロ演算の式であることを示す。

cncall

利用者定義の手続呼出しがあっても並列化を許可する。

collapse

多重ループの一重化を許可する。

[no]concurrent

ループの並列化を許可する[しない]。-mparallelが有効であるときのみ効果がある。 concurrentに続けて、ループの分割方法を指定するOpenMPと同じ**schedule**句を指定できる。指定できるschedule種別は以下である。

- schedule(static [,chunk-size])
- schedule(dynamic [,chunk-size])
- schedule(runtime)

dependency_test

データ依存関係の判定をベクトルコード、スカラコードの選択の条件とする条件ベクトル化 を許可する。

forced_collapse

直後の多重ループが一重化可能かどうか不明な場合でも強制的に一重化する。一重化しても 予期しない結果、結果不正とならないことはプログラマが保証しなければならない。

gather_reorder

直後のDOループ中に現れる非線形添字をもつベクトルロード、ベクトルストアは互いに重なることが無いものと仮定して命令の並べ換えを行うことを許可する。

ignore_feedback_scalar

ループ内のスカラ変数の定義と参照が別のIF文の条件の下にあっても、各ループの繰り返し内において参照に先行する定義が存在する(すなわち、ループの繰り返しをまたがったスカラ変数の定義・参照の関係は無い)と仮定してループをベクトル化することを許可する。

[no]inline

本指示行の直後の文、**BLOCK**構文、**DO**構文、**IF**構文に含まれる手続呼出しをインライン展開の対象とする[しない]。-On[n=2,3,4]、-finline-functions、-fopenmp、または、-m parallelが指定されたときのみ有効である。

inline_complete

inlineと同様であるが、インライン展開される手続がさらに手続を呼び出しているときその手続もインライン展開の対象とし、手続呼出しがなくなるまでインライン展開を試みる。-On[n=2,3,4]、-finline-functions、-fopenmp、または、-mparallelが指定されたときのみ有効である。

[no]inner

次元数が1である配列式、または、最内側ループの自動並列化を許可する[しない]。最内側ループに指定したときのみ効果がある。

[no]interchange

ループ入れ換えを許可する[しない]。

ivdep

配列の依存関係が不明なとき、ベクトル化不可の依存関係ではないと仮定してベクトル化することを許可する。ベクトル化不可のループをベクトル化し、結果が不正となることがある。

[no]list_vector

同一の非線形添字をもつ同一配列が左辺と右辺に現れる代入文のベクトル化を許可する[しない]。加算、減算のみ含まれる代入文を対象とする。

loop_count(n)

ループの繰返し数が不明なとき、繰返し数を整定数n回と仮定する。

loop_count_test

ループ長による条件ベクトル化を許可する。

[no]Istval

ループ内で定義され、ループの後で値が参照されるかどうかが不明な変数の終値を保証する [しない]。

move_unsafe / move / nomove

move_unsafe

IF配下の不変式のループ外への移動を、副作用を伴う安全ではないコードも含み、許可する。安全でないコードを移動した場合opt(3008)のメッセージが表示される。

move

IF配下の不変式のループ外への移動を許可する。副作用を伴う安全でないコードは、移動されない。

nomove

不変式のループ外への移動を許可しない。

[no]neighbors

指定されたループに置いて、隣接アクセス最適化を許可する[しない]。

備考 隣接アクセス最適化は-march=ve3有効時のみ効果があります。

nofma

ベクトル積和命令を使用したベクトル化を許可しない。

nofuse

直前のループとのループ融合を許可しない。

nosync

配列要素間、ポインタ式の指示先間の依存関係が不明であるときでも、依存関係がないもの と仮定して並列化する。

options "compiler-option [compiler-option]..."

compiler-optionでコンパイラオプションを指定する。compiler-optionで指定されたコンパイラオプションをコマンドラインで指定されたコンパイラオプションに追加し、ソースプログラムをコンパイルする。

指定方法

- 本指示行(!NEC\$ options "...")は、ソースファイルの先頭に記述する。
- 本指示行は、複数行、続けて記述できる。
- 空行、コメント行、#lineに限り、本指示行の直前、間に記述できる。
- 本指示行は、ソースファイルの先頭の#includeにより取り込まれるファイルの先頭に記述できる。

注意事項

- 本指示行は継続できない。
- compiler-optionの-Iで指定されたディレクトリのヘッダファイルで記述された指示行の コンパイラオプションは無視される。

- 本指示行を読み取る際、**#include**により取り込まれるファイルのネスト数の上限値は10 00である。
- 本指示行はINCLUDE行で取り込まれるファイルには記述できない。
- *compiler-option*で指定できないコンパイラオプションについては、「4.3 options指示オプションで指定できないコンパイラオプション」を参照のこと。
- 本指示行で-fopenmp、-mparallel、または、-ftraceを指定したとき、リンク時にもそれらのオプションを指定しなければならない。

optimize "compiler-option [compiler-option]..."

compiler-optionでコンパイラオプションを指定する。compiler-optionで指定されたコンパイラオプションを本指示行を含むルーチンに適用する。

指定方法

本指示行は、PROGRAM文、SUBROUTINE文、FUNCTION文の直後に記述する。 複数行指定できる。

```
SUBROUTINE SUB

!NEC$ optimize "-03 -finline-functions"

!NEC$ optimize "-mvector-intrinsic-check"

USE MM

...

END SUBROUTINE SUB
```

注意事項

- 本指示行は継続できない。
- 本指示行で指定されたコンパイラオプションは内部手続に引き継がれない。
- *compiler-option*で指定できるコンパイラオプションについては、「4.4 optimize指示 オプションで指定できるコンパイラオプション」を参照のこと。

outerloop_unroll(n) / noouterloop_unroll

outerloop_unroll(n)

外側ループのアンローリングを許可する。アンロール段数は*n*を超えない最大の2のべき乗数となる。

noouterloop_unroll

外側ループのアンローリングを許可しない。

[no]packed_vector

直後の実行文中に現れる**DO**ループ中でパックドベクトル命令の使用を許可する[しない]。

parallel do

DOループを強制並列化する。ループが並列実行できることはプログラマが保証しなければならない。-mparallelが有効であるときのみ効果がある。

parallel doに続けて、ループの分割方法を指定するOpenMPと同じ**schedule**句を指定できる。指定できるschedule種別は以下である。

- schedule(static [,chunk-size])
- schedule(dynamic [,chunk-size])
- schedule(runtime)

また、**PRIVATE**句も指定できます。*name*では、文字型、派生型でないスカラ変数名、形状明示配列名を指定できる。

pvreg(array-name)

配列array-nameにメモリの代わりにベクトルレジスタを割り当てる。

コンパイラはこの指定行を含む手続内のすべてのpvreg指定された配列の参照を、ロード/ストアではなく、ベクトルレジスタの参照として翻訳する。

PVREG指定される配列は以下の条件を満たさなければならない。

- ローカル配列
- 配列のタイプはINTEGER(KIND=4)、REAL(KIND=4)、LOGICAL(KIND=4)、または、それらの別名でなければならない
- 1次元配列
- 配列要素の数は最大のパックドベクトル長(=512)以下
- パックドベクトル化されるループ中でのみ定義/参照されること
- すべてのループにおいて添字が同じであること
- VREG指定される配列を指定してはならない

また、-march=ve1有効時は、さらに次の条件を満たさなければならない。

• 配列を定義/参照するループのループ長が定数かつ偶数であること

retain(array-name)

array-nameの配列、または、ポインタの指示先を可能なかぎりLLC(Last-Level Cache)に保持することを指定する。

備考 この指示行を有効にするとき、-mretain-list-vector、または、-mretain-none を指定してください。

select concurrent

多重ループのループのうち、直後のループに対して他のループより優先して自動並列化を適用する。

select_vector

多重ループのループのうち、直後のループに対して他のループより優先して自動ベクトル化 を適用する。

shortloop

ループの繰返し数が、システムの最大ベクトルレジスタ長(=256)を超えないものとしてベクトル化することを許可する。

[no]shortloop_reduction

リダクション演算を含むループの繰返し数による条件ベクトル化を許可する[しない]。

-fassociative-mathが有効であるときのみ効果がある。

[no]sparse

sparse

ループ中の条件下の数学関数の実行回数が、ループの繰返し数より非常に小さいものとして、ベクトル化する。

nosparse

ループ中の条件文下の数学関数の実行回数が、ループの繰返し数に近いものとして、ベクトル化 する。

unroll(n) / nounroll

unroll(n)

ループをn段にアンロールすることを許可する。

nounroll

ループのアンローリングを許可しない。

unroll_complete

直後のループの繰返し数が定数でコンパイル時に算定できるとき、そのループをループ展開 (完全ループアンローリング)することを許可する。

備考 別名としてunroll completelyも使用できる。

[no]vector

自動ベクトル化を許可する[しない]。

vector_threshold(n)

直後のDOループまたは配列式のベクトル化を行う最小の繰返し数をn回とする。

[no]vob

直後の実行文中に現れる配列式、または、**DO**ループの終了後に実行されるスカラロード、スカラストア、ベクトルロードが、その配列式、または、**DO**ループ中のベクトルストアを追い越すことを許可しない[する]。

多重ループの外側ループに指定したとき、その内側ループには効果が無い。

[no]vovertake

直後の実行文中に現れる配列式、または、**DO**ループ中のベクトルストアを、後続のスカラロード、スカラストア、ベクトルロードが追い越して実行することを許可する[しない]。

- 配列式、または、**DO**ループ中のベクトルストアと、ループ中またはループ後のスカラロード、スカラストア、ベクトルロードの領域に重なりがあるとき、実行結果が不正になることがある。
- 多重ループの外側ループに指定したとき、その内側ループには効果が無い。

vreg(array-name)

配列array-nameにメモリの代わりにベクトルレジスタを割り当てる。

コンパイラはこの指定行を含む手続内のすべての**VREG**指定された配列の参照を、ロード・ストアではなく、ベクトルレジスタの参照として翻訳する。

VREG指定される配列は以下の条件を満たさなければならない。

- ローカル配列
- 配列のタイプはINTEGER(KIND=4)、INTEGER(KIND=8)、REAL(KIND=4)、RE AL(KIND=8)、LOGICAL(KIND=4)、LOGICAL(KIND=8)、または、それらの別名 でなければならない
- 1次元配列
- 配列要素の数は最大のベクトル長(=256)以下
- ベクトル化されるループ中でのみ定義/参照されること
- すべてのループにおいて添字式の値が同じであること
- PVREG指定される配列を指定してはならない

[no]vwork

部分ベクトル化(ループ分割によるベクトル化)を許可する[しない]。novworkを指定した場合、外側ループ、およびベクトル化不可の部分を含むループは、ループ全体がベクトル化されなくなる。

4.3 options指示オプションで指定できないコンパイラオプション

次のコンパイラオプションは、options指示オプションで指定できません。

- 全体オプション
 - -S、-c、-cf=conf、-fsyntax-only、-o ファイル名、-x language、@file-name
- 最適化・ベクトル化オプション
 - -muse-mmap
- 並列化オプション
 - -mno-create-threads-at-startup、-pthread
- インライン展開オプション
 - -finline-abort-at-error、-mgenerate-il-file ILファイル名
- コード生成オプション
 - -no-proginf
- デバッグオプション
 - -mmemory-trace、-mmemory-trace-full、-traceback
- 言語仕様制御オプション
 - -masync-io. -use module
- メッセージオプション
 - -Werror
- プリプロセッサオプション
 - -Dmacro[=defn]、-E、-fpp、-nofpp、-fpp-name=name、-M、-P、
 - -traditional . Umacro . Wp, option
- アセンブラオプション
 - -Wa, option . -Xassembler option . -assembly-list
- リンカオプション
 - -Bdynamic、-Bstatic、-L*ディレクトリ名*、-I*ライブラリ名*、-nostartfiles、-nostdli b、

- -rdynamic、-shared、-static、-static-nec、-stdlib、-Wl,option、
- -Xlinker option. -z keyword
- ディレクトリオプション
 - --sysroot=ディレクトリ名、-Bディレクトリ名
- その他オプション
 - --help、-print-file-name=library、-print-prog-name=program、-noqueu e、
 - -v. --version

4.4 optimize指示オプションで指定できるコンパイラオプション

次のコンパイラオプションをoptimize指示オプションで指定できます。

- **-O**n
- -faggressive-associative-math
- -fargument-alias
- -fargument-noalias
- -fassociative-math
- -fassume-contiguous
- -fcse-after-vectorization
- -fdiag-inline=*n*
- -fdiag-parallel=n
- -fdiag-vector=n
- -ffast-math
- -ffast-math-check
- -fignore-asynchronous
- -fignore-induction-variable-overflow
- -fignore-volatile
- -finline-copy-arguments
- -finline-functions
- -finline-max-depth=*n*
- -finline-max-function-size=n
- -finline-max-times=n
- -fivdep
- -fivdep-omp-worksharing-loop

- -floop-collapse
- -floop-count=n
- -floop-fusion
- -floop-interchange
- -floop-normalize
- -floop-split
- -floop-strip-mine
- -floop-unroll
- -floop-unroll-complete=n
- -floop-unroll-max-times=n
- -fmatrix-multiply
- -fmove-loop-invariants
- -fmove-loop-invariants-if
- -fmove-loop-invariants-unsafe
- -fmove-nested-loop-invariants-outer
- -fnamed-alias
- -fnamed-noalias
- -fouterloop-unroll
- -fouterloop-unroll-max-size=n
- -fouterloop-unroll-max-times=n
- -frealloc-lhs
- -frealloc-lhs-array
- -frealloc-lhs-scalar
- -freciprocal-math
- -freplace-loop-equation
- -freplace-matmul-to-matrix-multiply
- -marray-io
- -mconditional-index-test
- -minit-stack=value
- -mlist-vector
- -mparallel-innerloop
- -mparallel-omp-routine
- -mparallel-sections
- -mparallel-threshold=n

- -mretain-all
- -mretain-list-vector
- -mretain-none
- -msched-keyword
- -mstack-arrays
- -mvector
- -mvector-assignment-threshold=n
- -mvector-dependency-test
- -mvector-floating-divide-instruction
- -mvector-fma
- -mvector-advance-gather
- -mvector-advance-gather-limit=n
- -mvector-intrinsic-check
- -mvector-iteration
- -mvector-iteration-unsafe
- -mvector-loop-count-test
- -mvector-low-precise-divide-function
- -mvector-merge-conditional
- -mvector-neighbors
- -mvector-packed
- -mvector-power-to-explog
- -mvector-poser-to-sqrt
- -mvector-reduction
- -mvector-shortloop-reduction
- -mvector-sqrt-instruction
- -mvector-threshold=n
- -mwork-vector-kind=none
- -report-all
- -report-cg
- -report-diagnostics
- -report-format
- -report-inline
- -report-option
- -report-vector

第5章 最適化・ベクトル化

本章では、コンパイラのもつ最適化機能、自動ベクトル化によるプログラムの高速化にかか わる機能を説明します。

5.1 コードの最適化

コードの最適化は、プログラム中の制御の流れやデータの流れを解析することによって、不要な演算を可能なかぎり削除し、また、ループ中の演算を必要最小限のものとします。 さらに可能ならば、演算をそれと等価なより高速な演算と置き換えることにより、プログラム実行時間の短縮を図ります。

5.1.1 コンパイラの適用する最適化

Fortranコンパイラは次の最適化を適用します。()内でそれらを有効にするオプションを示します。

- 共通式の削除 (-O[n](n=1,2,3,4))
- 条件下の不変式のループ外への移動(-O[n](n=1,2,3,4), -fmove-loop-invariants, -f move-loop-invariants-unsafe)
- 単純代入の削除 (-O[n](n=1,2,3,4))
- 不要コードの削除 (-O[n](n=1,2,3,4))
- べき乗の最適化 (-O[n](n=1,2,3,4))
- 除算の乗算化 (**-O**[*n*](*n*=2,3,4), **-freciprocal-math**)
- ループ融合 (-O[n](n=3,4))
- 算術IF文の最適化 (-O[n](n=1,2,3,4))
- 定数の演算・型変換のコンパイル時計算(-O[n](n=1,2,3,4))
- 複素数演算の最適化 (-O[n](n=1,2,3,4))
- 単項演算子のマイナスの除去 (-O[n](n=1,2,3,4))
- 分岐に関する最適化 (**-O**[*n*](*n*=1,2,3,4))
- 演算の強度縮小とテスト変数の置換 (**-O**[n](n=1,2,3,4))
- 不要終値保証の除去 (**-O**[n](n=1,2,3,4))
- 組込み手続のインライン展開(-O[n](n=1,2,3,4))

- 入出力文のDO形並びの最適化 (**-O**[*n*](*n*=1,2,3,4), **-marray-io**)
- 命令の並べ換えによる最適化 (-msched-keyword)

5.1.2 最適化による副作用

- 式、コードの削除により、計算を行う場所、回数が変わり、エラーの発生位置、回数が最適化を適用しなかった場合と比べて変わることがあります。
- 条件下の不変式のループ外への移動により、実行されないはずの式が実行され、本来発生 しないはずのエラーや演算例外が発生することがあります。
- べき乗の最適化を適用したとき、アンダーフローが発生しても例外を検出しません。
- 除算の乗算化により、演算結果にわずかの差異が生じます。浮動小数点数の演算では、この差異はほとんど無視してかまいませんが、無視したくないときコンパイラオプションで最適化を抑止してください。
- 命令の並べ換えによる最適化により、ある条件が成立したときのみ実行される計算が、基本ブロックをまたがって移動され、常に実行されるようになると、発生しないはずの実行時エラーが検出されることがあります。また、コンパイル時間やコンパイラが使用するメモリ量を著しく増加させることがあります。

5.2 ベクトル化機能

5.2.1 ベクトル化

変数や配列の各要素のことをスカラデータと呼びます。これに対し、行列の行要素、列要素、対角要素など、規則的に並んだデータ列をベクトルデータと呼びます。ベクトルデータを処理するスカラ命令列を、等価な処理を行うベクトル命令で置き換えることをベクトル化といいます。コンパイラがプログラムを解析してベクトル命令で実行可能な部分を自動的に検出し、その部分に対してベクトル命令を生成することを自動ベクトル化といいます。**-O**[n] (n=1,2,3,4)が有効であるとき、自動ベクトル化が有効になります。

この最適化を制御するコンパイラオプションは、-mvectorです。

この最適化を制御するコンパイラ指示オプションは、[no]vectorです。

5.2.2 部分ベクトル化

ループ、または、配列式にベクトル化可能な部分とベクトル化不可の部分が混在しているとき、そのループ、または、配列式をベクトル化可能な部分(ベクトルコード部分)とベクトル化不可の部分(スカラコード部分)に分割し、ベクトル化可能な部分のみをベクトル化します。このベクトル化方法は、部分ベクトル化と呼ばれます。-**O**[n](n=1,2,3,4)が有効である

とき、この最適化が有効になります。

この最適化を制御するコンパイラオプションは、-mwork-vector-kind=noneです。 この最適化を制御するコンパイラ指示オプションは、[no]vworkです。

5.2.3 マスク演算の最適化

IF文を含む**DO**ループに対してマスク付きの演算によりベクトル化を可能としているが、**IF** 文が入れ子となり、複合条件となっているようなときには、マスク間の同一な演算が生じ、実行効率が低下することがあります。これを避けるために、マスク演算に対して次のような最適化を行います。**-O**[n] (n=1,2,3,4)が有効であるとき、この最適化が有効になります。

同一の演算は、共通式として処理します。
 この例ではA(I).LE.0.0が共通式として処理されます。

例

```
DO I = 1, N

IF (A(I).LE. 0. 0) THEN

X(I) = A(I) * B(I)

END IF

Y(I) = A(I) + B(I)

IF (A(I).LE. 0. 0. AND. B(I). EQ. 0. 0) THEN

Z(I) = A(I)

END IF

END DO
```

↓ ベクトル化

```
M1i ← 0: if Ai > 0.0

1: if Ai <= 0.0

Xi ← Ai * Bi (if M1i = 1)

Yi ← Ai + Bi

M2i ← 0: if Bi ≠ 0.0

1: if Bi = 0.0

M3i ← M1i AND M2i

Zi ← Ai (if M3i = 1)
```

(2) **IF** 文が入れ子となり、複合条件となっている場合にも、共通式として処理されます。 この例ではY(I).GT.0.0が共通式として処理されます。

例

```
DO I = 1, N
```

↓ ベクトル化

5.2.4 マクロ演算

以下のようなパターンの式はベクトル化の定義・参照の条件を満たしていませんが、コンパイラは特別なパターンと認識し、専用のベクトル命令を用いてベクトル化します。-O[n] (n = 1,2,3,4)が有効であるとき、この最適化が有効になります。

(1) 総和/内積

```
S = S \pm exp  (exp: \vec{1})
```

次のような、複数の文から構成されている総和/内積もベクトル化されます。

このベクトル化は、-mvector-reductionで制御できます。

(2) 累積

$$S = S * exp$$
 $(exp: \vec{1})$

次のような、複数の文から構成されている累積もベクトル化されます。

$$t1 = S * exp1 (expi:式)$$
 $t2 = t1 * exp2$
...
 $S = tn * expn$

このベクトル化は、-mvector-reductionで制御できます。

(3) 漸化式

$$A(I) = exp \pm A(I-1)$$
 $(exp: 式)$
 $A(I) = exp * A(I-1)$
 $A(I) = exp1 \pm A(I-1) * exp2$
 $A(I) = (exp1 \pm A(I-1)) * exp2$

次のような複数の文から構成される漸化式もベクトル化されます。

$$T = exp1 \pm A(I-1)$$
 $(expi:式)$ $A(I) = t * exp2$

このベクトル化は、-mvector-iteration、および、-mvector-iteration-unsafeで制御できます。

(4) 最大值/最小值

(a) 関数型

例

DO I = 1, N

$$XMAX = MAX(XMAX, X(I))$$

END DO

(b) 最大値/最小値のみを求める

例

```
DO I = 1, N
```

```
IF (XMAX .LT. X(I)) THEN
     XMAX = X(I)
END IF
END DO
```

(c) 最大値/最小値とインデックスを求める

例

```
DO I = 1, N

IF (XMIN . GT. X(I)) THEN

XMIN = X(I)

IX = I

END IF

ENDDO
```

(d) 最大値/最小値とインデックス、および、その他の値を求める

例

```
DO J = 1, N

DO I = 1, N

IF (XMIN . GT. X(I, J)) THEN

XMIN = X(I, J)

IX = I

IY = J

END IF

END DO

END DO
```

(e) 絶対値比較

例

```
DO I = 1, N

IF (ABS(XMIN) . GT. ABS(X(I))) THEN

XMIN = X(I)

ENDIF

ENDDO
```

(5) サーチ

ある条件を満たす要素をサーチするループをベクトル化します。

例

```
DO I = 1, N

IF (X(I) .EQ. 0.0) THEN

EXIT

ENDIF

ENDDO
```

このとき、ループは以下の条件を満たさなければなりません。

- 最内側のループである。
- ループの外への分岐はただ一つである。
- ループの外への分岐条件はループの繰返しに依存する。
- ループの外への分岐の前に配列要素、ポインタの指示先への代入がない。
- ループの外への分岐以外は、ベクトル化の条件をすべて満たしている。

(6) 圧縮

ある条件を満たす要素を圧縮するループをベクトル化します。

例

```
J = 0
D0 I = 1, N
IF (X(I) . GT. 0.0) THEN
J = J + 1
Y(J) = Z(I)
END IF
END DO
```

(7) 伸長

ある条件を満たす要素に値を伸長するループをベクトル化します。

例

```
J = 0
D0 I = 1, N
IF (X(I) . GT. 0.0) THEN
J = J + 1
Z(I) = Y(J)
END IF
END D0
```

5.2.5 条件ベクトル化

条件ベクトル化とは、一つのループに対してベクトル化したコードとスカラのコード、特定のパターンのみ高速に実行できるコードなど、数種類のコードを用意し、実行時に条件を調べて、適切なコードを選択して実行するようなループの変形のことをいいます。実行時に調べる条件は以下があります。

- 依存関係
- ループ長
- リダクション演算を含むループのループ長

-O[*n*](*n*=2,3,4)が有効であるとき、この最適化が有効になります。この最適化を制御するコンパイラオプションおよびコンパイラ指示オプションは、実行時に調べる条件ごとに以下です。

条件	コンパイラオプション	コンパイラ指示オプション
依存関係	-mvector-dependency-test	dependency_test
ループ長	-mvector-loop-count-test	loop_count_test
リダクション演算を含	-mvector-shortloop-reduction	[no]shortloop_reduction
むループのループ長		

5.2.6 外側ループストリップマイニング

繰返し数が最大ベクトルレジスタ長(=256)より長いループをベクトル化するとき、コンパイラは内部的に繰返し数を最大ベクトルレジスタ長に収まるように分割しています。これをストリップマイニングと呼びます。密な多重ループの内側ループに、外側ループのインダクション変数を添字式に含まない配列要素があるとき、コンパイラはストリップループを外側に移動します。**-O**[n](n=3,4)が有効であるとき、この最適化が有効になります。

この最適化を制御するコンパイラオプションは、-floop-strip-mineです。

備考 密な多重ループとは、すべての直接の入れ子関係をなすループにおいて、外側ループのDO文と内側ループのDO文の間、および、内側ループのENDDO文と外側ループのENDDO文の間に実行文が現れないもの(および、それと等価な構造の多重ループ)です。

例 密な多重ループ

```
D0 I = 1, 10

D0 J = 1, 1000

A(J) = A(J) + B(J, I) * C(J, I)

ENDD0

ENDD0
```

例 密でない多重ループ(**DO** 文の間に実行分が現れる)

```
D0 K = 1, 10

D(K) = 0.0

D0 J = 1, 20

D0 I = 1, 30

A(I, J, K) = B(I, J, K) * C(I, J, K)

END D0

X(K, J) = Y(K, J) + Z(K, J)

END D0

END D0
```

例 密でない多重ループ(ENDDO間に別のループが現れる)

```
DO K = 1, 10

DO J = 1, 20

DO I = 1, 10

S(I, J, K) = T(I, J, K) * U(I, J, K)

END DO

DO I = 1, 30

A(I, J, K) = B(I, J, K) * C(I, J, K)

END DO

END DO

END DO
```

5.2.7 ショートループ

ベクトル化されたループのうち、繰返し数が最大ベクトルレジスタ長(=256)以下のループに対して、ループの繰返しの終了判定が省略された命令コードが生成されます。このループはショートループと呼ばれます。**-O**[*n*](*n*=1,2,3,4)が有効であるとき、この最適化が有効になります。

この最適化を制御するコンパイラ指示オプションは、shortloopです。

5.2.8 パックドベクトル命令

ベクトルレジスタの各要素を32ビットで二つに分割して、ベクトルレジスタの各要素に2つのデータを格納することをパックといいます。パックしたデータに対して演算を行う命令をパックドベクトル命令といいます。パックドベクトル命令はベクトル命令の2倍のデータを1命令で処理することができます。

パックドベクトル命令の使用を制御するコンパイラオプションは、-mvector-packedです。パックドベクトル命令の使用を制御するコンパイラ指示オプションは、[no]packed_v

ectorです。

5.2.9 その他のベクトル化コードに適用する最適化

共通式の削除、単純代入の削除、不要コードの削除、除算の乗算化、不要終値保証の除去は、ベクトル化されたコードに対しても行います。その他に、Fortranコンパイラはベクトル化したコードに対して、次の最適化を適用します。()内でそれらを有効にするオプションを示します。

- スカラ演算のくくりだし (**-O**[n](n=1,2,3,4))
- 文の入れ換えによるベクトル化(-O[n](n=1,2,3,4))
- ループの一重化 (**-O**[*n*](*n*=3,4), **-floop-collapse**)
- 外側ループのアンローリング (**-O**[*n*](*n*=3,4), **-fouterloop-unroll**)
- ループのリローリング (**-O**[*n*](*n*=3,4))
- 行列積ループの認識 (-O[n](n=3,4), -fassociative-math, -fmatrix-multiply)
- ループ展開 (**-O**[*n*](*n*=2,3,4), **-floop-unroll-complete**=*m*)

5.2.10 ベクトル化機能使用時の注意事項

- 総和演算は、演算順序がベクトル化したときとしないときとで違うため、演算結果が異なることがあります。累積、漸化式、内積演算も同様です。
- 8バイト整数型の漸化式は実数型のベクトル漸化式命令を用いてベクトル化されます。このため結果の精度が52bitを超えるときや、実数型のオーバーフローが発生するとき、実行結果はベクトル化しないときと異なります。
- ベクトル版の数学関数で使用している計算方法は、高速化のため、スカラ版と必ずしも同じ結果にはなりません。
- ・ ベクトル化したときとしないときとで、除算の乗算化などの最適化の適用のされ方が異なります。
- ベクトル化したときとしないときとで、演算順序の変更などの最適化の適用のされ方が異なります。
- ・ ベクトル化すると、数学関数で検出されるエラーや演算例外の検出のされ方が、ベクトル 化しないときと異なります。
- コンパイラは、配列の定義・参照関係がベクトル化により正しく保たれるか否かを検査する際、個々の添字式の値が配列宣言の対応する次元の上限、下限の間に収まっていることを前提とします。したがって、この条件に反するループをベクトル化したとき、その実行

結果は保証されません。

- IF文を含むループがベクトル化されると、条件付きで実行される部分に関し、演算は必要な部分しか行われませんが、配列要素は、ループ構造で決まる繰返し数分だけ参照されます。すなわち、本来参照されない配列要素が参照されます。したがって、配列については繰返し数分だけの領域を用意しておかないと、メモリアクセス例外を起こすことがあります。
- 飛び出しを含むループがベクトル化されると、飛び出しが起こる繰返し回より後の繰返し も実行されます。したがって、本来実行されない演算が実行されたり、本来参照されない データが参照されることにより、エラーや例外が発生することがあります。
- ベクトル処理できるデータのアラインメントは、そのデータの型のサイズと同じ(4バイト、または、8バイト)でなければなりません。アラインメントの条件を満たさない配列要素の参照、定義を含むループがベクトル化されたとき、実行時に例外となることがあります。そのとき、コンパイル時に
 - -mno-vectorを指定してプログラム全体のベクトル化をやめるか、!NEC\$ NOVECTOR を指定し、問題のループのベクトル化を抑止してください。ベクトル処理できるアラインメントを満たさなくなる可能性のあるデータは仮引数です。コンパイラは、仮引数をアラインメントの条件を満たすものと仮定してベクトル化します。

5.3 その他の高速化機能

5.3.1 配列一括出力の VH へのオフロード

書式付き配列一括出力処理、および、並び配列一括出力処理をVH上にオフロードすることでプログラムの実行を高速化します。この機能を利用するにはプログラム実行時に環境変数**VE_FMTIO_OFFLOAD**に**YES**、または、**ON**を指定し、環境変数**LD_LIBRARY_PATH**に/opt/nec/ve/nfort/lib64を指定してください。

例 書式付き配列一括出力

SUBROUTINE FUN
INTEGER I (100)
I=100
WRITE(*,'(I5)') I
END

例 並び配列一括出力

SUBROUTINE FUN

INTEGER I (100)

I=100

WRITE(*,*) I

END

5.3.2 バッファの効率的な利用

順編成ファイルの書式なし入出力では、レコードバッファや入出力バッファのサイズを変更 することで、入出力を高速に行える場合があります。

5.3.2.1 レコードバッファ

順編成ファイルの書式なし入出力は、レコードバッファを利用して入出力項目並びとデータのやり取りを行います。このため、順編成ファイルの書式なし記録の最大記録長より、レコードバッファの値を大きくすると入出力が高速化されます。レコードバッファのサイズを変更するには環境変数**VE_FORT_RECORDBUF**を利用します。

5.3.2.2 入出カバッファ

ファイルとの入出力は、ファイルと入出力バッファの間で行われます。ファイルが存在するファイルシステムには最適な転送サイズが存在します。入出力バッファのサイズを最適な転送サイズに合わせることで入出力が高速化されます。また、メモリサイズに問題がなければ、ファイルサイズより大きな値を入出力バッファのサイズにすることでも入出力が高速化されます。入出力バッファのサイズを変更するには環境変数VE_FORT_SETBUFを利用します。

第6章 インライン展開機能

6.1 自動インライン展開

コンパイラがソースファイルを解析、サーチして、インライン展開すべき手続呼出しを選択 し、インライン展開します。

この最適化を制御するコンパイラオプションは、-finline-functionsです。

6.2 明示的インライン展開

6.2.1 説明

明示的インライン展開では、利用者がインライン展開を指示する指示行(インライン展開指示行)をソースファイルに指定し、インライン展開します。このとき**-finline-functions**の指定は必要ありません。ただし、インライン展開指示行は**-O***n*[*n*=2,3,4]、**-finline-function**

s、-fopenmp、または、-mparallelが指定されたときのみ有効です。

インライン展開を指示する指示行には次のものがあります。

always_inline

本指示行の指定された手続を常にインライン展開の対象とする。呼び出される手続に指定する。ただし、本手続の手続呼出しに**noinline**が有効であるとき、インライン展開されない。

inline

本指示行の直後の文、BLOCK構文、DO構文、IF構文に含まれる手続呼出しをインライン 展開の対象とする。

inline_complete

inlineと同様であるが、インライン展開される手続がさらに手続を呼び出しているときその手続もインライン展開の対象とし、手続呼出しがなくなるまでインライン展開を試みる。

noinline

本指示行の直後の文、BLOCK構文、DO構文、IF構文に含まれる手続呼出しをインライン 展開しない。always_inlineの指定された手続もインライン展開しない。

6.2.2 インライン展開指示行の指定

(1) 呼び出される手続

always_inlineは呼び出される手続に指定します。

例

```
SUBROUTINE SUB
!NEC$ ALWAYS_INLINE
...
END SUBROUTINE
```

(2) 直後の文

inline / inline_complete / noinlineは、直後の文中のすべての手続呼出しに作用します。

例

```
!NEC$ INLINE

X = FUNC1 (A) + FUNC2 (A)

Y = FUNC3 (A)
```

FUNC1()、FUNC2()の呼び出しをインライン展開対象とする。FUNC3()は対象ではない。

(3) BLOCK 構文 / DO 構文 / IF 構文

inline / inline_complete / noinlineは、直後のBLOCK構文、DO構文、IF構文のすべての手続呼出しに作用します。

例

```
!NEC$ INLINE

DO I=1, N

CALL SUB1

CALL SUB2

END DO
```

SUB1、SUB2の呼び出しをインライン展開対象とする。

6.2.3 注意事項

- always_inline / inline / inline_complete / noinlineは、-On[n=2,3,4]、-finlin e-functions、-fopenmp、または、-mparallelが指定されたときのみ有効です。
- always_inlineを指定した手続の定義は削除されません。
- noinline指定された手続呼出しからalways_inlineを持つ手続を呼び出しているとき、その手続はインライン展開しない。

• BLOCK構文、DO構文、IF構文がネストしており、それぞれに相反する指示行が指定されているとき、内側の構文についてはその構文に指定された指示行が優先適用されます。

例

!NEC\$ INLINE
BLOCK
CALL SUB1 ! インライン展開の対象
!NEC\$ NOINLINE
BLOCK
CALL SUB2 ! インライン展開しない
END BLOCK
END BLOCK

6.3 クロスファイルインライニング

コンパイル対象のソースファイルとは別のソースファイルに含まれる手続をインライン展開 することをクロスファイルインライニングと呼びます。

NEC Fortranコンパイラでは、自動インライン展開のオプションに加えて、インライン展開 する手続をサーチする別のソースファイルを指定することでクロスファイルインライニング できます。

以下にサーチするソースファイルの指定例を示します。

(1) ソースファイルを指定

```
$ nfort -c -finline-functions -finline-file=sub.f90 call.f90
```

(2) ソースファイルとコマンドラインで指定されたすべてのソースファイルを指定

\$ nfort -c -finline-functions -finline-file=sub2.f90:all call.f90 sub.f90

(3) ディレクトリにあるすべてのソースファイルを指定

```
$ Is dir
sub.f90 sub2.f90 sub3.f90
$ nfort -c -finline-functions -finline-directory=dir sub.f90
```

(4) ディレクトリにあるすべてのソースファイルを指定したが、あるソースファイルを除外

```
$ Is dir
sub.f90 sub2.f90 sub3.f90
$ nfort -c -finline-functions -finline-directory=dir -fno-inline-file=sub2.f90
```

call. f90

サーチ対象にソースファイルを指定する他にILファイルを指定する方法もあります。コンパイルするソースファイルが多いとき、この方法の方がコンパイル時間を短縮できる場合があります。

(5) IL ファイルを生成後、IL ファイルを読み込んで手続をサーチする。

\$ nfort -mgenerate-il-file sub.f90
\$ nfort -c -finline-functions -mread-il-file sub.fil main.f90

6.4 インライン展開の阻害要因

インライン展開の阻害要因として次の項目があります。

- インライン展開される手続が見つからない。
- 呼出し元の手続の引数がインライン展開される手続の引数に一致しない。
- 呼出し元の手続とインライン展開される手続に、同じ名前でサイズが異なる名前付き共通 ブロックが含まれる。
- インライン展開される手続に変数群入出力文が含まれる。
- インライン展開される手続にSAVE属性を持つ変数が含まれる。
- インライン展開される手続で引用される関数名が、呼出し元の手続で使用される非関数名 と衝突する。
- インライン展開される手続にOpenMPディレクティブが指定されている。
- インライン展開される手続に再帰的な手続呼出しが含まれる。

6.5 インライン展開機能使用時の注意事項

- インライン展開機能を利用するとき、インライン展開後のオブジェクトファイルの大きさに注意してください。多数の手続をインライン展開してしまうと、プログラムのコードサイズが肥大化し、命令キャッシュからコードがあふれてしまい、プログラム全体の実行性能が低下することがあります。
- クロスファイルインライニングで、大きなプログラムや多数のプログラムをサーチする場合、それ以降の処理量が増えて、コンパイル時間が延びたり、コンパイル時に使用するメモリ量が増加したりすることがあります。

• -finline-fileや-finline-directoryでサーチ対象となったソースファイルから参照するモジュールが見つからないとき、そのソースファイルをサーチせずにコンパイルを継続するため、コンパイル順序によって手続がインライン展開されるかどうか変わる場合があります。コンパイルを継続せずに終了したいとき、-finline-abort-at-errorを指定して下さい。

6.6 インライン展開機能に対する制限事項

- クロスファイルインライニングでは、スレッドプライベートな共通ブロックが指定された EQUIVALENCE文を含むソースファイルをサーチできません。
- クロスファイルインライニングでは、PRIVATE属性をもつ変数を参照するモジュール手 続をインライン展開できません。

第7章 自動並列化・OpenMP 並列化機能

本章では、自動並列化、OpenMP並列化機能、それらの利用にあたって留意すべき項目について説明します。

7.1 自動並列化機能

7.1.1 自動並列化

自動並列化機能は、プログラム内の並列実行できるループや文の集まりを抽出し、並列処理 できるようにプログラムを変形、および、並列処理制御のための処理の挿入を自動的に行い ます。

この最適化を制御するコンパイラオプションは、-mparallelです。

7.1.2 作業量による条件並列化

一般に、並列処理はオーバーヘッドを伴うため、分割された各ループの繰返しが、それぞれに十分な作業量をもっていなければ、プログラムの実行時間を増大させることになります。繰返し数がコンパイル時に計算できないとき、その多重ループについて、並列化したコードとそうでないコードの両方を生成しておき、実行時に繰返し数の大小によって適切な方が実行されるようにします。これを「作業量による条件並列化」と呼びます。作業量による条件並列化では、ループ中の演算の数などから、その多重ループが並列化に適している繰返し数の下限値(しきい値)が計算されます。実行時には、このしきい値と、多重ループの繰返し数が比較され、繰返し数がしきい値以上ならば並列化されたコードが実行され、小さければ並列化されていないコードが実行されるようにIF文などが生成されます。

この最適化を制御するコンパイラオプションは、-mparallel-threshold=nです。

7.1.3 依存関係による条件並列化

ループ中に、コンパイル時に不明なデータ依存関係が存在して並列化を妨げているとき、自動並列化機能は作業量による条件ベクトル化と同様に、依存関係を実行時にテストするためのコードを生成し、依存関係により条件並列化します。1重、または、2重ループで、しきい値のテストが行われるとき、依存関係のテストも同時に行われます。

7.1.4 最内側ループの並列化

外側ループによる適切な並列化ができないとき、最内側のループも並列化の対象とします。 本最適化を有効にしない限り、最内側ループは、繰返し数がしきい値を超えることが明らか なときのみ並列化されます。

この最適化を制御するコンパイラオプションは、-mparallel-innerloopです。

7.1.5 ループの強制並列化

プログラマはあるDOループが並列化可能なことを知っているが、コンパイラには並列化可能であることが認識できないため自動並列化が行われないようなとき、強制並列化指示行の!N EC\$ PARALLEL DOによりループを並列化できます。このとき、ループが並列実行できることは、プログラマが保証しなければなりません。

PARALLEL DOに続けて、ループの分割方法を指定するOpenMPと同じ**SCHEDULE**句を指定できます。指定できるスケジューリング種別は以下です。

- **SCHEDULE**(STATIC [,chunk-size])
- SCHEDULE(DYNAMIC [,chunk-size])
- **SCHEDULE**(RUNTIME)

また、**PRIVATE**句も指定できます。*name*では、文字型、派生型でないスカラ変数名、形状明示配列名を指定できます。

- PRIVATE(name[,...])

ループが、総和、累積などのマクロ演算の文を含むとき、!NEC\$ ATOMICをその文の直前 に指定します。

強制並列化指示行の指定例を以下に示します。

例

```
SUBROUTINE SUB (SUM, A, N)

INTEGER::N

REAL (KIND=8)::A (N, N), SUM

...

!NEC$ PARALLEL DO

DO J = 1, N

DO I = 1, N

!NEC$ ATOMIC

SUM = SUM + A (I, J)

ENDDO

ENDDO

...

END
```

7.2 OpenMP並列化

7.2.1 OpenMP 並列化の利用

OpenMPを利用するには、コンパイル、リンク時に**-fopenmp**を指定します。OpenMPディレクティブや注意事項の詳細については、OpenMP仕様を参照してください。

例 OpenMP ディレクティブの挿入

```
FUNCTION FUN(N, A)

INTEGER N, I, J

REAL A(N), B(N)

REAL FUN

FUN = 1.0

...

!$OMP PARALLEL DO REDUCTION(+:FUN)

DO J = 1, N

DO I = 1, N

FUN = A(J) + B(I) + FUN

END DO

END DO

RETURN

END FUNCTION
```

7.2.2 OpenMP Version 5.0

OpenMP Version 5.0で追加された構文のうち、以下の構文が利用できます。

- LOOP構文
- PARALLEL LOOP構文
- PARALLEL MASTER構文

7.2.3 OpenMP 並列化に対する拡張機能

OpenMP Version 4.5でサポートされいている環境変数について、環境変数名に接頭子"VE_"をつけた環境変数も利用できます。接頭子"VE_"のあり・なし両方の環境変数が指定されている場合には、接頭子"VE_"ありの環境変数で指定した値が有効となります。

例 環境変数の指定(VE_OMP_NUM_THREADS が有効)

```
$ export OMP_NUM_THREADS=4
$ export VE_OMP_NUM_THREADS=8
```

7.2.4 OpenMP 並列化に対する制限事項

以下の機能は利用できません。

- "Device Constructs"で定義されている機能
 コンパイラはデバイスに対するコードを一切生成せず、TARGETリージョンはホスト上で
 実行されます。
- REDUCTION句の中以外で現れる、"Array Sections"で定義されている構文
- "Cancellation Constructs"で定義されている機能
- "Controlling OpenMP Thread Affinity"で定義されている機能
- DISTRIBUTE, TARGET, TEAMS

複合構文のための指示行中の**DISTRIBUTE、TARGET、TEAMS**、および、それらに関わる指示句は無視されます。

例:"TARGET PARALLEL FOR"は"PARALLEL FOR"としてコード生成します。

- TASKLOOP構文
- PARALLEL DO SIMD構文、およびDO SIMD構文
 それぞれPARALLEL DO構文、DO構文としてコード生成します。
- SIMD構文

SAFELEN句、または、SIMDLEN句が指定されていない場合、ivdep指示行が指定されているものとみなします。

- **DECLARE REDUCTION**構文
- ALLOCATE句
- BIND句
- **IF**句でのdirective-name-modifier指定
- IN_REDUCTION/TASK_REDUCTION句
- ORDERED句でのparameter指定
- **SCHEDULE**句での*modifier*指定
- 配列が指定されたDEPEND句
- **DEPEND**句でのdependence-type指定の**SOURCE**、**SINK**
- CRITICAL構文でのHINT指定
- ATOMIC構文でのSEQ_CST指定

- LINEAR句でのmodifier指定
- ネスト並列性

7.3 スレッド制御

7.3.1 スレッド数の指定・取得

自動並列化されたプログラムでは、OpenMP並列機能をベースに並列処理を実現しています。このため、自動並列化されたプログラム、OpenMP並列化されたプログラムの実行では、環境変数OMP_NUM_THREADS、または、VE_OMP_NUM_THREADSにより実行に使用するスレッド数を指定できます。

また、自動並列化されたプログラムにおいても、OpenMPの実行時ルーチンで、スレッド数を指定、取得できます。

SUBROUTINE OMP SET NUM THREADS (num threads) ! スレッド数の設定

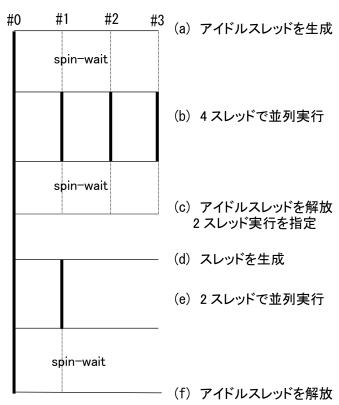
INTEGER num_threads

INTEGER FUNCTION OMP_GET_NUM_THREADS () ! スレッド数の取得

INTEGER FUNCTION OMP_GET_MAX_THREADS() ! 利用可能スレッド数の取得

INTEGER FUNCTION OMP_GET_THREAD_NUM() ! スレッド番号の取得

プログラムの実行開始前に環境変数OMP_NUM_THREADS、または、VE_OMP_NUM_THREADSによりスレッド数が指定されなかったとき、プログラムで利用可能なVEコア数と同じスレッド数でプログラムの実行が開始されます。


7.3.2 スレッドの生成・解放

自動並列化されたプログラム、OpenMP並列化されたプログラムの実行では、主プログラムの実行開始前にスレッドが自動生成され、プログラムの終了時に解放されます。

次の図を参照してスレッドの生成、解放について説明します。環境変数**OMP_NUM_THRE ADS**に4が設定されているものとします。

OMP_NUM_THREADS=4 で実行

PROGRAM MAIN ... !\$OMP PARALLEL ... !\$OMP END PARALLEL ... CALL OMP_SET_NUM_THREADS(2) ... !\$OMP PARALLEL ... !\$OMP PARALLEL ... END PROGRAM MAIN

(a) 主プログラムの開始前に、マスタースレッド(#0)により三つのアイドルスレッドが生成されます。アイドルスレッドは、スピンウェイトしながら仕事が割り当てられるのを待ちます。

Threads

- (b) 並列リージョンに到達すると仕事が割り当てられ、計算が並列実行されます。並列 リージョンが終了すると、スレッドはスピンウェイトを開始し、再度仕事が割り当 てられるのを待ちます。
- (c) 実行時ルーチンOMP_SET_NUM_THREADS(2)で、以降の並列リージョンを2スレッドで実行するよう指定しています(ICV値を2に変更)。ここですべてのアイドルスレッドが解放されます。
 - *ICVとは、OpenMPにおける内部制御変数(Internal Control Variable)の略称であり、並列処理の制御に使用される変数です。
- (d) 並列リージョンの開始直前で一つのスレッドが生成され、二つのスレッドで並列リージョンの実行が開始されます。
- (e) 並列リージョンを2スレッドで並列実行します。
- (f) プログラム終了直前に、すべてのアイドルスレッドが解放され、プログラムを終了 します。

7.3.3 スレッド生成の遅延

既定の動作では主プログラムの開始前にスレッドが生成されますが、リンク時に次のコンパイラオプションを指定することで、最初に実行される並列リージョンの直前まで、スレッドの生成を遅延させることができます。

\$ nfort -fopenmp -mno-create-threads-at-startup -static-nec a.o

\$ nfort -mparallel -mno-create-threads-at-startup -static-nec b.o

7.4 注意事項

- 並列処理時の総CPU時間は、並列処理のオーバーヘッドにより増加します。
- 手続呼出しを含む手続を並列化するとき、共有データの定義、参照が不正にならないかど うか、呼び出される手続の中まで調べなければなりません。
- -fopenmpと-mparallelが同時に指定されたとき、ループがOpenMPの並列区間の外側にある場合は外側のループが自動並列化の対象となります。OpenMPディレクティブを含むルーチンを自動並列化したくないとき、-mno-parallel-omp-routineを指定してください。
- MPIプログラムのとき、MPIプロセスごとにその開始直前でスレッドが生成されます。たとえば、2MPIプロセス実行で環境変数OMP_NUM_THREADSに4が指定されたとすると、2MPI×4スレッドでの実行となるので、プログラムの実行には8コアを使用します。VEICMPIプロセスを配置するとき、実行に必要なコア数が足りなくならないよう注意してください。
- 自動並列化されたプログラムの実行時の解析情報をPROGINF、FTRACEを使って出力する とき、以下の点に注意してください。PROGINF、FTRACEの詳細については「PROGINF/ FTRACE ユーザーズガイド」を参照してください。
 - 主プログラムの実行開始前に自動生成されるスレッドのスピンウェイト分の演算数等は PROGINFでは加算されますが、ftraceでは加算されません。
 - PROGINFはプロセス全体のカウンタ値から算出した値を表示するため、主プログラムの実行開始前に自動生成されるスレッドのスピンウェイトする部分の演算数等が加算され、総演算数が増加することによりベクトル演算率が低下することがあります。

第8章 コンパイルリスト

本章ではFortranコンパイラの出力するコンパイルリストについて説明します。 コンパイルリストは、「*ソースファイル名*.L」という名前でカレントディレクトリに出力されま す。

8.1 オプションリスト

オプションリストは、-report-option、または、-report-allが指定されたとき出力されます。

形式:

NEC Fortran Compiler (3.0.7) for Vector Engine Thu Jun 18 13:25:29 2020 (a) FILE NAME: fft.f90 (b) COMPILER OPTIONS : -report-option (c) OPTIONS DIRECTIVE: -04 (d) PARAMETER : Optimization Options : (f) (e) : 4 -0n -fargument-alias : disable -fargument-noalias : enable -fassociative-math : enable

- (a) オプションリストを作成したコンパイラ、および、リストの作成時刻
- (b) 対応するソースファイルの名前
- (c) コマンドラインで指定されたコンパイラオプション
- (d) オプション指示行で指定されたコンパイラオプション
- (e) コンパイラオプション
- (f) コンパイラオプションの値

8.2 診断メッセージリスト

診断メッセージリストは、-report-diagnostics、または、-report-allが指定されたとき出力されます。

8.2.1 形式

診断メッセージリストの形式は以下のとおりです。

形式:

NEC Fortran Compiler (1.0.0) for Vector Engine Wed Jan 17 14:58:49 2018 (a)

FILE NAME: fft. f90 (b)

PROCEDURE NAME: FFT_3D (c)

DIAGNOSTIC LIST

LINE DIAGNOSTIC MESSAGE

(d) (e) (f)

7: inl(1222): Inlined

9: par(1801): Parallel routine generated.: MAIN_\$1

9: vec(101): Vectorized loop.

