SX-Aurora TSUBASA

Fortran Compiler User’s Guide

<
W
<C
M
D
Ta
|_
Y,
| -
®)
| -
S
<
><
W

Proprietary Notice

The information disclosed in this document is the property of NEC

Corporation (NEC) and/or its licensors. NEC and/or its licensors, as

appropriate, reserve all patent, copyright and other proprietary rights to

this document, including all design, manufacturing, reproduction, use and

sales rights thereto, except to the extent said rights are expressly granted

to others.

The information in this document is subject to change at any time, without

notice.

Remarks:

This document is the revision 37th issued in Oct 2025.

NEC Fortran Compiler conforms to the following language standards.
- ISO/IEC 1539-1:2010 Programming languages - Fortran

- OpenMP Application Program Interface Version 4.5

NEC Fortran compiler also conforms a part of “ISO/IEC 1539-1:2018

Programming languages - Fortran”

NEC Fortran compiler also conforms a part of “OpenMP Application

Program Interface Version 5.0”
In this document, the Vector Engine is abbreviated as VE.

The reader of this document assumes that you have knowledge of

software development in Fortran/C/C++ language on Linux.

All product, brand, or trade names in this publication are the trademarks

or registered trademarks of their respective owners.

(C) NEC Corporation 2018,2025

Contents

Contents

Chapterl Fortran ComPiler. ... e aeaaeas 1
B R O 1= T 1
1.2 Usage of the CompPiler.......vviiiii e 1
1.3 EXECULION coee i 3
1.4 Command LiNE SYNLAX ..uiiiiiiiiiiiiii i s 4
1.5 Specifying Compiler OptiONS......vviriii i 4
1.6 Searching Module FileSuiiiiiiiii e 5
1.7 Searching files included by INCLUDE line or #include directive............... 6
1.8 Searching Libraries . ..o s 6
1.9 Arithmetic EXCEPiONS. . ..vviii i 6
1.9.1 Operation Result After Arithmetic Exception Occurrence 6
1.9.2 Changing Arithmetic Exception Mask.........ccccviiiiiiiiiiiiiiiieieieeane 8
1.9.3 Using Traceback Informationccoviiiiiiiii e 8
1.9.4 Remarks on Changing Arithmetic Exception Maskccccvvvvnennns 9
1.10 Execution Time Termination COdeS.........couiiiiiiiiiiiiiiiiieeans 9
Chapter2 Environment Variables.........oooiiiiiiiii e 10
2.1 Environment Variables Referenced During Compilation........................ 10
2.2 Environment Variables Referenced During Execution..............ccoveeuennn. 12
Chapter3 Compiler OptioNS . ..viuiieiiii e 32
3.1 OVErall OPLiONS ..vueieiei i e 33
3.2 Optimization OPLiONS. e 34
3.3 Parallelization OplioNScivieiiii e 42
3.4 INlNING OPtIONS .. cuiiiiiii it 43
3.5 Code Generation OPiONSviviiie i e 45
3.6 Debugging OPtiONSvuiuiieiiiie et 46
G 2 A =1 o T [U= Lo T @ o) [= P 48
3.8 MESSAge OPtIONS ...ueeie et eaa 50
3.9 List OULPUL OptiONS ... ue i e e 51
3.10 Preprocessor OPiONS ..viiriiiiii i e 52
3.11 Assembler OptioNS. ..o 53
3.12 LINKEr OPtIONS .ttt 54

Contents

3.13 D] g=Toive] VA @] o) (o] o =TT 55
3.14 Miscellaneous OPLioNSovviiiiiiiii i e 56
3.15 Optimization Level and Options’ DefaultS........cccovviiiiiiiiiiiiiieen, 57
Chapterd Compiler DIFreCHIVESvvirii i e aeeaeaens 59
4.1 Format of Compiler Dir€CtiVe.......cviiiii i 59
4.2 Compiler Directive OptiONS....uiu i ee e 59
4.3 Compiler options which cannot specify by options directive.................. 67
4.4 Compiler options which can be specified by optimize directive.............. 68
Chapter5 Optimization and Vectorization.........cccoooiiiiiiiiiiiiii e, 72
5.1 Code Optimization ...uuuiiie i 72
5.1.1 OPptimMIizZationscieii i e 72
5.1.2 Side Effects of Optimization..........covviiiiiii e 73
5.2 Vectorization FEatUreS........viiiiiiiii e 73
5.2.1 Vectorization ..o 73
5.2.2 Partial Vectorizationcoviiiiiii 74
5.2.3 Optimizing Mask Operationscccuvvriiiiiiii e 74
I S\ = ol o T @ 01 =] o] [PP 75
5.2.5 Conditional Vectorization..........coovviiiiiiiiiiii e 79
5.2.6 Outer Loop Strip-MiNiNgG ...cvviriiieiiieir e ees 79
5.2.7 SROM-l00P . ueii e 80
5.2.8 Packed vector iNStruCtioNS.........vvviiiiiii e 81
5. 2.0 OO e 81
5.2.10 Remarks on Using Vectorizationcccoeveviiiiiiiiiiiiiiiieeene, 81
5.3 Other features for performancCecoovviii i 83
5.3.1 Offloading of Lumped Output of Array........coviiiiiiiiiiiii e 83
5.3.2 Improve efficiency in buffering.........cooviiiiiiiiiiiic 83
Chaptert ININING .ovieieiii e e ae e e neeeens 85
6.1 AUtomatic INlNING ..ovoneieii 85
6.2 EXPlCt INHNING .noeii e 85
0.2.1 DESCHIPHION 1.t e 85
6.2.2 Specifying Inling DIreCliVeoviviiiiiii e 86
B.2.3 REMAIKS ..ttt 86
6.3 Cross-file ININING «.voviei e e e 87
6.4 Inline Expansion INhibIitors........ccviiiiiiii e 88

Contents

6.5 NOtes on ININING .cvini i 88
6.6 Restrictions on ININING ...ooiiiii 89
Chapter7 Parallelizationouiiieiii e 90
7.1 Automatic Parallelization............oooiiiii 90
711 DESCHIPEION Lt e 90
7.1.2 Conditional Parallelization Using Threshold Test............ccoovviennnnn. 90
7.1.3 Conditional Parallelization Using Dependency Test..........cccvvvnnnnnn. 90
7.1.4 Parallelization of iINNEr LOOPS ...vuveiiiiiiiiiiiiiieeeieieie e e neeen 90
7.1.5 Forced Loop Parallelizationcoooiiiiiiiiiiii e 91
7.2 OpenMP Parallelizationcoviiiiiiii 92
7.2.1 Using OpenMP Parallelizationccooiiiiiiiiiiiiicc e 92
7.2.2 OPENMP 5.0 et e 92
7.2.3 Extensions on OpenMP Parallelization............ccoooviiiiiiiiiiiiiiiiieens 92
7.2.4 Restrictions on OpenMP Parallelizationccooiiiiiiiiiiiiiciiennn, 93
7.2.5 Using OpenMP Parallelizationcovviiiiiiiii e 94
7.3 TRIEAAS . 94
7.3.1 Set and Get Number of Threads.........ccoooviiiiiiiiiiie, 94
7.3.2 Thread Creation and DeStrOycovvieiiiiiiiiiiiiieie e neneeans 95
7.3.3 Postpone Thread Creationo.vveiiiiiiiiii e 96
7.4 Notes on Using Parallelization..........ccovuiiiiiiiii e 96
Chapter8 Compiler LiStiNg.....ouveieiiie i et aeaens 97
8.1 OPLION LISt sttt 97
8.2 DiIagnOStiC LISt .uuuieiiiiiiiiie i s 97
8.2.1 Format of DIagnoStiC LIStcviviiiiiii e 97
B.2.2 NOTES ..t 98
8.3 FOrmMat LiSt. .. 98
8.3.1 Format of Format List........ccoviiiiiiii e 99

8.3.2 Loop Structure and Vectorization/Parallelization/Inlining Statuses... 99

B.3.3 NS et e 102

8.4 Optimization List of Each Moduleccoiiiiiiiii e, 102
8.4.1 Inlining MOdUIE.....c.iiiii 102
8.4.2 Vectorization Moduleoiiiiiiiii 103
8.4.3 Code Generation MOdUIEcoeiiiiiiiiiiii e 104
Chapter9 Programming Notes Depending on the Language Specification 106

Contents

9.1 Non-Standard Extended Features.............ocovviiiiiiiiiiiii . 106
0.1.1 StatementS.....cociiiiiiii 106

1= T I o To | =1 o o PR 115

1 TG T Yo 1 | ol o o PP 116

S B I S o d] <17 o] PP 117
9.1.5 Deleted FEAtUIreS ..o 119
9.2 Implementation-Defined Specificationsc.cooviiiiiiiiiiiiiieeens 119
O0.2.1 Dalta@ TYPES et 119
9.2.2 Internal Representation of Datacoovviiiiiiiiiiiie e, 120
0.2.3 SPECIfiCatiONS ..euviti i 129
9.2.4 Predefin@d MacrO.......covuiuiiiiiii 130
9.2.5 Notes for IntrinSiC ProCedUresS.........ovviiiiiiiiiie e 131
9.3 Memory Allocation and Deallocationccovveviiiiiiiiici e, 131
0.3.1 MemOry DIOCK ...vrieiii e 132
9.3.2 Change size and threshold size of memory block 132
9.4 Run-Time INpUt/OULPUL....ciiiiii e 133
9.4.1 Formatted RECOIdS.......cuvviiiiiiiiiii s 133
9.4.2 Unformatted RECOIAScoviiiiiiiiiiiiiii e 134
9.4.3 PreCONNECHION .. vuiti et 136
9.4.4 Unnamed File......ciiiiiiiiii 138
9.4.5 RoUNAING MOAE ...viiiiiiii e e 138
9.4.6 NAMELIST Input FOrmMatoieiiiiiiiir e 139
9.4.7 NAMELIST Output FOrmatcooiiriiii e 139
9.5 Fortran 2018 EXLENSIONS.....uiviiiiiiiiiiit i 139
9.5.1 Data declarationcccoiiiiiiiii i 140
0.5.2 DAl USAGE ... veiiiiiii ittt 140
9.5.3 Execution CONtrol........coviiiiiiii e 140
9.5.4 Intrinsic Procedures and Modulescccoviiniiiiiiininiiins 141
9.5.5 INpUL/OULPUL .ot 142
9.5.6 Programs and ProCEAUIESo.iuvieiiiiieiiin e eaeenenaenenes 143
9.5.7 Language-Mixed Programming........cccouvuiuiuiiinininiiiieeeeeneenens 143
9.5.8 Obsolescent features.......ccvvviiiiiiiiiii e 145
9.6 RESLMICHIONS .ouvviiit i 145
Chapter10 Language-Mixed Programming.......ccvevevieieireneieinenenneenernanennnnnns 146

Contents

10.1 Point of Mixed Language Programmingccoeeeveinineenineneineiennnnenens 146

10.2 Correspondence of C/C++ Function Name and Fortran Procedure Name

147

10.2.1 External Symbol Name of Fortran Procedure..............cocvennnnnn. 147
10.2.2 External Symbol Name of C++ Function...........coevvviiiiiiininnnnns 148

10.2.3 Rules for Corresponding C/C++ Functions with Fortran Procedures

149

10.2.4 Examples of Callingouvuiniiiiiiiiiiinn e 149
10.3 Dala Ty DS ttiiii ittt 152
10.3.1 Integer and Logical Types for Fortran........c.ccveeviiiiiiiiiiiinnnnnns 152
10.3.2 Floating-point and Complex Types for Fortrancceee. 153
10.3.3 Character Type for FOrtrancoovveiiiiiiiiii e 154
10.3.4 Derived Type for FOrtranccooviiiiiiiii e 154
10.3.5 POINEEr cuieii 155
10.3.6 Common Block for FOrtranccovviiiiiiiieea 157
10.3.7 NOUES et 158
10.4 Type and Return Value of Function and Procedureccueueee. 158
10.5 Passing ArgUMIENTESuiiei e e 161
10.5.1 Fortran Procedure Argumentsccoviiiiiiiiieieiiiiiieeeeeneans 161
10.5.2 NOEES e 163
10.6 LINKING e e e 165
10.6.1 Linking Fortran Program and C Program..........ccceveiinininennnnnnns 165
10.6.2 Linking Fortran Program and C++ Programcccvevnininnnns 165
10,7 NOEES. ittt e 165
Chapterll Library ReferenCecciriiiiiiii i e 166
11,1 INtriNSIC PrOoCEAUIESveee ettt nenans 166
11.1.1 ABS(A) SpeCific NamMe ..o e e 166
11.1.2 ACOS(X) Specific Name ...cuiuiieiiiii i 167
11.1.3 ACOSH(X) SpeCifiC Name ...ouiieiiiiii i 167
11.1.4 AIMAG(Z) SpeCific Namec.iieiiiii i 168
11.1.5 AINT(A) Specific Name ...coviriiiiii e 168
11.1.6 AMTUX) woreeeeeeee et e ettt e e e e e e e e et e e e e e e e e 169
11.1.7 AND(Z) e eeeee et 170
11.1.8 ANINT(A) SpecCific Nameoieiiii e 170

11.1.9

11.1.10
11.1.11
11.1.12
11.1.13
11.1.14
11.1.15
11.1.16
11.1.17
11.1.18
11.1.19
11.1.20
11.1.21
11.1.22
11.1.23
11.1.24
11.1.25
11.1.26
11.1.27
11.1.28
11.1.29
11.1.30
11.1.31
11.1.32
11.1.33
11.1.34
11.1.35
11.1.36
11.1.37
11.1.38
11.1.39
11.1.40
11.1.41
11.1.42

Contents

ASIN(X) SpPecCific Name ...ovveieiiieeii e 170
ASINH(X) Specific Nameccvviiiiiiii e 171
ATAN(X) SPeCifiCc NameE....uvieieiii e e 171
ATAN2(Y,X) SPecCifiC Nameoviiiiiii e 172
ATANH(X) Specific Name....cuvuiiiiiii e 172
BTEST(Z,POS) SpecCific Nameccovviiiiiiieeieeeeiene e 173
CANGX) ettt ettt ettt e e e e e et e e e e e e 174
(0121 1 4 PP 174
CLOGCK(D) ettt ettt et et e e e e e e 175
CONIG(Z) SpeCific NamMe...oviviie i eeaas 175
COS(X) SpeCific NamE ...ueiiiii i e 175
(6015 D1 ¢ PP 176
COSH(X) SpecCific Name .. coviiiiiiiii i e 177
COTAN(X) ettt ettt et e e e et e e e enas 177
DATE(A) ettt et et 178
DATIM(A, B, C) e 178
DBLE(A) Specific Name.....oviiiiii i e 179
DCMPLX(X,Y)ttt et 179
DFACT(I) .ttt ettt e e e e e ettt e e e e e e e e e e 180
D] 0 I 2 TR PP 180
DIM(X,Y) Specific Name......oieieiii i e 181
DREAL(A) .ttt ettt ettt e e e ettt e e e e e e e e e 182
ERF(X) Specific Name....cvvviiiiiii e 182
ERFC(X) Specific Name ...cov i 182
ETIME(D) .. eeteeeee e et e e ettt e e e e e e et e e e e e e e e e e e 183
EXIT(X) ettt et e e e e e e e ettt eeneees 183
EXP(X) Specific Name.....ccoviiieiiii e 184
EXPLOCX) .ttt et e e e et e ettt e e e e e e e e e et e e e e e e e e e e 184
EXP2(X) ettt et ettt 185
EX P (X)) ettt e 185
EXPCLO(X) ettt 186
EX P C 20X ettt 186
N O N 1 T 187
FLUSH(UNIT) e e e e e e 187

- Vii -

Contents

11.1.43
11.1.44
11.1.45
11.1.46
11.1.47
11.1.48
11.1.49
11.1.50
11.1.51
11.1.52
11.1.53
11.1.54
11.1.55
11.1.56
11.1.57
11.1.58
11.1.59
11.1.60
11.1.61
11.1.62
11.1.63
11.1.64
11.1.65
11.1.66
11.1.67
11.1.68
11.1.69
11.1.70
11.1.71
11.1.72
11.1.73
11.1.74
11.1.75
11.1.76

GAMMA(X) SPeCifiC NamMe....uiie i i eeaas 188
IAND(I,J) Specific Nameeiviiiiiii i e eaa 188
IBCLR(I,POS) SpecCifiCc Nam€ ... ovviviiieiiiiiiiiieeeiene e eneeaas 189
IBITS(I,POS,LEN) Specific Namecocvviiiiiiiieiei e ieneeeens 190
IBSET(Z,POS) SpeCific Nameoviviiiiiiiii i naeeaeeaa 190
IEOR(I,J) SPeCifiC Nami€...ouviriuie it eaeeaas 191
IMAG(A) ..ottt ettt ettt e e et e e e e e e 192
INT(A[,KIND]) Specific Namecoviiiiiiiiiiiiii i eae e 192
IOR(I,J) SPEeCfiC NAME ...viiiitiiii e e eaas 193
TRE(X) « ettt et e ettt et e e e ettt e e e e e e e e e e e e e e e e e e e, 194
ISHFT(I,SHIFT) Specific Name.....ccoviiiiiiiiiiicccii e 195
ISHFT(I,SHIFT[,SIZE]) Specific Namec.veivuniiieeiiieiienenns 195
ISNANCX) ettt ettt et e e e e e e e e e e e e e e e e e e e 196
DXOR(Z,) cteeete ettt ettt eaas 196
LGAMMA(X) ettt 196
LOC(X) +etnet et ettt ea 197
LOG(X) Specific Name ...civiiiiiiii i e aae e 197
LOG10(X) SpeCific Nameeeieiiie i enee e 198
LOG2 (X)) ettt ettt 199
MAX(A1,A2[,A3,--]) Specific Name.......ccooeiiiiiiiiiiiiiiei i 199
MAXVL() « ettt e 200
MIN(AZ,AZL,A3, 1) ettt ettt e e, 200
MOD(A,P) SpPeCifiC Name....ouieiriiie e 201
MVBITS(FROM,FROMPOS,LEN, TO, TOPOS) Specific Name.......... 202
NINT(A[,KIND]) Specific Nameciiviiiiiiiiiiiniei e 203
NOT(I) .ottt ettt ettt e e e e e e e et e e e e e e e e e e e, 204
OR () ettt 204
QM PLX (X, Y) ettt e 204
QEX T (X)) ettt e 205
(0] X O I () TP 205
QF LOAT (A) ittt et e 206
QREAL(A) ittt 206
REAL(ALKINDT) et e e e e 206
ST @ 2 104 I 207

- viii -

Contents

11.1.77 SIGN(A,B) Specific Nameovviiiii i 208
11.1.78 SIN(X) SpeCific Nameouiiiiiiiiiii e 208
111,79 SIND(X) teeninieie e et e et e e e e e e ees 209
11.1.80 SINH(X) Specific Nameoviuiieiiiiiie e 210
11.1.81 SQRT(X) SpecCific Nameouiiiiiiiiiiiin e 210
11.1.82 TAN(X) SpeCifiC Name ...viuiiiiiiii e e 211
11.1.83 TANH(X) Specific Name ...oiiieiiiii e 212
< I 11 P 212
1 S L T (@ | 50) TP 213
11.2 Matrix MUItiply Librarny ..o e e e 213
11.2.1 MATRIX-VECTOR Multiplication(A, NAR, B, NBR, C).................. 213
11.2.2 MATRIX-VECTOR Multiplication(A, NA, IAD, B, NB, C, NC, NAR,
NBR) 215
11.2.3 MATRIX- MATRIX Multiplication(A, NA, IAD, B, NB, IBD, C, NC, ICD,
NAR, NAC, NBC) ..ot ae e 216
11.3 UNIX System Function Interfacecccooviiiiiiiiiiiiiii e 218
1 G 2 N = T O 1 P 220
11.3.2 FOO_UNIX _DIR ..ttt e e eee e ees 223
11.3.3 FOO_UNIX _ENV ittt e v n e e e e 225
11.3.4 FOO_UNIX_ERRNOuiiiiiiieieie e eenees 229
11.3.5 FOO_UNIX _FILE .. et ee e 229
11.3.6 FOO_UNIX_PROC ..uiuititiiiiie ettt e et e e eeae s 233
11.4 Other Librarny v e 239
1 Y =] 2 I () P 239
11.4.2 ACCESS(PATH,MODE)uuuuuueeuueeeeeeeeeaeeesesesesessnesnssseserenenens 239
11.4.3 ALARM(SECS,PROC) et eee e 240
11.4.4 CHDIR(PATH) e e e e ees 240
11.4.5 CHMOD(NAME,MODE) .. et i 241
11.4.6 CTIMEW) ceieeeeeeeeeeeeeeeee e e e et e e e e e e e 241
11.4.7 DTIME(TARRAY) ettt enas 242
11.4.8 ETIME(TARRAY) ..ot e e e 242
11.4.9 FDATE() teeueutuitieiee ettt et e ettt e e e e et e e e e e e e es 242
3 O T 2 () P 243
11.4.11 FREE(ADDR) ...eiieie e ee e e 243

Contents

11.4.12
11.4.13
11.4.14
11.4.15
11.4.16
11.4.17
11.4.18
11.4.19
11.4.20
11.4.21
11.4.22
11.4.23
11.4.24
11.4.25
11.4.26
11.4.27
11.4.28
11.4.29
11.4.30
11.4.31
11.4.32
11.4.33
11.4.34
11.4.35
11.4.36
11.4.37
11.4.38
11.4.39
11.4.40
11.4.41
11.4.42
11.4.43
11.4.44
11.4.45

FREE2(ADDR) ... eeeeeeeee e, 244
FSEEK(UNIT,OFFSET,WHENCE)cvviieee oo, 244
FSTAT(UNIT,SXBUF .o 245
FTELLQUNITY oo, 245
FTELLIB(UNITY vttt 246
GETARG(POS, VAL ..., 246
GETCWD(PATH) .ot eee e 247
GETENV(NAME, VALY ...t 247
GETGID() . vt eeee ettt e e e 247
GETLOGINAME) ..o 248
GETPID() c. vttt et e et e e 248
GETPOS(UNITY ..ot 248
GETPOSIB(UNITY .o, 249
GETUID(). ettt ettt e e 249
GMTIME(LIAD) ...t 249
HOSTNM(NAME) ...ttt e, 250
TARGC() +. vttt et e e, 250
IDATE(IA3) «. ettt 250
TERRNO() ettt ee et e e e e e e, 251
ISATTY(UNIT) .ot 251
TTIME(IA3) «. et e e, 251
KILL(PID, SIGNUMY) ..o 252
LINK(PATHL, PATH2) oot 252
LSTAT(PATH, SXBUF) ...t 253
LTIME(L AD) ettt 253
MALLOC(SIZE) ..eveeeeeee e, 254
MALLOC2(SIZE) ... e eeeee et 254
PERROR(A) .ttt ettt e ettt e e, 255
RENAME(FROM, TO) ...t eeeeeeeee e 255
SECNDS(T) «. ettt e e 255
SIGNAL(SIGNUM, HANDLER) ... e, 256
SLEEP(SECS) .t teeeeeeeeee et ee e e e et ee e 256
STAT(UNIT,SXBUF) oo, 256
SYMLNK(PATHI, PATH2) ..o, 257

Contents

11.4.46 SYSTEM(CMD)eeeeeeeeeieeee et e e 258
11.4.47 TIME() ceuineieiineee et e aes 258
11.4.48 TTYNAM(UNIT) . eeeuteeeeieeee et e e et e e e e e e 259
11.4.49 UNLINK(PATH) .ttt ettt e e e e e e e e 259
11.4.50 WAIT(STATUS) e e 259
11,5 NS .ttt 260
Chapterl2 MESSAgES. . .ttt ittt ettt ettt et e et et e e aaneaennens 262
12,1 DiagnoSstiC MESSAGES ...ttt 262
12.1.1 Diagnostic Message Formatcoviiiiiiiiii e 262
12.1.2 MESSAE LISt cuiiriiiiiii i e 263
12.2 RUNEIME ErrOr MESSAgES . .vi ettt as 275
12.2.1 FOrmat .o 275
12.2.2 LiSt Of ErrOr MESSAgES. ...uv vttt iie et a e 275
12.3 Other RUNEIME EFrOr ouvuviiiiei e 304
Chapterl3 TroubleshOotingccoviiiiiiii i e 306
13.1 Troubleshooting for compilationcccoviiiiiiiii 306
13.2 Troubleshooting for execution.........ccooviiiiiiiiii 312
13.3 Troubleshooting for tUNINGccvviiiiii e 317
13.4 Troubleshooting for installation ..o, 318
13.5 Troubleshooting for SX-ACE compiler migration..............ccocvviinnnnns 319
Chapter14 VE1/VE3 Compatibility....ccccoviiiiiiiiii e 323
14.1 Executables Compatibilitycccovriiiiiiiiiii 323
14.2 Changes of Search Path ..., 323
14.3 Changes of Compiler OptiONS.ovieiriiiieiieir e e eeas 324
14.4 Half-Precision Floating-Point TYPecccviiiiiiiiiiiii e 325
14.4.1 Format of Half-Precision Floating-Point Typecocvvviiiinnnnnn. 325
14.4.2 Mixing binary16 and bfloatl16.......c.cocvvviiiiiiiiiii e 325
145 NOUICE ittt e 325
ChapterlS NOUICE vt 327
Appendix A Configuration file ..o 329
A N O A< Y1 329
N o] 2 = 330
A3 EXAMIDIE. e 330
Appendix B SX Compatibilitycooeiriiiiiii e 331

Contents

B.1 NEC Fortran 2003 Compiler OptioNScccevviiiiiiiiiiiinieieeeeeneeans 331
B.1.1 Overall Oplions....cciiiiiii i 331
B.1.2 Vector/Scalar Optimization OptionS.......ccccvviiiiiiiii e 332
B.1.3 INliNiNG OptioNS . ueviiiii i 335
B.1.4 Parallelization OptionScciiiiiiiiiii i 336
B.1.5 Code Generation OPLtioNSouvieiiiiiiiiiii e ees 337
o I S =T o To [T=To < @ o o] o 13 TP 337
B.1.7 Performance Measurement OpLtioNscccviiiiiiiiiiiiiiicieie e 338
B.1.8 Debug Options ...ciuiiiiiiiiiii i 338
B.1.9 Preprocessor OPtiONS. . ..o.ie it ee e naenaaaes 339
B.1.10 List OUtpUL OpPtioNS ..viiiiii i e a e 339
B.1.11 MeESSAgE OPLiONS. ..ttt 340
B.1.12 Assembler Option......oiiiiiii i 340
B.1.13 C Compiler Optionccuiiii i 340
B.1.14 LinKer OptioNs ..ot 341
B.1.15 Directory OpliONS . ..uiuiieiie i 341

B.2 FORTRANOO/SX COMPIIEN ..euienieieiiii e 341
B.2.1 f90/sxf90 command Options.......ccciviiiiiiii e 341
B.2.2 f90/sxf90 Detailed Options for optimizationcccvviiiiiinnnnne. 345
B.2.3 f90/sxf90 Detailed Options for vectorization and parallelization..... 347
B.2.4 f90/sxf90 Other Detailed OptionScvvviiiiiiiiiiice 350

B.3 Compiler DireCHIVES .. .ttt e 353

B.4 Environment Variables ... 354

B.5 Other Library ..o e 354

B.6 Implementation-Defined Specifications........cccoeiviiiiiiiiiiiiiciiien 356
B.6.1 DAl Ty DS 1ttt 356
B.6.2 SPEeCifiCatiONS .. .uviiiie i 357
B.6.3 INtrinSIiC ProCeAUIrESiviiiiiiii e 358

Appendix C Compiler Directive Conversion TOOI.......oovveiiiiiiiiiiiiiii i 359

@ N o e o] 0 1 359

G2 EXAMIPIES ottt e 360

C.3 Compiler DireCliVES . ..vu ittt e a 362

Cid NOEES o 365

Appendix D File I/O Analysis Informationcoooiviiiiiiiii e 366

- Xii -

Contents

D.1 OULPUL EXamMIPIe oo e 366
D.2 Description Of ITeMS ...uiii i 367
Appendix E Change NOTES.......cu i eee e 372
IMOEX e s 373

- xiii -

Chapterl Fortran Compiler

Chapterl Fortran Compiler

1.1 Overview

1.2

The NEC Fortran compiler is a compiler that compiles and links Fortran programs and

creates binaries for execution on the CPU of the VE. This compiler implements the

following optimization function so that VE hardware performance can be easily drawn

to the limit.

Vectorization
Automatic Parallelization and OpenMP Parallelization
Automatic Inlining

Performance Information collection

With various compiler options, you can use these capabilities to the utmost while

selecting these functions. For details of the optimization function and compiler

options, refer to Chapter 2 and later.

Usage of the Compiler

(1) Setting Environment Variables

If you want to omit the path specification when starting the NEC Fortran compiler,
set the path to the environment variable PATH. The NEC Fortran compiler is
installed by default under /opt/nec/ve. Add /opt/nec/ve/bin to the environment
variable PATH.

Although the NEC Fortran compiler provides environment variables for setting
paths such as header files and libraries, the NEC Fortran compiler automatically
searches for the default path, so you can use it without setting these environment
variables. Set environment variables when you need to search nonstandard
directories, such as when you always want to add OSS header files and library
paths not included in the compiler.

For the environment variables, see “Chapter2 Environment Variables”,

Chapterl Fortran Compiler

(2) Examples
The following shows examples of invoking the Fortran compiler. See “Chapter3

Compiler Options” for details of the compiler options.

e Compiling and linking a Fortran source file (a.f90).

$ nfort a. 90

» Compiling and linking more than one source file.

$ nfort a. f90 b. f90

¢ Compiling, linking, and naming an executable file.

$ nfort -o prog.out a. 90

¢ Compiling and linking with the highest vectorization and optimization.

$ nfort -04 a. 90

« Compiling and linking with safe vectorization and optimization.

$ nfort -01 a. f90

» Compiling and linking without vectorization and optimization.

$ nfort -00 a. 90

* Compiling and linking using automatic parallelization.

$ nfort -mparallel a.f90

* Compiling and linking using automatic inlining.

$ nfort —finline-functions a. 90

» Compiling and linking using the half-precision floating-point. (VE3 only)

- IEEE binary16 format

$ nfort a. 90

- bfloat16 format

$ nfort -mfp16-format=bfloat a.f90

1.3

Chapterl Fortran Compiler

» Compiling and linking using a compiler of specific version.

$ /opt/nec/ve/bin/nfort-X X X a. 90 (X X X is version number.)

Execution

The example when executing a program below.

» Executing a compiled program.

$./a. out

* Executing with number of VE

$ env VE_NODE_NUMBER=1 . /a.out (Execute on number 1 of VE)

» Executing with input file and input parameter.

$./a.out data. in 10 (input the file ” data. in” and value ” 10”)

» Executing with redirecting an input file.

$./a. out < data. in

» Executing a parallelized program with specifying the number of threads.

$ nfort -mparallel -03 a.f90 b.f90
$ export OMP_NUM_THREADS=4
$./a. out

» Executing with connecting a file to unit.

$ export VE_FORT9=DATA9 (connect the file ” DATA9” to unit number 9)
$./a. out

» Using the profiler (ngprof).
The performance information file “gmon.out” is output at execution a program
which compiled with -pg at compiling and linking. The contents of “gmon.out” can

be analyzed and output using the command ngprof.

$ nfort -pg a. 90

$./a. out

$ Is gmon. out

gmon. out

$ ngprof

(The performance information is output.)

Chapterl Fortran Compiler

1.4 Command Line Syntax

The command line syntax of invoking the compiler is as follows.

nfort [compiler-option | file 1 ...

1.5 Specifying Compiler Options

* The compiler option must begin with a hyphen "-". In addition, there must be a

blank between compiler options.

Example:
$ nfort -v -¢ a. 90 (Correct)
$ nfort -vc a. f90 (Incorrect)

» The Fortran Compiler recognizes the input file suffixes as follows. The other file

suffixes are treated as an object file.

Suffix Recognized File

.F .FOR .FTN .FPP .fpp Fortran source file
(Fixed form, With preprocessing)

.FO0 .F95 .FO3 Fortran source file
(Free form, With preprocessing)

f for .ftn i Fortran source file
(Fixed form, Without preprocessing)

.f90 .f95 .f03 .i90 Fortran source file

(Free form, Without preprocessing)
.C C source file
.S s Assembler source file

» The compiler options and input files can be specified using option files.
An option file is used to specify compiler options that are always enabled at the
invoking of the Fortran Compiler. Compiler options and files can be specified in the
same way as when the command line is used. The option file must be placed in

the home directory, to which the environment variable HOME has been set.

Compiler Type Option File Name

nfort $HOME/.nfortinit

Chapterl Fortran Compiler

Example:

$ cat "/.nfortinit

-03 -finline-functions

$ nfort —v a. f90

/opt/nec/ve/libexec/fcom - 03 —finline-functions --- a. f90

1.6 Searching Module Files

When there are modules in an input source file, in order that other source files refer
to the modules, the Fortran compiler outputs compiled module information files for
each modules. The compiled module information files of the intrinsic modules are

beforehand prepared in the defined place.

(1) Searching compiled module information files of non-intrinsic module
When there are not modules which are referred to in an input source file, the
Fortran compiler searches the following directories in the following order for
module files:
(a) Directory on which each input source file is
(b) Directories specified by -module
(c) Current directory
(d) Directories specified by -1
(e) Subdirectory named “include” under the directory specified by -B
(f) Directories specified by the environment variable NFORT_INCLUDE_PATH
(g) Directory specified by -isystem
(h) /opt/nec/ve/nfort/<version-number>/include
(i) /opt/nec/ve/include (When -march=ve3 is enabled: /opt/nec/ve3/include)
When -isysroot is enabled, subdirectory named “include” under the directory

specified by -isysroot.

(2) Searching compiled module information files of intrinsic modules
The intrinsic modules are referred to by USE statement with INTRINSIC
attribute. The Fortran compiler searches the following directory for intrinsic
module files:
(a) Directory specified by -fintrinsic-modules-path if it is specified, otherwise

/opt/nec/ve/nfort/<version-number>/include

Chapterl Fortran Compiler

1.7 Searching files included by INCLUDE line or #include directive

The Fortran compiler searches the following directories in the following order for files

included by INCLUDE line and #include"file-name".
(a) Directory on which each input source file is
(b) Current directory
(c) Directories specified by -1

(d) Subdirectory named “include” under the directory specified by -B

(e) Directories specified by the environment variable NFORT_INCLUDE_PATH

(f) Directory specified by -isystem

(g) /opt/nec/ve/nfort/<version-number>/include

(h) /opt/nec/ve/include (When -march=ve3 is enabled: /opt/nec/ve3/include)

When -isysroot is enabled, subdirectory named “include” under the directory

specified by -isysroot.

1.8 Searching Libraries

The Fortran compiler searches the following directories in the following order for

libraries.
(a) Directories specified by -L

(b) Directories specified by -B

(c) Directories specified by the environment variable NFORT_LIBRARY_PATH
(d) /opt/nec/ve/nfort/<version-number>/lib

(When -march=ve3 is enabled: /opt/nec/ve3/nfort/<version-number>/lib)
(e) Directories specified by the environment variable VE_LIBRARY_PATH
(f) /opt/nec/ve/lib/gcc (When -march=ve3 is enabled: /opt/nec/ve3/lib/gcc)

(g) /opt/nec/ve/lib (When -march=ve3 is enabled: /opt/nec/ve3/lib)

1.9 Arithmetic Exceptions

1.9.1 Operation Result After Arithmetic Exception Occurrence

This section describes how an overflow, underflow, division by zero, invalid
operation, and accuracy degradation are handled when they occur during an

arithmetic operation.

Chapterl Fortran Compiler

(1) Division by zero
When a division by zero occurs during an integer arithmetic operation, the result
is undefined.
When a division by zero occurs during a non-integer arithmetic operation, the
result of the operation is the maximum expressible value if the dividend is
positive, or the minimum expressible value if the dividend is negative.
When the value of VE_FPE_ENABLE is “DIV”, this exception occurs and error
message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “DIV”, this exception does not occurs.

(2) Floating-point overflow
When an overflow occurs during an operation of type real and complex, the result
of the operation is the maximum expressible value if the value is positive, or the
minimum expressible value if the value is negative.
When the value of VE_FPE_ENABLE is "FOF”, this exception occurs and error
message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “FOF”, this exception does not occurs.

(3) Floating-point underflow
When an underflow occurs during an operation of type real and complex, the
result of the operation is zero.
When the value of VE_FPE_ENABLE is “FUF”, this exception occurs and error
message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “FUF”, this exception does not occurs.

(4) Invalid operation
When an invalid operation occurs during an operation of type real and complex,
the result of the operation is an undefined value or NaN.
When the value of VE_FPE_ENABLE is “INV”, this exception occurs and error
message is issued to the standard error output. When the value of
VE_FPE_ENABLE is not “INV”, this exception does not occurs.

(5) Accuracy degradation
When accuracy degradation occurs during an operation of type real and complex,
the result of the operation is a rounded value.
When the value of VE_FPE_ENABLE is “INE", this exception occurs and error

message is issued to the standard error output. When the value of

-7 -

Chapterl Fortran Compiler

VE_FPE_ENABLE is not “INE”, this exception does not occurs.

(6) Exception while executing a vector instruction
When overflow, underflow, or division by zero occurs while executing a vector
instruction, the processing is the same as in the case of a scalar instruction.
However, if multiple operation exceptions occur at the same time while executing

one vector instruction, they appear as one exception.

1.9.2 Changing Arithmetic Exception Mask

By changing the mask setting, it can be specified whether an arithmetic exception
occurs or not.

The arithmetic exception mask can be changed by using VE_FPE_ENABLE. Which
kind of mask should be changed must be specified by VE_FPE_ENABLE.

Example:

$ export VE_FPE_ENABLE=FOF, DIV
$./a. out

In the above example, changing the mask setting so that Floating-point overflow

(FOF) or Divide-by-zero exception (DIV) can occur.

1.9.3 Using Traceback Information

Where the arithmetic exception occurred can be ascertained by changing the mask
and using the traceback information.

Example:

$ nfort —traceback=verbose below. f90 out. f90 watch. f90 hey. f90 ovf. f90

$ export VE_TRACEBACK=VERBOSE
$ export VE_FPE_ENABLE=DIV

$. /a. out

Runtime Error: Divide by zero at 0x600008001088
[0] 0x600008001088 below_ below. f90:3
[1] 0x600018001168 out_ out. f90:3

[2] 0x600020001168 watch_ watch. f90:3
[3] 0x600010001168 hey_ hey. f90:3

[4] 0x60000001cab8 MAIN__ ovf. f90:5

In example, the exception of “Divide by zero” occurred in line 3 of below.f90.

Chapterl Fortran Compiler

1.9.4 Remarks on Changing Arithmetic Exception Mask

Changing the arithmetic exception mask affects the system library functions called
from a program. Therefore, the arithmetic exception is raised if precision degradation

or another exception occurs in the system library functions.

1.10 Execution Time Termination Codes

Termination Codes when the program ends are listed below.

Termination Meaning
Code

0 Normal termination.

1 Execution-time error.

2 If character-type termination code is specified in the ERROR STOP

statement, it is used as the termination code.
137 Execution-time error (Abort).
N If a termination code n is specified in the STOP statement or the

intrinsic subroutine EXIT, it is used as the termination code.

Chapter2 Environment Variables

Chapter2 Environment Variables

2.1 Environment Variables Referenced During Compilation

HOME

This variable is referenced by the compiler in order to search the user’s home
directory for an option file. When HOME is not set, the option file has no effect

even if it is put on the home directory.

NFORT_COMPILER_PATH

Specified a list of directories separated by colon which are searched for the
Fortran compiler (fcom). The directory has high priority in the order of listing. If it
is not found in the specified directories, nfort starts the Fortran compiler in the
standard directory. This environment variable is set when you want to always
search non-standard directories.

Example:

$ export NFORT _COMPILER PATH= “$HOME/| ibexec:$HOME/wk/|ibexec”

NFORT_INCLUDE_PATH

Specifies a list of directories separated by colon which are searched for the files
included by INCLUDE line or #include directive, and module files. The directory
has high priority in the order of listing. This environment variable is set when you
want to always search non-standard directories.

Example:

$ export NFORT_INCLUDE_PATH= “$HOME/include: $HOME/wk/include”

NFORT_LIBRARY_PATH

Specifies a list of directories separated by colon which are searched for the Fortran
libraries. The directory has high priority in the order of listing. This environment
variable is set when you want to always search non-standard directories. For
example, you want to always search the OSS library directory that is not attached
to the NEC Fortran compiler.