- (a) 診断メッセージを作成したコンパイラ、および、リストの作成時刻
- (b) 対応するソースファイルの名前
- (c) 診断メッセージに対応するループ、文が含まれる手続の名前
- (d) 行番号
- (e) 診断メッセージの種別とメッセージ番号

メッセージの種別は以下のとおり。

vec:ベクトル化診断メッセージ

opt: 最適化診断メッセージ

inl: インライン展開診断メッセージ

par: 並列化診断メッセージ

(f) 診断メッセージ

8.2.2 注意事項

あるルーチンにインライン展開されたルーチンの文、ループ対する診断メッセージは、それを呼び出したルーチンの診断メッセージリストには出力されません。インライン展開されたルーチンの診断メッセージについては、そのルーチン自身の診断メッセージリストを

参照してください。

8.3 編集リスト

編集リストは、-report-format、または、-report-allが指定されたとき出力されます。リストにはソース行とともに、次の情報が手続ごとに出力されます。

- ループのベクトル化情報
- ループの並列化情報
- 手続呼出しのインライン展開情報

8.3.1 形式

編集リストの形式は以下のとおりです。

```
NEC Fortran Compiler (1.0.0) for Vector Engine Wed Jan 17 15:00:01 2018
                                                                         (a)
FILE NAME: a. f90
PROCEDURE NAME: SUB (c)
FORMAT LIST
LINE LOOP
                 STATEMENT
  (d) (e)
                (f)
    1:
                 SUBROUTINE SUB (A. B. N. M)
    2:
                INTEGER:: N. M
    3:
                 REAL (KIND=8) :: A(M, N), B(M, N)
    4: +----> DO J=1. M
    5: |V----> DO I=1, N
    6: ||
                      A(I, J) = A(I, J) + B(I, J)
    7: |V----
                    ENDDO
    8: +---- ENDDO
                 END SUBROUTINE
```

- (a) 編集リストを作成したコンパイラ、および、リストの作成時刻
- (b) 対応するソースファイルの名前
- (c) 以降のリスト中のソースコードの含まれる手続の名前
- (d) 行番号
- (e) ループのベクトル化、並列化、インライン展開に関する情報
- (f) 対応するコード

8.3.2 ループのベクトル化、並列化、インライン展開に関する情報

ループの構造、および、ベクトル化、並列化、インライン展開に関する情報を記号で出力します。出力例を以下に示します。

• ループ全体がベクトル化されたとき

```
V-----> DO I=1, N
|
|----- END DO
```

• ループが部分ベクトル化されたとき

```
S-----> DO I=1, N
|
| S----- END DO
```

• ループが条件ベクトル化されたとき

```
C-----> DO I=1, N
|
| C----- END DO
```

• ループが並列化されたとき

```
P-----> DO I=1, N
|
| P----- END DO
```

• ループが並列化、かつ、ベクトル化されたとき

```
Y-----> DO I=1, N
|
Y----- END DO
```

ループがベクトル化されなかったとき

```
+-----> DO I=1, N
|
+----- END DO
```

• 配列式など、一行にループ全体が含まれるとき

```
V===> A = A + B
```

• ループが一重化されたとき

```
W-----> DO I=1, N

|*----> DO J=1, M

||

|*---- END DO

W----- END DO
```

• ループが入れ換えられ、ベクトル化されたとき

```
X-----> DO I=1, N

|*----> DO J=1

||

|*---- END DO

X----- END DO
```

• 外側ループが外側ループアンロールされ、内側ループがベクトル化されたとき

```
U-----> DO I=1, N
|V-----> DO J=1
||
|V----- END DO
U----- END DO
```

• ループが融合されたとき

```
V-----> DO I=1, N
|
| END DO
| DO I=1, N
|
|
V----- END DO
```

ループが展開されたとき

```
*----> D0 I=1, 4
|
*---- END D0
```

- 17カラム目に表示される文字は行がどう最適化されたかを表す
 - "I" 関数呼び出しがインライン展開された
 - "M" この行を含む多重ループがベクトル行列積ライブラリ呼び出しに置き換えられた
 - "F" 式に対してベクトル積和命令が生成された
 - "R" 配列にretain指示行が適用された
 - "G" ベクトル収集命令が生成された
 - "C" ベクトル拡散命令が生成された
 - "V" 配列にvreq指示行、または、pvreq指示行が適用された

8.3.3 注意事項

- 内部副プログラムはそれを含むプログラム単位に含めて出力されます。
- ループの一部がINCLUDE行、#includeで取り込まれるファイルに含まれているとき、 ループの構造、情報が正しく出力されないことがあります。
- 一つの行にループが複数存在するとき、ループの構造、情報が正しく出力されないことが あります。
- PROGRAM文、SUBROUTINE文、FUNCTION文とそれらに対応するEND文、END PROGRAM文、END SUBROUTINE文、END FUNCTION文が同一ソースファイル、または、同一インクルードファイルに含まれていないとき、編集リストは出力されません。PROGRAM文が省略された場合、コメント行、INCLUDE行以外で当該プログラム単位に含まれる先頭の文と本プログラム単位のEND文、または、END PROGRAM文が同一ソースファイル、または、同一インクルードファイルに含まれていないとき、編集リストは出力されません。

8.4 モジュール別最適化情報リスト

インライン展開モジュール、ベクトル化モジュール、コード生成モジュールの最適化情報を 含んだリストを出力できます。

8.4.1 インライン展開モジュール

インライン展開モジュールの最適化情報リストは、-report-inline、または、-report-allが 指定されたとき出力されます。

形式:

NEC Fortran Compiler (3.1.0) for Vector Engine Thu Sep 17 07:33:16 2020 (a)

FILE NAME: fft. f90 (b)

FUNCTION NAME: func3 (c)

INLINE LIST

INLINE REPORT: func3 (fft. f90:17)

(d)

-> INLINE: func2 (fft. f90:19) (e)

-> NOINLINE: func0 (fft. f90:12) (e)

*** Source for routine not found. (f)

-> INLINE: func1 (fft. f90:13) (e)

- (a) インライン展開リストを作成したコンパイラ、および、リストの作成時刻
- (b) 対応するソースファイルの名前
- (c) インライン展開状況を表示する手続の名前
- (d) インライン展開する手続の深さ
- (e) インライン展開の結果
- (f) 診断メッセージ

8.4.2 ベクトル化モジュール

ベクトル化モジュールの最適化情報リストは、-report-vector、または、-report-allが指定されたとき出力されます。

形式:

NEC Fortran Compiler (3.1.0) for Vector Engine Thu Sep 17 08:10:39 2020 (a)

FILE NAME: vec. f90 (b)

FUNCTION NAME: func (c)

VECTORIZATION LIST

LOOP BEGIN: (vec. f90:3)

<Unvectorized loop. >

LOOP BEGIN: (vec. f90:4)

<Vectorized loop. >

*** The number of VGT, VSC. : 0, 0. (vec.c:4) (e)

*** The number of VLOAD, VSTORE. : 1, 1. (vec.c:4) (e)

LOOP END

LOOP END

- (a) ベクトルリストを作成したコンパイラ、および、リストの作成時刻
- (b) 対応するソースファイルの名前
- (c) ベクトル化状況を表示する手続の名前
- (d) ベクトル化の結果
- (e) 診断メッセージ

8.4.3 コード生成モジュール

コード生成モジュールの最適化情報リストは、-report-cg、または、-report-allが指定されたとき出力されます。

形式:

NEC Fortran Compiler (3.1.0) for Vector Engine Thu Sep 17 08:10:39 2020 (a) FILE NAME: vec. f90 (b) FUNCTION NAME: func (c) CODE GENERATION LIST Hardware registers (d) Reserved : 10 [sl fp lr sp s12 s13 tp got plt s17] Callee-saved : 16 [s18-s33] Assigned : 32 [s0-s12 s15-s16 s18-s21 s23-s32 s61-s63] Scalar registers Vector registers : 35 [v0 v30-v63] Vector mask registers : 0 VREG directive : 2 [v18-v19] Routine stack (e) Total size : 256 bytes Register spill area : 16 bytes Parameter area : 40 bytes Register save area : 176 bytes User data area : 16 bytes

Others 8 bytes Note: Total size of Routine stack does not include the size extended by alloca() and so on. LOOP BEGIN: (vec. f90:3) LOOP BEGIN: (vec. f90:4) *** The number of VECTOR REGISTER SPILL (f) : 14 Total Across calls : 11 Not enough registers : 1 Over basic blocks : 1 Others : 1 *** The number of VECTOR REGISTER RESTORE Total : 14 : 11 Across calls Not enough registers Over basic blocks : 1 Others : 1 *** The number of VECTOR REGISTER TRANSFER : 12 *** The number of SCALAR REGISTER RESTORE Total : 14 Across calls : 11 Not enough registers : 1 Over basic blocks : 1 Others : 1 *** The number of SCALAR REGISTER RESTORE Total : 14 Across calls : 11 Not enough registers : 1 Over basic blocks Others : 1 *** The number of SCALAR REGISTER TRANSFER : 21 LOOP END LOOP END

(a) コード生成リストを作成したコンパイラ、および、リストの作成時刻

(b) 対応するソースファイルの名前

(c) コード生成状況を表示する手続の名前

(d) レジスタの種類ごとのレジスタ使用数

Reserved : システムで予約済のレジスタ

Callee-saved : 手続呼出しを跨いでセーブするレジスタ

Assigned : 計算、ユーザデータに割り当てられたレジスタ

(e) スタック情報

Register spill area : レジスタ退避領域

Parameter area : 引数領域

Register save area : レジスタセーブ領域

User data area : ユーザデータ

Others : その他

(f) ループ毎のレジスタスピル・リストア・転送の原因

Across calls : 手続呼出しを跨いでいるため

Not enough registers : レジスタが枯渇しているため

Over basic blocks : ベーシックブロックを跨いで使用されているため

Others : その他

第9章 言語仕様に関する補足

9.1 非標準機能拡張

9.1.1 文

9.1.1.1 COMMON文

一つの共通ブロックの中に文字型の要素と他の型の要素を混在できます。ただし、実行効率 が低下することがあるため、できるだけ混在を避けるのが望ましいです。

9.1.1.2 COMPLEX DOUBLE 文 / COMPLEX DOUBLE PRECISION 文

COMPLEX DOUBLE文、COMPLEX DOUBLE PRECISION文で、倍精度複素数型のデータを宣言できます。

種別パラメタ値は、"KIND(0.0D0)"とします。

形式

COMPLEX DOUBLE データ要素宣言並び

COMPLEX DOUBLE PRECISION データ要素宣言並び

ここで、データ要素宣言:

実体名[(明示上下限並び)] [/初期値/]

| 実体名[(大きさ引継ぎ配列形状指定)] [/初期値/]

| 関数名

9.1.1.3 COMPLEX QUADRUPLE 文 / COMPLEX QUADRUPLE PRECISION 文

COMPLEX QUADRUPLE文、および、**COMPLEX QUADRUPLE PRECISION**文は、互 換用の型宣言文で、その文で宣言された名前のデータ要素が、すべて組込みの4倍精度複素数 型であることを指定します。

種別パラメタ値は、"KIND(0.0Q0)"とします。

形式

COMPLEX QUADRUPLE データ要素宣言並び

COMPLEX QUADRUPLE PRECISION データ要素宣言並び

ここで、データ要素宣言:

実体名[(明示上下限並び)] [/初期値/]

| 実体名[(大きさ引継ぎ配列形状指定)] [/初期値/]

| 関数名

9.1.1.4 DATA 文

初期値定数に4文字より長いホラリス定数を指定できます。

9.1.1.5 DIMENSION 文

DATA文や型宣言文と同様に、DIMENSION文でも初期値を設定できます。

形式

DIMENSION 配列名(配列形状指定)[/初期値表現並び/]

[,配列名(配列形状指定)[/初期値表現並び/]]...

ここでの初期値表現並びは直前の配列名の初期値を表します。

初期値を設定するときの規則はDATA文と同じです。

9.1.1.6 DOUBLE文

DOUBLE文は、互換用の型宣言文で、その文で宣言された名前のデータ要素が、すべて組込みの倍精度実数型であることを指定します。

種別パラメタ値は、"KIND(0.0D0)"とします。

形式

DOUBLE データ要素宣言並び

ここで、データ要素宣言:

実体名[(明示上下限並び)] [/初期値/]

| 実体名[(大きさ引継ぎ配列形状指定)] [/初期値/]

| 関数名

9.1.1.7 DOUBLE COMPLEX 文

DOUBLE COMPLEX文は、互換用の型宣言文で、その文で宣言された名前のデータ要素が、すべて組込みの倍精度複素数型であることを指定します。

種別パラメタ値は、"KIND(0.0D0)"とします。

形式

DOUBLE COMPLEX データ要素宣言並び

ここで、データ要素宣言:

実体名[(明示上下限並び)] [/初期値/]

| 実体名[(大きさ引継ぎ配列形状指定)] [/初期値/]

| 関数名

9.1.1.8 DOUBLE PRECISION文

DOUBLE PRECISION文でデータ要素の初期値を指定できます。

形式

DOUBLE PRECISION [[, 属性指定子] ... ::] データ要素宣言並び

ここで、属性指定子:

ALLOCATABLE

- | DIMENSION(配列形状指定)
- | EXTERNAL
- | INTENT(授受特性指定)
- I INTRINSIC
- I OPTIONAL
- | PARAMETER
- | POINTER
- | PRIVATE
- | PUBLIC
- | SAVE
- I TARGET

データ要素宣言:

実体名[(明示上下限並び)] [/初期値/]

- | 実体名[(大きさ引継ぎ配列形状指定)] [/初期値/]
- | 関数名

9.1.1.9 EQUIVALENCE文

文字型の要素と派生型を除く他の型の要素を結合できます。ただし、他のFortranとの互換上は、なるべくこれを避ける方が望ましいです。

9.1.1.10 FORMAT 文

FORMAT文の書式項目並び中の書式項目を区切るコンマは、文字列編集記述子の前後で省略できます。ただし、X形編集記述子と文字列編集記述子との間のコンマは省略できません。また、nX形編集記述子のnとkP形編集記述子のkを省略できます。省略したとき、暗黙値は1とします。さらにデータ編集記述子(B/D/E/EN/ES/F/G/I/L/O/Z)で編集記述子のみを指定することができます。

例

PRINT 10, 3.14, 2.71

PRINT 20, 3.14, 2.7110

FORMAT ('PI='F4. 2' and', X, 'E='F4. 2)

FORMAT ('PI='F' and', X, 'E='F)

この出力は以下となります。

PI=3.14 and E=2.71

PI= 3.1400001 and E= 2.7100000

9.1.1.11 FUNCTION 文

FUNCTION文では、関数名に続く"([*仮引数名並び*])"を括弧も含めて省略できます。 次の形式で**FUNCTION**文を利用できます。

形式

[型指定子] FUNCTION 関数名 [([仮引数名並び])]

ここで、型指定子:

INTEGER[*バイト数]

| REAL[*バイト数]

| DOUBLE PRECISON

| DOUBLE

| QUADRUPLE PRECISON

| QUADRUPLE

| COMPLEX[*バイト数]

| COMPLEX DOUBLE PRECISON

| COMPLEX DOUBLE

| DOUBLE COMPLEX

| COMPLEX QUADRUPLE PRECISON

| COMPLEX QUADRUPLE

| LOGICAL[*バイト数]

| CHARACTER[*文字長]

9.1.1.12 計算型 GO TO 文

以下の計算型GO TO文を利用できます。

形式

GO TO(文番号並び)[,]スカラ整数式

構文規則

文番号並び中の文番号は、その計算形**GO TO**文と同じ有効域内にある、飛び先文の文番号でなければなりません。

一般規則

- (1) 一つの文番号並び中に、同じ文番号を2回以上書けます。
- (2) 計算形**GO TO**文を実行すると、そのスカラ整数式が評価されます。この値をiとし、 文番号並び中の文番号の個数をnとします。1≦i≦nであるときには制御の移行が起こ り、文番号並び中のi番目にある文番号をもつ文が次に実行されます。iが1より小さ いとき、および、nより大きいとき、プログラムは**CONTINUE**文が実行されたかの

ように継続されます。

例

GO TO (100, 200, 300, 400, 500), I

9.1.1.13 算術 IF 文

次の形式の算術IF文を利用できます。

形式

IF(スカラ数値式) 文番号, 文番号, 文番号

構文規則

- (1) 各文番号は、その算術**IF**文と同じ有効域内にある、飛び先文の文番号でなければなりません。
- (2) スカラ数値式は複素数型であってはなりません。
- (3) 文番号を最大二つまで省略できます。ただし、コンマは省略できません。スカラ数値 式に対応する文番号が省略されているとき、プログラムは**CONTINUE**文が実行され たかのように継続されます。

また、文番号が一つでも省略された算術**IF**文は、**DO**ループの端末文として使用できます。

一般規則

- (1) 一つの算術IF文中に、同じ文番号を2回以上指定できます。
- (2) 算術**IF**文を実行するとスカラ数値式が評価され、続いて制御の移行が起こります。 スカラ数値式の値が負であるとき、ゼロであるとき、および、正であるときに、それぞれ1番目、2番目、および、3番目の文番号によって識別された飛び先文が次に実行されます。

例

IF (I + J) 100, 200, 300

9.1.1.14 IMPLICIT 文

一つの有効域内のすべてのIMPLICIT文を通じて、同じ英字を、単独の英字として書くか英字範囲に含めたりして、2回以上指定できます。2回以上指定したとき、後ろで指定したものが有効となります。

"\$"を1文字目にもつ名前のデータ要素の暗黙的な型、および、型パラメタを指定できます。

9.1.1.15 PARAMETER 文

PARAMETER文で並びの括弧を省略できます。省略したとき、変数のデータ型は、名前の暗 黙的な型付けではなく、定数の形式によって決定されます。

例

```
PARAMETER PI=3. 1415927, DPI=3. 141592653589793238D0

PARAMETER PIOV2=PI/2, DPIOV2=DPI/2

PARAMETER FLAG=. TRUE., LONGNAME='A STRING OF 25 CHARACTERS'

PRINT *, 'PI=', PI

PRINT *, 'DPI=', DPI

PRINT *, 'PIOV2=', PIOV2

PRINT *, 'DPIOV2=', DPIOV2

PRINT *, 'FLAG=', FLAG

PRINT *, 'LONGNAME=', LONGNAME

END
```

この出力は以下となります。

```
PI= 3.1415927

DPI= 3.1415926535897931

PIOV2= 1.5707964

DPIOV2= 1.5707963267948966

FLAG= T

LONGNAME=A STRING OF 25 CHARACTERS
```

9.1.1.16 FORTRAN77 POINTER文

以下の互換用のPOINTER文をサポートしています。

概要

POINTER文は、ポインタ変数(*pointer*)に変数名、手続名(*pointee*)を対応づける機能を もちます。型宣言文が現れることのできる場所に記述できます。

形式

| 配列名(大きさ引継ぎ配列形状指定並び) | 手続名

一般規則

- (1) POINTER 文は、モジュールの宣言部と初期値設定プログラムに記述できません。
- (2) pointer は、8 バイト整数型のスカラ変数でなければなりません。
- (3) pointer は、配列要素、派生型の成分、関数結果であってはなりません。
- (4) pointer は、次の属性をもってはなりません。
 - ALLOCATABLE属性
 - PARAMETER属性
 - POINTER属性
- (5) pointer は、PARAMETER 文に現れてはなりません。
- (6) pointer は、別の POINTER 文に現れた pointee であってはなりません。
- (7) pointee は、共通ブロック実体名、派生型成分名、仮引数名、関数結果名、結果変数名、または、自動割付け実体名であってはなりません。
- (8) pointee は、次の属性をもってはなりません。
 - **ALLOCATABLE**属性
 - INTENT属性
 - INTRINSIC属件
 - **OPTIONAL**属性
 - POINTER属性
 - SAVE属性
 - TARGET属性
- (9) pointee は、次の文に現れてはなりません。
 - COMMON文
 - EQUIVALENCE文
 - SAVE文
 - 別のPOINTER文
- (10) pointee には、初期値を与えてはなりません。

- (11) pointee は、OpenMPの Data Sharing Attribute Clause で指定できません。
- (12) pointer、pointee は、NAMELIST 文の変数群要素並びに現れてはなりません。

備考

- (a) pointerの扱いは、通常の8バイト整数型変数と同じです。
- (b) *pointer* に型が宣言されないとき、暗黙の型には従わず、8 バイト整数型に設定されます。
- (c) pointer は、複数の pointee に対して宣言できます。
- (d) pointee の配列形状指定は、上下限が定数以外のとき、配列の大きさはその副プログラムが呼び出された時点で決定されます。
- (e) *pointee* には、記憶域は割り付けられません。実際のアドレスは、対応する *pointer* の値をバイトアドレスとみなして動的に決定されます。
- (f) *pointee* が配列のとき、型宣言文、**DIMENSION** 文、または、**POINTER** 文のいずれかによって、配列形状を指定できます。
- (g) pointee は、親子結合をしません。新たに宣言されたものとみなされます。

9.1.1.17 QUADRUPLE 文 / QUADRUPLE PRECISION 文

QUADRUPLE文、および、**QUADRUPLE PRECISION**文は、互換用の型宣言文で、その文で宣言された名前のデータ要素が、すべて組込みの4倍精度実数型であることを指定します。 種別パラメタ値は、"KIND(0.0Q0)"とします。

形式

QUADRUPLE データ要素宣言並び

QUADRUPLE PRECISION データ要素宣言並び

ここで、データ要素宣言:

実体名[(明示上下限並び)] [/初期値/]

| 実体名[(大きさ引継ぎ配列形状指定)] [/初期値/]

| 関数名

9.1.1.18 RETURN 文

RETURN文のスカラ整数式に、実数型の式を指定できます。

指定された実数型の式は、制御の移行の前に整数式に変換されます。

9.1.1.19 STOP 文

STOP文の終了符号として、文字型、または、基本整数型のスカラ変数名、および、定数名を指定できます。

9.1.2 プログラム

9.1.2.1 継続行

プログラム形式によらず、継続行は開始行と合わせて最大511行まで継続できます。

9.1.2.2 文字\$

名前の英字の代わりに通貨記号(\$)を使用できます。

また、書式付き入出力の編集記述子に通貨記号(\$)を使用できます。\$編集記述子は、出力に おいて、書式制御の最後の記録の行送り制御を抑止することを指定します。\$編集記述子を入 力に指定すると無視されます。

9.1.2.3 引数の結合

引用仕様が明示的でない手続は、引数が以下の場合でも引数結合のエラーとせずコンパイルできます。

- 実引数の数が仮引数の数より少ない。
- 引数が文字型で、実引数より仮引数の方が文字長が大きい。

9.1.2.4 配列の補完

配列要素の引用時、宣言された次元数より少ない添字式に最下限値が自動的に補完されます。具体的な例は以下のとおりです。

例

宣言	引用時	補完後の参照
A(2,3)	A(1)	A(1,1)
B(2,-4:4)	B(1)	B(1,-4)
C(2,3,4,5)	C(2)	

9.1.3 プログラム形式

9.1.3.1 固定形式

(1) 文の継続

第1けたに "&" を書いたとき、その行の第2けた以降は、先行する注釈でない行の継続行とします。

(2) 拡張固定形式

拡張固定形式では、1行の最大長は2048文字です。1行が72文字固定でなく、最大2048 文字まで可変であること以外、固定形式と同じです。 拡張固定形式では、開始行と合わせて13200文字まで継続できます。

標準のFortran 2008言語仕様ではソース形式によらず、255行まで継続できます。

-fextend-sourceを指定したとき、拡張固定形式が有効となります。

(3) タブコード行

最初のタブコードが、第1けたから第6けたに現れたとき、最初のタブコードの次の文字が 数字ならその文字は第6けたに現れたとみなされます。

また、最初のタブコードの次の文字が数字以外なら、その文字は第7けたに現れたとみなされます。このとき、行の最後の文字までが文の一部となります。

また、最初のタブコードが、第7けた以降に現れたとき、文字定数、ホラリス定数、および、文字列編集記述子を除いて空白とみなされます。

9.1.3.2 自由形式

自由形式では、1行の最大長に制限はありません。

9.1.4 式

9.1.4.1 関係演算子

互換のために、以下の関係演算子を使用できます。

=>

| =<

| ><

| <>

9.1.4.2 論理演算子

互換のために、下記の論理演算子を使用できます。

.XOR.

.XOR.の演算の解釈は、.NEQV.と同じで、優先順位は.OR.と同じです。

9.1.4.3 配列の最大次元数

配列の次元数は最大31まで宣言できます。Fortran 2008標準では最大15、それ以前のFortran標準では最大7です。

9.1.4.4 非 10 進定数表現

引用符、または、アポストロフィがある形式の非10進定数表現は、以下の場所にも記述できます。

- PARAMETER文の初期値
- 型宣言文の初期値

• 暗黙的引用仕様をもつ手続の実引数

このとき非10進定数は、型変換されず、その使われ方に応じた型として扱われます。 非10進定数のサイズが、扱われる型のサイズより小さいとき、左に0が補われます。 非10進定数のサイズが、扱われる型のサイズより大きいとき、左端が切り捨てられます。 16進定数表現は、Zの代わりにXを用いた以下の表現でも書けます。

X"16進数字[16進数字]..."

| X'16進数字[16進数字]...'

9.1.4.5 ホラリス型

ホラリス定数を、ホラリス関係式、または、ホラリス代入文で指定できます。

(1) ホラリス関係式

関係式において、一方のオペランドがホラリス定数、または、文字定数のとき、他方のオペランドに整数型、または、実数型のスカラ変数を指定できます。これによりホラリスデータの比較ができます。その変数は、その関係式評価時には、ホラリスデータで確定していなければなりません。ホラリス関係式の解釈は、同一の文字値をもつ文字関係式の解釈と同じです。

例

INTEGER DATA

READ (*, 10) DATA

10 FORMAT (A4)

IF (DATA . EQ. 3HEND) STOP

(2) ホラリス代入文

代入文において、右辺がホラリス定数、または、文字定数のとき、左辺に文字型を除く任 意の型のスカラ変数を指定できます。この代入文の実行により、左辺の変数は右辺のホラ リスデータで確定されます。

ホラリス定数、または、文字定数における文字数をn、左辺の変数が含むことができる文字数をgとすると、nがg未満のとき、その要素は定数の右端を(g-n)個の空白により拡張したg個の文字が割り当てられます。gがn未満のとき、その要素は定数の左端のg個の文字が割り当てられます。

例

INTEGER TITLE

TITLE = 4HDATA

WRITE(*, 10) TITLE

10 FORMAT (A4)

9.1.4.6 添字式と文字位置式

配列要素の添字式、および、文字位置式に実数型の式を指定できます。 指定された実数型の式は、添字の値を計算する前に基本整数型に変換されます。

9.1.5 廃止事項

Fortran 95言語仕様での廃止事項(PAUSE文、ASSIGN文、および、割当て形GO TO文、H 形編集記述子)をサポートしています。-Wobsolescentを指定したとき、これらの廃止事項がみつかると、その都度'Deleted feature:'の付された警告メッセージが出力されます。

9.2 処理系定義

9.2.1 型

9.2.1.1 種別パラメタと対応するデータ宣言との関係

Fortranコンパイラで指定可能な種別パラメタと対応するデータ宣言との関係は、以下のとおりです。

型	種別パラメタ	対応するデータ宣言
整数型	1	1バイト整数型
整数型	2	2バイト整数型
整数型	4	4バイト整数型(基本整数型)
整数型	8	8バイト整数型
実数型	2	半精度実数型
実数型	4	実数型(基本実数型)
実数型	8	倍精度実数型
実数型	16	4倍精度実数型
複素数型	2	半精度複素数型
複素数型	4	複素数型(基本複素数型)
複素数型	8	倍精度複素数型
複素数型	16	4倍精度複素数型
論理型	1	1バイト論理型
論理型	4	4バイト論理型(基本論理型)

論理型	8	8バイト論理型
文字型	1	文字型

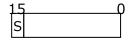
9.2.2 データの内部表現

9.2.2.1 整数型データ

整数型データは、記憶域内で連続した1バイト、2バイト、4バイト、または、8バイトを占め、それぞれ最下位のビットを1の位とした2進形式で表現されます。負の数は2の補数によって表現されます。最上位のビットは符号ビットで、0ならば正、または、0であり、1ならば負です。

(1) 1バイト整数型

形式

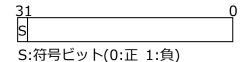


表現可能な値

$$-128 \sim 127 (-2^7 \sim 2^{7-1})$$

(2) 2バイト整数型

形式


S:符号ビット(0:正 1:負)

表現可能な値

-32768
$$\sim$$
 32767 (-2 15 \sim 2 $^{15\text{--}1}$)

(3) 4 バイト整数型

形式

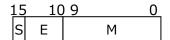
表現可能な値

 $-2147483648 \sim 2147483647 (-2^{31} \sim 2^{31-1})$

(4) 8 バイト整数型

形式

表現可能な値


 $-9223372036854775808 \sim 9223372036854775807 (-2^{63} \sim 2^{63-1})$

9.2.2.2 実数型データ

(1) 半精度実数型

半精度実数型データは、記憶域内で連続した2バイトを占めます。最上位のビットは仮数部の符号ビットです。下位の10ビットは仮数部を表し、その上位端のビット(ビット9)を2⁻¹の位とする2進形式で格納され、仮数部の符号ビットが0ならば正の値を表し、1ならば絶対値を表します。上位6ビットのうち、下位側の5ビットは指数部を表し、その下位端のビット(ビット10)を1の位とする2進形式で格納されます。値ゼロは指数部の値が0であることによって表現されます。

形式

S:仮数部の符号ビット(0:正 1:負)

E:指数部 (0≤E≤31)

M:仮数部 (0≦M<1)

表現可能な値

$$(-1)^{S} * 2^{E-15} * 1.M$$

有効けた数は10進約3けたで、絶対値が0、または、約 $10^{-5}\sim10^4$ の範囲の値を表せます。

特別な値

NaN E==31、かつ、M!=0

(Mの先頭ビットが0:signaling NaN、Mの先頭ビットが1:quiet Na

N)

無限大 E==31、かつ、M==0

符号付きゼロ E==0

(2) 単精度実数型

単精度実数型データは、記憶域内で連続した4バイトを占めます。最上位のビットは仮数 部の符号ビットです。下位の23ビットは仮数部を表し、その上位端のビット(ビット22)を 2⁻¹の位とする2進形式で格納され、仮数部の符号ビットが0ならば正の値を表し、1ならば 絶対値を表します。上位9ビットのうち、下位側の8ビットは指数部を表し、その下位端の ビット(ビット23)を1の位とする2進形式で格納されます。値ゼロは指数部の値が0である ことによって表現されます。

形式

S:仮数部の符号ビット(0:正 1:負)

E:指数部 (0≤E≤255)

M:仮数部 (0≦M<1)

表現可能な値

$$(-1)^{S} * 2^{E-127} * 1.M$$

有効けた数は10進約7けたで、絶対値が0、または、約 $10^{-38}\sim 10^{37}$ の範囲の値を表せます。

特別な値

NaN E==255、かつ、M!=0

(Mの先頭ビットが0:signaling NaN、Mの先頭ビットが1:quiet NaN)

無限大 E==255、かつ、M==0

符号付きゼロ E==0

(3) 倍精度実数型

倍精度実数型データは、記憶域内で連続した8バイトを占めます。最上位のビットは仮数部の符号ビットです。下位の52ビットは仮数部を表し、その上位端のビット(ビット51)を2⁻¹の位とする2進形式で格納され、仮数部の符号ビットが0ならば正の値を表し、1ならば絶対値を表します。上位12ビットのうち、下位側の11ビットは指数部を表し、その下位端のビット(ビット52)を1の位とする2進形式で格納されます。値ゼロは指数部の値が0であることによって表現されます。

形式

S:仮数部の符号ビット(0:正 1:負)

E:指数部 (0≤E≤2047)

M:仮数部 (0≤M<1)

表現可能な値

 $(-1)^{S} * 2^{E-1023} * 1.M$

有効けた数は10進約16けたで、絶対値が0、または、約 10^{-308} \sim 10^{308} o範囲の値を表せます。

特別な値

- NaN E==2047、かつ、M!=0 (Mの先頭ビットが0:signaling NaN、Mの先頭ビットが1:quiet NaN)
- 無限大 E==2047、かつ、M==0
- 符号付きゼロ E==0

(4) 4倍精度実数型

4倍精度実数型データは、記憶域内で連続した16バイトを占めます。最上位のビットは仮数部の符号ビットです。下位の112ビットは仮数部を表し、その上位端のビット(ビット111)を2⁻¹の位とする2進形式で格納され、仮数部の符号ビットが0ならば正の値を表し、1ならば絶対値を表します。上位16ビットのうち、下位側の15ビットは指数部を表し、その下位端のビット(ビット112)を1の位とする2進形式で格納されます。値ゼロは指数部の値が0であることによって表現されます。

形式

S:仮数部の符号ビット(0:正 1:負)

E:指数部 (0≤E≤32767)

M:仮数部 (0≦M<1)

表現可能な値

 $(-1)^{S} * 2^{E-16383} * 1.M$

有効けた数は10進約34けたで、絶対値が0、または、約 $10^{-4932}\sim10^{4932}$ の範囲の値を表せます。

特別な値

- NaN E==32767、かつ、M!=0 (Mの先頭ビットが1:signaling NaN、Mの先頭ビットが0:quiet NaN)

- 無限大 E==32767、かつ、M==0

- 符号付きゼロ E1==0

9.2.2.3 複素数型データ

(1) 半精度複素数型

半精度複素数型データは、記憶域内で連続した4バイトを占めます。上位番地を占める2 バイトには実部が格納され、下位番地を占める2バイトには虚部が格納されます。実部 と虚部はそれぞれ実数型データと同じ形式です。

形式

31	26 25	16
RS	RE	RM
IS	ΙE	IM
 15	10 9	0

実部 RS: 仮数部の符号ビット(0:正 1:負)、RE:指数部(0≦RE≦31)、RM: 仮数部 虚部 IS: 指数部の符号ビット(0:正 1:負)、IE: 指数部(0≦IE≦31)、IM: 仮数部

表現可能な値

 $(-1)^{RS}*2^{RE-15}*1.RM$ 、および、 $(-1)^{IS}*2^{IE-15}*1.IM$ 有効けた数は10進約3けたで、絶対値が0、または、約 $10^{-5}\sim10^4$ の範囲の値を表せます。

特別な値

- NaN RE==31、かつ、RM!=0、または、IE==31、かつ、IM!=0

- 無限大 RE==31、かつ、RM==0、または、IE==31、かつ、IM==0

- 符号付きゼロ RE==0、かつ、IE==0

(2) 単精度複素数型

単精度複素数型データは、記憶域内で連続した8バイトを占めます。上位番地を占める4バイトには実部が格納され、下位番地を占める4バイトには虚部が格納されます。実部と虚部はそれぞれ実数型データと同じ形式です。

形式

<u>63</u>	55	54		<u>32</u>
RS	RE		RM	
IS	ΙE		IM	
— 31	23	22		

実部 RS:仮数部の符号ビット(0:正 1:負)、RE:指数部(0≦RE≦255)、RM:仮数部 虚部 IS:指数部の符号ビット(0:正 1:負)、IE:指数部(0≦IE≦255)、IM:仮数部

表現可能な値

(-1)^{RS} * 2^{RE-127} * 1.RM、および、(-1)^{IS} * 2^{IE-127} * 1.IM

有効けた数は10進約7けたで、絶対値が0、または、約 $10^{-38}\sim 10^{37}$ の範囲の値を表せます。

特別な値

- NaN RE==255、かつ、RM!=0、または、IE==255、かつ、IM!=0

- 無限大 RE==255、かつ、RM==0、または、IE==255、かつ、IM==0

- 符号付きゼロ RE==0、かつ、IE==0

(3) 倍精度複素数型

倍精度複素数型データは、記憶域内で連続した16バイトを占めます。上位番地を占める8 バイトには実部が格納され、下位番地を占める8バイトには虚部が格納されます。実部と 虚部はそれぞれ倍精度実数型データと同じ形式です。

形式

127	116	115	64
RS	RE	RM	
IS	ΙE	IM	
63	52	51	0

実部 RS: 仮数部の符号ビット(0:正 1:負)、RE: 指数部(0≦RE≦2047)、RM: 仮数部 虚部 IS: 仮数部の符号ビット(0:正 1:負)、IE: 指数部(0≦IE≦2047)、IM: 仮数部

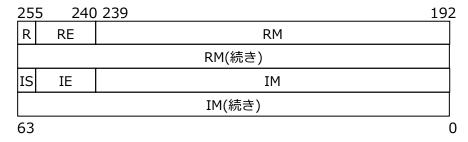
表現可能な値

(-1)^{RS} * 2^{RE-1023} * 1.RM、および、(-1)^{IS} * 2^{IE-1023} * 1.IM

有効けた数は10進約16けたで、絶対値が0、または、約 $10^{-308}\sim 10^{308}$ の範囲の値を表せます。

特別な値

- NaN RE==2047、かつ、RM!=0、または、IE==2047、かつ、IM!=0


- 無限大 RE==2047、かつ、RM==0、または、IE==2047、かつ、IM==0

- 符号付きゼロ RE==0、かつ、IE==0

(4) 4倍精度複素数型

4倍精度複素数型データは、記憶域内で連続した32バイトを占めます。上位番地を占める 16バイトには実部が格納され、下位番地を占める16バイトには虚部が格納されます。実 部と虚部はそれぞれ4倍精度実数型データと同じ形式です。

形式

実部 RS: 仮数部の符号ビット(0:正 1:負)、RE:指数部(0≦RE≦32767)、RM: 仮数部 虚部 IS: 仮数部の符号ビット(0:正 1:負)、IE:指数部(0≦IE≦32767)、IM: 仮数部

表現可能な値

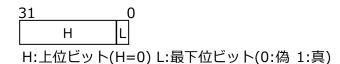
 $(-1)^{RS}$ * $2^{RE-16383}$ * 1.RM、および、 $(-1)^{IS}$ * $2^{IE-16383}$ * 1.IM 有効けた数は10進約34けたで、絶対値が0、または、約 10^{-4932} ~ 10^{4932} の範囲の値を表せます。

特別な値

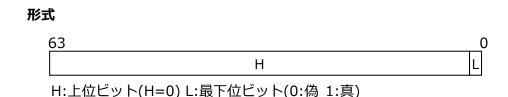

- NaN RE==32767、かつ、RM!=0、または、IE==32767、かつ、IM!=0
- 無限大 RE==32767、かつ、RM==0、または、IE==32767、かつ、IM==0
- 符号付きゼロ RE==0、かつ、IE==0

9.2.2.4 論理型データ

論理型データは、記憶域内で1バイト、連続した4バイト、または、連続した8バイトを占め、すべてのビットが0のとき「偽」、それ以外は「真」とみなされます。「真」を論理型変数に代入したときの内部表現は、最上位のビットのみを1とします。

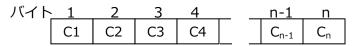

(1) 1 バイト論理型

形式



(2) 4 バイト論理型

形式


(3) 8 バイト論理型

9.2.2.5 文字型データ

文字型データは、記憶域内で宣言文、または、IMPLICIT文で指定された長さだけの連続するバイト、または、文字定数のときにはその文字数だけの連続するバイトを占めます。各バイトにはそれぞれ1文字が格納されます。

形式

Ci 文字データ中の上位から i 番目の文字

n 型宣言文、または、IMPLICIT 文で指定された文字型のスカラ変数、 および、配列要素の長さ(最大 2147483647 文字)。 または、文字定数の長さ(最大 2147483647 文字)。

9.2.2.6 ホラリス型データ

ホラリス型データは、記憶域内で連続した1、2、4、8、16、32バイトを占め、左詰めで格納されます。文字型以外の変数、または、配列要素に格納されますが、いずれのときも必要な数だけ空白が後ろに補われます。

ホラリス定数は、ゼロでない符号なし整定数n、その後ろに文字Hとそれに続くちょうどn個の連続した文字の列を書いたものです。n個の文字の列がホラリスデータです。

実引数として使用するときを除き、文字定数をホラリス定数のかわりに指定できます。

例 5HABCD が倍精度実数型変数に格納されるとき

ホラリス定数は、ホラリス関係式(一方のオペランドがホラリス定数である関係式)、ホラリス代入文(右辺がホラリス定数である代入文)、FORTRAN77互換形式型宣言文、**DATA**文、**D IMENSION**文、または、明白な引用仕様をもたない手続引用の実引数並びにだけ指定できます。

9.2.2.7 16 進型データ

16進型データは、DATA文、型宣言文による初期値設定、または、Z形編集記述子を使用した

READ文によって記憶域内に右詰めで格納され、対応するデータの型に応じたバイトを占めます。

16進型データは、4ビットで16進数1けたを表現します。

9.2.2.8 8 進型データ

8進型データは、DATA文、型宣言文による初期値設定、または、O形編集記述子を使用した READ文によって記憶域内に右詰めで格納され、対応するデータの型に応じたバイトを占め ます。

8進型データは、3ビットで8進数1けたを表現します。

9.2.2.9 2 進型データ

2進型データは、DATA文、型宣言文による初期値設定、または、B形編集記述子を使用した READ文によって記憶域内に右詰めで格納され、対応するデータの型に応じたバイトを占め ます。

2進型データは、1ビットで2進数1けたを表現します。

9.2.2.10 特別な値

以下の特別な値を表現できます。

(1) 非数(NaN)

0.0/0.0のような無効演算を行うと結果は非数となります。 非数は以下の2つのタイプに分類されます。

- Signaling NaN

 この種の非数が演算に対して使用されるとき、無効演算例外が検知されます。
- Quiet NaN この種の非数は無効演算の結果として返されます。しかし、無効演算例外は検知されません。

(2) 無限大(inf)

無限大は、正の無限大、および、負の無限大に分類されます。 正の無限大(+inf)は、同じ型で表せる他のいずれの数値以上の値です。 負の無限大(-inf)は、同じ型で表せる他のいずれの数値未満の値です。

(3) 符号付きのゼロ(+0.0、および、-0.0)

内部表現では、+0.0、および、-0.0は仮数部の符号ビットによって認識されます。しかし、これらの値は同じ値として扱われます。

 $0.0 \cdot EQ. (-0.0) \Rightarrow true$

以下に示すように符号付きのゼロは、正の無限大、および、負の無限大を求めるのに有効です。

9.2.3 諸元の定義

Fortranコンパイラにおける各種上限値は以下のとおりです。

項目	上限値
INCLUDE行で取り込むファイルのネスト数	63
配列の次元数	31
継続行の行数	1023行
名前の長さ	199文字

9.2.4 定義済みマクロ

すべての定義済みマクロは、**fpp**でプリプロセスが行われ、かつ、以下のいずれかの条件を満たすとき、有効になります。

- -Eまたは-Mが指定されている。
- ファイルの拡張子が.F、.F90、.F95、.F03のいずれかである。

定義済みマクロは以下のとおりです。

VE_ARCH_1
常に1に定義される。
VE_ARCH_3
-march=ve3が有効であるとき1に定義され、そうでないとき定義されない。
ELF
常に1に定義される。
FP16_FORMAT
半精度浮動小数点の形式を表す。
-march=ve3かつ-mfp16-format=ieeeが有効であるとき1に定義される。
-march=ve3が有効、かつ、-mfp16-format=bfloatが指定されたとき2に定義される
上記以外の場合、定義されない。
また、値を表すマクロとしてFP16_IEEE、FP16_BFLOATが定義される。
FP16_IEEE
常に1に定義される。
FP16_BFLOAT
常に2に定義される。
NEC
常に1に定義される。
FAST_MATH
-ffast-mathが有効であるとき1に定義され、そうでないとき定義されない。
_FTRACE
-ftraceが有効であるとき1に定義され、そうでないとき定義されない。
NEC_VERSION
コンパイラのバージョンがX.Y.Zであるとき、以下の計算式で得られる値が定義される。
X*10000 + Y*100 + Z
OPTIMIZE
コンパイル時に有効となった -O nの最適化レベル(n)の値に定義される。
VECTOR
自動ベクトル化が有効であるとき1に定義され、そうでないとき定義されない。
VERSION

常に使用しているコンパイラのバージョンを示す文字列定数に定義される。

9.2.5 組込み手続に関する注意事項

CPU_TIME

プログラム実行でのCPU時間を返却します。共有並列処理時、Version 3.0.7以降ではCPU_TIMEを呼び出したスレッドのCPU時間を返却します。以前は、呼び出し時点での全スレッドのCPU時間の合計値を返却していました。Version 3.0.7以降で全スレッドのCPU時間の合計を取得したいときは、環境変数VE_FORT_ACCUMULATE_THREAD_CPU_TIMEに"YES"を指定してください。

9.3 メモリの確保・解放

Fortranコンパイラは、プログラム実行時のALLOCATE文、DEALLOCATE文、各文の処理 のために必要なメモリの確保、解放を高速に行えるようメモリブロック機能を実装しています。

メモリブロック機能では、プログラムの実行開始時にあらかじめメモリブロックと呼ばれる 領域を確保しておき、実行時に領域が確保されるスカラ変数(基本型、派生型)、大きさの小 さい配列をメモリブロック内に割り付けます。このため、メモリの確保、解放ごとのシステ ムコールが不要となり、スカラ変数、小さい配列の確保、解放を高速化できます。

9.3.1 メモリブロック

メモリブロックは割り付けられるデータの種類により3種類あり、それぞれのプログラム実行開始時のサイズは64メガバイトです。また、それぞれのしきい値は16メガバイトで、しきい値未満のサイズのデータの領域がメモリブロック内に割り付けられます。しきい値以上のサイズのデータは、コンパイラの実行時ルーチンを介して呼び出されるmalloc(3C)、free(3C)によって、確保、解放されます。

メモリブロック名	割り付けられるデータ	サイズ	しきい値
Allocate	ALLOCATABLE 属性を持つスカラ変数、配列	64	16
Pointer	POINTER 属性を持つスカラ変数、配列	64	16
Miscellaneous	各文の処理のための作業領域、作業配列、自 動配列	64	16

(単位:メガバイト)

データを割り付ける際メモリブロック内に十分な領域が確保できないとき、「サイズ」の大き さのメモリブロックが追加され、そのブロック内に割り付けられます。

9.3.2 メモリブロックのサイズ・しきい値の変更

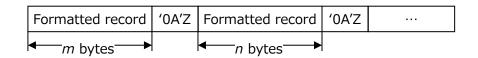
メモリブロックのサイズは環境変数**VE_FORT_MEM_BLOCKSIZE**により変更できます。サイズは、M(メガバイト)、G(ギガバイト)単位で指定でき、2のべき乗数のみ指定できます。 しきい値は、メモリブロックサイズ/4の値に設定されます。

例

\$ export VE_FORT_MEM_BLOCKSIZE=32M

メモリブロックサイズを32メガバイトに設定します。しきい値は8メガバイトです。

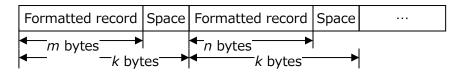
9.4 入出力


9.4.1 書式付き記録

書式付き記録は、書式付き入出力文、並び入出力文、および、変数群入出力文によって入出力される記録です。

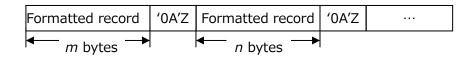
- 書式付き入出力文によって入出力される記録は、書式仕様にしたがって入出力されます。 一般にこの記録の長さは可変ですが、Fortranコンパイラの準備するレコードバッファの 長さ以上にできません。
- 並び入出力文によって入出力される記録は、その入出力文の入出力項目並びにしたがって 入出力されます。並び入出力文では、一度の実行によって一つ以上の記録が入出力されま す。
- 変数群入出力文によって入出力される記録は、その入出力文で指定した変数群名の変数群 並びに従って入出力されます。変数群入出力文では、一度の実行によって一つ以上の記録 が入出力されます。

9.4.1.1 順編成ファイルの書式付記録


順編成ファイル中の書式付き記録は、改行コード('OA'Z)によって区切られています。また、 各記録の長さは一定ではありません。形式は以下のとおりです。

9.4.1.2 直編成ファイルの書式付記録

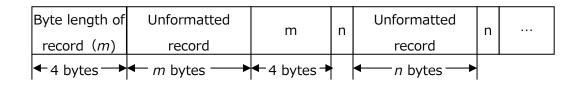
直編成ファイル中の書式付き記録の長さは、**OPEN**文の**RECL**指定子で指定された値です。入出力項目並びの編集による記録の長さが、ファイル中の記録の長さに満たないときには、後


ろに空白が詰められます。

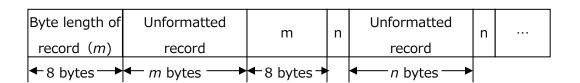
(k: OPEN 文で指定された記録の長さ)

9.4.1.3 ストリームファイルの書式付記録

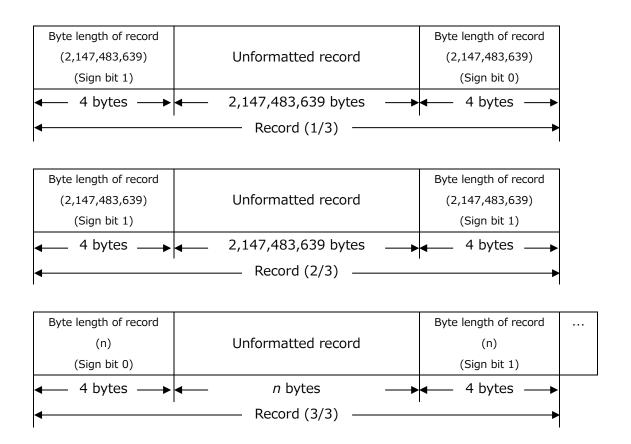
ストリームファイル中の書式付き記録は、順編成ファイルと同じように改行コード('0A'Z)によって区切られています。ただし、記録に対して最大の長さは適用されません。形式は以下のとおりです。

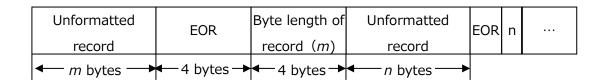


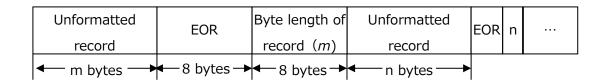
9.4.2 書式なし記録

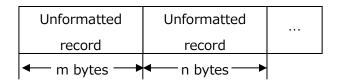

書式なし記録は、書式なし入出力文によってのみ入出力される記録です。書式なし記録の長さは、入出力項目のデータサイズを合計した値と同じです。各データのサイズは「9.2 処理系定義」を参照してください。