Example:

$ export NFORT_LIBRARY_PATH= “$HOME/Iib”

- 10 -

Chapter2 Environment Variables

NFORT_PROGRAM_PATH

Specified a list of directories separated by colon which are searched for the
assembler and the linker for VE. The directory has high priority in the order of
listing. If they are not found in the specified directories, the NEC Fortran compiler
automatically starts the assembler and linker in the standard directory. This
environment variable is set when you want to always search non-standard
directories.

Example:

$ export NFORT_PROGRAM_PATH= “$HOME/bin:$HOME/wk/bin”

PATH

Add a list of directories separated by colon which are searched for the nfort. The
directory has high priority in the order of listing. Add the "bin" under the directory
where the NEC Fortran compiler is installed. If you set this environment variable,
you can omit specifying the path when starting the nfort. When installing to the
standard directory, add "/opt/nec/ve/bin". The environment variable PATH also
affects other applications of the NEC Fortran compiler. Add it to the existing
environment variable PATH.

Example:

$ export PATH= “/opt/nec/ve/bin:$PATH”

TMPDIR

Specifies a directory where the compilers and commands temporarily use.
(default: /tmp)

VE_LIBRARY_PATH

Specifies a list of directories separated by colon which are searched for the system
libraries. The directory has high priority in the order of listing. This environment
variable is set when you want to always search non-standard directories.

Example:

$ export VE_LIBRARY_PATH= “$HOME/|ib:$HOME/wk/|ib”

- 11 -

Chapter2 Environment Variables

2.2 Environment Variables Referenced During Execution

LD_LIBRARY_PATH

Specifies a directory where the Library for offloading of lumped and formatted
output of array, and lumped and list-directed output of array to VH is put.

Example:

$ export LD_LIBRARY_PATH=/opt/nec/ve/nfort/|ib64

OMP_NUM_THREADS / VE_OMP_NUM_THREADS

This variable sets the number of threads to use for OpenMP and/or automatic
parallelized programs. The number of threads is the number of cores of the VE
when it is not specified explicitly.

Example:

$ export OMP_NUM_THREADS=4

OMP_STACKSIZE / VE_OMP_STACKSIZE

This variable sets the upper limit of the stack size by the kilobytes used by each
threads for OpenMP and/or automatic parallelized programs. The value can be
specify the suffixes “B”(Bytes), “K"”(Kilobytes), “M”(Megabytes), and
“G"(Gigabytes) as unit. The stack size used by each threads is 4 megabytes when
it is not specified explicitly.

Example:

$ export OMP_STACKSIZE=1G

VE_ADVANCEOFF

This variable is used to control the advance-off (lockstep execution) mode. When
“YES” is set, the advance-off mode is enabled.

If any other value is set or this variable is not set, the advance-off mode is
disabled.

If the advance-off mode is enabled, the execution time can be significantly
increased.

Example:

$ export VE_ADVANCEOFF=YES

- 12 -

Chapter2 Environment Variables

VE_ERRCTL_ALLOCATE

This variable is used to control the program execution when a runtime error
related to allocation of an allocatable variable or a pointer occurs.
One of the following values can be specified.
ABORT

The program is aborted with error message. (default)
MSG

Error message is output and the execution is continued if possible.
NOMSG

No error message is output and the execution is continued if possible.

Example:

$ export VE_ERRCTL_ALLOCATE=MSG

VE_ERRCTL_DEALLOCATE

This variable is used to control the program execution when a runtime error
related to deallocation of an allocatable variable or a pointer occurs.
One of the following values can be specified.
ABORT
The program is aborted with error message.
MSG
Error message is output and the execution is continued if possible.
NOMSG
No error message is output and the execution is continued if possible. (default)

Example:

$ export VE_ERRCTL_DEALLOCATE=ABORT

VE_FMTIO_OFFLOAD

This variable controls offloading of lumped and formatted output of array, and
lumped and list-directed output of array. When the value of this variable is “YES”
or “ON”, offloading is enabled. See the “5.3 Other features for performance” for
offloading of lumped and formatted output of array, and lumped and list-directed

output of array.

- 13 -

Chapter2 Environment Variables

Example:

$ export VE_FMTIO_OFFLOAD=YES

VE_FMTIO_OFFLOAD_THRESHOLD

This variable sets the threshold of the number of array element offloading of
lumped and formatted output of array, and lumped and list-directed output of
array. An array which have element smaller than the specified value is not
offloaded to VH. The default value is 10.

Example:

$ export VE_FMTIO_OFFLOAD_THRESHOLD=20

VE_FORTn

This variable sets a file name to be connected to the unit number n.
Default of the file name is fort.n.
If this variable is set, a file hame is changed to its value.

Example:

$ export VE_FORT9=DATA9

VE_FORT_ABORT

This variable controls core dump creation if a fatal error occurs. When the value of
this variable is “YES", core dump is created.

Note This variable does not control core dump creation other than caused by
"Runtime Error" of Fortran.
Example:

$ export VE_FORT_ABORT=YES

VE_FORT_ACCUMULATE_THREAD_CPU_TIME

This variable is used to control value of CPU_TIME subroutine in multithreaded
program. When the value of this variable is "YES", then the value is accumulated
CPU time of all threads.

Example:

$ export VE_FORT_ACCUMULATE_THREAD_CPU_TIME=YES

- 14 -

Chapter2 Environment Variables

VE_FORT_DEFAULTFILE

This variable is used to control the starting position of default directory path for

input/output file from the current directory to the specified directory. When the

FILE specifier of the OPEN statement, or environment variable VE_FORTn are

specified by the absolute pathname, the specified environment variable is ignored.

If a default directory pathname string does not end in a slash (/), a slash is added.

Default value is current directory.

The pathname used for each combination of the specified values is shown below.

FILE specifier in VE_FORT_DEFAULTFILE VE_FORTn Pathname

OPEN statement

none none none Jfort.n

none none test.dat ./test.dat

none ignored Jusr/tmp/t.dat /usr/tmp/t.dat

none /tmp none /tmp/fort.n

none /tmp testdata /tmp/testdata

none /usr lib/testdata /usr/lib/testdata

file.dat Jusr/group ignored /usr/group/file.dat

/tmp/file.dat ignored ignored /tmp/file.dat

file.dat none ignored Jfile.dat
Example:

$ export VE_FORT_DEFAULTFILE=/foo/

VE_FORT_EXPRCW

This variable sets the unit number of unformatted file to be treated as a file in the

expanded format. Records whose size is over 2GB can be handled in the expanded

format. Its format is as follows.
ALL

Apply to all unit numbers.

number | number,number | number-number
Specify the unit number.

Specify multiple unit number separated by commas.

Specify a range of consecutive unit number separated by a hyphen.

- 15 -

Chapter2 Environment Variables

YES[:number] | NO[:number]
Specify enable(YES)/disable(NO) for expanded format.

Specify units number after the colon.

Specify the enable(YES)/disable(NO) and unit numbers to exclude from the
enable/disable(YES/NO) specified before the semicolon.
Examplel: Apply to the unit 10.

$ export VE_FORT_EXPRCW=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_EXPRCW=10, 11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_EXPRCW=10-12

Example4: Treats all unit as the expanded format except for 10, 11 and 12.

$ export VE_FORT_EXPRCW=YES;NO:10-12

Example5: Apply to all unit numbers.

$ export VE_FORT_EXPRCW=YES

VE_FORT_FILEINF

When "YES" or "DETAIL" is set, information about I/O statement execution is
output to the standard error output at the file close. The items output here
provide information about whether I/O operations are performed as scheduled,
and whether there are unit numbers whose performance should be improved, and
other information. When display items (such as paths) contain multi-byte
characters, it may not be displayed correctly. See Section Appendix D for details.

Example:

$ export VE_FORT_FILEINF=DETAIL

VE_FORT_FMT_NO_WRAP_MARGIN

This variable is used to control the wrap of list-directed output. When the value of

this variable is "YES", column is not wrapped up to maximum record length.

- 16 -

Chapter2 Environment Variables

Example:

$ export VE_FORT_FMT_NO_WRAP_MARGIN=YES

VE_FORT_FMTBUF[n]

Sets the size, in bytes, of recode buffers allocated for I/0. VE_FORT_FMTBUF
can specify the value used for all unit identifiers or one unit identifiers. The buffer
size must be 135 or larger. If a value less than 135 is specified, the value is set to
135. When VE_FORT_FMTBUF is not set, the buffers size is a value specified in a
RECL specifier in OPEN statement. When VE_FORT_FMTBUF and RECL specifier
is set, the buffers size is a smaller value of either VE_FORT_FMTBUF or value of
RECL specifier. If this variable is specified for the standard input/output file and
the standard error output file, this option is ignored.

When VE_FORT_FMTBUF and VE_FORT_RECORDBUF is set, the priority is as

follows.

Highest VE_FORT_RECORDBUFu Specifies one unit identifier.
| VE_FORT_FMTBUFu Specifies one unit identifier.
| VE_FORT_RECORDBUF Specifies all unit identifiers.

Lowest VE_FORT_FMTBUF Specifies all unit identifiers.

The default recode buffers size for I/0O is the following value.

e Standard input/output file and Stream file
65536 Byte

¢ Sequential file

65536 Byte or Value of RECL specifier

» Direct file
Value of RECL specifier

Examplel: for all unit identifiers

$ export VE_FORT_FMTBUF=32768

Example2: for unit identifier 1

$ export VE_FORT_FMTBUF1=60000

VE_FORT_FOR_PRINT

This variable sets an output file name for PRINT statement or WRITE statement

with an asterisk (*) in place of a unit number. When it is not specified explicitly,

- 17 -

Chapter2 Environment Variables

output to standard output.

$ export VE_FORT_FOR_PRINT=FILENAME

Note When you use this environment variable, an unused logical unit
number is automatically assigned. This unit number is represented by
a negative number, such as in error messages.

VE_FORT_FOR_READ

This variable sets an input file name for READ statement when an asterisk (*) is
specified instead of the unit number or the unit number is omitted. When it is not

specified explicitly, input from standard input.

$ export VE_FORT_FOR_READ=F ILENAME

Note When you use this environment variable, an unused logical unit
number is automatically assigned. This unit number is represented by
a negative number, such as in error messages.

VE_FORT_FOR_TYPE

This variable sets an output file name for TYPE statement. When it is not specified

explicitly, output to standard output.

$ export VE_FORT_FOR_TYPE=FILENAME

Note When you use this environment variable, an unused logical unit
number is automatically assigned. This unit number is represented by
a negative number, such as in error messages.

VE_FORT_MEM_BLOCKSIZE

This variable is set the block size of a memory block which is allocated to
accelerate memory allocation/deallocation at the beginning of program by the
megabytes. The value can be specified as megabytes by using “M” as unit and
gigabytes by using “G” as unit. The value must be power of 2. The size is set 64
megabytes when it is not specified explicitly. For each process, three memory
blocks is allocated at the beginning of program execution.

Example: Set 16 megabytes

$ export VE_FORT_MEM_BLOCKSIZE=16M

- 18 -

Chapter2 Environment Variables

VE_FORT_NML_DELIM_BLANK

This variable is used to control NAMELIST output of character-type array when
DELIM specifier is omitted. When "YES" is set, output characters are separated by
a blank character. By default ("NO"), output characters are not separated from
each other by value separators and are output continuously.

This variable is ignored when DELIM specifier is specified.

Example:

$. /a.out
&NML
C = abcdefg
/
$ export VE_FORT_NML_DELIM_BLANK=YES
$. /a.out
GNML C=abocde f g/

VE_FORT_NML_REPEAT_FORM

This variable is used to control NAMELIST output of two or more consecutive
values in array. By default ("YES"), the same value will be output collectively form
(Repeat * Value). When "NO" is set, the values will be output not collectively.

Note The array values are output not collectively, when versions 3.0.7 and

earlier.
Example:
$./a. out
&NML
R = 3%1.0000000, 2.0000000, 3.0000000
/
$ export VE_FORT_NML_REPEAT_FORM=NO
$./a. out
&NML R = 1.0000000 1.0000000 1.0000000 2.0000000 3.0000000/

VE_FORT_NORCW

This variable sets the unit number of unformatted file to be treated as a format to
which no control record is added. This option is handled faster than standard
record format because recode is treated same as stream file.

The restrictions that apply are that the length of an input record must match the

length of the output record or an abnormal result is detected, and the

- 19 -

Chapter2 Environment Variables

BACKSPACE statement cannot be used.

Its format is as follows.
ALL

Apply to all unit numbers.

number | number,number | number-number
Specify the unit number.
Specify multiple unit number separated by commas.

Specify a range of consecutive unit number separated by a hyphen.

YES[:number] | NO[:number]
Specify a format to which no control record is added.

Specify units number after the colon.

Specify the enable(YES)/disable(NO) and unit numbers to exclude from the
enable/disable(YES/NO) specified before the semicolon.
Examplel: Apply to the unit 10.

$ export VE_FORT_NORGW=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_NORGW=10, 11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_NORCW=10-12

Example4: Treats all unit as a format to which no control record is added except

for 10, 11 and 12.

$ export VE_FORT_NORCW=YES:;NO:10-12

Example5: Apply to all unit numbers.

$ export VE_FORT_NORCW=ALL

VE_FORT_PARTRCW

This variable sets the unit number of unformatted file to be treated as a format to

which control record is changed. The length of an input record must match the

- 20 -

Chapter2 Environment Variables

length of the output record or an error is detected.
Its format is as follows.
ALL

Apply to all unit numbers.

number | number,number | number-number
Specify the unit number.
Specify multiple unit number separated by commas.

Specify a range of consecutive unit number separated by a hyphen.

YES[:number] | NO[:number]
Specify a format to which control record is changed.

Specify units number after the colon.

Specify the enable(YES)/disable(NO) and unit numbers to exclude from the
enable/disable(YES/NO) specified before the semicolon.
Examplel: Apply to the unit 10.

$ export VE_FORT_PARTRCW=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_PARTRCW=10, 11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_PARTRCW=10-12

Example4: Treats all unit as a format to which control record is changed except
for 10, 11 and 12.

$ export VE_FORT_PARTRCW=YES;N0O:10-12

Example5: Apply to all unit numbers.

$ export VE_FORT_PARTRCW=ALL

VE_FORT_PAUSE

Determines if a PAUSE statement is executed. When a value "NQO" is set, ignore a
PAUSE statement.

Example:

- 21 -

Chapter2 Environment Variables

$ export VE_FORT_PAUSE=NO

VE_FORT_RECLUNIT

This variable sets unit of RECL specifier in an OPEN statement for unformatted
file. For units, you can specify only “BYTE” or “WORD". Default unit is “BYTE".
“WORD" is 4-byte cycle.

Example:

$ export VE_FORT_RECLUNIT=WORD

VE_FORT_RECORDBUF[n]

Sets the size, in bytes, of recode buffers allocated for I/0.
VE_FORT_RECORDBUF can specify the value used for all unit identifiers or one
unit identifiers. The buffer size must be 135 or larger. If a value less than 135 is
specified, the value is set to 135. When VE_FORT_RECORDBUF is not set, the
buffers size is a value specified in a RECL specifier in OPEN statement. When
VE_FORT_RECORDBUF and RECL specifier is set, the buffers size is a smaller
value of either VE_FORT_RECORDBUF or value of RECL specifier. If this variable
is specified for the standard input/output file and the standard error output file,
this option is ignored.

When VE_FORT_FMTBUF and VE_FORT_RECORDBUF is set, the priority is as

follows.

Highest VE_FORT_RECORDBUFu Specifies one unit identifier.
| VE_FORT_FMTBUFu Specifies one unit identifier.
| VE_FORT_RECORDBUF Specifies all unit identifiers.

Lowest VE_FORT_FMTBUF Specifies all unit identifiers.

The default recode buffers size for I/0O is the following value.

» Standard input/output file and Stream file
65536 Byte

* Sequential file
65536 Byte or Value of RECL specifier

» Direct file
Value of RECL specifier

Examplel: for all unit identifiers

- 22 -

Chapter2 Environment Variables

$ export VE_FORT_RECORDBUF=32768

Example2: for unit identifier 1

$ export VE_FORT_RECORDBUF1=60000

VE_FORT_SETBUF[n]

Sets the size, in kilobytes, of an I/O buffers allocated for I/O. VE_FORT_SETBUF
can specify the value used for all unit identifiers or one unit identifiers. If this
variable is specified for the standard input/output file and the standard error
output file, this option is ignored except for specifying 0 to the standard output
and standard error output file. When VE_FORT_SETBUF is not set, the size of an

I/0 buffers is the following value.
¢ Sequential file and Stream file
- Record buffer environment variable value is less than or equal to 512KB
512 KB
- Record buffer environment variable value is greater than 512KB
Raise fractions of Record buffer environment variable value to unit (KB)
» Direct file
- Record length is less than or equal to 4,096 bytes
4 KB
- Record length is greater than 2,048,000,000 bytes
2,000,000 KB
- Other record length

Raise fractions of record length to unit (KB)

Note The above “Record buffer environment variable value” is the value set
to VE_FORT_FMTBUF or VE_FORT_RECORDBUF.

Examplel: for all unit identifiers

$ export VE_FORT_SETBUF=10

Example2: for unit identifier 1

- 23 -

Chapter2 Environment Variables

$ export VE_FORT_SETBUF1=20

VE_FORT_SUBRCW

This variable sets the unit number of unformatted file to be treated as a file in the
format divided into records. Records whose size is over 2GB can be handled in the
expanded format.

When any of VE_FORT_EXPRCW, VE_FORT_NORCW or VE_FORT_PARTRCW
is set, this variable is ignored.

Its format is as follows.

ALL

Apply to all unit numbers.

number | number,number | number-number
Specify the unit number.
Specify multiple unit number separated by commas.

Specify a range of consecutive unit number separated by a hyphen.
YES[:number] | NO[:number]

Specify a file in the format divided into records.

Specify units number after the colon.

Specify the enable(YES)/disable(NO) and unit numbers to exclude from the
enable/disable(YES/NO) specified before the semicolon.
Examplel: Apply to the unit 10.

$ export VE_FORT_SUBRCW=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_SUBRCW=10, 11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_SUBRCW=10-12

Example4: Treats all unit as a file in the format divided into records except for
10, 11 and 12.

$ export VE_FORT_SUBRCW=YES;NO:10-12

- 24 -

Chapter2 Environment Variables

Example5: Apply to all unit numbers.

$ export VE_FORT_SUBRCW=ALL

VE_FORT_UFMTADJUST[n]

This variable is used to control adjust the length of list item at input/output.
VE_FORT_UFMTADJUST can specify the value used for all unit identifiers or one
unit identifiers. When this variable is set, then the different kind of data than the
kind of input/output list item type can input/output.
The following values can be specified. Two or more values can be specified by
comma delimitation.
ALL
Same as VE_FORT_UFMTADJUST=INT,LOG,REAL,DBL.
DBL
If the kind of input/output list item type is REAL(16) or COMPLEX(16), the
kind on the file regard as REAL(8) or COMPLEX(8).
INT
If the kind of input/output list item type is INTEGER(8), the kind on the file
regard as INTEGER(4).
LOG
If the kind of input/output list item type is LOGICAL(8), the kind on the file
regard as LOGICAL(4).
NO
No adjust the length.
REAL
If the kind of input/output list item type is REAL(8) or COMPLEX(8), the kind
on the file regard as REAL(4) or COMPLEX(4).
Examplel: Apply adjust the length of all type to the unit 10.

$ export VE_FORT_UFMTADJUST10=ALL

Example2: Apply adjust the length of all type to all unit except the unit 10.

$ export VE_FORT_UFMTADJUST=ALL
$ export VE_FORT_UFMTADJUST10=NO

Example3: Apply adjust the length of real and complex to the unit 10.

- 25 -

Chapter2 Environment Variables

$ export VE_FORT_UFMTADJUST10=REAL, DBL

VE_FORT_UFMTENDIAN

This variable sets the unit number of unformatted file to be treated as a file in the
big-endian format. Its format is as follows.
ALL

Apply to all unit numbers.

number | number,number | number-number
Specify the unit number.
Specify multiple unit number separated by commas.

Specify a range of consecutive unit number separated by a hyphen.

big[:number] | little[:number]
Specify the endian format of the file.

Specify units number after the colon.

Specify the enable(YES)/disable(NO) and unit numbers to exclude from the
enable/disable(YES/NO) specified before the semicolon.
Examplel: Apply to the unit 10.

$ export VE_FORT_UFMTENDIAN=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_UFMTENDIAN=10, 11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_UFMTENDIAN=10-12

Example4: Treats all unit as big endian except for 10, 11 and 12.

$ export VE_FORT_UFMTENDIAN=big;little:10-12

Example5: Apply to all unit numbers.

$ export VE_FORT_UFMTENDIAN=ALL

VE_FORT_UFMTENDIAN_NOVEC

This variable sets the unit number of unformatted file to be treated as a file in the

- 26 -

Chapter2 Environment Variables

big-endian format and the conversion should be done by the scalar operation.
Its format is as follows.
ALL

Apply to all unit numbers.

number | number,number | number-number
Specify the unit number.
Specify multiple unit number separated by commas.

Specify a range of consecutive unit number separated by a hyphen.

YES[:number] | NO[:number]
Specify a file in the big-endian format to be converted by the scalar operation.

Specify units number after the colon.

Specify the enable(YES)/disable(NO) and unit numbers to exclude from the
enable/disable(YES/NO) specified before the semicolon.
Examplel: Apply to the unit 10.

$ export VE_FORT_UFMTENDIAN_NOVEC=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_UFMTENDIAN_NOVEC=10, 11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_UFMTENDIAN_NOVEC=10-12

Example4: Treats all unit except for 10, 11 and 12 as a file in the big-endian

format to be converted by the scalar operation.

$ export VE_FORT_UFMTENDIAN_NOVEC=YES;NO:10-12

Example5: Apply to all unit numbers.

$ export VE_FORT_UFMTENDIAN_NOVEC=ALL

VE_FPE_ENABLE

This variable is used to control over floating-point exception handling at run-time.
When this variable is set, then the specified exception is enabled.

The following values can be specified. Two or more values can be specified by

- 27 -

Chapter2 Environment Variables

comma delimitation.
DIV

Divide-by-zero exception.
FOF

Floating-point overflow exception.
FUF

Floating-point underflow exception.
INV

Invalid operation exception.
INE

Inexact exception.

Example:

$ export VE_FPE_ENABLE=DIV

VE_INIT_HEAP

This variable sets the value to initialize the heap area at the run-time. When the
value is not set, the heap area is not initialized.
The following values can be specified.
ZERO
Initializes with zeros.
NAN
Initializes with quiet NaN in double precision (Ox7fffffff7fffffff).
NANF
Initializes with quiet NaN in single precision (Ox7fffffff).
SNAN
Initializes with signaling NaN in double precision (0x7ff4000000000000).
SNANF
Initializes with signaling NaN in single precision (0x7fa00000).
OXXXXX
Initializes with the value specified in a hexadecimal format up to 16 digits.
When the specified value has more than 8 hexadecimal digits, the initialization
is done on an 8-byte cycle. Otherwise it is done on a 4-byte cycle.

Example:

$ export VE_INIT_HEAP=ZERO

- 28 -

Chapter2 Environment Variables

VE_INIT_STACK

This variable sets the value to initialize the stack area at the run-time. When the
value is not set, the stack area is initialized with zeros. -minit-stack=runtime is
needed at compilation. The following values can be specified.
ZERO
Initializes with zeros.
NAN
Initializes with quiet NaN in double precision (Ox7fffffff7fffffff).
NANF
Initializes with quiet NaN in single precision (Ox7fffffff).
SNAN
Initializes with signaling NaN in double precision (0x7ff4000000000000).
SNANF
Initializes with signaling NaN in single precision (0x7fa00000).
OXXXXX
Initializes with the value specified in a hexadecimal format up to 16 digits.
When the specified value has more than 8 hexadecimal digits, the initialization
is done on an 8-byte cycle. Otherwise it is done on a 4-byte cycle.

Example:

$ nfort -minit-stack=runtime a.f90
$ export VE_INIT_STACK=SNAN
$./a. out

VE_LD_LIBRARY_PATH

This variable set a list of directories separated by colon that the dynamic linker
searches for libraries. The dynamic linker automatically searches the standard
directories. This environment variable is set when you want to always search non-
standard directories. For example, you want to always search the OSS library
directory that is not attached to the NEC Fortran compiler.

Example:

$ export VE_LD_LIBRARY_PATH= “${HOME}/Iib:$VE_LD_LIBRARY_PATH”

VE_NODE_NUMBER

This variable is set to designate a program to be executed on specified VE node.

- 29 -

Chapter2 Environment Variables

VE_PROGINF

When “YES” or “DETAIL” is set, the program execution information is output to the
standard error output at the termination of execution.

See the manual "PROGINF/FTRACE User’s Guide” for the detail.

VE_TRACEBACK

This variable is used to control to output traceback information when a fatal error
occurs at runtime. The program must be compiled and linked with -traceback to
output traceback information. When the value of this variable is “FULL" or “ALL”",
then at most depth which is specified by VE_ TRACEBACK_DEPTH environment
variable of traceback information is output. If any other value is set, only
traceback information of the function that a fatal error occurs is output. If this
variable is not set, no traceback information is output.

An occurrence line number of fatal error is found by address information in
traceback information.

Example:

$ nfort -traceback a. f90

$ export VE_TRACEBACK=FULL

$ export VE_FPE_ENABLE=DIV

Runtime Error: Divide by zero at 0x600000000ccO
[1] Called from Ox7f5ca0062f60

[2] Called from 0x600000000b70

Floating point exception

When running the program which is compiled and linked with -
traceback=verbose and the value of this variable is “VERBOSE", filename and

line number is output in traceback information.

Example:
$ export VE_TRACEBACK=VERBOSE
$. /a. out
Runtime Error: Overflow at 0x600008001088
[0] 0x600008001088 below_ below. f90:3
[1] 0x600018001168 out_ out. f90:3
[2] 0x600020001168 watch_ watch. f90:3
[3] 0x600010001168 hey_ hey. f90:3
[4] 0x60000001cab8 MAIN__ ovf. f90:5

- 30 -

Chapter2 Environment Variables

VE_TRACEBACK_DEPTH

This variable is used to control the maximum depth of traceback information when
it is output. When it is not specified explicitly, then “50” is set. If “0” is specified,

then the maximum depth is unlimited.

- 31 -

Chapter3 Compiler Options

Chapter3 Compiler Options

This chapter describes the operating procedures for compiling, linking, and executing
a Fortran program using the Fortran compiler system.
The compiler options of the Fortran compiler can be divided into the following

categories.

e Overall Options
Compiler options used to control the Fortran compiler.
* Optimization Options
Compiler options used to control optimization and vectorization.
» Parallelization Options
Compiler options used to control parallelization.
* Inlining Options
Compiler options used to control inlining.
* Code Generation Options
Compiler options used to control code generation for performance measurement
and the stack area initialization.
* Debug Options
Compiler options used to control debug code generation.
* Language Options
Compiler options used to enable or disable language features.

* Message Options

Compiler options used to control message output.

e List Output Options

Compiler options used to control compiler listing.

* Preprocessor Options

Compiler options used to control preprocessing.

e Assembler Options

Compiler options used to specify assembler functions.

» Linker Options

Compiler options used to specify linker functions.

- 32 -

3.1

Chapter3 Compiler Options

* Directory Options

Compiler options used to specify various directories.

Overall Options

-S
Suppresses the linking and outputs the assembler source file.
-C
Suppresses the linking and outputs the object file.
-cf=conf
Applies the configuration file specified by conf to compilation and linking.
-clear
Ignores all compiler options and input files specified before -clear.
-fsyntax-only
Performs only grammar analysis.
-0 filename
Specifies a filename to which output is written, where the output is preprocessed
text, assembler source file, object file or executable file. This option cannot be
specified when two or more source files are specified with -S, -c, or —E.
-X language
Specifies the language kind for the input files. The effect of this option is prior to
the default setting according to the file suffix and the specification is applied to all
the input files following this option (until the next -x if any) on the command-line.
One of the following can be specified as language.
f77
Compiles as a Fortran source file of fixed form.
f77-cpp-input
Does preprocessing and compiles as a Fortran source file of fixed form.
fos
Compiles as a Fortran source file of free form.
f95-cpp-input
Does preprocessing and compiles as a Fortran source file of free form.
assembler
Assembles as an assembler source file.

assembler-with-cpp

- 33 -

Chapter3 Compiler Options

Does preprocessing and assembles the preprocessed file.
@file-name
Reads options from file-name and inserts them in the place of the original

@file-name option.

3.2 Optimization Options

-0[n]
Specifies optimization level by n. The following are available as n:
4

Enables aggressive optimization which violates language standard.

Enables optimization which causes side-effects and nested loop optimization.

Enables optimization which causes side-effects. (default)

Enables optimization which does not cause any side effects.

Disables any optimizations, automatic vectorization, parallelization, and inlining.
-fargument-alias
Allows the compiler to assume that arguments are aliasing each other and non-
local-objects in all optimization.
-fargument-noalias
Disallows the compiler to assume that arguments are aliasing each other and non-
local-objects in all optimization. (default)
-f[no-]associative-math
Allows [Disallows] re-association of operands in series during optimization and
loop transformation. When -fno-associative-math is specified, the optimization
which transforms matrix multiply loops into a vector matrix library function call
with -fmatrix-multiply is not performed. (default: -fassociative-math)
-f[no-]aggressive-associative-math
Allows [Disallows] aggressive re-association of operands in series during
optimization and loop transformation. (default: -fno-aggressive-associative-
math)

-f[no-]assume-contiguous

- 34 -

Chapter3 Compiler Options

Allows [Disallows] the compiler to assume that assumed-shape array is
contiguous.
(default:-fno-assume-contiguous)
-f[no-]copyin-intent-out
[Dose not] Create copy-in operation for an argument which has INTENT(OUT)
attribute. (default: -fcopyin-intent-out)
-f[no-]cse-after-vectorization
[Does not] Re-apply common subexpression elimination after vectorization.
(default: -fcse-after-vectorization)
-f[no-]fast-formatted-io
[Does not] Use fast version formatted I/0.
(default: -ffast-formatted-io)
-f[no-]Jfast-math
[Does not] Uses fast scalar version math functions outside of vectorized loops.
(default: -ffast-math)
-f[no-]fast-math-check
[Does not] Checks the value ranges of arguments in the mathematical function’s
fast scalar version.
(default: -fno-fast-math-check)
-f[no-Jignore-asynchronous
[Does not] Ignores ASYNCHRONOUS attribute in optimization.
(default: -fno-ignore-asynchronous)
-f[no-]ignore-induction-variable-overflow
[Does not] Ignores induction variable overflow in optimization.
(default: -fno-ignore-induction-variable-overflow)
-f[no-]ignore-volatile
[Does not] Ignores VOLATILE attribute in optimization.
(default: -fno-ignore-volatile)
-fivdep
Inserts ivdep directive before all loops.
-f[no-]ivdep-do-concurrent-loop
[Does not] Inserts ivdep directive before DO CONCURRENT statement.

(default: -fivdep-do-concurrent-loop)

- 35 -

Chapter3 Compiler Options

-fivdep-omp-worksharing-loop
Inserts ivdep directive before an OpenMP parallelized loop that does not have
simd with safelen and/or simdlen clause.
-f[no-]loop-collapse
Allows [Disallows] loop collapsing. -O[n] (n=2,3,4) must be effective.
(default: -fno-loop-collapse)
-floop-count=n
Specifies n which is taken to assume the iteration count of the loop whose
iteration count cannot be decided at compilation to do optimization suitable for
loop count. (default: -floop-count=5000)
-f[no-]loop-fusion
Allows [Disallows] loop fusion. -0O[n] (n=2,3,4) must be effective.
(default: -fno-loop-fusion)
-f[no-]loop-interchange
Allows [Disallows] loop interchange. -O[n] (n=2,3,4) must be effective.
(default: -fno-loop-interchange)
-f[no-]Jloop-normalize
Allows [Disallows] loop normalization. Compiler assumes that loop iteration count
is not changed in loop body. (default: -fno-loop-normalize)
-f[no-]loop-split
Allows [Disallows] splitting out of an external-routine call in a loop from the loop.
-0[n] (n=2,3,4) must be effective. (default: -fno-loop-split)
-f[no-]loop-strip-mine
Allows [Disallows] loop strip mining. -0O[n] (n=2,3,4) must be effective.
(default: -fno-loop-strip-mine)
-f[no-]loop-unroll
Allows [Disallows] loop unrolling. -O[n] (n=2,3,4) must be effective.
(default: -floop-unroll)
-floop-unroll-complete=m
Allows loop expansion (complete loop unrolling) of a loop whose iteration count is
constant, can be calculated, and is less than or equal to m. -O[n] (n=2,3,4) must
be effective. (default: -floop-unroll-complete=4)
Remark:

-floop-unroll-completely=m can be used as an alias option name.

- 36 -

Chapter3 Compiler Options

-floop-unroll-complete-nest=m
Unrolls loops except for the outermost loop by m level nesting when complete
loop unrolling is applied.
Unrolls from 1 to m-dimension of an array expression when complete loop
unrolling is applied. (default: -floop-unroll-complete-nest=3)
Remark:
-floop-unroll-completely-nest=m can be used as an alias option name.
-floop-unroll-max-times=n
Specifies maximum unrolled times by n. When this option is not effective, the
compiler automatically choose the suitable unroll times.
-f[no-IJmatrix-multiply
Allows [Disallows] to transform matrix multiply loops into a vector matrix library
function call. -0O[n] (n=2,3,4) and -fassociative-math must be effective.
(default: -fno-matrix-multiply)
-f[no-]Jmove-loop-invariants
Enables [Disables] the loop invariant motion under if-condition.
(default: -fmove-loop-invariants)
-f[no-]move-loop-invariants-if
Allows [Disallows] the loop invariant if-structure motion. -0O[n] (n=2,3,4) must be
effective. (default: -fno-move-loop-invariants-if)
-f[no-]Jmove-loop-invariants-unsafe
Allows [Disallows] motion of unsafe codes which may cause any side effects.
The example of unsafe codes are:
- divide
- memory reference to 1 byte or 2 byte area
(default: -fno-move-loop-invariants-unsafe)
-f[no-]Jmove-nested-loop-invariants-outer
Allows [Disallows] the compiler to move the loop invariant expressions to outer
loop. When this option is specified, they are moved before the current loop.
(default: -fmove-nested-loop-invariants-outer).
-fnamed-alias
The compiler will assume that the object pointed-to-by a hamed pointer have an
alias in applying optimization and vectorization.

-fnamed-noalias

- 37 -

Chapter3 Compiler Options

The compiler will assume that the object pointed-to-by a named pointer does not
have an alias in applying optimization and vectorization. (default)
-fnamed-noalias-aggressive
The compiler will assume that the object pointed-to-by a named pointer does not
have an alias in applying optimization and vectorization. This option applies
optimization and vectorization aggressively.
-f[no-Jouterloop-unroll
Allows [Disallows] outer-loop unrolling. -O[n] (n=2,3,4) must be effective.
(default: -fno-outerloop-unroll)
-fouterloop-unroll-max-size=n
Specifies maximum size of an innermost loop to be outer-loop-unrolled.
(default: -fouterloop-unroll-max-size=4)
-fouterloop-unroll-max-times=n
Specifies maximum outer-loop unrolled times by n. n must be power of 2. When
this option is not effective, the compiler automatically choose the suitable unroll
times.
-f[no-]precise-math
[Does not] Apply high resolution algorithm in the vector version of power
operation when the exponent is an integer value. The result becomes more exact
but the calculation speed becomes slower. (default: -fno-precise-math)
-f[no-]Jreciprocal-math
Allows [Disallows] change an expression “x/y” to “x * (1/y)”. (default: -
freciprocal-math)
-f[no-]reorder-logical-expression
Allows [Disallows] evaluate the terms in a logical expression from left to right
order instead of any order. (default: -freorder-logical-expression)
-f[no-]Jreplace-loop-equation
[Does not] Replaces “!1=", “==" “.NE.” and “.EQ.” operator with “<="or “>=" at
the loop back-edge. (default: -fno-replace-loop-equation)
-f[no-]Jreplace-matmul-to-matrix-multiply
Allows [Disallows] to replace MATMUL call into a vector matrix library function call.
(default: -freplace-matmul-to-matrix-multiply)
-m[no-]array-io

Allows [Disallows] to optimize array expression and “implied DO” in I/O

- 38 -

Chapter3 Compiler Options

statement. (default: -marray-io)
-m[no-]conditional-index-test
Allows [Disallows] to conditional-index-testing optimization.
(default: -mno-conditional-index-test)
-m[no-]list-vector
Allows [Disallows] the vectorization of the statement in a loop when an array
element with a vector subscript expression appears on both the left and right
sides of an assignment operator.
(default: -mno-list-vector)
-mretain-keyword
Sets higher priority to vector memory access results to retain on LLC (Last-Level
Cache). The following are available as keyword:
all
Sets higher priority to vector load/store/gather/scatter results. (default)
list-vector
Sets higher priority to vector gather/scatter results.
none
Does not set higher priority to vector memory access results.
-msched-keyword
Specifies whether and how the instruction scheduling. The following are available
as keyword:
none
Does not perform the instruction scheduling.
insns
Performs the instruction scheduling in a basic block.
block
Performs the instruction scheduling in a basic block, but to a wider range than
-msched-insns does, in order to schedule instructions aggressively. (default)
interblock
Performs the instruction scheduling beyond basic blocks.
-mstack-arrays
Allocates automatic arrays and temporary arrays on the stack. (default)
-mno-stack-arrays

Allocates automatic arrays and temporary arrays on in heap memory.

- 39 -

Chapter3 Compiler Options

-muse-mmap
Use mmap / munmap functions to allocate / deallocate memory in ALLOCATE /
DEALLOCATE statements.
-m[no-]vector
Enables [Disables] automatic vectorization. (default: -mvector)
-m[no-]vector-advance-gather
Allows [Disallows] motion of vector gather instructions so that they can be started
as advance as possible. (default: -mvector-advance-gather)
-mvector-advance-gather-limit=n
The number of vector gather operations which is moved by -mvector-advance-
gather is up to n. (default: -mvector-advance-gather-limit=56)
-mvector-assignment-threshold=n
Use vector instructions to assign a derived type whose size is equal to or greater
than n byte. (default: -mvector-assignment-threshold=64)
-m[no-]vector-assume-loop-count
Allows [Disallows] the use of an array declaration to assume the shape of the
array expression or the loop iteration count. (default: -mvector-assume-loop-
count)
-m[no-]vector-dependency-test
Allows [Disallows] the conditional vectorization by dependency-test. -O[n]
(n=2,3,4) must be effective. (default: -mvector-dependency-test)
-m[no-]vector-floating-divide-instruction
Allows [Disallows] to use vector-floating-divide instruction. By default,
approximate instruction sequence by using vector-floating-reciprocal instructions
is used.
(default: -mno-vector-floating-divide-instruction)
-m[no-]vector-fma
Allows [Disallows] to use vector fused-multiply-add instruction.
(default:-mvector-fma)
-m[no-]vector-intrinsic-check
[Does not] Checks the value ranges of arguments in the mathematical functions
and intrinsic arithmetic in the vectorized version. (default: -mno-vector-
intrinsic-check)

The target mathematical functions and intrinsic arithmetic of this option are as

- 40 -

Chapter3 Compiler Options

follows. The argument is restricted to double precision real type and specific name
which have the type is also target.
ACOS, ACOSH, ASIN, ATAN, ATAN2, ATANH, COS, COSD, COSH, COTAN, EXP,
EXP10, EXP2, EXPC, FACT, LOG10, LOG2, LOG, SIN, SIND, SINH, TAN, TANH,
Exponentiation
-m[no-]vector-iteration
Allows [Disallows] to use vector iteration instruction in the vectorization.
(default: -mvector-iteration)
-m[no-]vector-iteration-unsafe
Allows [Disallows] to use vector iteration instruction in the vectorization when it
may give incorrect result. (default: -mvector-iteration-unsafe)
-m[no-]vector-loop-count-test
Allows [Disallows] the conditional vectorization by loop-iteration-count-test. -O[n]
(n=2,3,4) must be effective. (default: -mno-vector-loop-count-test)
-m[no-]vector-low-precise-divide-function
Allows [Disallows] to use low precise version for vector floating divide operation. It
is faster than the normal precise version but the result may include at most one
bit numerical error in mantissa. (default: -mno-vector-low-precise-divide-
function)
-m[no-]vector-merge-conditional
Allows [Disallows] to merge vector load and store in THEN block, ELSE IF block,
and ELSE block. (default: -mno-vector-merge-conditional)
-m[no-]vector-neighbors
Allows [Disallows] neighboring access optimization.
(default: -mno-vector-neighbors)
-mvector-neighbors is available when -march=ve3 is enabled.
-m[no-]vector-packed
Allows [Disallows] to use packed vector instruction. (default: -mno-vector-
packed)
-m[no-]vector-power-to-explog
Allows [Disallows] to replace R1**R2 in a vectorized loop with EXP(R2*LOG(R1)).
R1 and R2 type must be single or double precision floating-point type. By the
replacement, the execution time would be shortened, but numerical error occurs

rarely in the calculation.

- 41 -

Chapter3 Compiler Options

(default: -mno-vector-power-to-explog)

-m[no-]vector-power-to-sqrt
Allows [Disallows] to replace R1**R2 in a vectorized loop with the expression
including SQRT or CBRT when R2 is a special value such as 0.5, 1.0/3.0 etc. R1
and R2 type must be single or double precision floating-point type. When it is
replaced, the execution time would become faster, but numerical error occurs
rarely in the calculation.
(default: -mvector-power-to-sqrt)

-m[no-]vector-reduction
Allows [Disallows] to use vector reduction instruction in the vectorization.
(default: -mvector-reduction)

-m[no-]vector-shortloop-reduction
Allows [Disallows] the conditional vectorization by loop-iteration-test for
reduction.
-0[n] (n=2,3,4) must be effective.
(default: -mno-vecvtor-shortloop-reduction)

-m[no-]vector-sqrt-instruction
Allows [Disallows] to use vector-sqrt instruction. By default, approximate
instruction sequence by using vector-floating-reciprocal instructions is used.
(default: -mno-vector-sqrt-instruction)

-mvector-threshold=n
Specifies the minimum iteration count (n) of a loop for vectorization.
(default: -mvecter-threshold=5)

-mwork-vector-kind=none

Disallows the partial vectorization using loop division.

3.3 Parallelization Options

-fopenmp
Enables OpenMP directives. -pthread is implicitly enabled.
-m[no-]create-threads-at-startup
[Does not] Generates threads for OpenMP or automatic parallelization at the first
parallel region execution. The threads are generated at the startup of the
execution at default. -static-nec or -static must be specified when you specified -

mno-create-threads-at-startup.

- 42 -

3.4

Chapter3 Compiler Options

(default: -mcreate-threads-at-startup)
-mparallel
Allows automatic parallelization. -pthread is implicitly enabled.
-mparallel-innerloop
Allows to parallelize inner-loop.
-m[no-]parallel-omp-routine
Allows [Disallows] to apply automatic parallelization to a routine including OpenMP
directive.
(default: -mparallel-omp-routine)
-mparallel-outerloop-strip-mine
Allows to parallelize the nested loops that are outer-loop strip-mined.
-mparallel-sections
Allows to generate parallelized sections.
-mparallel-threshold=n
Specifies the threshold value n of the loop parallelization. When the value is larger
than the work of the loop, the loop is parallelized.
(default: -mparallel-threshold=2000)
-mschedule-dynamic
-mschedule-runtime
-mschedule-static
-mschedule-chunk-size=n
Specifies a scheduling kind and chunk size of a thread when they are not specified
by schedule-clause in OpenMP parallelization and automatic parallelization.
-pthread
Enables support for multithreading with the pthread library.

Inlining Options

-f[no-]inline-abort-at-error
Stops the compilation when generation of routines defined in source files fails.
Does not search them and continues the compilation when this option is not
effective.
(default: -fno-inline-abort-at-error)

-f[no-Jinline-copy-arguments

[Does not] Generate a copy of the argument of an inlined routine by automatic

- 43 -

Chapter3 Compiler Options

inlining. When not generating, a copy of routine parameter is replaced with a
corresponding routine argument.
(default: -finline-copy-arguments)
-finline-directory=directory
Searches all source files under directories separated by colon for routines to inline.
-fno-inline-directory=directory
Does not search all source files under directories separated by colon for routines
to inline. This option is specified when you do not want to search the source files
specified by -finline-file or -finline-directory.
~-finline-file=string
Searches source files separated by colon for routines to inline. Searches all input
source files specified in command line when all is specified.
-fno-inline-file=string
Does not search source files separated by colon for routines to inline. This option
is specified when you do not want to search the source files specified by -finline-
file or -finline-directory.
-finline-functions
Allows automatic inlining.
-finline-max-depth=n
Specifies the level of routines to be inlined from the bottom of the calling tree by
automatic inlining. (default: -finline-max-depth=2)
-finline-max-function-size=n
Specifies the routine size (= the amount of intermediate representations for a
routine) to be inlined by automatic inlining.
(default: -finline-max-function-size=50)
-finline-max-times=n
Sets the limit of the route size (= the amount of intermediate representations for
a routine) after automatic inlining to “(routine-size-before-inlining) * n".
(default: -finline-max-times=6)
-f[no-]inline-suppress-diagnostics
[Does not] Output diagnostics when generation of routines defined in source files
to search fails. The option -fno-inline-suppress-diagnostics is specified when
you want to check which source files you specified are searched normally.

(default: -finline-suppress-diagnostics)

- 44 -

Chapter3 Compiler Options

-mgenerate-il-file
Outputs an IL file for cross-file inlining. The file is created in the current directory,
under the name "source-file-name.fil",

-mread-il-file IL file name
Read IL files separated by colon for routines to inline. When -finline-directory,

-finline-file or -mgenerate-il-file are specified, this option is ignored.

3.5 Code Generation Options

-finstrument-functions
Inserts function calls for the instrumentation to entry and exit of functions. The

instrumented functions are;

void __cyg profile_func_enter (void *xthis_fn void *xcall_site);
void __cyg_profile_func_exit(void xthis_fn, void xcal/l_site);

-fpic
-fPIC
Generates position-independent code.
-ftrace
Creates an object file and the executable file for ftrace function.
(default: -no-ftrace)
-march=kind
Specifies the target architecture.
The following are available as kind:
vel
Produces object files available only on vel or later. (default)
ve3
Produces object files available only on ve3 or later.
(Defaults when installed for VE3.)
-mfp16-format=kind
Specifies format of the half-precision floating-point. -mfp16-format=kind can be
specified only when -march=ve3 is enabled.
The following are available as kind:
none

Does not use format of the half-precision floating-point.

- 45 -

Chapter3 Compiler Options

3.6

ieee
Uses IEEE binary16 format.
bfloat
Uses bfloat16 format.
-p
-Pg
Creates an executable file for output profiler information (ngprof).
-[no-]proginf
[Does not] Create an executable file for PROGINF function. (default: -proginf)

Debugging Options

-fbounds-check
Same as -fcheck=bounds.

-fcheck=keyword
Enables runtime check according to keyword. Two or more keywords can be
specified by separating them with a colon (:). For example, if you specify this

option as "-fcheck=all:noalias", all checks except alias can be enabled.

The following are available as keyword:
all

Enables checking all keywords below.
[no]alias

Enables [Disables] checking assignments to aliased dummy arguments.
[no]bits

Enables [Disables] checking bit intrinsic arguments.
[no]bounds

Enables [Disables] checking array bounds.
[no]dangling

Enables [Disables] checking for dangling pointers.
[no]do

Enables [Disables] checking DO loops for zero step values.
[noJiovf

Enables [Disables] checking integer overflow.

[no]pointer

- 46 -

Chapter3 Compiler Options

Enables [Disables] checking pointer references.
[no]present
Enables [Disables] checking optional references.
[no]recursion
Enables [Disables] checking for invalid recursion.
-g
Generates debugging information in DWARF. When -01, -02, -03, or -04 are
specified with -g, some of the debugging information may be inaccurate as a side-
effect of optimization.
-minit-stack=value
Initializes the stack area with the specified value at the run-time. The following
are available as value:
no
Do not initialize.
zero
Initializes with zeros.
nan
Initializes with quiet NaN in double precision (Ox7fffffff7fffffff).
nanf
Initializes with quiet NaN in single precision (Ox7fffffff).
shan
Initializes with signaling NaN in double precision (0x7ff4000000000000).
shanf
Initializes with signaling NaN in single precision (0x7fa00000).
runtime
Initializes with the value specified by the environment variable
VE_INIT_STACK.
OXXXXX
Initializes with the value specified in a hexadecimal format up to 16 digits.
When the specified value has more than 8 hexadecimal digits, the initialization
is done on an 8-byte cycle. Otherwise it is done on a 4-byte cycle.
-mmemory-trace
Generates code to output memory allocation/deallocation trace.

-mmemory-trace-full

- 47 -

Chapter3 Compiler Options

Generates code to output memory allocation/deallocation trace with source code
information.

-traceback[=verbose]
Specifies to generate extra information in the object file and to link run-time
library due to provide traceback information when a fatal error occurs and the
environment variable VE_TRACEBACK is set at run-time.
When verbose is specified, generates filename and line number information in
addition to the above due to provide these information in traceback output. Set
the environment variable VE_TRACEBACK=VERBOSE to output these

information at run-time.

3.7 Language Options

-bss
Allocates local variables and arrays in .bss section.
-fdefault-integer=n
Specifies the size of default INTEGER and LOGICAL in byte. n must be 4 or 8.
(default: -fdefault-integer=4)
It also affects the intrinsic procedures that the result type or argument type is
default INTEGER or default LOGICAL. The result or argument type must be of
one of the following types:
- default INTEGER
n=4: default INTEGER or INTEGER(4)
n=8: default INTEGER or INTEGER(8)
- default LOGICAL
n=4: default LOGICAL or LOGICAL(4)
n=8: default LOGICAL or LOGICAL(8)
-fdefault-double=n
Specifies the size of default DOUBLE PRECISION and real/imaginary parts of
DOUBLE COMPLEX in byte. n must be 8 or 16. (default: -fdefault-double=38)
-fdefault-real=n
Specifies the size of default REAL and real/imaginary parts of default COMPLEX in
byte. n must be 4 or 8. (default: -fdefault-real=4)
It also affects the intrinsic procedures that the result type or argument type is
default REAL or default COMPLEX. The result or argument type must be of one of

- 48 -

Chapter3 Compiler Options

the following types:
- default REAL
n=4: default REAL or REAL(4)
n=8: default REAL or REAL(8)
- default COMPLEX
n=4: default COMPLEX or COMPLEX(4)
n=8: default COMPLEX or COMPLEX(8)
-fextend-source
Extends the limit of 72 characters on a source line in fixed form to 2,048.
-ffree-form
Specifies that the input source program is described in free form. This is the
default when the suffix of input source file is .f90, .f95, .f03, .F90, .F95 or .F03.
-ffixed-form
Specifies that the input source program is described in fixed form. This is the
default when the suffix of input source file is .f or .F.
-ff90-sign
Does not distinguish the second argument of the intrinsic function SIGN between
positive real 0.0 and negative real -0.0. If the second argument is negative real -
0.0, sign of the result value is positive.
-fmax-continuation-lines=n
Specifies the upper limit of the number of lines is designated. n must be 511 or
upper and 4095 or lower. (default: -fmax-continuation-lines=1023)
-fno-realloc-lhs
Enables -fno-realloc-lhs-array and -fno-realloc-lhs-scalar at the same time.
(default: -frealloc-lhs)
-fno-realloc-lhs-array
By Fortran 2003 standard, when the left-hand side of an assignment is an
allocatable array variable and it is unallocated or not allocated with the correct
shape to hold the right-hand side, it should be reallocated to the shape of the
right-hand side.
This option specifies ignoring the rule. When the left-hand side is not allocated
with the correct shape to hold the right-hand side, it causes unexpected result.
(default: -frealloc-lhs-array)

-fno-realloc-lhs-scalar

- 49 -

Chapter3 Compiler Options

By Fortran 2003 standard, when the left-hand side of an assignment is an
allocatable scalar variable and it is unallocated, it should be automatically
reallocated.
This option specifies ignoring the rule. When the left-hand side is not allocated, it
causes unexpected result.
(default: -frealloc-lhs-scalar)

-masync-io
Specifies that the data transfer occur asynchronously when
ASYNCHRONOUS="YES" in the READ and WRITE statement is specified.
Asynchronous I/0 is enabled with the following I/0.

- Unformatted I/0.

-save
Treats each program unit (except those marked as RECURSIVE) as if SAVE
statement were specified for every local variable.

-std=standard
Specifies Fortran Language standard. The recognized keywords are f95, 2003,
f2008 or f2018. (default:-std=f2008)

-use module
References all public entities within module accessible. Two or more module can

be specified by comma delimitation.

3.8 Message Options

-Wall

Outputs all syntax warning messages.
-Werror

Treats all syntax warnings as fatal errors.
-Wextension

Outputs a warning message for use of extended Fortran language specification.
-Wobsolescent

Outputs a warning message for use of obsolescent Fortran language specification.
-Woverflow

Outputs a warning message for integer overflow at the compilation.

-Woverflow-errors

- 50 -

3.9

Chapter3 Compiler Options

Outputs an error message for integer overflow and stop the compilation.
-Wunmatched-subscript
Outputs a warning message at the compilation, when the number of subscript
expression in subscript list of the array reference is smaller than the rank of array.
-Wunmatched-subscript-errors
Output an error message and stop the compilation, when the number of subscript
expression in subscript list of the array reference is smaller than the rank of array.
-fdiag-inline=n
Specifies automatic inlining diagnostics level by n. (0: No output, 1:Information,
2:Detail) (default: -fdiag-inline=1)
-fdiag-parallel=n
Specifies automatic parallelization diagnostics level by n. (0: No output,
1:Information, 2:Detail) (default: -fdiag-parallel=1)
-fdiag-vector=n
Specifies vector diagnostics level by n. (0: No output, 1:Information, 2:Detail)
(default: -fdiag-vector=1)
-pedantic-errors
Outputs the errors for deviation from language specification.
-w

Suppresses all syntax warning messages.

List Output Options

-report-file=filename
Outputs the listing result to the specified file instead of the default one.
-report-append-mode
Opens the output file with “appending mode” instead of “overwriting mode”. This
option cannot be used unless the -report-file option is specified.
-report-all
Outputs the code generation list, diagnostic list, format list, inline list, option list
and vector list.
-[no-]report-cg
[Does not] Outputs optimization list of code generation module.
(default: -no-report-cqg)

-[no-]report-diagnostics

-5 -

Chapter3 Compiler Options

[Does not] Outputs diagnostic list. (default: -no-report-diagnostics)
-[no-]report-format

[Does not] Outputs format list. (default: -no-report-format)
-[no-]report-inline

[Does not] Outputs optimization list of inlining module. (default: -no-report-

inline)
-[no-]report-option

[Does not] Outputs option list. (default: -no-report-option)
-report-userinfo=character-string

Outputs additional user information character-string at the top of the listing file.
-[no-]report-vector

[Does not] Outputs optimization list of vectorization module.

(default: -no-report-vector)

3.10 Preprocessor Options

-Dmacro[=defn]
Defines macro as the value defn as if #define directive does. When =defn is
omitted, macro is defined as decimal constant 1.

-E
Performs preprocessing only and outputs the preprocessed text to the standard
output.

-dM
Outputs a list of #define with macro names and their values for all the macros
defined by #define or -D, instead of the normal preprocessed text. When -E is
not specified, this option is ignored.

-fpp
Specifies that the input source program is preprocessed by fpp before the
compilation. This is the default when the suffix of input source file
is .F, .F90, .F95 or .F03.

-nofpp
Specifies that the input source program is not preprocessed by fpp before the
compilation. This is the default when the suffix of input source file is .f, .f90, .f95
or .f03.

-fpp-name=name

- 52 -

Chapter3 Compiler Options

Specifies the name (which can be either with or without a pathname) of Fortran
preprocessor to be used instead of the default one.
-Idirectory
Adds directory to the list of directories searched for files specified by #include
directives.
-isysroot directory
Searches the directory named include under directory for header files specified
with #include directives.
-isystem directory
Searches directory after all the directories specified by -I options but before the
standard system directories.
-M
Outputs a list of the file dependencies instead of the normal preprocessed text.
-nostdinc
Omits searching the standard system directory for header files.
-P
Omits outputting line directives to preprocessed text.
-traditional
Specifies to remove C-style comment (/**/) completely instead of replacing with a
space.
-Umacro
Undefines the definition of macro.
-Wp,option
Specifies option to be passed to preprocessor (fpp). Multiple options or arguments

can be specified to this option at once by separating them by commas.

3.11 Assembler Options

-Wa,option
Specifies option to be passed to assembler (nas). Multiple options or arguments
can be specified to this option at once by separating them by commas.
-Xassembler option
Specifies an option to be passed to assembler (nas). If an option requires an
argument, this option must be specified twice, once for the option and once for

the argument.

- B3 -

Chapter3 Compiler Options

-assembly-list
Outputs assembly list to file. The output filename is a name suffixed by “.0” which

is based on input filename.

3.12 Linker Options

-cxxlib
Link the C++ libraries.
-Bdynamic
Enables the linking of dynamic-link libraries at the run-time. (default)
-Bstatic
Link user's libraries statically.
-Ldirectory
Searches directory for libraries specified subsequently to this option, before the
directories searched by default.
-llibrary
Specifies a library to be linked. Prescribed directories are searched for the library
named liblibrary .a.
-nostartfiles
Does not link the standard system startup files.
-nostdlib
Does not link the standard system startup files or libraries.
-rdynamic
Adds all symbols including any unused symbols to the dynamic symbol table at
the linking.
-shared
Generates a shared object.
-static
Link libraries statically.
-static-nec
Link the NEC SDK libraries statically.
-stdlib=/ibrary-name
Specifies the linked C++ library when -cxxlib is specified. The following libraries
can be specified.

compat

- 54 -

Chapter3 Compiler Options

Link NEC Compat C++ Standard Library.
(default when NEC Compat C++ Standard Library is installed.)
libc++
Link libc++.
(default when NEC Compat C++ Standard Library is NOT installed.)
-WI,option
Specifies option to be passed to linker (nld). Multiple options or arguments can be
specified to this option at once by separating them by commas.
-Xlinker option
Specifies an option to be passed to linker (nld). If an option requires an
argument, this option must be specified twice, once for the option and once for
the argument.
-z keyword

Same as nld’s -z option.

3.13 Directory Options

--sysroot=directory
Specifies a directory name where header files and libraries are searched for. The
directory named include under directory is searched for the header files. The
directory named “lib” under directory is searched for the libraries.
-Bdirectory
Specifies a directory name where commands, header files and libraries are
searched for. The specified directory is searched for the commands and libraries.
The directory named include under directory is searched for the header files.
-fintrinsic-modules-path directory
Specifies a directory name where intrinsic module files are searched for.
-modaule directory
-] directory
Specifies a directory name where to output module files. The specified directory is
also added to the list of searching path which is used during inputting module

files.

- 55 -

Chapter3 Compiler Options

3.14 Miscellaneous Options

--help
Displays usage of the compiler.
-print-file-name=/ibrary
Displays the full pathname of the library file named library which would be linked.
When this option is specified, actual compilation and linking are never done.
If the named library is not found, only the name specified as library is displayed.
-print-prog-name=program
Displays the command name named program in the compiler system which would
be invoked during the compilation through linking. When this option is specified,
actual compilation and linking are never done.
If the named command is not found, only the name specified as program is
displayed.
-noqueue
When the number of licenses exceeds use restriction, the compiler doesn’t stands
by until a license is freed.
-v
Displays the invoked commands at each stage of compilation.
--version

Displays the version number and copyrights of the compiler.

- 56 -

Chapter3 Compiler Options

3.15 Optimization Level and Options’ Defaults

The relation between -On and independently optimization options are as follows.
Note that -On controls the overall level of optimization, and the same instruction
code cannot be created even if an independently optimization option are enabled or
disabled are equal. To effectively apply one optimization, optimizations are
interrelated such as applying another ancillary optimizations, and -On controls them
to work together. For example specifying the optimization option that is set as the

defaults of -O1 with -00, the instruction code cannot equal to -O1.

Option Name -04 -03 -02 -01 -00
-fassociative-math v v v - -
-fcse-after-vectorization v v v - -
-ffast-math v v v v -
-fignore-induction-variable-overflow v - - - -
-fignore-volatile v - - - -
-finline-copy-arguments - v v v v
-floop-collapse v v - - -
-floop-fusion v v - - -
-floop-interchange v v - - -
-floop-normalize v v - - -
-floop-strip-mine v v - - -
-floop-unroll v v v - -
-floop-unroll-complete=4 v v v - -
-floop-unroll-complete-nest=3 v v v - -
-fmatrix-multiply v v - - -
-fmove-loop-invariants v v v v -
-fmove-loop-invariants-if v v - - -
-fmove-loop-invariants-unsafe v - - - -
-fmove-nested-loop-invariants-outer v v v v -
-fnramed-alias - - - v v
-fnamed-noalias v v v - -
-fouterloop-unroll v v - - -
-freciprocal-math v v v - -

- 57 -

Chapter3 Compiler Options

Option Name -04 -03 -02 -01 -00
-freplace-loop-equation v - - - -
-freplace-matmul-to-matrix-multiply v v v v -
-marray-io v v v v -
-mconditional-index-test v v - - -
-msched-none - - - - v
-msched-block v v v v -
-mvector v v v v -
-mvector-dependency-test v v v - -
-mvector-fma v v v - -
-mvector-merge-conditional v v - - -

- 58 -

Chapter4 Compiler Directives

Chapter4 Compiler Directives
This chapter describes the compiler directives of Fortran compiler.

4.1 Format of Compiler Directive

Format:
INEC$ directive-name [clause]l ... (Free source form)
*NEC$ directive-name [clause]l ... (Fixed source form)
oNEC$ directive-name [clause] ... (Fixed source form)

Note The following formats are also available, but marked obsolescent. The above
formats are recommended.

I$NEC directive-name [clause]l ... (Free source form)
*$NEC directive-name [clause]l ... (Fixed source form)
c$NEC directive-name [clause] ... (Fixed source form)

4.2 Compiler Directive Options

[no]advance_gather

Allows [Disallows] motion of vector gather instructions in the following loop so

that they can be started as advance as possible.

always_inline

A routine which includes this directive should be always inlined. This directive
must be specified in a called routine. A routine call which noinline is effective is
never inlined even if the called routine includes this directive. -On[n=2,3,4], -

finline-functions, -fopenmp, or -mparallel is needed to enable this directive.

[no]assoc

Allows [Disallows] associative transformation in which the order of operations may

be different from the original.

[no]Jassume

Allows [Disallows] the use of an array declaration to assume the shape of the

array expression or the loop iteration count.

- 59 -

Chapter4 Compiler Directives

atomic
Specifies that the assignment statement immediately after the compiler directive
to which atomic is specified is reduction operation such as summation or product.
cncall

Allows parallelization of a loop which includes user defined procedure calls.

collapse

Allows loop collapsing.

[no]concurrent

Allows [Disallows] automatic parallelization of the following loop. -mparallel must
be effective. The following schedule-clause whose functionality is the same as
OpenMP can be specified.

schedule(static [,chunk-size])

schedule(dynamic [,chunk-size])

schedule(runtime)

dependency_test

Allows the conditional vectorization by dependency-test.

forced_collapse

Collapses a nested loop forcibly. The user have to guarantee that the loop collapse

does not give unexpected result, incorrect result etc.

gather_reorder

Allows the instruction reordering on the assumption that vector loads and vector
stores with non-linear subscripts appearing in the following loop do not overlap

each other.

ignore_feedback_scalar

Even though the definitions and references of a scalar variable within a loop are
under different IF statement conditions, allows vectorization of the loop under the
assumption that within each iteration of the loop, there is a definition preceding
the reference (that is, there are no definition-reference relationships of a scalar

variable spanning across loop iterations).

- 60 -

Chapter4 Compiler Directives

[nolinline

A routine call in a following statement, a compound statement, an iteration
statement, or a selection statement is [not] chosen as a candidate for inlining.
-0On[n=2,3,4], -finline-functions, -fopenmp, or -mparallel is needed to enable

these directive.

inline_complete

Same as inline. But, if the inlined routine includes a routine call, the called routine
is chosen as a candidate for inlining. The inlining applied until there is no routine
calls if possible. -On[n=2,3,4], -finline-functions, -fopenmp, or -mparallel is

needed to enable this directive.
[no]linner

Allows [Disallows] parallelization of the innermost loop. When it is specified to the

innermost loop, it is effective.

[no]interchange
Allows [Disallows] loop interchanging.
ivdep

Regards the unknown dependency as vectorizable dependency during the
automatic vectorization. An execution result can be incorrect by vectorizing the

loop which is impossible to be vectorized.

[no]list_vector

Allows [Disallows] vectorization of the statement in a loop when an array element
with a vector subscript expression appears on both the left and right sides of an

assighment operator.

loop_count(n)

Assumes loop iteration count as n when compiler cannot determine the count by

loop controlling expression.

loop_count_test

Allows the conditional vectorization by loop-iteration-count-test.

- 61 -

Chapter4 Compiler Directives

[no]lstval
Allows [Disallows] loop transformation which does not guarantee the values of the
variables in the loop after the loop has been processed.

move_unsafe / move / homove

move_unsafe
Allows the loop invariant motion under if-condition, including side-effecting
unsafe code. The message opt(3008) is displayed if unsafe code is moved.
move
Allows the loop invariant motion under if-condition. The unsafe codes which
may cause side effects are not moved.
nomove

Disallows the loop invariant motion under if-condition.

[no]lneighbors

Allows [Disallows] neighboring access optimization in the loop.

Neighboring access optimization is effective only when -march=ve3 is enabled.

nofma
Disallows to use vector fused-multiply-add instruction in the array expression or
the loop.

nofuse

Disallows the loop fusion with the previous loop.

nosync
Parallelizes the loop ignoring unknown dependencies when the array elements in
the loop have unknown dependencies.

options “compiler-option [compiler-option]..."”

Specify the compiler options by options directive in the same way as on a
command line.

Rules

- 62 -

Chapter4 Compiler Directives

- The options directive must be specified at the top of your source program.
- Two or more options directives can be specified in succession.

- Blank line, comment line and #line can be written before and between options

directive.

- The options directive can be specified in the file included by #include at the
top of your source program.

Remarks:
- An option directive line cannot be continued.

- The directory specified by -I in options directive is not searched for reading

options directive.
- The upper limits of nesting level of files included by #include is 1000.
- The options directive cannot be specified in file included by INCLUDE line.

- The compiler options that control linking or compiler environment cannot be

specified. See “4.3 Compiler options which cannot specify by options directive”.

- When -fopenmp, -mparallel and/or —ftrace are specified by options directive,

they must be specified at linking.

optimize “compiler-option [compiler-option]...”

Specify the compiler options by this directive. The specified options are applied to
this routine.
Rules

This directive must be placed immediately after PROGRAM, SUBROUTINE, or

FUNCTION statement. Two or more directives can be specified.

SUBROUTINE SUB

INEC$ optimize “-03 —finline-functions”

INEC$ optimize “-mvector—intrinsic—check”
USE MM

END SUBROUTINE SUB

Remarks:

- 63 -

Chapter4 Compiler Directives

- This directive line cannot be continued.
- The options in this directive cannot be applied to internal procedures.

- See “4.4 Compiler options which can be specified by optimize directive”.

outerloop_unroll(n) / noouterloop_unroll

outerloop_unroll(n)
Allows outer loop unrolling. The unroll time becomes a power of 2 that is less
than or equal to n.

noouterloop_unroll

Disallows outer loop unrolling.

[no]packed_vector

Allows [Disallows] to use packed vector instruction in the loop.

parallel do

Applies forced-parallelization of the following loop. The programmer must check
the validity of the operation when the loop is parallelized. -mparallel must be

effective.
The following schedule-clause whose functionality is the same as OpenMP can be
specified.

schedule(static [,chunk-size])

schedule(dynamic [,chunk-size])

schedule(runtime)
The private-clause whose functionality is the same as OpenMP can be specified.
You can specify a scalar variable and/or explicit-shaped array whose type is not

CHARACTER or derived type.

pvreg(array-name)

Assign a vector register forcedly to the array “array-name” in this routine. The

array must satisfy the following conditions.
- Local array

- The type of array must be one of INTEGER(KIND=4), REAL(KIND=4),

- 64 -

Chapter4 Compiler Directives

LOGICAL(KIND=4), or their alias names.
- One-dimensional array

- The number of the array elements is less than or equal to the maximum packed

vector length (=512).
- They must be referenced in the packed vectorized loops.
- Their subscript expressions must be the same in all loops.

- The array specified by vreg directive cannot be specified by pvreg directive.
In addition, When -march=vel is enabled, the following conditions must also be

satisfied:
- The loop length of loops defining/referencing arrays must be constant and
even.
retain(array-name)

Sets higher priority to array “array-name” to retain on LLC (Last-Level Cache) in

the vectorized loop immediately after this directive.

Note Please specify -mretain-list-vector or -mretain-none when you use this
directive.

select_concurrent

Choose the following loop rather than other loops in a nested loop when applying

automatic parallelization.

select_vector

Choose the following loop rather than other loops in a nested loop when applying

automatic vectorization.

shortloop

Vectorizes a loop as a short-loop. Compiler assume the iteration count would be
less than or equal to the maximum vector register length (=256) when the
iteration count is unknown.

[no]shortloop_reduction

Allows [Disallows] the conditional vectorization by iteration count test for a

reduction loop. -fassociative-math must be effective.

- 65 -

Chapter4 Compiler Directives

[no]sparse

sparse
Assumes that the number of mathematical intrinsic function calling under a
conditional expression is only a small number of the total iterations at
vectorization.

nosparse
Assumes that the number of mathematical intrinsic function calling under a

conditional expression is a large number of the total iterations at vectorization.

unroll(n) / nounroll

unroll(n)
Allows loop unrolling. The unroll time is n.
nounroll

Disallows loop unrolling.

unroll_complete

Allows loop expansion (complete loop unrolling) of a loop whose iteration count is
constant and can be calculated at the compilation.

Remark: unroll_completely can be used as an alias directive name.
[no]vector
Allows [Disallows] automatic vectorization of the following loop.

vector_threshold(n)

Specifies the minimum loop iteration count for vectorization of the following an

array expression or DO loop.

[no]vob

Disallows [Allows] a scalar load, a scalar store or a vector load which is executed
after the array expression or the loop immediately after this directive to overtake

the vector store in the array expression or the loop.

[no]vovertake

Allows [Disallows] all vector stores in the array expression or the loop are over-

taken by the subsequent scalar load, scalar store or vector load.

- 66 -

Chapter4 Compiler Directives

- An execution result becomes incorrect, if there actually is overlap of areas
between an array assignment statement or vector-storing in the DO loop and

scalar-loading, scalar-storing, vector-loading in the loop or behind the loop.

- When it is specified to an outer-loop, it is not effective in the inner loops.

vreg(array-name)

Assign a vector register forcedly to the array “array-name” in this routine. The

array must satisfy the following conditions.
- Local array

- The type of array must be one of INTEGER(KIND=4), INTEGER(KIND=8),
REAL(KIND=4), REAL(KIND=8), LOGICAL(KIND=4), LOGICAL(KIND=8),

or their alias names.
- One-dimensional array

- The number of the array elements is less than or equal to the maximum vector

length (=256).
- They must be referenced in the vectorized loops.
- Their subscript expressions must have the same subscript values in all loops.

- The array specified by pvreg directive cannot be specified by vreg directive.

[no]vwork

Allows [Disallows] partial vectorization using loop division. When novwork is
specified, an outer loop or a loop that contains a nonvectorizable part becomes

nonvectorizable as a whole.

4.3 Compiler options which cannot specify by options directive

The following compiler options cannot be specified by options directive.

e Overall Options

-S, -c, -cf=conf, -fsyntax-only, -o file-name, -x language, @file-name

* Optimization Options

-muse-mmap

» Parallelization Options

- 67 -

Chapter4 Compiler Directives

4.4

-mno-create-threads-at-startup, -pthread

* Inlining Options

-finline-abort-at-error, -mgenerate-il-file IL file name

* Code Generation Options

-no-proginf

» Debugging Options

-mmemory-trace, -mmemory-trace-full, -traceback

* Language Options

-masync-io, -use module

* Message Options

-Werror

* Preprocessor Options
-Dmacro[=defn], -E, -fpp, -nofpp, -fpp-name=name, -M, -P, -Umacro,

-traditional, -Wp,option

» Assembler Options

-Wa,option, -Xassembler option, -assembly-list

* Linker Options
-Bdynamic, -Bstatic, -Ldirectory, -llibrary, -nostartfiles, -nostdlib,
-rdynamic, -shared, -static, -static-nec, -stdlib, -WI,option, -Xlinker option,
-z keyword

» Directory Options
--sysroot=directory, -Bdirectory

* Miscellaneous Options
--help, -print-file-name=/ibrary, -print-prog-name=program, -noqueue, -v,

--version

Compiler options which can be specified by optimize directive

The following compiler options can be specified by optimize directive.
-On
-faggressive-associative-math
-fargument-alias

-fargument-noalias

- 68 -

Chapter4 Compiler Directives

-fassociative-math
-fassume-contiguous
-fcse-after-vectorization
-fdiag-inline=n
-fdiag-parallel=n
-fdiag-vector=n

-ffast-math

-ffast-math-check
-fignore-asynchronous
-fignore-induction-variable-overflow
-fignore-volatile
-finline-copy-arguments
-finline-functions
-finline-max-depth=n
-finline-max-function-size=n
-finline-max-times=n

-fivdep
-fivdep-omp-worksharing-loop
-floop-collapse

-floop-count=n

-floop-fusion
-floop-interchange
-floop-normalize

-floop-split

-floop-strip-mine

-floop-unroll
-floop-unroll-complete=n
-floop-unroll-max-times=n
-fmatrix-multiply
-fmove-loop-invariants
-fmove-loop-invariants-if
-fmove-loop-invariants-unsafe
-fmove-nested-loop-invariants-outer

-fnamed-alias

- 69 -

Chapter4 Compiler Directives

-fnamed-noalias
-fouterloop-unroll
-fouterloop-unroll-max-size=n
-fouterloop-unroll-max-times=n
-frealloc-lhs

-frealloc-lhs-array
-frealloc-lhs-scalar
-freciprocal-math
-freplace-loop-equation
-freplace-matmul-to-matrix-multiply
-marray-io
-mconditional-index-test
-minit-stack=value

-mlist-vector
-mparallel-innerloop
-mparallel-omp-routine
-mparallel-sections
-mparallel-threshold=n
-mretain-all

-mretain-list-vector
-mretain-none

-msched-keyword

-mstack-arrays

-mvector
-mvector-assignment-threshold=n
-mvector-dependency-test
-mvector-floating-divide-instruction
-mvector-fma
-mvector-advance-gather
-mvector-advance-gather-limit=n
-mvector-intrinsic-check
-mvector-iteration
-mvector-iteration-unsafe

-mvector-loop-count-test

- 70 -

-mvector-low-precise-divide-function
-mvector-merge-conditional
-mvector-neighbors
-mvector-packed
-mvector-power-to-explog
-mvector-poser-to-sqrt
-mvector-reduction
-mvector-shortloop-reduction
-mvector-sqgrt-instruction
-mvector-threshold=n
-mwork-vector-kind=none
-report-all

-report-cg
-report-diagnostics
-report-format

-report-inline

-report-option

-report-vector

- 71 -

Chapter4 Compiler Directives

Chapter5 Optimization and Vectorization

Chapter5 Optimization and Vectorization

This chapter describes optimization and automatic vectorization which are useful in

making user programs execute quickly.

5.1 Code Optimization

The code optimization eliminates unnecessary operations by analyzing program

control and data flow. Where possible, it minimizes the operations involved in a loop

and replaces them with equivalent faster operations.

5.1.1 Optimizations

The Fortran compiler performs the following code optimizations. The parenthesis

indicates the options to enable the individual optimizations.

Common expression elimination (-0[n] (n=1,2,3,4))

Moving invariant expressions under a conditional expression outside a loop (-O[n]

(n=1,2,3,4), -fmove-loop-invariants, -fmove-loop-invariants-unsafe)
Simple assignment elimination (-0O[n] (n=1,2,3,4))

Deletion of unnecessary codes (-0O[n] (n=1,2,3,4))

Exponentiation optimization (-O[n] (n=1,2,3,4))

Converting division to equivalent multiplication (-O[n] (n=2,3,4), -freciprocal-

math)
Loop fusion (-O[n] (n=3,4))
Optimization of arithmetic IF statements (-0O[n] (n=1,2,3,4))

Compile-time computation of constant expressions and type conversions (-O[n]

(n=1,2,3,4))

Optimization of complex number computations (-0[n] (n=1,2,3,4))
Removal of unary minus (-0[n] (n=1,2,3,4))

Optimization of branching (-0O[n] (n=1,2,3,4))

Strength reduction (-O[n] (n=1,2,3,4))

Removal of an unnecessary instruction to guarantee the last value (-O[n]

- 72 -

Chapter5 Optimization and Vectorization

(n=1,2,3,4))

- In-line expansion of Intrinsic functions (-O[n] (n=1,2,3,4))

- Optimization of implied DO lists in an I/O statement (-O[n] (n=1,2,3,4), -marray-
io)

- Optimizing by Instruction scheduling (-msched-keyword)

5.1.2 Side Effects of Optimization

« Common expression elimination or code motion may change the points where a
calculation is performed. The number of times a calculation is performed also
changes the points where errors occur and the number of error occurrences, as

compared with the not optimized object code.

* By moving invariant expressions under a conditional expression outside the loop,
expressions which should not be executed are always executed. Therefore an

unexpected error and an arithmetic exception may occur.

* When exponentiation optimization is effective, an exception is not detected even if

underflow exceptions occur.

» Converting division to equivalent multiplication normally causes a slight error in
the result. Although this error can usually be ignored in floating point arithmetic, it
may change the result if floating point arithmetic operations are converted to
integer arithmetic operations. This conversion can be stopped and avoided by

compiler option.

* Optimization by instruction scheduling may produce the following side effect. If a
calculation to be executed only when a certain condition is satisfied is moved
beyond basic blocks, and it is always executed, an error which should not occur
may occur. Also remarkably increases compile time and memory used by the

compiler.

5.2 Vectorization Features

5.2.1 Vectorization

Variables and each element of an array are called scalar data. An orderly arranged
scalar data sequence such as a line, column, or diagonal of a matrix is called vector

data.

- 73 -

Chapter5 Optimization and Vectorization

Vectorization is the replacement of scalar instructions with vector instructions. In
automatic vectorization, the compiler analyzes the source code to detect parts that
can be executed by vector instructions.

Automatic vectorization is performed when -O[n] (n=1,2,3,4) is valid.

The compiler option which controls this vectorization is -mvector.

The compiler directive option which controls this vectorization is [no]vector.

5.2.2 Partial Vectorization

If a vectorizable part and an unvectorizable part exist together in a loop, the
compiler divides the loop into vectorizable and unvectorizable parts and vectorizes
just the vectorizable part. This vectorization is called partial vectorization.

This vectorization is performed when -0O[n] (n=1,2,3,4) is valid.

The compiler option which suppress this vectorization is -mwork-vector-kind=none.

The compiler directive option which controls this vectorization is [no]Jvwork.

5.2.3 Optimizing Mask Operations

Using masked operations makes vectorization possible for a DO loop containing an IF
statement. However, if IF statements are nested to make a complex condition,
identical operations may arise between masks, lowering execution efficiency. In order
to avoid this, optimization is performed as follows for mask operations when -0[n]
(n=1,2,3,4) is valid.

* Process identical operations as common expressions
In this example, "A(I).LE.0.0" is processed as a common expression.

Example:

DOT =1, N
IF (A(I).LE.0.0) THEN
X(1) = A(I) * B(I)
END IF
Y(I) = A() + B(I)
IF (A(I).LE.0.0.AND.B(I).EQ.0.0) THEN
Z(I) = A(D)
END IF
END DO

(Vectorization)

Mii =0: if Ai > 0.0
1: if Ai <=0.0

- 74 -

Chapter5 Optimization and Vectorization

Xi= Ai * Bi (if M1i =1)

Yi= Ai * Bi

M2i = 0: if Bi # 0.0
1: if Bi =0.0

M3i = MTi AND M2i

Zi= Ai (if M3i =1)

* When IF statements are nested to make a complex condition, perform common
expression processing. This vectorization is performed when -0O[n] (n=1,2,3,4) is
valid.

In this example, "Y(I).GT.0.0" is processed as a common expression.