9.4.2.1 順編成ファイルの書式なし記録

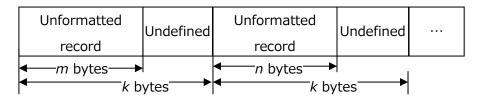

順編成ファイル中の書式なし記録は、記録の前後にその書式なし記録のバイト長を示す4バイトのデータが付加されて構成されます。


環境変数VE_FORT_EXPRCWが設定されているとき、順編成ファイル中の書式なし記録は、記録の前後にその書式なし記録のバイト長を示す8バイトのデータが付加されて構成されます。


環境変数**VE_FORT_SUBRCW**が設定されているとき、順編成ファイル中の書式なし記録は、記録を一定の長さ(2,147,483,639bytes)以下に分割し、その前後にその書式なし記録のバイト長を示す4バイトのデータが付加されて構成されます。また、記録のバイト長の符号ビットでそのレコードが前後のレコードの記録の一部かを示します。


環境変数**VE_FORT_PARTRCW**が指定されたとき、順編成ファイル中の書式なし記録は、 記録の後ろに記録の終了を示す4バイトのEORのデータとその書式なし記録のバイト長を示す 4バイトのデータが付与されて構成されます。

環境変数VE_FORT_EXPRCWと環境変数VE_FORT_PARTRCWが同時に指定されたとき、順編成ファイル中の書式なし記録は、記録の後ろに記録の終了を示す8バイトのEORのデータとその書式なし記録のバイト長を示す8バイトのデータが付与されて構成されます。


環境変数**VE_FORT_NORCW**が指定されたとき、順編成ファイル中の書式なし記録は、制御レコードを一切付与されず構成されます。これは、ストリームファイルの書式なし記録と同じ構成です。

9.4.2.2 直編成ファイルの書式なし記録

直編成ファイル中の書式なし記録の長さは、**OPEN**文の**RECL**指定子で指定した値です。入出 カ項目並びによる記録の長さが、ファイル中の記録の長さに満たないとき、残りの値は不定 です。

WRITE文でファイルに記録を書き込むときは、不定のデータを無視し、記録の長さは出力項目のデータサイズを合計した値と同じになります。

(k: OPEN文で指定された記録の長さ)

9.4.2.3 ストリームファイルの書式なし記録

書式なしストリームファイルは記録構造をもたないバイト列です。

Unformatted byte stream

9.4.3 事前接続

外部ファイル装置は、プログラムの実行が開始された時点でぞれぞれ固有のファイルを識別できます。これを事前の接続と呼びます。

9.4.3.1 システム標準ファイルの事前の接続

システム標準ファイルは、次に示す外部ファイル装置とそれぞれ事前に接続されています。

外部ファイル装置	システム標準ファイル
0	標準エラー出力
5	標準入力ファイル
6	標準出力ファイル

これらの外部ファイル装置に対する事前の接続は、その外部ファイル装置に対するOPEN文を実行しないときにかぎり有効です。一度OPEN文を実行すると、その外部ファイル装置に対するシステム標準ファイルと外部ファイル装置の接続は切り離され、再び接続することはできません。すなわち、上記の外部ファイル装置を指定したOPEN文を実行した後CLOSE文を実行しても、次の外部ファイル装置0、5、6に対する入出力文では、装置が接続されていないのでエラーになります。

次の例では、(a)の**WRITE**文は標準出力ファイルに出力され、(b)の**WRITE**文はファイルDA TA6に出力され、(c)の**WRITE**文はエラーが出力されます。

例

```
WRITE(6, *) A, B, C -----(a) Standard output file
:
:
:
OPEN(6, FILE = "DATA6")
WRITE(6, *) I, J, K -----(b) DATA6
:
CLOSE(6)
:
WRITE(6, *) X, Y, Z -----(c) Unit 6 は接続されていない
```

9.4.3.2 一般ファイルの事前の接続

0、5、6以外の外部ファイル装置nに対しては、ファイルfort.nが事前に接続されています。 OPEN文にFILE指定子を指定したときでも、その外部ファイル装置nに対するCLOSE文を実行し、再度fort.nにOPEN文で接続すれば、次の外部ファイル装置nに対する入出力文では、ファイルfort.nに再度接続されます。

次の例では、(a)のWRITE文はfort.8に出力され、(b)のWRITE文はDATA8に出力され、(c)のWRITE文では再びfort.8に出力されます。ただし、このとき(a)で出力された記録は(c)のWRITE文で上書きされます。

事前に接続するファイルを変更するときは、「2.2 実行時に参照される環境変数」のVE_FOR

Tnを参照してください。

例

```
WRITE(8, *) A, B, C -----(a) fort.8
:
:
OPEN(8, FILE = "DATA8")
WRITE(8, *) I, J, K ------(b) DATA8
:
CLOSE(8)
:
OPEN(8, FILE = "fort.8")
WRITE(8, *) X, Y, Z ------(c) fort.8
```

9.4.4 名前なしファイル

STATUS="SCRATCH"を指定した**OPEN**文の実行により名前なしファイルが出力されます。 名前なしファイルは、<stdio.h>ヘッダファイルでP_tmpdirとして定義されたディレクトリ 配下に出力されますが、このディレクトリがアクセス不能なときは、/tmpが最後の手段とし て使用されます。

ただし、環境変数TMPDIRを指定することにより、指定したディレクトリ配下に名前なしファイルを出力できます。

9.4.5 丸めモード

丸めモードは、**OPEN**文、データ転送入出力文において、**ROUND**指定子、または、編集記述子で指定できます。指定がないとき、丸めモードは**PROCESSOR_DEFINED**になります。

丸めモードによる変換結果の値は以下となります。

ROUND指定子	編集記述子	変換結果
UP	RU	元の値以上で最小の表現可能な値
DOWN	RD	元の値以下で最大の表現可能な値
ZERO	RZ	元の値に最も近く、絶対値で元の値未満の値
NEAREST	RN	最も近い表現可能な値 最も近い値が二つあるとき、偶数を選択
COMPATIBLE	RC	最も近い表現可能な値 最も近い値が二つあるとき、ゼロから離れてい

る方を選択

PROCESSOR_DEFINED RP NEARESTと同等

9.4.6 NAMELIST の入力形式

NAMELISTの入力形式は、NAMELIST名の先頭に追加する文字として"\$"、"&"をサポートします。また、終了を示す記号として"\$end"、"&end"、"/"をサポートします。

9.4.7 NAMELIST の出力形式

• 数値配列の出力

NAMELIST出力において、数値配列で同じ値が二つ以上連続するとき同じ値をまとめたフォーマット(連続する個数*値)で出力します。フォーマットは、環境変数**VE_FORT_NML_REPEAT_FORM**で変更できます。詳細は「2.2 実行時に参照される環境変数」を参照してください。

• DELIM指定子と文字型配列

DELIM指定子で"NONE"が指定されたとき、値区切り子を含まない連続した文字で出力します。"QUOTE"、または、"APOSTROPHE"が指定されたとき、連続した同じ文字、または、値をまとめたフォーマット(連続する個数*値)で出力します。

DELIM指定子が省略されたとき、文字型配列の値は連続で出力します。このフォーマットは、環境変数**VE_FORT_NML_DELIM_BLANK**で変更できます。詳細は「2.2 実行時に参照される環境変数」を参照してください。

- **備考 DELIM**指定子に"NONE"を指定、または、指定していないときの出力レコードは、NAMELISTの入力レコードとして受け付けられません。NAMELISTの入力レコードとして使用するには、**DELIM**指定子で"NONE"以外を指定するか、**DELIM**指定子を指定せずに環境変数**VE_FORT_NML_DELIM_BLANK**に"YES"を指定して出力レコードを作成してください。
- バージョン3.0.7以前のバージョンとの互換
 バージョン3.0.7以前のフォーマットで出力したいとき、環境変数VE_FORT_NML_REP
 EAT_FORMに"NO"を指定してください。

9.5 Fortran 2018 機能

本章では、NEC FortranコンパイラがサポートするFortran 2018言語仕様の新機能について説明します。

9.5.1 データ宣言

• 次元数引継ぎ仮データ実体を利用できます。(コンパイラバージョン5.4.0以降)

例

```
SUBROUTINE SUB(A)

REAL :: A(...)
```

9.5.2 データの使用

SELECT RANK構文を利用できます。(コンパイラバージョン5.4.0以降)例

```
PROGRAM SELECT RANK EXAMPLE
  INTEGER A, B(1), C(2,3), D(4,5,6)
  CALL SUB (A)
  CALL SUB (B)
  CALL SUB(C)
  CALL SUB (D)
CONTAINS
  SUBROUTINE SUB (P)
    INTEGER P(..)
    SELECT RANK (P)
      RANK (0)
        PRINT *, 'RANK is 0'
      RANK (1)
        PRINT *, 'RANK is 1'
      RANK (2)
        PRINT *, 'RANK is 2'
      RANK DEFAULT
        PRINT *, 'RANK is out of range from 0 to 2.'
    END SELECT
  END SUBROUTINE
END PROGRAM
```

9.5.3 実行制御

- **ERROR STOP**文と**STOP**文で基本整数型と基本文字型を利用できます。(コンパイラバージョン1.5.0以降)
- ERROR STOP文とSTOP文のQUIET指定子が利用できます。(コンパイラバージョン1.5.0以降)

例

```
STOP 13, QUIET = .True.
```

上のプログラムは、ステータス13で正常終了します。

9.5.4 組込み手続と組込みモジュール

組込み手続MOVE_ALLOCで、省略可能な引数STATとERRMSGが利用できます。(コンパイラバージョン1.5.0以降)

例

 組込み手続ALL、ANY、FINDLOC、IALL、IANY、IPARITY、MAXLOC、MAXVA L、MINLOC、MINVAL、NORM2、PARITY、PRODUCT、SUMの引数DIMにOPTIO NAL属性をもつ仮引数を指定できます。(コンパイラバージョン3.5.0以降)
 例

```
SUBROUTINE SUB(X, N)

REAL, INTENT(IN) :: X(:,:,:)

INTEGER, INTENT(IN), OPTIONAL :: N

IF (PRESENT(N)) THEN

PRINT *, NORM2(X, N) ! RANK TWO ARRAY RESULT.

ELSE

PRINT *, NORM2(X) ! SCALAR RESULT.

END IF

END SUBROUTINE
```

• 組込み手続RANKが利用できます。組込み手続RANKは引数の次元を返します。(コンパイラバージョン3.5.0以降)

例

```
INTEGER I (3, 3), RESULT
RESULT=RANK (I)
```

END

• 組込み手続REDUCEが利用できます。組込み手続REDUCEはユーザ定義の配列削減を実行します。(コンパイラバージョン3.5.0以降)

例

```
MODULE TRIPLET M
  TYPE TRIPLET
    INTEGER I, J, K
  END TYPE
CONTAINS
  PURE TYPE (TRIPLET) FUNCTION TADD (A, B)
    TYPE (TRIPLET), INTENT (IN) :: A, B
    TADD\%I = A\%I + B\%I
    TADD\%J = A\%J + B\%J
    TADD\%K = A\%K + B\%K
  END FUNCTION
END MODULE
PROGRAM REDUCE EXAMPLE
  USE TRIPLET_M
  TYPE (TRIPLET) A (2, 3)
  A = RESHAPE([TRIPLET(1, 2, 3), TRIPLET(1, 2, 4), &
                   TRIPLET (2, 2, 5), TRIPLET (2, 2, 6), &
                   TRIPLET (3, 2, 7), TRIPLET (3, 2, 8) ], [ 2, 3 ])
  PRINT 1, REDUCE (A, TADD)
  PRINT 1, REDUCE (A, TADD, 1)
  PRINT 1, REDUCE (A, TADD, A%I/=2)
  PRINT 1, REDUCE (ARRAY=A, DIM=2, OPERATION=TADD)
  PRINT 1, REDUCE (A, MASK=A%I/=2, DIM=1, OPERATION=TADD, IDENTITY=TRIPLET (0, 0,
0))
1 FORMAT (1X, 6 ('TRIPLET (', IO, ', ', IO, ', ', IO, ')', :, '; '))
END PROGRAM
```

9.5.5 入出力

• INQUIRE文のRECL指定子に設定される値が変更になりました。接続されていない装置 またはファイルのときは-1が設定され、ACCESS="STREAM"で接続されている装置また はファイルのときは-2が設定されます。以前のFortran標準では、両方とも未定義になり ました。(コンパイラバージョン3.1.0以降)

• **READ**文でADVANCE='NO' を指定せずに**SIZE**指定子を指定できます。(コンパイラバージョン3.5.0以降)

例

```
CHARACTER (65536) BUF

INTEGER NC

READ (*, '(A)', SIZE=NC) BUF

PRINT *, 'THE NUMBER OF CHARACTERS ON THAT LINE WAS', NC
```

9.5.6 プログラムと手続

• 利用者定義代入文として引用する手続の二番目の引数がVALUE属性を持つとき、INTEN T(IN)属性は必須ではなくなりました。(コンパイラバージョン3.0.1以降)

例

```
MODULE MOD

INTERFACE OPERATOR (+)

MODULE PROCEDURE PLUS

END INTERFACE

CONTAINS

PURE INTEGER FUNCTION PLUS (A, B)

INTEGER, VALUE :: A

LOGICAL, VALUE :: B

PLUS = MERGE (A+1, A, B)

END FUNCTION

END MODULE
```

• 利用者定義演算子として引用する関数の引数がVALUE属性を持つとき、INTENT(IN)属性は必須ではなくなりました。(コンパイラバージョン3.0.1以降)

例

```
MODULE MOD

INTERFACE ASSIGNMENT (=)

MODULE PROCEDURE ASGN

END INTERFACE

CONTAINS

PURE SUBROUTINE ASGN (A, B)

INTEGER, INTENT (OUT) :: A

LOGICAL, VALUE :: B

A = MERGE (1, 0, B)
```

```
END SUBROUTINE
END MODULE
```

9.5.7 多言語プログラミング

- C_FUNLOCの引数にBIND(C)属性のない手続を指定できます。(コンパイラバージョン 1.0.0以降)
- TYPE(*) 型指定子を使用できます。ALLOCATABLE属性、CODIMENSION属性、INT ENT(OUT) 属性、POINTER属性、VALUE属性をもつことはできません。(コンパイラ バージョン3.5.0以降)

例

Fortranプログラム

```
PROGRAM TYPE_STAR_EXAMPLE
  INTERFACE
    FUNCTION CHECKSUM (SCALAR, SIZE) BIND (C)
      USE ISO_C_BINDING
      TYPE(*) SCALAR
      INTEGER(C_INT), VALUE :: SIZE
      INTEGER (C_INT) CHECKSUM
    END FUNCTION
 END INTERFACE
 TYPE MYVEC3
    DOUBLE PRECISION V(3)
 END TYPE
 TYPE (MYVEC3) X
 CALL RANDOM_NUMBER (X%V)
 PRINT *, CHECKSUM(X, STORAGE_SIZE(X)/8)
END PROGRAM
```

```
int checksum(void *a, int n)
{
  int i;
  int res = 0;
  unsigned char *p = a;
  for (i=0; i<n; i++) res = 0x3ffffffffk((res<<1) + p[i]);
  return res;
}</pre>
```

• BIND(C)属性をもつ手続はOPTIONAL属性をもつ引数をもつことができます。この引数は、VALUE属性を持つことはできません。(コンパイラバージョン2.5.0以降)
例

Fortranプログラム

```
PROGRAM OPTIONAL_EXAMPLE

USE ISO_C_BINDING
INTERFACE

FUNCTION F (A, B) BIND (C)

IMPORT

INTEGER (C_INT), INTENT (IN) :: A

INTEGER (C_INT), INTENT (IN), OPTIONAL :: B

INTEGER (C_INT) F

END FUNCTION

END INTERFACE
INTEGER (C_INT) X, Y

X = F (3, 14)

Y = F (23)

PRINT *, X, Y

END PROGRAM
```

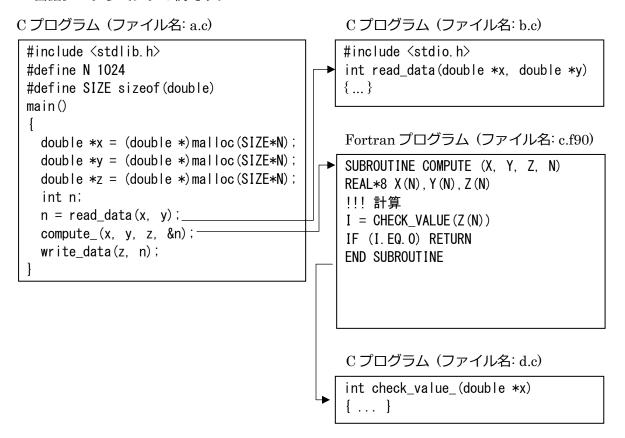
Cプログラム

```
int f(int *arg1, int *arg2)
{
  int res = *arg1;
  if (arg2) res += *arg2;
  return res;
}
```

9.5.8 廃止予定事項

• **EQUIVALENCE**文、**COMMON**文、**BLOCK DATA**文はFortran 2018言語仕様では廃止 予定であり、**-std**=f2018を指定したとき、警告メッセージが出力されます。

9.6 制限事項


- 関数の返却値が手続ポインタのとき、RESULT句を使用できません。
- coarrayを用いたSPMD (Single Program Multiple Data) プログラミングモデルの実行 は単一のイメージに制限されます。並列実行できません。

第10章 多言語プログラミング

異なるプログラミング言語のオブジェクトファイルをリンクし、一つの実行ファイルを作成することを多言語プログラミングと呼びます。この章ではCプログラム、C++プログラム、Fortranプログラムを使用した多言語プログラミングの手法について説明します。

10.1 多言語プログラミングのポイント

次の例は、Cプログラム、Fortranプログラムをリンクし、一つの実行ファイルを作成する多言語プログラミングの例です。

この例では、CプログラムからFortranプログラム、FortranプログラムからCプログラムを呼び出しています。呼び出す際には関数名、手続名を実際にプログラミングしている名前から外部シンボル名に変更し、引数、返却値でデータをやりとりし、言語間でデータを共有しています。

多言語プログラミングのポイントは以下です。

- C関数、C++関数、Fortran手続の名前の対応
- C/C++のデータ、Fortranのデータの型の対応

- C/C++ Fortran間の返却値の受け渡し
- C/C++ Fortran間の引数による値の受け渡し
- プログラムのコンパイル、リンクによる実行ファイルの作成 以降で、これらのポイントについて説明します。

10.2 C/C++関数名・Fortran手続名の対応

ソースファイルに記述されたC++関数名、Fortran手続名は、コンパイラによって名前が変更され、オブジェクトファイルに外部シンボル名として登録されます。このため、それらの関数、手続を参照するとき、変更後の外部シンボル名で呼び出すようにします。

10.2.1 Fortran 手続の外部シンボル名

(1) 手続の結合ラベルを使用するとき

Fortran 2003言語仕様の「Cとの相互利用」で手続の結合ラベルを使用するとき、Fortranプログラムの手続名は、結合ラベルと同じ文字列の外部シンボル名になります。すなわち、NAME指定があるとき指定された名前、省略されたときすべて小文字に変更された外部シンボル名になります。

例

```
SUBROUTINE SUB1(X) BIND(C, NAME="Fortran_Sub1")
...
END SUBROUTINE

SUBROUTINE SUB2(Y) BIND(C)
...
END SUBROUTINE
```

このFortranプログラムでは手続名が以下の外部シンボル名に変更されます。

(手続名)		(外部シンボル名)
SUB1	\rightarrow	Fortran_Sub1
SUB2	\rightarrow	sub2

(2) 手続の結合ラベルを使用しないとき

Fortranプログラムの手続名は、次の規則で外部シンボル名に変更されます。

- 手続名はすべて小文字に変更
- 名前の末尾に下線(_)が付加

例

```
SUBROUTINE COMPUTE (X, Y, Z, N)
REAL*8 X(N), Y(N), Z(N)
! 計算
I = CHECK_VALUE(Z(N))
IF (I. EQ. 0) RETURN
END SUBROUTINE
```

このFortranプログラムでは手続名が以下の外部シンボル名に変更されます。

(手続名)		(外部シンボル名)
COMPUTE	\rightarrow	compute_
CHECK_VALUE	\rightarrow	check_value_

10.2.2 C++関数名の外部シンボル名

C++コンパイラは、ソースファイルに記述された関数名に返却値、引数の型を表す文字列が付加します。この操作を関数名のマングル(mangle)と呼び、C++コンパイラは、この仕組みを利用して引数の型が違う同じ名前の関数の定義を可能としています。

例

```
(ソースファイルでの表記) (マングル名)
void func(double *x) _Z4funcPd
void func(float *x) → _Z4funcPf
```

備考 マングル名をソースファイルでの表記に戻すことを「デマングル」(demangle)と呼びます。

C関数やFortran手続から呼び出すC++関数は、C結合で宣言し、マングルされないようにします。そして、ソースファイルに記述された関数名で呼び出すようにします。同じように、C++関数から呼び出すC関数やFortran手続のプロトタイプ宣言もC結合で宣言し、マングルされないようにします。

例

```
extern "C" {
   void func(double *x);
   void func1(float *x);
};
```

結合指定はC++言語でのみ利用できます。プロトタイプ宣言などをC言語でも利用するとき

は、結合指定を条件コーディングします。

例

10.2.3 C/C++関数名、Fortran 手続の対応ルール

- C関数からFortran手続を呼び出すとき、Fortran手続の外部シンボル名でC関数から呼び 出します。
- Fortran手続から呼び出されるC関数は、Fortran手続の外部シンボル名で定義します。
- C関数やFortran手続から呼び出されるC++関数は、C結合で宣言します。
- C++関数から呼び出すC関数やFortran手続のプロトタイプ宣言は、C結合で宣言します。

10.2.4 呼出し例

例 C 関数からの Fortran 手続の呼出し(**BIND** 属性の指定あり) 呼出し側 (C 関数)

```
void cfunc() {
    ...
    sub1();
    ...
}
```

呼び出される側 (Fortran 手続)

```
SUBROUTINE SUB1 () BIND (C)
...
END SUBROUTINE SUB1
```

すべて小文字の名前でプロトタイプ宣言し、呼び出します。

例 C 関数からの Fortran 手続の呼出し(BIND 属性の指定なし)

呼出し側 (C関数)

```
extern int sub_();
void cfunc() {
    ...
    sub_();
    ...
}
```

呼び出される側 (Fortran 手続)

```
SUBROUTINE SUB
...
END SUBROUTINE SUB
```

Fortran手続を下線付きのすべて小文字の名前でプロトタイプ宣言し、呼び出します。

例 Fortran 手続からの C 関数の呼出し(BIND 属性の指定あり)

呼出し側 (Fortran 手続)

```
SUBROUTINE SUB

USE, INTRINSIC :: ISO_C_BINDING

INTERFACE

SUBROUTINE CFUNC() BIND(C)

END SUBROUTINE CFUNC

END INTERFACE

...

CALL CFUNC

...

END SUBROUTINE SUB
```

呼び出される側 (C 関数)

```
void cfunc() {
...
}
```

Cプログラムにおいて、すべて小文字の名前でC関数を宣言、定義し、Fortranプログラムにおいてすべて大文字の名前で引用仕様の定義、参照します。

例 Fortran 手続からの C 関数の呼出し(BIND 属性の指定なし)

呼出し側 (Fortran 手続)

```
SUBROUTINE SUB
...
CALL CFUNC
...
END SUBROUTINE SUB
```

呼び出される側 (C 関数)

```
int cfunc_() {
...
}
```

下線付きのすべて小文字の名前で、C関数を宣言、定義します。

例 C++関数からの Fortran 手続の呼出し

呼出し側 (C++関数)

```
extern "C" {
    int sub_(void);
};

void cfunc() {
    ...
    sub_();
    ...
}
```

呼び出される側 (Fortran 手続)

```
SUBROUTINE SUB
...
END SUBROUTINE SUB
```

Fortran手続を下線付きのすべて小文字の名前で、C結合でプロトタイプ宣言し、呼び出します。

例 Fortran 手続からの C++関数の呼出し

呼出し側 (Fortran 手続)

```
SUBROUTINE SUB
...
CALL CFUNC
...
END SUBROUTINE SUB
```

呼び出される側 (C++関数)

```
extern "C" {
   int cfunc_(void);
};
int cfunc_(void) {
...
}
```

下線付きのすべて小文字の名前、C結合で、C++関数を宣言、定義します。

10.3 データ型

FortranプログラムとC/C++プログラムのデータ型の対応は以下のとおりです。

10.3.1 Fortran の整数型/論理型

型	Fortranの型	C/C++の型
整数型	INTEGER	int (*1)
	INTEGER(KIND=1) INTEGER*1	signed char
	INTEGER(KIND=2) INTEGER*2	short
	INTEGER(KIND=4) INTEGER*4	int
	INTEGER(KIND=8) INTEGER*8	long、long int、long long、 または、long long int
論理型	LOGICAL	int (*1)
	LOGICAL(KIND=1)	signed char

型	Fortranの型	C/C++の型
	LOGICAL(KIND=2)	short
	LOGICAL(KIND=4)	int
	LOGICAL(KIND=8)	long、long int、long long、または、long long int

^{(*1) -}fdefault-integer=8 指定時は、long、long int、long long、または、long long int

10.3.2 Fortran の実数型/複素数型

型	Fortranの型	C/C++の型
実数型	REAL	float (*1)
	REAL(KIND=4) REAL*4	float
倍精度実数型	DOUBLE PRECISION	double (*2)
	REAL(KIND=8) REAL*8	double
4倍精度実数型	QUADRUPLE PRECISION REAL(KIND=16) REAL*16	long double
複素数型	COMPLEX	floatcomplex (*3)
	COMPLEX(KIND=4) COMPLEX*8	floatcomplex
倍精度複素数型	COMPLEX(KIND=8) COMPLEX*16	doublecomplex
4倍精度複素数型	COMPLEX(KIND=16) COMPLEX*32	long doublecomplex

- (*1) -fdefault-real=8指定時は、double
- (*2) -fdefault-double=16指定時は、long double
- (*3) -fdefault-real=8指定時は、double __complex__

10.3.3 Fortran の文字型

文字列chを宣言する例で示します。

型	Fortranの型	C/C++の型	
文字型	CHARACTER(LEN=n) ch	char ch[n];	

10.3.4 Fortran の派生型

(1) 説明

Fortranプログラムの派生型をCプログラムの構造体と結合するとき、派生型定義と宣言部にBIND属性(BIND(C))を指定します。派生型の成分と構造体のメンバの数は同じでなければならず、対応する成分・メンバの型が同じでなければなりません。

例

Fortranプログラム

```
USE, INTRINSIC :: ISO_C_BINDING
TYPE, BIND(C) :: STR_TYPE
                        ! 結合する派生型定義にBIND属性を指定
  REAL (C_DOUBLE) :: S1, S2
END TYPE STR_TYPE
INTERFACE
  SUBROUTINE FUNC(X) BIND(C)
     USE, INTRINSIC :: ISO_C_BINDING
     TYPE (C_PTR) :: X
  END SUBROUTINE FUNC
END INTERFACE
TYPE(C\_PTR) :: P
TYPE (STR TYPE), TARGET :: F STR
P=C_LOC (F_STR)
                  !派生型変数F_STRのCアドレス取得
CALL FUNC (P)
                                ! C関数の関数呼出しでF_STRのCアドレスPを
渡す
```

```
struct str_type { // Fortranと結合する構造体定義 double s1, s2; } *c_str;
```

(2) 注意事項

- 派生型の成分と構造体のメンバの名前は同じである必要はありません。
- ビットフィールド、または、可変長配列を含んでいるCプログラムの構造体は結合できません。
- 4倍精度実数型、複素数型を含む派生型と構造体は結合できません。

10.3.5 Cのポインタ

CポインタをFortranのデータと結合するとき、派生型C_PTRを使用します。

(1) Fortran プログラムと C プログラムのポインタの結合 FortranプログラムでCプログラムのポインタを使用するとき、派生型C_PTRを使用します。

例

Fortranプログラム

```
USE, INTRINSIC :: ISO_C_BINDING
INTERFACE
SUBROUTINE FUNC(X) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_PTR) :: X
END SUBROUTINE FUNC
END INTERFACE

TYPE(C_PTR) :: P
...
CALL FUNC(P)
! C関数の関数呼出し
...
```

```
int *a;

void func_(int **p) {
```

```
*p = a; // FortranのPの指示先は変数aになる
}
```

(2) Fortran プログラムでの変数の C アドレスの取得

Fortranプログラムの割り付けられた変数のCアドレスを取得するには、組込み手続**C_LO C**を使用します。

例

```
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_INT), TARGET :: N

TYPE(C_PTR) :: N_ADDR

N_ADDR = C_LOC(N) ! 変数NのCアドレスの取得
```

(3) Cポインタの比較

Fortranの組込み手続**C_ASSOCIATED**で二つのCポインタの指示先が同じであるかどうかを比較できます。組込み手続**C_ASSOCIATED**は、第1引数と第2引数が指す実体が同じとき真、そうでないとき偽を返却します。第2引数が省略されたとき、第1引数がNULLなら偽、それ以外なら真を返却します。

例

Fortranプログラム

(4) Cポインタと Fortran のデータポインタの結合

Fortranの組込み手続**C_F_POINTER**でCポインタをFortranのデータポインタに結合できます。組込み手続**C_F_POINTER**は、第1引数の*C_PTR*を第2引数のデータポインタに結合します。

例

Fortranプログラム

```
MODULE MOD
USE, INTRINSIC:: ISO_C_BINDING
...

TYPE(C_PTR), BIND(C):: CP
INTEGER(C_INT), POINTER:: FP
...

MODULE MOD
PROGRAM MAIN
USE MOD
...

CALL FUNC(CP) ! C関数の関数呼出し
CALL C_F_POINTER(CP, FP) ! CポインタCPをデータポインタFPに結合する
...
END
```

Cプログラム

10.3.6 Fortran の共通ブロック

(1) 説明

Fortranプログラムの共通ブロックをCプログラムと結合するとき、共通ブロックに**BIND** 属性(BIND(C))を指定します。**BIND**属性が指定されたFortranプログラムの共通ブロック の成分が1個であるとき、Cプログラムの外部結合をもつ変数と結合できます。また、共通 ブロックの成分が複数個あるとき、Cプログラムの外部結合をもつ構造体と結合できま す。ただし、共通ブロックの成分と構造体のメンバの数は同じでなければならず、対応す る成分・メンバの型が同じでなければなりません。

例

Fortranプログラム

```
USE, INTRINSIC:: ISO_C_BINDING
COMMON /COM1/ F1, F2
COMMON /COM2/ F3
REAL(C_FLOAT):: F1, F2, F3
BIND(C):: /COM1/, /COM2/ ! 結合する共通ブロックにBIND(C)を指定する
...
```

Cプログラム

```
      struct { float f1, f2; } com1;

      // 共通ブロックに複数個の変数が定義されているとき、

      // Cプログラムの構造体と結合できる

      ...

      float com2;
      // 共通ブロックに一つだけ変数が定義されているとき、

      // Cプログラムの変数と結合できる

      ...
```

(2) 注意事項

- 共通ブロックの成分と構造体のメンバの名前は同じである必要はありません。
- ビットフィールド、または、可変長配列を含んでいるCプログラムの構造体は結合できません。
- 4倍精度実数型、複素数型を含む共通ブロックと構造体は結合できません。

10.3.7 注意事項

Fortranの複素数型、倍精度複素数型、4倍精度複素数型を、Cの_Complexキーワードを使用して宣言された複素数型、倍精度複素数型、4倍精度複素数型に対応させることはできません。

10.4 関数・手続の型と返却値

ここではC関数、Fortran手続間の返却値の受渡しについて説明します。C++関数は、C関

数、Fortran手続から呼び出される、または、それらを呼び出すとき、C結合で定義、宣言されるため、C関数と同じとみなせます。

- (1) 整数、論理型、実数型、倍精度実数型、および、4 倍精度実数型の Fortran 手続「10.3 データ型」で示した対応と同じです。
 - **例** 倍精度実数型のFortran手続の呼出し

呼出し側 (C関数)

```
extern double func_();
...
double a;
a = func_(); // Fortran手続の呼出し
...
```

呼び出される側 (Fortran手続)

```
REAL (KIND=8) FUNCTION FUNC()
...
FUNC=10.0
...
END FUNCTION FUNC
```

何 double型のC++関数の呼出し

呼出し側 (Fortran手続)

```
REAL (KIND=8) A
...
A = CFUNC() ! C++関数の呼出し
...
```

呼び出される側 (C++関数)

```
extern "C" {
    double cfunc_();
};
double cfunc_()
{
    double a;
    ...
    return a;
}
```

(2) 複素数型、倍精度複素数型、4倍精度複素数型

C/C++関数とFortran手続間では、複素数型、倍精度複素数型、4倍精度複素数型に相当する関数を参照できません。

(3) 文字型の関数

Fortranの文字型の関数では、返却値を返却するための二つの引数が追加されます。二つの引数は、返却値である文字列の設定される領域のアドレスとその長さ(バイト数)です。

例 文字型のFortran手続の呼出し

呼出し側 (C++関数)

```
extern "C" {
    int chfunc_(char *res_p, long res_l);
};
char a[17];
    // 16バイト+終端1バイト分確保
...
chfunc_(a, 16L);
    // Fortran手続の呼出し
a[16] = '¥0';
...
```

呼び出される側 (Fortran手続)

```
CHARACTER*16 FUNCTION CHFUNC
CHFUNC="THIS IS FORTRAN."
RETURN
END FUNCTION CHFUNC
```

文字列を格納するための領域は、C/C++関数側で確保します。また、Fortranの文字列長は終端のヌル文字を含まないので、C/C++関数側で領域を確保するときは1バイト余計に確保します。

例 文字型の関数としてC関数を呼び出す

呼出し側 (Fortran手続)

```
SUBROUTINE SUB
CHARACTER*20 CFUNC, CH
INTEGER M
...
CH = CFUNC(M) ! C関数の呼出し
...
END SUBROUTINE SUB
```

呼び出される側 (C関数)

```
extern int cfunc_(char *a, long b, int *p);
int cfunc_(char *a, long b, int *p)
{
   strcpy(a, "THIS IS C++.");
}
```

Fortran手続の第1引数は、C/C++関数の第3引数になります。

(4) Fortran 手続のサブルーチン

Fortran手続のサブルーチンは、int型のC関数に相当します。

10.5 関数・手続間の引数の受け渡し

10.5.1 Fortran 手続の引数

Fortran手続の引数は、すべてアドレスで渡されます。このため、C/C++関数で引数を受け取るとき、引数の領域を指すポインタ値で受け取ります。逆に、Fortran手続に引数を渡すとき、引数のアドレスをFortran手続に渡します。

(1) Fortran 手続の VALUE 属性をもたない引数を渡す

引数として渡す変数のアドレスを渡します。定数は、1度変数に代入してから渡します。

例

渡す側 (C++関数)

受け取る側 (Fortran手続)

```
INTEGER FUNCTION FUNC(I, J)
```

```
INTEGER I, J
...
END FUNCTION FUNC
```

(2) Fortran 手続の **VALUE** 属性をもつ引数を渡す

変数の値を渡します。定数は、引数にして渡します。

例

渡す側 (C++関数)

```
extern "C" {
    int func_(int i, int j);
}
void cfunc()
{
    int a, ret;
    ...
    ret = func_(a, 100);  // Fortran手続の呼出し
    ...
}
```

受け取る側 (Fortran手続)

```
INTEGER FUNCTION FUNC(I, J)
INTEGER, VALUE :: I, J ! VALUE属性を指定
...
END FUNCTION FUNC
```

(3) Fortran 手続の **VALUE** 属性をもたない引数を受け取る 引数をポインタで受け取ります。

例

渡す側 (Fortran手続)

```
SUBROUTINE SUB
INTEGER K, I, J
...
CALL C_FUNC(I, J)
...
END SUBROUTINE SUB
```

受け取る側 (C++関数)

```
extern "C" {
    int c_func_(int *a, int *b);
}
int c_func_(int *a, int *b) // 引数をポインタで受け取る
{
    ...
}
```

(4) Fortran 手続の VALUE 属性をもつ引数を受け取る

変数の値を渡します。定数は、引数に指定して渡します。

例

渡す側 (Fortran手続)

```
INTERFACE
INTEGER(C_INT) FUNCTION C_FUNC(A, B)
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_INT), VALUE :: A, B ! VALUE属性を指定
END FUNCTION C_FUNC
END INTERFACE
INTEGER K, I, J
...
K = C_FUNC(I, J)
...
END SUBROUTINE SUB
```

受け取る側 (C++関数)

```
extern "C" {
    int c_func_(int a, int b);
}
int c_func_(int a, int b) // 引数を値で受け取る
{
    ...
}
```

10.5.2 留意事項

10.5.2.1 暗黙に追加される引数

Fortran手続ではソースファイルに記述された引数のほかに、暗黙的に引数が追加されることがあります。次の引数が追加されます。

- 呼び出すFortran手続が文字型の関数のとき、関数の返却値を格納する領域のアドレスと その返却値の長さ(単位:バイト)
- 引数が文字型の要素であるとき、その引数の長さ(単位:バイト)
- 引数が手続名のとき、手続の返却値のサイズ(単位:バイト)。ただし、文字型の関数以外は 0

上記の引数が渡される順番は以下のとおりです。

- (1) 返却値を格納する領域のアドレス(呼び出す手続が文字型のときのみ)
- (2) 返却値のサイズ(呼び出す手続が文字型のときのみ)
- (3) ソースファイルに記述された引数

引数が文字型のときその長さ、手続名のとき返却値のサイズが、引数の最後に追加されます。

10.6 プログラムのリンク

10.6.1 Cプログラムと Fortran プログラムのリンク

CプログラムとFortranプログラムをリンクするとき、Fortranコンパイラ(nfort)でリンクします。

例

\$ nfort -c a.f90	(Fortranプログラムのコンパイル)
\$ ncc -c b.c	(Cプログラムのコンパイル)
\$ nfort a.o b.o	(Fortranコンパイラによるリンク)

10.6.2 C++プログラムと Fortran プログラムのリンク

C++プログラムとFortranプログラムをリンクするとき、Fortranコンパイラ(nfort)でリンクします。リンクするとき、C++コンパイラの実行時ライブラリ(-cxxlib)を指定します。

例

\$ nfort-c a. f90	(Fortranプログラムのコンパイル)
\$ nc++ -c b. cpp	(C++プログラムのコンパイル)
\$ nfort a.o b.o -cxxlib	(Fortranコンパイラによるリンク)

10.7 実行時の注意事項

C/C++プログラムとFortranプログラムをリンクしたとき、C/C++関数でstdin、stdout、stdout otherwise ot

第11章 ライブラリ・リファレンス

本章では、NEC Fortranコンパイラ独自の組込み手続について説明します。

11.1 組込み手続

手続名の末尾の「個別名」は、その手続の個別名を拡張していることを示します。「個別名」が付与されていない場合は、その手続自身が規格から拡張されたものであることを表します。

11.1.1 ABS(A) 個別名

• 機能

絶対値

分類

要素別処理関数

• 引数

A: 整数型、実数型、または、複素数型

結果の型、および、型パラメタ

Aが複素数型のとき、結果の型はAと同じ種別パラメタの実数型とします。それ以外のとき、結果の型はAと同じとします。

結果の値

Aが整数型または実数型のとき、結果の値はAの絶対値|A|とします。Aが複素数(x,y)のとき、結果の値は $(x^2+y^2)^{1/2}$ の値とします。

個別名

個別名	引数の型	結果の型	標準規格
BABS	INTEGER(1)	INTEGER(1)	
IIABS, HABS	INTEGER(2)	INTEGER(2)	
IABS	基本整数型	基本整数型	V
JIABS	INTEGER(4)	INTEGER(4)	
KIABS	INTEGER(8)	INTEGER(8)	
ABS	基本実数型	基本実数型	V

個別名	引数の型	結果の型	標準規格
DABS	DOUBLE	DOUBLE	V
	PRECISION型	PRECISION型	
QABS	REAL(16)	REAL(16)	
CABS	基本複素数型	基本実数型	V
CDABS	DOUBLE COMPLEX 型	DOUBLE PRECISION型	
ZABS	COMPLEX(8)	REAL(8)	
CQABS	COMPLEX(16)	REAL(16)	

11.1.2 ACOS(X) 個別名

• 機能

逆余弦関数

分類

要素別処理関数

• 引数

X: 実数型。 $|X| \le 1$ を満たす値でなければなりません。

• 結果の型、および、型パラメタ

Xと同じ型

結果の値

ラジアンで表した逆余弦arccos(X)の値

• 個別名

個別名	引数の型	結果の型	標準規格
ACOS	基本実数型	基本実数型	V
DACOS	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QACOS, QARCOS	REAL(16)	REAL(16)	

11.1.3 ACOSH(X) 個別名

• 機能

逆双曲線余弦関数

分類

要素別処理関数

引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

逆双曲線余弦arccosh(X)の値

• 個別名

個別名	引数の型	結果の型	標準規格
ACOSH	default real	default real	
DACOSH	DOUBLE PRECISION型	DOUBLE PRECISION型	
QACOSH	REAL(16)	REAL(16)	

11.1.4 AIMAG(Z) 個別名

• 機能

複素数の虚部を返します。

分類

要素別処理関数

• 引数

Z: 複素数型

結果の型、および、型パラメタ

Zと同じ種別パラメタの実数型

結果の値

Zの値が(x,y)のとき、結果の値はyです。

• 個別名

個別名	引数の型	結果の型	標準規格
AIMAG	基本複素数型	基本実数型	
DIMAG	DOUBLE COMPLEX型	DOUBLE PRECISION型	
QIMAG	COMPLEX(16)	REAL(16)	

11.1.5 AINT(A) 個別名

機能

整数値への切捨て

分類

要素別処理関数

• 引数

A: 実数型

結果の型、および、型パラメタ

Aと同じ型

結果の値

|A|<1 のときの値は、0

 $|A| \ge 1$ のときの値は、Aの絶対値以下で最大の整数値にAの符号を付けた値

• 個別名

個別名	引数の型	結果の型	標準規格
AINT	基本実数型	基本実数型	V
DINT	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QINT	REAL(16)	REAL(16)	

11.1.6 AMT(X)

• 機能

仮数部の取出し

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

Xの仮数部の値

個別名

個別名	引数の型	結果の型	標準規格
AMT	基本実数型	基本実数型	
DMT	DOUBLE PRECISION型	DOUBLE PRECISION型	
QMT	REAL(16)	REAL(16)	

11.1.7 AND(I,J)

IANDの別名の関数。詳細は、「11.1.44 IAND(I,J) 個別名11.1.48」を参照してください。

11.1.8 ANINT(A) 個別名

• 機能

最も近い整数値を返します(四捨五入)。

分類

要素別処理関数

• 引数

A: 実数型

結果の型、および、型パラメタ

Aと同じ型

結果の値

A>0 のときの値は、AINT(A+0.5)

A≤0 のときの値は、AINT(A-0.5)

• 個別名

個別名	引数の型	結果の型	標準規格
ANINT	基本実数型	基本実数型	V
DNINT	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QNINT	REAL(16)	REAL(16)	

11.1.9 ASIN(X) 個別名

• 機能

逆正弦関数

分類

要素別処理関数

• 引数

X: 実数型。 $|X| \le 1$ を満たす値でなければなりません。

結果の型、および、型パラメタ

Xと同じ型

結果の値

ラジアンで表した逆正弦arcsin(X)の値

• 個別名

個別名	引数の型	結果の型	標準規格
ASIN	基本実数型	基本実数型	V
DASIN	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QASIN	REAL(16)	REAL(16)	

11.1.10 ASINH(X) 個別名

• 機能

逆双曲線正弦関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

逆双曲線正弦arcsinh(X)の値

個別名

個別名	引数の型	結果の型	標準規格
ASINH	基本実数型	基本時数型	
DASINH	DOUBLE PRECISION型	DOUBLE PRECISION型	
QASINH	REAL(16)	REAL(16)	

11.1.11 ATAN(X) 個別名

• 機能

逆正接関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

ラジアンで表した逆正接arctan(X)の値

個別名	引数の型	結果の型	標準規格
ATAN	基本実数型	基本実数型	V
DATAN	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QATAN	REAL(16)	REAL(16)	

11.1.12 ATAN2(Y,X) 個別名

• 機能

逆正接関数

分類

要素別処理関数

引数

Y: 実数型

X: Yと同じ種別パラメタの実数型。Yが0.0のとき、Xは0.0であってはなりません。

結果の型、および、型パラメタ

Xと同じ型

・ 結果の値

ラジアンで表した複素数(Y,X)の偏角の主値に対する値

• 個別名

個別名	引数の型	結果の型	標準規格
ATAN2	基本実数型	基本実数型	V
DATAN2	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QATAN2	REAL(16)	REAL(16)	

11.1.13 ATANH(X) 個別名

• 機能

逆双曲線正接関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

逆双曲線正接arctanh(X)の値

• 個別名

個別名	引数の型	結果の型	標準規格
ATANH	基本実数型	基本実数型	
DATANH	DOUBLE PRECISION型	DOUBLE PRECISION型	
QATANH	REAL(16)	REAL(16)	

11.1.14 BTEST(I,POS) 個別名

• 機能

整数値のビットを調べます。

分類

要素別処理関数

• 引数

I: 整数型

POS: 整数型。値は、 $BIT_SIZE(I)$ 未満で0以上でなければなりません。

結果の型、および、型パラメタ

基本論理型

結果の値

Iの第POSビットが1であるとき、結果の値は真とします。Iの第POSビットが0であるとき、結果の値は偽とします。

個別名

個別名	引数の型	結果の型	標準規格
BBTEST	INTEGER(1)	INTEGER(1)	
BITEST, HTEST	INTEGER(2)	INTEGER(2)	
BTEST, BJTEST	INTEGER(4)	INTEGER(4)	
BKTEST	INTEGER(8)	INTEGER(8)	

11.1.15 CANG(X)

• 機能

偏角

分類

要素別処理関数

• 引数

X: 複素数型

結果の型、および、型パラメタ

Xと同じ種別パラメタの実数型

結果の値

Xの偏角の値

• 個別名

個別名	引数の型	結果の型	標準規格
CANG	default complex	default real	
CDANG, ZANG	DOUBLE COMPLEX 型	DOUBLE PRECISION型	

11.1.16 CBRT(X)

• 機能

立方根

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

Xの立方根の値

個別名

個別名	引数の型	結果の型	標準規格
CBRT	基本実数型	基本実数型	
DCBRT	DOUBLE PRECISION型	DOUBLE PRECISION型	

個別名	引数の型	結果の型	標準規格
QCBRT	REAL(16)	REAL(16)	

11.1.17 CLOCK(D)

• 機能

CPU時間を求めます。

分類

サブルーチン

• 引数

D: **INTENT(OUT)**属性を持つ倍精度実数型、または、4倍精度実数型のスカラ変数。プログラムの実行が開始されてから、このサブルーチンが引用されるまでのCPU時間の累積実行時間(単位: 秒、精度はマイクロ秒まで)が設定されます。

11.1.18 CONJG(Z) 個別名

• 機能

共役複素数

分類

要素別処理関数

• 引数

Z: 複素数型

結果の型、および、型パラメタ

Zと同じ型

結果の値

Zの値が(x,y)のとき、結果の値は(x,-y)とします。

個別名	引数の型	結果の型	標準規格
CONJG	基本複素数型	基本複素数型	V
DCONJG	DOUBLE COMPLEX型	DOUBLE COMPLEX 型	
QCONJG	COMPLEX(16)	COMPLEX(16)	

11.1.19 COS(X) 個別名

• 機能

余弦関数

分類

要素別処理関数

• 引数

X: 実数型、または、複素数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

余弦 $\cos(X)$ の値。Xが実数型のとき、ラジアンでの値とみなされます。ただし、引数が単精度で値の絶対値が $2^{21} \times \pi$ 以上であるとき、結果の値はNaNです。Xが複素数型のとき、その実部がラジアンでの値とみなされます。ただし、引数が単精度で実部の値の絶対値が $2^{21} \times \pi$ 以上であるとき、結果の値はNaNです。

正しく結果を計算できる引数の範囲は引数の型により異なります。「11.5 注意事項」を参照してください。

• 個別名

個別名	引数の型	結果の型	標準規格
COS	基本実数型	基本実数型	V
DCOS	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QCOS	REAL(16)	REAL(16)	
CCOS	基本複素数型	基本複素数型	V
CDCOS	DOULE COMPLEX型	DOUBLE COMPLEX 型	
ZCOS	COMPLEX(8)	COMPLEX(8)	
cqcos	COMPLEX(16)	COMPLEX(16)	

11.1.20 COSD(X)

• 機能

余弦関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

・ 結果の値

Xを度の値としたときの余弦 $\cos(X)$ の値。ただし、引数が単精度で値の絶対値が $2^{21} \times 18$ 0以上であるとき、結果の値はNaNです。

正しく結果を計算できる引数の範囲は引数の型により異なります。「11.5 注意事項」を参照してください。

• 個別名

個別名	引数の型	結果の型	標準規格
COSD	基本実数型	基本実数型	
DCOSD	DOUBLE PRECISION型	DOUBLE PRECISION型	
QCOSD	REAL(16)	REAL(16)	

11.1.21 COSH(X) 個別名

• 機能

双曲線余弦関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

・ 結果の値

双曲線余弦cosh(X)の値

• 個別名

個別名	引数の型	結果の型	標準規格
COSH	基本実数型	基本実数型	V
DCOSH	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QCOSH	REAL(16)	REAL(16)	

11.1.22 COTAN(X)

• 機能

余接

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

余接 $\mathbf{cotan}(X)$ の値。ただし、引数が単精度で値の絶対値が $2^{21} \times \mathbf{n}$ 以上であるとき、結果の値はNaNです。

正しく結果を計算できる引数の範囲は引数の型により異なります。「11.5 注意事項」を参照してください。

• 個別名

個別名	引数の型	結果の型	標準規格
COTAN	基本実数型	基本実数型	
DCOTAN	DOUBLE PRECISION型	DOUBLE PRECISION型	
QCOTAN	REAL(16)	REAL(16)	

11.1.23 DATE(A)

• 機能

日付を求めます。

分類

サブルーチン

• 引数

A: INTENT(OUT)属性を持つ長さ8文字の基本文字型のスカラ変数。"yy-mm-dd"の形式の日付の値が設定されます。

11.1.24 DATIM(A,B,C)

• 機能

日付と時刻を求めます。

• 分類

サブルーチン

• 引数

A: INTENT(OUT)属性を持つ長さ8文字の基本文字型のスカラ変数。引数Cで指定した形式の日付が設定されます。

B: INTENT(OUT)属性を持つ基本実数型または長さ8文字の基本文字型のスカラ変数。 基本実数型の場合、時間を単位とするそのときの時刻が設定されます。基本文字型の場合、そのときの時刻が"hh:mm:ss"の形式で設定されます。