Example:

DO T =1, N
IF (X(I).GT.0.0) THEN
IF (Y(I).GT.0.0) THEN
Z(D) = Y@ / XD
ELSE
Z(I) =0.0
END IF
ELSE
IF (Y(I).GT.0.0) THEN
Z(I) =X / YD

END IF
END IF
END DO
(Vectorization)

Mii =0: if Xi <=0.0

1: if Xi > 0.0
M2i = 0: if Yi <= 0.0

1: if Yi > 0.0
M3i = M1i AND M2i
Zi =Yi/Xi (if M3i=1)
MAi = M1i AND M2i
Zi =0.0 (if M4i = 1)
M5i = M1i AND M2i
Zi =Yi/Xi (if M5i =1)

5.2.4 Macro Operations

Although patterns like the following do not satisfy the vectorization conditions for
definitions and references, the compiler recognizes them to be special patterns and

performs vectorization by using proprietary vector instructions.

- 75 -

Chapter5 Optimization and Vectorization

This vectorization is performed when -0O[n] (n=1,2,3,4) is valid.

e Sum or inner product

S=S = exp (exp: An expression)

A sum or inner product that consists of multiple statements is also vectorized.

t1 =S £+ exp/
t2 = t1 =+ exp?

The compiler option which controls this vectorization is -mvector-reduction.

e Product

S=Sx* exp (exp: An expression)

A product that consists of multiple statements is also vectorized.

t1
t2

S x expl
t1 * exp?

S =1tn * expn

The compiler option which controls this vectorization is -mvector-reduction.

e Iteration

A(I)
A(I)
A(I)
A(I)

exp = A(I-1) (exp: An expression)
exp * A(1-1)

expl = A(I-1) * exp2

(expl = A(I-1)) * exp2?

An iteration consists of multiple statements and is also vectorized.

t = expl = A(I-1)
A(D) =t % exp2?

The compiler option which controls this vectorization is -mvector-iteration and

-mvector-iteration-unsafe.
e Maximum values and minimum values

- Function type

Example:

DOIT =1 N

- 76 -

Chapter5 Optimization and Vectorization

XMAX = MAX (XMAX, X(I))
END DO

- Finding the maximum or minimum value only

Example:
DOI=1 N
IF (XMAX .LT. X(I)) THEN
XMAX = X(I)
END IF
END DO

- Finding the maximum or minimum value and the value of its subscript

expression
Example:
DO I =1, N
IF (XMIN .GT. X(I)) THEN
XMIN = X(I)
IX=1
END IF
END DO

- Finding the maximum or minimum value, the values of its subscript

expressions, and other values

Example:
DO J=1, N
DOI =1, N
IF (XMIN .GT. X(I, J)) THEN
XMIN = X(I, J)
IX=1
IYy=1J
END IF
END DO
END DO

- Compares absolute values

Example:
DOI=1 N
IF (ABS(XMIN) .GT. ABS(X(I))) THEN
XMIN = X(I)
END IF
END DO

- 77 -

Chapter5 Optimization and Vectorization

Search
A loop that searches for an element that satisfies a given condition is vectorized.

Example:

DOT =1 N
IF (X(I) .EQ. 0.0) THEN
EXIT
END IF
END DO

All of the following conditions must be satisfied.

- This is the innermost loop.

- There is just one branch out of the loop.

- The condition for branching out of the loop depends on repetition of the loop.

- There must not be an assignment statement to an array element or an object

pointed to by a pointer expression before the branch out of the loop.

- All basic conditions for vectorization are satisfied except for not branching out

of the loop.

Compression

A loop for compressing elements that satisfy a given condition is vectorized.

Example:
J=0
DO I =1, N
IF (X(I) .GT. 0.0) THEN
J=dJd+1
YW) = Z()
END IF
END DO
Expansion

A loop for expanding values to elements that satisfy a given condition is

vectorized.
Example:
J=0
DO I =1 N
IF (X(I) .GT. 0.0) THEN
J=J+1
Z() =YW

- 78 -

Chapter5 Optimization and Vectorization

END IF
END DO

5.2.5 Conditional Vectorization

The compiler generates a variety of codes for a loop, including vectorized codes and
scalar codes, as well as special codes and normal codes. The type of code is selected
by run-time testing at execution when conditional vectorization is performed. Run-

time testing are following.
- Data dependency
- Loop iteration count

- Loop iteration for reduction operation
This vectorization is performed when -0O[n] (n=2,3,4) is valid.
The compiler option and the compiler directive option which controls this

vectorization is following.

Condition Compiler Option Compiler Directive Option
Data dependency -mvector-dependency-test dependency_test
Loop iteration -mvector-loop-count-test loop_count_test

Loop iteration for

. . -mvector-shortloop-reduction [no]shortloop_reduction
reduction operation

5.2.6 Outer Loop Strip-mining

When the iteration count of a loop is greater than the maximum-vector-register-
length (=256), the compiler puts a loop around the vector loop, which splits the total
vector operation into "strips" so that the vector length will not be exceeded.

When there are references of array elements whose subscript expressions do not
include the induction variables of the outer loop in the inner loop of a tightly nested
loop, the inner loop is split into a strip loop and the strip loop is moved outside of the
outer loop so that invariants can be kept in the vector register.

This optimization is performed when -O[n] (n=3,4) is valid.

The compiler option which controls this vectorization is -floop-strip-mine.

Note A "tightly nested loop" is a nested loop, in which there is no
executable statement between each of DO statements nor between
each of ENDDO statements as shown in Example below.

- 79 -

Chapter5 Optimization and Vectorization

Example: Tightly nested loop

DO I =1, 10
DO J =1, 1000
AW =AW) +BW, D) xCWU, D
ENDDO
ENDDO

Example: Not tightly nested loop (Statement exists between each of DO

statements)

DO K=1,10
D(K)=0.0
DO J=1, 20
DO 1=1,30
A1, J, K)=B(I, J, K)*C (I, J, K)
ENDDO
XK, J)=Y K, J)+Z (K, J)
ENDDO
ENDDO

Example: Not tightly nested loop (Other loop exists between each of ENDDO

statements)

DO K=1,10
DO J=1, 20
DO I1=1,10
S(I,J, K =TI, J,K)*U (I, J,K)
ENDDO
DO 1=1,30
A(I, J,K)=B(I, J,K)*C (I, J, K)
ENDDO
ENDDO
ENDDO

5.2.7 Short-loop

A loop code which omits the determination of loop termination is generated for a
loop whose iteration count is less than or equal to the maximum-vector-register-
length (=256). This kind of loop is called a "short-loop".

This optimization is performed when -O[n] (n=1,2,3,4) is valid.

The compiler directive option which controls this optimization is shortloop.

- 80 -

Chapter5 Optimization and Vectorization

5.2.8 Packed vector instructions

A packed data is packed two 32bit data in each element of a vector register. Packed
vector instructions calculates a packed data. Packed vector instructions can calculate
twice the data of vector instructions by one instruction.

The compiler option which controls using packed vector instructions is -mvector-
packed.

The compiler directive option which controls using packed vector instructions is

[no]packed_vector.

5.2.9 Other

Deletion of common expression, deletion of simple assighments, deletion of
unnecessary codes, conversion of division to equivalent multiplication and removal of
an unnecessary instruction to guarantee the last value are also performed for
vectorized codes.

Additionally the following optimizations are performed for vectorized codes. The

parenthesis indicates the options to enable the individual optimizations.
- Extracting scalar operations (-0O[n] (n=1,2,3,4))

- Vectorization by statement replacement (-O[n] (n=1,2,3,4))

- Loop collapse (-O[n] (n=3,4), -floop-collapse)

- Outer loop unrolling (-O[n] (n=3,4), -fouterloop-unroll)

- Loop rerolling (-O[n] (n=3,4))

- Recognition matrix multiply loop (-O[n] (n=3,4), -fassociative-math, -fmatrix-

multiply)

- Loop expansion (-O[n] (n=2,3,4), -floop-unroll-complete=m)

5.2.10 Remarks on Using Vectorization

* The execution result of the summation, the inner product, the product and the
iteration may differ before and after vectorization because the order of their

operations may differ before and after vectorization.

* The 8 byte integer iteration is vectorized by using a floating-point instruction. So

when the result exceeds 52 bits or when a floating overflow occurs, the result

-81 -

Chapter5

Optimization and Vectorization

differs from that of scalar execution.

To increase speed, the vector versions of mathematical functions do not always

use the same algorithms as the scalar versions.

Optimization techniques, such as conversion of division to multiplication, are

applied differently.

Optimization techniques, such as reordering of arithmetic operations, are applied

differently.

The detection of errors and arithmetic exceptions by intrinsic functions may differ

before and after vectorization.

When the compiler checks whether vectorization would preserve the proper
dependency between array definitions and references, it assumes that all values of
subscript expressions are within the upper and lower limits of the corresponding
size in the array declaration. If a loop violating this condition is vectorized, correct

results are not guaranteed.

When a loop containing if statement is vectorized, arithmetic operations are
carried out only for the part that conditionally requires them, but arrays are
referenced as many times as the iteration count called for by the loop structure
and array elements that should not be referenced are referenced. Unless the
arrays have enough area reserved to satisfy the iteration count, memory access

exceptions can occur as a result.

When a loop containing a branch out of the loop is vectorized, arithmetic
operations are carried out unconditionally for the part before the branch point, as
many times as the iteration count called for by the loop structure. Therefore,
arithmetic operations that should not be carried out are carried out, or data that
should not be referenced are referenced. These events can cause errors or

exceptions.

The alignment size of vectorizable data must be same as size of the data type (4
bytes or 8 bytes). When the loop containing reference and definition of the array
element is vectorized, exception can occur. In such a case, specify -mno-vector
to stop vectorization or INEC$ NOVECTOR before the loop. The data cannot

satisfy vectorizable alignment is dummy argument. The compiler supposes the

- 82 -

Chapter5 Optimization and Vectorization

dummy data satisfy vectorizable argument and vectorize it.

5.3 Other features for performance

5.3.1 Offloading of Lumped Output of Array

Lumped and formatted output of arrays, and lumped and list-directed output of
arrays are offloaded to VH to improving the performance of execution. Set the
environment variable VE_FMTIO_OFFLOAD to YES or ON, and set the environment
variable LD_LIBRARY_PATH to /opt/nec/ve/nfort/lib64 to use this feature.
Example: Lumped and Formatted Output of Array

SUBROUTINE FUN
INTEGER 1 (100)
1=100

WRITE G, " (I5)") 1

END Example: Lumped and List-Directed Output of Array

SUBROUTINE FUN
INTEGER 1 (100)
1=100

WRITE (x, %) 1
END

5.3.2 Improve efficiency in buffering

Unformatted I/0 in a sequential file access may be improving the performance of I/0
by changing record and I/O buffer size.

5.3.2.1 Record buffer
Unformatted I/0O in a sequential file access uses the record buffer for I/O-list and
data transfer. Therefore, I/O performance can improve by allocating the record buffer
larger than the maximum record. Use the environment variable
VE_FORT_RECORDBUF to change the record buffer size.

5.3.2.2 I/0 buffer
File I/O transfers data between the file and the I/O buffer. The file system has an
optimal data transfer size. Therefore, I/O performance can improve by allocating the
I/0 buffer size to the optimal data transfer size. Also, I/O performance can improve
by allocating the I/0 buffer size larger than the file size when the memory size is
acceptable. Use the environment variable VE_FORT_SETBUF to change the I/O

- 83 -

Chapter5 Optimization and Vectorization

buffer size.

-84 -

Chapter6 Inlining

Chapter6 Inlining

6.1 Automatic Inlining

When automatic inlining is enabled, the compiler chooses the appropriate procedures
by analyzing the source files and inline them automatically.

The compiler option which controls this optimization is -finline-functions.

6.2 Explicit Inlining

6.2.1 Description

When using the explicit inlining, an inlining directive which controls inlining must be
specified before a statement, a compound statement, an iteration statement, or a
selection statement including inlined routine calling. The compiler option
-finline-functions is not needed, but -On[n=2,3,4], -finline-functions, -fopenmp,
or -mparallel is needed.

The compiler has the following directives for explicit inlining.

* always_inline
A routine which includes this directive should be always inlined. This directive
must be specified in a called routine. A routine call has noinline is never inlined
even if the called routine includes this directive.

* inline
A routine call in a following statement, a compound statement, an iteration

statement, or a selection statement is chosen as a candidate for inlining.

* inline_complete
Same as inline. But, if the inlined routine includes a routine call, the called routine
is chosen as a candidate for inlining. The inlining applied until there is no routine

calls if possible.
* noinline
A routine call in a following statement, a compound statement, an iteration

statement, or a selection statement is never inlined. The routine which includes

always_inline is not inlined, too.

- 85 -

Chapter6 Inlining

6.2.2 Specifying Inline Directive

(1) Called routine

always_inline must be specified in a called routine.

SUBROUTINE SUB
INEC$ ALWAYS_INLINE

END SUBROUTINE

(2) Statement

inline / inline_complete / noinline affect all routine calls in a following

statement.

INEC$ INLINE
X = FUNCT (A) + FUNG2 (A)
Y = FUNC3 (A)

FUNC1() and FUNC2() are candidates for inlining, but FUNC3() is not.

(3) BLOCK construct, DO construct, and IF construct

inline / inline_complete / noinline affect all routine calls in a following

construct.

INEC$ INLINE
DO I=1,N
CALL SUB1
CALL SuB2
END DO

Subroutine SUB1 and SUB2 are candidates for inlining.

6.2.3 Remarks

* always_inline, inline, inline_complete, and noinline are effective when -On

[n=2,3,4], -finline-functions, -fopenmp, or -mparallel are enabled.
e The routine definition which includes always_inline is not removed.

* A routine call which noinline is effective is not inlined even if the called routine

includes always_inline.

A BLOCK construct, DO construct, or IF construct includes a construct and each

construct has opposite directive, the immediately before directive is effective for

- 86 -

6.3

Chapter6 Inlining

the inner construct.

INEC$ INLINE
BLOCK
CALL SUBT | Candidate for inlining
INEC$ NOINLINE
BLOCK
CALL SUB2 I Not inlined
END BLOCK
END BLOCK

Cross-file Inlining

The compiler inlines procedures included in source files other than a source file of the
compilation target. This inlining is called cross-file inlining.

Cross-file inlining is enabled when automatic inlining is enabled and source files to
search for procedures to inline are specified.

The following examples show how to specify the source files.

* A source file is specified.

$ nfort —-¢ -finline—functions —finline-file=sub.f90 call. f90

» A source file and all input source files are specified.

$ nfort -¢ —finline—functions —finline—file=sub2. f90:all call.f90 sub. 90

» All source files under a directory are specified.

$ Is dir
sub. f90 sub2. 90 sub3. f90
$ nfort —-¢ —finline—functions —finline-directory=dir sub. f90

» All source files under a directory except for a specific source file are specified.

$ Is dir

sub. T90 sub2. f90 sub3. f90

$ nfort -¢ -finline—functions —finline-directory=dir —fno—inline-file=sub2. f90
call. f90

IL files can be also specified as files to search. Compilation time can become shorter

when you specify IL files instead of source files.

* An IL file is generated and specified.

‘$ nfort —-mgenerate—il-file sub. f90

- 87 -

Chapter6 Inlining

6.4

6.5

‘ $ nfort -¢ —finline—functions -mread-il-file sub.fil main. f90

Inline Expansion Inhibitors

Expansion inhibitors are used when one of the following conditions occurs.
- The procedure to be inlined cannot be located.

- The arguments used in the calling sequence do not match the arguments in the

procedure to be inlined.

- There is a conflict between common blocks of the calling procedure and the

procedure to be inlined.
- The procedure to be inlined contains a NAMELIST input/output statement.
- The procedure to be inlined contains variables having SAVE attribute.

- A function name referenced in the procedure to be inlined conflicts with a non-

function name used in the calling procedure.
- The procedure to be inlined contains OpenMP directives.

- The procedure to be inlined contains a recursive call of it.

Notes on Inlining

» If inlining is applied to too many procedures in a program, the volume of the
codes may increase, causing the instruction cache to overflow and the
performance of the program to decrease. Choose the procedures to be inlined

carefully.
» A procedure called recursively cannot be inlined.

» In cross-file inlining, if large or many programs are searched, the compilation time

can become long or memory used at the compilation may increase.

» In cross-file inlining, whether routines are inlined or not may change by the
compilation order, because the compiler does not search the source files and
continues the compilation when modules referred in programs of source files
specified by -finline-file or -finline-directory are not found. Specify -finline-

abort-at-error when you want to stop the compilation at the case.

- 88 -

6.6

Chapter6 Inlining

Restrictions on Inlining

» In cross-file inlining, the compiler does not search a source file when it contains

an EQUIVALENCE statement where a thread private common block appears

e In cross-file inlining, module procedures which refer to variables with PRIVATE

attributes cannot be inlined.

- 89 -

Chapter7 Parallelization

Chapter7 Parallelization

7.1 Automatic Parallelization

7.1.1 Description

The compiler automatically detects the parallelism of loop iterations and statement
groups, transforms a program to enable it to be executed in parallel, and generates
parallelization control structures when automatic parallelization is enabled.

The compiler option which controls this optimization is -mparallel.

7.1.2 Conditional Parallelization Using Threshold Test

Parallelization can slow down execution if the loop contains insufficient work to
compensate for the added overhead.

If the loop nest iteration count cannot be determined at compilation, the automatic
parallelization function generates codes to execute a threshold test at run time. If it
is calculated at run time that the loop has a lot of work, the loop is executed in
parallel mode. Otherwise the loop is executed serially. This parallelization is called
parallelization using a workload threshold test.

Automatic parallelization adjusts the threshold value based on the iteration count of
the loop and the number/type of operations in each loop. At run time, the iteration
count of the loop and the threshold value are compared. If the iteration count is
larger than the threshold value, the parallelized loop is executed. Otherwise, the
nonparallelized loop is executed.

The compiler option which controls this optimization is -mparallel-threshold=n.

7.1.3 Conditional Parallelization Using Dependency Test

If a loop is suitable for parallelization except that it is potentially dependent,
automatic parallelization may generate an IF-THEN block in the same way as for
parallelization using a threshold test. When evaluated at run time, this test
determines whether the loop can execute correctly on multiple tasks, or must be run
on a single task. For single loops and double-nested loops, this test is combined with
a threshold test.

7.1.4 Parallelization of inner Loops

When no outer loop can be parallelized, inner loops are analyzed for parallelization

- 90 -

Chapter7 Parallelization

operations. However, inner loops that clearly exceed the threshold value are
automatically parallelized even if inner loops are not requested.

The compiler option which controls this optimization is -mparallel-innerloop.

7.1.5 Forced Loop Parallelization

INEC$ PARALLEL DO parallelizes a DO-loop that is not parallelized by the compiler
but the user knows that it can be parallelized. The user must check the validity of the
operation when the loop is parallelized.
The following SCHEDULE-clause whose functionality is the same as OpenMP can be
specified.

SCHEDULE(STATIC [,chunk-size])

SCHEDULE(DYNAMIC [,chunk-size])

SCHEDULE(RUNTIME)
Additionally, PRIVATE-clause whose functionality is the same as OpenMP can be
specified. variable must be a scalar variable or an explicit-shaped array whose type is
not CHARACTER or derived type.

PRIVATE(variable[,variable]...)
INEC$ ATOMIC must be specified when a statement immediately after ATOMIC is a
macro operation such as summation or product.
The following code is an example inserting forced-loop parallelization directives.

Example:

SUBROUTINE SUB(SUM, A, N)
INTEGER: :N
REAL (KIND=8) : :A(N, N), SUM

INEC$ PARALLEL DO

DOJ =1, N
DOI =1 N
INEC$ ATOMIC
SUM = SUM + A(I, J)
ENDDO
ENDDO
END

-9 -

Chapter7 Parallelization

7.2 OpenMP Parallelization

7.2.1 Using OpenMP Parallelization

Specify -fopenmp to use OpenMP parallelization at compilation and linking. See the
OpenMP specifications for OpenMP directives and remarks.

Example: Inserting an OpenMP directive

FUNCTION FUN(N, A)
INTEGER N, I, J
REAL A(N), B(N)
REAL FUN

FUN = 1.0

I$OMP PARALLEL DO REDUCTION (+:FUN) ! OpenMP directive
DOJ=1, N

DOT =1 N

FUN = A(J) + B(I) + FUN

END DO

END DO

RETURN

END FUNGTION FUN

7.2.2 OpenMP 5.0
The following features of OpenMP 5.0 are supported.
* LOOP construct
* PARALLEL LOOP construct

e PARALLEL MASTER construct

7.2.3 Extensions on OpenMP Parallelization

The environment variables of OpenMP Version 4.5 whose name are prefixed with
“VE_" are also supported. If both environment variables with and without “VE_" are
specified, the value which is specified by the environment variable prefixed by “VE_"
is applied.

Example: Specify the environment variables (applied VE_OMP_NUM_THREADS)

$ export OMP_NUM_THREADS=4
$ export VE_OMP_NUM_THREADS=8

- 02 -

Chapter7 Parallelization

7.2.4 Restrictions on OpenMP Parallelization

The following features of OpenMP Version 4.5 is restricted.

All directives/clauses described in "Device Constructs"

Compiler does not generate any device code and target regions run on the host
All syntax described in “Array Sections” except in REDUCTION clause

All directives/clauses described in “Cancellation Constructs”

All directives/clauses described in “Controlling OpenMP Thread Affinity”

DISTRIBUTE, TARGET, TEAMS
DISTRIBUTE, TARGET and TEAMS in directives for combined construct and all
clauses related to them are ignored.

Example : “TARGET PARALLEL FOR” is treated as “PARALLEL FOR”".

PARALLEL DO SIMD construct and DO SIMD construct
Treated as PARALLEL DO and DO respectively SIMD construct

Treated as ivdep directive
TASKLOOP constructs

SIMD construct
If SAFELEN clause or SIMDLEN clause is not specified, treated as ivdep directive.

DECLARE REDUCTION construct
ALLOCATE clause

BIND clause

IF clause with directive-name-modifier
IN_REDUCTION, TASK_REDUCTION clause
ORDERED clause with parameter
SCHEDULE with modifier

DEPEND clause with array variable

DEPEND clause with SOURCE or SINK of dependence-type
CRITICAL construct with HINT

ATOMIC construct with SEQ_CST

LINEAR clause with modifier

- 903 -

Chapter7 Parallelization

* nested parallelism

7.2.5 Using OpenMP Parallelization

Specify -fopenmp to use OpenMP parallelization at compilation and linking. See the
OpenMP specifications for OpenMP directives and remarks.

Example: Inserting an OpenMP directive

FUNCTION FUN(N, A)
INTEGER N, I, J
REAL A(N), B(N)
REAL FUN

FUN = 1.0

I$OMP PARALLEL DO REDUCTION (+:FUN) ! OpenMP directive
DOJ=1, N

DOT =1 N

FUN = A(J) + B(I) + FUN

END DO

END DO

RETURN

END FUNGTION FUN

7.3 Threads

7.3.1 Set and Get Number of Threads

In automatic parallelized programs, parallel processing is realized based on OpenMP
parallel functions. Therefore, you can set the number of threads at execution by the
environment variable OMP_NUM_THREADS or VE_OMP_NUM_THREADS in
automatic parallelized and OpenMP parallelized programs.

OpenMP runtime library routines can set and get the number of threads at execution

in automatic parallelized programs.

SUBROUTINE OMP_SET_NUM_THREADS (num_threads) I Set number of threads

INTEGER num_threads

INTEGER FUNCTION OMP_GET_NUM_THREADS () ! Get number of threads

INTEGER FUNGCTION OMP_GET_MAX_THREADS () | Get upper bounds on number of threads
INTEGER FUNCTION OMP_GET_THREAD_NUM () | Get thread number

The number of threads at execution is the same as the number of available VE cores
if it is not set by the environment variable OMP_NUM_THREADS or
VE_OMP_NUM_THREADS before the program execution.

- 04 -

Chapter7 Parallelization

7.3.2 Thread Creation and Destroy

In automatic parallelized and OpenMP parallelized programs, the threads are created
before the routine main program, and they are destroyed at the program
termination.

The following figure shows how threads are created and destroyed. Assume that the

environment variable OMP_NUM_THREADS is set to 4.

Set OMP_NUM_THREADS=4 Threads

#0 #1 #2 #3 a) Create threads

PROGRAM MAIN . '
spin—wait
I$OMP PARALLEL
b) Execute in 4 threads
I$OMP END PARALLEL
. spin—wait
¢) Destroy all idle threads.
CALL OMP_SET_NUM_THREADS (2) Set ICV to 2.
- d) Create a thread. The number of
'$OMP PARALLEL threads becomes 2.
e) Execute in 2 threads
ISOMP END PARALLEL
- spin—wait
END PROGRAM MAIN)
f) Destroy an idle thread.

(@) Three idle threads are created by master thread (#0) before main program
starts. The idle threads are spin-waiting and wait for the task to be assigned by
the master thread.

(b) Tasks are assigned to the threads by master task at the entry of parallel region,
and it is executed in four threads. At the end of parallel region, three threads are
spin-waiting and wait for the task to be assigned by the master thread again.

(c) At the calling of OMP_SET_NUM_THREADS(2), all idle threads are destroyed and
set ICV to 2.

*ICV stands for "Internal Control Variable" and is an abbreviation used in

OpenMP. It is a variable used for controlling parallel processing.

- 95 -

Chapter7 Parallelization

(d) A thread is created at the entry of the next parallel region.
(e) The parallel region is executed in two threads.

(f) The idle thread is destroyed at the end of program execution.

7.3.3 Postpone Thread Creation

7.4

By default, idle threads are created before the routine main program. It can be

change at the first parallel region by the following compiler option at linking.

$ nfort -fopenmp -mno-create-threads—at-startup -static-nec a.o
$ nfort -mparallel —mno—create-threads—at-startup -static-nec b.o

Notes on Using Parallelization

» After parallelization, the total CPU time is increased due to the overhead of

parallelization.

* When parallelizing a procedure that includes procedure calls, the inside of the
called procedure must be checked to see if the definition and/or reference of

shared data is valid.

» Automatic parallelization is applied to the loops outside of a parallel region of
OpenMP when -fopenmp and -mparallel are specified at once. If you don't want
to apply automatic parallelization to a routine containing OpenMP directives,
specify -mno-parallel-omp-routine.

» Threads for parallelization are created for each MPI process when a program is a
MPI program. When a program uses 2 MPI processes and OMP_NUM_THREADS is
set as 4, the program requires 8 cores (= 2 MPI * 4 threads) . When executing

MPI program on VE, be careful not to run out of cores for execution.

* When outputting execution analysis information an auto-parallelized program
using PROGINF and FTRACE, keep the following in check. See the
manual "PROGINF/FTRACE User’s Guide” for the detail of PROGINF or FTRACE.

- The number of operations for the spin-waiting of the thread created before
main program starts is included in PROGINF, but not in FTRACE.

- In PROGINF, the “Vector Operation Ratio” may decrease. This is due to
calculating the displayed value in PROGINF from the counter of the whole
process which includes the number of operations for the spin-waiting of the

thread created before main program starts.

- 96 -

Chapter8 Compiler Listing

This chapter describes the output lists of the Fortran compiler.

Chapter8 Compiler Listing

The compilation list is created in the current directory, under the name "source-file-

name.L".

8.1 Option List

An option list is output when -report-option or -report-all is specified.

Format:

FILE NAME: fft.f90 (b)

COMPILER OPTIONS : -report-option (c)

OPTIONS DIRECTIVE: -04 (d)

PARAMETER :

Optimization Options :

(e) (f)
—On D4
—fargument-alias : disable
—fargument-noal ias : enable
—-fassociative-math : enable

NEC Fortran Compiler (3.0.7) for Vector Engine Thu Jun 18 13:25:29 2020 (a)

(a) Compiler revision and compilation date

(b) Name of source file

(c) Compiler options which specify by command line
(d) Compiler options which specify by options directive
(e) Compiler option

(f) Value of Compiler option

8.2 Diagnostic List

A diagnostic list is output when -report-diagnostics or -report-all is specified.

8.2.1 Format of Diagnostic List

The format of the diagnostic list is as follows.

- 97 -

Chapter8 Compiler Listing

Format:

NEC Fortran Compiler (1.0.0) for Vector Engine Wed Jan 17 14:58:49 2018 (a)
FILE NAME: fft. 90 (b)

PROCEDURE NAME: FFT_3D (c)
DIAGNOSTIC LIST

LINE DIAGNOSTIC MESSAGE
(d) (e) (f)
7: in1(1222) : Inlined
9: vec(101): Vectorized loop.

(a) Compiler revision and compilation date
(b) Name of source file
(c) Name of function that includes loops or statements corresponding to diagnostic
(d) Line number
(e) Kind of Diagnostic and message number
Kind of Diagnostic is as follows.
vec : Vectorization diagnostic
opt : Optimization diagnostic
inl : Inlining diagnostic
par : Parallelization diagnostic

(f) Diagnostic message

8.2.2 Notes

8.3

* A diagnostic message for a statement and a loop in an inlined routine is not
output in a diagnostic list for a routine that calls the inlined routine. Refer to the
diagnostic list for the inlined routine when you need to refer to its diagnostic

messages.

Format List

A format list is output when -report-format or -report-all is specified. The source
lines for each procedure together with the following information are output to the

list.

- 908 -

Chapter8 Compiler Listing

* The vectorized status of loops and array expressions.
* The parallelized status of loops and array expressions.
* The status of inline expansion

8.3.1 Format of Format List

The format of the format list is as follows.

NEC Fortran Compiler (1.0.0) for Vector Engine Wed Jan 17 15:00:01 2018 (a)
FILE NAME: a.f90 (b)

PROCEDURE NAME: SUB (c)

FORMAT LIST
LINE LOOP STATEMENT
d (e)
SUBROUTINE SUB(A, B, N, M)
INTEGER::N, M

REAL (KIND=8) ::A(M, N), B(M, N)
P > DO J=1,M

————— > DO I=1, N
| A(l,J) = AU, J) + B(I,J)
|V——-o ENDDO

— ENDDO

© O N o 1 b~ w N —
<<

END SUBROUTINE

(a) Compiler revision and compilation date

(b) Name of source file

(¢) Name of procedure

(d) Line number

(e) Vectorization and parallelization status of each loop and inlining status of function
calls

(f) Corresponding source file line

8.3.2 Loop Structure and Vectorization/Parallelization/Inlining Statuses

The following examples show how the loop structure and vectorization,

parallelization and inlining statuses are output.

* The whole loop is vectorized.

V—— > D0OI=1 N

- 99 -

Chapter8 Compiler Listing

e The loop is partially vectorized.

S————- > DO =1 N

* The loop is not vectorized

e > D0 1=1 N

The sign "=" indicates that the beginning and the end of the loop exist in the

same line.

* The nested loops are collapsed and vectorized.

W= > DOI=1 N
e > DOJ=1 M

* The nested loops are interchanged and vectorized.

X———— > D0OI=1 N

- 100 -

Chapter8 Compiler Listing

—> DO J

DOI=1 N

* The loop is expanded.

-—> D0 =1 4

* A character in the 17th column indicates how the line is optimized.

“1" indicates that the line includes a function call which is inlined.

“M" indicates that the nested loop which includes this line is replaced with

vector-matrix-multiply routine.

“F” indicates that a fused-multiply-add instruction is generated for an

expression in this line.

“R" indicates that retain directive is applied to an array in this line.

“G" indicates that a vector gather instruction is generated for an expression in

this line.

“C” indicates that a vector scatter instruction is generated for an expression in

this line.

“V" indicates that vreg directive or pvreg directive is applied to an array in this

- 101 -

Chapter8 Compiler Listing

line.

8.3.3 Notes

e Internal subprogram is output in the program unit which includes the subprogram.

* The loop structure or vectorization / parallelization status may be inexactly
displayed when a part of the loop is included in a file which included by INCLUDE

line or #include.

* The loop structure or vectorization / parallelization status may be inexactly

displayed when two or more loops are written in a line.

« When PROGRAM statement, SUBROUTINE statement, FUNCTION statement
and their corresponding END statements, END PROGRAM statement, END
SUBROUTINE statement, and END FUNCTION statement are not included in the
same source file or the same include file, Format List will not be output. If the
PROGRAM statement is omitted, and the first statement included in the program
unit, besides comment lines and INCLUDE lines, and the END statement or END
PROGRAM statement are not in the same source file or the same include file,

Format List will not be output.

8.4 Optimization List of Each Module

An optimization list of inlining module, vectorization module and code generation

module is output.

8.4.1 Inlining Module
An optimization list of inlining module is output when -report-inline or -report-all is
specified.

Format:

NEC Fortran Compiler (3.1.0) for Vector Engine Thu Sep 17 07:33:16 2020 (a)

FILE NAME: fft.f90 (b)

FUNCTION NAME: func3 (c)

INLINE LIST

INLINE REPORT: func3 (fft.f90:17)
(d)

- 102 -

—-> INLINE: func2 (fft.f90:19)
—> NOINLINE: funcO (fft.f90:12)
#+x Source for routine not found
-> INLINE: funcl (fft.f90:13)

(e)

(f)
(e)

Chapter8 Compiler Listing

(a) Compiler revision and compilation date
(b) Name of source file

(¢) Name of procedure

(d) Level of procedures to be inlined from the bottom of the calling tree.

(e) Inlining status of procedure calls

(f) Diagnostic message

8.4.2 Vectorization Module

An optimization list of vectorization module is output when -report-vector or -

report-all is specified.

Format:

NEC C/C++ Fortran (3.1.0) for Vector Engine

FILE NAME: vec. f90 (b)

FUNCTION NAME: func (c)

VECTORIZATION LIST

LOOP BEGIN: (vec.f90:3)
<{Unvectorized loop.> (d)

LOOP BEGIN: (vec.90:4)

<Vectorized loop.> (d)
%k The number of VGT, VSC. 0, O
%k The number of VLOAD, VSTORE. : 1, 1.
LOOP END
LOOP END

Thu Sep 17 08:10:39 2020 (a)

(vec.c:4)
(vec.c:4)

(e)
(e)

(a) Compiler revision and compilation date
(b) Name of source file

(c) Name of procedure

(d) Vectorization status of each loop

(e) Diagnostic message

- 103 -

Chapter8 Compiler Listing

8.4.3 Code Generation Module

An optimization list of code generation module is output when -report-cg or -

report-all is specified.

Format:

NEC Fortran Compiler (3.1.0) for Vector Engine

FILE NAME: vec. f90 (b)

FUNCTION NAME: func (¢)

CODE GENERATION LIST

Hardware registers (d)
Reserved
Cal lee-saved © 16 [s18-s33]
Assigned
Scalar registers
Vector registers

Vector mask registers 0

VREG directive 2 [v18-v19]
Routine stack (e)

Total size : 256 bytes
Register spill area 16 bytes
Parameter area : 40 bytes
Register save area : 176 bytes
User data area 16 bytes
Others 8 bytes

LOOP BEGIN: (vec.f90:3)
LOOP BEGIN: (vec. f90:4)
s+ The number of VECTOR REGISTER SPILL
Total

Across calls
Not enough registers
Over basic blocks
Others

Total
Across calls

- 104 -

x The number of VECTOR REGISTER RESTORE

Thu Sep 17 08:10:39 2020 (a)

: 10 [sl fp Ir sp s12 s13 tp got plt s17]

© 32 [s0-s12 s15-s16 s18-s21 s23-s32 s61-s63]
: 35 [v0 v30-v63]

Note: Total size of Routine stack does not include
the size extended by alloca() and so on.

D14
1

Chapter8 Compiler Listing

Not enough registers 1
Over basic blocks 1
Others o1
%k The number of VECTOR REGISTER TRANSFER 12
%k The number of SCALAR REGISTER RESTORE
Total S 14
Across calls 1
Not enough registers o1
Over basic blocks 1
Others o1
%k The number of SCALAR REGISTER RESTORE
Total S 14
Across calls 1
Not enough registers o1
Over basic blocks 1
Others o1
#kx The number of SCALAR REGISTER TRANSFER o 21
LOOP END
LOOP END

(a) Compiler revision and compilation date
(b) Name of source file
(c) Name of procedure

(d) Number of registers used for each type of register information

Reserved : System reserved registers
Callee-saved : Registers that save across procedure calls
Assigned : Registers assigned to calculations and user data

(e) Stack information

Register spill area : Stack area for register spill
Parameter area : Stack area for parameter area
Register save area : Stack area for register save area
User data area : Stack area for user data area
Others : Others

(f) Cause of register spill, restore and transfer for each loop
Across calls : Because it across procedure calls
Not enough registers : Because the registers are shortage
Over basic blocks : Because it is used across the basic blocks
Others : Others

- 105 -

Chapter9 Programming Notes Depending on the Language Specification

Chapter9 Programming Notes Depending on the

Language Specification

9.1 Non-Standard Extended Features

9.1.1 Statements

9.1.1.1 COMMON Statement

The Fortran compiler permits the mixing of character and other types of elements
in the same common block. However this should be avoided if possible, because

this may lower execution speed.

9.1.1.2 COMPLEX DOUBLE / COMPLEX DOUBLE PRECISION Statement
The COMPLEX DOUBLE / COMPLEX DOUBLE PRECISION statement, a type
declaration statement provided for compatibility, specifies that all data entities

whose names are declared in this statement are of intrinsic double precision

complex type.

The kind parameter is "KIND(0.0DO)".

FORMAT
COMPLEX DOUBLE entity-declaration-list
COMPLEX DOUBLE PRECISION entity-declaration-list
where,
entity-declaration
object-name [(explicit-shape-spec)][/ initial-value /]
| object-name [(assumed-size-spec)][/ initial-value /]
| function-name

9.1.1.3 COMPLEX QUADRUPLE / COMPLEX QUADRUPLE PRECISION
Statement

The COMPLEX QUADRUPLE / COMPLEX QUADRUPLE PRECISION statement
provided for compatibility, a type declaration statement, specifies that all data
entities whose names are declared in this statement are of intrinsic quadruple
precision complex type.
The kind parameter is "KIND(0.0Q0)".
FORMAT

COMPLEX QUADRUPLE entity-declaration-list

- 106 -

Chapter9 Programming Notes Depending on the Language Specification

COMPLEX QUADRUPLE PRECISION entity-declaration-list
where,

entity-declaration

object-name [(explicit-shape-spec)] [/ initial-value /]

| object-name [(assumed-size-spec)] [/ initial-value /]

| function-name

9.1.1.4 DATA Statement

The Fortran compiler permits writing a Hollerith constant, the number of
characters is more than 4, to the initial value of a DATA statement.
9.1.1.5 DIMENSION Statement
An initial value can be set in the DIMENSION statement in the same way as in
the DATA statement and a type declaration statement.
FORMAT
DIMENSION array-name(array-shape-spec) [/ init-val-expr-list /]

[,array-name(array-shape-spec)[/ init-val-expr-list /1]

where the init-val-expr-list represents the initial value of the immediately
preceding array name.
The rules to set the initial value are the same as those of the DATA statement.

9.1.1.6 DOUBLE Statement

The DOUBLE statement, a type declaration statement provided for compatibility,
specifies that all data entities whose names are declared in this statement are of
intrinsic double precision real type.
The kind parameter is "KIND(0.0DO0)".
FORMAT

DOUBLE entity-declaration-list

where,

entity-declaration :

object-name [(explicit-shape-spec)] [/ initial-value /]

| object-name [(assumed-size-spec)] [/ initial-value /]

| function-name

9.1.1.7 DOUBLE COMPLEX Statement
The DOUBLE COMPLEX statement, a type declaration statement provided for

- 107 -

Chapter9 Programming Notes Depending on the Language Specification

compatibility, specifies that all data entities whose names are declared in this
statement are of intrinsic double precision complex type.
The kind parameter is "KIND(0.0D0)".
FORMAT
DOUBLE COMPLEX entity-declaration-list
where,
entity-declaration
object-name [(explicit-shape-spec)] [/ initial-value /]
| object-name [(assumed-size-spec)] [/ initial-value /]
| function-name
9.1.1.8 DOUBLE PRECISION Statement
Initial values can be specified for the entities whose names are declared in the
DOUBLE PRECISION statement.
FORMAT
DOUBLE PRECISION [[,attribute-spec]... ::] entity-declaration-list
where,
attribute-spec :
ALLOCATABLE
| DIMENSION(array-spec)
| EXTERNAL
| INTENT(intent-spec)
| INTRINSIC
| OPTIONAL
| PARAMETER
| POINTER
| PRIVATE
| PUBLIC
| SAVE
| TARGET
entity-declaration
object-name [(explicit-shape-spec)] [/ initial-value /]
| object-name [(assumed-size-spec)] [/ initial-value /]

| function-name

- 108 -

Chapter9 Programming Notes Depending on the Language Specification

9.1.1.9 EQUIVALENCE Statement
The Fortran compiler permits the association of character-type elements with
other types (without a derived type). However, this should be avoided, to maintain
compatibility with other implementations of Fortran.

9.1.1.10 FORMAT Statement
The Fortran compiler permits the comma separator to be omitted immediately
before and after character string edit descriptors in FORMAT statements. Note,
however, that the comma separator between the X edit descriptor and the
character string edit descriptor must not be omitted.
Furthermore, the compiler permits n in nX edit descriptor and k in kP edit
descriptor to be omitted. When it is omitted, the default value is one. The data
edit descriptor (B/D/E/EN/ES/F/G/1/L/O/Z) can be specified only the edit
descriptor.

Example:

PRINT 10, 3.14, 2. 71

PRINT 20, 3.14, 2.7110

FORMAT (PI="F4.2" and’, X, E="F4.2)
20 FORMAT (PI="F" and’, X, E="F)

This produces the output:

P1=3.14 and E=2. 71
P1= 3. 1400001 and E= 2.7100000

9.1.1.11 FUNCTION Statement
A string "([dummy-argument-name-list])" following a function-name can be
omitted including "()"
In this case, the format of the FUNCTION statement is as follows:
FORMAT
[type-spec] FUNCTION func-name [([dummy-arg-name-list])]
where,
type-spec :
INTEGER [*byte-count]
| REAL [*byte-count]
| DOUBLE PRECISION
| DOUBLE

- 109 -

Chapter9 Programming Notes Depending on the Language Specification

| QUARUPLE PRECISION

| QUADRUPLE

| COMPLEX [*byte-count]

| COMPLEX DOUBLE PRECISION

| COMPLEX DOUBLE

| DOUBLE COMPLEX

| COMPLEX QUADRUPLE PRECISION
| COMPLEX QUADRUPLE

| LOGICAL [*byte-count]

[type-spec] FUNCTION func-name [([dummy-arg-name-list])]
where,
type-spec :
CHARACTER [*character-length]
9.1.1.12 Computed GO TO Statement

The following computed GO TO statement is available.

FORMAT
GO TO (statement-label-list) [,] scalar-integer-expr

SYNTAX RULE
Each statement-label within the statement-label-list must be the statement-
label of a branch target statement within the same scoping unit as the
computed GO TO statement.

GENERAL RULE

* The same statement-label may be written more than once within a single

statement-label-list.

* When a computed GO TO statement is executed, the scalar-integer-expr is
evaluated. Assume this value is i and the number of statement-labels within the
statement-label-list is n. If 1 <= i <= n, a transfer of control occurs, and the
statement having the i-th statement-label within the statement-label-list is
executed next. If i < 1 ori > n, the execution sequence continues as though a
CONTINUE statement were executed.

Example:

GO TO (100, 200, 300, 400, 500), I

- 110 -

Chapter9 Programming Notes Depending on the Language Specification

9.1.1.13 Arithmetic IF Statement
The following arithmetic IF statement is available.
FORMAT
IF (scalar-numeric-expr) stmt-label, stmt-label, stmt-label

SYNTAX RULE

» Each stmt-label must be the statement-label of a branch target statement

within the same scoping unit as the arithmetic IF statement.
¢ The scalar-numeric-expr must not be of complex type.

¢ A maximum of two stmt-labels may be omitted; however, the comma must not
be omitted. If the stmt-label corresponds to the scalar-numeric-expr, the

execution sequence continues as if the CONTINUE statement were executed.

* An arithmetic IF statement in which at least one of the stmt-labels is omitted
can be used as a terminal statement of a DO loop.
GENERAL RULE

¢ The same stmt-label can be written more than once within a single arithmetic

IF statement.

« If an arithmetic IF statement is executed, a scalar-numeric-expr is evaluated,
followed by a transfer of control. The branch target expression identified by the
first, second, or third statement-label is executed next according to whether
the value of the scalar-numeric-expression is negative, zero, or positive.

Example:

IFCT +J) 100, 200, 300

9.1.1.14 IMPLICIT Statement
The same letter may be specified more than once, either written as an individual
letter or included in a range of letters indicated by a letter-specification,
throughout all IMPLICIT statements in a single scoping unit. If the same letter is
specified more than once, the last letter is effective.
An IMPLICIT statement can implicitly specify the type and type parameters of a
data entity whose name starts with "$".

9.1.1.15 PARAMETER Statement
In PARAMETER statement, "()" in the list can be omitted. When omitting, the

- 1M1 -

Chapter9 Programming Notes Depending on the Language Specification

constant form, not the implicit typing of the name, determines the data type of
the variable.

Example:

PARAMETER P1=3. 1415927, DPI=3. 141592653589793238D0
PARAMETER P10V2=P1/2, DPIOV2=DPI1/2

PARAMETER FLAG=. TRUE., LONGNAME="A STRING OF 25 CHARACTERS'
PRINT %, ' PI=", PI

PRINT *, 'DPI=", DPI

PRINT =, PIOV2=", PIOV2

PRINT *, 'DPI10V2=", DPI0V2

PRINT =, FLAG=", FLAG

PRINT *, " LONGNAME=", LONGNAME

END

I . N

This produces the output:

PI= 3.1415927

DPI= 3.1415926535897931

PIOV2= 1.5707964

DPIOV2= 1.5707963267948966

FLAG= T

LONGNAME=A STRING OF 25 CHARACTERS

9.1.1.16 FORTRAN77 POINTER Statement
The following POINTER statement provided for compatibility is available.

FEATURE

The POINTER statement has the capability to associate a variable name or
procedure name (pointee) with a pointer variable (pointer). It can be described

in places where type declaration statements can appear.

FORMAT
POINTER (pointer, pointee) [,(pointer, pointee)]...
where,
pointer: INTEGER(KIND=8) type scalar-variable
pointee: scalar-variable-name
| array-name
| array-name (explicit-shape-specification)
| array-name (assumed-shape-specification)

| procedure-name

- 12 -

Chapter9 Programming Notes Depending on the Language Specification

GENERAL RULE

A FORTRAN77 POINTER statement cannot appear in a module specification
part or a BLOCK DATA program unit.

pointer must be an INTEGER(KIND=8) type scalar variable.

pointer must not be an array element, a component of a derived type, or a

function result.
pointer must not have the following attributes.
- ALLOCATABLE attribute
- PARAMETER attribute
- POINTER attribute
pointer cannot appear in a PARAMETER statement.

pointer must not be a pointee which appears in another POINTER

statement.

pointee must not be a common block object name, a component name of a
derived type name, a function result name, result variable name, or an

automatic data object.
pointee must not have the following attributes.
- ALLOCATABLE attribute
- INTENT attribute
- INTRINSIC attribute
- OPTIONAL attribute
- POINTER attribute

- SAVE attribute

TARGET attribute

» pointee must not have the following statements.

- COMMON statement
- EQUIVALENCE statement
- SAVE statement

- Another POINTER statement

- 113 -

Chapter9 Programming Notes Depending on the Language Specification

pointee must not be given an initial value.
pointee must not appear in data-sharing-attribute clauses of OpenMP.

pointee must not appear in a namelist-group-object-list of NAMELIST

statement.

NOTE

pointer is processed the same way as an ordinary variable of type 8-byte

integer.

If the explicit declaration of the pointer type is omitted, the type is

determined implicitly as 8-byte integer.
pointer can be declared for one or more pointees.

If pointee is an array specification and its upper and lower bounds are not

constant, the size of the array is determined at entry to the procedure.

A storage unit for a pointee is not allocated. The actual address of it is
dynamically determined by specifying the value of the corresponding pointer

as byte-address.

If pointee is an array, its shape can be determined by a declaration

statement, a DIMENSION statement or a POINTER statement.

pointee cannot be accessed by host association.

9.1.1.17 QUADRUPLE / QUADRUPLE PRECISION Statement
The QUADRUPLE / QUADRUPLE PRECISION statement provided for

compatibility, a type declaration statement, specifies that all data entities whose

names are declared in this statement are of intrinsic quadruple precision real type.
The kind parameter is "KIND(0.0Q0)".
FORMAT

COMPLEX QUADRUPLE entity-declaration-list

COMPLEX QUADRUPLE PRECISION entity-declaration-list

where,

entry-declaration :

object-name [(explicit-shape-spec)] [/initial-value/]

| object-name [(assumed-size-spec)] [/initial-value/]

| function-name

- 114 -

Chapter9 Programming Notes Depending on the Language Specification

9.1.1.18 RETURN Statement

A real type expression can be specified in a scalar integer expression of the
RETURN statement.

The specified real type expression is converted to the integer type prior to control

transfer.
9.1.1.19 STOP Statement

A scalar variable name or constant name of character type or default integer type

can be specified as the stop-code.

9.1.2 Program

9.1.2.1 Statement Continuation
The maximum number of continuation lines is 511 lines in any source forms.
9.1.2.2 Currency Symbol $
The currency symbol ($) can be used in place of a letter in a name.
The currency symbol ($) can be also used for an edit descriptor in a formatted
record. This specifies the suppression, on output, of vertical spacing control for
the last record of the format control. If a $ edit descriptor is specified on input, it
is ignored.
9.1.2.3 Argument Association
A procedure without an explicit interface can be normally compiled even if it has
the following arguments which violate the standard rules governing argument

association.

* The number of the actual arguments is less than the number of the dummy

arguments.
* An argument is of type character, and the length of the dummy argument is
greater than the length of the actual argument.
9.1.2.4 Array Complement

When the rank of an array is specified lower than its declaration, the compiler
complements the lower bounds of the omitted ranks.

Example:

- 115 -

Chapter9 Programming Notes Depending on the Language Specification

Declare Reference Reference

after

complement

A(2,3) A(1) A(1,1)
B(2,-4:4) B(1) B(1,-4)
C(2,3,4,5) C(2) c(2,1,1,1)

9.1.3 Source Form

9.1.3.1 Fixed Source Form

Statement Continuation
For compatibility, if "&" is specified in character position 1, all subsequent
characters of that line beginning with character position 2 constitute the

continuation line of the preceding line that is not a comment.

Extended Fixed Source Form

Maximum length of one line is 2,048 characters. This form is the same as the
fixed source form except that a line is not fixed on 72 columns, but a line
length is variable up to 2,048 columns.

In the extended fixed source form, a statement can consist of up to 13,200
characters including an initial line.

In the standard Fortran, the maximum number of continuation lines is 255 lines
in any source forms.

When -fextend-source is specified, the extended fixed source form is enabled.

Tab Code Line

When the first tab code appears in character positions 1 through 6, if the
character following the first tab code is a digit, that character is considered to
have appeared in character position 6; if the character following the first tab
code is not a digit, that character is considered to have appeared in character
position 7. In this case, everything up to the last character of the line becomes
a portion of the statement. Also, if the first tab code appears in character
position 7 or after, it is considered to be blank except in a character constant,

Hollerith constant, or character string edit descriptor.

- 116 -

Chapter9 Programming Notes Depending on the Language Specification

9.1.3.2 Free Source Form

In free source form, there is no limit for the maximum length of one line.

9.1.4 Expressions

9.1.4.1 Relational Operator
For compatibility, the following relational-operators can be used:
=>
| =<
| ><
| <>
9.1.4.2 Logical Operator
For compatibility, the following logical operator can be used:
.XOR.
9.1.4.3 Maximum Array Rank
The maximum rank of an array is 31. The Fortran 2008 standard only requires 15,
and previous Fortran standard only required 7.
9.1.4.4 Boz-literal-constant

A boz-literal-constant in the format containing a quotation mark or an apostrophe

may be specified as the following too.
¢ An initialization value of a PARAMETER statement.
* An initialization value of a type declaration statement.

* An actual argument of a procedure having an implicit interface.
Then the type of a boz-literal-constant is fixed by its usage. When the length of
the boz-literal-constant is less than the length of the type, the leftmost digits have
a value of zero. When the length of the boz-literal-constant is more than the
length of the type, the leftmost digits are truncated.
A hexadecimal-constant can also be written with "X" instead of "Z" in the format
shown below:
X"hexadecimal-digit [hexadecimal-digit] ..."
| X'hexadecimal-digit [hexadecimal-digit] ..."
9.1.4.5 Hollerith Type
A Hollerith constant can be written only in a Hollerith relational expression and a

Hollerith assignment statement.

- 17 -

Chapter9

9.1.4.6

Programming Notes Depending on the Language Specification

Hollerith Relational Expression

If one operand is a Hollerith constant or character constant in a relational
expression, the other operand may be a scalar variable of integer type or real
type. This makes it possible to compare Hollerith data. The variable must be
defined with Hollerith data at the time of evaluation of the relational expression.
The Hollerith relational expression is interpreted in the same manner as a
character expression having the same character value.

Example:

INTEGER DATA

READ (x, 10) DATA

10 FORMAT (A4)

IF (DATA .EQ. 3HEND) STOP

Hollerith Assignment Statement

In a Hollerith assignment statement, if the right side is a Hollerith constant or
character constant, the left side may be any non-character type scalar variable.
The execution of this assignment statement defines the variable on the left side
with the Hollerith data on the right side.

Assume n as the number of characters in a Hollerith constant or a character
constant, and assume g as the number of characters that can be contained in the
variable on the left side. If n is not greater than g, g characters are assigned by
extending the right side of the constant with g-n blank characters. If g is not
greater than n, the g characters on the left side of the constant are assigned.

Example:

INTEGER TITLE
TITLE = 4HDATA
WRITE (x, 10) TITLE
10 FORMAT (A4)

Subscript Expression and Substring Expression

A real type expression can be specified in the subscript expression or substring

expression in an array element.

The specified real type expression is converted into integer type prior to calculating

the subscript value.

- 118 -

Chapter9 Programming Notes Depending on the Language Specification

9.1.5 Deleted Features

The Fortran compiler supports the deleted features in Fortran95 (PAUSE statement,

ASSIGN statement, assigned GO TO statement, and H edit descriptor). When

-Wobsolescent is valid and these features are found, a warning message with

"Deleted feature:" is output.

9.2 Implementation-Defined Specifications

9.2.1 Data Types

9.2.1.1 Correspondence Between Kind Type Parameters and Data Types

The available kind values and correspondence between kind type parameters and

data types are as follows.

Type Kind Type Data Type
Parameter
integer 1 1-byte integer
integer 2 2-byte integer
integer 4 4-byte integer (default integer type)
integer 8 8-byte integer
real 2 2-byte real
real 4 4-byte real (default real type)
real 8 8-byte real
real 16 16-byte real
complex 2 (2,2)-byte complex
complex 4 (4,4)-byte complex (default complex type)
complex 8 (8,8)-byte complex
complex 16 (16,16)-byte complex
logical 1 1-byte logical
logical 4 4-byte logical (default logical type)
logical 8 8-byte logical
character 1 character (default character type)

- 19 -

Chapter9 Programming Notes Depending on the Language Specification

9.2.2 Internal Representation of Data

9.2.2.1 Integer Type
An integer data item has 1, 2, 4, or 8 consecutive bytes in a memory sequence. It is
stored in binary form, with the rightmost bit position representing the digit 1. A
negative number is represented by 2's complement notation. The leftmost bit is the
sign; O is positive, 1 is negative.
e 1-byte Integer
SYNOPSIS

7 0
S S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE
-128 to 127 (-2” to 21)

» 2-byte Integer
SYNOPSIS

15 0
S S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE
-32768 to 32767 (-2 to 2'°1)

* 4-byte Integer
SYNOPSIS

31 0
S

S:Sign bit (0:positive 1:negative)
EXPRESSIBLE VALUE
-2147483648 to 2147783647 (-2°! to 231'1)
» 8-byte Integer
SYNOPSIS

63 0
S
S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

- 120 -

Chapter9 Programming Notes Depending on the Language Specification

-9223372036854775808 to 9223372036854775807 (-2°° to 25°1)

9.2.2.2 Floating-Point Data

Half-Precision Type

A real data item occupies 2 consecutive bytes in a memory area. The leftmost bit
is the sign bit of the mantissa. The 10 bits on the right are the mantissa. The
mantissa is stored in binary representation, with its leftmost bit being the 2
place. When the sign bit of the mantissa in the leftmost bit position is 0, the
mantissa is a positive value. When it is 1, the mantissa is the absolute value of a
negative number. The 5 bits following the leftmost bit are the exponent. The
exponent is stored in binary representation, with its leftmost bit being the unit's

place. The value 0 is represented by making the value of the exponent 0.
SYNOPSIS

15 10 9 0
S| E M

S: Sign bit of mantissa (0:positive 1:negative)
E: Exponent (0<=E<=31)
M: Mantissa (0<=M<1)

EXPRESSIBLE VALUE
(-1)° * 2815 (1.M)
Decimal value of 3 digits, with an absolute value of 0 or in the range of 107 to
10%
SPECIAL VALUE
NaN E==31andM!=0
(A head bit of M is 0:signaling NaN, A head bit of M is 1:quiet NaN)
Infinity E==31and M ==
Signed Zero E ==

Real Type

A real data item occupies 4 consecutive bytes in a memory area. The leftmost bit
is the sign bit of the mantissa. The 23 bits on the right are the mantissa. The
mantissa is stored in binary representation, with its leftmost bit being the 2!
place. When the sign bit of the mantissa in the leftmost bit position is 0, the
mantissa is a positive value. When it is 1, the mantissa is the absolute value of a

negative number. The 8 bits following the leftmost bit are the exponent. The

- 121 -

Chapter9 Programming Notes Depending on the Language Specification

exponent is stored in binary representation, with its leftmost bit being the unit's
place. The value 0 is represented by making the value of the exponent 0.
SYNOPSIS
31 23 22 0
S E M
S: Sign bit of mantissa (0:positive 1:negative)
E: Exponent (0<=E<=255)
M: Mantissa (0<=M<1)

EXPRESSIBLE VALUE
(-1) * 28127 % (1 M)

Decimal value of 7 digits, with an absolute value of 0 or in the range of 10 to

107,
SPECIAL VALUE
NaN E==255and M !=0
(A head bit of M is 0:signaling NaN, A head bit of M is 1:quiet NaN)
Infinity E==255and M ==

Signed Zero E ==

* Double-Precision Type
A double-precision real data item occupies 8 consecutive bytes in a memory area.
The leftmost bit is the sign bit of the mantissa. The 52 bits on the right are the
mantissa. The mantissa is stored in binary representation, with its leftmost bit
being the 27! place. When the sign bit of the mantissa in the leftmost bit position
is 0, the mantissa is a positive value. When it is 1, the mantissa is the absolute
value of a negative number. The 11 bits following the leftmost bit are the
exponent. The exponent is stored in binary representation, with its leftmost bit
being the unit's place. The value 0 is represented by making the value of the

exponent 0.
SYNOPSIS

63 52 51 0
S E M

S: Sign bit of mantissa (0:positive 1:negative)

E: Exponent (0<=E<=2047)

M: Mantissa (0<=M<1)

- 122 -

Chapter9 Programming Notes Depending on the Language Specification

EXPRESSIBLE VALUE
(-1)S * 251023 x (1 M)
Decimal value of 16 digits, with an absolute value of 0 or in the range of 10-3%®

to 1038,

SPECIAL VALUE
NaN E==2047and M !=0
(A head bit of M is 0:signaling NaN, A head bit of M is 1:quiet NaN)
Infinity E==2047and M ==
Signed Zero E ==

* Quadruple-Precision Type
A gquadruple-precision real data item occupies 16 consecutive bytes in a memory
area. The leftmost bit is the sign bit of the mantissa. The 112 bits on the right are
the mantissa. The mantissa is stored in binary representation, with its leftmost bit
being the 27! place. When the sign bit of the mantissa in the leftmost bit position
is 0, the mantissa is a positive value. When it is 1, the mantissa is the absolute
value of a negative number. The 15 bits following the leftmost bit are the
exponent. The exponent is stored in binary representation, with its leftmost bit

being the unit's place. The value 0 is represented by making the value of the

exponent 0.
SYNOPSIS
127 112 111 64
S E M
Continuation of M
63 0

S: Sign bit of mantissa (0:positive 1:negative)
E: Exponent (0<=E<=32767)
M: Mantissa (0<=M<1)
EXPRESSIBLE VALUE
(-1)S * 2510383 x (1 M)
Decimal value of 34 digits, with an absolute value of 0 or in the range of 107932

to 10%°32,

SPECIAL VALUE
NaN E==32767and M !=0

- 123 -

Chapter9 Programming Notes Depending on the Language Specification

Infinity E==32767and M ==
Signed Zero E ==

9.2.2.3 Complex Type

Complex Half-Precision Type

A half-precision complex data item occupies 4 consecutive bytes in a memory
area. The 2 bytes occupying the low-order addresses store the real part, and the
2 bytes occupying the high-order addresses store the imaginary part. The real and

imaginary parts are in the same format as real data.

SYNOPSIS
31 26 25 16
RS| RE RM
IS| IE IM
15 10 9 0

RS, IS: Sign bit of mantissa (0:positive 1:negative)
RE, IE: Exponent (0<=RE<=31, 0<=IE<=31)
RM, IM: Mantissa (0<=M<1)

EXPRESSIBLE VALUE
(_1)RS * JRE-15 x (1.RM)
(_1)15 * IE-15 x (1.IM)
Decimal value of 3 digits, with an absolute value of 0 or in the range of 107 to
10%

SPECIAL VALUE
NaN RE==31andRM!=0andIE==31andIM!=0
Infinity RE == 31 and RM == 0 and IE == 31 and IM ==

Signed Zero RE == 0 and IE ==

Complex Single-Precision Type

A single-precision complex data item occupies 8 consecutive bytes in a memory
area. The 4 bytes occupying the low-order addresses store the real part, and the
4 bytes occupying the high-order addresses store the imaginary part. The real and

imaginary parts are in the same format as real data.

SYNOPSIS

- 124 -

Chapter9 Programming Notes Depending on the Language Specification

63 55 54 32
RS RE RM
IS IE IM
31 23 22 0

RS, IS: Sign bit of mantissa (0:positive 1:negative)
RE, IE: Exponent (0<=RE<=255, 0<=IE<=255)
RM, IM: Mantissa (0<=M<1)

EXPRESSIBLE VALUE

(_1)RS * 2RE-127 * (1RM)

(_1)15 * 21E—127 * (1IM)

Decimal value of 7 digits, with an absolute value of 0 or in the range of 107 to

10%.

SPECIAL VALUE

RE == 255 and RM != 0 and IE == 255 and IM I= 0

RE == 255 and RM == 0 and IE == 255 and IM ==
Signed Zero RE == 0 and IE ==

NaN

Infinity

» Complex Double-Precision Type

A double-precision complex data item occupies 16 consecutive bytes in a memory

area. The 8 bytes occupying the low-order addresses store the real part, and the

8 bytes occupying the high-order addresses store the imaginary part. The real and

imaginary parts are in the same format as double-precision real data.

SYNOPSIS
127 116 115 64
RS| RE RM
1Sl IE M
63 52 51 0

RS, IS: Sign bit of mantissa (0:positive 1:negative)
RE, IE: Exponent (0<=RE<=2047, 0<=IE<=2047)

RM, IM: Mantissa

EXPRESSIBLE VALUE

(_1)RS * 2RE-1023 * (1RM)
(_1)IS * 21E-1023 * (1IM)

Decimal value of 16 digits, with an absolute value of 0 or in the range of 107°%

- 125 -

Chapter9 Programming Notes Depending on the Language Specification

to 10°°%,

SPECIAL VALUE
NaN RE == 2047 and RM !'= 0 and IE == 2047 and IM I= 0
Infinity RE == 2047 and RM == 0 and IE == 2047 and IM ==

Signed Zero RE == 0and IE ==

» Complex Quadruple-Precision Type
A quadruple-precision complex data item occupies 32 consecutive bytes in a
memory area. The 16 bytes occupying the low-order addresses store the real
part, and the 16 bytes occupying the high-order addresses store the imaginary

part. The real and imaginary parts are in the same format as quadruple-precision

real data.
SYNOPSIS
255 240 239 192
RS RE RM
Continuation of M
IE IM
Continuation of M
63 0

RS, IS: Sign bit of mantissa (0:positive 1:negative)
RE, IE: Exponent (0<=RE<=32767, 0<=IE<=32767)
RM, IM: Mantissa

EXPRESSIBLE VALUE
(_1)RS * JRE-16383 x (1.RM)
(-1)'S * DIE-16383 x (1 M)

Decimal value of 34 digits, with an absolute value of 0 or in the range of 107932

to 10%9%,

SPECIAL VALUE
NaN RE == 32767 and RM =0 orIE == 32767 and IM I= 0
Infinity RE == 32767 and RM == 0 or IE == 32767 and IM ==

Signed Zero RE == 0 and IE ==
9.2.2.4 Logical Type

A logical data item has 1 byte, 4 consecutive bytes, or 8 consecutive bytes in a

memory sequence.

- 126 -

Chapter9 Programming Notes Depending on the Language Specification

e 1-byte Logical
SYNOPSIS

7 0
H |L
L: The lowest bit (0: False, 1: True)

H: Higher bit (H==0)

* 4-byte Logical
SYNOPSIS

31 0
H
L: The lowest bit (0: False, 1: True)

H: Higher bit (H==0)

* 8-byte Logical
SYNOPSIS

63 0

L: The lowest bit (0: False, 1: True)
H: Higher bit (H==0)
9.2.2.5 Character Type
A character data item occupies as many contiguous bytes of memory as specified by
a type or IMPLICIT statement. If the item is a character constant, it occupies as

many contiguous bytes as its number of characters.

SYNOPSIS
BYTE 1 2 3 4 n-1 n
Ci1 C2 Cs Ca Cn-1]| GCn

Ci: i-th character from the left
n: Length of a character-type scalar variable or array element specified by a type
or IMPLICIT statement (up to 32767 characters), or the length of a character

constant (up to 16383 characters)

9.2.2.6 Hollerith Type

An item of Hollerith data occupies contiguous 1, 2, 4, 8, 16, or 32 bytes of memory

- 127 -

Chapter9 Programming Notes Depending on the Language Specification

and is left-justified when stored. It is stored in a variable or array element of a type
other than character type, followed by the necessary number of blanks.

A Hollerith constant consists of an unsigned nonzero integer n, the following letter H
and the following string of n consecutive characters. This string may consist of any
characters capable of representation in the processor. The string of n characters is
Hollerith data.

The following example shows 5SHABCDE stored in a variable of double-precision

floating-point format 1 data.

BYTE 1 2 3 4 5 6 7 8
Al B |l c| D] E|T11[TI11]T11

"[1" indicates blank

A Hollerith constant can be written only in a Hollerith relational expression, a
Hollerith assignment statement, type-statement in FORTRAN77 compatible format, a
DATA statement, a DIMENSION statement, or an actual argument list in a
procedure reference having no explicit interface.

9.2.2.7 Hexadecimal Type
An item of hexadecimal data is stored according to an initial value setting in a DATA
or type, or by executing a READ statement using a Z edit descriptor. It occupies as
many bytes of memory as required for the type of data, and is left-justified when
stored. One byte of hexadecimal data contains two hexadecimal digits. Each
hexadecimal digit is represented by 4 bits.

9.2.2.8 Octal Type
An item of octal data is stored according to an initial value setting in a DATA or type
statement, or by executing a READ statement using an O edit descriptor. It occupies
as many bytes of memory as required for the type of data, and is left-justified when
stored. Three bits represent one octal digit.

9.2.2.9 Binary Type
An item of binary data is stored according to an initial value setting in a DATA or
type statement, or by executing a READ statement using a B edit descriptor. It
occupies as many bytes of memory as required for the type of data, and is left-

justified when stored. One bit represents one digit of binary data.

- 128 -

Chapter9 Programming Notes Depending on the Language Specification

9.2.2.10 Special Values

Floating-point data can be used for the following special values:

* Nonnumeral (NaN)
A nonnumeral indicates that numeric representation cannot be used as a result of
an invalid operation. For example, the result of the operation "0.0/0.0" is a
nonnumeral.

Nonnumerals are classified into the following two types.

- Signaling NaN
If this type of nonnumeral is used for an operation, an invalid operation

exception is detected.

- Quiet NaN
Quiet NaN: This type of nonnumeral is returned as the result of an invalid

operation. However, no invalid operation exception is detected.

* Infinite (inf)
Infinities are classified into the positive infinite and the negative infinite. The
positive infinite (+inf) is the value that is greater than any other numeric values
that can be represented in the same format as the positive infinite. The negative
infinite (-inf) is the value that is less than any other numeric values that can be

represented in the same format as the negative infinite.

* Signed zero (+0 and -0)
In internal representation, +0 and -0 are distinguished from each other by sign.

However, these two values are treated as the same value.

0.0 .EQ. (-0.0) => true

As shown below, a signed 0 is effective in obtaining a positive or negative infinite

value.
Bl = +0.0
B2 =-0.0
A1 =1.0 / BT
A2 =1.0/ B2
WRITE(x, *) “A1 =", A1, " A2 =", A2

9.2.3 Specifications

Various upper limits in the Fortran compiler are as described below.

- 129 -

Chapter9 Programming Notes Depending on the Language Specification

Items Upper Limits
Nesting level of files included by INCLUDE line 63
Rank of an array 31
Number of continuation lines 1023
Length of a name 199

9.2.4 Predefined Macro

All predefined macros are enabled when a source program is preprocessed by fpp

and one of the following conditions is satisfied.
* -E or -M is specified.

* The suffix of input source file is .F, .F90, .F95, or .FO3.
Predefined macros are as follows.
unix, __unix, __unix___
Always defined as 1.
linux, __linux, __linux___
Always defined as 1.
__gnu_linux___
Always defined as 1.
__ve, __ve__
Always defined as 1.
__VE_ARCH_1__
Always defined as 1.
__VE_ARCH_3_
Defined as 1 when —march=ve3 is enabled; Otherwise not defined.
__ELF__
Always defined as 1.
_ _FP16_FORMAT___
Sets the format of half-precision floating-point.
Defined as 1 when —march=ve3 and -mfp16-format=ieee are enabled;
Defined as 2 when —march=ve3 and -mfp16-format=bfloat are enabled;
Otherwise not defined.
__FP16_IEEE

Always defined as 1.

- 130 -

Chapter9 Programming Notes Depending on the Language Specification

__FP16_BFLOAT
Always defined as 2.
__NEC__
Always defined as 1.
__FAST_MATH __
Defined as 1 when -ffast-math is enabled; Otherwise not defined.
_FTRACE
Defined as 1 when —ftrace is enabled; Otherwise not defined.
__NEC_VERSION___
Defined as the value obtained by calculation using the following formula when
compiler version is X.Y.Z.
X*10000 + Y*100 + Z
__OPTIMIZE__
Sets the optimization level n of -On which is effective at the compilation.
__VECTOR__
Defined as 1 when automatic vectorization is enabled; Otherwise not defined.
__VERSION___

Always defined as a string constant which describes the version of the compiler

in use.

9.2.5 Notes for Intrinsic Procedures

CPU_TIME
Return CPU time for program execution. When parallelization in version 3.0.7
or later, this subroutine returns the CPU time of thread that called CPU_TIME.
In previous versions, this subroutine returned accumulated CPU time of all
threads. If you want to get accumulated CPU time of all threads in this version
or later, specify "YES" in environment variable
VE_FORT_ACCUMULATE_THREAD_CPU_TIME.

9.3 Memory Allocation and Deallocation

Fortran compiler has a memory block management feature to accelerate allocation
and deallocation for memory which is allocated by ALLOCATE statement, deallocated
by DEALLOCATE statement, and work area using in some statements.

By a memory block management feature, three memory blocks are reserved at the

- 131 -

Chapter9 Programming Notes Depending on the Language Specification

start of program execution, and a memory chunk in the blocks are assigned as a
memory area for scalar variable (basic and derived types) and small size arrays.
Therefore, system calls to allocate and deallocate memory chunks can be omitted for

them.

9.3.1 Memory block

There are three types of memory blocks depending on the type of data to be
allocated, and each has a size of 64 megabytes at the start of program execution. A
data whose size is less than a threshold size is assigned in a memory block. The

threshold size is 16 megabytes by default.

Block Type Allocated Data Type Size Threshold Size
Allocate Scalars and arrays having ALLOCATABLE 64 16
attribute
Pointer Scalars and arrays having POINTER 64 16
attribute
Miscellaneous Automatic arrays, work arrays and work 64 16

area needed by compiler
(Unit: Megabyte)

A data whose size is greater than or equal to the threshold size is allocated or
deallocated by malloc(3C) or free(3C) which is called from Fortran compiler’s runtime
routine.

When a sufficient area for an allocated data cannot be found in a memory block, new

memory block whose size is “Size” is added.

9.3.2 Change size and threshold size of memory block

The size of memory block can be changed by the environment variable
VE_FORT_MEM_BLOCKSIZE. The value can be specified as megabytes by using
“M” as unit and gigabytes by using “G” as unit. The value must be power of 2. The
size is set 64 megabytes when it is not specified explicitly. The threshold size is set to

“size" /4.

$ export VE_FORT_MEM_BLOCKSIZE=32M

The size is set to 32megabytes and the threshold size is set to 8 megabytes by the

above setting.

- 132 -

Chapter9 Programming Notes Depending on the Language Specification

9.4 Run-Time Input/Output

9.4.1 Formatted Records

Formatted records are input or output using a formatted, list-directed, or namelist
input/output statement.

Records with a formatted input/output statement are input or output in accordance
with the format specification. In general, this type of record has a variable length,
but cannot be longer than the record buffer provided by the Fortran compiler.
Records with a list-directed input/output statement are input or output in accordance
with the input/output list of that statement. When a list-directed input/output
statement is executed once, one or more records are input or output.

Records with a namelist input/output statement are input or output in accordance
with the specified list of namelist names. When a namelist input/output statement is

executed once, one or more records may be input or output.
9.4.1.1 Sequential File Formatted Records

Sequential file formatted records are separated from each other by new line codes

('0A'Z). Each record has a variable length. The format is shown here.

Formatted record | '0A'Z | Formatted record | '0A'Z
|<— m bytes —>| |<— n bytes —>|

9.4.1.2 Direct File Formatted Records
The length of a formatted record in a direct file is specified by the RECL specifier in

an OPEN statement. When a record created by input/output list-item editing is
shorter than the length of the records in a file, the record is padded with spaces to

the right.

Formatted record |Space | Formatted record | Space

|<— m bytes —>| |<— n bytes _>|
|<7 k bytes 4>|<— k bytes 4>|

(k: Length specified by an OPEN statement)

9.4.1.3 Stream File Format Records

Stream file formatted records are separated from each other by new line codes

- 133 -

Chapter9 Programming Notes Depending on the Language Specification

('0A'Z), same as sequential file formatted records. However, the maximum length of

the records does not apply to this format. The format is shown here.

Formatted record | '0A'Z | Formatted record | '0A'Z

|<— m bytes —>| Iq— n bytes —p

9.4.2 Unformatted Records

Unformatted records are input or output only with an unformatted input/output
statement. The length of an unformatted record is the same as total data size of
input/output items. Please refer to Section 7.2 about each data size.

9.4.2.1 Sequential File Unformatted Records

Each unformatted record in a sequential file is preceded and followed by 4-byte data

that indicates the byte length of the record as shown in this example.

m Unformatted record m n Unformatted record | n

‘_447 m bytes >+ <+——) bytes —¥|

4 bytes 4 bytes

(m,n: Byte length of record)

When the environment variable VE_FORT_EXPRCW is specified, each unformatted
record in a sequential file is preceded and followed by 8-byte data that indicates the
byte length of the record as shown in this example.

This record format is able to handle the records over 2 giga bytes.

m Unformatted record m
al Ll‘ | -
~ 8 bytes ' m bytes 17 8 bytes

(m: Byte length of record)

When the environment variable VE_FORT_SUBRCW is specified, each unformatted
record in a sequential file is divided into 2,147,483,639 bytes or less. This records
are preceded and followed by 4-byte data that indicates the byte length of the record
as shown in this example. The sign bit in this length field indicates whether the

preceding and following records are continued.

- 134 -

Chapter9 Programming Notes Depending on the Language Specification

2,147,483,639 2,147,483,639
o Unformatted record o
(Sign bit 1) (Sign bit 0)
<«—— 4 bytes —ple— 2,147,483,639 bytes —p¢— 4 bytes —»
< Record (1/3) >
2,147,483,639 2,147,483,639
S Unformatted record S
(Sign bit 1) (Sign bit 1)

4—— 4 bytes —»¢— 2,147,483,639 bytes —»¢— 4 bytes —»
< Record (2/3) >
n n
o Unformatted record o
(Sign bit 0) (Sign bit 1)

— 4 bytes — > n bytes —»¢— 4 bytes —>
< Record (3/3) >

(2,147,483,639, n: Byte length of record)

When the environment variable VE_FORT_PARTRCW is specified, each unformatted
record in a sequential file is followed by 4-byte data that indicates EOR and the byte

length of the record as shown in this example.

Unformatted record | EOR | m | Unformatted record |EOR| n

«—— m bytes —>L—>L—'|'<7 n bytes —D}

4 bytes 4 bytes

(m,n: Byte length of record)

When the runtime options VE_FORT_EXPRCW and VE_FORT_PARTRCW are
specified at the same time, each unformatted record in a sequential file is followed
by 8-byte data that indicates EOR and the byte length of the record as shown in this

example.

Unformatted record | EOR | m | Unformatted record |EOR| n

<«—— m bytes —4—*—447 n bytes —h}

8 bytes 8 bytes

(m,n: Byte length of record)

When the environment variable VE_FORT_NORCW is specified, each unformatted
record in a sequential file is preceded and followed by no control record data as

shown in this example. This is the same as unformatted record of stream file.

- 135 -

Chapter9 Programming Notes Depending on the Language Specification

Unformatted record | Unformatted record

—— m bytes —>|<— n bytes —»

9.4.2.2 Direct File Unformatted Records
The length of an unformatted record in a direct file is specified by the RECL specifier
in an OPEN statement. When a record consisting of input/output list items is shorter
than the length of records in a file, the remainder of the record is undefined, as
follows.
When writing an unformatted record to a file, the undefined data are ignored and the

length of the record will be the same as the total data size of output items.

Unformatted record |Undefined| Unformatted record [Undefined

|<— m bytes. —>| ’4— n bytes —>|
I‘i k bytes >|< k bytes 4’|

(k: Length specified by an OPEN statement)

9.4.2.3 Stream File Unformatted Records

An unformatted stream file is a byte stream without records.

Unformatted byte streamcoooiiiiiiiii

9.4.3 Preconnection
An external unit identifier is defined to identify a specific file before program
execution is started. This is called a preconnection.

9.4.3.1 System Standard File Preconnection

System standard files are preconnected to external unit identifiers as follows.

External Unit Identifier System Standard File
0 Standard error output
5 Standard input file
6 Standard output file

- 136 -

Chapter9 Programming Notes Depending on the Language Specification

A preconnection with an external unit identifier is valid until an OPEN statement is
executed for the external unit identifier. Once an OPEN statement is executed, the
external unit identifier is disconnected from the system standard file. Reconnection is
impossible. When an OPEN statement that specifies the external unit identifiers
previously indicated is executed followed by a CLOSE statement, the next
input/output statements for external unit identifiers 0, 5, and 6 detect an error
because the unit is not connected to files.

In the following example, WRITE statement (a) outputs data to the standard output
file; WRITE statement (b) outputs data to the file named DATA6; and WRITE
statement (c) outputs an error.

Example:

WRITE(, *) A, B, C ——— (a) Standard output file

OPEN (6, FILE = "DATA6")

WRITEG®6, * I, J, K ——— (b) DATA6
CLOSE (6)
WRITE(6, *) X, Y, Z ——- (¢) Unit 6 is not connected

9.4.3.2 Other File Preconnection
A file named fort.n is preconnected to each external unit identifier (n) other than 0,
5, and 6. Even if the FILE specifier is used in an OPEN statement, the executions of
a CLOSE statement and an OPEN statement with the FILE specifier fort.n still allow
unit n to be connected to fort.n.
In the following example, WRITE statement (a) outputs data to the file named
fort.8; WRITE statement (b) outputs data to the file named DATA8; and WRITE
statement (c) outputs data again to the file named fort.8. The records output by (a)
are rewritten by (c).
See the description of the environment variable VE_FORTn in “2.2 Environment
Variables Referenced During Execution” to change a preconnection file.

Example:

WRITE(, *) A, B, C —— (a) fort.8

OPEN (8, FILE = “"DATA8")

- 137 -

Chapter9 Programming Notes Depending on the Language Specification

WRITE(, *) I, J, K ———-
CLOSE (8)

OPEN(8, FILE = “fort.8")
WRITE(, *) X, Y, Z ——-

(b) DATA8

9.4.4 Unnamed File

An unnamed file can be created by executing the OPEN statement with

STATUS="SCRATCH". An unnamed file is created by the directory P_tmpdir in the

header file <stdio.h>. However, if this directory cannot be accessed, the directory

/tmp is used.