C(省略可能): INTENT(IN)属性を持つ基本整数型のスカラ値。引数Aへ返す日付の形式を指定します。

- 1 yy-mm-dd(既定值)
- 3 mm/dd/yy
- 4 *dd/mm/yy*

11.1.25 DBLE(A) 個別名

• 機能

倍精度実数型への変換

分類

要素別処理関数

• 引数

A: 実数型

結果の型、および、型パラメタ

倍精度実数型

・ 結果の値

REAL(A,KIND(0.0D0))の値

• 個別名

個別名	引数の型	結果の型	標準規格
DBLE	基本実数型	DOUBLE PRECISION型	V
DBLEQ	REAL(16)	DOUBLE PRECISION型	

11.1.26 DCMPLX(*X*,*Y*)

• 機能

倍精度複素数型への変換

分類

要素別処理関数

• 引数

X: 整数型、実数型または複素数型

Y(省略可能): 整数型または実数型。Xが複素数型のとき、指定できません。

結果の型、および、型パラメタ

倍精度複素数型

結果の値

CMPLX(X,Y,KIND=KIND(0.0D0))の値

11.1.27 DFACT(I)

• 機能

階乗

分類

要素別処理関数

• 引数

I: 基本整数型

結果の型、および、型パラメタ

倍精度実数型

結果の値

Iの階乗の値を倍精度実数型に変換した値

11.1.28 DFLOAT(A)

• 機能

倍精度実数型への変換

分類

要素別処理関数

• 引数

A: 整数型

結果の型、および、型パラメタ

倍精度実数型

・ 結果の値

REAL(A,KIND=KIND(0.0D0))の値

• 個別名

個別名	引数の型	結果の型	標準規格
DFLOTI	INTEGER(2)	DOUBLE PRECISION型	
DFLOTJ	基本整数型	DOUBLE PRECISION型	
DFLOTK	INTEGER(8)	DOUBLE PRECISION型	

11.1.29 DIM(X,Y) 個別名

• 機能

超過分X-Y が正のときはX-Y、正でないときはゼロとします。

分類

要素別処理関数

• 引数

X: 整数型、または、実数型

Y: Aと同じ種別パラメタの整数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

XよりYが小さいとき、X-Y。YがX以上のとき、ゼロとします。

• 個別名

個別名	引数の型	結果の型	標準規格
BDIM	INTEGER(1)	INTEGER(1)	
IIDIM, HDIM	INTEGER(2)	INTEGER(2)	
IDIM	基本整数型	基本整数型	V
JIDIM	INTEGER(4)	INTEGER(4)	
KIDIM	INTEGER(8)	INTEGER(8)	
DIM	基本実数型	基本時数型	V
DDIM	DOUBLE	DOUBLE	V
	PRECISION型	PRECISION型	
QDIM	REAL(16)	REAL(16)	

11.1.30 DREAL(A)

• 機能

倍精度実数型への変換

分類

要素別処理関数

• 引数

A: 複素数型

結果の型、および、型パラメタ

倍精度実数型

結果の値

Aの値が(x,y)のとき、結果の値はxです。

11.1.31 ERF(X) 個別名

• 機能

誤差関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

・ 結果の値

Xの誤差関数の値

• 個別名

個別名	引数の型	結果の型	標準規格
ERF	基本実数型	基本実数型	
DERF	DOUBLE PRECISION型	DOUBLE PRECISION型	
QERF	REAL(16)	REAL(16)	

11.1.32 ERFC(X) 個別名

• 機能

補誤差関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

1.0からXの誤差関数の値を引いた値

個別名	引数の型	結果の型	標準規格
ERFC	基本実数型	基本実数型	

個別名	引数の型	結果の型	標準規格
DERFC	DOUBLE	DOUBLE	
	PRECISION型	PRECISION型	
QERFC	REAL(16)	REAL(16)	

11.1.33 ETIME(D)

• 機能

システム起動時からの経過時間を求めます。

分類

サブルーチン

• 引数

D: INTENT(OUT)属性を持つ倍精度実数型。システム起動時からの経過時間(単位: 秒)が設定されます。

備考

関数として使用するときの詳細は、「11.4.8 ETIME(TARRAY)」を参照してください。

11.1.34 EXIT(X)

• 機能

プログラムの実行を終了します。

分類

サブルーチン

• 引数

X: INTENT(IN)属性を持つ整数型。実行ステータスコードの値を指定します。

11.1.35 EXP(X) 個別名

• 機能

指数関数

• 分類

要素別処理関数

• 引数

X: 実数型、または、複素数型

結果の型、および、型パラメタ

Xと同じ型

・ 結果の値

 $e^{\mathbf{X}}$ の値。Xが複素数型のとき、虚部の値はラジアンを単位とします。ただし、引数が単精度で虚部の値の絶対値が $2^{21} \times \mathbf{n}$ 以上であるとき、結果の値はNaNです。

正しく結果を計算できる引数の範囲は引数の型により異なります。「11.5 注意事項」を参照してください。

• 個別名

個別名	引数の型	結果の型	標準規格
EXP	基本実数型	基本実数型	V
DEXP	DOUBLE	DOUBLE	V
	PRECISION型	PRECISION型	
QEXP	REAL(16)	REAL(16)	
CEXP	基本複素数型	基本複素数型	V
CDEXP	DOUBLE COMPLEX	DOUBLE COMPLEX	
	型	型	
ZEXP	COMPLEX(8)	COMPLEX(8)	
CQEXP	COMPLEX(16)	COMPLEX(16)	

11.1.36 EXP10(X)

• 機能

指数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

10.0^xの値

個別名	引数の型	結果の型	標準規格
EXP10	基本実数型	基本実数型	
DEXP10	DOUBLE PRECISION型	DOUBLE PRECISION型	
QEXP10	REAL(16)	REAL(16)	

11.1.37 EXP2(X)

• 機能

指数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

2.0^xの値

個別名

個別名	引数の型	結果の型	標準規格
EXP2	基本実数型	基本実数型	
DEXP2	DOUBLE PRECISION型	DOUBLE PRECISION型	
QEXP2	REAL(16)	REAL(16)	

11.1.38 EXPC(X)

• 機能

指数

• 分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

e^{X-1.0}の値

• 個別名

個別名	引数の型	結果の型	標準規格
EXPC	基本実数型	基本実数型	
DEXPC	DOUBLE PRECISION型	DOUBLE PRECISION型	

11.1.39 EXPC10(X)

• 機能

指数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

10.0^{X-1.0}の値

個別名	引数の型	結果の型	標準規格
EXPC10	基本実数型	基本実数型	
DXPC10	DOUBLE PRECISION型	DOUBLE PRECISION型	
QXPC10	REAL(16)	REAL(16)	

11.1.40 EXPC2(X)

• 機能

指数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

2.0^{X-1.0}の値

• 個別名

個別名	引数の型	結果の型	標準規格
EXPC2	基本実数型	基本実数型	
DEXPC2	DOUBLE PRECISION型	DOUBLE PRECISION型	
QEXPC2	REAL(16)	REAL(16)	

11.1.41 FACT(I)

• 機能

階乗

分類

要素別処理関数

• 引数

I: 基本整数型

結果の型、および、型パラメタ

基本実数型

結果の値

Iの階乗の値を基本実数型に変換した値

11.1.42 FLUSH(*UNIT*)

• 機能

バッファの内容をファイルに出力します。

分類

サブルーチン

• 引数

UNIT: INTENT(IN)属性を持つ整数型。バッファを出力する外部ファイル装置を指定します。

11.1.43 GAMMA(X) 個別名

• 機能

ガンマ関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

Xのガンマ関数の値

• 個別名

個別名	引数の型	結果の型	標準規格
GAMMA	基本実数型	基本実数型	V
DGAMMA	DOUBLE PRECISION型	DOUBLE PRECISION型	

11.1.44 IAND(*I,J*) 個別名

• 機能

ビットごとの論理積

分類

要素別処理関数

• 引数

I: 整数型

J: Iと同じ種別パラメタの整数型

結果の型、および、型パラメタ

Iと同じ型

結果の値

結果の値は、*IとJ*をビットごとに組み合わせ、次の真理値表にしたがって得られる値とします。

I	J	IAND(I,J)
1	1	1
1	0	0
0	1	0
0	0	0

備考

引数の数は3以上でもかまいません。そのとき、引数は、Iと同じ種別パラメタの整数型でなければなりません。また、3以上の引数を指定するとき、キーワード指定はできません。

• 個別名

個別名	引数の型	結果の型	標準規格
BIAND	INTEGER(1)	INTEGER(1)	
IIAND, HIAND	INTEGER(2)	INTEGER(2)	
JIAND	INTEGER(4)	INTEGER(4)	
KIAND	INTEGER(8)	INTEGER(8)	

11.1.45 IBCLR(I,POS) 個別名

• 機能

一つのビットを0に設定します。

• 分類

要素別処理関数

• 引数

I: 整数型

POS: 整数型。値は、 $BIT_SIZE(I)$ 未満で0以上でなければなりません。

結果の型、および、型パラメタ

Iと同じ型

結果の値

結果の値は、Iの第POSビットをOに設定した値とします。

• 個別名

個別名	引数の型	結果の型	標準規格
BBCLR	INTEGER(1)	INTEGER(1)	
IIBCLR, HBCLR	INTEGER(2)	INTEGER(2)	
JIBCLR	INTEGER(4)	INTEGER(4)	
KIBCLR	INTEGER(8)	INTEGER(8)	

11.1.46 IBITS(I,POS,LEN) 個別名

機能

ビットの並びを取り出します。

分類

要素別処理関数

• 引数

I: 整数型

POS: 整数型。値は、POS+LENがBIT_SIZE(I)以下で0以上でなければなりません。

LEN: 整数型。値は、O以上でなければなりません。

結果の型、および、型パラメタ

Iと同じ型

・ 結果の値

結果の値は、Iの第POSビットから始まるLEN個のビットを右詰めし、残りのビットを0にした値とします。

個別名	引数の型	結果の型	標準規格
BBITS	INTEGER(1)	INTEGER(1)	
IIBITS, HBITS	INTEGER(2)	INTEGER(2)	
JIBITS	INTEGER(4)	INTEGER(4)	
KIBITS	INTEGER(8)	INTEGER(8)	

11.1.47 IBSET(I,POS) 個別名

• 機能

一つのビットを1に設定します。

• 分類

要素別処理関数

• 引数

I: 整数型

POS: 整数型。値は、 $BIT_SIZE(I)$ 未満で0以上でなければなりません。

結果の型、および、型パラメタ

Iと同じ型

結果の値

結果の値は、Iの第POSビットを1に設定した値とします。

個別名

個別名	引数の型	結果の型	標準規格
BBSET	INTEGER(1)	INTEGER(1)	
IIBSET, HBSET	INTEGER(2)	INTEGER(2)	
JIBSET	INTEGER(4)	INTEGER(4)	
KIBSET	INTEGER(8)	INTEGER(8)	

11.1.48 IEOR(*I,J*) 個別名

• 機能

ビットごとの排他的論理和

分類

要素別処理関数

• 引数

I: 整数型

J: Iと同じ種別パラメタの整数型

結果の型、および、型パラメタ

Iと同じ型

結果の値

結果の値は、*IとJ*をビットごとに組み合わせ、次の真理値表にしたがって得られる値とします。

I	J	IEOR(I,J)
1	1	0
1	0	1
0	1	1
0	0	0

備考

引数の数は3以上でもかまいません。そのとき、引数は、Iと同じ種別パラメタの整数型でなければなりません。また、3以上の引数を指定するとき、キーワード指定はできません。

• 個別名

個別名	引数の型	結果の型	標準規格
BIEOR, BIXOR	INTEGER(1)	INTEGER(1)	
IIEOR, HIEOR, HIXOR, IIXOR	INTEGER(2)	INTEGER(2)	
JIEOR, JIXOR	INTEGER(4)	INTEGER(4)	
KIEOR	INTEGER(8)	INTEGER(8)	

11.1.49 IMAG(A)

AIMAGの別名の関数。詳細は、「11.1.4 AIMAG(Z) 個別名」を参照してください。

11.1.50 INT(A[,KIND]) 個別名

• 機能

最も近い整数を返します(切り捨て)

分類

要素別処理関数

• 引数

A: 整数型、実数型、または、複素数型 *KIND*(省略可能): 整数型。パラメタ種別の値。

結果の型、および、型パラメタ

整数型。KINDを指定したとき、種別パラメタはKINDの指定に従います。KINDを省略したとき、種別パラメタは基本整数型に対する種別パラメタとします。

結果の値

Aが整数型のとき、INT(A)の値はAとします。Aが実数型のとき、|A|<1のとき、INT(A) は0とします。|A| ≥ 1 のとき、INT(A)の値は、Aの絶対値以下で最大の整数にAの符号を付けたものとします。Aが複素数型のとき、INT(A)の値はAの実部に実数型のときと同じ規則を適用して得られる値とします。

 個別名	引数の型	結果の型	標準規格
INT1	INTEGER(*), REAL(*), COMPLEX(*)	INTEGER(1)	
IJINT	INTEGER(4)	INTEGER(2)	
INT2	INTEGER(*), REAL(*), COMPLEX(*)	INTEGER(2)	
IIFIX, IINT, IINT, HFIX	REAL(4)	INTEGER(2)	
IIDINT	REAL(8)	INTEGER(2)	
IIQINT	REAL(16)	INTEGER(2)	
INT4, JFIX	INTEGER(*), REAL(*), COMPLEX(*)	基本整数型	
JIFIX	REAL(*)	基本整数型	

個別名	引数の型	結果の型	標準規格
INT, JINT	基本実数型	基本整数型	∨(INTのみ)
IDINT, JIDINT	DOUBLE PRECISION型	基本整数型	∨(IDINTのみ)
IQINT, JIQINT	REAL(16)	基本整数型	
INT8	INTEGER(*), REAL(*), COMPLEX(*)	INTEGER(8)	
KIFIX, KINT	REAL(4)	INTEGER(8)	
KIDINT	REAL(8)	INTEGER(8)	
KIQINT	REAL(16)	INTEGER(8)	

11.1.51 IOR(*I,J*) 個別名

• 機能

ビットごとの論理和

分類

要素別処理関数

• 引数

I: 整数型

J: Iと同じ種別パラメタの整数型

結果の型、および、型パラメタ

Iと同じ型

結果の値

結果の値は、*IとJ*をビットごとに組み合わせ、次の真理値表にしたがって得られる値とします。

J	IOR(I,J)
1	1
0	1
1	1
0	0
	1 0 1

備考

引数の数は3以上でもかまいません。そのとき、引数は、Iと同じ種別パラメタの整数型でなければなりません。また、3以上の引数を指定するとき、キーワード指定はできません。

個別名

個別名	引数の型	結果の型	標準規格
BIOR	INTEGER(1)	INTEGER(1)	
IIOR, HIOR	INTEGER(2)	INTEGER(2)	
JIOR	INTEGER(4)	INTEGER(4)	
KIOR	INTEGER(8)	INTEGER(8)	

11.1.52 IRE(X)

• 機能

指数部の取出し

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

基本整数型

・ 結果の値

Xの指数部の値

個別名	引数の型	結果の型	標準規格
IRE	基本実数型	基本整数型	
IDE	DOUBLE	基本整数型	
	PRECISION型		
IQE	REAL(16)	基本整数型	

11.1.53 ISHFT(I,SHIFT) 個別名

• 機能

論理けた移動

分類

要素別処理関数

• 引数

I: 整数型

SHIFT:整数型。絶対値がBIT_SIZE(I)以下でなければなりません。

結果の型、および、型パラメタ

Iと同じ型

結果の値

結果の値は、ビットをSHIFT個だけけた(桁)移動して得られる値とします。

• 個別名

個別名	引数の型	結果の型	標準規格
BSHFT	INTEGER(1)	INTEGER(1)	
IISHFT, HSHFT	INTEGER(2)	INTEGER(2)	
JISHFT	INTEGER(4)	INTEGER(4)	
KISHFT	INTEGER(8)	INTEGER(8)	

11.1.54 ISHFTC(I,SHIFT[,SIZE]) 個別名

• 機能

右端のビット並びの循環けた移動を行います。

分類

要素別処理関数

• 引数

I: 整数型

SHIFT:整数型。絶対値がBIT_SIZE(I)以下でなければなりません。

SIZE(省略可能): 整数型。値は、 $BIT_SIZE(I)$ 以下で0以上でなければなりません。SIZE を省略したとき、 $BIT_SIZE(I)$ の値を指定したものとします。

結果の型、および、型パラメタ

Iと同じ型

結果の値

結果の値は、Iの右端のSIZE個のビットをSHIFT個だけ循環けた(桁)移動して得られる値とします。

• 個別名

個別名	引数の型	結果の型	標準規格
BSHFTC	INTEGER(1)	INTEGER(1)	
IISHFTC, HSHFTC	INTEGER(2)	INTEGER(2)	
JISHFTC	INTEGER(4)	INTEGER(4)	
KISHFTC	INTEGER(8)	INTEGER(8)	

11.1.55 ISNAN(X)

• 機能

NaNかどうか検査します。

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

基本論理型

結果の値

XがNaNであるとき、結果の値は真とします。XがNaN以外のとき、結果の値は偽とします。

11.1.56 IXOR(I_1J)

IEORの別名の関数。詳細は、「11.1.48 IEOR(I,J) 個別名」を参照してください。

11.1.57 LGAMMA(X)

• 機能

対数ガンマ関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

Xの対数ガンマ関数の値

• 個別名

個別名	引数の型	結果の型	標準規格
ALGAMA	基本実数型	基本実数型	
DLGAMA	DOUBLE PRECISION型	DOUBLE PRECISION型	

11.1.58 LOC(X)

• 機能

アドレス取出し。

分類

変形関数

• 引数

X: 任意の型の変数、関数名

結果の型、および、型パラメタ

8バイト整数型

結果の値

Xのアドレスの値

11.1.59 LOG(X) 個別名

• 機能

自然対数

分類

要素別処理関数

• 引数

X: 実数型、または、複素数型。Xが実数型のとき、値は正でなければなりません。Xが複

素数型のとき、値は(0.0,0.0)であってはなりません。

結果の型、および、型パラメタ

Xと同じ型

結果の値

対数 $\log_e(X)$ の値。複素数型のとき、 $-\pi<\omega \le \pi$ の範囲にある虚部 ω をもつ主値とします。結果の虚部は、引数の実部が負であって虚部が0.0のときに限り、 π とします。

個別名

個別名	引数の型	結果の型	標準規格
ALOG	基本実数型	基本実数型	V
DLOG	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QLOG	REAL(16)	REAL(16)	
CLOG	基本複素数型	基本複素数型	V
CDLOG	DOUBLE COMPLEX 型	DOUBLE COMPLEX 型	
ZLOG	COMPLEX(8)	COMPLEX(8)	
CQLOG	COMPLEX(16)	COMPLEX(16)	

11.1.60 LOG10(X) 個別名

• 機能

常用対数

分類

要素別処理関数

• 引数

X: 実数型

結果の型および型パラメタ

Xと同じ型

結果の値

対数log₁₀(X)の値

個別名	引数の型	結果の型	標準規格
ALOG10	基本実数型	基本実数型	V
DLOG10	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QLOG10	REAL(16)	REAL(16)	

11.1.61 LOG2(X)

• 機能

対数

分類

要素別処理関数

引数

X: 実数型

• 結果の型および型パラメタ

Xと同じ型

結果の値

対数log₂(X)の値

• 個別名

個別名	引数の型	結果の型	標準規格
ALOG2	基本実数型	基本実数型	
DLOG2	DOUBLE PRECISION型	DOUBLE PRECISION型	

11.1.62 MAX(A1,A2[,A3,...]) 個別名

• 機能

最大値

分類

要素別処理関数

• 引数

An: 全て同じ整数型、または、実数型で同じ種別パラメタ

結果の型、および、型パラメタ

Anと同じ型

結果の値

Anの最大の値

• 個別名

個別名	引数の型	結果の型	標準規格
IMAX0	INTEGER(2)	INTEGER(2)	
AIMAX0	INTEGER(2)	基本実数型	
MAX0, JMAX0	基本整数型	基本整数型	∨(MAX0のみ)
AMAXO, AJMAXO	基本整数型	基本実数型	∨(AMAX0のみ)
DMAX0	基本整数型	DOUBLE PRECISION型	
KMAX0	INTEGER(8)	INTEGER(8)	
AKMAX0	INTEGER(8)	基本実数型	
IMAX1	基本実数型	INTEGER(2)	
MAX1, JMAX1	基本実数型	基本整数型	∨(MAX1のみ)
KMAX1	基本実数型	INTEGER(8)	
AMAX1	基本実数型	基本実数型	V
DMAX1	DOUBLE PRECISION型	DOUBLE PRECISION型	V

11.1.63 MAXVL()

• 機能

最大ベクトルレジスタ長を求めます。

分類

問い合わせ関数

• 結果の型、および、型パラメタ

基本整数型

結果の値

システムの最大ベクトルレジスタ長

11.1.64 MIN(A1,A2[,A3,...]) 個別名

• 機能

最小值

分類

要素別処理関数

• 引数

An:全て同じ整数型、または、実数型で同じ種別パラメタ

結果の型、および、型パラメタ

Anと同じ型

結果の値

Anの最小の値

個別名	引数の型	結果の型	標準規格
IMIN0	INTEGER(2)	INTEGER(2)	
AIMIN0	INTEGER(2)	基本実数型	
MINO, JMINO	基本整数型	基本整数型	ィ(MIN0のみ)
AMINO, AJMINO	基本整数型	基本実数型	∨(AMIN0のみ)
DMIN0	基本整数型	DOUBLE PRECISION型	
KMIN0	INTEGER(8)	INTEGER(8)	
AKMIN0	INTEGER(8)	基本実数型	
IMIN1	基本実数型	INTEGER(2)	
MIN1, JMIN1	基本実数型	基本整数型	ィ(MIN1のみ)
KMIN1	基本実数型	INTEGER(8)	
AMIN1	基本実数型	基本実数型	V
DMIN1	DOUBLE PRECISION型	DOUBLE PRECISION型	V

11.1.65 MOD(A,P) 個別名

• 機能

余り関数

分類

要素別処理関数

• 引数

A: 整数型、または、実数型

P: Aと同じ種別パラメタの整数型

結果の型、および、型パラメタ

Aと同じ型

結果の値

Pが0以外のとき、結果の値はA-INT(A/P)*Pとします。Pが0のとき、結果は不定となります。

• 個別名

個別名	引数の型	結果の型	標準規格
BMOD	INTEGER(1)	INTEGER(1)	
IMOD, HMOD	INTEGER(2)	INTEGER(2)	
MOD	基本整数型	基本整数型	V
JMOD	INTEGER(4)	INTEGER(4)	
KMOD	INTEGER(8)	INTEGER(8)	
AMOD	基本実数型	基本実数型	V
DMOD	DOBULE PRECISION型	DOBULE PRECISION型	V
QMOD	REAL(16)	REAL(16)	

11.1.66 MVBITS(FROM,FROMPOS,LEN,TO,TOPOS) 個別名

• 機能

システム起動時からの経過時間を求めます。

分類

サブルーチン

• 引数

FROM: INTENT(IN)属性を持つ整数型。

FORMPOS: **INTENT(IN)**属性を持つ整数型。値は、FROMPOS+LENが**BIT_SIZE**(FR OM)以下で0以上でなければなりません。

LEN: INTENT(IN)属性を持つ整数型。値は、0以上でなければなりません。

TO: **INTENT(OUT)**属性を持つTOと同じ型の整数型。FROMの位置FROMPOSから始まる長さLENのビット列をTOの位置TOPOSに複写します。TOの他のどのビットも変更されません。戻るとき、TOPOSから始まるTOのLENビットは、呼出し時にFROMPOSから始まるFROMのLENビットが持っていた値に等しくなります。

TOPOS: **INTENT(IN)**属性を持つ整数型。値は、*TOPOS+LEN*が**BIT_SIZE**(*TO*)以下で 0以上でなければなりません。

• 個別名

個別名	引数の型	結果の型	標準規格
BMVBITS	INTEGER(1)	-	
IMVBITS, HMVBITS	INTEGER(2)	-	
JMVBITS	INTEGER(4)	-	
KMVBITS	INTEGER(8)	-	

11.1.67 NINT(A[,KIND]) 個別名

• 機能

最も近い整数を返します(四捨五入)

分類

要素別処理関数

• 引数

A: 実数型

KIND(省略可能):整数型。パラメタ種別の値。

結果の型、および、型パラメタ

整数型。KINDを指定したとき、種別パラメタはKINDの指定に従います。KINDを省略したとき、種別パラメタは基本整数型に対する種別パラメタとします。

結果の値

A>0のとき、NINT(A)の値はINT(A+0.5)とします。A≦0のとき、NINT(A)の値はINT(A -0.5)とします。

• 個別名

個別名	引数の型	結果の型	標準規格
ININT	REAL(4)	INTEGER(2)	
NINT	基本実数型	基本整数型	V
JNINT	REAL(4)	INTEGER(4)	
KNINT	REAL(4)	INTEGER(8)	
IIDNNT	REAL(8)	INTEGER(2)	
IDNINT	DOLUBLE	基本整数型	~
	PRECISION型		
JIDNNT	REAL(8)	INTEGER(4)	
KIDNNT	REAL(8)	INTEGER(8)	
IIQNNT	REAL(16)	INTEGER(2)	
IQNINT	REAL(16)	基本整数型	
JIQNNT	REAL(16)	INTEGER(4)	
KIQNNT	REAL(16)	INTEGER(8)	

11.1.68 NOT(I) 個別名

• 機能

ビットの論理否定

分類

要素別処理関数

• 引数

I: 整数型

結果の型、および、型パラメタ

Iと同じ型

結果の値

結果の値は、次の真理値表にしたがって得られる値とします。

I	NOT(I)
0	1
1	0

• 個別名

個別名	引数の型	結果の型	標準規格
BNOT	INTEGER(1)	INTEGER(1)	
INOT, HNOT	INTEGER(2)	INTEGER(2)	
JNOT	INTEGER(4)	INTEGER(4)	
KNOT	INTEGER(8)	INTEGER(8)	

11.1.69 OR(*I,J*)

IORの別名の関数。詳細は、「11.1.51 IOR(I,J) 個別名」を参照してください。

11.1.70 QCMPLX(*X*,*Y*)

• 機能

4倍精度複素数型に変換

分類

要素別処理関数

• 引数

X: 整数型、実数型、または複素数型

Y(省略可能): 整数型または実数型。Xが複素数型のとき、指定できません。

結果の型、および、型パラメタ

4倍精度実数型

・ 結果の値

CMPLX(X,Y,KIND=KIND(0.0Q0))の値

11.1.71 QEXT(X)

• 機能

4倍精度実数型に変換

分類

要素別処理関数

• 引数

X: 整数型、実数型、または複素数型

結果の型、および、型パラメタ

4倍精度実数型

結果の値

REAL(X,KIND=KIND(0.0Q0))の値

個別名

個別名	引数の型	結果の型	標準規格
QEXT	基本実数型	REAL(16)	
QEXTD	REAL(8)	REAL(16)	

11.1.72 QFACT(I)

• 機能

階乗

分類

要素別処理関数

• 引数

I: 基本整数型

結果の型、および、型パラメタ

4倍精度実数型

結果の値

Iの階乗の値を4倍精度実数型に変換した値

11.1.73 QFLOAT(A)

• 機能

4倍精度実数型への変換

分類

要素別処理関数

• 引数

A: 整数型

結果の型、および、型パラメタ

4倍精度実数型

・ 結果の値

REAL(A,KIND=KIND(0.0Q0))の値

11.1.74 QREAL(A)

• 機能

4倍精度実数型への変換

分類

要素別処理関数

• 引数

A: 4倍精度複素数型

結果の型、および、型パラメタ

Aと同じ種別パラメタの実数型

結果の値

Aの値が(x,y)のとき、結果の値はxです。

11.1.75 REAL(A[,KIND]) 個別名

機能

実数型への変換

分類

要素別処理関数

• 引数

A: 整数型、実数型、または、複素数型

KIND(省略可能):整数型。パラメタ種別の値。

結果の型、および、型パラメタ

実数型。Aが整数型または実数型のとき、KINDを指定したとき、種別パラメタはKINDの指定に従います。KINDを省略したとき、種別パラメタは基本実数型に対する種別パラメタとします。Aが複素数型のとき、KINDを指定したとき、種別パラメタはKINDの指定に従います。KINDを省略したとき、種別パラメタはAの種別パラメタとします。

・ 結果の値

Aが整数型または実数型のとき、結果の値はAの値です。Aが複素数型のとき、結果の値はAの実部の値です。

• 個別名

個別名	引数の型	結果の型	標準規格
FLOATI	INTEGER(2)	基本実数型	
REAL, FLOAT	基本整数型	基本実数型	V
FLOATJ	INTEGER(4)	REAL(4)	
FLOATK	INTEGER(8)	基本実数型	
SNGL	DOUBLE	基本実数型	V
	PRECISION型		
SNGLQ	REAL(16)	基本実数型	

11.1.76 RSQRT(X)

• 機能

逆数平方根

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

Xの平方根の逆数の値の近似値

• 個別名

個別名	引数の型	結果の型	標準規格
RSQRT	基本整数型	基本整数型	
DRSQRT	DOBULE PRECISION型	DOBULE PRECISION型	
QRSQRT	REAL(16)	REAL(16)	

11.1.77 SIGN(A,B) 個別名

• 機能

Aの絶対値とBの符号の積

分類

要素別処理関数

• 引数

A: 整数型、または、実数型

B: Aと同じ種別パラメタ、および、同じ型

結果の型、および、型パラメタ

Aと同じ型

結果の値

結果の値は、B≥0のときABS(A)とし、B<0のとき-ABS(A)とします。

• 個別名

個別名	引数の型	結果の型	標準規格
BSIGN	INTEGER(1)	INTEGER(1)	
IISIGN, HSIGN	INTEGER(2)	INTEGER(2)	
SIGN, ISIGN	基本整数型	基本整数型	V
JISIGN	INTEGER(4)	INTEGER(4)	
KISIGN	INTEGER(8)	INTEGER(8)	
SIGN	基本実数型	基本実数型	V
DSIGN	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QSIGN	REAL(16)	REAL(16)	

11.1.78 SIN(X) 個別名

• 機能

正弦関数

分類

要素別処理関数

• 引数

X: 実数型、または、複素数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

正弦 $\sin(X)$ の値。Xが実数型のとき、ラジアンでの値とみなされます。ただし、引数が単精度で値の絶対値が $2^{21} \times \pi$ 以上であるとき、結果の値はNaNです。Xが複素数型のとき、その実部がラジアンでの値とみなされます。ただし、引数が単精度で実部の値の絶対値が $2^{21} \times \pi$ 以上であるとき、結果の値はNaNです。

正しく結果を計算できる引数の範囲は引数の型により異なります。「11.5 注意事項」を参照してください。

• 個別名

個別名	引数の型	結果の型	標準規格
SIN	基本実数型	基本実数型	V
DSIN	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QSIN	REAL(16)	REAL(16)	
CSIN	基本複素数型	基本複素数型	V
CDSIN	DOUBLE COMPLEX 型	DOUBLE COMPLEX 型	
ZSIN	COMPLEX(8)	COMPLEX(8)	
CQSIN	COMPLEX(16)	COMPLEX(16)	

11.1.79 SIND(X)

• 機能

正弦関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

・ 結果の値

Xを度の値としたときの $\sin(X)$ の値です。ただし、引数が単精度で値の絶対値が $2^{21} \times 18$ 0以上であるとき、結果の値はNaNです。

正しく結果を計算できる引数の範囲は引数の型により異なります。「11.5 注意事項」を参照してください。

• 個別名

個別名	引数の型	結果の型	標準規格
SIND	基本実数型	基本実数型	
DSIND	REAL(8)	REAL(8)	
QSIND	REAL(16)	REAL(16)	

11.1.80 SINH(X) 個別名

• 機能

双曲線正弦関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

双曲線正弦sinh(X)の値

• 個別名

個別名	引数の型	結果の型	標準規格
SINH	基本実数型	基本実数型	V
DSINH	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QSINH	REAL(16)	REAL(16)	

11.1.81 SQRT(X) 個別名

• 機能

平方根

分類

要素別処理関数

• 引数

X: 実数型、または、複素数型。Xが実数型のとき、値は0.0以上でなければなりません。

結果の型、および、型パラメタ

Xと同じ型

結果の値

Xの平方根の値。複素数型の結果は、実部が0.0以上である主値とします。結果の実部が0.0のとき、虚部は0.0以上とします。

• 個別名

個別名	引数の型	結果の型	標準規格
SQRT	基本実数型	基本実数型	V
DSQRT	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QSQRT	REAL(16)	REAL(16)	
CSQRT	基本複素数型	基本複素数型	V
CDSQRT	COMPLEX DOUBLE型	COMPLEX DOUBLE型	
ZSQRT	COMPLEX(8)	COMPLEX(8)	
CQSQRT	COMPLEX(16)	COMPLEX(16)	

11.1.82 TAN(X) 個別名

• 機能

正接関数

分類

要素別処理関数

• 引数

X: 実数型、または、複素数型

結果の型、および、型パラメタ

Xと同じ型

・ 結果の値

ラジアンで表した正接an(X)の値。ただし、引数が単精度で値の絶対値が $2^{21} imes extbf{n}$ 以上であるとき、結果の値はNaNです。

正しく結果を計算できる引数の範囲は引数の型により異なります。「11.5 注意事項」を参照してください。

個別名

個別名	引数の型	結果の型	標準規格
TAN	基本実数型	基本実数型	V
DTAN	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QTAN	REAL(16)	REAL(16)	
CTAN	COMPLEX(4)	COMPLEX(4)	
CDTAN, ZTAN	COMPLEX(8)	COMPLEX(8)	
CQTAN	COMPLEX(16)	COMPLEX(16)	

11.1.83 TANH(X) 個別名

• 機能

双曲線正接関数

分類

要素別処理関数

• 引数

X: 実数型

結果の型、および、型パラメタ

Xと同じ型

結果の値

双曲線正接tanh(X)の値

個別名

個別名	引数の型	結果の型	標準規格
TANH	基本実数型	基本実数型	V
DTANH	DOUBLE PRECISION型	DOUBLE PRECISION型	V
QTANH	REAL(16)	REAL(16)	

11.1.84 TIME(A)

• 機能

時刻を求めます。

分類

サブルーチン

• 引数

A: INTENT(OUT)属性を持つ長さ8文字の基本文字型のスカラ変数。"hh:mm:ss"の形式の時刻の値が設定されます。

11.1.85 XOR(*I,J*)

IEORの別名の関数。詳細は、「11.1.48 11.1.48IEOR(I,J) 個別名」を参照してください。

11.2 行列積ライブラリ

行列積ライブラリにより、行列と行列または行列とベクトルの積を計算に利用できます。

11.2.1 行列とベクトルの積(A, NAR, B, NBR, C)

• 機能

行列とベクトルの積を求めます。

分類

サブルーチン

• 引数

A: INTENT(IN)属性を持つ整数型または実数型の2次元配列

NAR: INTENT(IN)属性を持つ整数型

B: INTENT(IN)属性を持つAと同じ種別パラメタの整数型または実数型の配列

NBR: INTENT(IN)属性を持つ整数型

C: INTENT(INOUT)属性を持つAと同じ種別パラメタの整数型または実数型の配

列。配列A,Bの積の結果との和または差が格納されます。一部手続は、0で初期化してから 演算します。

詳細

手続名と引数種別の組み合わせは以下のとおりです。

手続名 結果(和)	手続名 結果(差)	配列の引数種別 (<i>A,B,C</i>)	引数種別 (<i>NAR,NBR</i>)	配列Cの 初期化
VHMXV	VHSXV	REAL(KIND= 2)	INTEGER(KIND=4)	·········· 有
VAMXV	VASXV	REAL(KIND= 4)	INTEGER(KIND=4)	有
VDMXV	VDSXV	REAL(KIND= 8)	INTEGER(KIND=4)	有
VQMXV	VQSXV	REAL(KIND=16)	INTEGER(KIND=4)	有
VIMXV	VISXV	INTEGER(KIND=4)	INTEGER(KIND=4)	有
VDMXVL	VDSXVL	REAL(KIND= 8)	INTEGER(KIND=8)	有
VQMXVL	VQSXVL	REAL(KIND=16)	INTEGER(KIND=8)	有
VLMXVL	VLSXVL	INTEGER(KIND=8)	INTEGER(KIND=8)	有
VHMXP	VHSXP	REAL(KIND=2)	INTEGER(KIND=4)	無
VAMXP	VASXP	REAL(KIND= 4)	INTEGER(KIND=4)	無
VDMXP	VDSXP	REAL(KIND= 8)	INTEGER(KIND=4)	無
VQMXP	VQSXP	REAL(KIND=16)	INTEGER(KIND=4)	無
VIMXP	VISXP	INTEGER(KIND=4)	INTEGER(KIND=4)	無
VDMXPL	VDSXPL	REAL(KIND= 8)	INTEGER(KIND=8)	無
VQMXPL	VQSXPL	REAL(KIND=16)	INTEGER(KIND=8)	無
VLMXPL	VLSXPL	INTEGER(KIND=8)	INTEGER(KIND=8)	無

配列 Cの初期化を含む手続は、以下動作後に結果(和)/結果(差)を実施します。

DO I=1, NAR C(I)=0ENDDO

結果(和)の手続の動作は以下です。

```
DO J=1, NBR
DO I=1, NAR
C(I) = C(I) + B(J) * A(I, J)
ENDDO
ENDDO
```

結果(差)の手続の動作は以下です。

```
DO J=1, NBR
DO I=1, NAR
C(I) = C(I) - B(J) * A(I, J)
ENDDO
ENDDO
```

11.2.2 行列とベクトルの積(A, NA, IAD, B, NB, C, NC, NAR, NBR)

• 機能

行列とベクトルの積を求めます。

• 分類

サブルーチン

• 引数

A: INTENT(IN)属性を持つ整数型または実数型の2次元配列

NA: INTENT(IN)属性を持つ整数型。1次元目のストライド。

IAD: INTENT(IN)属性を持つ整数型。2次元目のストライド。

B: INTENT(IN)属性を持つAと同じ種別パラメタの整数型または実数型の配列

NB: INTENT(IN)属性を持つ整数型。1次元目のストライド。

C: INTENT(INOUT)属性を持つAと同じ種別パラメタの整数型または実数型の配列。配列A,Bの積の結果との和または差が格納されます。一部手続は、0で初期化してから演算します。

NC: INTENT(IN)属性を持つ整数型。1次元目のストライド。

NAR: INTENT(IN)属性を持つ整数型

NBR: INTENT(IN)属性を持つ整数型

詳細

手続名と引数種別の組み合わせは以下のとおりです。

手続名	手続名	配列の引数種別	引数種別	配列Cの
結果(和)	結果(差)	(A,B,C)	(NA,NB,NC,NAR,N	初期化
			BR,IAD)	
VHMXVA	VHSXVA	REAL(KIND= 2)	INTEGER(KIND=4)	有
VAMXVA	VASXVA	REAL(KIND= 4)	INTEGER(KIND=4)	有
VDMXVA	VDSXVA	REAL(KIND= 8)	INTEGER(KIND=4)	有
VQMXVA	VQSXVA	REAL(KIND=16)	INTEGER(KIND=4)	有
VIMXVA	VISXVA	INTEGER(KIND=4)	INTEGER(KIND=4)	有
VDMVAL	VDSVAL	REAL(KIND= 8)	INTEGER(KIND=8)	有
VQMVAL	VQSVAL	REAL(KIND=16)	INTEGER(KIND=8)	有
VLMVAL	VLSVAL	INTEGER(KIND=8)	INTEGER(KIND=8)	有
VHMXPA	VHSXPA	REAL(KIND=2)	INTEGER(KIND=4)	無
VAMXPA	VASXPA	REAL(KIND= 4)	INTEGER(KIND=4)	無
VDMXPA	VDSXPA	REAL(KIND= 8)	INTEGER(KIND=4)	無
VQMXPA	VQSXPA	REAL(KIND=16)	INTEGER(KIND=4)	無
VIMXPA	VISXPA	INTEGER(KIND=4)	INTEGER(KIND=4)	無
VDMPAL	VDSPAL	REAL(KIND= 8)	INTEGER(KIND=8)	無
VQMPAL	VQSPAL	REAL(KIND=16)	INTEGER(KIND=8)	無
VLMPAL	VLSPAL	INTEGER(KIND=8)	INTEGER(KIND=8)	無

配列 C の初期化を含む手続は、以下動作後に結果(和)/結果(差)を実施します。

```
DO I=1, NAR
C (NC*I) =0
ENDDO
```

結果(和)の手続の動作は以下です。

```
D0 J=1, NBR

D0 I=1, NAR

C(NC*I) = C(NC*I) + B(NB*J) * A(NA*I, J)
ENDD0
```

ENDDO

結果(差)の手続の動作は以下です。

```
DO J=1, NBR
DO I=1, NAR
C(NC*I) = C(NC*I) - B(NB*J) * A(NA*I, J)
ENDDO
ENDDO
```

11.2.3 行列と行列の積(A, NA, IAD, B, NB, IBD, C, NC, ICD, NAR, NAC, NBC)

• 機能

行列と行列の積を求めます。

分類

サブルーチン

• 引数

A: INTENT(IN)属性を持つ整数型または実数型の2次元配列

NA: INTENT(IN)属性を持つ整数型。1次元目のストライド。

IAD: INTENT(IN)属性を持つ整数型。2次元目のストライド。

B: INTENT(IN)属性を持つAと同じ種別パラメタの整数型または実数型の配列

NB: INTENT(IN)属性を持つ整数型。1次元目のストライド。

IBD: INTENT(IN)属性を持つ整数型。2次元目のストライド。

C: INTENT(INOUT)属性を持つAと同じ種別パラメタの整数型または実数型の配列。配列A,Bの積の結果との和または差が格納されます。一部手続は、0で初期化してから演算します。

NC: INTENT(IN)属性を持つ整数型。1次元目のストライド。

ICD: INTENT(IN)属性を持つ整数型。2次元目のストライド。

NAR: INTENT(IN)属性を持つ整数型

NAC: INTENT(IN)属性を持つ整数型

NBC: INTENT(IN)属性を持つ整数型

詳細

手続名と引数種別の組み合わせは以下のとおりです。

手続名	手続名	配列の引数種別	引数種別(NA, NB,	配列Cの
結果(和)	結果(差)	(A,B,C)	NC,IAD,IBD,ICD, NAR,NAC,NBC)	初期化
VHMXMA	VHSXMA	REAL(KIND= 2)	INTEGER(KIND=4)	 有
VAMXMA	VASXMA	REAL(KIND= 4)	INTEGER(KIND=4)	有
VDMXMA	VDSXMA	REAL(KIND= 8)	INTEGER(KIND=4)	有
VQMXMA	VQSXMA	REAL(KIND=16)	INTEGER(KIND=4)	有
VIMXMA	VISXMA	INTEGER(KIND=4)	INTEGER(KIND=4)	有
VDMMAL	VDSMAL	REAL(KIND= 8)	INTEGER(KIND=8)	有
VQMMAL	VQSMAL	REAL(KIND=16)	INTEGER(KIND=8)	有
VLMMAL	VLSMAL	INTEGER(KIND=8)	INTEGER(KIND=8)	有
VHMXQA	VHSXQA	REAL(KIND= 2)	INTEGER(KIND=4)	無
VAMXQA	VASXQA	REAL(KIND= 4)	INTEGER(KIND=4)	無
VDMXQA	VDSXQA	REAL(KIND= 8)	INTEGER(KIND=4)	無
VQMXQA	VQSXQA	REAL(KIND=16)	INTEGER(KIND=4)	無
VIMXQA	VISXQA	INTEGER(KIND=4)	INTEGER(KIND=4)	無
VDMQAL	VDSQAL	REAL(KIND= 8)	INTEGER(KIND=8)	無
VQMQAL	VQSQAL	REAL(KIND=16)	INTEGER(KIND=8)	無
VLMQAL	VLSQAL	INTEGER(KIND=8)	INTEGER(KIND=8)	無

配列 C の初期化を含む手続は、以下動作後に結果(和)/結果(差)を実施します。

```
DO J=1, NBC

DO I=1, NAR

C (NC*I, J) =0

ENDDO

ENDDO
```

結果(和)の手続の動作は以下です。

```
DO K=1, NAC
DO J=1, NBC
```

```
DO I=1, NAR  C (NC*I, \ J) = C (NC*I, \ J) + B (NB*K, \ J) * A (NA*I, \ K)   ENDDO  ENDDO  ENDDO
```

結果(差)の手続の動作は以下です。

```
D0 K=1, NAC

D0 J=1, NBC

D0 I=1, NAR

C(NC*I, J) = C(NC*I, J) - B(NB*K, J) * A(NA*I, K)

ENDD0

ENDD0

ENDD0
```

11.3 UNIXシステム関数インタフェース

UNIXシステム関数インタフェースにより、UNIX固有のシステム関数をFortranプログラムから直接利用できます。UNIXシステム関数インタフェースを利用するには、**USE**文、または、**-use**で以降で説明するモジュールを指定します。

例 USE 文の使用例

```
PROGRAM MAIN
USE F90_UNIX
...
END PROGRAM MAIN
```

例 コンパイラオプションの使用例

```
$ nfort -use F90_UNIX, F90_UNIX_DIR a. f90
```

以降の手続の記述において、KINDが'*'と表記されているときは、その種別の任意の値が使用できます。

各モジュールを**USE**文、または、**-use**で使用したとき、一部変数名が使用できなくなります。使用できなくなる変数名は以下です。

モジュール名	変数名
F90_UNIX	CLOCK_TICK_KIND, TMS

モジュール名	変数名
F90_UNIX_DIR	MODE_KIND
F90_UNIX_ENV	CLOCK_TICK_KIND, ID_KIND, LONG_KIND, SC_ARG_MAX, SC_CHILD_MAX, SC_CLK_TCK, SC_JOB_CONTROL, SC_NGROUPS_MAX, SC_OPEN_MAX, SC_SAVED_IDS, SC_STDERR_UNIT, SC_STDIN_UNIT, SC_STDOUT_UNIT, SC_STREAM_MAX, SC_TZNAME_MAX, SC_VERSION, TIME_KIND, TMS,
F90_UNIX_FILE	UTSNAME F_OK, ID_KIND, MODE_KIND, R_OK, STAT_T, S_IRGRP, S_IROTH, S_IRUSR, S_IRWXG, S_IRWXO, S_IRWXU, S_ISGID, S_ISUID, S_IWGRP, S_IWOTH, S_IWUSR, S_IXGRP, S_IXOTH, S_IXUSR, UTIMBUF, W_OK, X_OK
F90_UNIX_PROC	ATOMIC_INT, ATOMIC_LOG, PID_KIND, TIME_KIND, WNOHANG, WUNTRACED

各モジュールを**USE**文、または、**-use**で使用したとき、他のUNIXシステム関数インタフェースのモジュール全体、または、必要な手続をUSEします。各モジュールが、USEするモジュールと手続名は以下のとおりです。

モジュール名	USEするモジュール名と手続名	
F90_UNIX	F90_UNIX_PROC:	
	ABORT()	
	F90_UNIX_ENV:	
	GETPID(), GETUID(), GETGID(), IARGC(),	
	HIDDEN_GETARG()=>GETARG(),	
	CLOCK_TICK_KIND(), TIMES(),	
	HIDDEN_GETENV()=>GETENV(),	
	CLOCK_TICKS_PER_SECOND()=>CLK_TCK()	
F90_UNIX_ENV	F90_UNIX_ERRNO (全ての手続)	
F90_UNIX_FILE	F90_UNIX_ENV (全ての手続)	
	F90_UNIX_ERRNO (全ての手続)	
F90_UNIX_PROC	F90_UNIX_ERRNO (全ての手続)	

※"=>"はモジュール手続を別名としてUSEすることを示します。

11.3.1 F90_UNIX

F90 UNIXモジュールで提供される手続は、以下のとおりです。

11.3.1.1 ABORT([*MESSAGE*])

• 機能

I/Oバッファをクリーンアップし、実行を異常終了させます。

分類

サブルーチン

• 引数

MESSAGE(省略可能): **INTENT(IN)**属性を持つ基本文字型。指定した文字は、'abort:'が先頭に付加された形で論理装置0に出力されます。

11.3.1.2 EXIT(*STATUS*)

• 機能

メインプログラムの**END**文、または、非修飾の**STOP**文を実行したように実行を終了します。

分類

サブルーチン

• 引数

STATUS: INTENT(IN)属性を持つ4バイトまたは8バイト整数型。実行ステータスコードを指定します。

11.3.1.3 FLUSH(*LUNIT*)

• 機能

論理装置(LUNIT)の出力バッファの内容をファイルに出力します。装置かファイルに接続されていないときは、エラーが発生します。

分類

サブルーチン

• 引数

LUNIT: INTENT(IN)属性を持つ4バイト整数型。論理装置を指定します。

11.3.1.4 FREE(*IPTR*)

• 機能

IPTRで指定した領域を解放します。

分類

サブルーチン

• 引数

IPTR: INTENT(IN)属性を持つ8バイト整数型。MALLOCにより割り当てられた領域のアドレスを指定します。

11.3.1.5 GETARG(K,ARG)

• 機能

詳細は、「 $11.3.3 \ F90_UNIX_ENV$ 」のGETARGを参照してください。本モジュールを引用してGETARGを利用するときは、オプション引数のLENARG、ERRNOは指定できません。

11.3.1.6 GETENV(*NAME*,*VALUE*)

• 機能

詳細は、「11.3.3 F90_UNIX_ENV」の**GETENV**を参照してください。本モジュールを引用してGETENVを利用するときは、オプション引数のLENVALUE、ERRNOは指定できません。

11.3.1.7 **GETGID()**

• 機能

呼出し元プロセスのグループ番号を返します。

分類

関数(純粋手続)

結果の型、および、型パラメタ

4バイト整数型

結果の値

呼出し元プロセスのグループ番号

11.3.1.8 **GETPID()**

• 機能

呼出し元プロセスのプロセス番号を返します。

分類

関数(純粋手続)

結果の型、および、型パラメタ

4バイト整数型

結果の値

呼出し元プロセスのプロセス番号

11.3.1.9 **GETUID()**

• 機能

呼出し元プロセスのユーザ番号を返します。

• 分類

関数(純粋手続)

結果の型、および、型パラメタ

4バイト整数型

結果の値

呼出し元プロセスのユーザ番号

11.3.1.10 IARGC()

• 機能

コマンドの引数の数を返します。

分類

関数(純粋手続)

結果の型、および、型パラメタ

4バイト整数型

結果の値

コマンドの引数の数が返却されます。これは組込み関数COMMAND_ARGUMENT_COUNTと同じ値ですが、プログラム名が得られなかったときには、-1を返します。

11.3.1.11 MALLOC(*ISIZE*)

機能

必要な領域の大きさ(ISIZE)を確保します。

• 分類

関数

• 引数

ISIZE: INTENT(IN)属性およびVALUE属性を持つ4バイトまたは8バイト整数型。必要

な領域の大きさをバイト単位で指定します。

結果の型、および、型パラメタ

8バイト整数型

結果の値

確保した領域の先頭アドレス

11.3.2 F90_UNIX_DIR

F90_UNIX_DIRモジュールで提供される手続は、以下のとおりです。

11.3.2.1 CHDIR(PATH[,ERRNO])

• 機能

作業ディレクトリをPATHに変更します。

• 分類

サブルーチン

• 引数

PATH: INTENT(IN)属性を持つ基本文字型。ディレクトリパスを指定します。PATHの 末尾の空白は意味を持つことがあるので注意してください。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.2.2 GETCWD([PATH,LENPATH,ERRNO])

• 機能

作業ディレクトリ情報にアクセスします。

分類

サブルーチン

• 引数

PATH(省略可能): **INTENT(OUT)**属性を持つ基本文字型。作業ディレクトリの名称が設定されます。その際、作業ディレクトリ名称の長さがPATHの長さと異なるとき、空白の追加や文字列の切取りが行われます。

LENPATH(省略可能): INTENT(OUT)属性を持つ4バイト整数型。作業ディレクト

リ名称の長さが設定されます。

ERRNO(省略可能): INTENT(OUT)属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.2.3 LINK(EXISTING, NEW[, ERRNO])

機能

既存ファイル(EXISTING)に対して、新たなリンク(NEWで指定)を作成します。

分類

サブルーチン

• 引数

EXISTING: INTENT(IN)属性を持つ基本文字型。既存ファイルを指定します。

NEW: INTENT(IN)属性を持つ基本文字型。新たなリンク名を指定します。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.2.4 RENAME(OLD, NEW[, ERRNO])

• 機能

ファイル名称を変更します。

分類

サブルーチン

• 引数

OLD: INTENT(IN)属性を持つ基本文字型。変更前のファイルを指定します。

NEW: INTENT(IN)属性を持つ基本文字型。変更後のファイル名を指定します。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

備考

ファイルNEWが存在するとき、NEWを削除した後にOLDをNEWへ変更します。OLD、または、NEW中の末尾の空白は意味を持つことがあるので注意してください。

11.3.2.5 UNLINK(*PATH*[,*ERRNO*])

• 機能

PATHに指定したファイルを削除します。

分類

サブルーチン

• 引数

PATH: INTENT(IN)属性を持つ基本文字型。削除するファイルを指定します。PATH中の末尾の空白は意味を持つことがあるので注意してください。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.3 F90_UNIX_ENV

F90_UNIX_ENVモジュールで提供される手続は、以下のとおりです。

11.3.3.1 GETARG(K[,ARG,LENARG,ERRNO])

• 機能

コマンドの引数番号(K)にアクセスします。

• 分類

サブルーチン

• 引数

K: INTENT(IN)属性を持つ整数型。アクセスするコマンド引数番号を指定します。引数番号のはプログラム名です。

ARG(省略可能): INTENT(OUT)属性を持つ基本文字型。引数の文字列が設定されます。ARGの長さが引数に指定した文字列の長さと異なるとき、空白の追加や文字列の切取りが行われます。

LENARG(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。引数の文字列の長さが設定されます。

ERRNO(省略可能): INTENT(OUT)属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定し

なかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.3.2 GETENV(NAME[,VALUE,LENVALUE,ERRNO])

• 機能

環境変数にアクセスします。

分類

サブルーチン

• 引数

NAME: INTENT(IN)属性を持つ基本文字型。アクセスする環境変数名を指定します。

VALUE (省略可能): **INTENT(OUT)**属性を持つ基本文字型。変数のテキスト値が設定されます。長さが引数に指定した文字列の長さと異なるとき、空白の追加や文字列の切取りが行われます。

LENVALUE(省略可能): INTENT(OUT)属性を持つ4バイト整数型。変数のテキスト値の長さが設定されます。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.3.3 GETHOSTNAME([NAME, LENNAME])

• 機能

ホスト名を取得します。

• 分類

サブルーチン(純粋手続)

• 引数

NAME(省略可能): **INTENT(OUT)**属性を持つ基本文字型。現在のホスト名が文字列で設定されます。NAMEの長さが引数に指定した文字列の長さと異なるとき、空白の追加や切取りが行われます。

LENNAME(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ホスト名の長さが設定されます。ホスト名が得られなかったときには、LENNAMEは0になります。

11.3.3.4 **GETLOGIN(**[*S*, *LENS*])

• 機能

呼出し元プロセスのユーザ名(ログイン名)を取得します。

分類

サブルーチン(純粋手続)

• 引数

S(省略可能): **INTENT(OUT)**属性を持つ基本文字型。Sを指定したとき、名称が文字列で設定されます。ログイン名の長さがSの長さと異なるとき、空白の追加や切取りが行われます。

LENS(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ログイン名の長さが 設定されます。

11.3.3.5 ISATTY(LUNIT,ANSWER[,ERRNO])

• 機能

論理装置と端末の接続状態を取得します。

分類

サブルーチン

• 引数

LUNIT(省略可能): **INTENT(IN)**属性を持つ整数型。論理装置番号を指定します。*LU NITが*正しい装置番号ではない、または、どのファイルにも接続されていないとき、エラーが返却されます。

ANSWER(省略可能): **INTENT(OUT)**属性を持つ論理型。*LUNIT*が端末と接続されているとき、.TRUE.が設定されます。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.3.6 TIME(*ITIME*[,*ERRNO*])

• 機能

Epochを起点とする日付/時刻(秒単位)を取得します。

分類

サブルーチン

• 引数

ITIME: INTENT(OUT)属性を持つ4バイト整数型。日付/時刻(秒単位)が設定されます。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.3.7 TTYNAME(LUNIT[,S,LENS,ERRNO])

• 機能

論理装置に接続された端末の名称にアクセスします。

分類

サブルーチン

• 引数

LUNIT: INTENT(IN)属性を持つ整数型。論理装置番号を指定します。LUNITが正しい論理装置番号でない、または接続されていないときエラーが返却されます。

S(省略可能): **INTENT(OUT)**属性を持つ基本文字型。端末名の文字列が設定されます。端末名の長さがSの長さと異なるとき、空白の追加や文字列の切取りが行われます。

LENS(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。端末名の長さが設定されます。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.4 F90_UNIX_ERRNO

F90 UNIX ERRNOモジュールで提供されるパラメタは、以下のとおりです。

INTEGER(4),OPTIONAL,INTENT(OUT) :: ERRNO

UNIXシステム関数インタフェースで提供する多くの手続が規定される省略可能なERRNO 引数を用意しています。この引数が与えられたとき、手続からエラーステータスを受け取ります。0は正常終了、0以外はエラーコードを意味します。ERRNO引数を省略、かつエラー条件が発生したとき、エラーメッセージとともにプログラムの実行が終了します。

手続がERRNO引数を用意していないとき、手続は常に正常終了することを示します。

11.3.5 F90_UNIX_FILE

F90_UNIX_FILEモジュールで提供されるパラメタは、以下のとおりです。

INTEGER(4),PARAMETER :: F_OK

ファイルが存在するかどうかの確認に使用するフラグです。

INTEGER(4),PARAMETER :: R_OK

ファイルが読み込み可能かどうかの確認に使用するフラグです。

INTEGER(4),PARAMETER :: S_IRGRP

グループに対して、読み取り許可モードを示すビットです。

INTEGER(4),PARAMETER :: S_IROTH

その他に対して、読み取り許可モードを示すビットです。

INTEGER(4),PARAMETER :: S_IRUSR

所有者に対して、読み取り許可モードを示すビットです。

INTEGER(4),PARAMETER :: S_IRWXG

ファイルのアクセス権からグループアクセス権限を選択するためのマスクです。

INTEGER(4),PARAMETER :: S_IRWXO

ファイルのアクセス権からその他のアクセス権限を選択するためのマスクです。

INTEGER(4), PARAMETER :: S_IRWXU

ファイルのアクセス権から所有者のアクセス権限を選択するためのマスクです。

INTEGER(4), PARAMETER:: S ISGID

ファイルがSET-GROUP-ID(SGID)モードを示すビットです。

INTEGER(4), PARAMETER :: S ISUID

ファイルがSET-USER-ID(SUID)モードを示すビットです。

INTEGER(4),PARAMETER :: S_IWGRP

グループに対して、書き込み許可モードを示すビットです。

INTEGER(4),PARAMETER :: S_IWOTH

その他に対して、書き込み許可モードを示すビットです。

INTEGER(4), PARAMETER:: S IWUSR

所有者に対して、書き込み許可モードを示すビットです。

INTEGER(4),PARAMETER :: S_IXGRP

グループに対して、実行許可モードを示すビットです。

INTEGER(4), PARAMETER :: S IXOTH

その他に対して、実行許可モードを示すビットです。

INTEGER(4),PARAMETER :: S_IXUSR

所有者に対して、実行許可モードを示すビットです。

INTEGER(4),PARAMETER :: W_OK

ファイルが書き込み可能かどうかの確認に使用するフラグです。

INTEGER(4),PARAMETER :: X_OK

ファイルが実行可能かどうかの確認に使用するフラグです。

F90_UNIX_FILEモジュールで提供される型は、以下のとおりです。

STAT_T

TYPE STAT_T

INTEGER (4) ST MODE

INTEGER (4) ST_INO

INTEGER (4) ST_DEV

INTEGER (4) ST_NLINK

INTEGER (4) ST_UID

INTEGER (4) ST_GID

INTEGER (4) ST_SIZE

INTEGER (4) ST_ATIME, ST_MTIME, ST_CTIME

END TYPE

ファイルの特性を保持している構造体です。

ST_MODE

ファイルのモード(ユーザ/グループ/その他に対する読み取り/書き込み/実行許可、および SET-GROUP-ID, SET-USER-IDビット)が設定されます。

ST_INO

ファイルのシリアル番号が設定されます。

ST_DEV

ファイルが存在している装置に対するIDが設定されます。

ST_NLINK

ファイルに対するリンクの数が設定されます。

ST UID

ファイル所有者のユーザ番号が設定されます。

ST_GID

ファイルのグループ番号が設定されます。

ST_SIZE

バイト単位のファイルサイズが設定されます(通常ファイルのみ)。

ST_ATIME

最後にアクセスした時刻が設定されます。

ST MTIME

最後に変更を加えた時刻が設定されます。

ST_CTIME

最後にファイル状態が変更された時刻が設定されます。

F90_UNIX_FILEモジュールで提供される手続は、以下のとおりです。

(1) ACCESS(PATH, AMODE, ERRNO)

• 機能

ファイルのアクセス権限ビットをチェックします。

分類

サブルーチン(純粋手続)

• 引数

PATH: INTENT(IN)属性を持つ基本文字型。

AMODE: INTENT(IN) 属性を持つ整数型。F_OK、または、R_OK、W_OK、X_OKの組合せの必要があります。R_OK、W_OK、X_OKの値は加算、または、組込み関数IORによって結合します。

ERRNO: **INTENT(OUT)**属性を持つ4バイト整数型。アクセス権限ビットのチェック 結果を設定します。アクセス可では0、アクセス不可では、その理由を示すエラーコー ドが設定されます。

(2) CHMOD(PATH, MODE[, ERRNO])

機能

ファイルモードを変更します。

分類

サブルーチン

• 引数

PATH: INTENT(IN)属性を持つ基本文字型。

MODE: **INTENT(IN)**属性を持つ整数型。ファイルモード(ST_MODE)を指定します。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

(3) **FSTAT(LUNIT,BUF[,ERRNO])**

• 機能

ファイルの情報を取得します。

分類

サブルーチン

• 引数

LUNIT: INTENT(IN)属性を持つ整数型。アクセスするコマンド引数番号を指定します。正しい論理装置番号ではない、またはファイルに接続されていないとき、エラーが返却されます。

BUF: INTENT(OUT)属性を持つSTAT_T構造体。ファイルの情報が設定されます。 ERRNO(省略可能): INTENT(OUT)属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

(4) LSTAT(PATH,BUF[,ERRNO])

機能

ファイルの情報を取得します。

分類

サブルーチン

• 引数

PATH: INTENT(IN)属性を持つ基本文字型。

BUF: INTENT(OUT)属性を持つSTAT_T構造体。ファイルの情報が設定されます。PA THがリンクファイルのとき、リンクファイルの情報が設定されます。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

(5) **STAT(PATH,BUF[,ERRNO])**

• 機能

ファイルの情報を取得します。

分類

サブルーチン

• 引数

PATH: INTENT(IN)属性を持つ基本文字型。

BUF: **INTENT(OUT)**属性を持つSTAT_T構造体。ファイルの情報が設定されます。PA THがリンクファイルのとき、リンク先のファイルの情報が設定されます。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます

11.3.6 F90_UNIX_PROC

F90_UNIX_PROCモジュールで提供される手続は、以下のとおりです。

11.3.6.1 ALARM(SECONDS, SUBROUTINE [, SECLEFT, ERRNO])

• 機能

指定秒数後に手続に対し"alarm"コールがかかるように設定します。

分類

サブルーチン

引数

SECONDS: INTENT(IN)属性を持つ整数型。秒数を指定します。0の時は既存のアラームをキャンセルします。

SUBROUTINE(省略可能): 手続を指定します。指定した手続が存在しなかったとき、それ以前に設定された手続とアラームシグナルの対応付けは変更しません。

SECLEFT(省略可能): INTENT(OUT)属性を持つ4バイト整数型。先行するアラーム上で残存する秒数が設定されます。既存のアラームが存在しないときには0が設定されます。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.6.2 EXECL(*PATH*,*ARG0...*[,*ERRNO*])

• 機能

現行プロセスに代わり、指定したプログラム(PATH)を実行します。

• 分類

サブルーチン

• 引数

PATH: INTENT(IN)属性を持つ基本文字型。実行するプログラムを指定します。

ARGO…: INTENT(IN)属性を持つ基本文字型。新たなプログラムへの引数を指定します。ARGO、ARG1など、最大でARG20までの名称で指定されます。これらは省略可能な引数ではない点に注意してください。それ自身が省略可能な仮引数の実引数もすべて指定されなくてはなりません。引数が、配列ではなく個々に提供されるという点以外は、EXECVと同様です。また、引数は個々に提供されるため、長さの指定は必要ありません(長さはそれぞれの引数から求められます)。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.6.3 EXECLP(*FILE*,*ARG0...*[,*ERRNO*])

• 機能

現行プロセスに代わり、指定したプログラム(FILE)を実行します。

分類

サブルーチン

• 引数

FILE: INTENT(IN)属性を持つ基本文字型。実行するプログラムを指定します。

ARGO…: INTENT(IN)属性を持つ基本文字型。新たなプログラムへの引数を指定します。ARGO, ARG1など、最大でARG20までの名称で指定されます。これらは省略可能な引数ではない点に注意してください。それ自身が省略可能な仮引数の実引数もすべて指定されなくてはなりません。実行するプログラムの決定がEXECVPと同じルールに従うという点以外は、EXECLと同様です。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.6.4 EXECV(PATH,ARGV,LENARGV[,ERRNO])

• 機能

現行プロセスに代わり、指定したプログラム(PATH)を実行します。

分類

サブルーチン

引数

PATH: INTENT(IN)属性を持つ基本文字型。

ARGV: **INTENT(IN)**属性を持つ基本文字型の配列。引数文字列の配列を指定します。ARGVのサイズが0でないとき、ARGV(1)(:LENARGV(1))は引数0(プログラム名)として引き渡されます。

LENARGV: INTENT(IN)属性を持つ整数型の配列。各引数の長さを設定した配列を指定します。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.6.5 EXECVE(PATH, ARGV, LENARGV, ENV, LENENV[, ERRNO])

• 機能

現行プロセスに代わり、指定したプログラム(PATH)を実行します。

分類

サブルーチン

• 引数

PATH: INTENT(IN)属性を持つ基本文字型。実行するプログラムを指定します。

ARGV: INTENT(IN)属性を持つ基本文字型の配列。引数文字列の配列を指定します。

LENARGV: INTENT(IN)属性を持つ整数型の配列。各引数の長さを設定した配列を指定します。

ENV INTENT(IN)属性を持つ基本文字型の配列。環境変数の文字列の配列を指定します。

LENENV: **INTENT(IN)**属性を持つ整数型の配列。各環境変数の文字列の長さを設定した配列を指定します

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

備考

動作は環境変数を新たなプログラムに引き渡される点以外は、EXECVと同様です

11.3.6.6 EXECVP(FILE, ARGV, LENARGV[, ERRNO])

• 機能

現行プロセスに代わり、指定したプログラムを実行します。

• 分類

サブルーチン

• 引数

FILE: INTENT(IN)属性を持つ基本文字型。実行するプログラムを指定します。

ARGV: INTENT(IN)属性を持つ基本文字型の配列。引数文字列の配列を指定します。

LENARGV: INTENT(IN)属性を持つ整数型の配列。各引数の長さを設定した配列を指定します。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

• 備考

実行対象のプログラム(*FILE*)が**PATH**環境変数を使ってサーチされる点以外は、**EXECV** と同様です(*FILE*にスラッシュ文字が含まれている場合には、**EXECVP**は**EXECV**と等価になります)

11.3.6.7 FORK(*PID*[,*ERRNO*])

• 機能

呼出し元プロセスと全く同一のコピーを新たなプロセスとして作成します。

• 分類

サブルーチン

• 引数

PID: **INTENT(OUT)**属性を持つ4バイト整数型。新たなプロセスでは、0が設定されます。呼び出し元プロセスでは、新たに生成された(子)プロセスのプロセスIDが設定されます。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.6.8 SLEEP(SECONDS[,SECLEFT])

• 機能

プロセス実行を指定秒数の間、または、シグナルが届くまで中断します。

分類

サブルーチン(純粋手続)

引数

SECONDS: INTENT(IN)属性を持つ整数型。スリープする秒数を指定します。
SECLEFT(省略可能): INTENT(OUT)属性を持つ4バイト整数型。残りのスリープ時間が秒数として設定されます。シグナルによって割り込まれていないときには0が設定されます。

11.3.6.9 SYSTEM(STRING[,STATUS,ERRNO])

• 機能

システムコマンドを実行します。

分類

サブルーチン

• 引数

STRING: INTENT(IN)属性を持つ基本文字型。実行するシステムコマンドを指定します。

STATUS(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。完了ステータスが設定されます。

ERRNO(省略可能): **INTENT(OUT)**属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

11.3.6.10 WAIT([STATUS, RETPID, ERRNO])

• 機能

いずれかの子プロセスの終了を待ちます。

分類

サブルーチン

• 引数

STATUS(省略可能): INTENT(OUT)属性を持つ4バイト整数型。子プロセスの終了ステータスが設定されます。

RETPID(省略可能): INTENT(OUT)属性を持つ4バイト整数型。子プロセスのプロセス番号が設定されます。

ERRNO(省略可能): INTENT(OUT)属性を持つ4バイト整数型。ERRNOを指定したとき、正常に終了すると0が、失敗するとエラーコードが返却されます。ERRNOを指定しなかったとき、失敗するとエラーメッセージが出力され、プログラムの実行が終了されます。

備考

既に終了しているプロセスがあれば即座にリターンします。

11.4 その他のライブラリ

組込み関数/組込みサブルーチンの他に、以下に述べる関数/サブルーチンを使用できます。 これらのルーチンは、Cライブラリで使用できるシステムの機能をFORTRANからも呼び出せ るようにしたものです。 FORTRANライブラリは、組込み関数として扱われません。そのため、コンパイラはこれらの関数の型をIMPLICIT文の指定または暗黙の型宣言(先頭の英字I、J、K、L、MまたはNは整数型を表し、その他の英字は実数型を表す)にしたがって処理します。したがって、IMPLICIT文の指定または暗黙の型と関数の型が一致しない関数(例:CTIME)は型宣言が必要です。

11.4.1 ABORT()

• 機能

プログラムを異常終了します。

• 分類

サブルーチン

11.4.2 ACCESS(PATH, MODE)

• 機能

ファイルへのアクセス権をチェックします。

• 分類

関数

• 引数

PATH: INTENT(IN)属性を持つ基本文字型のスカラ変数。ファイルパスを指定します。

MODE: INTENT(IN)属性を持つ基本文字型のスカラ変数。アクセス権を指定します。

結果の型、および、型パラメタ

整数型

結果の値

アクセス権があれば0が、なければエラーコードが返却されます。

11.4.3 ALARM(SECS,PROC)

• 機能

プロセスのアラームクロックを設定します。

• 分類

関数

• 引数

SECS: INTENT(IN)属性を持つ4バイト整数型。基準とする秒数を指定します。

PROC: アラームを設定する手続を指定します。

結果の型、および、型パラメタ

整数型

結果の値

呼出し時の残りの秒数の値。

11.4.4 CHDIR(*PATH*)

• 機能

作業ディレクトリを変更します。

分類

関数

• 引数

PATH: INTENT(IN)属性を持つ基本文字型のスカラ変数。ディレクトリパスを指定します。

結果の型、および、型パラメタ

整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

11.4.5 CHMOD(NAME, MODE)

• 機能

ファイルのアクセスモードを変更します。

• 分類

関数

• 引数

NAME: INTENT(IN)属性を持つ基本文字型のスカラ変数。ファイルパスを指定します。

MODE: INTENT(IN)属性を持つ基本文字型のスカラ変数。アクセスモードを指定します。

結果の型、および、型パラメタ

整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

11.4.6 CTIME(I)

• 機能

日付と時刻を文字列へ変換します。

• 分類

関数

• 引数

I: **INTENT(IN)**属性を持つ4バイト整数型

結果の型、および、型パラメタ

長さ24文字の基本文字型

結果の値

Iで指定された値をEpochからの経過時間に変換し、さらに地方時間に変換して以下の形式で返却されます。

Sun Jan 19 01:03:52 1992

11.4.7 DTIME(TARRAY)

• 機能

経過実行時間を求めます。

分類

関数

• 引数

TARRAY: INTENT(OUT)属性を持つ配列要素2の4バイト実数型配列。直前のDTIME 引用からのUSER時間を第1要素に、SYS時間を第2要素に設定されます。

結果の型、および、型パラメタ

4バイト実数型

・ 結果の値

直前のDTIME引用からのUSER時間とSYS時間の合計値

11.4.8 ETIME(TARRAY)

• 機能

経過実行時間を求めます。

• 分類

関数

• 引数

TARRAY: INTENT(OUT)属性を持つ配列要素2の4バイト実数型配列。プログラム開始時からのUSER時間を第1要素に、SYS時間を第2要素に設定されます。

結果の型、および、型パラメタ

4バイト実数型

結果の値

プログラム開始時からのUSER時間とSYS時間の合計値(単位:秒)

備考

サブルーチンとして使用するときの詳細は、「11.1.33 ETIME(D)」を参照してください。

11.4.9 FDATE()

• 機能

現在の時刻の文字列を取得します。

• 分類

関数

結果の型、および、型パラメタ

長さ24文字の基本文字列型

・ 結果の値

現在の時刻が以下の形式で返却されます。

Sun Jan 19 01:03:52 1992

備考

サブルーチンとしても、以下の形式で使用可能です。

call FDATE(A)

引数Aは、INTENT(OUT)属性を持つ長さ24文字の基本文字列型です。

現在の時刻が関数の結果と同様の形式で引数Aに設定されます。

Sun Jan 19 01:03:52 1992

11.4.10 FORK()

• 機能

新しいプロセスを作成します。

分類

関数

結果の型、および、型パラメタ

整数型

結果の値

正常に終了するとプロセスIDの値が、失敗するとエラーコードが返却されます。

11.4.11 FREE(*ADDR*)

• 機能

指定された領域を解放します。

分類

サブルーチン

• 引数

ADDR: INTENT(IN)属性を持つ8バイト整数型。MALLOCにより割り当てられた領域のアドレスを指定します。

11.4.12 FREE2(*ADDR*)

• 機能

指定された領域を解放します。

分類

サブルーチン

• 引数

ADDR: INTENT(IN)属性を持つ8バイト整数型。MALLOC2により割り当てられた領域のアドレスを指定します。

11.4.13 FSEEK(UNIT, OFFSET, WHENCE)

• 機能

外部ファイル装置に接続されているファイルの位置を変更します。

• 分類

関数

• 引数

UNIT: INTENT(IN)属性を持つ4バイト整数型。外部ファイル装置を指定します。

OFFSET: **INTENT(IN)**属性を持つ4バイト整数型。*WHENCE*を起点としたバイト単位のオフセットを指定します。

WHENCE: INTENT(IN)属性を持つ4バイト整数型。起点となるファイル位置として以下のいずれか一つを指定します。

Value	Position	
0	ファイルの先頭	
1	ファイルの現在位置	
2	ファイルの末尾	

結果の型、および、型パラメタ

4バイト整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

備考

サブルーチンとしても、以下の形式で使用可能です。

call FSEEK (UNIT, OFFSET, WHENCE)

11.4.14 FSTAT(UNIT,SXBUF)

• 機能

外部ファイル装置に接続されているファイルの情報を取得します。

分類

関数

• 引数

UNIT: **INTENT(IN)**属性を持つ4バイト整数型。外部ファイル装置を指定します。 *SXBUF*: **INTENT(OUT)**属性を持つ配列要素19の4バイト整数型配列。ファイル情報が設定されます。

結果の型、および、型パラメタ

整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

備考

SXBUFによって取得できる情報を以下に示します。

- SXBUF(1) ファイルがあるデバイスID
- SXBUF(2) inode 番号
- SXBUF(3) アクセス保護
- SXBUF(4) ハードリンクの数
- SXBUF(5) 所有者のユーザ ID
- SXBUF(6) 所有者のグループ ID
- SXBUF(7) 0
- SXBUF(8) 全体のサイズ(bytes)
- SXBUF(9) 最終アクセス時刻
- SXBUF(10) 最終修正時刻
- SXBUF(11) 最終状態変更時刻
- SXBUF(12)~SXBUF(19) 予備

11.4.15 FTELL(*UNIT*)

• 機能

外部ファイル装置に接続されているファイルの現在位置を返却します。

• 分類

関数

• 引数

UNIT: INTENT(IN)属性を持つ4バイト整数型。外部ファイル装置を指定します。

結果の型、および、型パラメタ

4バイト整数型

・ 結果の値

ファイルの先頭からのオフセット値をバイト単位で返却されます。負の値はエラーを示します。

11.4.16 FTELLI8(*UNIT*)

• 機能

外部ファイル装置に接続されているファイルの現在位置を返却します。

分類

関数

• 引数

UNIT: INTENT(IN)属性を持つ4バイト整数型。外部ファイル装置を指定します。

結果の型、および、型パラメタ

8バイト整数型

結果の値

ファイルの先頭からのオフセット値をバイト単位で返却されます。負の値はエラーを示します。

11.4.17 GETARG(*POS,VAL*)

• 機能

プログラムに渡された引数を取得します。

分類

サブルーチン

• 引数

POS: INTENT(IN)属性を持つ4バイト整数型。取得する引数の番号を指定します。

VAL: INTENT(OUT)属性を持つ基本文字型のスカラ変数。取得した引数が設定されます。

11.4.18 GETCWD(*PATH*)

• 機能

現在の作業ディレクトリのパス名を取得します。

• 分類

関数

• 引数

PATH: INTENT(OUT)属性を持つ基本文字型のスカラ変数。現在の作業ディレクトリのパスが設定されます。

結果の型、および、型パラメタ

整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

11.4.19 GETENV(NAME, VAL)

• 機能

環境変数を取得します。

分類

サブルーチン

• 引数

NAME: **INTENT(IN)**属性を持つ基本文字型のスカラ変数。取得する環境変数の文字列を指定します。

VAL: INTENT(OUT)属性を持つ基本文字型のスカラ変数。取得した環境変数の値が設定されます。

備考

関数としても、以下の形式で使用可能です。

戻り値は、整数型で、一致する文字列があると1が、ないと0が返却されます。

INTEGER RESULT, GETENV

RESULT = GETENV(NAME, VAL)

11.4.20 GETGID()

• 機能

グループIDを取得します。

分類

関数

結果の型、および、型パラメタ

整数型

・ 結果の値

グループIDの値。

11.4.21 GETLOG(*NAME*)

• 機能

ログイン名を取得します。

分類

サブルーチン

• 引数

NAME: INTENT(OUT)属性を持つ基本文字型のスカラ変数。ログイン名が設定されます。

11.4.22 GETPID()

• 機能

プロセスIDを取得します。

• 分類

関数

結果の型、および、型パラメタ

整数型

結果の値

プロセスIDの値。

11.4.23 GETPOS(UNIT)

• 機能

外部ファイル装置に接続されているファイルの現在位置を返却します。

• 分類

関数

• 引数

UNIT: INTENT(IN)属性を持つ4バイト整数型。外部ファイル装置を指定します。

結果の型、および、型パラメタ

4バイト整数型

結果の値

ファイルの先頭からのオフセット値をバイト単位で返却されます。

11.4.24 GETPOSI8(UNIT)

• 機能

外部ファイル装置に接続されているファイルの現在位置を返却します。

• 分類

関数

• 引数

UNIT: INTENT(IN)属性を持つ4バイト整数型。外部ファイル装置を指定します。

結果の型、および、型パラメタ

8バイト整数型

結果の値

ファイルの先頭からのオフセット値をバイト単位で返却されます。

11.4.25 GETUID()

• 機能

ユーザIDを取得します。

分類

関数

結果の型、および、型パラメタ

整数型

結果の値

ユーザIDの値。

11.4.26 GMTIME(I,IA9)

• 機能

日付と時刻を4バイト整数型配列へ変換します。

分類

サブルーチン

• 引数

I: **INTENT(IN)**属性を持つ4バイト整数型

IA9: INTENT(OUT)属性を持つ配列要素9の4バイト整数型配列。Iで指定された値を Epochからの経過時間に変換し、配列の各要素に設定されます。

11.4.27 HOSTNM(NAME)

• 機能

ホスト名を取得します。

• 分類

関数

• 引数

NAME: INTENT(OUT)属性を持つ基本文字型のスカラ変数。現在のホスト名が設定されます。

結果の型、および、型パラメタ

整数型

・ 結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

11.4.28 IARGC()

• 機能

プログラムに渡された引数の数を取得します。

分類

関数

結果の型、および、型パラメタ

整数型

結果の値

プログラムに渡されたコマンド行中の引数の数の値。

11.4.29 IDATE(*IA3*)

• 機能

日付を4バイト整数型配列へ変換します。

分類

サブルーチン

• 引数

IA3: INTENT(OUT)属性を持つ配列要素3の4バイト整数型配列。日、月、年の値が、この順に、配列の各要素に設定されます。月は1~12の値、年は1969より大きい値です。

11.4.30 IERRNO()

• 機能

直前に検出したエラー番号を取得します。

• 分類

関数

結果の型、および、型パラメタ

4バイト整数型

結果の値

直前に検出されたエラー番号が返却されます。

11.4.31 ISATTY(*UNIT*)

• 機能

端末との接続をチェックします。

• 分類

関数

• 引数

UNIT: INTENT(IN)属性を持つ4バイト整数型。外部ファイル装置を指定します。

結果の型、および、型パラメタ

整数型

結果の値

端末に接続されていると1が、接続されていないと0が返却されます。

11.4.32 ITIME(*IA3*)

• 機能

時刻を4バイト整数型配列へ変換します。

分類

サブルーチン

• 引数

IA3: INTENT(OUT)属性を持つ配列要素3の4バイト整数型配列。時、分、秒の値が、この順に、配列の各要素に設定されます。

11.4.33 KILL(PID,SIGNUM)

• 機能

プロセスまたはプロセスグループへシグナルを発信する。

• 分類

関数

• 引数

PID: **INTENT(IN)**属性を持つ4バイト整数型。シグナルを送るプロセスIDを指定します。

SIGNUM: INTENT(IN)属性を持つ4バイト整数型。送信するシグナル番号を指定します。

結果の型、および、型パラメタ

4バイト整数型

・ 結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

11.4.34 LINK(*PATH1*,*PATH2*)

• 機能

リンクを作成します。

• 分類

関数

• 引数

PATH1: INTENT(IN)属性を持つ基本文字型のスカラ変数。ファイルパスを指定します。

PATH2: INTENT(IN)属性を持つ基本文字型のスカラ変数。リンクパスを指定します。

結果の型、および、型パラメタ

整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

11.4.35 LSTAT(PATH,SXBUF)

• 機能

ファイルの情報を取得します。

• 分類

関数

• 引数

PATH: INTENT(IN)属性を持つ基本文字型のスカラ変数。ファイルパスを指定します。

SXBUF: INTENT(OUT)属性を持つ配列要素19の4バイト整数型配列。PATHのファイル情報が設定されます。PATHがリンクファイルのとき、リンクファイルの情報が設定されます。

結果の型、および、型パラメタ

整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

備考

SXBUFによって取得できる情報を以下に示します。

- SXBUF(1) ファイルがあるデバイスID
- SXBUF(2) inode 番号
- SXBUF(3) アクセス保護
- SXBUF(4) ハードリンクの数
- SXBUF(5) 所有者のユーザ ID
- SXBUF(6) 所有者のグループ ID
- SXBUF(7) 0
- SXBUF(8) 全体のサイズ(bytes)
- SXBUF(9) 最終アクセス時刻
- SXBUF(10) 最終修正時刻
- SXBUF(11) 最終状態変更時刻
- SXBUF(12)~SXBUF(19) 予備

11.4.36 LTIME(I,IA9)

• 機能

ローカルの日付と時刻を4バイト整数型配列へ変換します。

• 分類

サブルーチン

• 引数

I: **INTENT(IN)**属性を持つ4バイト整数型。

IA9: INTENT(OUT)属性を持つ配列要素9の4バイト整数型配列。Iで指定された値をEpochからの経過時間に変換し、さらに地方時間に変換して、配列の各要素に設定されます。

11.4.37 MALLOC(SIZE)

• 機能

領域を確保します。

• 分類

関数

• 引数

SIZE: INTENT(IN)属性を持つ4バイト整数型。必要な領域の大きさをバイト単位で指定します。

結果の型、および、型パラメタ

8バイト整数型

結果の値

確保した領域の先頭アドレスの値。

11.4.38 MALLOC2(SIZE)

• 機能

領域を確保します。

分類

関数

• 引数

SIZE: INTENT(IN)属性を持つ8バイト整数型。必要な領域の大きさをバイト単位で指定します。

結果の型、および、型パラメタ

8バイト整数型

結果の値

確保した領域の先頭アドレスの値。

11.4.39 PERROR(A)

• 機能

直前に検出したエラー番号のメッセージを標準エラーへ出力します。

分類

サブルーチン

• 引数

A: INTENT(IN)属性を持つ基本文字型のスカラ変数。Aに指定された文字列、コロン、空白に続いて、エラー番号のメッセージを標準エラーへ出力します。

11.4.40 RENAME(FROM,TO)

• 機能

ファイル名を変更します。

• 分類

関数

• 引数

FROM: INTENT(IN)属性を持つ基本文字型のスカラ変数。変更元のファイルパスを指定します。

TO: INTENT(IN)属性を持つ基本文字型のスカラ変数。変更先のファイルパスを指定します。

結果の型、および、型パラメタ

整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

11.4.41 SECNDS(T)

• 機能

引数の値を基準時間とした経過時間を取得します。

分類

関数

• 引数

T: INTENT(IN)属性を持つ4バイト実数型。基準とする秒数を指定します。

結果の型、および、型パラメタ

4バイト実数型

結果の値

引数の値を基準時間とした経過時間(秒)の値。引数の値が0.0のときは、真夜中(0時)からの経過時間(秒)の値。

11.4.42 SIGNAL(SIGNUM, HANDLER)

• 機能

シグナル受信時の動作を指定する。

• 分類

関数

• 引数

SIGNUM: INTENT(IN)属性を持つ4バイト整数型。対象となるシグナル番号を指定します。

HANDLER: **INTENT(IN)**属性を持つ外部手続名。シグナル受信時の処理手続名を指定します。

結果の型、および、型パラメタ

4バイト整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

11.4.43 SLEEP(SECS)

• 機能

実行を中断します。

分類

サブルーチン

• 引数

SECS: INTENT(IN)属性を持つ4バイト整数型。中断する秒数を指定します。

11.4.44 STAT(PATH,SXBUF)

• 機能

ファイルの情報を取得します。

• 分類

関数

• 引数

PATH: INTENT(IN)属性を持つ基本文字型のスカラ変数。ファイルパスを指定します。

SXBUF: INTENT(OUT)属性を持つ配列要素19の4バイト整数型配列。PATHのファイル情報が設定されます。PATHがリンクファイルのとき、リンク先のファイルの情報が設定されます。

結果の型、および、型パラメタ

整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

備考

SXBUFによって取得できる情報を以下に示します。

SXBUF(1) ファイルがあるデバイスID

SXBUF(2) inode 番号

SXBUF(3) アクセス保護

SXBUF(4) ハードリンクの数

SXBUF(5) 所有者のユーザ ID

SXBUF(6) 所有者のグループ ID

SXBUF(7) 0

SXBUF(8) 全体のサイズ(bytes)

SXBUF(9) 最終アクセス時刻

SXBUF(10) 最終修正時刻

SXBUF(11) 最終状態変更時刻

SXBUF(12)~SXBUF(19) 予備

11.4.45 SYMLNK(*PATH1,PATH2*)

• 機能

シンボリックリンクの作成

• 分類

関数

• 引数

PATH1: INTENT(IN)属性を持つ基本文字型のスカラ変数。シンボリックリンクPATH2で使われるパスを指定します。

PATH2: INTENT(IN)属性を持つ基本文字型のスカラ変数。作成するファイル名(シンボリックリンク名)を指定します。

結果の型、および、型パラメタ

4バイト整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

11.4.46 SYSTEM(CMD)

• 機能

コマンドプロセッサに文字列を渡します。

• 分類

関数

• 引数

CMD: INTENT(IN)属性を持つ基本文字型のスカラ変数。コマンドプロセッサに渡す文字列を指定します。

結果の型、および、型パラメタ

整数型

結果の値

渡した文字列の完了ステータスを返却されます。

備考

サブルーチンとしても、以下の形式で使用可能です。 サブルーチンを使用したとき、渡した文字列の完了ステータスは、受け取れません。

CALL SYSTEM (CMD)

11.4.47 TIME()

• 機能

日付/時刻(秒単位)を取得します。

分類

関数

結果の型、および、型パラメタ

整数型

・ 結果の値

EPOCHを起点とする日付/時刻(秒単位)の値。

11.4.48 TTYNAM(*UNIT*)

• 機能

端末装置名を取得します。

• 分類

関数

• 引数

UNIT: INTENT(IN)属性を持つ4バイト整数型。外部ファイル装置を指定します。

結果の型、および、型パラメタ

基本文字型

・ 結果の値

外部ファイル装置に接続された端末の名称の値。

11.4.49 UNLINK(PATH)

• 機能

ファイルを削除します。

分類

関数

• 引数

PATH: INTENT(IN)属性を持つ基本文字型のスカラ変数。削除するファイルパスを指定します。

結果の型、および、型パラメタ

整数型

結果の値

正常に終了すると0が、失敗するとエラーコードが返却されます。

11.4.50 WAIT(*STATUS*)

• 機能

子プロセスの停止または終了を待ち合わせます。

• 分類

関数

• 引数

STATUS: INTENT(OUT)属性を持つ4バイト整数型。子プロセスの状態が設定されます。

結果の型、および、型パラメタ

整数型

結果の値

成功すると子プロセスのプロセスIDが、失敗するとエラーコードがマイナスで返却されます。

11.5 注意事項

三角関数と指数関数は引数が特定の範囲の値であるとき、正しく結果を計算することができ

ずエラー状態となります。エラー状態のとき、関数の値は"NaN"となります。 関数とそれに対応するエラー状態となる引数の範囲は以下のとおりです。

単精度:

	関数	エラー状態となる引数の範囲
ccos(x+yi)		x ≧2 ²¹ × n
cexp(x+yi)		y ≧2 ²¹ × n
cos(x)		x ≧2 ²¹ × n
cosd(x)		$ x \ge 2^{21} \times 180$
cotan(x)		x ≧2 ²¹ × n
csin(x+yi)		x ≧2 ²¹ × n
sin(x)		x ≧2 ²¹ × π
sind(x)		$ x \ge 2^{21} \times 180$
tan(x)		x ≧2 ²¹ × n

倍精度:

関数	エラー状態となる引数の範囲
cdcos(x+yi)	x ≧2 ⁵⁰ × n
cdexp(x+yi)	y ≧2 ⁵⁰ × π
cdsin(x+yi)	x ≧2 ⁵⁰ × π
dcos(x)	x ≧2 ⁵⁰ × π
dcosd(x)	$ x \ge 2^{50} \times 180$
dcotan(x)	x ≧2 ⁵⁰ × π
dsin(x)	x ≧2 ⁵⁰ × π
dsind(x)	$ x \ge 2^{50} \times 180$
dtan(x)	x ≧2 ⁵⁰ × π

4倍精度:

関数	エラー状態となる引数の範囲
cqcos(x+yi)	x ≧2 ¹¹⁰ × n
cqexp(x+yi)	y ≧2 ¹¹⁰ × π
cqsin(x+yi)	x ≧2 ¹¹⁰ × n
qcos(x)	x ≧2 ¹¹⁰ × n
qcotan(x)	x ≧2 ¹¹⁰ × n
qsin(x)	x ≧2 ¹¹⁰ × π
qtan(x)	x ≧2 ¹¹⁰ × n

第12章 メッセージ

12.1 診断メッセージ

コンパイラは、プログラムの最適化状況を示すメッセージを標準エラー出力、診断メッセージリストに出力します。本セクションでは、それらの形式、主なメッセージについて説明します。

12.1.1 メッセージの形式

診断メッセージは次の形式で出力されます。

種別(番号):位置情報:メッセージ本文[:ヒント]

種別 (番号):

メッセージの種別とメッセージ本文に割り当てられた番号が表示されます。種別には以下 があります。

vec: ベクトル化

opt: 最適化・ベクトル化

dtl: 最適化・ベクトル化のより詳細な情報

inl: インライン展開

par: OpenMP並列化・自動並列化

err: 主にOpenMP指示行指定時の問題

位置情報:

診断メッセージ対応するソースコードの行番号が出力されます。標準エラー出力に出力されたとき、行番号の行を含むファイル名も出力されます。

メッセージ本文:

診断メッセージの本文が出力されます。

ヒント:

診断メッセージによっては、手続名、変数名、配列名などが出力されます。

- モジュール手続を出力するとき、モジュール名と手続名を「::」で区切って出力します。
- 内部手続を出力するとき、親手続名と内部手続名を「::」で区切って出力します。

- 派生型の変数、配列の成分名を表示するとき、変数名、配列名と成分名を「%」で区切って出力します。
- 変数名、配列名が不明であるとき、型名が出力されることがあります。
- コンパイラが最適化のために生成した手続名、変数名としてベースとなった手続名、変数名に「\$数値」が付加されて出力されることがあります。

12.1.2 メッセージ一覧

vec(101): Vectorized loop.

ループ全体がベクトル化された。

vec(102): Partially vectorized loop.

ループが部分ベクトル化された。

vec(103): Unvectorized loop.

ループがベクトル化されなかった。

vec(107): Iteration count is too small.

ループの繰返し数がベクトル化の閾値より小さいためベクトル化しない。ベクトル化の閾値は-mvector-threshold=nで変更できる。

vec(108): Unvectorizable loop structure.

ループの繰返しを制御する変数やループ構造がベクトル化に適していないため、ベクトル 化できない。主に次のような場合に出力される。

- ループの繰返しを制御する変数が別の型に型変換されている。-mreplace-loop-indu ctionでベクトル化できる場合がある。
- ループの繰返しの終了判定式が、ループの繰返しを制御する変数とループ内不変の式の 比較でない。
- ループ終了の条件式に、.AND.、.OR.、.EQV.、.NEQV.、.NOT.が現れている。
- ループ終了の条件式に、.EQ.、.NE.、==、/=が現れている。-mreplace-loop-equationでベクトル化できる場合がある。
- ループの中から外への分岐(飛出し)が2個以上含まれる。
- ループ外からループ内への分岐(飛込み)がある。if文とgoto文からなるループの場合に 考えられる。
- 部分ベクトル化しようとしたが、そのための作業ベクトルが作成できない。次の例で

は、部分ベクトル化するためにa(1)の作業ベクトルが必要だが、その型はベクトル化 できない型であり作業ベクトルを作成できない。

```
subroutine sub(a, b, c, d, n)
complex(16) a(n)
complex(8) b(n), c(n), d(n)
do i=1, n
    a(1) = b(i) + d(i) + c(i)
    c(i) = a(1)
enddo
end
```

vec(109): Vectorization obstructive statement.

ベクトル化できない文である。

vec(110): Vectorization obstructive procedure reference: 手続名

ベクトル化できない手続の呼出しがある。

vec(111): "novector" is specified.

novector指示行が指定されたためベクトル化しない。

vec(112): "novwork" is specified.

novwork指示行が指定されたため部分ベクトル化しない。

vec(113): Overhead of loop division is too large.

ループ分割によるオーバーヘッドが大きくベクトル化の効果がないため、部分ベクトル化 しない。

vec(115): Internal table overflow.

ベクトル化処理中に内部テーブルの大きさが足りなくなったため、ベクトル化できない。

vec(116): Unvectorizable procedure reference.: 手続名

ベクトル化できないユーザ手続の呼出しがある。手続ポインタを介して手続を呼び出して いるとき手続名は出力されない。

vec(117): Unvectorizable statement.

ベクトル化できない文がある。

vec(118): Unvectorizable data type.

ベクトル化できないデータ型の参照がある。

vec(119): Array is not aligned.: 変数名

配列、または、ポインタの指示先が、ベクトル化できるメモリ境界に整列されていない。

vec(120): Unvectorizable dependency.: 変数名

ベクトル化不可の依存関係がある。

vec(121): Unvectorizable dependency.

ベクトル化不可の依存関係がある。

vec(122): Dependency unknown. Unvectorizable dependency is assumed.: 変数名

依存関係がわからないためベクトル化不可の依存関係が存在すると仮定する。変数名が不明であるとき、変数名は出力しない。ループに**ivdep**指示行を指定すると本依存関係をベクトル化できるものとみなしベクトル化を適用する。

vec(124): Iteration count is assumed. Iteration count=n

ループの繰返し数を最大n回であると仮定した。

vec(126): Idiom detected.: マクロ演算の種別

ベクトルマクロ演算が検出された。マクロ演算の種別は以下である。

Max/Min、List Vector、Sum、Product、Bit-op、Iteration、Search

vec(128): Fused multiply-add operation applied.

ベクトルFMA命令を使用した。

vec(129): Array is retained.: 配列名

retain指示行が適用された。

vec(130): Vector register is assigned.: 配列名

vreg指示行により、配列名にベクトルレジスタが割り当てられた。

vec(131): Too many statements.

文の数が多すぎるため、ベクトル化できない。

vec(132): Too many procedure calls.

手続呼出しの数が多すぎるためベクトル化できない。

vec(133): Too many memory refereneces.

メモリ参照の数が多すぎるためベクトル化できない。

vec(134): Too many branches.

分岐の数が多すぎるためベクトル化できない。

vec(135): vreg canceled.: 配列名

vreg指示行が適用されなかった。

vec(136): pvreg canceled.: 配列名

pvreg指示行が適用されなかった。

vec(139): Packed loop.

packed-vector命令を使用してベクトル化した。

vec(140): Unpacked loop.: 理由

-mvector-packed、または、**packed_vector**指示行が指定されたが、ループがpacked -vector命令を使用してベクトル化できなかった。

vec(141): "nopacked_vector" is specified.

nopacked_vector指示行が指定された。

vec(142): pvreg is used in vector loop.

pvreg指示行で指定された配列がpacked-vector命令を使用されずにベクトル化されたループに含まれる。

vec(143): vreg is used in packed vector loop.

vreg指示行で指定された配列がpacked-vector命令を使用しベクトル化されたループに含まれる。

vec(144): No mask for vector load under condition.: 配列名

IF文の条件下で実行されるベクトルロードはマスクが付かない。繰り返し数分だけの領域を用意しておく必要がある。

vec(161): Structure assignment obstructs vectorization.

派生型の代入が含まれるためベクトル化できない。

-mvector-assignment-threshold=nでサイズのしきい値を指定するとベクトル化できる場合がある。

vec(163): Exception handling obstructs vectorization.

C++例外処理に関わる処理が含まれるためベクトル化できない。

vec(180): I/O statement obstructs vectorization.

入出力に関わる処理が含まれるためベクトル化できない。

vec(181): Allocation obstructs vectorization.

メモリ確保に関わる処理が含まれるためベクトル化できない。

vec(182): Deallocation obstructs vectorization.

メモリ解放に関わる処理が含まれるためベクトル化できない。

vec(183): Run-time checking obstructs vectorization.

実行時チェックに関わる処理が含まれるためベクトル化できない。-fcheckで生成される処理の他に、メモリの確保、解放の成功、失敗などに関わる実行時チェックも対象に含まれる。

vec(184): Division obstructs vectorization.

ベクトル化できない型の除算が含まれるためベクトル化できない。

vec(185): Exponentiation obstructs vectorization.

ベクトル化できない型のべき乗算が含まれるためベクトル化できない。

opt(1011): Too large to optimize -- reduce program or loop size.

ループ、または、ルーチンが大きすぎるため最適化できない。ループ、ルーチンの分割を 検討する。

opt(1019): Feedback of scalar value from one loop pass to another.

スカラ変数が異なる繰返しで定義された値を参照しているため最適化できない。

opt(1025): Reference to this procedure inhibits optimization.

最適化を阻害する手続呼出しがあるため最適化できない。

opt(1034): Multiple store conflict.

同一の配列要素が複数回定義されるため最適化できない。

opt(1037): Feedback of array elements.

異なる繰返しで同一の配列要素を定義・参照しているため最適化できない。

opt(1038): Loop too complex -- optimization of this loop halted.

ループが複雑すぎるため最適化できない。

opt(1056): Loop nest too deep for optimization.

ループのネストが深すぎるため最適化できない。

opt(1057): Complicated use of variable inhibits loop optimization.

変数の定義/参照が複雑で最適化できない。

opt(1059): Unable to determine last value of scalar temporary.

スカラ変数の終値が確定できないため最適化できない。

opt(1061): Use of scalar under different condition causes feedback.

スカラ変数が異なる条件下で参照されているため最適化できない。

opt(1062): Too many data dependency problems.

データ依存が多すぎるため最適化できない。

opt(1082): Backward transfers inhibit loop optimization.

逆方向分岐があるため最適化できない。

opt(1083): Last value of promoted scalar required.

作業配列化されたスカラ変数の終値が保証できないため最適化できない。

opt(1084): Branch out of the loop inhibits optimization.

ループからの飛出しがあるため最適化できない。

opt(1097): This statement prevents loop optimization.

最適化を阻害する文があり最適化できない。

opt(1108): Reduction function suppressed -- need associative transformatio n.

-fassociative-mathが無効であるため、-fmatrix-multiplyによる最適化を行わない。

opt(1117): Indirect branch inhibits to optimization of loop.

間接分岐があるため最適化できない。

opt(1118): This I/O statement inhibits to optimization of loop.

入出力文があるため最適化できない。

opt(1128): Branching too complex to optimize at this optimization level.

分岐が複雑で最適化できない。

opt(1130): Conditional scalar inhibits optimization of outer loop.