By using the environment variable TMPDIR, an unnamed file can be created in a

specified directory.

9.4.5 Rounding Mode

The rounding mode can be specified by the ROUND specifier and the round edit

specifier in an OPEN statement and a data transfer I/O statement. When these

specifications are not set, the rounding mode is set to PROCESSOR_DEFINED.

The value resulting from conversion in each mode is as follows.

ROUND specifier

edit

descriptors

Conversion result

uUP

DOWN

ZERO

NEAREST

COMPATIBLE

PROCESSOR_DEFINED

RU

RD

RZ

RN

RC

RP

The smallest representable value that is
greater than or equal to the original value

The largest representable value that is less
than or equal to the original value

The value closest to the original value and
no greater in magnitude than the original
value

The closer of the two nearest representable
values if one is closer than the other. When
two values are equally close, it is rounded
to the even one

The closer of the two nearest representable
values or the value away from zero if
halfway between them

Same as NEAREST

- 138 -

Chapter9 Programming Notes Depending on the Language Specification

9.4.6 NAMELIST Input Format

The NAMELIST input format supports the addition of "$" and "&" as the front

character of the NAMELIST name. "$end", "&end" and "/" are supported as the end

symbol.

9.4.7 NAMELIST Output Format

Output of numeric-type array

When two or more same values in a numeric array are consecutive, NAMELIST is
output collectively form (Repeat* Value). This form can be changed by the
environment variable VE_FORT_NML_REPEAT_FORM. See “2.2 Environment

Variables Referenced During Execution” for details.

DELIM specifier and character-type array

When "NONE" is specified to DELIM specifier, characters are not separated from
each other by value separators. When "QUOTE" or "APOSTROPHE" is specified to
DELIM specifier, the same consecutive characters or strings are output collectively
form (Repeat * Value). When DELIM specifier is omitted, characters are output
continuously. This form can be changed by the environment variable
VE_FORT_NML_DELIM_BLANK. See “2.2 Environment Variables Referenced
During Execution” for details.

Note NAMELIST output records produced with a DELIM specifier with a
value of "NONE" and which contain a character sequence might not be
acceptable as NAMELIST input records. If you want to use the output
result of this text as input to the program, either specify other than
"NONE" to DELIM specifier or set "YES" for environment variable
VE_FORT_NML_DELIM_BLANK without DELIM specifier.

Compatibility with compiler version 3.0.7
If you want to NAMELIST output form of version 3.0.7 or earlier, set "NO" to
environment variable VE_FORT_NML_REPEAT_FORM.

9.5 Fortran 2018 Extensions

This appendix describes the Fortran 2018 Extensions supported by NEC Fortran

Compiler.

- 139 -

Chapter9 Programming Notes Depending on the Language Specification

9.5.1 Data declaration

* Assumed-rank dummy data object can be used. (Support compiler version 5.4.0-)

Example:

SUBROUTINE SUB (A)
REAL :: A(C.)

9.5.2 Data usage

e SELECT RANK construct can be used. (Support compiler version 5.4.0-)

Example:

PROGRAM SELECT_RANK_EXAMPLE
INTEGER A, B(1), C(2,3), D(4,5,6)
CALL SUB(A)

CALL SUB(B)
CALL SUB(C)
CALL SUB(D)
CONTAINS
SUBROUTINE SUB(P)
INTEGER P(..)
SELECT RANK (P)
RANK (0)
PRINT %, 'RANK is 0’
RANK (1)
PRINT *, "RANK is 1
RANK (2)
PRINT %, "RANK is 2
RANK DEFAULT
PRINT *,'RANK is out of range from 0 to 2.
END SELECT
END SUBROUTINE
END PROGRAM

9.5.3 Execution Control

* The expression in an ERROR STOP or STOP statement can be used. (Support

compiler version 1.5.0-)

 The ERROR STOP and STOP statements have an optional QUIET specifier.
(Support compiler version 1.5.0-)

Example:

STOP 13, QUIET = .True.

- 140 -

Chapter9 Programming Notes Depending on the Language Specification

The above program exits normally with status of 13.

9.5.4 Intrinsic Procedures and Modules

e The intrinsic subroutine MOVE_ALLOC has optional STAT and ERRMSG
arguments. (Support compiler version 1.5.0-)

Example:

INTEGER, ALLOCATABLE :: X(:),Y(:)
INTEGER ISTAT
CHARACTER (80) EMSG

CALL MOVE_ALLOC (X, Y, ISTAT, EMSG)
IF (ISTAT/=0) THEN
PRINT *, " UNEXPECTED ERROR IN MOVE_ALLOC: ", TRIM(EMSG)

e The argument DIM to the intrinsic procedures ALL, ANY, FINDLOC, IALL, IANY,
IPARITY, MAXLOC, MAXVAL, MINLOC, MINVAL, NORM2, PARITY, PRODUCT
and SUM can be an optional dummy argument. (Support compiler version 3.5.0-)

Example:

SUBROUTINE SUB (X, N)
REAL, INTENT (IN) :: X(:, 1, o)
INTEGER, INTENT (IN), OPTIONAL :: N
IF (PRESENT(N)) THEN
PRINT *, NORM2 (X, N) ! RANK TWO ARRAY RESULT
ELSE
PRINT * NORM2(X) ! SCALAR RESULT.
END IF
END SUBROUTINE

* The intrinsic procedure RANK can be used. It returns the dimensionality of its
argument. (Support compiler version 3.5.0-)

Example:

INTEGER 1 (3, 3), RESULT
RESULT=RANK (I)
END

e The intrinsic procedure REDUCE can be used. It performs user-defined array
reductions. (Support compiler version 3.5.0-)

Example:

MODULE TRIPLET_M

- 141 -

Chapter9 Programming Notes Depending on the Language Specification

TYPE TRIPLET
INTEGER I, J, K
END TYPE
CONTAINS
PURE TYPE (TRIPLET) FUNCTION TADD (A, B)
TYPE (TRIPLET), INTENT(IN) :: A/B
TADD%I = A%I + B%I
TADD%J = A%J + B%J
TADD%K = A%K + B%K
END FUNCTION
END MODULE
PROGRAM REDUCE_EXAMPLE
USE TRIPLET_M
TYPE (TRIPLET) A(2,3)
A = RESHAPE([TRIPLET(1,2,3), TRIPLET(1,2,4), &
TRIPLET (2, 2,5), TRIPLET (2, 2,6), &
TRIPLET (3,2, 7), TRIPLET(3,2,8) 1, [2,3])
PRINT 1, REDUGE (A, TADD)
PRINT 1, REDUCE (A, TADD, 1)
PRINT 1, REDUCE (A, TADD, A%I/=2)
PRINT 1, REDUCE (ARRAY=A, DIM=2, OPERAT ION=TADD)
PRINT 1, REDUCE (A, MASK=A%I/=2, DIM=1, OPERATION=TADD
IDENTITY=TRIPLET (0, 0, 0))
1 FORMAT (1X, 6 C TRIPLET (", 10,",",10,",",10,")",:,"; "))
END PROGRAM

9.5.5 Input/Output

» The RECL specifier in an INQUIRE statement for an unconnected unit or file
assigns the value -1 to the variable. For a unit or file connected with
ACCESS="STREAM", it assigns the value —2 to the variable. Under previous
Fortran standards, the variable became undefined. (Support compiler version
3.0.1-)

» The SIZE= specifier can be used in a READ statement without ADVANCE="'NO".
(Support compiler version 3.5.0-)

Example:

CHARACGTER (65536) BUF
INTEGER NG
READ (x,” (A)", SIZE=NC) BUF
PRINT *, " THE NUMBER OF CHARACTERS ON THAT LINE WAS',NC

- 142 -

Chapter9 Programming Notes Depending on the Language Specification

9.5.6 Programs and Procedures

If a dummy argument of a function that is part of an OPERATOR generic has the

VALUE attribute, it is no longer required to have the INTENT(IN) attribute.
(Support compiler version 3.0.1-)

Example:

MODULE MOD
INTERFACE OPERATOR (+)
MODULE PROCEDURE PLUS
END INTERFACE
CONTAINS
PURE INTEGER FUNCTION PLUS (A, B)
INTEGER, VALUE :: A
LOGICAL, VALUE :: B
PLUS = MERGE (A+1, A, B)
END FUNCTION
END MODULE

If the second argument of a subroutine that is part of an ASSIGNMENT generic
has the VALUE attribute, it is no longer required to have the INTENT(IN)

attribute. (Support compiler version 3.0.1-)
Example:

MODULE MOD
INTERFACE ASSIGNMENT (=)
MODULE PROCEDURE ASGN
END INTERFACE
CONTAINS
PURE SUBROUTINE ASGN (A, B)
INTEGER, INTENT (OUT) :: A
LOGICAL, VALUE :: B
A = MERGE(1, 0, B)
END SUBROUTINE
END MODULE

9.5.7 Language-Mixed Programming

» A procedure argument of the C_FUNLOC function from the intrinsic module

ISO_C_BINDING is no longer required to have the BIND(C) attribute. (Support
compiler version 1.0.0-)

* The TYPE(*) type specifier can be used. It must not have the ALLOCATABLE,
CODIMENSION, INTENT (OUT), POINTER, or VALUE attribute. (Support compiler

- 143 -

Chapter9 Programming Notes Depending on the Language Specification

version 3.5.0-)
Example:

Fortran program:

PROGRAM TYPE_STAR_EXAMPLE

INTERFAGE
FUNCTION CHECKSUM (SCALAR, SIZE) BIND (C)
USE 1SO_C_BINDING
TYPE (%) SCALAR
INTEGER (C_INT), VALUE :: SIZE
INTEGER (C_INT) CHECKSUM
END FUNGTION
END INTERFACE
TYPE MYVEG3
DOUBLE PRECISION V(3)
END TYPE
TYPE (MYVEC3) X
CALL RANDOM_NUMBER (X%V)
PRINT *, CHECKSUM (X, STORAGE_SIZE (X) /8)
END PROGRAM

C program:

int checksum(void *a, int n)
{
int i;
int res = 0;
unsigned char *p = a;
for (i=0; i<n; i++) res = Ox3FFFFfff&((res<<1) + plil);
return res;

* A BIND(C) procedure can have optional arguments. The arguments cannot also
have the VALUE attribute. (Support compiler version 2.5.0-)
Example:

Fortran program:

PROGRAM OPTIONAL_EXAMPLE

USE 1SO_C_BINDING
INTERFAGE
FUNGCTION F (A, B) BIND(C)
IMPORT
INTEGER (C_INT), INTENT(IN) :: A

- 144 -

Chapter9 Programming Notes Depending on the Language Specification

INTEGER (C_INT), INTENT (IN), OPTIONAL :: B
INTEGER (C_INT) F
END FUNCTION
END INTERFACE
INTEGER (C_INT) X, Y

X =F@, 14)
Y = F(23)
PRINT %, X, Y

END PROGRAM

C program:

int f(int *argl, int *arg2)
{
int res = *argl;
if (arg2) res += xarg2;
return res;

9.5.8 Obsolescent features

» The EQUIVALENCE, COMMON and BLOCK DATA statement are considered to be
obsolescent in Fortran 2018 standards, and will be reported as such if the —

std=f2018 option is used.

9.6 Restrictions

e If the return value of a function has procedure pointer, the RESULT clause can

not be used.

» Execution of SPMD (Single Program Multiple Data) programming model using

coarray is limited to a single image. There is no parallel execution.

- 145 -

Chapterl0 Language-Mixed Programming

Chapter10 Language-Mixed Programming

Making an executable file by linking object files from different languages is called

mixed language programming. This chapter describes mixed language programming

techniques using C/C++ and Fortran programs.

10.1 Point of Mixed Language Programming

The following example shows how mixed language programming is used to make an

executable file by linking a C program and a Fortran program.

C program (file name: a.c)

#tinclude <stdlib.h>

#tdefine N 1024

#tdefine SIZE sizeof (double)

main()

{
double *x = (double *)malloc (SIZE*N) ;
double *y = (double *)malloc (SIZExN) ;
double *z = (double *)malloc (SIZE*N) ;
int n;

C program (file name: b.c)

#tinclude <stdio.h>
int read_data(double *x, double *y)

(...

Fortran program (file name: c.f90)

n = read_data(x, y);

compute_(x, vy, z, &n);
write_data(z, n);

SUBROUTINE GOMPUTE (X, Y, Z, N)
REALx8 X (N), Y(N), Z(N)
| calculation
I = GHECK_VALUE (Z(N))
IF (I.EQ.0) RETURN
END SUBROUTINE

C program (file name: d.c)

int check_value_(double *x)

{...}

In this example, a Fortran program is called from a C program, and a C program is

called from a Fortran program. When these programs are called, the function name

and procedure name coded in the program are converted into an external symbol

name, and the data is shared between C and Fortran by passing arguments or return

values.

The features of mixed language programming are as follows.

- 146 -

Chapter10 Language-Mixed Programming

» C/C++ function name and Fortran procedure name correspond.
e C/C++ and Fortran data types correspond.

* Return values are passed from C/C++ to Fortran.

» Values are passed from C/C++ to Fortran by arguments.

» Executable files are created by compiling and linking.

10.2 Correspondence of C/C++ Function Name and Fortran

Procedure Name

The C++ function names and Fortran procedure names in the source files are
converted into external symbol names and placed in object files. Therefore, when
these functions and procedures are called, they must be called by their converted

external symbol names.
10.2.1 External Symbol Name of Fortran Procedure

(1) When binding labels for procedures are used:
A procedure name in a Fortran source file is converted to an external symbol
name of the string same as a binding label. In other words, when a Fortran
procedure has a NAME specifier, the procedure name is converted to the name
specified to the NAME specifier; otherwise the procedure name is converted to
lowercase.

Example:

SUBROUTINE SUB1(X) BIND(C, NAME="Fortran_Subl1”)

END SUBROUTINE
SUBROUTINE SUB2 (Y) BIND (C)

END SUBROUTINE

In this example, the following procedure names are converted to external symbol

names.
Procedure Name External Symbol Name
SUB1 -> Fortran_Subl
SUB2 -> sub2

- 147 -

Chapterl0 Language-Mixed Programming

(2) When binding labels for procedures are not used:
A procedure name in a Fortran source file is converted to an external symbol

name according to the following rules.
- Procedure names are converted to lowercase.

- An underscore (_) is appended to a procedure name.

Example:

SUBROUTINE COMPUTE (X, Y, Z, N)
REALx8 X(N), Y(N), Z(N)

I calculation

I = CHECK_VALUE(Z(N))

IF (I.EQ.0) RETURN

END SUBROUTINE

In this example, the following procedure names are converted to external symbol
names.

Procedure Name External Symbol Name

COMPUTE -> compute_

CHECK_VALUE -> check_value_

10.2.2 External Symbol Name of C++ Function

The C++ compiler appends a string showing the return value and argument type to
a function name in a C++ source file. This operation is called mangling a function
name. By using this operation, the C++ compiler can declare functions with the
same name but whose argument types differ.

Example:

Function Name in A Source File Mangled Name

void func(double *x) - -> _ZAfuncPd

void func(float *x) -> _ Z4funcPf

Note Converting a mangled name to a name in a C++ source file is called
demangling.

A C++ function called from a C function or a Fortran procedure should be declared
by C linkage so that the function name is not mangled, and the C++ function can be
called by the function name itself coded in the source file. In the same way, a

prototype declaration of a C function or a Fortran procedure called from a C++

- 148 -

Chapter10 Language-Mixed Programming

function should also be declared by C linkage.

Example:

extern “C” {
void func(double *x);
void func(float *x);

The linkage specification is available in C++ language only. When using a prototype

declaration in C language, the linkage specification should be coded using conditional

coding.

Example:

#ifdef __cplusplus // __cplusplus is automatically defined
// by the C++ compiler.
extern “C” |
#tendif
void func(double *x);
void funcl (float *x);
#ifdef __cplusplus
}s
ftendif

10.2.3 Rules for Corresponding C/C++ Functions with Fortran Procedures

When a Fortran procedure is called from a C function, the Fortran procedure

should be called using an external symbol name of the Fortran procedure.

A name of a C function called from a Fortran procedure should be defined by an

external symbol name of the Fortran procedure.

A C++ function called from a C function or a Fortran procedure should be declared

using C linkage.

A prototype declaration of a C function or Fortran procedure called from a C++

function should be declared using C linkage.

10.2.4 Examples of Calling

Example: Calling Fortran procedure that has the BIND attribute from C function.

Caller (C function)

extern void sub1();
void cfunc() {

- 149 -

Chapterl0 Language-Mixed Programming

sub1 () ;

Callee (Fortran procedure)

SUBROUTINE SUB1() BIND(C)

END SUBROUTINE SUB1

The Fortran procedure is declared as a prototype and called using a name that is
coded in lowercase.
Example: Calling Fortran procedure that does not have the BIND attribute from C
function.

Caller (C function)

extern int sub_Q;
void cfunc() {

sub_Q);

Callee (Fortran procedure)

SUBROUTINE SUB

END SUBROUTINE SUB

The Fortran procedure is declared as a prototype and called using a name that is
appended with an underscore (_) and coded in lowercase.
Example: Calling C function from Fortran procedure that has the BIND attribute.

Caller (Fortran procedure)

SUBROUTINE SUB
USE, INTRINSIC :: ISO_GC_BINDING
INTERFACE
SUBROUTINE CFUNC () BIND (C)
END SUBROUTINE CFUNC
END INTERFACE

CALL CFUNC

END SUBROUTINE SUB

- 150 -

Chapter10 Language-Mixed Programming

Callee (C function)

void cfunc() {

The C function is declared and defined using a name that is coded in lowercase,
and the Fortran procedure interface is defined and called using a name that is
coded in uppercase.
Example: Calling C function from Fortran procedure that does not have the BIND
attribute.

Caller (Fortran procedure)

SUBROUTINE SUB

CALL CFUNC

END SUBROUTINE SUB

Callee (C function)

int cfunc_() {

The C function is declared and defined using a name that is appended with an
underscore (_) and coded in lowercase.
Example: Calling Fortran procedure from C++ function.

Caller (C++ function)

extern “C” {
int sub_(void);
)

void cfunc() {

sub_Q;

Callee (Fortran procedure)

SUBROUTINE SUB

END SUBROUTINE SUB

- 151 -

Chapterl0 Language-Mixed Programming

The Fortran procedure is declared as a prototype via C linkage and called using a
name that is appended with an underscore (_) and coded in lowercase.
Example: Calling C++ function from Fortran procedure.

Caller (Fortran procedure)

SUBROUTINE SUB

CALL CFUNC

END SUBROUTINE SUB

Callee (C++ function)

extern “C” {
int ¢func_(void);
}

int cfunc_(void) {

The C++ function is declared and defined via C linkage using a name that is
appended with an underscore (_) and coded in lowercase.

10.3 Data Types

The correspondence between Fortran data types and C/C++ data types is shown

below.

10.3.1 Integer and Logical Types for Fortran

Data Type Fortran C/C++

Integer INTEGER int (*1)

INTEGER(KIND=1) signed char
INTEGER*1

INTEGER(KIND=2) short
INTEGER*2

INTEGER(KIND=4) int
INTEGER*4

INTEGER(KIND=8) long, long int, long long or long long int
INTEGER*8

- 162 -

Chapter10 Language-Mixed Programming

Data Type Fortran C/C++
Logical LOGICAL int (*1)
LOGICAL(KIND=1) signed char
LOGICAL(KIND=2) short
LOGICAL(KIND=4) int

LOGICAL(KIND=8)

long, long int, long long or long long int

(*1) When -fdefault-integer=8 is enabled: long long int, long int, long long or

long long int

10.3.2 Floating-point and Complex Types for Fortran

Data Type Fortran C/C++
Floating- REAL float (*1)
point REAL(KIND=4) float
REAL*4
DOUBLE PRECISION double (*2)
REAL(KIND=8) double
REAL*8
QUADRUPLE long double
PRECISION
REAL(KIND=16)
REAL*16
Complex COMPLEX float __complex__ (*3)

COMPLEX(KIND=4)

COMPLEX*8

COMPLEX(KIND=8)

COMPLEX*16

COMPLEX(KIND=16)

COMPLEX*32

float __complex___

double __complex___

long double __complex___

(*1) When -fdefault-real=8 is enabled: double
(*2) When -fdefault-double=16 is enabled: long double

(*3) When -fdefault-real=8 is enabled: double __complex___

- 153 -

Chapterl0 Language-Mixed Programming

10.3.3 Character Type for Fortran

Data Type Fortran C/C++

Character CHARACTER(LEN=n) ch char ch[n];

10.3.4 Derived Type for Fortran

(1) Description
A Fortran derived type that defined with the BIND attribute can associate with a C
struct type.
Example:

Fortran program:

USE, INTRINSIC :: ISO_C _BINDING
I Define a derived type with the BIND attribute
TYPE, BIND(C) :: STR_TYPE
REAL (C_DOUBLE) :: S1, S2
END TYPE STR_TYPE

INTERFAGE
SUBROUTINE FUNC (X) BIND (C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_PTR) :: X
END SUBROUTINE FUNC
END INTERFACE

TYPE(C_PTR) :: P
TYPE (STR_TYPE), TARGET :: F_STR

P=C_LOC (F_STR) I Get the G address of F_STR
CALL FUNC (P) I Call G function, and
| pass the C address of F_STR

C program:

struct str_type { // Definition of structure
// associated with STR_TYPE

double s1, s2;
} *c_str;

void func(struct str_type *xx) |
c_str = *x; // c_str points to F_STR

- 154 -

Chapter10 Language-Mixed Programming

(2) Remarks

- The names of the corresponding components of the Fortran derived type and

the C struct type need not be the same.

- A C struct type that contains a bit field or that contains a flexible array member

cannot associate.

- A C struct type that contains a quadruple-precision real type or that contains a

complex type cannot associate.

10.3.5 Pointer

A C pointer is associated with a Fortran data by using the derived type C_PTR.

(1) How to associate C pointer and Fortran data
When a C pointer is referred in a Fortran program, a derived type C_PTR is used.
Example:

Fortran program:

USE, INTRINSIG :: 1SO_G_BINDING
INTERFACE
SUBROUTINE FUNGC (X) BIND (C)
USE, INTRINSIG :: ISO_G_BINDING
TYPE(C_PTR) :: X
END SUBROUTINE FUNC
END INTERFACE

TYPE(C_PTR) :: P

CALL FUNC (P) I Call G function

C program:

int *a;

void func (int **p) {
*p = a; // P points to a

(2) How to get C address

A C address of a Fortran allocated allocatable variable can be got by using the

- 155 -

Chapterl0 Language-Mixed Programming

function C_LOC which returns a value of the C_PTR type.
Example:

Fortran program:

USE, INTRINSIG :: ISO_C_BINDING

INTEGER (C_INT), TARGET :: N

TYPE(C_PTR) :: N_ADDR

N_ADDR = C_LOC (N) I C_LOC(N) returns C address of “N”

(3) How to compare C addresses

The Fortran intrinsic procedure C_ASSOCIATED can compare C addresses. When
its first argument and its second argument point the same area, C_ASSOCIATED
returns " TRUE."; otherwise returns ".FALSE.". When its second argument is
omitted, C_ASSOCIATED returns ".FALSE." if its first argument is a C null pointer
and returns " TRUE." otherwise.

Example:

Fortran program:

MODULE MOD
USE, INTRINSIC :: ISO_C_BINDING

INTEGER (C_INT), BIND(C) :: X, Y
TYPE(C_PTR) :: P1, P2

END MODULE

PROGRAM MAIN

USE MOD

CALL FUNG(P1, P2) I Call G function

IF (C_ASSOCIATED(P1, P2)) THEN ! Compare the memory areas of
I P1 and P2

END IF

END

C program:

int x, vy.

void func_(int #xpx, int #xpy) {
*pX = &X; // When func() is called in Fortran program,
*py = &y, // P1 points x, and P2 points y

- 156 -

Chapter10 Language-Mixed Programming

(4) How to associate C pointer and Fortran data pointer
A C pointer is associated with a Fortran data pointer by using the Fortran intrinsic
procedure C_F_POINTER. C_F_POINTER associates a C_PTR type of its first
argument with a data pointer of its second argument.
Example:

Fortran program:

MODULE MOD
USE, INTRINSIC :: ISO_G_BINDING

TYPE(C_PTR), BIND(C) :: CP
INTEGER (C_INT), POINTER :: FP

END MODULE

PROGRAM MAIN
USE MOD
CALL FUNC (CP) I Gall C function
CALL C_F _POINTER(CP, FP) I Bind G pointer GP with
o I data pointer FP
END
C program:
int x;
void func_(int *kpx) |
*pX = &X; // When func() is called in
} // Fortran program, CP points x

10.3.6 Common Block for Fortran

(1) Description
A Fortran common block defined with the BIND attribute can be interoperable
with a C program. When the common block contains a single variable, it can
associate with the C variable. When the common block contains two or more
variables, it can associate with a C struct type. But, the Fortran common block
and the C struct type must have the same number of members, and the members
of the Fortran common block must have corresponding types with the
corresponding members of the C struct type.
Example:

Fortran program:

- 157 -

Chapterl0 Language-Mixed Programming

USE, INTRINSIG :: 1SO_G_BINDING

COMMON /COM1/ F1, F2

COMMON /COM2/ F3

REAL (C_FLOAT) :: F1, F2, F3

BIND(C) :: /COM1/, /COM2/ ! Specify the BIND attribute

C program:

struct { float f1, f2; } coml;

// The common block “COM1” which contains two or more variables can associate
with

// the struct “coml”

float com2;
// The common block “COM2” which contains single variable can associate with the
// variable “com2”

(2) Remarks

¢ The names of the corresponding components of the Fortran common block and

the C struct type need not be the same.

» A C struct type that contains a bit field or that contains a flexible array member

cannot associate.

¢ A C struct type that contains a quadruple-precision real type or that contains a

complex type cannot associate.

10.3.7 Notes

Complex, double-precision complex and quadruple-precision complex types for
Fortran cannot correspond to single precision complex, double precision complex and

quadruple precision complex types for C declared by using the keyword _Complex.

10.4 Type and Return Value of Function and Procedure

This section describes how to pass the return values between C functions and
Fortran procedures. C++ functions can be regarded as C functions because C++
functions are called from C functions or Fortran procedures, or they are declared and

defined using C linkage when they are called.

(1) Integer, logical, real, double-precision and quadruple-precision type Fortran

- 158 -

Chapter10 Language-Mixed Programming

procedures See Section 8.3 for details of the correspondence between Fortran
and C/C++.
Example: Calling double-precision type Fortran procedure.

Caller (C function):

extern double func_();
double a;
a = func_Q; // Call Fortran procedure

Callee (Fortran procedure):

REAL (KIND=8) FUNCTION FUNC ()
FUNC = 10.0

END FUNCTION FUNC

Example: Calling double-precision type C++ function.

Caller (Fortran procedure):

REAL (KIND=8) A

A = CFUNC () I Call G++ function

Callee (C++ function):

extern “C” {
double cfunc_();

}

double cfunc_()

{

double a;

return a,

(2) Complex type functions
C/C++ can neither return nor receive a complex, double-precision complex or

quadruple-precision complex type return value of Fortran.

(3) Character type functions

Two arguments are appended in order to return a value for a character type

- 159 -

Chapterl0 Language-Mixed Programming

function of Fortran. The arguments are for the address and the length (in bytes)
of the return value.
Example: Calling character-type Fortran procedure.

Caller (C++ function):

extern “C” {
int chfunc_(char *res_p, long res_I);

}
char a[21]; // Allocate 20 bytes + 1 byte for terminating

chfunc_(a, 20L); // Call Fortran procedure

Callee (Fortran procedure):

CHARACTER+20 FUNCTION CHFUNC
CHFUNC = “THIS IS FORTRAN.”
RETURN

END FUNCTION CHFUNC

A string data storage area is allocated in the C/C++ function. When a storage
area is allocated in a C/C++ function, an extra 1 byte must be allocated for a null-
terminator, because a Fortran string value is not null-terminated.

Example: Calling C function as character-type function.

Caller (Fortran procedure):

SUBROUTINE SUB

CHARACTER+20 CHFUNC, CH

INTEGER M

CH = CFUNC (M) I Call G function

END SUBROUTINE SUB

Callee (C function):

extern int cfunc_(char *a, long b, int *p);

int cfunc_(char *a, long b, int *p)

{
streopy(a, “THIS IS C++.7);

The first argument of the Fortran procedure corresponds to the third argument of

- 160 -

Chapter10 Language-Mixed Programming

the C/C++ function.

(4) Fortran subroutine

A Fortran subroutine is the same as a C/C++ int type function.

10.5 Passing Arguments

10.5.1 Fortran Procedure Arguments

The arguments in a Fortran procedure that does not have the VALUE attribute are
passed by addresses. And, the arguments in a Fortran procedure that have the
VALUE attribute are passed by value. Therefore, when arguments are passed to a
C/C++ function, the arguments are obtained as pointers by the C/C++ function.
And, when the arguments are passed to a Fortran procedure, the arguments are

passed as the addresses of the variables.

(1) Passing arguments to Fortran procedure that does not have the VALUE attribute
The arguments are passed to a Fortran procedure as the addresses of the
variables. A constant value should be assigned to a variable before passing
because constant values do not have storage areas.

Example:

Caller (C++ function):

extern “C” {
int func_(int *i, int *j);
}

void c_func()

{

int a, b, ret;

b =100; // Assign the constant value to a variable to pass
ret = func_(&a, &b); // Call Fortran procedure

Callee (Fortran function):

INTEGER FUNCTION FUNC(I, J)
INTEGER I, J

END FUNCTION FUNC

- 161 -

Chapterl0 Language-Mixed Programming

(2) Passing arguments to Fortran procedure that have the VALUE attribute
The arguments are passed to a Fortran procedure as the values of the variables. A
constant value can be passed by the argument.
Example:

Caller (C++ function):

extern “C” {
int func_(int i, int j);
1

void c_func()

{

int a, ret;

ret = func(a, 100); // Call Fortran procedure

Callee (Fortran function):

INTEGER FUNCTION FUNC(I, J)
INTEGER, VALUE I, J | Specify the VALUE attribute

END FUNCTION FUNC

(3) Obtaining arguments from a Fortran procedure that does not have the VALUE
attribute

The addresses of the arguments are received via pointer parameters.
Example:

Caller (Fortran procedure):

SUBROUTINE SUB
INTEGER K, I, J

K = C_FUNC(I, J)

END SUBROUTINE SUB

Callee (C function):

extern int c_func_(int *a, int *b);

int c_func_(int *a, int *b)

{

- 162 -

Chapter10 Language-Mixed Programming

)

(4) Obtaining arguments from a Fortran procedure that have the VALUE attribute
The arguments are received by values.
Example:

Caller (Fortran procedure):

SUBROUTINE SUB

INTERFACE

INTEGER (C_INT) FUNCTION C_FUNG (A, B)

USE, INTRINSIC :: ISO_C_BINDING

INTEGER (C_INT), VALUE :: A, B I Specify the VALUE attribute
END FUNCTION C_FUNC

END INTERFACE

INTEGER I, J

K = G_FUNG(I, J)

END SUBROUTINE SUB

Callee (C function):

extern int ¢_func(int a, int b);

int c_func(int a, int b) // The arguments are received by values

{

10.5.2 Notes
10.5.2.1 Appending Arguments Implicitly
Arguments are implicitly appended to Fortran procedures as follows.

* When a called procedure is a character type Fortran function, the address where
the function value is stored and the length (in bytes) of the function value are

appended.

» When a procedure passes a character type argument, the length (in bytes) of the

argument is appended.

* When a procedure passes a procedure name argument, the size (in bytes) of the

return value from the procedure is appended. If the procedure is not a character

- 163 -

Chapterl0 Language-Mixed Programming

type function, the length is 0 (zero).

Arguments are passed to procedures in the following order.

(1) Address where the return value is stored (when the called procedure is a

character-type)

(2) Size of the return value (when the called procedure is a character-type)

(3) For each type of argument
The length (in bytes) of the argument for a character-type arguments or the size

(in bytes) of the return value for a procedure name arguments are added to the

end of the arguments.

- 164 -

Chapter10 Language-Mixed Programming

10.6 Linking

10.6.1 Linking Fortran Program and C Program

When linking a C program and a Fortran program, use the Fortran compiler (nfort).

Example:
$ nfort -¢c a. f (Compile Fortran program)
$ ncc —¢c b.c (Compile C program)
$ nfort a.o b.o (Linking by Fortran compiler)

10.6.2 Linking Fortran Program and C++ Program

When linking a C++ program and a Fortran program, use the Fortran compiler

(nfort).When linking, the runtime library of the C++ compiler (-cxxib) must be

specified.
Example:
$ nfort -¢c a. f (Compile Fortran program)
$ nc++ —c b. cpp (Compile C++ program)
$ nfort a.0 b.o —cxxlib (Linking by Fortran compiler)

10.7 Notes

When a C/C++ program and a Fortran program are linked, stdin, stdout and stderr
must not be closed in the C/C++ program. If they are closed, execution of the

Fortran program is not guaranteed.

- 165 -

Chapterll Library Reference

Chapterll Library Reference
This chapter describes the original intrinsic procedures.

11.1 Intrinsic Procedures

The "Specific Name" at the end of a procedure name indicates that it extends the
specific name of the procedure. If the "Specific Name" is not present, it indicates that

the procedure itself has been extended from the Fortran standards.

11.1.1 ABS(A) Specific Name

FUNCTION
Returns the absolute value.

CLASS
Elemental function.

ARGUMENT
A: A must be of Integer type, real type or complex type.

TYPE AND TYPE PARAMETER OF RESULT
When A is of complex type, the result is of real type with the same kind type
parameter as A. Otherwise, the result is of the same type as A.

RESULT VALUE
When A is of integer or real type, the value of the result is |A| (absolute value of
A). When A is the complex number (x,y), the value of the result is (x**2 +
y**2)**(1/2).

SPECIFIC NAME

Specific name Argument Type Result Type Standard
BABS INTEGER(1) INTEGER(1)
IIABS, HABS INTEGER(2) INTEGER(2)
IABS default integer default integer v
JIABS INTEGER(4) INTEGER(4)
KIABS INTEGER(8) INTEGER(8)
ABS default real default real v
DABS double precision double precision v
real real

- 166 -

Chapterll Library Reference

Specific name Argument Type Result Type Standard
QABS REAL(16) REAL(16)
CABS default complex default real v
CDABS double complex double precision
real
ZABS COMPLEX(8) REAL(8)
CQABS COMPLEX(16) REAL(16)

11.1.2 ACOS(X) Specific Name

FUNCTION

Arccosine function.
CLASS

Elemental function.

ARGUMENT

X: X must be of real type. Its value must satisfy |X| <= 1.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.
RESULT VALUE

The value of the result is the value of arccos(X) expressed in radians.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
ACOS default real default real v
DACOS double precision double precision v

real real
QACOS, QARCOS REAL(16) REAL(16)

11.1.3 ACOSH(X) Specific Name

FUNCTION

Hyperbolic arccosine function.
CLASS

Elemental function.
ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

- 167 -

Chapterll Library Reference

Same as X.
RESULT VALUE

The value of the result is the value of the hyperbolic arccosine, arccosh(X).

SPECIFIC NAME

Specific name Argument Type Result Type Standard
ACOSH default real default real
DACOSH double precision double precision

real real
QACOSH REAL(16) REAL(16)
11.1.4 AIMAG(Z) Specific Name

FUNCTION

Returns the imaginary part of a complex number.
CLASS

Elemental function.
ARGUMENT

Z. A must be of complex type.
TYPE AND TYPE PARAMETER OF RESULT

Real type with the same kind type parameter as Z.
RESULT VALUE

When the value of A is (x,y), the value of the result is y.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
AIMAG default complex default real
DIMAG double complex double precision

real
QIMAG COMPLEX(16) REAL(16)

11.1.5 AINT(A) Specific Name

FUNCTION

Truncates to an integer value.

CLASS

Elemental function.

ARGUMENT

- 168 -

Chapterll Library Reference

A: A must be of real type.

TYPE AND TYPE PARAMETER OF RESULT
Same as A.

RESULT VALUE
If |A] < 1, AINT (A) has the value 0.
If JA] = 1, AINT (A) has a value equal to the integer whose magnitude is the
largest integer that does not exceed the magnitude of A and whose sign is the
same as the sign of A.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
AINT default real default real v
DINT double precision double precision v
real real
QINT REAL(16) REAL(16)
11.1.6 AMT(X)
FUNCTION

Fetches the mantissa portion.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of the mantissa of X.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
AMT default real default real
DMT double precision double precision
real real
QMT REAL(16) REAL(16)

- 169 -

Chapterll Library Reference

11.1.7 AND(Z,J)

This function is alias of IAND. See Section 11.1.44 for details.

11.1.8 ANINT(A) Specific Name

FUNCTION
Returns the nearest integer value (by rounding).
CLASS
Elemental function.
ARGUMENT
A: A must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as A.
RESULT VALUE
If A > 0, ANINT (A) has the value AINT(A+0.5).
If A <=0, ANINT (A) has the value AINT(A-0.5).
SPECIFIC NAME

Specific name Argument Type Result Type Standard
ANINT default real default real v
DNINT double precision double precision v

real real
QNINT REAL(16) REAL(16)

11.1.9 ASIN(X) Specific Name

FUNCTION

Arcsine function.
CLASS

Elemental function.
ARGUMENT

X: X must be of real type. Its value must satisfy |X| <= 1.
TYPE AND TYPE PARAMETER OF RESULT

Same as X.
RESULT VALUE

The value of the result is the value of arcsin(X) expressed in radians.
SPECIFIC NAME

- 170 -

Chapterll Library Reference

Specific name Argument Type Result Type Standard
ASIN default real default real v
DASIN double precision double precision v

real real
QASIN REAL(16) REAL(16)

11.1.10 ASINH(X) Specific Name

FUNCTION
Hyperbolic arcsine function.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of the hyperbolic arcsine, arcsinh(X).
SPECIFIC NAME

Specific name Argument Type Result Type Standard
ASINH default real default real
DASINH double precision double precision
real real
QASINH REAL(16) REAL(16)

11.1.11 ATAN(X) Specific Name

FUNCTION
Arctangent function.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE

- 171 -

Chapterll Library Reference

The value of the result is the value of arctan(X) expressed in radians.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
ATAN default real default real v
DATAN double precision double precision v

real real
QATAN REAL(16) REAL(16)

11.1.12 ATAN2(Y,X) Specific Name

FUNCTION
Arctangent function.
CLASS
Elemental function.
ARGUMENT
Y: Y must be of real type.
X: X must be of the same type and kind type parameter as Y. If Y has the value
zero, X shall not have the value zero.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The result has a value equal to the argument of the complex number (Y, X)
expressed in radians.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
ATAN2 REAL(4) REAL(4) v
DATAN2 REAL(8) REAL(8) v
QATAN2 REAL(16) REAL(16)

11.1.13 ATANH(X) Specific Name

FUNCTION
Hyperbolic arctangent function.
CLASS

Elemental function.

- 172 -

11.1.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.
RESULT VALUE

Chapterll Library Reference

The value of the result is the value of the hyperbolic arctangent, arctanh(X).

SPECIFIC NAME

Specific name Argument Type Result Type Standard
ATANH default real default real
DATANH double precision double precision
real real
QATANH REAL(16) REAL(16)

14 BTEST(I,POS) Specific Name

FUNCTION

Tests a bit of an integer value.

CLASS
Elemental function.

ARGUMENT

I: I must be of integer type.

POS: POS must be of integer type. Its value must be greater than or equal to

zero and less than BIT_SIZE(]).
TYPE AND TYPE PARAMETER OF RESULT

Default logical type.
RESULT VALUE

If the POS bit of I is 1, the value of the result is true. If the POS bit of I is 0, the

value of the result is false.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
BBTEST INTEGER(1) INTEGER(1)
BITEST, HTEST INTEGER(2) INTEGER(2)
BTEST, BJTEST INTEGER(4) INTEGER(4)
BKTEST INTEGER(8) INTEGER(8)

- 173 -

Chapterll Library Reference

11.1.15 CANG(X)

FUNCTION
Argument of a complex number.
CLASS
Elemental function.
ARGUMENT
X: X must be of complex type.
TYPE AND TYPE PARAMETER OF RESULT
Real type with the same kind type parameter as X.
RESULT VALUE
The value of the result is the value of the argument of the complex humber X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
CANG default complex default real
CDANG, ZANG double complex double precision

real

11.1.16 CBRT(X)

FUNCTION
Cube root.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the cube root of X.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
CBRT default real default real
DCBRT double precision double precision
real real

- 174 -

Chapterll Library Reference

Specific name Argument Type Result Type Standard

QCBRT REAL(16) REAL(16)

11.1.17 CLOCK(D)

FUNCTION
Obtains the CPU time.