条件下で定義されるスカラ変数が外側ループの最適化を阻害している。

opt(1131): Function references in iteration count inhibits optimization.

ループの繰返し制御に現われる関数参照があり最適化できない。

opt(1166): Potential dependency due to pointer -- use restrict qualifier if o k.

ポインタの参照先の定義・参照関係に依存がある可能性があり最適化しない。ループに**iv dep**指示行を指定すると本依存関係を最適化できるものとみなしベクトル化を適用する。

- inl(1214): Expansion routine is too big for automatic expansion.: *ルーチン*名 ルーチンが大きすぎるので自動インライン展開しない。-finline-max-function-size= *n*、-finline-max-times=*n*で展開するルーチンの大きさを調整するとインライン展開できる場合がある。
- inl(1219): Nesting level too deep for automatic expansion.: ルーチン名 インライン展開するルーチン呼のネストが深すぎるためインライン展開しない。
 - **-finline-max-depth**=*n*で展開するルーチンの呼出しの深さを調整するとインライン展開できる場合がある。
- inl(1222): Inlined.: ルーチン名

ルーチン名がインライン展開された。

opt(1268): Use of pointer variable/expression inhibits optimization. ポインタが最適化を阻害している。

opt(1285): Not enough work to justify concurrency optimization.

ループ中の作業量が少ないため自動並列化しない。

opt(1298): Use of induction variable outside the loop inhibits optimization. インダクション変数がループ外で参照されているため最適化できない。

opt(1299): Redefinition of induction variable in loop inhibits optimization.

インダクション変数がループ内で再定義されているため最適化できない。

opt(1300): Assumed-size private arrays inhibit concurrency.

大きさ引継ぎ配列があるため並列化できない。

opt(1315): Iterations peeled from loop in order to avoid dependence.

ベクトル化不可の依存関係を除去するため、ループの前方/後方展開を行った。

opt(1376): User function reference inhibits optimization.

関数参照があるため最適化できない。

opt(1377): Must synchronize to preserve order of accesses.

同期制御が必要であるため最適化できない。

opt(1378): Many synchronizations needed.

同期制御が多数必要なため並列化しない。

opt(1380): User function references not ok without "cncall".

関数参照があるため並列化できない。 **cncall**指示行を指定すると並列化できる場合がある。

opt(1382): Subroutine calls are handled only when "cncall" is used.

サブルーチン呼出しがあるため並列化できない。**cncall**指示行を指定すると並列化できる場合がある。

opt(1387): Overlapping EQUIVALENCEd variables inhibit concurrency.

EQUIVALENCEされた変数間に重なりがあるため最適化できない。

inl(1388): Inlining inhibited: OpenMP or parallel directive.

OpenMP指示行、自動並列化の指示行があるためインライン展開できなかった。

opt(1394): Moved invariant if outside of an inner loop.

条件が不変なIF文がループ外に移動された。

opt(1395): Inner loop stripped and strip loop moved outside outer loop.

外側ループストリップマイニングを適用した。

opt(1408): Loop interchanged.

ループを入れ換えた。

opt(1409): Alternate code is generated.

条件ベクトル化を適用した。

opt(1589): Outer loop moved inside inner loop(s).

外側ループを内側ループと入れ換えた。

opt(1590): Inner loop moved outside outer loop(s).

内側ループを外側ループと入れ換えた。

opt(1592): Outer loop unrolled inside inner loop.

外側ループをアンローリングした。

opt(1593): Loop nest collapsed into one loop.

ループを一重化した。

opt(1772): Loop nest fused with following nest(s).

後続のループと融合した。

opt(1800): Idiom detected (matrix multiply).

多重ループを行列積ライブラリ呼出しに置換した。

opt(3008): Reference within a conditional branch moved outside loop - use "move" directive to suppress this optimization.

IF条件下の安全でないメモリ参照がループ外に移動された。

opt(3012): Division within a conditional branch moved outside loop - use " move" directive to suppress this optimization.

IF条件下の安全でない除算がループ外に移動された。

opt(3013): Moved division within a conditional branch.

IF条件下の安全でない除算が移動された。

opt(3014): Moved reference within a conditional branch.

IF条件下の安全でないメモリ参照が移動された。

12.2 実行時エラーメッセージ

本セクションでは、Fortranコンパイラの実行時ルーチンの出力する主要なエラーメッセージ について説明します。

12.2.1 メッセージの形式

「Runtime Error:」に続けて、行番号、ファイル名、エラーの内容を示すメッセージ本文が 出力されます。行番号、ファイル名が表示されない出力もあります。

Runtime Error: [行番号. ファイル名:] メッセージ本文

12.2.2 メッセージ一覧

ADVANCE= specifier must be 'YES' or 'NO'

READ文または**WRITE**文の**ADVANCE**指定子の値が不正です。**ADVANCE**指定子には 'Y ES' または 'NO' のいずれかを指定してください。

ALLOCATABLE dimname is not currently allocated

allocatable 属性の配列*dimname*に配列領域が割付けられていません。allocate文で配列 領域を割付けてください。

ALLOCATE failed: Out of memory

メモリ不足のため割付けできません。使用しているメモリサイズを確認し、プログラムを 見直してください。

Array constructor implied DO limit expression value *value* is out of range for index variable *var* type *type*

type型のindex変数varの終値valueが範囲外です。valueを見直してください。

Array constructor implied DO step expression value *value* is out of range for index variable *var* type *type*

type型のindex変数varの刻み幅の値valueが範囲外です。valueを見直してください。

ASYNCHRONOUS= specifier must be 'NO' or 'YES'

OPEN文の**ASYNCHRONOUS**指定子の値が不正です。**ASYNCHRONOUS**指定子には'Y ES' または 'NO'のいずれかを指定してください。

Buffer overflow on output

入出力文でレコードバッファがオーバーフローしました。**OPEN**文に指定した**RECL**指定 子や環境変数**VE_FORT_FMTBUF**、環境変数**VE_FORT_RECORDBUF**に指定した値 が、出力データのサイズより大きいことを確認してください。

Call to OMP_SET_MAX_ACTIVE_LEVELS from within a *name* **region** *name*領域から**OMP_SET_MAX_ACTIVE_LEVELS**が呼ばれました。処理内容を見直し
てください。

Cannot allocate ALLOCATABLE variable - out of memory

割付け変数の割付けを行うために必要とするメモリが足りません。使用しているメモリサイズを確認し、プログラムを見直してください。

Cannot allocate array temporary - out of memory

メモリ不足のため配列の一時領域が確保できませんでした。使用しているメモリサイズを確認し、プログラムを見直してください。

Cannot allocate I/O buffer in OPEN processing UNIT=Unit-Number

この装置番号に対する**OPEN**文で、入出力バッファの領域が確保できませんでした。不要な外部ファイル装置を**CLOSE**文で閉じてください。または、環境変数**VE_FORT_SETB UF**で適切なサイズを指定してください。

Cannot allocate initial memory - out of memory

初期メモリを確保できません。使用しているメモリサイズを確認し、プログラムを見直し てください。

Cannot allocate memory for asynchronous i/o

非同期入出力文の実行に必要な一時領域が確保できませんでした。並びの数や並びに指定している配列のサイズを見直してください。

- **Cannot allocate memory for environment variable VE_FMTIO_OFFLOAD** 環境変数**VE_FMTIO_OFFLOAD**の実行に必要な一時領域が確保できませんでした。環境変数**VE_FMTIO_OFFLOAD**の指定を止めてください。
- Cannot allocate memory for environment variable VE_FORT_UFMTADJUST 環境変数VE_FORT_UFMTADJUSTの実行に必要な一時領域が確保できませんでした。並びに指定している配列のサイズを見直してください。
- Cannot allocate memory for environment variable VE_FORT_UFMTENDIAN 環境変数VE_FORT_UFMTENDIANの実行に必要な一時領域が確保できませんでした。並びに指定している配列のサイズを見直してください。
- Cannot allocate record buffer in OPEN processing UNIT=Unit-Number この装置番号に対するOPEN文で、レコードバッファの領域が確保できませんでした。不要な外部ファイル装置をCLOSE文で閉じてください。または、環境変数VE_FORT_RECOR DBUFで適切なサイズを指定してください。
- **Cannot BACKSPACE unformatted ACCESS='STREAM' unit** *Unit-Number* 書式なしストリームファイルに対して**BACKSPACE**文は実行できません。書式なしストリームファイルを利用したいときは**BACKSPACE**文を削除してください。**BACKSPACE**文を実行したいときは、順番探査ファイルに変更してください。

Cannot find OLD file

STATUS='OLD'でオープンしようとしたファイルが存在しません。ファイル名を確認し、 誤っているときは正しいファイル名に訂正してください。正しいときは**OPEN**文の**STATU S**指定子の値を見直してください。

Cannot get storage for automatic array - out of memory

メモリ不足のため自動配列の領域が確保できませんでした。使用しているメモリサイズを 確認し、プログラムを見直してください。

Cannot get storage for variable - out of memory

メモリ不足のため変数の領域が確保できませんでした。使用しているメモリサイズを確認 し、プログラムを見直してください。

Character string edit descriptor does not terminate before format end 文字列編集記述子が不正です。書式を見直してください。

- nH形編集で、n分の文字が存在しません
- 文字定数編集で、前の囲み文字と対となる後ろの囲み文字がありません

Character string edit descriptor used on input

入力文の書式に文字列編集記述子が指定されています。入力文の書式を見直してください。

DECIMAL= specifier must be 'POINT' or 'COMMA'

OPEN文、**READ**文または**WRITE**文の**DECIMAL**指定子の値が不正です。**DECIMAL**指定子には'POINT'または'COMMA'のいずれかを指定してください。

DELIM= specifier in OPEN for an UNFORMATTED file

OPEN文にFORM='UNFORMATTED'と一緒に**DELIM**指定子が指定されています。ファイルを書式なしファイルとしてオープンしたいときは**DELIM**指定子を削除してください。 そうでないならば、**OPEN**文の**FORM**指定子の値を見直してください。

DIM argument (value) out of range 1:rank in intrinsic CSHIFT

組込み手続CSHIFTのDIM引数の値valueが範囲外です。DIM引数の値valueを見直してください。

DIM argument (value) out of range 1:rank in intrinsic EOSHIFT

組込み手続EOSHIFTのDIM引数の値valueが範囲外です。DIM引数の値valueを見直してください。

DIM argument (value) out of range 1:rank in intrinsic FINDLOC

組込み手続FINDLOCのDIM引数の値valueが範囲外です。DIM引数の値valueを見直してください。

DIM argument (value) out of range 1:rank in intrinsic LBOUND

組込み手続LBOUNDのDIM引数の値valueが範囲外です。DIM引数の値valueを見直してく ださい。

DIM argument (value) out of range 1:rank in intrinsic MAXLOC

組込み手続MAXLOCのDIM引数の値valueが範囲外です。DIM引数の値valueを見直してください。

DIM argument (value) out of range 1:rank in intrinsic MAXVAL

組込み手続MAXVALのDIM引数の値valueが範囲外です。DIM引数の値valueを見直してください。

DIM argument (value) out of range 1:rank in intrinsic MINLOC

組込み手続MINLOCのDIM引数の値*valu*eが範囲外です。DIM引数の値*valu*eを見直してく ださい。

DIM argument (value) out of range 1:rank in intrinsic MINVAL

組込み手続MINVALのDIM引数の値valueが範囲外です。DIM引数の値valueを見直してく ださい。

DIM argument (value) out of range 1:rank in intrinsic SIZE

組込み手続SIZEのDIM引数の値valueが範囲外です。DIM引数の値valueを見直してください。

DIM argument (value) out of range 1:rank in intrinsic UBOUND

組込み手続UBOUNDのDIM引数の値valueが範囲外です。DIM引数の値valueを見直してください。

DIM argument (value) out of range 1:rank+1 in intrinsic SPREAD

組込み手続SPREADのDIM引数の値valueが範囲外です。DIM引数の値valueを見直してください。

Direct access is incompatible with the POSITION= specifier

OPEN文にACCESS='DIRECT'と一緒に**POSITION**指定子が指定されています。ファイルを直接探査ファイルとしてオープンしたいときは**POSITION**指定子を削除してください。そうでないならば、**OPEN**文の**ACCESS**指定子の値を見直してください。

DO limit expression value value is out of range for index variable var type

type

type型のindex変数varの終値valueが範囲外です。valueを見直してください。

DO step expression value *value* is out of range for index variable *var* type *type*

type型のindex変数varの刻み幅の値valueが範囲外です。valueを見直してください。

Element element of ORDER argument (value value) to intrinsic RESHAPE is out of range (1:rank)

組込み手続RESHAPEのORDER引数の値valueが範囲外です。ORDER引数の値valueを見直してください。

ENDFILE applied twice to unit *Unit-Number* with no intervening file positioning

ENDFILE文の実行に続けてENDFILE文を実行しようとしています。ファイル終了記録の 後へはファイル終了記録を出力することはできません。2回目のENDFILE文を削除してく ださい。

EXECUTE_COMMAND_LINE has WAIT=.FALSE., but asynchronous execution is not supported

EXECUTE_COMMAND_LINEに**WAIT=.FALSE.**が設定されていますが、非同期実行は サポートされていません。処理内容を見直してください。

Expected decimal point in format specification

FORMAT文の中で編集記述子にドットが不足しています。**FORMAT**文の形式を確認してください。

Expected integer literal constant in format specification

書式内の記載が不正です。数値を記載するべき箇所に数値がありません。考えられるケースとしては下記があります。書式を見直してください。

- Iw.m, Zw.m, Ow.m, Bw.m 形式において、mの値が指定されていない(ピリオドは 指定されている)
- Dw.d, Fw.d, Ew.d, ENw.d, ESw.d, Gw.d 形式において、dの値が指定されていない(ピリオドは指定されている)
- Ew.dEe, ENw.dEe, ESw.dEe, Gw.dEe 形式において、eの値が指定されていない(指数文字は指定されている)
- kP 形式において、kに符号(+-)を指定したあと、数字が指定されていない

• TLn, TRn, Tn 形式において、nの値が指定されていない

Expected P following signed integer constant in format specification

符号(+-)付きの数字のあとにP以外の文字が指定されいます。符号付きの数値が指定できるのはkP形編集のみです。書式を見直してください。

Exponent too large for Dw.d format

指数部の桁が大きすぎるため、指定されたDw.d形式の書式では出力できません。Ew.dEe 形式の書式で指数の桁数を明示的に指定してください。Ew.dEe形式の書式に変更すると指数文字がDからEになるので注意してください。

Exponent too large for Ew.d format

指数部の桁が大きすぎるため、指定されたEw.d形式の書式では出力できません。Ew.dEe 形式の書式で指数の桁数を明示的に指定してください。

- **F90_UNIX_DIR.GETCWD:** Both NAME and LENNAME are not PRESENT **F90_UNIX_DIR**モジュールの**GETCWD**手続で*NAMEとLENNAME*が存在しません。処理 内容を見直してください。
- **F90_UNIX_ENV.GETARG: Value of K (***value***) is out of range 0:***num* **F90_UNIX_ENV**モジュールの**GETARG**手続のKの値が範囲外です。処理内容を見直して
 ください。
- **F90_UNIX_ENV.GETENV(***var***): No such environment variable F90_UNIX_ENV**モジュールの**GETENV**手続(*var*)に指定された環境変数はありません。
 処理内容を見直してください。
- **F90_UNIX_ENV.ISATTY: LUNIT (***value***) is out of range F90_UNIX_ENV**モジュールの**ISATTY**手続に指定した論理装置*value*の値が範囲外で
 す。処理内容を見直してください。
- **F90_UNIX_ENV.SYSCONF(***value***): Not a valid sysconf name F90_UNIX_ENV**モジュールの**SYSCONF**手続(*value*)に指定されたsysconf名は有効では
 ありません。処理内容を見直してください。
- **F90_UNIX_ENV.SYSCONF(***value***): Result (***value***) too large for VAL F90_UNIX_ENV**モジュールの**SYSCONF**手続(*value*)の結果の値が大きすぎます。処理
 内容を見直してください。
- **F90_UNIX_ENV.TTYNAME: LUNIT (***value***) is out of range F90_UNIX_ENV**モジュールの**TTYNAME**手続に指定した論理装置*value*の値が範囲外で

す。処理内容を見直してください。

F90_UNIX_FILE.FSTAT: LUNIT (value) is out of range

F90_UNIX_FILEモジュールの**FSTAT**手続に指定した論理装置*value*の値が範囲外です。 処理内容を見直してください。

F90_UNIX_IO.FLUSH: LUNIT (value) is out of range

F90_UNIX_IOモジュールの**FLUSH**手続に指定した論理装置*value*の値が範囲外です。 処理内容を見直してください。

Field/exponent width or repeat in format specification must be non-zero

書式指定の欄幅または反復数にゼロは指定できません。欄幅または反復数にゼロより大き い整数値を指定してください。

File name too long

オープンしようとしたファイルパス名が長すぎます。ファイルパス名は255バイト以内に してください。

FILE= specifier on OPEN with STATUS='SCRATCH'

OPEN文にSTATUS='SCRATCH'と一緒に**FILE**指定子が指定されています。ファイルをSCRATCHファイルとしてオープンしたいときは**FILE**指定子を削除してください。そうでないならば、**OPEN**文の**STATUS**指定子の値を見直してください。

Floating overflow on real number input

実数型の入力で、対応する並びの実数の精度の範囲外の値を入力しようとしています。対応する並びの実数の精度を見直すか、入力データを見直してください。

FORALL limit expression value *value* is out of range for index variable *var* t ype *type*

type型のindex変数varの終値valueが範囲外です。valueを見直してください。

FORALL step expression value value is out of range for index variable var t ype type

type型のindex変数varの刻み幅の値valueが範囲外です。valueを見直してください。

FORALL step value is zero for index variable var

FORALL構文のステップ数がゼロです。ゼロ以外を指定してください。

Format specification does not end with a right parenthesis

書式指定の末尾が右括弧で終わっていません。書式の最後に右括弧を追加してください。

GET argument to intrinsic RANDOM_SEED is too small (*value* **elements)**

組み込み手続RANDOM_SEEDのGETの値が小さすぎます。プログラムを見直してください。

I/O error on unit Unit-Number: Disk quota exceeded

この装置番号を指定したWRITE文やCLOSE文がディスクのクォータ制限のため、書き込みに失敗しました。ファイルシステムのクォータ制限を確認してください。

I/O error on unit Unit-Number: Permission denied

この装置番号に接続されたファイルのパーミッションがないため、アクセスできません。 指定したファイルのパーミッションを確認してください。

Illegal character " in LOGICAL input field

論理データの入力で、論理データとして許されない文字を入力しようとしています。入力 データを見直してください。

Incorrect unit for VE_FORT_MEM_BLOCKSIZE.

環境変数VE_FORT_MEM_BLOCKSIZEに不正な単位が指定されました。環境変数VE_FORT_MEM_BLOCKSIZEに指定した単位が、G、または、Mとなっていることを確認してください。

Input list bigger than record length in unformatted READ on unit *Unit-Num* ber

書式なし入力文の実行で、記録の長さを超えて入力しようとしています。記録の長さを超 えて入力しないように書式なし入力文を修正してください。

Input value too large for default INTEGER type

基本整数型の入力で、基本整数型の範囲外の値を入力しようとしています。入力データを 見直してください。

Input value too large for INTEGER(KIND=1)

1バイト整数型の入力で、1バイト整数型の範囲外の値を入力しようとしています。入力データを見直してください。

Input value too large for INTEGER(KIND=2)

2バイト整数型の入力で、2バイト整数型の範囲外の値を入力しようとしています。入力データを見直してください。

Internal file overflow

入出力文で指定した内部ファイルがオーバーフローしました。内部ファイルに指定した文字型変数のサイズが、出力データのサイズより大きいことを確認してください。

Invalid character in binary integer input field

2進データの入力で、2進データとして許されない文字を入力しようとしています。入力データを見直してください。

Invalid character in hexadecimal integer input field

16進データの入力で、16進データとして許されない文字を入力しようとしています。入 カデータを見直してください。

Invalid character in integer input field

整数データの入力で、整数データとして許されない文字を入力しようとしています。入力 データを見直してください。

Invalid character in octal integer input field

8進データの入力で、8進データとして許されない文字を入力しようとしています。入力データを見直してください。

Invalid character in real input field

実数データの入力で、実数データとして許されない文字を入力しようとしています。入力 データを見直してください。

Invalid character value in NAMELIST input

NAMELISTの入力に不正な文字valueがあります。入力データを見直してください。

Invalid edit descriptor beginning with 'edit character'

書式内に不正な文字があります。書式を見直してください。

Invalid edit descriptor for character i/o-list item

文字型の入出力並びに対して指定できない書式が指定されています。書式を見直してください。

Invalid edit descriptor for integer i/o-list item

整数型の入出力並びに対して指定できない書式が指定されています。書式を見直してください。

Invalid edit descriptor for logical i/o-list item

論理型の入出力並びに対して指定できない書式が指定されています。書式を見直してください。

Invalid edit descriptor for real i/o-list item

実数型の入出力並びに対して指定できない書式が指定されています。書式を見直してください。

Invalid edit descriptor G0.d for CHARACTER input/output item

文字型の入出力並びに対応する書式に欄幅がゼロのGw.d形編集が指定されました。欄幅 に1以上の値を指定してください。

Invalid edit descriptor G0.d for INTEGER input/output item

整数型の入出力並びに対応する書式に欄幅がゼロのGw.d形編集が指定されました。欄幅に1以上の値を指定してください。

Invalid edit descriptor G0.d for LOGICAL input/output item

論理型の入出力並びに対応する書式に欄幅がゼロのGw.d形編集が指定されました。欄幅に1以上の値を指定してください。

Invalid exponent in real input field

実数データの入力で、実数データとして許されない指数データを入力しようとしていま す。入力データを見直してください。

Invalid input for character editing

文字型の入力で、不正な形式のデータを入力しようとしています。入力データを見直して ください。

Invalid input for complex editing

複素数型の入力で、不正な形式のデータを入力しようとしています。入力データを見直してください。

Invalid input for integer editing

整数型の入力で、不正な形式のデータを入力しようとしています。入力データを見直して ください。

Invalid input for logical editing

論理型の入力で、不正な形式のデータを入力しようとしています。入力データを見直してください。

Invalid input for real editing

実数型の入力で、不正な形式のデータを入力しようとしています。入力データを見直してください。

Invalid value for ACCESS= specifier

OPEN文の**ACCESS**指定子の値が不正です。**ACCESS**指定子には'SEQUENTIAL', 'DIREC T', 'STREAM'または'APPEND'のいずれかを指定してください。

Invalid value for ACTION= specifier

OPEN文の**ACTION**指定子の値が不正です。**ACTION**指定子には'READWRITE', 'READ' または'WRITE'のいずれかを指定してください。

Invalid value for BLANK= specifier

OPEN文または**READ**文の**BLANK**指定子の値が不正です。**BLANK**指定子には'NULL'または'ZERO'のいずれかを指定してください。

Invalid value for DELIM= specifier

OPEN文または**WRITE**文の**DELIM**指定子の値が不正です。**DELIM**指定子には'NONE', 'APOSTROPHE'または'QUOTE'のいずれかを指定してください。

Invalid value for FORM= specifier

OPEN文の**FORM**指定子の値が不正です。**FORM**指定子には'FORMATTED'または'UNFO RMATTED'のいずれかを指定してください。

Invalid value for PAD= specifier

OPEN文または**READ**文の**PAD**指定子の値が不正です。**PAD**指定子には'YES'または'NO' のいずれかを指定してください。

Invalid value for POS= specifier

READ文またはWRITE文のPOS指定子の値が不正です。POS指定子には1以上の整数値を指定してください。

Invalid value for POSITION= specifier

OPEN文の**POSITION**指定子の値が不正です。**POSITION**指定子には'ASIS', 'REWIND' または'APPEND'のいずれかを指定してください。

Invalid value for RECL= specifier (must be positive)

OPEN文のRECL指定子の値が不正です。正の整数にしてください。

Invalid value for ROUND= specifier

OPEN文、**READ**文または**WRITE**文の**ROUND**指定子の値が不正です。**ROUND**指定子には'PROCESSOR_DEFINED', 'UP', 'DOWN', 'ZERO', 'NEAREST' または 'COMPATIBLE' のいずれかを指定してください。

Invalid value for STATUS= specifier

OPEN文または**CLOSE**文のSTATUS指定子の値が不正です。**STATUS**指定子には'KEEP'または'DELETE'のいずれかを指定してください。

Invalid value for VE_FORT_MEM_BLOCKSIZE.

環境変数VE_FORT_MEM_BLOCKSIZEに不正な値が指定されました。環境変数VE_FO

RT_MEM_BLOCKSIZEに指定した値が、0、または、2のべき乗となっていることを確認してください。

Invalid value of VE_INIT_HEAP.

環境変数VE_INIT_HEAPに不正な値が指定されました。環境変数VE_INIT_HEAPに指定した値を確認してください。

Left-hand side of assignment has duplicate vector subscript value *value* for dimension *dim*

代入において左辺のdim次元目のベクトル添字が重複しています。処理内容を見直してください。

Left-hand side of assignment has vector subscript name with duplicate value e value

代入において左辺のベクトル添字が重複しています。処理内容を見直してください。

LEN argument (value) out of range 0:bitsize in intrinsic IBITS

組込み手続IBCLRのLEN引数の値valueが範囲外です。LEN引数の値valueを見直してください。

Missing length of H edit descriptor

書式指定において、H形編集記述子「nHstring」のnにあたる文字数の指定がありません。書式指定を見直してください。

Multiple assignment to scalar var in FORALL

FORALL構文内のスカラ変数*var*に対し複数回の代入がされています。スカラ変数への代入は一度のみとなるようにしてください。

Multiple assignment to scalar variable in FORALL

FORALL構文内のスカラ変数に対し複数回の代入がされています。スカラ変数への代入は一度のみとなるようにしてください。

Multiple assignment to whole array var in FORALL

FORALL構文内の配列の同一要素に対し複数回の代入がされています。同一要素への代入は一度のみとなるようにしてください。

Nested format-item-list is empty

入出力文の書式の()内に編集記述子が指定されていません。()内に編集記述子を指定するか、不要な()を削除してください。

NEW file already exists

STATUS='NEW'でオープンしようとしたファイルが既に存在します。ファイル名を確認し、誤っているときは正しいファイル名に訂正してください。正しいときは**OPEN**文の**S TATUS**指定子の値を見直してください。

NEWUNIT= specifier but no FILE= and STATUS= value is not 'SCRATCH' OPEN文にNEWUNIT指定子が指定されていますが、FILE指定子が指定されておらず、S TATUS指定子の値がSCRATCHでもありません。自動採番で装置をオープンするときは、FILE指定子でファイル名を指定するか、STATUS='SCRATCH'でSCRATCHファイルを指定してください。そうでないならば、NEWUNIT指定子ではなくUNIT指定子を利用してください。

No data edit descriptor in unlimited format item

入出力文の書式において、無制限反復が指定されましたが、対象の()内にデータ編集記述子が存在しません。無制限反復を指定するなら対象の()内にデータ編集記述子を指定してください。データ編集記述子が不要なら、無制限反復は使用しないように書式を修正してください。

No edit descriptor following repeat factor

書式指定において、反復数に続くデータ編集記述子が指定されていません。書式指定を見 直してください。

No FILE= specifier with STATUS='REPLACE' or STATUS='NEW'

OPEN文の**STATUS**指定子にREPLACEまたはNEWが指定されましたが、**FILE**指定子が指定されていません。**OPEN**文の**STATUS**指定子にREPLACEまたはNEWを指定するときは**FILE**指定子も一緒に指定してください。そうでないならば、**STATUS**指定子の値を見直してください。

No left parenthesis after unlimited repeat factor '*'

入出力文の書式に不正な無制限反復が指定されました。無制限反復を指定する書式は必ず ()で囲むようにしてください。

No unit available for NEWUNIT= specifier

OPEN文に**NEWUNIT**指定子が指定されましたが、自動採番でのファイルのオープン数が 上限を超えました。不要なファイルはクローズしてください。

No value found in LOGICAL input field

論理データの入力で、論理データがありません。入力データを見直してください。

OPEN on connected unit *Unit-Number* **has different ACCESS= specifier** 既に接続されている装置に対する**OPEN**文の**ACCESS**指定子の値が以前と異なります。**A**

CCESS指定子の値を同じ値に変更してください。新しい値で接続したいならば、一度装置をクローズしてからOPEN文を実行してください。

OPEN on connected unit *Unit-Number* has different ACTION= specifier 既に接続されている装置に対するOPEN文のACTION指定子の値が以前と異なります。A CTION指定子の値を同じ値に変更してください。新しい値で接続したいならば、一度装置をクローズしてからOPEN文を実行してください。

OPEN on connected unit *Unit-Number* has different ASYNCHRONOUS= specifier

既に接続されている装置に対するOPEN文のASYNCHRONOUS指定子の値が以前と異なります。ASYNCHRONOUS指定子の値を同じ値に変更してください。新しい値で接続したいなら、一度装置をクローズしてからOPEN文を実行してください。

- OPEN on connected unit *Unit-Number* has different FORM= specifier 既に接続されている装置に対するOPEN文のFORM指定子の値が以前と異なります。FOR M指定子の値を同じ値に変更してください。新しい値で接続したいならば、一度装置をクローズしてからOPEN文を実行してください。
- OPEN on connected unit *Unit-Number* has different POSITION= specifier 既に接続されている装置に対するOPEN文のPOSITION指定子の値が以前と異なります。 POSITION指定子の値を同じ値に変更してください。新しい値で接続したいならば、一度装置をクローズしてからOPEN文を実行してください。
- OPEN on connected unit *Unit-Number* has different RECL= specifier 既に接続されている装置に対するOPEN文のRECL指定子の値が以前と異なります。RECL 指定子の値を同じ値に変更してください。新しい値で接続したいならば、一度装置をクローズしてからOPEN文を実行してください。

OPEN on connected unit *Unit-Number* with STATUS= specifier must have ST ATUS='OLD'

既に接続されている装置に対する**OPEN**文にSTATUS='OLD'以外が指定されています。**S TATUS**指定子の値はOLDに変更してください。

Out of memory

一時領域を含む実行に必要なメモリが足りません。使用しているメモリサイズを確認し、 プログラムを見直してください。

Out of memory in intrinsic ADJUSTL

組込み手続ADJUSTLにおいて必要とするメモリが足りません。使用しているメモリサイ

ズを確認し、プログラムを見直してください。

Out of memory in intrinsic ADJUSTR

組込み手続ADJUSTRにおいて必要とするメモリが足りません。使用しているメモリサイズを確認し、プログラムを見直してください。

Out of memory in intrinsic EXECUTE_COMMAND_LINE

組込み手続**EXECUTE_COMMAND_LINE**において必要とするメモリが足りません。使用しているメモリサイズを確認し、プログラムを見直してください。

Out of memory in intrinsic PACK

組込み手続**PACK**において必要とするメモリが足りません。使用しているメモリサイズを確認し、プログラムを見直してください。

Out of memory in intrinsic RESHAPE

組込み手続RESHAPEにおいて必要とするメモリが足りません。使用しているメモリサイズを確認し、プログラムを見直してください。

Out of memory in intrinsic SPREAD

組込み手続SPREADにおいて必要とするメモリが足りません。使用しているメモリサイズを確認し、プログラムを見直してください。

- Out of range: substring ending position envpos is greater than length len 部分列の終了位置が文字列の長さlenより大きいです。範囲内の値を指定してください。
- Out of range: substring starting position startpos is less than 1 部分列の開始位置が1未満です。1以上を指定してください。
- **POS argument (***value***) out of range 0**: *bitsize* **in intrinsic IBCLR** 組込み手続IBCLRのPOS引数の値*value*が範囲外です。POS引数の値*value*を見直してください。

POS argument (value) out of range 0:bitsize in intrinsic IBITS

組込み手続IBITSのPOS引数の値valueが範囲外です。POS引数の値valueを見直してください。

POS argument (value) out of range 0:bitsize in intrinsic IBSET

組込み手続IBSETのPOS引数の値valueが範囲外です。POS引数の値valueを見直してください。

POS= specifier but unit Unit-Number is not open for STREAM i/o

ストリームファイル以外に対して、入出力文に**POS**指定子が指定されています。ストリー

ムファイル以外のファイルを利用するなら**POS**指定子は削除してください。そうでないならば、ストリームファイルとして指定された装置を接続してください。

PUT argument to intrinsic RANDOM_SEED is too small (value elements) 組み込み手続**RANDOM_SEED**の**PUT**の値が小さすぎます。プログラムを見直してください。

READ after WRITE with no intervening file positioning

順番探査ファイルに対してWRITE文の実行に続けてREAD文を実行しようとしています。あるいは、ストリームファイルに対してWRITE文の実行に続けてPOS指定子なしにREAD文を実行しようとしています。入力文の前にREWIND文を実行してください。あるいは、ストリームファイルに対するREAD文にPOS指定子を指定してください。

READ/WRITE attempted after ENDFILE on unit *Unit-Number*

ENDFILE文の実行に続けて入出力文を実行しようとしています。あるいは、ファイル終了条件となった直後に、入出力文を実行しようとしています。ファイル終了記録の後へは記録を出力することはできません。入力文の前にREWIND文を実行してください。あるいは、ファイル終了記録の直前へ記録を追加するときには、ファイル終了記録の直前へ位置付けるためにBACKSPACE文を1度実行してください。

RECL= specifier with ACCESS='STREAM'

OPEN文にACCESS='STREAM'と一緒に**RECL**指定子が指定されています。ファイルをストリームファイルとしてオープンしたいときは**RECL**指定子を削除してください。そうでないならば、**OPEN**文の**ACCESS**指定子の値を見直してください。

Record longer than 2GB not supported

順編成ファイルの書式なし記録の入出力で記録サイズが2ギガバイトを超えました。入力で本メッセージが出力されたときは、入力データのエンディアン形式を確認してください。エンディアン形式がビックエンディアンのときは、環境変数VE_FORT_UFMTENDIANを指定してください。それ以外のときは、環境変数VE_FORT_EXPRCW、または、環境変数VE_FORT_SUBRCWを指定してください。

Record number Record Number out of range

READ文またはWRITE文のREC指定子の値が不正です。REC指定子には1以上の整数値を 指定してください。

Reference to dangling pointer

無効なメモリ領域を指すポインタを参照しています。プログラムを見直してください。

Reference to dangling pointer *name*

無効なメモリ領域を指すポインタnameを参照しています。プログラムを見直してください。

Reference to disassociated POINTER

関連を解除されたポインタを参照しています。プログラムを見直してください。

Reference to disassociated POINTER name

関連を解除されたポインタnameを参照しています。プログラムを見直してください。

Reference to undefined POINTER

未定義のポインタを参照しています。プログラムを見直してください。

Reference to undefined POINTER name

未定義のポインタnameを参照しています。プログラムを見直してください。

Repeat factor given for blank-interpretation edit descriptor

書式指定において、空白解釈編集記述子に反復数が指定されています。書式指定を見直してください。

Repeat factor given for character string edit descriptor

書式指定において、文字列編集記述子に反復数が指定されています。書式指定を見直して ください。

Repeat factor given for position edit descriptor

書式指定において、位置付け編集記述子に反復数が指定されています。書式指定を見直してください。

Repeat factor given for rounding edit descriptor

書式指定において、丸め編集記述子に反復数が指定されています。書式指定を見直してください。

Repeat factor given for sign edit descriptor

書式指定において、符号制御編集記述子に反復数が指定されています。書式指定を見直し てください。

Scale factor num out of range for d=num

範囲外の桁移動数です。処理内容を見直してください。

SHIFT argument (value) out of range -bitsize:bitsize in intrinsic ISHFT

組込み手続ISHFTのSHIFT引数の値valueが範囲外です。SHIFT引数の値valueを見直してください。

SHIFT argument (value) out of range -size:size in intrinsic ISHFTC

組込み手続ISHFTCのSHIFT引数の値*valu*eが範囲外です。SHIFT引数の値*valu*eを見直し てください。

Sign in a numeric input field not followed by any digits

整数または実数データの入力で、符号に続く数字データがありません。入力データを見直 してください。

SIGN= specifier must be 'PROCESSOR_DEFINED', 'PLUS' or 'SUPPRESS'

OPEN文またはWRITE文のSIGN指定子の値が不正です。SIGN指定子には'PROCESSOR

_DEFINED', 'PLUS' または 'SUPPRESS'のいずれかを指定してください。

SIZE argument (value) out of range 1:maxsize in intrinsic ISHFTC

組込み手続ISHFTCのSIZE引数の値valueが範囲外です。SIZE引数の値valueを見直してください。

SIZE= is not valid without ADVANCE='NO'

READ文にADVANCE='NO' の指定なしにSIZE指定子が指定されています。停留入力文を利用するときはSIZE指定子を削除してください。SIZE指定子を指定するならADVANCE='NO'を指定してください。

STATUS='KEEP' is invalid for a SCRATCH file

CLOSE文で一時ファイルに対してSTATUS='KEEP'が指定されています。**CLOSE**文の**ST** ATUS指定子の値をDELETEに変更するか、**OPEN**文の**STATUS**指定子の値をSCRATCH以外に変更してください。

Subscript (value) out of range in input for object objname of NAMELIST/na melist/

NAMELISTの項目への入力で添字の値が範囲外です。添字の値を見直してください。

Subscript out of range for assumed-size array *name* - Access to element value but actual argument has only *value* elements

大きさ引継ぎ配列nameの添字の値が範囲外です。添字の値を見直してください。

Subscript rank of dimname (value value) is out of range (lower:*)

配列dimnameのrank次元の添字の値valueが範囲外です。配列dimnameのrank次元の添字の値valueを見直してください。

Subscript rank of dimname (value value) is out of range (lower:upper)

配列dimnameのrank次元の添字の値valueが範囲外です。配列dimnameのrank次元の添字の値valueを見直してください。

Substring (lower:upper) out of bounds in input for object objname of NAMEL IST/namelist/

NAMELISTの項目への入力で部分列が範囲外です。部分列の値を見直してください。

Substring has zero length in input for object objname of NAMELIST/namelist

NAMELISTの項目への入力で部分列の長さがゼロです。部分列の値を見直してください。

Sub-format groups nested too deeply

書式内の括弧のネストが40を超えています。ネスト数は40以内にしてください。

The RECL= specifier must be given for DIRECT access OPEN

OPEN文の**ACCESSS**指定子にDIRECTが指定されましたが、**RECL**指定子が指定されていません。**OPEN**文の**ACCESS**指定子にDIRECTを指定するときは**RECL**指定子も一緒に指定してください。そうでないならば、**ACCESS**指定子の値を見直してください。

Undefined pointer name used as argument to intrinsic function ASSOCIATE D

組み込み関数**ASSOCIATED**の引数に未定義のポインタ*name*が使用されています。プログラムを見直してください。

Undefined pointer name used as argument to intrinsic function EXTENDS_T YPE_OF

組み込み関数**EXTENDS_TYPE_OF**の引数に未定義のポインタ*name*が使用されています。プログラムを見直してください。

Undefined pointer name used as argument to intrinsic function SAME_TYPE _AS

組み込み関数SAME_TYPE_ASの引数に未定義のポインタnameが使用されています。プログラムを見直してください。

Undefined pointer name used as argument to intrinsic function STORAGE_S IZE

組み込み関数**STORAGE_SIZE**の引数に未定義のポインタ*name*が使用されています。プログラムを見直してください。

Undefined pointer used as argument to intrinsic function ASSOCIATED 組み込み関数ASSOCIATEDの引数に未定義のポインタが使用されています。プログラムを見直してください。

Undefined pointer used as argument to intrinsic function EXTENDS_TYPE_O

F

組み込み関数**EXTENDS_TYPE_OF**の引数に未定義のポインタが使用されています。プログラムを見直してください。

Undefined pointer used as argument to intrinsic function SAME_TYPE_AS 組み込み関数SAME_TYPE_ASの引数に未定義のポインタが使用されています。プログラムを見直してください。

Undefined pointer used as argument to intrinsic function STORAGE_SIZE 組み込み関数STORAGE_SIZEの引数に未定義のポインタが使用されています。プログラムを見直してください。

Undefined polymorphic pointer *name* used as argument to intrinsic function ASSOCIATED

組み込み関数**ASSOCIATED**の引数に未定義の多相型ポインタ*name*が使用されています。プログラムを見直してください。

Undefined polymorphic pointer *name* used as argument to intrinsic function EXTENDS_TYPE_OF

組み込み関数**EXTENDS_TYPE_OF**の引数に未定義の多相型ポインタ*name*が使用されています。プログラムを見直してください。

Undefined polymorphic pointer *name* used as argument to intrinsic function SAME_TYPE_AS

組み込み関数**SAME_TYPE_AS**の引数に未定義の多相型ポインタ*name*が使用されています。プログラムを見直してください。

Undefined polymorphic pointer name used as argument to intrinsic function STORAGE_SIZE

組み込み関数**STORAGE_SIZE**の引数に未定義の多相型ポインタ*name*が使用されています。プログラムを見直してください。

Undefined polymorphic pointer used as argument to intrinsic function ASSO CIATED

組み込み関数**ASSOCIATED**の引数に未定義の多相型ポインタが使用されています。プログラムを見直してください。

Undefined polymorphic pointer used as argument to intrinsic function EXTE NDS_TYPE_OF

組み込み関数EXTENDS_TYPE_OFの引数に未定義の多相型ポインタが使用されていま

す。プログラムを見直してください。

Undefined polymorphic pointer used as argument to intrinsic function SAM E_TYPE_AS

組み込み関数**SAME_TYPE_AS**の引数に未定義の多相型ポインタが使用されています。 プログラムを見直してください。

Undefined polymorphic pointer used as argument to intrinsic function STOR AGE_SIZE

組み込み関数**STORAGE_SIZE**の引数に未定義の多相型ポインタが使用されています。プログラムを見直してください。

Unexpected exponent for G0 edit descriptor

Gw.dEe 形編集において、欄幅にゼロが指定されました。欄幅をゼロにしたいときはGw.d形編集に変更してください。そうでないならば、欄幅に適切な値を指定してください。

Unexpected subscript for object objname of NAMELIST/namelist/

NAMELISTの項目に予期しない添字があります。添字の値を見直してください。

Unit number Unit-Number out of range

UNIT指定子の値が不正です。UNIT指定子には0から2147483647までの整数値か、OP EN文のNEWUNIT指定子に返却された値を指定してください。

Unit Unit-Number is not connected

指定された装置にファイルが接続されていません。指定された装置に対する入出力文の前にファイルをオープンするように見直してください。

Unit Unit-Number is not connected for DIRECT i/o

順番探査またはストリーム探査として接続した外部ファイルに対して、直接探査の入出力 文を実行しようとしました。入出力文を順番探査またはストリーム探査の入出力文に訂正 するか、ファイルを直接探査として接続してください。

Unit Unit-Number is not connected for FORMATTED i/o

書式なしファイルとして接続した外部ファイルに対して、書式付き入出力文を実行しよう としました。入出力文を書式なし入出力文に訂正するか、ファイルを書式付きファイルと して接続してください。

Unit Unit-Number is not connected for READ action

入力の実行しか許されていない装置に対して出力を実行しようとしています。装置番号が 誤っていれば、それを修正する。そうでないならば、そのファイルから入力を行わないよ うにするか、**OPEN**文でその装置を入力可で接続してください。

Unit Unit-Number is not connected for SEQUENTIAL i/o

直接探査として接続した外部ファイルに対して、順番探査の入出力文を実行しようとしま した。入出力文を直接探査の入出力文に訂正するか、ファイルを順番探査として接続して ください。

Unit Unit-Number is not connected for UNFORMATTED i/o

書式付きアイルとして接続した外部ファイルに対して、書式なし入出力文を実行しようと しました。入出力文を書式付き入出力文に訂正するか、ファイルを書式なしファイルとし て接続してください。

Unit Unit-Number is not connected for WRITE action

出力の実行しか許されていない装置に対して入力を実行しようとしています。装置番号が誤っていれば、それを修正する。そうでないならば、そのファイルから出力を行わないようにするか、**OPEN**文でその装置を入力可で接続してください。

Unit Unit-Number is not connected on OPEN with STATUS='OLD' and no FIL

E= specifier

OPEN文の**STATUS**指定子にOLDが指定されましたが、**FILE**指定子が指定されていません。**OPEN**文の**STATUS**指定子にOLDを指定するときは**FILE**指定子も一緒に指定してください。そうでないならば、**STATUS**指定子の値を見直してください。

- **VALUE argument (***value***) to intrinsic ATOMIC_ADD is out of range** 組み込み手続**ATOMIC_ADD**のVALUE引数が範囲外です。処理内容を見直してください。
- **VALUE argument (***value***) to intrinsic ATOMIC_AND is out of range** 組み込み手続**ATOMIC_AND**のVALUE引数が範囲外です。処理内容を見直してください。
- **VALUE argument (***value***) to intrinsic ATOMIC_FETCH_ADD** is out of range 組み込み手続**ATOMIC_FETCH_ADD**のVALUE引数が範囲外です。処理内容を見直してください。
- **VALUE argument (***value***) to intrinsic ATOMIC_FETCH_AND is out of range** 組み込み手続**ATOMIC_FETCH_AND**のVALUE引数が範囲外です。処理内容を見直してください。
- **VALUE argument (***value***) to intrinsic ATOMIC_FETCH_OR is out of range** 組み込み手続**ATOMIC_FETCH_OR**のVALUE引数が範囲外です。処理内容を見直してください。
- VALUE argument (value) to intrinsic ATOMIC_FETCH_XOR is out of range 組み込み手続ATOMIC FETCH XORのVALUE引数が範囲外です。処理内容を見直してく

ださい。

- **VALUE argument (***value***) to intrinsic ATOMIC_OR is out of range** 組み込み手続**ATOMIC_OR**のVALUE引数が範囲外です。処理内容を見直してください。
- VALUE argument (*value*) to intrinsic ATOMIC_XOR is out of range 組み込み手続ATOMIC_XORのVALUE引数が範囲外です。処理内容を見直してください。
- VALUES argument to intrinsic DATE_AND_TIME is too small (*value* element s)

組み込み手続DATE_AND_TIMEのVALUESの値が小さすぎます。プログラムを見直してください。

- **Value** *value* **of KIND argument to OMP_SET_SCHEDULE is out of range 1:4 OMP_SET_SCHEDULE**の引数KINDが指定可能な値の範囲外です。1から4の整数を指定してください。
- Value value of MAX_LEVELS argument to OMP_SET_MAX_ACTIVE_LEVELS is negative

OMP_SET_MAX_ACTIVE_LEVELSに指定した値が負の値です。正の整数を指定してください。

Value *value* of NUM_THREADS argument to OMP_SET_NUM_THREADS is greater than maximum *num*

OMP_SET_NUM_THREADSに指定した値が最大値を超えています。範囲内の値を指定してください。

Value *value* of NUM_THREADS argument to OMP_SET_NUM_THREADS is not positive

OMP_SET_NUM_THREADSに指定した値が正の値ではありません。正の整数を指定してください。

- var has not been assigned a branch target label
 varに文番号が指定されていません。プログラムを見直してください。
- **Vector subscript for rank** *rank* **of** *name* **has extent** *value* **instead of** *value rank*次元のベクトル添字のサイズが違います。添字の値を見直してください。
- **WRITE operation failed on unit** *Unit-Number*: **Disk quota exceeded**この装置番号を指定した**WRITE**文がディスクのクォータ制限のため、書き込みに失敗しました。ファイルシステムのクォータ制限を確認してください。

Zero repeat factor in list-directed input

並び入力で指定されたR*C形式のデータの反復数がゼロです。反復数を1以上に変更してください。

Zero stride value for subscript num of name

nameの添字numの刻み幅にゼロが指定されています。ゼロは指定しないでください。

12.3 その他の実行時メッセージ

Compatibility Error: veos (older than v2.6.0) and ve_exec (vVEOS-verision) are not compatible

veosが古くve_execと互換がない。コンテナ上でVEプログラムを実行している場合は、ホストマシンに入っているveosのバージョンが古い可能性がある。最新のveosパッケージをホストマシンにインストールしてください。

Compatibility Error: veos (vVEOS-version-A) and ve_exec (vVEOS-verision-B) are not compatible

veosが古くve_execと互換がない。コンテナ上でVEプログラムを実行している場合は、 ホストマシンに入っているveosのバージョンが古い可能性がある。最新のveosパッケー ジをホストマシンにインストールしてください。

Failed to load EXEC DATA (fixed): Error Message

実行ファイルのデータ領域の読み込みに失敗した。VEメモリ不足の可能性がある。実行中の他のVEプロセスがあればそれを終了させるか、データ領域のサイズを減らしてください。なお、VE搭載メモリ量と現在のVEメモリ使用量は/opt/nec/ve/bin/free -hで取得できる。

Failed to load EXEC DATA (fixed, fileback): Error Message

実行ファイルのデータ領域の読み込みに失敗した。VEメモリ不足の可能性がある。実行中の他のVEプロセスがあればそれを終了させるか、データ領域のサイズを減らしてください。なお、VE搭載メモリ量と現在のVEメモリ使用量は/opt/nec/ve/bin/free -hで取得できる。

Unable to grow stack

スタックのサイズが足りない。環境変数**VE_LIMIT_OPT**を利用して、次の例のように利用可能なスタックのサイズ上限を増やしてください。

export VE_LIMIT_OPT="-s 8192"

現在のスタックサイズの上限は、ve_execコマンドの--show-limitで確認できる。

\$ ve_execshow-limit			
core file size	(blocks, -c)	0	0
data seg size	(kbytes, -d)	unlimited	unlimited
pending signals	(-i)	379523	379523
max memory size	(kbytes, -m)	unlimited	unlimited
stack size	(kbytes, -s)	unlimited	unlimited <
cpu time	(seconds, -t)	unlimited	unlimited
virtual memory	(kbytes, -v)	unlimited	unlimited

VE Node node-number is **UNAVAILABLE**

node-numberのVEカードに障害が発生した。他のVEノードを利用して、ジョブを実行してください。

第13章 トラブルシューティング

13.1 プログラムのコンパイルに関するトラブルシューティング

"Fatal: License: Unknown host." というコンパイルエラーが発生する。

コンパイラのライセンスチェック時にライセンスサーバーにアクセスできない問題が発生している可能性があります。以下のHPCソフトウェアライセンス発行のページに記載されているFAQを参照してください。解決しなければ、同ページよりお問い合わせください。https://www.hpc-license.nec.com/aurora/

"Invalid #line directive" というコンパイルエラーが発生する。

#if、#includeなどのプリプロセッサディレクティブが使用されています。-fppを指定してコンパイルしてください。

"Cannot find module: ~"というコンパイルエラーが発生する。

モジュールが使用されていますが、そのモジュールファイル(*.mod)が見つかりません。 コンパイラがモジュールファイルをサーチするディレクトリにモジュールファイルが存在 するかを確認してください。コンパイラがモジュールファイルをサーチするディレクトリ については「1.6 モジュールファイルのサーチ」を参照してください。

"not a valid module information file" というコンパイルエラーが発生する。

モジュールファイルをコンパイルしたコンパイラが古いか、モジュールファイルが壊れている可能性があります。モジュールファイル(*.mod)を再作成してください。

指示行に対して、"Syntax error"というコンパイルエラーが発生する。

指示行の綴り、使い方が間違っていないかを確認してください。SXシリーズ向けコンパイラの指示行に対してエラーとなっているときは、コンパイラ指示行変換ツールなどでVEコンパイラの指示行に変換してください。コンパイラ指示行変換ツールについては「付録 Cコンパイラ指示行変換ツール」を参照してください。

"Error: Invalid suffix"というアセンブルエラーが発生する。

binutils-veパッケージが古い可能性があります。binutils-veパッケージが最新版であるか確認してください。

モジュールファイル、ヘッダファイル、ライブラリを利用するときにコンパイラ、リンカが 参照するディレクトリを確認したい。

「1.6 モジュールファイルのサーチ」、「1.7 INCLUDE行、および、#includeで取り込まれるファイルのサーチ」、「1.8 ライブラリのサーチ」、を参照してください。

"undefined reference to `ftrace_region_begin_' / `ftrace_region_end_'"とい うリンクエラーが発生する。

FTRACE 機能が使用されています。**-ftrace**を指定してリンクしてください。FTRACE 機能については「PROGINF/FTRACE ユーザーズガイド」を参照してください。

\$ nfort a. o b. o -ftrace

"undefined reference to '__vthr\$_barrier'"というリンクエラーが発生する。
-mparallel、または、-fopenmpを指定してリンクしてください。

"undefined reference to '___vthr\$_pcall_va"というリンクエラーが発生する。
-mparallel、または、-fopenmpを指定してリンクしてください。

"cannot find -lveproginf"、および、"cannot find -lveperfcnt"というリンクエラー が発生する。

nec-veperfパッケージがインストールされていません。nec-veperfパッケージをインストールしてください。

コードサイズの大きいプログラムをコンパイルしたときにSIGSEGVでアボートする。

コンパイラが必要とするスタック領域の容量が設定の上限を超えている可能性があります。ulimitコマンドでスタックサイズの上限を拡大することで解消することがあります。 以下のように「ulimit -s」でスタックサイズの上限値を確認できます。「ulimit -s(スタックサイズの上限値)」で上限値を変更できますので、「ulimit -s」で出力された上限値よりも大きな値を設定し、再度コンパイルしてください。

\$ ulimit -s (値の確認) 8192 \$ ulimit -s 16384 (値の変更)

コンパイル時にSIGKILLが発生する。

コンパイルを行ったマシンのメモリが不足している可能性があります。**-00、-01**により 最適化レベルを落とすことでメモリ使用量をある程度少なくすることができます。

VE向けの実行ファイルであることを確認したい。

「/opt/nec/ve/bin/nreadelf -h」に実行ファイルを指定して実行してください。「Machine:」の行に「NEC VE architecture」と出力されていれば、VE向けの実行ファイルであることを示します。

\$ /opt/nec/ve/bin/nreadelf -h a.out

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)
Machine: NEC VE architecture

(...)