CLASS
Subroutine.

ARGUMENT
D: D must be a scalar variable of double precision real or quadruple precision
real type. It is an INTENT(OUT) argument. The accumulated CPU execution time
(units in seconds, precision up to microseconds) from the time program execution

begins until the subroutine referenced is set.

11.1.18 CONJG(Z) Specific Name

FUNCTION
Conjugates a complex number.
CLASS
Elemental function.
ARGUMENT
Z. Z must be of complex type.
TYPE AND TYPE PARAMETER OF RESULT
Same as Z.
RESULT VALUE
If Z has the value (X, y), the result has the value (x,—-y).
SPECIFIC NAME

Specific name Argument Type Result Type Standard
CONJG default complex default complex
DCONJG double complex double complex
QCONJG COMPLEX(16) COMPLEX(16)

11.1.19 COS(X) Specific Name

FUNCTION

Cosine function.

- 175 -

Chapterll Library Reference

CLASS
Elemental function.

ARGUMENT
X: X must be of real type or complex type.

TYPE AND TYPE PARAMETER OF RESULT
Same as X.

RESULT VALUE
The value of the result is the value of cos(X). When X is of real type, the value is
considered to be a value in radians. Note that when type parameter is single
precision and absolute value of X is greater than 2%!xn, the value of the result is
NaN. When X is of complex type, its real part is considered to be a value in
radians. Note that when type parameter is single precision and absolute value of
the argument is greater than 22!xn, the value of the result is NaN.
See Section 11.5 for notes on other type parameters.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
COS default real default real v
DCOS double precision double precision v

real real
QCOS REAL(16) REAL(16)
CCos default complex default complex v
CDCOS COMPLEX(8) COMPLEX(8)
ZCOS double complex double complex
CQCOS COMPLEX(16) COMPLEX(16)

11.1.20 COSD(X)

FUNCTION
Cosine.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT

Same as X.

- 176 -

Chapterll Library Reference

RESULT VALUE
The value of the result is the value of the cosine, cos(X), when X is a value in
degrees. Note that when type parameter is single precision and absolute value of
X is greater than 22!1x 180, the value of the result is NaN.
See Section 11.5 for notes on other type parameters.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
COSD default real default real
DCOSD double precision double precision
real real
QCOSD REAL(16) REAL(16)

11.1.21 COSH(X) Specific Name

FUNCTION
Hyperbolic cosine function.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of cosh(X), when X is a value in radians.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
COSH default real default real v
DCOSH double precision double precision v

real real
QCOSH REAL(16) REAL(16)

11.1.22 COTAN(X)

FUNCTION
Cotangent.
CLASS

- 177 -

Chapterll Library Reference

Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of the cotangent, cotan(X). Note that when
type parameter is single precision and absolute value of the argument is greater
than 22'xn, the value of the result is NaN.
See Section 11.5 for notes on other type parameters.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
COTAN default real default real
DCOTAN double precision double precision
real real
QCOTAN REAL(16) REAL(16)

11.1.23 DATE(A)

FUNCTION
Obtains the date.
CLASS
Subroutine.
ARGUMENT
A: A must be a scalar variable of default character type having a length of eight
characters. It is an INTENT(OUT) argument. The value of the date is set in "yy-

mm-dd" format.

11.1.24 DATIM(A,B,C)

FUNCTION

Obtains the date and time.
CLASS

Subroutine.
ARGUMENT

A: A must be a scalar variable of default character type having a length of eight

- 178 -

Chapterll Library Reference

characters. It is an INTENT(OUT) argument. The value of the date is set in the
format specified by argument C.

B: B must be a scalar variable of default real type or of default character type
having a length of eight characters. It is an INTENT(OUT) argument. If it is of
default real type, the current time is set in hours. If it is of default character type,
the current time is set in the format "hh:mm:ss".

C(optional): C (optional) must be a scalar of default integer type. It is an

INTENT(IN) argument. It specifies the format of the date to be returned in

argument A.
1 yy-mm-dd (default)
3 mm/dd/yy
4 dd/mm/yy

11.1.25 DBLE(A) Specific Name

FUNCTION
Converts to double precision real type.
CLASS
Elemental function.
ARGUMENT
A: A must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Double precision real type.
RESULT VALUE
The result has the value REAL(A,KIND(0.0D0)).
SPECIFIC NAME

Specific name Argument Type Result Type Standard
DBLE default real double precision v
real
DBLEQ REAL(16) double precision
real

11.1.26 DCMPLX(X,Y)

FUNCTION

Converts to double precision complex type.

- 179 -

Chapterll Library Reference

CLASS
Elemental function.
ARGUMENT
X: X must be of integer type, real type, or complex type.
Y (optional): Y (optional) must be of integer type or real type. If X is of complex
type, Y must not be specified.
TYPE AND TYPE PARAMETER OF RESULT
Double precision complex type.
RESULT VALUE
The value of the result is the value of CMPLX(X,Y,KIND=KIND(0.0DOQ)).

11.1.27 DFACT(I)

FUNCTION
Factorial.
CLASS
Elemental function.
ARGUMENT
I: I must be of default integer type.
TYPE AND TYPE PARAMETER OF RESULT
Double precision real type.
RESULT VALUE

The value of the result is the value of I factorial converted to double precision real

type.
11.1.28 DFLOAT(A)

FUNCTION
Converts to double precision real type.
CLASS
Elemental function.
ARGUMENT
A: A must be of integer type.
TYPE AND TYPE PARAMETER OF RESULT
Double precision real type.
RESULT VALUE
The value of the result is the value of REAL(A,KIND=KIND(0.0DO0)).

- 180 -

SPECIFIC NAME

Chapterll Library Reference

Specific name Argument Type Result Type Standard
DFLOTI INTEGER(2) double precision
real
DFLOT] default integer double precision
real
DFLOTK INTEGER(8) double precision

real

FUNCTION

11.1.29 DIM(X,Y) Specific Name

Returns the value X-Y if the difference of X-Y is positive, and otherwise returns

zero.
CLASS

Elemental function.

ARGUMENT

X: X must be of Integer type or real type.

Y: Y must be of the same type as X with the same kind type parameter as X.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.
RESULT VALUE

The value of the result is X-Y if X > Y and is zero if X <= Y.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BDIM INTEGER(1) INTEGER(1)

IIDIM, HDIM INTEGER(2) INTEGER(2)

IDIM default integer default integer v
JIDIM INTEGER(4) INTEGER(4)

KIDIM INTEGER(8) INTEGER(8)

DIM default real default real v
DDIM double precision double precision v

real real
QDIM REAL(16) REAL(16)

- 181 -

Chapterll Library Reference

11.1.30 DREAL(A)

FUNCTION

Converts to double precision real type.

CLASS
Elemental function.
ARGUMENT

A: A must be of complex type.

TYPE AND TYPE PARAMETER OF RESULT

Double precision real type.
RESULT VALUE

When the value of the A is (x,y), the value of the result is x.

11.1.31 ERF(X) Specific Name

FUNCTION

Error function.
CLASS

Elemental function.
ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the error function of X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
ERF default real default real
DERF double precision double precision
real real
QERF REAL(16) REAL(16)

11.1.32 ERFC(X) Specific Name

FUNCTION
Complementary error function.
CLASS

- 182 -

11.1.

11.1.

Chapterll Library Reference

Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value obtained when the value of the error function
of X is subtracted from 1.0.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
ERFC default real default real
DERFC double precision double precision
real real
QERFC REAL(16) REAL(16)

33 ETIME(D)

FUNCTION
Execution time.
CLASS
Subroutine.
ARGUMENT
D: D must be of double precision real-type. It is an INTENT(OUT) argument.
The elapsed time (units in seconds) since System start.
NOTE
See Section 11.4.811.4.47 for details when used by function.

34 EXIT(X)

FUNCTION
Terminates execution of an executable program.
CLASS
Subroutine.
ARGUMENT
X: X must be a scalar of integer-type. It is an INTENT(IN) argument. The value

X is returned as a program termination code.

- 183 -

Chapterll Library Reference

11.1.35 EXP(X) Specific Name

FUNCTION
Exponential.

CLASS
Elemental function.

ARGUMENT
X: X must be of real type or complex type.

TYPE AND TYPE PARAMETER OF RESULT
Same as X.

RESULT VALUE
The value of the result is the value of e**X. If X is of complex type, the value of
the imaginary part is in radians. Note that when type parameter is single precision
and absolute value of the argument is greater than 2%!xn, the value of the result
is NaN.
See Section 11.5 for notes on other type parameters.

SPECIFIC NAME

Elemental function.

ARGUMENT

X: X must be of real type.

- 184 -

Specific name Argument Type Result Type Standard
EXP default real default real v
DEXP double precision real double precision v
real
QEXP REAL(16) REAL(16)
CEXP default complex default complex v
CDEXP double complex double complex
ZEXP COMPLEX(8) COMPLEX(8)
CQEXP COMPLEX(16) COMPLEX(16)
11.1.36 EXP10(X)
FUNCTION
Exponential.
CLASS

Chapterll Library Reference

TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of 10.0**X.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
EXP10 default real default real
DEXP10 double precision double precision
real real
QEXP10 REAL(16) REAL(16)

11.1.37 EXP2(X)

FUNCTION
Exponential.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of 2.0**X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
EXP2 default real default real
DEXP2 double precision double precision
real real
QEXP2 REAL(16) REAL(16)

11.1.38 EXPC(X)

FUNCTION
Exponential.
CLASS

Elemental function.

- 185 -

Chapterll Library Reference

11.1.

ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of e**X-1.0.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
EXPC default real default real
DEXPC double precision double precision
real real
39 EXPC10(X)
FUNCTION
Exponential.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of 10.0**X-1.0.
SPECIFIC NAME
Specific name Argument Type Result Type Standard
EXPC10 default real default real
DXPC10 double precision double precision
real real
QXPC10 REAL(16) REAL(16)

11.1.40 EXPC2(X)

FUNCTION
Exponential.

CLASS

- 186 -

Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of 2.0**X-1.0.

SPECIFIC NAME

Chapterll Library Reference

Specific name Argument Type Result Type Standard
EXPC2 default real default real
DEXPC2 double precision double precision
real real
QEXPC2 REAL(16) REAL(16)

11.1.41 FACT(I)

FUNCTION
Factorial.
CLASS
Elemental function.
ARGUMENT
I: I must be of default integer type.
TYPE AND TYPE PARAMETER OF RESULT
Default real type.
RESULT VALUE

The value of the result is the value of I factorial converted to default real type.

11.1.42 FLUSH(UNIT)

FUNCTION

Outputs the contents of the buffer.
CLASS

Subroutine.
ARGUMENT

UNIT: UNIT must be of integer type. It is an INTENT(IN) argument. UNIT is

the external unit identifier to a file.

- 187 -

Chapterll Library Reference

11.1.43 GAMMA(X) Specific Name

FUNCTION
Gamma function.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of the Gamma function of X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
GAMMA default real default real v
DGAMMA double precision double precision

real real

11.1.44 IAND(I,J) Specific Name

FUNCTION
Bitwise logical AND.
CLASS

Elemental function.

ARGUMENT
I: I must be of Integer type.
J: J must be of integer type with the same kind type parameter as I.

TYPE AND TYPE PARAMETER OF RESULT
Same as I.
RESULT VALUE
The value of the result is obtained by combining I and J bit-by-bit according to the

following truth table:

I J IAND(I,J)
1 1 1
1 0 0

- 188 -

Chapterll Library Reference

I J IAND(Z,J)
0 1 0
0 0 0

NOTE
There may even be three or more arguments. In this case, the third and
subsequent arguments must be of integer type with the same kind type
parameter as I. Also, no keyword can be specified for the arguments.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
BIAND INTEGER(1) INTEGER(1)
IIAND, HIAND INTEGER(2) INTEGER(2)
JIAND INTEGER(4) INTEGER(4)
KIAND INTEGER(8) INTEGER(8)
11.1.45 IBCLR(I,POS) Specific Name

FUNCTION
Sets one bit to zero.
CLASS
Elemental function.
ARGUMENT
I: I must be of integer type.
POS: POS must be of integer type. Its value must be greater than or equal to
zero and less than BIT_SIZE(]).
TYPE AND TYPE PARAMETER OF RESULT
Same as I.
RESULT VALUE
The value of the result has the POS bit of I set to zero.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
BBCLR INTEGER(1) INTEGER(1)
IIBCLR, HBCLR INTEGER(2) INTEGER(2)
JIBCLR INTEGER(4) INTEGER(4)
KIBCLR INTEGER(8) INTEGER(8)

- 189 -

Chapterll Library Reference

11.1.46 IBITS(I,POS,LEN) Specific Name

11.1

FUNCTION
Extracts a sequence of bits.
CLASS
Elemental function.
ARGUMENT
I: I must be of integer type.
POS: POS must be of integer type. Its value must be nonnegative and
POS+LEN must be less than or equal to BIT_SIZE(!).
LEN: LEN must be of integer type. Its value must be nonnegative.
TYPE AND TYPE PARAMETER OF RESULT
Same as I.
RESULT VALUE
The value of the result has LEN bits starting with the POS bit of I left justified with
the remaining bits set to zero.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
BBITS INTEGER(1) INTEGER(1)
IIBITS, HBITS INTEGER(2) INTEGER(2)
JIBITS INTEGER(4) INTEGER(4)
KIBITS INTEGER(8) INTEGER(8)

.47 IBSET(I,POS) Specific Name

FUNCTION
Sets one bit to 1.
CLASS
Elemental function.
ARGUMENT
I: I must be of integer type.
POS: POS must be of integer type. Its value must be nonnegative and less than
BIT_SIZE(]).
TYPE AND TYPE PARAMETER OF RESULT

Same as I.

- 190 -

Chapterll Library Reference

RESULT VALUE
The value of the result has the POS bit of I set to 1.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
BBSET INTEGER(1) INTEGER(1)
IIBSET, HBSET INTEGER(2) INTEGER(2)
JIBSET INTEGER(4) INTEGER(4)
KIBSET INTEGER(8) INTEGER(8)

11.1.48 1IEOR(I,J) Specific Name

FUNCTION
Bitwise logical OR.
CLASS

Elemental function.

ARGUMENT
I: I must be of Integer type.
J: J must be of integer type with the same kind type parameter as I.

TYPE AND TYPE PARAMETER OF RESULT
Same as I.
RESULT VALUE
The value of the result is obtained by combining I and J bit-by-bit according to the

following truth table:

I J IEOR(I,7)
1 1 1
1 0 1
0 1 1
0 0 0

NOTE
There may even be three or more arguments. In this case, the third and
subsequent arguments must be of integer type with the same kind type
parameter as I. Also, no keyword can be specified for the arguments.
SPECIFIC NAME

- 191 -

Chapterll Library Reference

Specific name Argument Type Result Type Standard
BIEOR, BIXOR INTEGER(1) INTEGER(1)
ITEOR, HIEOR, INTEGER(2) INTEGER(2)
HIXOR, IIXOR
JIEOR, JIXOR INTEGER(4) INTEGER(4)
KIEOR INTEGER(8) INTEGER(8)

11.1.49 IMAG(A)

This function is alias of AIMAG. See Section 11.1.4 for details.

11.1.50 INT(A[,KIND]) Specific Name

FUNCTION
Converts to integer type (by truncating).

CLASS
Elemental function.

ARGUMENT
A: A must be of integer type, real type, or complex type.
KIND(optional): KIND must be a scalar integer initialization expression.

TYPE AND TYPE PARAMETER OF RESULT
Integer type. When KIND is specified, the kind type parameter is determined
according to the KIND specification. When KIND is omitted, the kind type
parameter is that of default integer type.

RESULT VALUE
If A is of integer type, the value of INT(A) is A.
If A is of real type and |A|<1, INT(A) is zero. If A is of real type and |A| >= 1, the
value of INT(A) is the greatest integer less than or equal to the absolute value of
A with the same sign of A.
If A is of complex type, the value of INT(A) is obtained by applying the rule
described in Case 2 to the real part of A.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
INT1 INTEGER(*), INTEGER(1)
REAL(*),
COMPLEX(*)

- 192 -

Chapterll Library Reference

Specific name Argument Type Result Type Standard
LJINT INTEGER(4) INTEGER(2)
INT2 INTEGER(*), INTEGER(2)
REAL(*),
COMPLEX(*)
IIFIX, IINT, IINT, REAL(4) INTEGER(2)
HFIX
IIDINT REAL(8) INTEGER(2)
IIQINT REAL(16) INTEGER(2)
INT4, JFIX INTEGER(*), default integer
REAL(*),
COMPLEX(*)
JIFIX REAL(*) default integer
INT, JINT default real default integer vV (INT only)

IDINT, JIDINT

double precision
real

default integer

v (IDINT only)

IQINT, JIQINT REAL(16) default integer
INT8 INTEGER(*), INTEGER(8)
REAL(*),
COMPLEX(*)
KIFIX, KINT REAL(4) INTEGER(8)
KIDINT REAL(8) INTEGER(8)
KIQINT REAL(16) INTEGER(8)
11.1.51 IOR(I,J) Specific Name
FUNCTION
Bitwise logical OR.
CLASS
Elemental function.
ARGUMENT
I: I must be of Integer type.
J: J must be of integer type with the same kind type parameter as I.

TYPE AND TYPE PARAMETER OF RESULT

Same as I.
RESULT VALUE

The value of the result is obtained by combining I and J bit-by-bit according to the

- 193 -

Chapterll Library Reference

following truth table:

I J IOR(I,J)
1 1 1
1 0 1
0 1 1
0 0 0

NOTE

There may even be three or more arguments. In this case, the third and

subsequent arguments must be of integer type with the same kind type

parameter as I. Also, no keyword can be specified for the arguments.

SPECIFIC NAME

real

Specific name Argument Type Result Type Standard
BIOR INTEGER(1) INTEGER(1)
IIOR, HIOR INTEGER(2) INTEGER(2)
JIOR INTEGER(4) INTEGER(4)
KIOR INTEGER(8) INTEGER(8)
11.1.52 IRE(X)
FUNCTION
Extracts the exponent part.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Default integer type.
RESULT VALUE
The value of the result is the exponent part of X.
SPECIFIC NAME
Specific name Argument Type Result Type Standard
IRE defauilt real default integer
IDE double precision default integer

- 194 -

Chapterll Library Reference

Specific name Argument Type Result Type Standard

IQE REAL(16) default integer

11.1.53 ISHFT(I,SHIFT) Specific Name

FUNCTION
Logical shift.
CLASS
Elemental function.
ARGUMENT
I: I must be of integer type.
SHIFT: SHIFT must be of integer type. Its absolute value must be less than or
equal to BIT_SIZE(I).
TYPE AND TYPE PARAMETER OF RESULT
Same as I.
RESULT VALUE
The value of the result is obtained by shifting the bits of I by SHIFT positions.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
BSHFT INTEGER(1) INTEGER(1)
IISHFT, HSHFT INTEGER(2) INTEGER(2)
JISHFT INTEGER(4) INTEGER(4)
KISHFT INTEGER(8) INTEGER(8)

11.1.54 ISHFT(I,SHIFT[,SIZE]) Specific Name

FUNCTION
Performs a circular shift of the rightmost sequence of bits.
CLASS
Elemental function.
ARGUMENT
I: I must be of integer type.
SHIFT: SHIFT must be of integer type. Its absolute value must be less than or
equal to SIZE.
SIZE(optional): SIZE must be of integer type. The value of SIZE must be positive
and must be less than or equal to BIT_SIZE(I). If SIZE is omitted, the value of

- 195 -

Chapterll Library Reference

BIT_SIZE(I) is assumed to have been specified.
TYPE AND TYPE PARAMETER OF RESULT
Same as I.
RESULT VALUE
The value of the result is obtained by circularly shifting the SIZE rightmost bits of
I by SHIFT positions.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
BSHFTC INTEGER(1) INTEGER(1)
IISHFTC, INTEGER(2) INTEGER(2)
HSHFTC
JISHFTC INTEGER(4) INTEGER(4)
KISHFTC INTEGER(8) INTEGER(8)

11.1.55 ISNAN(X)

FUNCTION
Tests whether real numbers are NaN values.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Default logical type.
RESULT VALUE
If x is NaN, the result is .TRUE.; otherwise, the result is .FALSE..

11.1.56 IXOR(I,J)

This function is alias of IEOR. See Section 11.1.48 for details.

11.1.57 LGAMMA(X)

FUNCTION
Logarithmic Gamma function.
CLASS

Elemental function.

- 196 -

Chapterll Library Reference

ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of the logarithmic Gamma function of X.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
ALGAMA default real default real
DLGAMA double precision double precision
real real

11.1.58 LOC(X)

FUNCTION
Gets an address.
CLASS
Transformational function.
ARGUMENT
X: X must be a variable or function nhame of any type.
TYPE AND TYPE PARAMETER OF RESULT
8byte integer type.
RESULT VALUE

The value of the result is the value of the address of X.

11.1.59 LOG(X) Specific Name

FUNCTION
Natural logarithm.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type or complex type. If X is of real type, its value must be
positive. If X is of complex type, its value must not be (0.0,0.0).
TYPE AND TYPE PARAMETER OF RESULT

Same as X.

- 197 -

Chapterll Library Reference

RESULT VALUE

The value of the result is the value of loge(X). The value of a result of complex

type is the principal value having an imaginary part w in the range -pi < w <= pi.

The imaginary part of the result is pi only when the real part of the argument is

negative and the imaginary part is 0.0.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
ALOG default real default real v
DLOG double precision double precision v
real real
QLOG REAL(16) REAL(16)
CLOG default complex default complex v
CDLOG double complex double complex
ZLOG COMPLEX(8) COMPLEX(8)
CQLOG COMPLEX(16) COMPLEX(16)
11.1.60 LOG10(X) Specific Name
FUNCTION
Common logarithm.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of the logarithm log10(X).
SPECIFIC NAME
Specific name Argument Type Result Type Standard
ALOG10 default real default real v
DLOG10 double precision double precision v
real real
QLOG10 REAL(16) REAL(16)

- 198 -

Chapterll Library Reference

11.1.61 LOG2(X)

FUNCTION
Logarithm.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of the logarithm log2(X).
SPECIFIC NAME

Specific name Argument Type Result Type Standard
ALOG2 default real default real
DLOG2 double precision double precision
real real

11.1.62 MAX(A1,A2[,A3,--]) Specific Name

FUNCTION
Selects the maximum value.
CLASS
Elemental function.
ARGUMENT
An: An must all be of the same integer type or real type and must all have the
same kind type parameter.
TYPE AND TYPE PARAMETER OF RESULT
Same as An.
RESULT VALUE
The value of the result is the maximum argument value.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
IMAXO0 INTEGER(2) INTEGER(2)
AIMAXO INTEGER(2) default real

- 199 -

Chapterll Library Reference

Specific name

Argument Type

Result Type

Standard

MAX0, JMAXO
AMAXO0, AJIMAXO
DMAXO0

default integer
default integer

default integer

default integer
default real

double precision
real

v (MAXO only)
v (AMAXO only)

KMAXO INTEGER(8) INTEGER(8)

AKMAXO0 INTEGER(8) default real

IMAX1 default real INTEGER(2)

MAX1, JMAX1 default real default integer v (MAX1 only)
KMAX1 default real INTEGER(8)

AMAX1 default real default real v
DMAX1 double precision double precision v

real real
11.1.63 MAXVL()
FUNCTION

Obtains the maximum vector register length.
CLASS
Inquiry function.
TYPE AND TYPE PARAMETER OF RESULT
Default integer type.
RESULT VALUE

The value of the result is the maximum vector register length of the system.

11.1.64 MIN(A1,A2[,A3,:'])

FUNCTION
Selects the minimum value.
CLASS
Elemental function.
ARGUMENT
An: An must all be of the same integer type or real type and must all have the
same kind type parameter.
TYPE AND TYPE PARAMETER OF RESULT
Same as An.

RESULT VALUE

- 200 -

The value of the result is the minimum argument value.

SPECIFIC NAME

Chapterll Library Reference

Specific name Argument Type Result Type Standard
IMINO INTEGER(2) INTEGER(2)
AIMINO INTEGER(2) default real
MINO, JMINO default integer default integer v (MAXO0 only)

AMINO, AJMINO
DMINO

default integer

default integer

default real

double precision
real

v (AMAXO only)

KMINO INTEGER(8) INTEGER(8)
AKMINO INTEGER(8) default real
IMIN1 default real INTEGER(2)
MIN1, JMIN1 default real default integer v (MAX1 only)
KMIN1 default real INTEGER(8)
AMIN1 default real default real v
DMIN1 REAL(8) double precision v
real
11.1.65 MOD(A,P) Specific Name
FUNCTION
Remainder function.
CLASS

Elemental function.
ARGUMENT
A: A must be of integer type or real type.
P: P must be of the same type and kind type parameter as A.
TYPE AND TYPE PARAMETER OF RESULT
Same as A.
RESULT VALUE
If P /= 0, the value of the result is A-INT(A/P)*P. If P = 0, the result is undefined.
SPECIFIC NAME

Specific name Argument Type Result Type Standard

BMOD INTEGER(1) INTEGER(1)

- 201 -

Chapterll Library Reference

Specific name Argument Type Result Type Standard

IMOD, HMOD INTEGER(2) INTEGER(2)

MOD default integer default integer v
JMOD INTEGER(4) INTEGER(4)

KMOD INTEGER(8) INTEGER(8)

AMOD default real default real v
DMOD double precision double precision v

real real
QMOD REAL(16) REAL(16)

11.1.66 MVBITS(FROM,FROMPOS,LEN,TO,TOPOS) Specific Name

FUNCTION
Copies a bit sequence from one data object to another data object.

CLASS
Elemental subroutine.

ARGUMENT
FROM: FROM must be of integer type. It is an INTENT(IN) argument.
FROMPOS: FROMPOS must be of integer type and must be nonnegative. It is an
INTENT(IN) argument. FROMPOS+LEN must be less than or equal to
BIT_SIZE(FROM).
LEN: LEN must be of integer type and must be nonnegative. It is an
INTENT(IN) argument.
TO: TO must be of integer type with the same kind type parameter as FROM and
may be the same variable as FROM. It is an INTENT(INOUT) argument. The bit
string of length LEN starting at the position FROMPOS of FROM is copied to the
position TOPOS of TO. No other bits of TO are changed. When control returns
from the subroutine, the LEN bits of TO starting at TOPOS are equal to the value
that the LEN bits of FROM starting at FROMPOS had when the subroutine was
invoked.
TOPOS: TOPOS must be of integer type and must be nonnegative. It is an
INTENT(IN) argument. TOPOS+LEN must be less than or equal to
BIT_SIZE(TO).

SPECIFIC NAME

- 202 -

Chapterll Library Reference

Specific name Argument Type Result Type Standard
BMVBITS INTEGER(1) -
IMVBITS, INTEGER(2) -
HMVBITS
JMVBITS INTEGER(4) -
KMVBITS INTEGER(8) -
11.1.67 NINT(A[,KIND]) Specific Name

FUNCTION
Returns the nearest integer (by rounding).
CLASS
Elemental function.
ARGUMENT
A: A must be of real type.
KIND(optional): KIND must be a scalar integer initialization expression.
TYPE AND TYPE PARAMETER OF RESULT
Integer type. When KIND is specified, the kind type parameter is determined
according to the KIND specification. When KIND is omitted, the kind type
parameter is that of default integer type.
RESULT VALUE
When A > 0, the value of NINT(A) is INT(A+0.5). When A <= 0, the value of
NINT(A) is INT(A-0.5).
SPECIFIC NAME

Specific name Argument Type Result Type Standard
ININT REAL(4) INTEGER(2)
NINT default real default integer v
JNINT REAL(4) INTEGER(4)
KNINT REAL(4) INTEGER(8)
IIDNNT REAL(8) INTEGER(2)
IDNINT double precision default integer v
real
JIDNNT REAL(8) INTEGER(4)
KIDNNT REAL(8) INTEGER(8)
IIQNNT REAL(16) INTEGER(2)

- 203 -

Chapterll Library Reference

Specific name Argument Type Result Type Standard
IQNINT REAL(16) default integer
JIQNNT REAL(16) INTEGER(4)
KIQNNT REAL(16) INTEGER(8)

11.1.68 NOT(I)

FUNCTION
Calculates the logical complement.
CLASS
Elemental function.
ARGUMENT
I: I must be of Integer type.
TYPE AND TYPE PARAMETER OF RESULT
Same as I.
RESULT VALUE
The value of the result is obtained by taking the logical complement of I bit-by-bit

according to the following truth table:

I NOT(I)
1 0
0 1

SPECIFIC NAME

Specific name Argument Type Result Type Standard
BNOT INTEGER(1) INTEGER(1)
INOT, HNOT INTEGER(2) INTEGER(2)
INOT INTEGER(4) INTEGER(4)
KNOT INTEGER(8) INTEGER(8)

11.1.69 OR(Z,J)

This function is alias of IOR. See Section 11.1.51 for details.

11.1.70 QCMPLX(X,Y)

FUNCTION

Converts to quadruple precision complex type.

- 204 -

Chapterll Library Reference

CLASS
Elemental function.
ARGUMENT
X: X must be of integer type, real type, or complex type.
Y (optional): Y (optional) must be of integer type or real type. If X is of complex
type, Y must not be specified.
TYPE AND TYPE PARAMETER OF RESULT
Quadruple precision complex type.
RESULT VALUE
The value of the result is the value of CMPLX(X,Y,KIND=KIND(0.0QO0)).

11.1.71 QEXT(X)

FUNCTION

Converts to quadruple precision real type.
CLASS

Elemental function.
ARGUMENT

X: X must be of integer type, real type, or complex type.
TYPE AND TYPE PARAMETER OF RESULT

Quadruple precision complex type.
RESULT VALUE

The value of the result is the value of REAL(X,KIND=KIND(0.0QO0)).
SPECIFIC NAME

Specific name Argument Type Result Type Standard
QEXT default real REAL(16)
QEXTD REAL(8) REAL(16)

11.1.72 QFACT(J)

FUNCTION
Factorial.
CLASS
Elemental function.
ARGUMENT
I: I must be of default integer type.

- 205 -

Chapterll Library Reference

TYPE AND TYPE PARAMETER OF RESULT
Quadruple precision real type.
RESULT VALUE
The value of the result is the value of I factorial converted to quadruple precision

real type.

11.1.73 QFLOAT(A)

FUNCTION
Converts to quadruple precision real type.
CLASS
Elemental function.
ARGUMENT
A: A must be of integer type.
TYPE AND TYPE PARAMETER OF RESULT
Quadruple precision real type.
RESULT VALUE
The value of the result is the value of REAL(A,KIND=KIND(0.0Q0)).

11.1.74 QREAL(A)

FUNCTION
Converts to quadruple precision real type.
CLASS
Elemental function.
ARGUMENT
A: A must be of quadruple complex type.
TYPE AND TYPE PARAMETER OF RESULT
Real type with the same kind type parameter as A.
RESULT VALUE

When the value of the A is (x,y), the value of the result is x.

11.1.75 REAL(A[,KIND])

FUNCTION
Converts to real type.
CLASS

Elemental function.

- 206 -

Chapterll Library Reference

ARGUMENT
A: A must be of integer type, real type, or complex type.
KIND(optional): KIND must be a scalar integer initialization expression.

TYPE AND TYPE PARAMETER OF RESULT
Real type. When A is of integer type or real type and KIND is specified, the kind
type parameter is determined according to the KIND specification. When KIND is
omitted, the kind type parameter is the kind type parameter for default real type.
When A is of complex type and KIND is specified, the kind type parameter is
determined according to the KIND specification. When KIND is omitted, the kind
type parameter is the kind type parameter of A.

RESULT VALUE
When A is of integer type or real type, the value of the result is the value of A.
When A is of complex type, the value of the result is the value of the real part of
A.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
FLOATI INTEGER(2) default real
REAL, FLOAT default integer default real v
FLOAT) INTEGER(4) REAL(4)
FLOATK INTEGER(8) default real
SNGL double precision default real v
SNGLQ REAL(16) default real

11.1.76 RSQRT(X)

FUNCTION
Reciprocal square root.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE

The value of the result is the approximate value of "1.0/sqrt(X)".

- 207 -

Chapterll Library Reference

SPECIFIC NAME

Specific name Argument Type Result Type Standard
RSQRT default real default real
DRSQRT double precision double precision
real real
QRSQRT REAL(16) REAL(16)

11.1.77 SIGN(A,B) Specific Name

FUNCTION

The product of the absolute value of A and the sign of B.

CLASS
Elemental function.
ARGUMENT

A: A must be of integer type or real type.

B: B must be of the same type and kind type parameter as A.

TYPE AND TYPE PARAMETER OF RESULT
Same as A.
RESULT VALUE

The value of the result is ABS(A) when B >= 0, and it is -ABS(A) when B < 0.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BSIGN INTEGER(1) INTEGER(1)

IISIGN, HSIGN INTEGER(2) INTEGER(2)

SIGN, ISIGN default integer default integer v
JISIGN INTEGER(4) INTEGER(4)

KISIGN INTEGER(8) INTEGER(8)

SIGN default real default real v
DSIGN double precision double precision v

real real
QSIGN REAL(16) REAL(16)

11.1.78 SIN(X) Specific Name

FUNCTION

Sine function.

- 208 -

CLASS

Elemental function.

ARGUMENT

X: X must be of real type or complex type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.
RESULT VALUE

Chapterll Library Reference

The value of the result is the value of sin(X). When X is of real type, the value is

considered to be a value in radians. Note that when type parameter is single

precision and absolute value of X is greater than 2%!xn, the value of the result is

NaN. When X is of complex type, its real part is considered to be a value in

radians. Note that when type parameter is single precision and absolute value of

the argument is greater than 22!xn, the value of the result is NaN.

See Section 11.5 for notes on other type parameters.

RESULT VALUE
Specific name Argument Type Result Type Standard
SIN default real default real v
DSIN double precision double precision v

real real

QSIN REAL(16) REAL(16)
CSIN default complex default complex v
CDSIN double complex double complex
ZSIN COMPLEX(8) COMPLEX(8)
CQSIN COMPLEX(16) COMPLEX(16)

11.1.79 SIND(X)

FUNCTION
Sine.
CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

- 209 -

Chapterll Library Reference

RESULT VALUE
The value of the result is the value of sin(X), when X is a value in degrees. Note
that when type parameter is single precision and absolute value of X is greater
than 22!x 180, the value of the result is NaN.
See Section 11.5 for notes on other type parameters.

SPECIFIC NAME

Specific name Argument Type Result Type Standard
SIND default real default real
DSIND REAL(8) REAL(8)
QSIND REAL(16) REAL(16)

11.1.80 SINH(X) Specific Name

FUNCTION
Hyperbolic sine function.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of the hyperbolic sine, sinh(X).
SPECIFIC NAME

Specific name Argument Type Result Type Standard
SINH default real default real v
DSINH double precision double precision v

real real
QSINH REAL(16) REAL(16)

11.1.81 SQRT(X) Specific Name

FUNCTION
Square root.
CLASS

- 210 -

Chapterll Library Reference

Elemental function.
ARGUMENT
X: X must be of real type or complex type. When X is of real type and not of
complex type, the value must be greater than or equal to 0.0.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of sqrt(X). A result of complex type is the
principal value with the real part greater than or equal to 0.0. If the real part of
the result is 0.0, the imaginary part is greater than or equal to zero.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
SQRT default real default real
DSQRT double precision double precision
real real
QSQRT REAL(16) REAL(16)
CSQRT default complex default complex
CDSQRT double complex double complex
ZSQRT COMPLEX(8) COMPLEX(8)
CQSQRT COMPLEX(16) COMPLEX(16)

11.1.82 TAN(X) Specific Name

FUNCTION
Tangent function.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type or complex type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.
RESULT VALUE
The value of the result is the value of tan(X) expressed in radians. Note that when
type parameter is single precision and absolute value of the argument is greater

than 2%'xn, the value of the result is NaN.

- 211 -

Chapterll Library Reference

See Section 11.5 for notes on other type parameters.
SPECIFIC NAME

Specific name Argument Type Result Type Standard
TAN default real default real v
DTAN double precision double precision v

real real
QTAN REAL(16) REAL(16)
CTAN COMPLEX(4) COMPLEX(4)
CDTAN, ZTAN COMPLEX(8) COMPLEX(8)
CQTAN COMPLEX(16) COMPLEX(16)

11.1.83 TANH(X) Specific Name

FUNCTION
Hyperbolic tangent function.
CLASS
Elemental function.
ARGUMENT
X: X must be of real type.
TYPE AND TYPE PARAMETER OF RESULT
Same as X.

RESULT VALUE

The value of the result is the value of the hyperbolic tangent, tanh(X).

SPECIFIC NAME

Specific name Argument Type Result Type Standard
TANH default real default real v
DTANH double precision double precision v

real real
QTANH REAL(16) REAL(16)

11.1.84 TIME(A)

FUNCTION
Obtains the time.
CLASS

Subroutine.

- 212 -

Chapterll Library Reference

ARGUMENT
A: A must be a scalar variable of default character type with a length of eight
characters. It is an INTENT(OUT) argument. It is set to the value of the time in

the format "hh:mm:ss".

11.1.85 XOR(Z,J)

This function is alias of IEOR. See Section 11.1.48 for details.

11.2 Matrix Multiply Library

Matrix multiply library is prepared for matrix-matrix or matrix-vector multiplication

loops.

11.2.1 MATRIX-VECTOR Multiplication(A, NAR, B, NBR, C)

FUNCTION
MATRIX-VECTOR multiplication loops.
CLASS
Subroutine.
ARGUMENT
A: A must be of integer type or real type two-dimensional array consisting.
NAR: NAR must be of integer type.
B: B must be of integer type or real type array consisting. This is same kind

type parameter as A.
NBR: NBR must be of integer type.
C: C must be of integer type or real type array consisting. This is same kind
type parameter as A. C is the result of MATRIX-VECTOR multiplication loops of A
and B. Some functions are initialized with 0.

DETAIL

The combination of procedure name, initialize and each KIND is as follows.

Procedure Procedure KIND KIND Initialize
(sum) (difference) (A,B,C) (NAR,NBR) (9]
VHMXV VHSXV REAL(KIND= 2) INTEGER(KIND=4) YES
VAMXV VASXV REAL(KIND= 4) INTEGER(KIND=4) YES
VDMXV VDSXV REAL(KIND= 8) INTEGER(KIND=4) YES
VQMXV VQSXV REAL(KIND=16) INTEGER(KIND=4) YES

- 213 -

Chapterll Library Reference

Procedure Procedure KIND KIND Initialize
(sum) (difference) (A,B,C) (NAR,NBR) (o)
VIMXV VISXV INTEGER(KIND=4) INTEGER(KIND=4) YES
VDMXVL VDSXVL REAL(KIND= 8) INTEGER(KIND=8) YES
VQMXVL VQSXVL REAL(KIND=16) INTEGER(KIND=8) YES
VLMXVL VLSXVL INTEGER(KIND=8) INTEGER(KIND=8) YES
VHMXP VHSXP REAL(KIND= 2) INTEGER(KIND=4) NO
VAMXP VASXP REAL(KIND= 4) INTEGER(KIND=4) NO
VDMXP VDSXP REAL(KIND= 8) INTEGER(KIND=4) NO
VQMXP VQSXP REAL(KIND=16) INTEGER(KIND=4) NO
VIMXP VISXP INTEGER(KIND=4) INTEGER(KIND=4) NO
VDMXPL VDSXPL REAL(KIND= 8) INTEGER(KIND=8) NO
VQMXPL VQSXPL REAL(KIND=16) INTEGER(KIND=8) NO
VLMXPL VLSXPL INTEGER(KIND=8) INTEGER(KIND=8) NO

The procedure with initialization "YES" is processed for sum and difference after

the following processing.

DO I=1, NAR
C()=0
ENDDO

The sum processing is as follows.

DO J=1,NBR

ENDDO
ENDDO

DO I=1, NAR
C(I) =C(I) + B(J) = A(I, J)

The difference processing is as follows.

DO J=1,NBR

ENDDO
ENDDO

DO I=1, NAR
C(D =6 -BW) = A1, J)

- 214 -

Chapterll Library Reference

11.2.2 MATRIX-VECTOR Multiplication(A, NA, IAD, B, NB, C, NC, NAR,
NBR)

FUNCTION
MATRIX-VECTOR multiplication loops.