VE3向けのオブジェクトファイルであることを確認したい。

「/opt/nec/ve/bin/nreadelf -h」にオブジェクトファイルを指定して実行してください。「Flags:」の行に出力されている数値の右端の値が「0」であればVE1向けのオブジェクトファイル、「1」であればVE3向けのオブジェクトファイルです。以下の例では「Flags:」の行の右端の値が「1」であるため、VE3向けのオブジェクトです。

\$ /opt/nec/ve/bin/nreadelf -h a.o

ELF Header:

(...)

Version: 0x1

Start of program headers: 0 (bytes into file)
Start of section headers: 720 (bytes into file)

Flags: 0x10101

自動並列とOpenMP並列を混ぜてリンクするとき、-fopenmp、-mparallelのどちらを指定すればよいか。

-fopenmp、-mparallelのどちらか一方を指定してリンクしてください。

```
$ nfort -c -mparallel a.f90
$ nfort -c -fopenmp b.f90
$ nfort -fopenmp a.o b.o
```

-fcheckを指定すると、コンパイル時間が異常に長くなる。

コンパイル時に実行時のチェックコードが埋め込めまれるため長くなります。実行時のチェックが必要なルーチンを含むソースファイルのコンパイル時にのみ**-fcheck**を指定してください。

-fcheckを指定すると、実行時間が異常に長くなる。

実行時にチェックコードが実行されるため長くなります。実行時のチェックが必要なルーチンを含むソースファイルのコンパイル時にのみ-fcheckを指定してください。

-ftraceを指定すると、実行時間が異常に長くなる。

性能情報を取得するルーチンが実行されるため長くなります。このルーチンは手続の入口、出口、ユーザ指定リージョンの前後で呼び出されます。

性能情報を取得したい手続を含むソースファイルのみ-ftraceを指定してください。

OMP_NUM_THREADSで8より大きい値を指定しても、その数のスレッドが生成されない。

VEのコア数は8個であるため、8スレッドが上限です。

定義済みマクロの名前、値を知りたい。

「9.2.4 定義済みマクロ」を参照してください。

Fortranプログラムをプリプロセスしたい。

-fppを指定してコンパイルしてください。

FortranプログラムとC/C++プログラムのオブジェクトファイルを混在リンクしたい。

「10.6 プログラムのリンク」を参照してください。

SXシリーズで利用していたプログラムのオプションをVector Engine向けに変更したい。

「付録 B SXシリーズ向けコンパイラとの対応」を参照し、SXのコンパイラオプションに対応するVEのコンパイラオプションに変更してください。

SXシリーズで利用していたプログラムの指示行をVector Engine向けに変更したい。

SXのコンパイラ指示行をVEのコンパイラ指示行に変換するツールが利用できます。

「付録 C コンパイラ指示行変換ツール」を参照してください。

または、「付録 B SXシリーズ向けコンパイラとの対応」を参照し、SXのコンパイラ指示 行に対応するVEのコンパイラ指示行に変更してください。

診断メッセージに、名前\$1など、'\$'の後に数字のある変数、ルーチン名が表示される。これらは何か?

ベクトル化、並列化のためにコンパイラが作成した変数、ルーチンです。

診断メッセージに、変数名ではなくDOUBLE、floatなどの型名のみが表示されることがある。これらは何か?

ベクトル化、並列化のためにコンパイラが作成した名前なし変数で、名前の代わりに型名を表示しています。

Internal error detected -- please report.というメッセージが表示された。

上記エラーが発生し、コンパイルが中断されなかった場合、コンパイラはエラーをリカバ リし、コンパイルを継続しています。作成されたオブジェクトファイルはそのままご利用 できます。

コンパイルが中断された場合、NECサポートポータルよりお問い合わせください。

ループ中にALLOCATE文、DEALLOCATE文がないのに次のメッセージが出力される。

vec(181): Allocation obstructs vectorization.

vec(182): Deallocation obstructs vectorization.

Fortranにおいて、言語仕様を実現するため、コンパイラが実行時に領域を暗黙的に確保、解放しなければならなかったとき、このメッセージが出力されます。特に、手続をインライン展開した際に引数、返却値の受け取りで発生することがあります。

-bssと-saveの違いについて知りたい。

SAVE属性をもつ変数の値は、前回当該ルーチンが呼び出され、リターンしたときの値が、本呼び出し時の最初の値となりますが、**-bss**の場合はそれが保証されません。

コンパイル時に指定した覚えのないコンパイラオプションが有効になっている。

コンパイラオプションがオプションファイルに指定されている可能性があります。オプションファイルの詳細については「1.5 コンパイラオプションの指定」を参照してください。

コンパイラのバージョンを確認したい。

--versionを指定してください。

-fpie、-fPIEオプションで位置独立実行形式の実行ファイルを作成したい。

位置独立実行形式の実行ファイルの作成はサポートしていません。

"Too many elements in array" というコンパイルエラーが発生する。

ALLOCATE文で確保しようとしている配列のサイズ、または、配列の宣言で確保しようとしている配列のサイズが1TiBを超えています。配列のサイズを見直してください。なお、コンパイル時に配列サイズの上限を1TiBでチェックしていますが、VEのメモリサイズは48GBであるため、それより大きいサイズの配列を確保しようとすると、実行時エラー(Out of memory)となりますのでご注意ください。

モジュールソースファイルをコンパイルしたとき、.L ファイルが生成されない。

モジュール手続を含まないモジュールソースファイルに対しては.Lファイルを生成しません。

a.out->foo.so->bar.so というように多段の依存関係を含むプログラムをビルドするときに、以下のリンクエラーが発生する。

/opt/nec/ve/bin/nld: warning: libbar.so, needed by ./libfoo.so, not found (try using -rpath or -rpath-link) ./libfoo.so: undefined reference to `bar'

nldの元となるGNU Linkerの仕様となります。nldはLinux/x86_64上で、SX-Aurora TS UBASAのオブジェクトをリンクするため、cross linkerの動作となります。Cross linker 動作時は実際に実行する環境と同じとは限らないため、nldは-rpathオプションや共有ライブラリ内に設定されているRPATHを無視する仕様になっています。-WI,-rpath-link,ライブラリのパス を指定してください。

-mparallel を指定したとき、以下のような Warning が発生する。

/opt/nec/ve/bin/nld: warning: libnfort.so. 2, needed by libxxx.so, not found (try using -rpath or -rpath-link)

libnfort.soは、Fortranの実行時ルーチンが含まれているライブラリであり、非並列版のFortranのプログラムをリンクする際には必ず必要となります。並列版(-mparallelあるいは-fopenmp指定時)のFortranのプログラムをリンクする際には、代わりにlibnfort_m.soが必ず必要となります。コンパイラはリンク時に、非並列時は"-Infort"、並列時は"-Infort_m"を自動指定しています。libxxx.soが非並列で作成されており、非並列のlibnfort.soを必要としていますが、-mparallel指定時は"-Infort"が指定されないため"-nfort"が必要という旨の警告となっています。

実行時に予期せぬ問題が発生する可能性があるため、libxxx.so作成時(リンク時)に-mpar allelか-fopenmpを追加で指定して、libxxx.soもlibnfort_m.soを参照するようにすることをお勧めします。

13.2 プログラムの実行に関するトラブルシューティング

実行時に"Node 'N' is Offline"というエラーが発生する。

ノード番号NのVEがOFFLINE状態になっています。VEをONLINE状態にしてください。 以下はO番のVEをONLINE状態にするときの例です。

```
# /opt/nec/ve/bin/vecmd -N 0 state set on ...
```

実行時に使用されているノードを確認したい。

/opt/nec/ve/bin/psを実行してください。psコマンドを実行するとVEのノードごとに現在実行されているプロセスのスナップショットを出力します。以下の例では、2番のVEノードでa.outというプログラムが実行中であることが確認できます。

/opt/nec/ve/bin/ps -a

VE Node: 3

PID TTY TIME CMD

VE Node: 1

PID TTY TIME CMD

VE Node: 2

PID TTY TIME CMD

50727 pts/1 00:01:36 a. out

VE Node: 0

PID TTY TIME CMD

実行時に"./a.out: error while loading shared libraries: libnfort.so.2: cannot o pen shared object file: No such file or directory"というエラーが出力される。

実行環境にパッケージnec-nfort-shared、nec-nfort-shared-instをインストールしてください。手順は「インストレーションガイド」を参照してください。

実行時にダイナミックリンクライブラリが見つからないというエラーが発生する。

共有ライブラリを配置しているディレクトリを環境変数VE_LD_LIBRARY_PATHに設定してください。環境変数VE_LD_LIBRARY_PATHについては「2.2 実行時に参照される環境変数」を参照してください。

実行時に"VE mmap failed on INTERP - TEXT: Cannot allocate memory"という エラーが発生する。

VEプログラムのテキストと静的データの大きさの合計が48GBを超えています。VEプログラムのテキスト、静的データのサイズの合計が48GB以下になるように、サイズの大きなデータを動的に確保するなどソースファイルを変更してください。静的データには、モジュール変数、ブロックデータ、共通ブロック、SAVE属性を持つ変数などがあります。以下のコマンドを実行することでシンボルのサイズを降順に確認できますので参考にしてください。

\$ /opt/nec/ve/bin/nnm -C --size-sort -r ./a.out

また、各セクションのサイズは以下のコマンドで確認することができます。

\$ /opt/nec/ve/bin/nreadelf -e ./a.out

例外発生時に例外発生個所がソースファイルの何行目に対応しているか確認したい。

トレースバック情報から調べることができます。手順は「1.9.3トレースバック機能との 連携」を参照してください。

例外発生時にトレースバック機能で表示される例外発生個所が正しくない。

HWによる命令の先行制御によってトレースバック機能で出力される例外発生個所が正しく表示されないことがあります。環境変数**VE_ADVANCEOFF**=YESを設定することで先行制御を無効にできます。先行制御を無効にすることで実行時間が大幅に長くなることがありますのでご注意ください。

\$ export VE_ADVANCEOFF=YES

例外発生時にそれまでのバッファに書き込んだデバッグWRITE結果を出力するようにしたい。

WRITE文の実行後にFLUSH文を呼び出してください。

SUBROUTINE SUB()

INTEGER :: U, X

OPEN(NEWUNIT=U, FILE='debug.log', STATUS='replace')

```
#ifdef DEBUG
WRITE(U, *) 'X=', X
FLUSH(U)
#endif
END
```

未初期化変数を使用していないか確認したい。

倍精度浮動小数点型の未初期化変数については-minit-stack=snanを指定してコンパイル、環境変数VE_INIT_HEAP=SNANを指定して実行し、例外を検出することで確認できることがあります。単精度浮動小数点型の未初期化変数について確認するときは、snan、SNANの代わりにsnanf、SNANFをそれぞれ指定します。変数が浮動小数点型でないとき、この方法で確認することはできません。環境変数VE_INIT_HEAPについては「2.2 実行時に参照される環境変数」を参照してください。

未初期化変数の不定値を参照して、プログラムが異常終了するのを回避したい。

-minit-stack=zeroを指定してコンパイル、環境変数VE_INIT_HEAP=ZEROを指定して実行してください。未初期化の領域をゼロクリアすることで異常終了を回避できることがあります。潜在的な問題を解決するためにもプログラムの修正を推奨します。環境変数VE_INIT_HEAPについては「2.2 実行時に参照される環境変数」を参照してください。

自動並列化、OpenMP機能を使用したプログラムを実行したとき、"Unable to grow stack"、または、SIGSEGVでプログラムが異常終了する。

スタックの使用量が上限を超えている可能性があります。以下の方法でスタックの上限を 拡張するか、スタックの使用量を削減してください。

• 環境変数OMP_STACKSIZEによって各スレッドが使用するスタックサイズの上限を拡張することができます。環境変数OMP_STACKSIZEについては「2.2 実行時に参照される環境変数」を参照してください。

export OMP STACKSIZE=2G

• -mno-stack-arraysを指定することでスタックの使用量を削減することができます。 ただし、-mno-stack-arraysを指定したとき実行時間が増加することがあります。

プログラムが実行時に何スレッドで動作したかを確認したい。

PROGINFのMax Active Threadsを参照してください。Max Active Threadsは環境変数 **VE_PROGINF**にDETAILが設定されているとき、プログラムの実行終了時に標準エラー 出力に出力されます。詳細は「PROGINF/FTRACE ユーザーズガイド」を参照してください。

以下の例では、Max Active Threadsが4であるため、4スレッドで動作したことが確認できます。

****** Program Information ******

(...)

Power Throttling (sec) : 0.000000 Thermal Throttling (sec) : 0.000000

Max Active Threads : 4
Available CPU Cores : 8

Average CPU Cores Used : 3.323850

Memory Size Used (MB) : 7884.000000

Start Time (date) : Mon Feb 19 04:43:34 2018 JST End Time (date) : Mon Feb 19 04:44:08 2018 JST

自動並列化、OpenMP機能を使用したプログラムを実行したとき、スレッドがいつ生成、解放されるのか知りたい。

既定の動作では、環境変数OMP_NUM_THREADS、または、VE_OMP_NUM_THREADSによりスレッド数が指定されたときその個数、そうでないときプログラムで利用可能なVEコア数と同じ個数のスレッドが、プログラムの実行開始前に生成され、終了時に解放されます。

詳細については、「7.3.2 スレッドの生成・解放」を参照してください。

自動並列化、OpenMP機能を使用したプログラムを実行したとき、実行時のスレッド数がどのように決まるのか知りたい。

実行時のスレッド数は、環境変数**OMP_NUM_THREADS**や**VE_OMP_NUM_THREAD S**、OpenMPのnum_threads句、omp_set_num_threads関数で指定することができま

- す。優先順位は以下のとおりです。
- 1. OpenMPのnum_threads句で指定した値
- 2. 関数omp_set_num_threads()で指定した値
- 3. 環境変数VE OMP NUM THREADSで指定した値
- 4. 環境変数OMP NUM THREADSで指定した値
- 5. 利用可能なVEコア数と同じ値

num_threads句、omp_set_num_threads()、**VE_OMP_NUM_THREADS**、または、**OMP_NUM_THREADS**に利用可能なVEコア数より大きな値を指定したとき、実行時のスレッド数は利用可能なVEコア数と同じ値になります。

プログラムの実行において、必要なスタックサイズを確認したい。

必要なスタックサイズは実行してみないとわからないため調べる方法はありません。なお、Fortranプログラムの場合、allocate文など実行時のメモリ確保を高速化するための領域としてプログラムの開始時にあらかじめ192MB確保します。これはallocate文の有無にかかわらず確保しますのでご注意ください。

13.3 プログラムのチューニングに関するトラブルシューティング

プログラムにどの最適化が適用されたかを確認したい。

コンパイル時に出力される診断メッセージ、および、編集リストを参照してください。診断メッセージリストは-report-diagnostics、編集リストは-report-formatを指定したとき出力されます。

詳細は、「第8章 コンパイルリスト」を参照してください。

ベクトル化を促進したにもかかわらず、性能が低下する。

ベクトル化対象のループの繰り返し数が少ない場合、ベクトル化のためのオーバーヘッド により性能が低下する場合があります。このようなループは**novector**指示行で自動ベク トル化を抑止してください。

自動並列化、OpenMP機能を使用したプログラムを実行したとき、PROGINFとFTRACEの 同項目で表示される値が異なる。

主プログラムの実行開始前に自動生成されるスレッドのスピンウェイト分の演算数等はPR OGINFでは加算されますが、FTRACEでは加算されません。

!\$omp parallel num_threads(4)を指定して、環境変数OMP_NUM_THREADS=4、OMP_NUM_THREADS=5でそれぞれ実行した場合、OMP_NUM_THREADS=5のほうが 並列数が多いにもかかわらず、実行時間が長くなる。

num_threads句で渡される値が、環境変数**OMP_NUM_THREADS**で指定している値と違う場合には、スレッドの再生成による実行時間の増加が発生します。

主プログラムの実行開始前にスレッドが自動生成されます。この時生成されるスレッド数は、環境変数OMP_NUM_THREADSの値で決まります。プログラム中で、OpenMPのomp_set_thread_num()関数やnum_threads句の指定により、スレッド数が変更される場合、実行開始時に自動生成されたスレッドは解放され、新たにスレッドが再生成されます。

FTRACEの出力に、名前\$1など、'\$'の後に数字のあるルーチン名が表示される。これらは何か?

ベクトル化、並列化のためにコンパイラが作成したルーチンです。

13.4 インストールに関するトラブルシューティング

正しくインストールできているかを確認したい。

--versionを指定し、バージョンを確認します。表示されたバージョン番号がインストールした物件と同じであれば正しくインストールできています。以下のX.X.Xにバージョン番号が表示されます。

\$ /opt/nec/ve/bin/nfort --version

nfort (NFORT) X.X.X (Build 14:10:47 Apr 23 2020)

Copyright (C) 2018, 2020 NEC Corporation.

過去のバージョンのコンパイラをインストールしたい。

過去のバージョンのコンパイラのインストール手順は、SX-Aurora TSUBASA インストレーションガイドの「A.1.1 特定バージョンのコンパイラのインストール」を 参照してください。

過去のバージョンのコンパイラを利用したい。

コンパイル時に /opt/nec/ve/bin/nfort-X.X.X、ncc-X.X.X、または、nc++-X.X.X(X.X.Xはコンパイラのバージョン番号)を起動してください。

詳細については「1.2 コンパイラの起動」を参照してください。

過去のバージョンのコンパイラをデフォルトにしたい。

次の2つの方法のうちいずれかを実施してください。

(1) 環境変数PATHにncc/nc++/nfortコマンドのディレクトリのパスを設定する。

各バージョンのncc/nc++/nfortコマンドの実体は以下のようにインストールされています。ここでは、X.X.Xはバージョン番号です。

/opt/nec/ve/ncc/X. X. X/bin/ncc

/opt/nec/ve/ncc/X. X. X/bin/nc++

/opt/nec/ve/nfort/X. X. X/bin/nfort

デフォルトにしたいバージョンのbinディレクトリをコマンドサーチパス(環境変数PATH)に設定してください。

(2) /opt/nec/ve/bin/nfort(ncc、nc++)のパスで起動されるコンパイラを変更する。

デフォルトにしたいバージョンのパッケージをyumコマンドでインストールします。SX-Aurora TSUBASAインストレーションガイドの「A.1.1 特定バージョンのコンパイラのインストール」-「/opt/nec/ve/bin のコンパイラの変更」を参照してください。

※本手順は/opt/nec/ve/bin/nfort(ncc/nc++)を使用するすべてのユーザに影響する点にご注意ください。

プログラムの実行時に"Runtime error: vhcall_install failed."の実行時メッセージが 出力された

配列一括入出力、バイトスワップ処理などをVHにオフロードするためのライブラリがみつからないかインストールされていません。以下をお試しください。

- 環境変数VE_LD_LIBRARY_PATH/LD_LIBRARY_PATHで/opt/nec/ve/nfort/lib64を追加指定する。
- 上記で解決しないとき、/opt/nec/ve/nfort/lib64にlibnfort_x86_64.so.<バージョン番号>のファイルがあるかどうか確認する。みつからないとき、yumレポジトリからnec-nfort-runtime-<バージョン番号>-1.x86_64.rpmをダウンロードし、インス

トールしてください。

13.5 旧SXコンパイラからの移行に関するトラブルシューティング

数値記憶単位「-ew」を指定している。

以下について、プログラムの該当する記述がないか確認し修正してください。

(1) 個別名の組込み関数を利用しているときは、倍精度版か総称名に修正してください。

(2) プログラム中の型宣言、定数を以下に示す例のように修正してください。

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
INTEGER*2	INTEGER*8
INTEGER*4	INTEGER*8
INTEGER(KIND=2)	INTEGER(KIND=8)
INTEGER(KIND=4)	INTEGER(KIND=8)
LOGICAL*1	LOGICAL*8
LOGICAL*4	LOGICAL*8
LOGICAL(KIND=1)	LOGICAL(KIND=8)
LOGICAL(KIND=4)	LOGICAL(KIND=8)
REAL*4	REAL*8
REAL(KIND=4)	REAL(KIND=8)
COMPLEX*8	COMPLEX*16
COMPLEX(KIND=4)	COMPLEX(KIND=8)
定数1.23E1	定数1.23D1
定数1.23_4	定数1.23_8

(3) 種別指定のない型での宣言を種別指定ありにプログラム修正してください。コンパイル時にコンパイラオプション-fdefault-real=8と-fdefault-integer=8を指定することでも対処することができます。

精度拡張「-A dbl」を指定している。

以下について、プログラムの該当する記述がないか確認し修正してください。

(1) プログラム中の型宣言、定数を以下に示す例のように修正してください。

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
REAL*4	REAL*8
REAL*8	REAL*16
REAL(KIND=4)	REAL(KIND=8)
REAL(KIND=8)	REAL(KIND=16)
COMPLEX*8	COMPLEX*16
COMPLEX*16	COMPLEX*32
COMPLEX(KIND=4)	COMPLEX(KIND=8)
COMPLEX(KIND=8)	COMPLEX(KIND=16)
定数1.23E1	定数1.23D1
定数1.23D1	定数1.23Q1
定数1.23_4	定数1.23_8
定数1.23_8	定数1.23_16

(2) 種別指定のない型での宣言を種別指定ありにプログラム修正してください。コンパイル時にコンパイラオプション-fdefault-real=8と-fdefault-double=16を指定することでも対処することができます。

精度拡張「-A dbl4」を指定している。

以下について、プログラムの該当する記述がないか確認し修正してください。

(1) プログラム中の型宣言、定数を以下に示す例のように修正します。

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
REAL*4	REAL*8
REAL(KIND=4)	REAL(KIND=8)
COMPLEX*8	COMPLEX*16
COMPLEX(KIND=4)	COMPLEX(KIND=8)

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ	
定数1.23E1	定数1.23D1	
定数1.23_4	定数1.23_8	

(2) 種別指定のない型での宣言を種別指定ありにプログラム修正してください。コンパイル時にコンパイラオプション-fdefault-real=8を指定することでも対処することができます。

精度拡張「-A dbl8」を指定している。

以下について、プログラムの該当する記述がないか確認し修正してください。

(1) プログラム中の型宣言、定数を以下に示す例のように修正します。

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
REAL*8	REAL*16
REAL(KIND=8)	REAL(KIND=16)
COMPLEX*16	COMPLEX*32
COMPLEX(KIND=8)	COMPLEX(KIND=16)
定数1.23D1	定数1.23Q1
定数1.23_8	定数1.23_16

(2) 種別指定のない型での宣言を種別指定ありにプログラム修正してください。コンパイル時にコンパイラオプション-fdefault-double=16を指定することでも対処することができます。

精度指定(F_UFMTADJUST=TYPE2)を指定してバイナリ入力している。

SX-ACEで環境変数**F_UFMTADJUST**を指定して作成したバイナリデータの入力時には、 環境変数**VE_FORT_UFMTADJUST**を指定します。

SX-ACEで作成したバイナリデータを入力している。

SX-ACEで作成したバイナリデータの入力時には、環境変数**VE_FORT_UFMTENDIAN**を指定します。

第14章 VE1/VE3 の互換性

14.1 実行ファイルの互換性

VE1/VE3のコンパイラ/アセンブラ/リンカで生成した実行ファイルを実行できるマシンの組み合わせは以下の通りです。

実行ファイル	VE1 マシン	VE3 マシン
VE1 向け実行ファイル	0	0
VE3 向け実行ファイル	×	0

○:実行可能、x:実行不可

14.2 サーチパスの変更点

VE1とVE3では、モジュールファイル、および、**INCLUDE**行/**#include**で取り込まれるファイル、ライブラリのサーチパスが、以下のように変更されます。

(1) モジュールファイルのサーチパス (サーチする順番に記載)

VE1	VE3
ソースファイルのあるディレクトリ	(VE1 と同様)
-module で指定されたディレクトリ	(VE1 と同様)
カレントディレクトリ	(VE1 と同様)
-I で指定されたディレクトリ	(VE1 と同様)
-B で指定されたディレクトリ直下の include	(VE1 と同様)
ディレクトリ	
環境変数 NFORT_INCLUDE_PATH で指定	(VE1 と同様)
されたディレクトリ	
-isystem で指定されたディレクトリ	(VE1 と同様)
/opt/nec/ve/nfort/バージョン番号/include	(VE1 と同様)
/opt/nec/ve/include (*1)	/opt/nec/ve3/include (*1)

(*1) -isysrootが指定されているとき、-isysrootで指定されたディレクトリ直下のinclude

がサーチされます。

(2) **INCLUDE** 行、および、**#include** で取り込まれるファイルのサーチ(サーチする順番 に記載)

VE1	VE3
ソースファイルのあるディレクトリ	(VE1 と同様)
カレントディレクトリ	(VE1 と同様)
-I で指定されたディレクトリ	(VE1 と同様)
-B で指定されたディレクトリ直下の include ディレクトリ	(VE1 と同様)
環境変数 NFORT_INCLUDE_PATH で指 定されたディレクトリ	(VE1 と同様)
-isystem で指定されたディレクトリ	(VE1 と同様)
/opt/nec/ve/nfort/バージョン番号/includ e	(VE1 と同様)
/opt/nec/ve/include (*1)	/opt/nec/ve3/include (*1)

- (*1) **-isysroot**が指定されているとき、**-isysroot**で指定されたディレクトリ直下のinclude がサーチされます。
- (3) ライブラリのサーチパス (サーチする順番に記載)

VE1	VE3
-L で指定されたディレクトリ	(VE1 と同様)
-B で指定されたディレクトリ	(VE1 と同様)
環境変数 NFORT_LIBRARY_PATH で指 定されたディレクトリ	(VE1 と同様)
/opt/nec/ve/nfort/バージョン番号/lib	/opt/nec/ve3/nfort/バージョン番号/lib

VE1	VE3
環境変数 VE_LIBRARY_PATH で指定され	(VE1 と同様)
たディレクトリ	
/opt/nec/ve/lib/gcc	/opt/nec/ve3/lib/gcc
/opt/nec/ve/lib	/opt/nec/ve3/lib

14.3 コンパイラオプションの変更点

VE1/VE3ではコンパイラオプションの既定値が、以下のように変更されます。

VE1	VE3
-march=ve1	-march=ve3
-mfp16-format=none	-mfp16-format=ieee

14.4 半精度浮動小数点の利用

VE3 では半精度浮動小数点を使用したオブジェクトファイルを生成し実行できます。半精度 浮動小数点を使用したオブジェクトファイルは VE1 では生成、実行できません。

14.4.1 半精度浮動小数点の種別

半精度浮動小数点の種別は-mfp16-formatによる半精度浮動小数点形式の指定とプログラム中の半精度浮動小数点の使用有無で以下のように決まります。

半精度浮動小数点の使用	半精度浮動小数点の形式(-mfp16-format)		
	none	ieee	bfloat
なし	種別なし	種別なし	種別なし
あり	種別なし	binary16	bfloat16

14.4.2 binary16 と bfloat16 の混在リンク

binary16とbfloat16のオブジェクトファイルを混在リンクし、一つのオブジェクトファイル、実行ファイル、共有ライブラリを生成できません。

14.5 注意事項

• VE1ではVE3の実行ファイルを実行できません。

- VE1では半精度浮動小数点を使用したオブジェクトファイルの生成、実行はできません。
- VE3でVE1の実行ファイルを実行してgmon.outを出力したとき、ngprofコマンドによる性能情報は表示できません。
- VE1とVE3のオブジェクトファイルの混在した静的ライブラリ、共有ライブラリ、実行ファイルを生成できません。作成しようとするとリンク時に以下のエラーとなります。

/opt/nec/ve/bin/nld: a.o: this object cannot use on VE3.

/opt/nec/ve/bin/nld: failed to merge target specific data of file a.o

VE1バイナリでコンパイラのトレースバック機能を使用する場合、コンパイラはバージョン5.0.1以降をご利用ください。また、MPIのトレースバック機能を使用する場合、コンパイラに加えてMPIはバージョン3.4.0以降をご利用ください。これらより古いバーションを使用した場合、トレースバック情報が正しく出力されないことがあります。

第15章 旧バージョンとの互換に関する注意事項

- (1) NEC Fortran コンパイラのバージョン 1.X.X とバージョン 2.0.0 以降 には、互換性がありません。そのため、バージョン 1.X.X で作成したオブジェクトファイルはバージョン 2.0.0 以降で作成したオブジェクトファイルとリンクできません。
- (2) バージョン 2.2.0 以降でコンパイラの実行時ルーチンを共有ライブラリでも提供しています。このため、バージョン 2.1.2 以前のコンパイラで作成した共有ライブラリは、2.2 以降のコンパイラで再コンパイルしてください。
- (3) バージョン 2.2.X 以降のコンパイラで作成した実行ファイルを実行するには、バージョン 2.21-4 以降の glibc-ve パッケージに含まれるダイナミックリンカが必要です。実行 がうまくいかないとき、glibc-ve パッケージのバージョンをご確認ください。

\$ rpm -q glibc-ve
glibc-ve-2.21-4.el7.x86_64

- (4) バージョン 2.2.X 以降のコンパイラは既定値で共有ライブラリをリンクするため、バージョン 2.1.2 以前に比べ、ダイナミックリンク処理のためのオーバーヘッドにより実行性能が低下することがあります。性能低下を回避するには、-static、または、-static-nec を指定して静的ライブラリをリンクしてください。
 - **備考** -static、または、-static-necを指定して作成した実行ファイルを実行するとき、結果不正や異常終了などにより正しく実行できないことがあります。
- (5) バージョン 3.0.8 以降、NAMELIST 出力のフォーマットが変更されました。バージョン 3.0.7 以前の形式で出力するときは、プログラムの実行時に環境変数 VE_FORT_NML_ REPEAT_FORM に"NO"を設定してください。

\$ export VE_FORT_NML_REPEAT_FORM=NO

(6) バージョン 3.5.0 以降、組込み手続 SYSTEM_CLOCK の引数の型が INTEGER(KIND=8)以外のときに以下の Info メッセージが出力されます。このメッセージは、組込み手続 SYSTEM_CLOCK の引数の型として INTEGER(KIND=8)を推奨しているだけであり、必ずしもプログラムの変更を必要としません。プログラムを修正しない場合でもプログラムの実行に影響はありません。

The arguments to intrinsic subroutine SYSTEM_CLOCK are of type INTEGER, but it is recommended that they should be of type INTEGER(int64)

付録 A コンフィギュレーションファイル

A.1 概要

コンフィギュレーションファイルを使用することで、コンパイラの既定の設定を変更できます。コンフィギュレーションファイルは、**-cf**で指定します。

コンフィギュレーションファイルは、以下の形式で記述します。

キーワード:値

コンフィギュレーションファイルには以下のキーワードを指定できます。

キーワード	説明
veroot	VEのルートディレクトリを指定します。
	(既定值:/opt/nec/ve)
system	コンパイラシステムのルートディレクトリを指定します。
	(既定値:/opt/nec/ve/nfort/バージョン番号)
as	アセンブラを指定します。
	(既定值: <veroot>/bin/nas)</veroot>
fcom	Fortranコンパイラを指定します。
	(既定值: <system>/libexec/fcom)</system>
ld	リンカを指定します。
	(既定值: <veroot>/bin/nld)</veroot>
fpp	Fortranプリプロセッサを指定します。
	(既定值: <system>/libexec/fpp)</system>
fc_pre_options	コンパイラオプションを指定します。
fc_post_options	コンパイラへは以下の順で指定されます。
	<fc_pre_options><user-specified-fc-options><fc_post_options></fc_post_options></user-specified-fc-options></fc_pre_options>
as_pre_options	アセンブラオプションを指定します。
as_post_options	アセンブラへは以下の順で指定されます。
	<as_pre_options><user-specified-ld-options><as_post_options></as_post_options></user-specified-ld-options></as_pre_options>
ld_pre_options	リンカオプションを指定します。リンカへは以下の順で指定されます。
Id_post_options	<ld_pre_options><user-specified-ld-options><ld_post_options></ld_post_options></user-specified-ld-options></ld_pre_options>
startfile	スタートアップファイルを指定します。

キーワード	説明
endfile	スタートアップファイルを指定します。リンカオプションの末尾に指定さ
	れます。

A.2 記述方法

- キーワードと値は、コロン(:)で区切ります。
- キーワードを記述しないときは既定値が使用されます。
- 区切り文字のコロンの前後は空白を指定できます。
- 値は複数行に指定でき、空白行、または、次のキーワードまでを値とみなします。複数行にわたり値を指定するときは改行部分に'\forall '\forall '\fo

例

```
fc_pre_options: -I /tmp ¥
-I /tmp2
```

• 同じキーワードを複数回指定したときは、最後のキーワードが有効になります。

A.3 使用例

コンフィギュレーションファイルの使用例を説明します。

VEのルートディレクトリとコンパイラシステムのルートディレクトリを変更する。 verootキーワードとsystemキーワードに変更後の値を指定します。

veroot: /foo/ve system: /foo/ve/nfort/X. X. X

• 作成したコンフィギュレーションファイルを**-cf**で指定すると、指定した環境でコンパイル されます。ここでは、コンフィギュレーションファイル名をve.confとします。

\$ nfort -cf=ve.conf test.f90

使用するコンパイラだけを変更する。先の例は、コンパイル環境全体を変更しますが、使用するコンパイラだけを変更することもできます。この場合、fcomキーワードに値を指定します。

fcom: /foo/ve/nfort/X. X. X/libexec/fcom

作成したコンフィギュレーションファイルを**-cf**で指定すると、指定したコンパイラでコンパイルされます。アセンブラやリンカなども同様に変更することができます。

付録 B SX シリーズ向けコンパイラとの対応

本節ではSXシリーズ向けのコンパイラとVector Engine向けコンパイラの主なコンパイラオプション、指示行環境変数の対応について説明します。

B.1 NEC Fortran 2003コンパイラオプション

NEC Fortran 2003のコンパイラオプションとVector Engine向けコンパイラのコンパイラオプションの対応表を示します。Vector Engineコンパイラ列の「なし」は対応するコンパイラオプションがないことを表します。

B.1.1 全体オプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-Caopt	-04
-Chopt	-03
-Cvopt	-02
-Csopt	-O2 -mno-vector
-Cvsafe	-01
-Cssafe	-O1 -mno-vector
-Cnoopt	-00
-S	-S
-NS	なし
-V	version
(注) バージョン表示後にコンパイル処理を	 (注) コンパイル処理を行わずにバージョン
続けます。	表示のみ行います。
-NV	なし
-с	-с
-Nc	なし

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-cf <i>文字列</i>	-cf= <i>文字列</i>
-clear	-clear
-mod -Nmod	なし
-o <i>ファイル名</i>	-0 ファイル名
-size_t32	なし
-size_t64	なし (注) 常に -size_t64 相当で動作します。
-syntax	-fsyntax-only
-Nsyntax	-fno-syntax-only
-tm ディレクトリ名	なし
-to ディレクトリ名	なし
-verbose	-v
-Nverbose	なし

B.1.2 最適化/ベクトル化オプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-Ochg	-fassociative-math または、
	-faggressive-associative-math
	(注) -faggressive-associative-math
	は、 -fassociative-math より激しく
	最適化します。
-Onochg	-fno-associative-math
-Odiv	-freciprocal-math
-Onodiv	-fno-reciprocal-math
-Oextendreorder	-msched-interblock

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-Onoextendreorder	なし
-Oignore_volatile	-fignore-volatile
-Onoignore_volatile	-fno-ignore-volatile
-Oiodo	-marray-io
-Onoiodo	-mno-array-io
-Omove	-fmove-loop-invariants-unsafe
-Onomovediv	-fmove-loop-invariants
-Onomove	-fno-move-loop-invariants
-Ooverlap	-fnamed-alias
-Onooverlap	-fnamed-noalias
-Oreorderrange=bblock	-msched-insns
-Ounroll	-floop-unroll
-Ounroll=n	-floop-unroll
	-floop-unroll-max-times=n (注) 2つのオプションを同時に指定します。
-Onounroll	-fno-loop-unroll
-dir { vec novec }	なし
-ipa	-fipa
-Nipa	-fno-ipa
-math { errchk noerrchk }	なし
-math { inline noinline }	なし
-pvctl,altcode	-mvector-dependency-test
	-mvector-loop-count-test
	-mvector-shortloop-reduction
	(注) 3つのオプションを同時に指定します。

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-pvctl,altcode=dep	-mvector-dependency-test
-pvctl,altcode=nodep	-mno-vector-dependency-test
-pvctl,altcode=loopcnt	-mvector-loop-count-test
-pvctl,altcode=noloopcnt	-mno-vector-loop-count-test
-pvctl,altcode=shortloop	-mvector-shortloop-reduction
-pvctl,altcode=noshortloop	-mno-vector-shortloop-reduction
-pvctl,noaltcode	-mno-vector-depencendy-test -mno-vector-loop-count-test -mno-vector-shortloop-reduction (注) 3つのオプションを同時に指定します。
-pvctl,assoc	-fassociative-math
-pvctl,noassoc	-fno-associative-math
-pvctl,assume	-mvector-assume-loop-count
-pvctl,noassume	-mno-vector-assume-loop-count
-pvctl,chgpwr	-mvector-power-to-explog -mvector-power-to-sqrt (注) 2つのオプションを同時に指定します。
-pvctl,collapse	-floop-collapse
-pvctl,nocollapse	-fno-loop-collapse
-pvctl { compress nocompress }	なし
-pvctl,cond_mem_opt	-mvector-merge-conditional
-pvctl,nocond_mem_opt	-mno-vector-merge-conditional
-pvctl { conflict noconflict }	なし
-pvctl,divloop	なし
-pvctl,nodivloop	-mwork-vector-kind=none

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-pvctl,expand=n	-floop-unroll-complete=n
-pvctl,noexpand	-fno-loop-unroll-complete
-pvctl,listvec	-mlist-vector
-pvctl,nolistvec	-mno-list-vector
-pvctl,loopchg	-floop-interchange
-pvctl,noloopchg	-fno-loop-interchange
-pvctl,loopcnt=n	-floop-count=n
-pvctl { Istval nolstval }	なし
-pvctl,matmul	-fmatrix-multiply
-pvctl,nomatmul	-fno-matrix-multiply
-pvctl,neighbors	-mvector-neighbors (注) -march=ve3有効時に利用できます。
-pvctl,noneighbors	-mno-vector-neighbors
-pvctl,nodep	-fivdep
-pvctl,on_adb[= <i>カテゴリ</i>]	なし
-pvctl,outerunroll=n	-fouterloop-unroll -fouterloop-unroll-max-times= <i>n</i> (注) 2つのオプションを同時に指定します。
-pvctl,outerunroll_lim=n	なし
-pvctl,split	-floop-split
-pvctl,nosplit	-fno-loop-split
-pvctl { vchg novchg }	なし
-pvctl,vecthreshold=n	-mvector-threshold=n
-pvctl,verrchk	-mvector-intrinsic-check

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-pvctl,noverrchk	-mno-vector-intrinsic-check
-pvctl { vlchk novlchk }	なし
-pvctl,vwork={ static stack hybrid }	なし
-pvctl,vworksz=n	なし
-salloc	-mstack-arrays
-Nsalloc	-mno-stack-arrays
-v	-mvector
-Nv	-mno-vector
-xint	-mno-vector-iteration
-Nxint	-mvector-iteration

B.1.3 インライン展開オプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-dir { inline noinline }	なし
-pi,auto	-finline-functions
-pi,max_depth=n	-finline-max-depth=n
-pi,max_size= <i>n</i>	-finline-max-function-size=n
-pi,proc_size= <i>n</i>	なし
-pi,times= <i>n</i>	-finline-max-times=n

B.1.4 並列化オプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-dir { par nopar }	なし
-Pauto	-mparallel

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-Pmulti	なし
-Popenmp	-fopenmp
-Pstack	なし
-Pstatic	-bss
-pvctl,for[=n]	なし (注) 並列化のスケジュールは、 -mschedule-staticなどで制御できます。「3.2 最適化・ベクトル化オプション」を参照してください。
-pvctl,by=n	なし (注) 並列化のスケジュールは、 -mschedule-staticなどで制御できます。「3.2 最適化・ベクトル化オプション」を参照してください。
-pvctl,inner	-mparallel-innerloop
-pvctl,noinner	-mno-parallel-innerloop
-pvctl,outerstrip	-mparallel-outerloop-strip-mine
-pvctl,noouterstrip	-mno-parallel-outerloop-strip-mine
-pvctl,parcase	-mparallel-sections
-pvctl,noparcase	-mno-parallel-sections
-pvctl,parthreshold=n	-mparallel-threshold=n
-pvctl,noparthreshold	-mno-parallel-threshold
-pvctl,res={ whole parunit no }	なし
-reserve n	なし

B.1.5 コード生成オプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-adv { on off }	なし
-Nadv	なし
-mask { flovf flunf fxovf inv inexact zdiv }	なし (注) 実行時の環境変数VE_FPE_ENABLEで制 御できます。「1.9 演算例外 」を参照してくだ さい。
-mask { setall nosetall setmain }	なし
-prec_complex_division	なし
-Nprec_complex_division	なし
-stkchk -Nsckchk	なし

B.1.6 言語仕様制御オプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-defacto_associated	なし
-Ndefacto_associated	なし
-default_double_size	-fdefault-double=n
-default_real_size	-fdefault-real=n
-default_integer_size	-fdefault-integer=n
-extend_source	-fextend-source
-fixed	-ffixed-form
-free	-ffree-form
-f2003 -f2008 -f95	-std={ f2003 f2008 f95 }

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-ignore_directive	なし
-Nignore_directive	なし
-small_integer -Nsmall_integer	なし

B.1.7 性能測定オプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-acct	-proginf
-Nacct	-no-proginf
-ftrace	-ftrace
-Nftrace	-no-ftrace
-р	-р
-Np	なし

B.1.8 デバッグオプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-check	-fcheck=keyword
-init stack={ zero nan 0xXXXX }	-minit-stack={ zero snan snanf 0xXXXX }
-mtrace [basic]	-mmemory-trace
-mtrace full	-mmemory-trace-full
-Nmtrace	なし
-traceback	-traceback
-Ntraceback	なし

B.1.9 プリプロセッサオプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-Dname[=def]	-Dname[=def]
-Е	-E
-ЕР	なし
-Ер	-fpp
-NE	-nofpp
-н	なし
-I ディレクトリ名	-I ディレクトリ名
-М	-м
-Uname	-Uname
-Wp," <i>オプション列</i> "	-Wp," <i>オプション列</i> "
-ts ディレクトリ名	なし

B.1.10リスト出力オプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-Rappend	-report-append-mode
-Rnoappend	なし
-Rdiaglist	-report-diagnostics
-Rnodiaglist	なし
-Rfile={ファイル名 stdout }	-report-file={ファイル名 stdout }
-Rfmtlist	-report-format
-Rnofmtlist	なし
-Robjlist	-assembly-list
-Rnoobjlist	なし

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-R { summary nosummary }	なし
-R { transform notransform }	なし

B.1.11メッセージオプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-O { fullmsg infomsg nomsg }	なし
-pi { fullmsg infomsg nomsg }	-fdiag-inline={ 2 1 0 }
-pvctl { fullmsg infomsg nomsg }	-fdiag-parallel={ 2 1 0 } -fdiag-vector={ 2 1 0 }
-w all	-Wall
-w none	-w
-w { info noinfo }	なし
-w extension	-Wextension
-w noextension	-Wno-extension
-w { observe noobserve }	なし
-w obsolescent	-Wobsolescent
-w noobsolescent	-Wno-obsolescent
-w { unreffed nounreffed }	なし
-w {unused nounused }	なし

B.1.12アセンブラオプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-Wa," <i>オプション列</i> "	-Wa," <i>オプション列</i> "

B.1.13Cコンパイラオプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-Wc," <i>オプション列</i> "	なし

B.1.14リンカオプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-L <i>ディレクトリ名</i>	-L <i>ディレクトリ名</i>
-l <i>ライブラリ名</i>	-l <i>ライブラリ名</i>
-WI," <i>オプション列</i> "	-Wl," <i>オプション列</i> "

B.1.15ディレクトリオプション

NEC Fortran 2003コンパイラ	Vector Engineコンパイラ
-YI, ディレクトリ名	なし
-YL, ディレクトリ名	なし
-YM, ディレクトリ名	なし
-YS, ディレクトリ名	なし
- Ya, ディレクトリ名	なし
-Yf, ディレクトリ名	なし
-YI, ディレクトリ名	なし
-Yp, ディレクトリ名	なし

B.2 FORTRAN90/SXコンパイラオプション

FORTRAN90/SX コンパイラオプションと Vector Engine 向けコンパイラのコンパイラオプションの対応表を示します。Vector Engine コンパイラ列の「なし」は対応するコンパイラオプションがないことを表します。

B.2.1 f90/sxf90コマンド基本オプション

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-Chopt	-03
-Cvopt	-02
-Csopt	-O2 -mno-vector
-Cvsafe	-01
-Cssafe	-O1 -mno-vector
-Cdebug	-00 -g
-с	-с
-Nc	なし
-cf 文字列	-cf= <i>文字列</i>
-clear	-clear
-Dname[=def]	-Dname[=def]
-da	なし
-dC	-fcheck=none
-dD	なし
-dP	なし
-dR	-fcheck=none
-dW	なし (注) 常に -dW 相当で動作します。
-dw	なし (注) 常に -dw 相当で動作します。
-ea	なし
-eC	-fbounds-check または、- fcheck=bounds

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-eD	なし
-eP	なし
-eR	-fbounds-check または、- fcheck=bounds (注) 配列添字の範囲のみチェックされます。
-eW	なし
-ew	なし (注) 移行の詳細については「13.5 旧SXコ ンパイラからの移行に関するトラブルシュー ティング」を参照してください。
-EP	なし
-Ер	-fpp
-NE	-nofpp
-f2003	なし (注) Fortran 2003機能は常に有効です。
-f2003 { cbind nocbind }	なし
-f2003 { cptr_derive cptr_i8 }	なし
-f2003 { opt_ieee noopt_ieee }	なし
-Nf2003	なし
-f0	-ffixed-form
-f3	-ffixed-form -fextend-source
-f4	-ffree-form
-f5	-ffree-form -fextend-source
-ftrace	-ftrace

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-Nftrace	-no-ftrace
-G { global local }	なし
-g	-g
-gv	なし
-gw	なし
-Ng	-g0
-I ディレクトリ名	-I ディレクトリ名
-L <i>ディレクトリ名</i>	-L <i>ディレクトリ名</i>
-lライブラリ名	-lライブラリ名
-0ファイル名	-0ファイル名
-Pauto	-mparallel
-Pmulti	なし
-Popenmp	-fopenmp
-Pstack	なし
-Pstatic	-bss
-р	-р
-Np	なし
-pi argconsis={noexp safe unsafe}	なし
-pi auto	-finline-functions
-pi noauto	なし
-pi exp= <i>手続名</i>	なし
-pi noexp= <i>手続名</i>	なし
-pi expin={ファイル名 ディレクトリ名}	-finline-file=ファイル名 または、 -finline-directory=ディレクトリ名

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
	(注) -finline-functions の指定が必要で す。
-pi { fullmsg infomsg nomsg }	-fdiag-inline={ 2 1 0 }
-pi { incdir noincdir }	なし
-pi line= <i>n</i> (注) <i>n</i> は手続の最大行数を指定します。	-finline-max-function-size=n (注) nは中間言語の量を指定します。- finline-functionsの指定が必要で す。
-pi { modout nomodout }	なし
-pi nest=n	-finline-max-depth= <i>n</i> (注) -finline-functionsの指定が必要で す。
-pi rexp= <i>手続名</i>	なし
-Npi	-fno-inline-functions
-R0	なし
-R1	なし
-R2	なし
-R3	なし
-R4	なし
-R5	-report-diagnostics -report-format
-S	-S
-NS	なし
-size_t32	なし
-size_t64	なし (注) 常に -size_t64 相当で動作します。

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-sx8 -sx8r -sx9 -sxace	なし
-to ディレクトリ名	なし
-ts ディレクトリ名	なし
-U name	-U name
-V (注) バージョン表示後にコンパイル処理を 続けます。	version (注) コンパイル処理を行わずにバージョン 表示のみ行います。
-NV	なし
-verbose	-v
-Nverbose	なし
-Wa" <i>オプション列</i> "	-Wa <i>,"オプション列</i> "
-Wc" <i>オプション列</i> "	なし
-Wf"オプション列" (注) Fortranコンパイラに対する詳細オプ ションの対応は次節以降を参照してく ださい。	なし
-WI" <i>オプション列</i> "	-Wl," <i>オプション列</i> "
-Wp" <i>オプション列</i> "	-Wp," <i>オプション列</i> "
-w	-w
-Nw	-Wall
-Yf," ディレクトリ名"	なし
-YI," ディレクトリ名"	なし
-Yp," ディレクトリ名"	なし

B.2.2 f90/sxf90詳細オプション-最適化オプション

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-ai -Nai	なし
-fusion	-floop-fusion
-Nfusion	-fno-loop-fusion
-i { errchk noerrchk }	なし
-O { aryinq noaryinq }	なし
-O chg	-fassociative-math または、
	-faggressive-associative-math
	(注) -faggressive-associative-math
	は、-fassociative-mathより激しく
	最適化します。
-O nochg	-fno-associative-math
-O { compass nocompass }	なし
-O darg	-fargument-alias
-O nodarg	-fargument-noalias
-O div	-freciprocal-math
-O nodiv	-fno-reciprocal-math
-O extendreorder	-msched-interblock
-O reorderrange=bblock	-msched-insns
-0 { if noif }	なし
-O iodo	-marray-io
-O noiodo	-mno-array-io
-O infomsg	なし
-O move	-fmove-loop-invariants-unsafe
-O nomovediv	-fmove-loop-invariants

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-O nomove	-fno-move-loop-invariants
-O overlap	-fnamed-alias
-O nooverlap	-fnamed-noalias
-O { shapeprop noshapeprop }	なし
-O unroll	-floop-unroll
-O unroll=n	-floop-unroll -floop-unroll-max-times=n (注) 2つのオプションを同時に指定します。
-O nounroll	-fno-loop-unroll
-O wkary_opt	-mstack-arrays
-O nowkary_opt	-mno-stack-arrays
-O { zlpchk nozlpchk }	なし
-prob_dir ディレクトリ名	なし
-prob_file ファイル名	なし
-prob_generate	なし
-prob_use	なし

B.2.3 f90/sxf90詳細オプション-ベクトル化・並列化オプション

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-common { global local }	なし
-moddata { global local }	なし
-ompctl { condcomp nocondcomp }	なし
-pvctl altcode	-mvector-dependency-test -mvector-loop-count-test -mvector-shortloop-reduction

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
	(注) 3つのオプションを同時に指定します。
-pvctl altcode=dep	-mvector-dependency-test
-pvctl altcode=nodep	-mno-vector-dependency-test
-pvctl altcode=loopcnt	-mvector-loop-count-test
-pvctl altcode=noloopcnt	-mno-vector-loop-count-test
-pvctl altcode=shortloop	-mvector-shortloop-reduction
-pvctl altcode=noshortloop	-mno-vector-shortloop-reduction
-pvctl noaltcode	-mno-vecgtor-depencendy-test -mno-vector-loop-count-test -mno-vector-shortloop-reduction (注) 3つのオプションを同時に指定します。
-pvctl assoc	-fassociative-math
-pvctl noassoc	-fno-associative-math
-pvctl assume	-mvector-assume-loop-count
-pvctl noassume	-mno-vector-assume-loop-count
-pvctl chgpwr	-mvector-power-to-explog -mvector-power-to-sqrt (注) 2つのオプションを同時に指定します。
-pvctl chgtanh	なし
-pvctl cncall= <i>手続名</i>	なし
-pvctl collapse	-floop-collapse
-pvctl nocollapse	-fno-loop-collapse
-pvctl { compress nocompress }	なし
-pvctl cond_mem_opt	-mvector-merge-conditional
-pvctl nocond_mem_opt	-mno-vector-merge-conditional

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-pvctl { conflict noconflict }	なし
-pvctl divloop	なし
-pvctl nodivloop	-mwork-vector-kind=none
-pvctl expand=n	-floop-unroll-complete=n
-pvctl noexpand	-fno-loop-unroll-complete
-pvctl { farouter nofarouter }	なし
-pvctl for[=n]	なし (注) 並列化のスケジュールは、-mschedu le-staticなどで制御できます。「3.2 最適化・ベクトル化オプション」を参 照してください
-pvctl by=n	なし (注) 並列化のスケジュールは、-mschedu le-staticなどで制御できます。「3.2 最適化・ベクトル化オプション」を参 照してください
-pvctl { fullmsg infomsg nomsg }	-fdiag-parallel={ 2 1 0 } -fdiag-vector={ 2 1 0 } (注) 2つのオプションを同時に指定します。
-pvctl { ifopt noifopt }	なし
-pvctl inner	-mparallel-innerloop
-pvctl noinner	-mno-parallel-innerloop
-pvctl listvec	-mlist-vector
-pvctl nolistvec	-mno-list-vector
-pvctl loopchg	-floop-interchange
-pvctl noloopchg	-fno-loop-interchange

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-pvctl loopcnt=n	-floop-count=n
-pvctl Istval	なし
-pvctl nolstval	なし
-pvctl matmul	-fmatrix-multiply
-pvctl nomatmul	-fno-matrix-multiply
-pvctl matmulblass	なし
-pvctl neighbors	-mvector-neighbors (注) -march=ve3有効時に利用できます。
-pvctl noneighbors	-mno-vector-neighbors
-pvctl nodep	-fivdep
-pvctl on_adb[=カテゴリ]	なし
-pvctl outerstrip	-mparallel-outerloop-strip-mine
-pvctl noouterstrip	-mno-parallel-outerloop-strip-mine
-pvctl outerunroll=n	-fouterloop-unroll -fouterloop-unroll-max-times=n (注) 2つのオプションを同時に指定します。
-pvctl outerunroll_lim=n	なし
-pvctl parcase	-mparallel-sections
-pvctl noparcase	-mno-parallel-sections
-pvctl parthreshold=n	-mparallel-threshold=n
-pvctl noparthreshold	-mno-parallel-threshold
-pvctl res={ whole parunit no }	なし
-pvctl shape=n	なし
-pvctl split	-floop-split

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-pvctl nosplit	-fno-loop-split
-pvctl { vchg novchg }	なし
-pvctl vecthreshold=n	-mvector-threshold=n
-pvctl verrchk	-mvector-intrinsic-check
-pvctl noverrchk	-mno-vector-intrinsic-check
-pvctl { vlchk novlchk }	なし
-pvctl vregs=n	なし
-pvctl vsqrt	-mvector-sqrt-instruction
-pvctl novsqrt	-mno-vector-sqrt-instruction
-pvctl vwork={ static stack hybrid }	なし
-pvctl vworksz=n	なし
-reserve n	なし
-tasklocal { macro micro }	なし
-v	-mvector
-Nv	-mno-vector

B.2.4 f90/sxf90詳細オプション-その他のオプション

Vector Engineコンパイラ
-A idbl : -fdefault-real=8 -fdefault-
double=16
-A idbl4 : -fdefault-real=8
-A idbl8 : -fdefault-double=16
(注) 上記以外のオプション移行の詳細につい
ては「13.5 旧SXコンパイラからの移行に関
するトラブルシューティング」を参照してく
ださい。

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-acct	-proginf
-Nacct	-no-proginf
-adv { on off }	なし
-Nadv	なし
-compatimod	なし
-const_ext -Nconst_ext	なし
-cont	-fassume-contiguous
-Ncont	-fno-assume-contiguous
-dblprecision -Ndblprecision	なし
-dir { vec par debug }	なし
-dir { novec nopar nodebug }	なし
-dollar -Ndollar	なし
-esc -Nesc	なし
-G -NG	なし
-init stack={ zero nan 0xXXXX }	-minit-stack={ zero nan 0xXXXX }
-init heap={zero nan 0xXXXX }	なし (注) 実行時の環境変数 VE_INIT_HEAP で 制御できます。「2.2 実行時に参照さ れる環境変数」を参照してください。
-K { a Na }	なし
-K { b Nb }	なし
-L { stdout nostdout filename=ファイル名 }	-report-file={ stdout ファイル名 } (注) 既定では、-Lnostdout相当で動作します。
-L { eject noeject }	なし

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-L fmtlist	-report-format
-L nofmtlist	なし
-L { inclist noinclist }	なし
-L { map nomap }	なし
-L mrgmsg	なし
-L sepmsg	-report-diagnostics
-L objlist	-assembly-list
-L noobjlist	なし
-L { source nosource }	なし
-L { summary nosummary }	なし
-L { transform notransform }	なし
-NL	なし
-M { zdiv flovf fxovf inv inexact }	なし (注) 実行時の環境変数 VE_FPE_ENABLE で制御できます。「2.2 実行時に参照 される環境変数」を参照してくださ い。
-M { setall setmain }	なし
-msg b	-Wobsolescent
-msg nb	-Wno-obsolescent
-msg { d nd }	なし
-msg { f nf }	なし (注) 常に nf 相当で動作します。
-msg { o no }	なし

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-msg { w nw }	なし (注) 常に nw 相当で動作します。
-P { a b c d e f h i l p t x z }	なし
-P { b nb }	なし
-P { c nc }	なし
-P { d nd }	なし
-P { e ne }	なし
-P f	-nofpp
-P nf	なし (注) 既定の動作です。
-P h	なし (注) 既定の動作です。
-P nh	-ff90-sign
-P { i ni }	なし
-P { I nI }	なし
-P { p np }	なし
-P { t nt }	なし (注) 常に nt 相当で動作します。
-P { x nx }	なし (注) 常に x 相当で動作します。
-P { z nz }	なし
-ptr { byte word }	なし (注) 常に byte 相当で動作します。
-s -Ns	なし

FORTRAN90/SXコンパイラ	Vector Engineコンパイラ
-stmtid -Nstmtid	なし
-w { double16 rdouble16 }	なし
-xint	-mno-vector-iteration
-Nxint	-mvector-iteration

B.3 コンパイラ指示行

SXシリーズ向けコンパイラとVector Engine向けコンパイラの指示行の対応表は「C.3 コンパイラ指示行」を参照してください。SXシリーズ向けコンパイラの指示行をVector Engine向けコンパイラに変換するツールを用意しています。詳細は「付録 C コンパイラ指示行変換ツール」を参照してください。

B.4 環境変数

SXシリーズ向けコンパイラの主要な実行時に参照される環境変数とほぼ同等の機能をもつVe ctor Engine向けコンパイラの環境変数を以下に示します。

SXシリーズ向けコンパイラ	Vector Engineコンパイラ
F_PROGINF	VE_PROGINF
F_TRACEBACK	VE_TRACEBACK
F_EXPRCW	VE_FORT_EXPRCW
F_FMTBUF	VE_FORT_FMTBUF
F_NORCW	VE_FORT_NORCW
F_PAUSE	VE_FORT_PAUSE
F_PARTRCW	VE_FORT_PARTRCW
F_SETBUF	VE_FORT_SETBUF
F_UFMTADJUST=TYPE1	VE_FORT_UFMTADJUST=INT,LOG
F_UFMTADJUST=TYPE2	VE_FORT_UFMTADJUST=ALL
F_UFMTENDIAN	VE_FORT_UFMTENDIAN
<u> </u>	

SXシリーズ向けコンパイラ	Vector Engineコンパイラ
F_FFn	VE_FORT <i>n</i>

B.5 その他のライブラリ

SXシリーズ向けコンパイラのその他のライブラリの手続とほぼ同等の機能をもつVector Eng ine向けコンパイラの手続を以下に示します。**USE**文の代わりに**-use**の使用も可能です。

SXシリーズ向けコンパイラ	Vector Engineコンパイラ
CALL ABORT()	USE F90_UNIX
	CALL ABORT()
RESULT = ACCESS(NAME, MODE)	USE F90_UNIX_FILE
	CALL ACCESS(NAME,AMODE,RESULT)
	(注) MODE(文字)がAMODE(整数)に変更
	されています。AMODE(整数)の詳
	細は「11.3.5 F90_UNIX_FILE」の
	パラメタを参照してください。
RESULT = ALARM(SECONDS,HANDLER)	USE F90_UNIX_PROC
	CALL
	ALARM(SECONDS, HANDLER, RESULT,
	=DD1(0)
	ERRNO)
RESULT = CHDIR(NAME)	USE F90_UNIX_DIR
RESULT = CHDIR(NAME)	-
RESULT = CHDIR(NAME) RESULT = CHMOD(NAME, MODE)	USE F90_UNIX_DIR
	USE F90_UNIX_DIR CALL CHDIR(NAME,RESULT)
	USE F90_UNIX_DIR CALL CHDIR(NAME,RESULT) USE F90_UNIX_FILE
	USE F90_UNIX_DIR CALL CHDIR(NAME,RESULT) USE F90_UNIX_FILE CALL CHMOD(PATH,AMODE,RESULT)
	USE F90_UNIX_DIR CALL CHDIR(NAME,RESULT) USE F90_UNIX_FILE CALL CHMOD(PATH,AMODE,RESULT) (注) MODE(文字)がAMODE(整数)に変更
	USE F90_UNIX_DIR CALL CHDIR(NAME,RESULT) USE F90_UNIX_FILE CALL CHMOD(PATH,AMODE,RESULT) (注) MODE(文字)がAMODE(整数)に変更 されています。AMODE(整数)の詳
	USE F90_UNIX_DIR CALL CHDIR(NAME,RESULT) USE F90_UNIX_FILE CALL CHMOD(PATH,AMODE,RESULT) (注) MODE(文字)がAMODE(整数)に変更 されています。AMODE(整数)の詳 細は「11.3.5 F90_UNIX_FILE」の
RESULT = CHMOD(NAME,MODE)	USE F90_UNIX_DIR CALL CHDIR(NAME,RESULT) USE F90_UNIX_FILE CALL CHMOD(PATH,AMODE,RESULT) (注) MODE(文字)がAMODE(整数)に変更 されています。AMODE(整数)の詳 細は「11.3.5 F90_UNIX_FILE」の パラメタを参照してください。
RESULT = CHMOD(NAME,MODE)	USE F90_UNIX_DIR CALL CHDIR(NAME,RESULT) USE F90_UNIX_FILE CALL CHMOD(PATH,AMODE,RESULT) (注) MODE(文字)がAMODE(整数)に変更 されています。AMODE(整数)の詳 細は「11.3.5 F90_UNIX_FILE」の パラメタを参照してください。 FLUSH(UNIT)

SXシリーズ向けコンパイラ	Vector Engineコンパイラ
RESULT = FORK()	USE F90_UNIX_PROC
	CALL FORK(RESULT,ERRNO)
CALL FREE(PTR)	USE F90_UNIX
	CALL FREE(PTR)
RESULT = FSTAT(UNIT,BUFF)	USE F90_UNIX_FILE
	CALL FSTAT(UNIT,BUFF,RESULT)
CALL GETARG(POS, VALUE)	USE F90_UNIX
	CALL GETARG(POS,VALUE)
RESULT = GETCWD(DIRNAME)	USE F90_UNIX_DIR
	CALL
	GETCWD(DIRNAME,ERRNO=RESULT)
CALL GETENV(NAME, VALUE)	USE F90_UNIX
	CALL GETENV(NAME, VALUE)
RESULT = GETGID()	USE F90_UNIX
	RESULT = GETGID()
CALL GETLOG(NAME)	USE F90_UNIX_ENV
	CALL GETLOGIN(NAME)
RESULT = GETPID()	USE F90_UNIX
	RESULT = GETPID()
RESULT = GETUID()	USE F90_UNIX
	RESULT = GETUID()
RESULT = HOSTNM(NAME)	USE F90_UNIX_ENV
	CALL GETHOSTNAME(NAME,RESULT)
RESULT = IARGC()	USE F90_UNIX
·	RESULT = IARGC()
RESULT = ISATTY(UNIT)	USE F90_UNIX_ENV
·	CALL ISATTY(UNIT,RESULT,ERRNO)
RESULT = LINK(PATH1,PATH2)	USE F90_UNIX_DIR
	CALL LINK(PATH1,PATH2,RESULT)

 SXシリーズ向けコンパイラ	Vector Engineコンパイラ
RESULT = LSTAT(FILE,BUFF)	USE F90_UNIX_FILE CALL LSTAT(FILE,BUFF,RESULT)
PTR = MALLOC(SIZE)	USE F90_UNIX PTR = MALLOC(SIZE)
RESULT = RENAME(FROM,TO)	USE F90_UNIX_DIR CALL RENAME(FORM,TO,RESULT)
CALL SLEEP(SECONDS)	USE F90_UNIX_PROC CALL SLEEP(SECONDS)
RESULT = STAT(FILE,BUFF)	USE F90_UNIX_FILE CALL STAT(FILE,BUFF,RESULT)
RESULT = SYSTEM(COMMAND)	USE F90_UNIX_PROC CALL SYSTEM(COMMAND,RESULT,ERRNO)
RESULT = TIME()	USE F90_UNIX_ENV CALL TIME(RESULT)
RESULT = TTYNAM(UNIT)	USE F90_UNIX_ENV CALL TTYNAME(UNIT,RESULT,ERRNO)
RESULT = UNLINK(PATH)	USE F90_UNIX_DIR CALL UNLINK(PATH,RESULT)
RESULT = WAIT(I)	USE F90_UNIX_PROC CALL WAIT(I,ERRNO=RESULT)

B.6 処理系定義

SXシリーズ向けコンパイラの処理系定義とVector Engine向けコンパイラの処理系定義の対応表を以下に示します

B.6.1 型

	SXシリー	ズ向けコンパイラ	Vector Er	ngineコンパイラ
型	種別 パラメタ	対応する データ宣言(*1)	種別 パラメタ	対応する データ宣 言
整数型	1 (*2)	1バイト整数型	1	1バイト整数型
整数型	2	2バイト整数型	2	2バイト整数型
整数型	4	4バイト整数型 (基本整数型)	4	4バイト整数型 (基本整数型)
整数型	8	8バイト整数型	8	8バイト整数型
実数型	4	実数型 (基本実数型)	4	実数型 (基本実数型)
実数型	8	倍精度実数型	8	倍精度実数型
実数型	16	4倍精度実数型	16	4倍精度実数型
複素数型	4	複素数型 (基本複素数型)	4	複素数型 (基本複素数型)
複素数型	8	倍精度複素数型	8	倍精度複素数型
複素数型	16	4倍精度複素数型	16	4倍精度複素数型
論理型	1	1バイト論理型	1	1バイト論理型
論理型	4	4バイト論理型 (基本論理型)	4	4バイト論理型 (基本論理型)
論理型	8	8バイト論理型	8	8バイト論理型
文字型	1	文字型	1	文字型
文字型	2 (*3)	日本語型	なし	

^(*1) FORTRAN90/SX コンパイラの場合、対応するデータ宣言の型はコンパイラオプションの指定によって変更可能です。

^(*2) FORTRAN90/SX コンパイラでは使用できません。

^(*3) NEC Fortran 2003 コンパイラでは使用できません。

B.6.2 諸元

項目	FORTRAN90/SX コンパイラ	NEC Fortran 2003 コンパイラ	Vector Engine コンパイラ
INCLUDE行で取り込む ファイルのネスト数	-	20	63
配列の次元数	7	31	31
継続行の行数	99行	511行	1023行
名前の長さ	63文字	199文字	199文字

B.6.3 組込み手続

組込み手続名	SXシリーズ向けコンパイラ	Vector Engineコンパイラ
SYSTEM_CLOCK	取得時間の起点は、プログラム	取得時間の起点は、協定世界時
	開始時を基準時間(カウント 0)	(UTC)の 1970 年 1 月 1 日の
	である。	00:00 を基準時間(カウント 0)
		である。

付録 C コンパイラ指示行変換ツール

本節ではsxf90/sxf03/sxcc/sxc++のコンパイラ指示行をnfort/ncc/nc++のコンパイラ指示行に変換するツールについて説明します。

C.1 nfdirconv

コマンド名

nfdirconv

た書

nfdirconv [オプション...] [ファイル | ディレクトリ]...

説明

ソースファイルに含まれるsxf90/sxf03/sxcc/sxc++のコンパイラ指示行をnfort/ncc/nc++のコンパイラ指示行に変換します。ソースファイルのかわりにディレクトリを指定することで、そのディレクトリの次の拡張子を持つファイルをまとめて変換できます。

```
.c .i .h .C .cc .cpp .cp .cxx .c++ .ii .H .hh .hpp
.hp .hxx .h++ .tcc .F .FOR .FTN .FPP .F90 .F95 .F03 .f
.for .ftn .fpp .f90 .f95 .f03 .i90
```

変換前のファイルは「ファイル名.bak」として保存されます。

sxf90/sxf03/sxcc/sxc++の指示行はオプションの指定により、変換後も残したり、削除したりできます。

オプション

オプション名	説明
-a,append	sxf90/sxf03/sxcc/sxc++のコンパイラ指示行を削除せずに、 nfort/ncc/nc++のコンパイラ指示行を追加します。
-d,delete	sxf90/sxf03/sxcc/sxc++のコンパイラ指示行に対応する nfort/ncc/nc++のコンパイラ指示行が無い場合、 sxf90/sxf03/sxcc/sxc++のコンパイラ指示行を削除します。
-f,force	入力ファイルの拡張子をチェックしません。
-h,help	本コマンドの利用方法を出力して終了します。
-o ファイル名,	出力ファイル名を指定します。入力ファイルを複数指定したと

オプション名	説明
output ファイル名	き、または、ディレクトリを指定したとき、この指定は無視されます。
-p,preserve	sxf90/sxf03/sxcc/sxc++のコンパイラ指示行に対応する nfort/ncc/nc++のコンパイラ指示行が無い場合、 sxf90/sxf03/sxcc/sxc++のコンパイラ指示行を削除しません。 (既定の動作)
-q, -quiet	コンパイラ指示行の変換に関するメッセージを出力しません。
-r,recursive	ディレクトリと同時に指定したとき、サブディレクトリを再帰的 に走査します。ディレクトリのシンボリックリンクは無視しま す。
-v,version	バージョン情報を出力して終了します。

出力メッセージ

指示行を変換した場合やnfort/ncc/nc++で指示行が未サポートの場合、標準エラー出力に次の形式のメッセージを出力します。

ファイル名 : line 行番号: メッセージ

ファイル名 : 入力ファイル名

行番号:変換前のファイルの行番号

メッセージ :

- converted "*SX用指示行*" to "*VE用指示行*" (Converted|Substitute) コンパイラ指示行を変換したことを表します。SXとVEのコンパイラ指示行が同等の機能を持つ場合、"Converted"が出力されます。完全に同じではないが、ほぼ同等の機能を持つ場合は"Substitute"が出力されます。
- "SX用指示行" is not supported [(Remained| Removed/Obsolescent)]
 sxf90/sxf03/sxcc/sxc++のコンパイラ指示行がVEではサポートしていないことを表します。将来実装予定のコンパイラ指示行は"Remained"が出力されます。サポート予定のないコンパイラ指示行は、"Removed/Obsolescent"が出力されます。

返却値

全ての変換に成功したときは0を返し、エラーが発生したときは0以外を返します。

注意事項

本コマンドは作業用の一時ファイルを/tmpに作成します。この一時ファイルは、コマンド終了時に自動的に削除されます。一時ファイルを作成するディレクトリは、環境変数**TMP DIR**で変更できます。

C.2 使用例

指示行変換ツールの使用例を示します。ここでは、環境変数**PATH**に/opt/nec/ve/binが追加されていることを前提とします。

ファイルを指定した場合

ファイルに含まれるsxf90/sxf03/sxcc/sxc++のコンパイラ指示行をnfort/ncc/nc++のコンパイラ指示行に変換します。

```
$ cat sample.f90
program main
  integer s
!CDIR NOVECTOR
  do i=1, 1000
    s = s + i
  enddo
  print*, s
end program
```

```
$ nfdirconv sample. f90
sample. f90: line 3: converted 'NOVECTOR' to 'novector' (Converted)
```

```
$ cat sample.f90
program main
  integer s
!NEC$ novector
  do i=1, 1000
    s = s + i
  enddo
  print*, s
end program
```

ディレクトリを指定した場合

以下のようなディレクトリ構成とします。

この場合、dir直下のsample1.f90とsample2.f90が変換対象となります。
Makefileは拡張子が無いため変換の対象外です。また、ディレクトリ直下のファイルが対象となるため、サブディレクトリsubdir配下のファイルも変換対象外です。

```
$ nfdirconv -r dir
dir/sample2.f90: line 5: converted 'nodep' to 'ivdep' (Substitute)
dir/sample1.f90: line 16: converted 'loopcnt=5' to 'loop_count(5)' (Converte
d)
dir/subdir/sample3.f90: line 12: converted 'loopcnt=5' to 'loop_count(5)' Con
verted)
```

サブディレクトリのファイルも含めて変換したい場合は、-rを指定します。-rを指定するとディレクトリを再帰的に処理するようになり、サブディレクトリにあるファイルも変換されるようになります。

C.3 コンパイラ指示行

sxf90/sxf03/sxcc/sxc++のコンパイラ指示行と変換後のコンパイラ指示行を以下に示します。「変換後」列の(Remained)は将来実装予定のコンパイラ指示行、(Removed/Obsolesce nt)はサポートしないコンパイラ指示行を表します。

SXシリーズ向けコンパイラ	変換後
alloc_on_vreg(identifier, n)	vreg(identifier)
altcode	dependency_test
	loop_count_test
	shortloop_reduction
altcode=dep	dependency_test
altcode=loopcnt	loop_count_test
altcode=nodep	nodependency_test
altcode=noshort	noshortloop_reduction
altcode=short	shortloop_reduction
noaltcode	nodependency_test
	noloop_count_test
	noshort_loop_reduction
array(<i>c1</i> [, <i>c2</i> ···])	(Removed/Obsolescent)
arraycomb	(Removed/Obsolescent)
assert	(Removed/Obsolescent)
assoc	assoc
noassoc	noassoc
assume	assume
noassume	noassume
atomic	atomic
cncall	cncall
collapse	collapse
compress	(Removed/Obsolescent)
nocompress	(Removed/Obsolescent)

 SXシリーズ向けコンパイラ	変換後
concur	concurrent
concur(by=m)	concurrent schedule(dynamic, m)
<pre>concur(for=n)</pre>	concurrent
noconcur	noconcurrent
data_prefetch	(Removed/Obsolescent)
delinearize	(Removed/Obsolescent)
nodelinearize	(Removed/Obsolescent)
divloop	vwork
nodivloop	novwork
end arraycomb	(Removed/Obsolescent)
end parallel sections	(Removed/Obsolescent)
expand	unroll_complete
expand=n	(Removed/Obsolescent)
noexpand	nounroll
extend	(Removed/Obsolescent)
extend_free	(Removed/Obsolescent)
fixed	(Removed/Obsolescent)
free	(Removed/Obsolescent)
gthreorder	gather_reorder
nogthreorder	(Removed/Obsolescent)
iexpand(function)	inline
noiexpand(function)	noinline
inline	always_inline
inner	inner
noinner	noinner
listvec	list_vector

SXシリーズ向けコンパイラ	変換後
nolistvec	nolist_vector
loopchg	interchange
noloopchg	nointerchange
loopcnt=n	loop_count(n)
Istval	Istval
nolstval	nolstval
move	move_unsafe
nomove	nomove
nomovediv	move
neighbors	neighbors (注) 隣接アクセス最適化は-march=ve3 有効時のみ効果があります。
noneighbors	noneighbors
nexpand	inline_complete
noconflict(identifier)	(Removed/Obsolescent)
nodep	ivdep
on_adb(identifier)	(Removed/Obsolescent)
outerunroll=n	outerloop_unroll(n)
noouterunroll	noouterloop_unroll
overlap	(Removed/Obsolescent)
nooverlap	(Removed/Obsolescent)
parallel do	parallel do
parallel do private(identifier)	parallel do private(identifier)
parallel sections	(Removed/Obsolescent)
section	(Removed/Obsolescent)
select(keyword)	select_concurrent select_vector

SXシリーズ向けコンパイラ	変換後
shape	(Removed/Obsolescent)
shortloop	shortloop
skip	(Removed/Obsolescent)
sparse	sparse
nosparse	nosparse
split	(Remained)
nosplit	(Remained)
sync	(Remained)
nosync	nosync
threshold	(Removed/Obsolescent)
nothreshold	(Removed/Obsolescent)
traceback	(Remained)
unroll=n	unroll(n)
nounroll	nounroll
unshared	(Removed/Obsolescent)
vecthreshold=n	vector_threshold(n)
vector	vector
novector	novector
verrchk	(Remained)
noverrchk	(Remained)
vlchk	(Removed/Obsolescent)
ovlchk	(Removed/Obsolescent)
vob	vob
novob	novob
vovertake(identifier)	vovertake
novovertake	novovertake

SXシリーズ向けコンパイラ	変換後
vprefetch	(Remained)
novprefetch	(Removed/Obsolescent)
vreg(identifier)	vreg(identifier)
vwork=keyword	(Removed/Obsolescent)
vworksz=n	(Removed/Obsolescent)
zcheck	(Removed/Obsolescent)
nozcheck	(Removed/Obsolescent)

C.4 留意事項

- ツール実行時に変換前のファイルが保存されます。「ファイル名.bak」が存在する場合は、
 ".bak"を".bak2"にリネームし、新しいファイルを".bak"として保存します。ファイル名は
 最大5つまで保存されます。必要に応じてファイルを削除してください。
- 本ツールでは入力ファイルの書式をチェックしません。sxf90/sxf03/sxcc/sxc++のコンパイラ指示行の書式が誤っているときは正しく変換できない場合があります。
- 入力ファイルがシンボリックリンクファイルの場合は、シンボリックリンク先のファイル が更新されます。保存用のファイル名.bakは通常のファイルとして作成されます。
- 範囲開始行/範囲終了行は未サポートの指示行として扱います。

付録 D ファイル入出力解析情報

本章では、NEC Fortranコンパイラがサポートするファイル入出力解析情報の出力情報について説明します。

D.1 出力例

環境変数VE_FORT_FILEINFに"DETAIL"を設定したときの出力例です。

***** File Information ***** Unit No. : 10 File Name : fort.10 Named : YES Current Directory : /usr/uhome/xxxxxxxx TMPDIR : /tmp I/O Exec. Count READ **OPEN** CLOSE INQUIRE WRITE 1 0 1 0 1 REWIND BACKSPACE **ENDFILE** 0 1 0 **FLUSH** WAIT 0 0 Format FORMATTED Access **SEQUENTIAL** Blank (OPEN) NULL Blank (READ) NULL Delim(OPEN) NONE Delim(WRITE) ____ Pad (OPEN) Pad (READ) YES YES Decimal (OPEN) **POINT** Decimal (R/W) **POINT** Sign (OPEN) **PROCESSOR** Sign (WRITE) **PROCESSOR** Round (OPEN) **PROCESSOR PROCESSOR** Round (R/W) Asynchronous NO Encoding **DEFAULT** Position REWIND Recl (Byte) 65536 File Size (Byte) File Descriptor 13 Open Mode File System Type : NFS (0x00006969) READWRITE Shrunk File YES Terminal Assignment : NO Max File Size (Byte) : 600

I/O Buffer Size (KByte) : 512 Record Buffer Size (Byte) : 65536

		Total (In/Out)	Input	Output
Total Data Size (Byte)	:	25,	13,	12
Max Data Size (Byte)	:		13,	12
Min Data Size (Byte)	:		13,	12
Ave Data Size (Byte)	:	12,	13,	12
Transfer Rate (KByte/sec)	:	18. 789,	19. 261,	18. 303

	lotal (In/Out/Aux)	Input	Output
Real Time (sec)	:	0. 004284,	0. 000659,	0.000640
User Time (sec)	:	0. 002874,	0.000062,	0.000129

Environment Variable List:

D.2 出力項目

Unit No.

外部装置識別子を示します。

File Name

ここで出力するファイル名は**FILE**指定子あるいは事前接続の際に指定した名前であり、ホームディレクトリあるいはカレントディレクトリからの名前ではありません。SCRATCHファイルのときもシステムによってつけられたファイル名を出力します。

Named

名前付きファイルか否かを出力します。

Current Directory

現在作業しているディレクトリ名を出力します。

TMPDIR

SCRATCHファイルが作成されるディレクトリ名を出力します。この情報はSCRATCHファイルのときのみ出力されます。

I/O Exec Count

各入出力文の実行回数を出力します。直編成ファイルのとき、REWIND / BACKSPACE / ENDFILE の情報は出力されません。

Format

FORM指定子を示します。

Access

ACCESS指定子を示します。

Blank (OPEN)

OPEN文に指定された値を出力します。この情報は書式付きのときのみ出力されます。

Blank (READ)

READ文に指定された値を出力します。READ文がないときは"----"が出力されます。RE AD文が複数あり、それぞれのREAD文に異なる値が指定されたときは"MIXED"が出力されます。この情報は書式付きのときのみ出力されます。

Delim (OPEN)

OPEN文に指定された値を出力します。この情報は書式付きのときのみ出力されます。

Delim (WRITE)

WRITE文に指定された値を出力します。WRITE文がないときは"----"が出力されます。WRITE文が複数あり、それぞれのWRITE文に異なる値が指定されたときは"MIXED"が出力されます。この情報は書式付きのときのみ出力されます。

Pad (OPEN)

OPEN文に指定された値を出力します。この情報は書式付きのときのみ出力されます。

Pad (READ)

READ文に指定された値を出力します。READ文がないときは"----"が出力されます。RE AD文が複数あり、それぞれのREAD文に異なる値が指定されたときは"MIXED"が出力されます。この情報は書式付きのときのみ出力されます。

Decimal (OPEN)

OPEN文に指定された値を出力します。この情報は書式付きのときのみ出力されます。

Decimal (R/W)

READ文、および、WRITE文に指定された値を出力します。いずれもないときは"----"が 出力されます。READ文やWRITE文が複数あり、それぞれのREAD文、WRITE文に異な る値が指定されたときは"MIXED"が出力されます。この情報は書式付きのときのみ出力さ れます。

Sign (OPEN)

OPEN文に指定された値を出力します。この情報は書式付きのときのみ出力されます。

Sign (WRITE)

WRITE文に指定された値を出力します。WRITE文がないときは"----"が出力されます。WRITE文が複数あり、それぞれのWRITE文に異なる値が指定されたときは"MIXED"が出力されます。この情報は書式付きのときのみ出力されます。

Round (OPEN)

OPEN文に指定された値を出力します。この情報は書式付きのときのみ出力されます。

Round (R/W)

READ文、および、WRITE文に指定された値を出力します。いずれもないときは"----"が 出力されます。READ文やWRITE文が複数あり、それぞれのREAD文、WRITE文に異な る値が指定されたときは"MIXED"が出力されます。この情報は書式付きのときのみ出力さ れます。

Asynchronous

ASYNCHRONOUS指定子の有無を出力します。

Encoding

OPEN文に指定された値を出力します。この情報は書式付きのときのみ出力されます。

Position

OPEN文に指定された値を出力します。この情報は直編成ファイル以外のときに出力されます。

Recl

OPEN文の**RECL**指定子の値をバイト単位で出力します。**RECL**指定子の指定が省略されたとき、既定値をバイト単位で出力します。この情報はストリームファイル以外のときに出力されます。

Max Record No.

ファイルの大きさからの最大レコード番号ではなく、実際に入出力を行った中での最大の レコード番号を示します。この情報は直編成ファイルのときのみ出力されます。

File Size

クローズ時のファイルの大きさをバイト単位で出力します。この値は順番探査出力時にプログラムが付与する情報も含んでいます。

File Descriptor

ファイル識別子を示します。

File System Type

ファイルが属するファイルシステムを示します。

Open Mode

ファイルをオープンしたときのモードを示します。

Terminal Assignment

端末接続の有無を示します。

Shrunk File

ファイル縮小機能が働いたか否かを示します。ファイル縮小機能とは、オープン時のファイルの大きさ、あるいは、プログラム実行中に最も大きくなったときのファイルの大きさに比べて、クローズ時のファイルの大きさが小さいとき、残り領域を解放する機能です。 この情報は順編成ファイルのときのみ出力されます。

Max File Size

プログラム実行中に最も大きくなったときのファイルの大きさをバイト単位で示します。 この情報はShrunk Fileが"YES"のときのみ出力されます。この情報はI/Oバッファの大き さを決めるための有効な情報となります。

I/O Buffer Size

入出力のために準備しているI/Oバッファサイズの大きさをキロバイト(1024バイト)単位で示します。

Record Buffer Size

入出力のために準備しているレコードバッファサイズの大きさをバイト単位で示します。

Total Data Size

入出力を行った総転送量を、入出力の合計、入力の合計、出力の合計の順にバイト単位で 出力します。順編成ファイルでプログラムが付与する情報はこの中に含みません。

Max Data Size

入出力の中で最も大きい記録長の値を、入力、出力の順にバイト単位で出力します。

Min Data Size

入出力の中で最も小さい記録長の値を、入力、出力の順にバイト単位で出力します。

Ave Data Size

平均記録長を、入出力の合計、入力の合計、出力の合計の順にバイト単位で出力します。

これにより、このファイルが小さいI/Oが主か、大きいI/Oが主であるかを知ることができます。

Transfer Rate

ファイル転送速度を秒あたりのキロバイト(1024バイト)単位で示します。転送速度は、Total Data SizeをReal Timeで割った値をキロバイト(1024バイト)単位で示した値です。"DETAIL"を指定したときのみ表示します。

Real Time

経過時間を示します。"DETAIL"を指定したときのみ表示します。

User Time

ユーザ時間を示します。"DETAIL"を指定したときのみ表示します。

Environment Variable List

このファイルに対して、有効となった環境変数の一覧をアルファベット順に出力します。"DETAIL"を指定したときのみ表示します。

付録 E 追加·変更点詳細

前版(第36版、2024年12月発行)からの更新内容は以下のとおりです。

- 「3.2 最適化・ベクトル化オプション」に次のコンパイラオプションの説明を追加しました。
 - -m[no-]vector-assume-loop-count
- 「9.5.1 データ宣言」に次元数引継ぎ仮データ実体を追加しました。
- 「9.5.2 データの使用」に**SELECT RANK**構文を追加しました。
- 「12.1.2 メッセージー覧」に、vec(135)、vec(136)、vec(144)、opt(1268)、opt (1394)、opt(3008)、opt(3012)、opt(3013)、opt(3014)の説明を追加しました。

索引

	-assembly-list	54
\$	ASSIGN 文	116
\$113	assoc	59
φ113	assume	59
&	atomic	59
&113	В	
@	-B	56
_	-Bdynamic	54
@ <i>file-name</i> 34	-bss	48
	-Bstatic	54
1		
16 進型データ124	C	
1 バイト整数型117	-c	33
1 バイト論理型123	C_PTR	151
	-cf	33
2	-clear	33
2 バイト整数型117	cncall	60
2 進型データ125	collapse	60
2,22, 7,	COMMON文	105
4	COMPLEX DOUBLE PRECISION文	105
	COMPLEX DOUBLE文	105
4 バイト整数型117	COMPLEX QUADRUPLE PRECISION文	105
4 バイト論理型123	COMPLEX QUADRUPLE 文	105
4 倍精度実数型120	concurrent	60
4 倍精度複素数型122	-cxxlib	54
8	D	
8 バイト整数型117	-D	53
8 バイト論理型123	DATA 文	105
8 進型データ125	dependency_test	60
	DIMENSION 文	106
Α	-dM	53
always_inline83	DOUBLE COMPLEX 文	106

DOUBLE PRECISION文106	-finline-max-times44
DOUBLE 文106	-finline-suprress-diagnostics 45
	-finstrument-functions45
E	-fintrinsic-modules-path 56
-E53	-fivdep36
EQUIVALENCE 文107	-fivdep-do-concurrent-loop
EQUIVALENCE X107	-fivdep-omp-worksharing-loop 36
F	-floop-collapse36
•	-floop-count36
-faggressive-associative-math35	-floop-fusion36
-fargument-alias34	-floop-interchange 36
-fargument-noalias34	-floop-normalize36
-fassociative-math35	-floop-split36
-fassume-contiguous35	-floop-strip-mine36
-fbounds-check46	-floop-unroll37
-fcheck46	-floop-unroll-complete37
-fcopyin-intent-out35	-floop-unroll-complete-nest 37
-fcse-after-vectorization35	-floop-unroll-max-times
-fdefault-double49	-fmatrix-multiply37
-fdefault-integer48	-fmax-continuation-lines
-fdefault-real49	-fmove-loop-invariants 37
-fdiag-inline51	-fmove-loop-invariants-if
-fdiag-parallel51	-fmove-loop-invariants-unsafe 37
-fdiag-vector51	-fmove-nested-loop-invariants-outer 38
-fextend-source49	-fnamed-alias38
-ffast-formatted-io35	-fnamed-noalias
-ffast-math35	-fnamed-noalias-aggressive 38
-ffast-math-check35	-fno-inline-directory44
-ffixed-form	-fno-inline-file44
-ffree-form49	-fopenmp42
-fignore-asynchronous35	forced_collapse60
-fignore-induction-variable-overflow35	FORMAT 文107
-fignore-volatile36	Fortran 2018 機能135
-finline-abort-at-error43	FORTRAN77 POINTER 文110
-finline-copy-arguments44	Fortran 手続の引数157
-finline-directory44	-fouterloop-unroll
-finline-file44	-fouterloop-unroll-max-size
-finline-functions44	-fouterloop-unroll-max-times
-finline-max-depth44	-fpic45
-finline-max-function-size44	-fPIC 45

-fpp53	J
-fpp-name53	
-fprecise-math38	-356
-frealloc-lhs49	
-frealloc-lhs-array50	L
-frealloc-lhs-scalar50	-l 55
-freciprocal-math38	-L54
-freorder-logical-expression38	LD_LIBRARY_PATH11
-freplace-loop-equation39	list vector
-freplace-matmul-to-matrix-multiply39	
-fsyntax-only33	loop_count61
-ftrace45	loop_count_test61
FUNCTION 文108	lstval
G	М
-g47	-M53
gather_reorder60	-march
GO TO 文	-marray-io
割当て形116	-masync-io
計算型108	-mconditional-index-test
	-mcreate-threads-at-startup
н	-mfp16-format
help56	-mgenerate-il-file45
пер	-minit-stack
H 形編集記述子	-mlist-vector
11///柳木印足」110	-mmemory-trace
I	-mmemory-trace-full48
-	-mno-stack-arrays 40
-I53	-module 56
ignore_feedback_scalar60	move 61
IMPLICIT 文109	move_unsafe61
inf125	-mparallel 43
inline 60, 83	-mparallel-innerloop43
inline_complete61, 83	-mparallel-omp-routine43
inner61	-mparallel-outerloop-strip-mine
interchange61	-mparallel-sections
-isysroot53	-mparallel-threshold43
icyctom E2	inpuranci di esticiani
-isystem53	-mread-il-file45

-msched39	NFORT_LIBRARY_PATH 10
-mschedule-chunk-size43	NFORT_PROGRAM_PATH11
-mschedule-dynamic43	noassoc59
-mschedule-runtime43	noassume59
-mschedule-static43	noconcurrent60
-mstack-arrays40	nofma 62
-muse-mmap40	nofuse62
-mvector40	noinline60, 83
-mvector-advance-gather40	noinner61
-mvector-advance-gather-limit40	nointerchange61
-mvector-assignment-threshold40	nolist_vector61
-mvector-assume-loop-count40	nolstval61
-mvector-dependency-test40	nomove61
-mvector-floating-divide-instruction41	noneighbors62
-mvector-fma41	noouterloop_unroll63
-mvector-intrinsic-check41	nopacked_vector64
-mvector-iteration41	-noqueue56
-mvector-iteration-unsafe41	noshortloop_reduction65
-mvector-loop-count-test41	nosparse65
-mvector-low-precise-divide-function41	-nostartfiles
-mvector-merge-conditional41	-nostdinc53
-mvector-neighbors41	-nostdlib55
-mvector-packed42	nosync 62
-mvector-power-to-explog42	nounroll65
-mvector-power-to-sqrt42	novector66
-mvector-reduction42	novob66
-mvector-shortloop-reduction42	novovertake66
-mvector-sqrt-instruction42	novwork 67
-mvector-threshold42	
-mwork-vector-kind	Ο
	-0
N	-034, 74
NAMELIST の出力形式135	OMP_NUM_THREADS12
NAMELIST の入力形式135	OMP_STACKSIZE12
NaN125	OpenMP 並列化 90
neighbors62	options62, 63
nfdirconv355	outerloop_unroll63
NFORT_COMPILER_PATH10	
NEORT INCLUDE PATH 10	

Р	5	
-p46	-S33	
-P54	-save50	
packed_vector64	select_concurrent65	
parallel do64	select_vector65	
PARALLEL LOOP90	-shared 55	
PARALLEL MASTER90	shortloop65	
PARAMETER 文110	shortloop_reduction 65	
PATH11	sparse 65	
PAUSE 文116	-static 55	
-pedantic-errors51	-static-nec55	
-pg46	-std50	
POINTER 文110	-stdlib 55	
-print-file-name56	STOP文112	
-print-prog-name56	SX シリーズ向けコンパイラとの対応	
-proginf46	sysroot 56	
-pthread43		
pvreg64	Т	
Q	TMPDIR	
¥	-traceback	
QUADRUPLE PRECISION 文112	-traditional54	
QUADRUPLE 文112		
	U	
R	-U54	
-rdynamic55	unroll65	
-report-all52	unroll_complete65	
-report-append-mode52	-use 50	
-report-cg52		
-report-diagnostics52	V	
-report-file52	-v 57	
-report-format52	VE ADVANCEOFF	
-report-inline52	VE_ERRCTL_ALLOCATE	
-report-option52	VE_ERRCTL_DEALLOCATE	
-report-userinfo52	VE_FMTIO_OFFLOAD	
-report-vector52	VE_FMTIO_OFFLOAD_THRESHOLD	
retain64	VE_ITTIG_GT E87.B_TTIKEST 82.B.T.T.13 VE FORT	
RETURN 文112	VE_FORT_ABORT	
	VE_FORT_ACCUMULATE_THREAD_CPU_TIME. 14	

VE_FORT_DEFAULTFILE14	W	
VE_FORT_EXPRCW15	-w51	
VE_FORT_FILEINF16		
VE_FORT_FMT_NO_WRAP_MARGIN16	-Wa 54	
VE_FORT_FMTBUF17	-Wall 50	
VE_FORT_FOR_PRINT17	-Werror	
VE_FORT_FOR_READ18	-Wextension51	
VE_FORT_FOR_TYPE18	-WI 55	
VE_FORT_MEM_BLOCKSIZE18, 129	-Wobsolescent51	
VE_FORT_NML_DELIM_BLANK18	-Woverflow51	
VE_FORT_NML_REPEAT_FORM19	-Woverflow-errors 51	
VE_FORT_NORCW19	-Wp 54	
VE_FORT_PARTRCW20	-Wunmatched-subscript 51	
VE_FORT_PAUSE21	-Wunmatched-subscript-errors51	
VE_FORT_RECLUNIT22		
VE_FORT_RECORDBUF22	X	
VE_FORT_SETBUF23	-x 33	
VE_FORT_SUBRCW24	-Xassembler54	
VE_FORT_UFMTADJUST25	-Xlinker 55	
VE_FORT_UFMTENDIAN26	Alliket	
VE_FORT_UFMTENDIAN_NOVEC27	Z	
VE_FPE_ENABLE28	_	
VE_INIT_HEAP28	-z 56	
VE_INIT_STACK29		
VE_LD_LIBRARY_PATH29	()	
VE_LIBRARY_PATH11	インライン展開機能83	
VE_NODE_NUMBER30	インライン展開指示行	
VE_OMP_NUM_THREADS12	インライン展開モジュール100	
VE_OMP_STACKSIZE12	12212/2012 22 //	
VE_PROGINF30	え	
VE_TRACEBACK30		
VE_TRACEBACK_DEPTH31	演算例外6	
VE1/VE3 の互換性315	精度落ち7	
vector66	ゼロ除算7	
vector_threshold66	トレースバック機能との連携8	
version57	浮動小数点アンダーフロー7	
vob66	浮動小数点オーバーフロー7	
vovertake66	ベクトル命令7	
vreg66	無効演算7	
vavork 67	演算例外マスク8	

മ	U	
オプションリスト95	式114	
	事前接続132	
か	実数型データ118	
拡張自由形式114	自動インライン展開83	
型 116	自動並列化機能88	
環境変数	自動ベクトル化72	
関係演算子	条件並列化	
	依存関係による条件並列化88	
	作業量による条件並列化88	
2	条件ベクトル化78	
強制並列化64	ショートループ79	
行列積ライブラリ213	諸元 126	
	書式付き記録129	
<	書式なし記録130	
組込み手続 128, 162	処理系定義116	
クロスファイルインライニング85	診断メッセージリスト96	
け	व	
継続行113	スカラデータ72	
ح	te	
コード生成モジュール102	整数型データ117	
固定形式	精度落ち7	
コマンドライン	絶対値比較76	
コンパイラ指示行59	ゼロ除算7	
コンパイラ指示行変換ツール355	漸化式75	
コンパイラの適用する最適化71	_	
コンフィギュレーションファイル320	₹	
	総和/内積74	
ਣੇ	外側ループストリップマイニング78	
最内側ループの並列化88	た	
最大值/最小值		
最適化による副作用	多言語プログラミング142	
算術 IF 文109	単精度実数型118	
	単精度複素数型	

τ	^	
定義済みマクロ 126, 317	ベクトル化72	
デマングル144	ベクトル化機能72	
添字式116	ベクトル化モジュール101	
	ベクトルデータ72	
ح	編集リスト97	
特別な値125	ほ	
トラブルシューティング298	10.	
	ホラリス型115	
な	ホラリス型データ 124	
名前なしファイル134	ホラリス関係式115	
137 (Annual Control of the Control o	ホラリス代入文 115	
は	-	
	ま	
倍精度実数型	マクロ演算74	
倍精度複素数型	圧縮77	
配列の最大次元数114	サーチ76	
配列の補完	最大値/最小値75	
パックドベクトル命令79	伸長77	
半精度実数型	絶対値比較76	
半精度複素数型121	漸化式75	
71	総和/内積74	
Q	累積75	
非 10 進定数表現114	マスク演算の最適化 73	
引数の結合113	丸めモード134	
非数(NaN)125	マングル144	
<i>ኤ</i>	+ \	
201	む	
ファイル入出力解析情報364	無限大(inf)	
複素数型データ121	無効演算7	
符号付きのゼロ125		
浮動小数点アンダーフロー 7	め	
浮動小数点オーバーフロー 7	明示的インライン展開83	
部分ベクトル化72	メモリブロック128	
プログラムのリンク160	/· こフノロフフ 120	
	も	
	文字位置式 116	

文字型データ	124	ろ	
る	論理演算子	114	
		論理型データ	123
累積	75		
11プの強制並列化	90		

SX-Aurora TSUBASA システムソフトウェア

Fortranコンパイラ ユーザーズガイド

2025年10月 37版

日本電気株式会社

東京都港区芝五丁目7番1号 TEL(03)3454-1111 (大代表)

© NEC Corporation 2018,2025

日本電気株式会社の許可なく複製・改変などを行うことはできません。 本書の内容に関しては将来予告なしに変更することがあります。