CLASS
Subroutine.

ARGUMENT
A: A must be of integer type or real type two-dimensional array consisting.
NA: NBR must be of integer type. First stride.
IAD: NBR must be of integer type. Second stride.
B: B must be of integer type or real type array consisting. This is same kind
type parameter as A.
NB: NBR must be of integer type. First stride.
C: C must be of integer type or real type array consisting. This is same kind
type parameter as A. C is the result of MATRIX-VECTOR multiplication loops of A
and B. Some functions are initialized with 0.

NC: NBR must be of integer type. First stride.

NAR: NAR must be of integer type.
NBR: NBR must be of integer type.
DETAIL

The combination of procedure name, initialize and each KIND is as follows.

Procedure Procedure KIND KIND Initialize
(sum) (difference) (A,B,C) (NA,NB,NC,NAR,NBR,IAD) (©
VHMXVA VHSXVA REAL(KIND= 2) INTEGER(KIND=4) YES
VAMXVA VASXVA REAL(KIND= 4) INTEGER(KIND=4) YES
VDMXVA VDSXVA REAL(KIND= 8) INTEGER(KIND=4) YES
VQMXVA VQSXVA REAL(KIND=16) INTEGER(KIND=4) YES
VIMXVA VISXVA INTEGER(KIND=4) INTEGER(KIND=4) YES
VDMVAL VDSVAL REAL(KIND= 8) INTEGER(KIND=8) YES
VQMVAL VQSVAL REAL(KIND=16) INTEGER(KIND=8) YES
VLMVAL VLSVAL INTEGER(KIND=8) INTEGER(KIND=8) YES
VHMXPA VHSXPA REAL(KIND= 2) INTEGER(KIND=4) NO
VAMXPA VASXPA REAL(KIND= 4) INTEGER(KIND=4) NO

- 215 -

Chapterll Library Reference

Procedure Procedure KIND KIND Initialize
(sum) (difference) (A,B,C) (NA,NB,NC,NAR,NBR,IAD) (©
VDMXPA VDSXPA REAL(KIND= 8) INTEGER(KIND=4) NO
VQMXPA VQSXPA REAL(KIND=16) INTEGER(KIND=4) NO
VIMXPA VISXPA INTEGER(KIND=4) INTEGER(KIND=4) NO
VDMPAL VDSPAL REAL(KIND= 8) INTEGER(KIND=8) NO
VQMPAL VQSPAL REAL(KIND=16) INTEGER(KIND=8) NO
VLMPAL VLSPAL INTEGER(KIND=8) INTEGER(KIND=8) NO

The procedure with initialization "YES" is processed for sum and difference after

the following processing.

DO I=1,NAR
C(NCxI)=0
ENDDO

The sum processing is as follows.

DO J=1,NBR
DO I=1,NAR
C(NCxI) = C(NCxI) + B(NBxJ) * A(NAxI, J)
ENDDO
ENDDO

The difference processing is as follows.

DO J=1,NBR
DO I=1,NAR
C(NCxI) = G(NCI) - B(NB*J) * A(NAxI, J)
ENDDO
ENDDO

11.2.3 MATRIX- MATRIX Multiplication(A, NA, IAD, B, NB, IBD, C, NC,
ICD, NAR, NAC, NBC)
FUNCTION
MATRIX- MATRIX multiplication loops.
CLASS

Subroutine.
ARGUMENT

- 216 -

Chapterll Library Reference

A: A must be of integer type or real type two-dimensional array consisting.
NA: NBR must be of integer type. First stride.

IAD: NBR must be of integer type. Second stride.

B: B must be of integer type or real type array consisting. This is same kind
type parameter as A.

NB: NBR must be of integer type. First stride.

IBD: NBR must be of integer type. Second stride.

C: C must be of integer type or real type array consisting. This is same kind
type parameter as A. C is the result of MATRIX-VECTOR multiplication loops of A
and B. Some functions are initialized with 0.

NC: NBR must be of integer type. First stride.

ICD: NBR must be of integer type. Second stride.
NAR: NAR must be of integer type.
NAC: NBR must be of integer type.
NBC: NBR must be of integer type.
DETAIL

The combination of procedure name, initialize and each KIND is as follows.

Procedure Procedure KIND KIND Initialize
(sum) (difference) (A,B,C) (NA,NB,NC,IAD,IBD,ICD, (O
NAR,NAC,NBC)
VHMXMA VHSXMA REAL(KIND= 2) INTEGER(KIND=4) YES
VAMXMA VASXMA REAL(KIND= 4) INTEGER(KIND=4) YES
VDMXMA VDSXMA REAL(KIND= 8) INTEGER(KIND=4) YES
VQMXMA VQSXMA REAL(KIND=16) INTEGER(KIND=4) YES
VIMXMA VISXMA INTEGER(KIND=4) INTEGER(KIND=4) YES
VDMMAL VDSMAL REAL(KIND= 8) INTEGER(KIND=8) YES
VQMMAL VQSMAL REAL(KIND=16) INTEGER(KIND=8) YES
VLMMAL VLSMAL INTEGER(KIND=8) INTEGER(KIND=8) YES
VHMXQA VHSXQA REAL(KIND= 2) INTEGER(KIND=4) NO
VAMXQA VASXQA REAL(KIND= 4) INTEGER(KIND=4) NO
VDMXQA VDSXQA REAL(KIND= 8) INTEGER(KIND=4) NO
VQMXQA VQSXQA REAL(KIND=16) INTEGER(KIND=4) NO
VIMXQA VISXQA INTEGER(KIND=4) INTEGER(KIND=4) NO

- 217 -

Chapterll Library Reference

Procedure Procedure KIND KIND Initialize
(sum) (difference) (A,B,C) (NA,NB,NC,IAD,IBD,ICD, (©)
NAR,NAC,NBC)
VDMQAL VDSQAL REAL(KIND= 8) INTEGER(KIND=8) NO
VQMQAL VQSQAL REAL(KIND=16) INTEGER(KIND=8) NO
VLMQAL VLSQAL INTEGER(KIND=8) INTEGER(KIND=8) NO

The procedure with initialization "YES" is processed for sum and difference after

the following processing.

DO I=1, NAR
C(NC=I)=0
ENDDO

The sum processing is as follows.

DO J=1,NBR
DO I=1,NAR
C(NCxI) = C(NCxI) + B(NBxJ) * A(NAxI, J)
ENDDO
ENDDO

The difference processing is as follows.

DO J=1,NBR
DO I=1,NAR
C(NCxI) = C(NCxI) - B(NBxJ) * A(NA%I, J)
ENDDO
ENDDO

11.3 UNIX System Function Interface

The UNIX-specific function can be used directly from Fortran program on UNIX
system function interface. To use the UNIX system function interface, specify the
modules described in following sections using USE statement or -use option.
Example:

USE statements:

PROGRAM MAIN
USE F90_UNIX

END PROGRAM MAIN

- 218 -

Compiler options:

Chapterll Library Reference

$ nfort —use F90_UNIX, F90_UNIX DIR a. 90

In the descriptions of the procedures, where it says KIND is (*), it means any kind of

value.

When using each module with the USE statement or the -use compiler option, some

variable names cannot be used. The variable names that cannot be used are as

follows.

module

variable names

FOO_UNIX

FOO_UNIX_DIR

FOO_UNIX_ENV

FOO_UNIX_FILE

FOO_UNIX_PROC

CLOCK_TICK_KIND, TMS
MODE_KIND

CLOCK_TICK_KIND, ID_KIND, LONG_KIND,
SC_ARG_MAX, SC_CHILD_MAX, SC_CLK_TCK,
SC_JOB_CONTROL, SC_NGROUPS_MAX, SC_OPEN_MAX,
SC_SAVED_IDS, SC_STDERR_UNIT, SC_STDIN_UNIT,
SC_STDOUT_UNIT, SC_STREAM_MAX,
SC_TZNAME_MAX, SC_VERSION, TIME_KIND, TMS,
UTSNAME

F_OK, ID_KIND, MODE_KIND, R_OK, STAT_T, S_IRGRP,
S _IROTH, S_IRUSR, S_IRWXG, S_IRWXO, S_IRWXU,
S_ISGID, S_ISUID, S_IWGRP, S_IWOTH, S_IWUSR,
S_IXGRP, S_IXOTH, S_IXUSR, UTIMBUF, W_OK, X_OK

ATOMIC_INT, ATOMIC_LOG, PID_KIND, TIME_KIND,
WNOHANG, WUNTRACED

When using each module with the USE statement or the -use compiler option, it

uses other module of UNIX System Function Interface whole or necessary

procedures. The modules and procedures used by each modules are as follows.

module

variable names

FOO_UNIX

FOO_UNIX_ENV

F90_UNIX_PROC :

ABORT()

F90_UNIX_ENV:

GETPID(), GETUID(), GETGID(), IARGC(),
HIDDEN_GETARG()=>GETARG(),
CLOCK_TICK_KIND(), TIMES(),
HIDDEN_GETENV()=>GETENV(),
CLOCK_TICKS_PER_SECOND()=>CLK_TCK()

FOO_UNIX_ERRNO (all procedures)

- 219 -

Chapterll Library Reference

11.3.

11.3.

11.3.

11.3.

module variable names
FOO_UNIX_FILE FOO_UNIX_ENV (all procedures)
FOO_UNIX_ERRNO (all procedures)
FOO0_UNIX_PROC FOO_UNIX_ERRNO (all procedures)

“=>" indicate use a module procedure as another name.

1 F90_UNIX

The procedures provided by the F90_UNIX module are as follows.

1.1 ABORT([MESSAGE])

FUNCTION
ABORT cleans up the I/0 buffers and then terminates execution on UNIX systems.

CLASS
Subroutine.

ARGUMENT
MESSAGE(optional): Message must be a scalar variable of default character type.
It is an INTENT(IN) argument. If MESSAGE is given it is written to logical unit 0
(zero) preceded by ‘abort:’.

1.2 EXIT([STATUS])

FUNCTION
Terminate execution as if executing the END statement of the main program (or
an unadorned STOP statement).

CLASS
Subroutine.

ARGUMENT
STATUS(optional): STATUS must be of 4-byte integer type or 8-byte integer
type. It is an INTENT(IN) argument. If STATUS is given it is returned to the
operating system (where applicable) as the execution status code.

1.3 FLUSH(LUNIT)

FUNCTION
Flushes the output buffer of logical unit LUNIT.

CLASS
Subroutine.

ARGUMENT

- 220 -

11.3.

11.3.

11.3.

11.3.

11.3.

Chapterll Library Reference

LUNIT: LUNIT must be of 4-byte integer type. It is an INTENT(IN) argument. If
LUNIT is not a valid unit number or is not connected to a file, error is raised.

1.4 FREE(IPTR)

FUNCTION
Frees the area specified with IPTR.

CLASS
Subroutine.

ARGUMENT
IPTR: IPTR must be of 8-byte integer type. It is an INTENT(IN) argument.
IPTR must be the address of the area allocated with MALLOC.

1.5 GETARG(K,ARG)

FUNCTION
See Section 11.3.3 for details of GETARG. When GETARG is used with this module,
the option arguments LENARG and ERRNO cannot be used.

1.6 GETENV(NAME,VALUE)

FUNCTION
See Section 11.3.3 for details of GETENV. When GETENYV is used with this module,
the option arguments LENVALUE and ERRNO cannot be used.

1.7 GETGID()
FUNCTION

Returns the group number of the calling process.
CLASS

PURE Function.
TYPE AND TYPE PARAMETER OF RESULT

4-byte integer type.
RESULT VALUE

The result is the group number of the calling process.
1.8 GETPID()
FUNCTION

Returns the process number of the calling process.
CLASS

PURE Function.
TYPE AND TYPE PARAMETER OF RESULT

- 221 -

Chapterll Library Reference

4-byte integer type.
RESULT VALUE

The result is the process number of the calling process.

11.3.1.9 GETUID()

FUNCTION
Returns the user number of the calling process.

CLASS
PURE Function.

TYPE AND TYPE PARAMETER OF RESULT
4-byte integer type.

RESULT VALUE

The result is the user number of the calling process.

11.3.1.10 IARGC()

FUNCTION
Returns the number of command-line arguments.

CLASS
PURE Function.

TYPE AND TYPE PARAMETER OF RESULT
4-byte integer type.

RESULT VALUE
The result is the number of command-line arguments; this is the same value as
the intrinsic function COMMAND_ARGUMENT_COUNT, except that it returns -1 if
even the program name is unavailable (the intrinsic function erroneously returns
the same value, 0, whether the program name is available or not).

11.3.1.11 MALLOC(ISIZE)

FUNCTION
Allocates necessary area size ISIZE.

CLASS
Function.

ARGUMENT
ISIZE: ISIZE must be of 4-byte integer type or 8-byte integer type. It is an
INTENT(IN) argument. ISIZE is necessary area size (handled in units of bytes) to
allocate

TYPE AND TYPE PARAMETER OF RESULT

- 222 -

Chapterll Library Reference

8-byte integer type.
RESULT VALUE

The result is the starting address of allocate area.

11.3.2 F9O_UNIX_DIR

The procedures provided by the FO0_UNIX_DIR module are as follows.
11.3.2.1 CHDIR(PATHI[,ERRNO])

FUNCTION
Changes the working directory.

CLASS
Subroutine.

ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument. PATH is the directory path to change. Note that any
trailing blanks in PATH may be significant.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.

11.3.2.2 GETCWD([PATH,LENPATH,ERRNO])

FUNCTION
Accesses the current working directory information.

CLASS
Subroutine.

ARGUMENT
PATH(optional): PATH must be a scalar variable of default character type. It is an
INTENT(OUT) argument. If PATH is present, it receives the name of the current
working directory, blank-padded or truncated as appropriate if the length of the
current working directory name differs from that of PATH.
LENPATH(optional): LENPATH must be of 4-byte integer type. It is an
INTENT(OUT) argument. If LENPATH is present, it receives the length of the

current working directory name.

- 223 -

Chapterll Library Reference

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.
11.3.2.3 LINK(EXISTING,NEWI[,ERRNO])

FUNCTION
Creates a new link.

CLASS
Subroutine.

ARGUMENT
EXISTING: EXISTING must be a scalar variable of default character type. It is an
INTENT(IN) argument. EXISTING is an existing file.
NEW': NEW must be a scalar variable of default character type. It is an
INTENT(IN) argument. NEW is a newly created linked file.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.

11.3.2.4 RENAME(OLD,NEW[,ERRNO])

FUNCTION
Rename a file.

CLASS
Subroutine.

ARGUMENT
OLD: OLD must be a scalar variable of default character type. It is an
INTENT(IN) argument. OLD is an existing file. Note that any trailing blanks in
OLD may be significant.
NEW: NEW must be a scalar variable of default character type. It is an
INTENT(IN) argument. Any existing file NEW is first removed. Note that any
trailing blanks in NEW may be significant.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

- 224 -

Chapterll Library Reference

non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.
11.3.2.5 UNLINK(PATHI[,ERRNO])

FUNCTION
Remove a file.

CLASS
Subroutine.

ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument. PATH is the file path. Note that any trailing blanks in
PATH may be significant.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an

informative error message.

11.3.3 FO0_UNIX_ENV

The procedures provided by the FO0_UNIX_ENV module are as follows.
11.3.3.1 GETARG(K[,ARG,LENARG,ERRNO])

FUNCTION
Accesses command-line argument number K.

CLASS
Subroutine.

ARGUMENT
K: K must be of integer type. It is an INTENT(IN) argument. The argument zero
is the program name.
ARG(optional): ARG must be a scalar variable of default character type. It is an
INTENT(OUT) argument. If ARG is present, it receives the argument text (blank-
padded or truncated as appropriate if the length of the argument differs from that
of ARG).
LENARG(optional): LENARG must be of 4-byte integer type. It is an
INTENT(OUT) argument. If LENARG is present, it receives the length of the

- 225 -

Chapterll Library Reference

argument.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an

informative error message.

11.3.3.2 GETENV(NAME[,VALUE,LENVALUE,ERRNO])

FUNCTION
Accesses the environment variable named by NAME.

CLASS
Subroutine.

ARGUMENT
NAME: NAME must be a scalar variable of default character type. It is an
INTENT(IN) argument.
VALUE(optional): VALUE must be a scalar variable of default character type. It is
an INTENT(OUT) argument. If VALUE is present, it receives the text value of the
variable (blank-padded or truncated as appropriate if the length of the value
differs from that of VALUE).
LENVALUE(optional): LENVALUE must be of 4-byte integer type. It is an
INTENT(OUT) argument. If LENVALUE is present, it receives the length of the
value.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.

11.3.3.3 GETHOSTNAME([NAME,LENNAME])

FUNCTION
Get the hostname.

CLASS
PURE Subroutine.

ARGUMENT
NAME(optional): NAME must be a scalar variable of default character type. It is an
INTENT(OUT) argument. If NAME is present it receives the text of the standard

- 226 -

Chapterll Library Reference

host name for the current processor, blank-padded or truncated if appropriate.
LENNAME(optional): LENNAME must be of 4-byte integer type. It is an
INTENT(OUT) argument. If LENNAME is present it receives the length of the host
name. If no host name is available LENNAME will be zero.
11.3.3.4 GETLOGIN([S,LENS])
FUNCTION
Accesses the user name (login name) associated with the calling process.
CLASS
PURE Subroutine.
ARGUMENT
S(optional): S must be a scalar variable of default character type. It is an
INTENT(OUT) argument. If S is present, it receives the text of the name (blank-
padded or truncated as appropriate if the length of the login name differs from
that of S).
LENS(optional): LENS must be of 4-byte integer type. It is an INTENT(OUT)
argument. If LENS is present, it receives the length of the login name.
11.3.3.5 ISATTY(LUNIT,ANSWER[,ERRNO])
FUNCTION
Get the connection status of LUNIT.
CLASS
Subroutine.
ARGUMENT
LUNIT: LUNIT must be of integer type. It is an INTENT(IN) argument. If LUNIT
is not a valid unit number or is not connected to any file, error is raised.
ANSWER: ANSWER must be of logical type. It is an INTENT(OUT) argument.
ANSWER receives the value .TRUE. if and only if the logical unit identified by
LUNIT is connected to a terminal.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.
11.3.3.6 TIME(ITIME[,ERRNO])
FUNCTION

- 227 -

Chapterll Library Reference

Get the operating system date/time in seconds since the Epoch.

CLASS
Subroutine.

ARGUMENT
ITIME: ITIME must be of 4-byte integer type. It is an INTENT(OUT) argument.
ITIME receives the operating system date/time in seconds since the Epoch.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.

11.3.3.7 TTYNAME(LUNIT[,S,LENS, ,ERRNO])

FUNCTION
Accesses the name of the terminal connected to the logical unit identified by
LUNIT.

CLASS
Subroutine.

ARGUMENT
LUNIT: LUNIT must be of integer type. It is an INTENT(IN) argument. If LUNIT
is not a valid logical unit number, or is not connected, error is raised.
S(optional): S must be a scalar variable of default character type. It is an
INTENT(OUT) argument. If S is present, it receives the text of the terminal name
(blank-padded or truncated as appropriate, if the length of the terminal name
differs from that of S).
LENS(optional): LENS must be of 4-byte integer type. It is an INTENT(OUT)
argument. If LENS is present, it receives the length of the terminal name.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an

informative error message.

- 228 -

Chapterll Library Reference

11.3.4 FOO_UNIX_ERRNO

The parameters provided by the FO0_UNIX_ERRNO module are as follows.

INTEGER(4),0PTIONAL,INTENT(OUT) :: ERRNO
Many procedures provided by the UNIX system function interface have an optional
ERRNO argument. If this argument is provided it receives the error status from
the procedure; zero indicates successful completion, otherwise it will be a non-
zero error code. If the ERRNO argument is omitted and an error condition is
raised, the program will be terminated with an informative error message. If a

procedure has no ERRNO argument it indicates that procedure always succeeds.

11.3.5 F90_UNIX_FILE

The parameters provided by the FO0_UNIX_FILE module are as follows.

INTEGER(4),PARAMETER :: F_OK

Flag for requesting file existence check.
INTEGER(4),PARAMETER :: R_OK

Flag for requesting file readability check.
INTEGER(4),PARAMETER :: S_IRGRP

File mode bit indicating group read permission.
INTEGER(4),PARAMETER :: S_IROTH

File mode bit indicating other read permission.
INTEGER(4),PARAMETER :: S_IRUSR

File mode bit indicating user read permission.
INTEGER(4),PARAMETER :: S_IRWXG

Mask to select the group accessibility bits from a file mode.
INTEGER(4),PARAMETER :: S_IRWXO

Mask to select the other accessibility bits from a file mode.
INTEGER(4),PARAMETER :: S_IRWXU

Mask to select the user accessibility bits from a file mode.
INTEGER(4),PARAMETER :: S_ISGID

File mode bit indicating that the file is set-group-ID.
INTEGER(4),PARAMETER :: S_ISUID

- 229 -

Chapterll Library Reference

File mode bit indicating that the file is set-user-ID.
INTEGER(4),PARAMETER :: S_IWGRP

File mode bit indicating group write permission.
INTEGER(4),PARAMETER :: S_IWOTH

File mode bit indicating other write permission.
INTEGER(4),PARAMETER :: S_IWUSR

File mode bit indicating user write permission.
INTEGER(4),PARAMETER :: S_IXGRP

File mode bit indicating group execute permission.
INTEGER(4),PARAMETER :: S_IXOTH

File mode bit indicating other execute permission.
INTEGER(4),PARAMETER :: S_IXUSR

File mode bit indicating user execute permission.
INTEGER(4),PARAMETER :: W_OK

Flag for requesting file writability check.
INTEGER(4),PARAMETER :: X_OK

Flag for requesting file executability check.

The types provided by the FO0_UNIX_FILE module are as follows.

STAT_T

TYPE STAT_T

INTEGER (4) ST_MODE

INTEGER (4) ST_INO

INTEGER (4) ST_DEV

INTEGER (4) ST_NLINK

INTEGER (4) ST_UID

INTEGER (4) ST_GID

INTEGER (4) ST_SIZE

INTEGER (4) ST_ATIME, ST_MTIME, ST_CTIME
END TYPE

Derived type holding file characteristics.

ST_MODE
File mode (read/write/execute permission for user/group/other, plus set-group-ID
and set-user-ID bits).

ST_INO

- 230 -

File serial number.

ST_DEV

ID for the device on which the file resides.

ST_NLINK

The number of links to the file.
ST_UID

User number of the file's owner.
ST_GID

Group number of the file.
ST_SIZE

File size in bytes (regular files only).
ST_ATIME

Time of last access.
ST_MTIME

Time of last modification.
ST_CTIME

Time of last file status change.

Chapterll Library Reference

The procedures provided by the FO0_UNIX_FILE module are as follows.

(1) ACCESS(PATH,AMODE,ERRNO)
FUNCTION

Checks file accessibility according to the value of AMODE.

CLASS
PURE Subroutine.
ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument.

AMODE: AMODE must be of integer type. It is an INTENT(IN) argument. AMODE
should be F_OK or a combination of R_OK, W_OK and X_OK. In the latter case the

values may be combined by addition or the intrinsic function IOR.
ERRNO: ERRNO must be of 4-byte integer type. It is an INTENT(OUT) argument.

The result of the accessibility check is returned in ERRNO, which receives zero for

success or an error code indicating the reason for access rejection.

- 231 -

Chapterll Library Reference

(2) CHMOD(PATH,MODE[,ERRNO])

FUNCTION
Sets the file mode (ST_MODE) to MODE.

CLASS
Subroutine.

ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument.
MODE: MODE must be of integer type. It is an INTENT(IN) argument.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an

informative error message.

(3) FSTAT(LUNIT,BUF[,ERRNO])

FUNCTION
Get file information connected to LUNIT.

CLASS
Subroutine.

ARGUMENT
LUNIT: LUNIT must be of integer type. It is an INTENT(IN) argument. If LUNIT
is not a valid logical unit number or is not connected to a file, error is raised.
BUF: BUF must be of STAT_T derived type. It is an INTENT(OUT) argument. BUF
receives the characteristics of the file connected to logical unit LUNIT.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an

informative error message.

(4) LSTAT(PATH,BUF[,ERRNO])
FUNCTION

Get file information connected to PATH.
CLASS

- 232 -

Chapterll Library Reference

Subroutine.

ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument.
BUF: BUF must be of STAT_T derived type. It is an INTENT(OUT) argument. BUF
receives the characteristics of the file PATH. If Path is link file, BUF receives the
characteristics of the link.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an

informative error message.

(5) STAT(PATH,BUF[,ERRNO])

FUNCTION
Get file information connected to PATH.

CLASS
Subroutine.

ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument.
BUF: BUF must be of STAT_T derived type. It is an INTENT(OUT) argument. BUF
receives the characteristics of the file PATH. If Path is link file, BUF receives the
characteristics of the linked file.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an

informative error message.

11.3.6 F90_UNIX_PROC

The procedures provided by the F90_UNIX_PROC module are as follows.

11.3.6.1 ALARM(SECONDS,SUBROUTINE[,SECLEFT,ERRNO])
FUNCTION

- 233 -

Chapterll Library Reference

Establishes an “alarm” call to the procedure SUBROUTINE to occur after SECONDS
seconds have passed.

CLASS
Subroutine.

ARGUMENT
SECONDS: SECONDS must be of integer type. It is an INTENT(IN) argument. If
SECONDS is 0, cancels an existing alarm.
SUBROUTINE: SUBROUTINE is the procedure. SUBROUTINE is not present, any
previous association of a subroutine with the alarm signal is left unchanged.
SECLEFT: SECLEFT must be of 4-byte integer type. It is an INTENT(OUT)
argument. If SECLEFT is present, it receives the number of seconds that were left
on the preceding alarm or zero if there were no existing alarm.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.

11.3.6.2 EXECL(PATH,ARGO---[,ERRNO])

FUNCTION
Executes a program (PATH) instead of the current image.

CLASS
Subroutine.

ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument.
ARGO---: ARGO--- must be a scalar variable of default character type. It is an
INTENT(IN) argument. The arguments to the new program are specified by the
dummy arguments which are named ARGO, ARG1, etc. up to ARG20. Note that
these are not optional arguments, any actual argument that is itself an optional
dummy argument must be present. This function is the same as EXECV except
that the arguments are provided individually instead of via an array; and because
they are provided individually, there is no need to provide the lengths (the lengths
being taken from each argument itself).
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

- 234 -

Chapterll Library Reference

argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.
11.3.6.3 EXECLP(FILE,ARGO---[,ERRNO])

FUNCTION
Executes a program (FILE) instead of the current image.

CLASS
Subroutine.

ARGUMENT
FILE: FILE must be a scalar variable of default character type. It is an
INTENT(IN) argument.
ARGO---: ARGO--- must be a scalar variable of default character type. It is an
INTENT(IN) argument. The arguments to the new program are specified by the
dummy arguments which are named ARGO, ARG1, etc. up to ARG20. Note that
these are not optional arguments, any actual argument that is itself an optional
dummy argument must be present. This function is the same as EXECL except
that determination of the program to be executed follows the same rules as
EXECVP.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.

11.3.6.4 EXECV(PATH,ARGV,LENARGV[,ERRNO])

FUNCTION
Executes a program (PATH) instead of the current image.

CLASS
Subroutine.

ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument.
ARGV: ARGV must be a scalar variable of default character type array. It is an
INTENT(IN) argument. ARGV is the array of argument strings. If ARGV is not

- 235 -

Chapterll Library Reference

zero-sized, ARGV(1)(:LENARGV(1)) is passed as argument zero (i.e. the program
name)
LENARGV: LENARGV must be of integer type array. It is an INTENT(IN)
argument. LENARGYV contains the desired length of each argument.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.
11.3.6.5 EXECVE(PATH,ARGV,LENARGV,ENV,LENENV[,ERRNO])

FUNCTION
Executes a program (PATH) instead of the current image.

CLASS
Subroutine.

ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument.
ARGV: ARGV must be a scalar variable of default character type array. It is an
INTENT(IN) argument. ARGV is the array of argument strings.
LENARGV: LENARGV must be of integer type array. It is an INTENT(IN)
argument. LENARGYV contains the desired length of each argument.
ENV: ENV must be a scalar variable of default character type array. It is an
INTENT(IN) argument. ARGV is the array of argument strings.
LENENV: LENENV must be of integer type array. It is an INTENT(IN) argument.
LENENYV contains the desired length of each argument.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.

NOTE
Similar to EXECV, with the environment strings specified by ENV and LENENV

being passed to the new program.

- 236 -

Chapterll Library Reference

11.3.6.6 EXECVP(FILE,ARGV,LENARGV[,ERRNO])

FUNCTION
Executes a program (FILE) instead of the current image.

CLASS
Subroutine.

ARGUMENT
FILE: FILE must be a scalar variable of default character type. It is an
INTENT(IN) argument.
ARGV: ARGV must be a scalar variable of default character type array. It is an
INTENT(IN) argument. ARGV is the array of argument strings.
LENARGV: LENARGV must be of integer type array. It is an INTENT(IN)
argument. LENARGV contains the desired length of each argument.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.

NOTE
The same as EXECV except that the program to be executed, FILE is searched for
using the PATH environment variable (unless it contains a slash character, in
which case EXECVP is identical in effect to EXECV).

11.3.6.7 FORK(PID[,ERRNO])

FUNCTION
Creates a new process which is an exact copy of the calling process.

CLASS
Subroutine.

ARGUMENT
PID:. PID must be of 4-byte integer type. It is an INTENT(OUT) argument. In
the new process, the value returned in PID is zero; in the calling process the value
returned in PID is the process ID of the new (child) process.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

- 237 -

Chapterll Library Reference

informative error message.

11.3.6.8 SLEEP(SECOND[,SECLEFT])
FUNCTION
Suspends process execution for SECONDS seconds, or until a signal has been
delivered.
CLASS
PURE Subroutine.
ARGUMENT
SECONDS: SECONDS must be of 4-byte integer type. It is an INTENT(IN)
argument.
SECLEFT(optional): SECLEFT must be of 4-byte integer type. It is an
INTENT(OUT) argument. If SECLEFT is present, it receives the number of
seconds remaining in the sleep time (zero unless the sleep was interrupted by a
signal).
11.3.6.9 SYSTEM(STRINGI[,STATUS,ERRNO])
FUNCTION
Passes STRING to the command processor for execution.
CLASS
Subroutine.
ARGUMENT
STRING: STRING must be a scalar variable of default character type. It is an
INTENT(IN) argument.
STATUS(optional): STATUS must be of 4-byte integer type. It is an
INTENT(OUT) argument. If STATUS is present it receives the completion status.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an
informative error message.
11.3.6.10 WAIT([STATUS,RETPID,ERRNO])
FUNCTION
Wait for any child process to terminate (returns immediately if one has already
terminated).
CLASS

- 238 -

Chapterll Library Reference

Subroutine.

ARGUMENT
STATUS(optional): STATUS must be of 4-byte integer type. It is an INTENT(OUT)
argument. If STATUS is present it receives the termination status of the child
process.
RETPID(optional): RETPID must be of 4-byte integer type. It is an INTENT(OUT)
argument. If RETPID is present it receives the process number of the child
process.
ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)
argument. If ERRNO argument is provided, 0 is returned for normal termination. A
non-zero error code is returned for abnormal termination. If the ERRNO argument
is omitted and an error condition is raised, the program will be terminated with an

informative error message.

11.4 Other Library

System functions that can be used in a C library can also be called from Fortran in
these routines.

Fortran libraries are not intrinsic functions. Therefore, the compiler treats these
libraries according to the IMPLICIT statement specification or the implicit type
declarations (initial letters i, j, k, I, m, and n indicate integer type; other letters
indicate real type). If the implicit type and the library's function type do not match,
the type declaration for the function (e.g., CTIME) must be specified.

11.4.1 ABORT()

FUNCTION
Terminates a program abnormally.
CLASS

Subroutine.

11.4.2 ACCESS(PATH,MODE)

FUNCTION
Check user's permissions for a file.
CLASS

- 239 -

Chapterll Library Reference

Function.
ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument. PATH is the file path to check.
MODE: MODE must be a scalar variable of default character type. It is an
INTENT(IN) argument. MODE is the accessibility check pattern.
TYPE AND TYPE PARAMETER OF RESULT
Integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

11.4.3 ALARM(SECS,PROC)

FUNCTION
Sets an alarm clock of the process.

CLASS
Function.

ARGUMENT
SECS: SECS must be of 4-byte integer type. It is an INTENT(IN) argument.
SECS is the alarm clock time (handled in units of seconds) of the process.
PROC: PROC must be of External procedure name.

TYPE AND TYPE PARAMETER OF RESULT
Integer type.

RESULT VALUE

The remaining seconds are returned when the function is called.

11.4.4 CHDIR(PATH)

FUNCTION
Changes the work directory.
CLASS
Function.
ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument. PATH is the directory path to change.
TYPE AND TYPE PARAMETER OF RESULT

- 240 -

Chapterll Library Reference

Integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

11.4.5 CHMOD(NAME,MODE)

FUNCTION
Changes the access mode.

CLASS
Function.

ARGUMENT
NAME: NAME must be a scalar variable of default character type. It is an
INTENT(IN) argument. NAME is the path to change access mode.
MODE: MODE must be a scalar variable of default character type. It is an
INTENT(IN) argument. Mode is the access mode to change.

TYPE AND TYPE PARAMETER OF RESULT
Integer type.

RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

11.4.6 CTIME(])

FUNCTION
Transform date and time to string.
CLASS
Function.
ARGUMENT
I: I must be of 4-byte integer type. It is an INTENT(IN) argument.
TYPE AND TYPE PARAMETER OF RESULT
Default Character type of length 24.
RESULT VALUE
Interprets I as a time since the Epoch, converts it to local time, and returns it in
the following format:
Sun Jan. 19 01:03:52 1992

- 241 -

Chapterll Library Reference

11.4.7 DTIME(TARRAY)

FUNCTION
Execution time.

CLASS
Function.

ARGUMENT
TARRAY: TARRAY must be of 4-byte real-type array consisting of two
elements. It is an INTENT(OUT) argument. User time from the previous
reference of this function is assigned to the first element of TARRAY. Sys time is
assigned to the second element.

TYPE AND TYPE PARAMETER OF RESULT
4-byte real type.

RESULT VALUE

The value of the result is the sum of User time and Sys time.

11.4.8 ETIME(TARRAY)

FUNCTION
Execution time.
CLASS
Function.
ARGUMENT
TARRAY: TARRAY must be of 4-byte real-type array consisting of two
elements. It is an INTENT(OUT) argument. User time from the beginning of the
program is assigned to the first element of TARRAY. Sys time is assigned to the
second element.
TYPE AND TYPE PARAMETER OF RESULT
4-byte real type.
RESULT VALUE
The value of the result is the sum of User time and Sys time (units in seconds).
NOTE
See Section 11.1.3311.4.47 for details when used by subroutine.

11.4.9 FDATE()

FUNCTION

- 242 -

Chapterll Library Reference

Get the current time as a string.
CLASS
Function.
TYPE AND TYPE PARAMETER OF RESULT
Default Character type of length 24.
RESULT VALUE
Returns current time in following format:
Sun Jan. 19 01:03:52 1992
NOTE
Also usable as a subroutine in the following format:
call FDATE (A)
A is Default Character type of length 24 and an INTENT(OUT) argument.
A is set current time in following format:

Sun Jan. 19 01:03:52 1992

11.4.10 FORK()

FUNCTION
Creates a new process.
CLASS
Function.
TYPE AND TYPE PARAMETER OF RESULT
Integer type.
RESULT VALUE
Process ID is returned for normal termination. Error code is returned for abnormal

termination.

11.4.11 FREE(ADDR)

FUNCTION
Deallocate memory.
CLASS
Subroutine.
ARGUMENT
ADDR: ADDR must be of double precision integer type. It is an INTENT(IN)
argument. ADDR is the address of the area allocated with MALLOC.

- 243 -

Chapterll Library Reference

11.4.12 FREE2(ADDR)

FUNCTION
Deallocate memory.
CLASS
Subroutine.
ARGUMENT
ADDR: ADDR must be of double precision integer type. It is an INTENT(IN)
argument. ADDR is the address of the area allocated with MALLOC?2.

11.4.13 FSEEK(UNIT,OFFSET,WHENCE)

FUNCTION
Repositions a file.

CLASS
Function.

ARGUMENT
UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.
UNIT is the external unit identifier to a file.
OFFSET: OFFSET must be of 4-byte integer-type. It is an INTENT(IN)
argument. Offset in bytes, relative to WHENCE, that is to be the new location of
the file marker.
WHENCE: WHENCE must be of 4-byte integer-type. It is an INTENT(IN)

argument. A position in the file. It must be one of the following:

Value Position

0 Positions the file relative to the beginning of the file.
1 Positions the file relative to the current position.
2 Positions the file relative to the end of the file.

TYPE AND TYPE PARAMETER OF RESULT

4-byte integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for
abnormal termination.
NOTE
Also usable as a subroutine in the following format:
call FSEEK (UNIT,OFFSET,WHENCE)

- 244 -

Chapterll Library Reference

11.4.14 FSTAT(UNIT,SXBUF)

FUNCTION

Get file status.

CLASS
Function.

ARGUMENT

UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.

UNIT is the external unit identifier to a file.

SXBUF: SXBUF must be of 4-byte integer-type array consisting of nineteen
elements. It is an INTENT(OUT) argument. The status of the file is set in SXBUF.
TYPE AND TYPE PARAMETER OF RESULT

Integer type.
RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

NOTE

The information of SXBUF is below.

SXBUF(1)
SXBUF(2)
SXBUF(3)
SXBUF(4)
SXBUF(5)
SXBUF(6)
SXBUF(7)
SXBUF(8)
SXBUF(9)

Device the file resides on

File inode number

Access mode of the file
Number of hard links to the file
User ID of owner

Group ID of owner

0

Size of the file (bytes)

Last access time

SXBUF(10) Last modification time
SXBUF(11) Last file status change time
SXBUF(12)-(19) Future Reserved

11.4.15 FTELL(UNIT)

FUNCTION

Return the current position of a file.

CLASS

- 245 -

Chapterll Library Reference

Function.
ARGUMENT
UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.
UNIT is the external unit identifier to a file.
TYPE AND TYPE PARAMETER OF RESULT
4-byte integer type.
RESULT VALUE
The result is the offset, in bytes, from the beginning of the file. A negative value

indicates an error.

11.4.16 FTELLI8(UNIT)

FUNCTION
Return the current position of a file.
CLASS
Function.
ARGUMENT
UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.
UNIT is the external unit identifier to a file.
TYPE AND TYPE PARAMETER OF RESULT
8-byte integer type.
RESULT VALUE
The result is the offset, in bytes, from the beginning of the file. A negative value

indicates an error.

11.4.17 GETARG(POS,VAL)

FUNCTION
Get command line argument.

CLASS
Subroutine.

ARGUMENT
POS: POS must be of 4-byte integer-type. It is an INTENT(IN) argument. POS
is the argument position.
VAL: VAL must be a scalar variable of default character type. It is an
INTENT(OUT) argument. The string in the command line passed to the program
is set in VAL.

- 246 -

Chapterll Library Reference

11.4.18 GETCWD(PATH)

FUNCTION
Get current working directory.
CLASS
Function.
ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(OUT) argument. The path of current working directory is set in PATH.
TYPE AND TYPE PARAMETER OF RESULT
Integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

11.4.19 GETENV(NAME,VAL)

FUNCTION
Get an environment variable.
CLASS
Subroutine.
ARGUMENT
NAME: NAME must be a scalar variable of default character type. It is an
INTENT(IN) argument. NAME is the string of environment variable name.
VAL: VAL must be a scalar variable of default character type. It is an
INTENT(OUT) argument. The value of environment variable is set in VAL.
NOTE
Also usable as a function in the following format.
Result type is integer type. The function returns a 1 if a match is found, and 0

otherwise.

INTEGER RESULT, GETENV
RESULT = GETENV (NAME, VAL)

11.4.20 GETGID()

FUNCTION
Get group id.

- 247 -

Chapterll Library Reference

CLASS
Function.

TYPE AND TYPE PARAMETER OF RESULT
Integer type.

RESULT VALUE

Group ID is returned.

11.4.21 GETLOG(NAME)

FUNCTION
Get command line argument.
CLASS
Subroutine.
ARGUMENT
NAME: NAME must be a scalar variable of default character type. It is an
INTENT(OUT) argument. The string of login user name is set in NAME.

11.4.22 GETPID()

FUNCTION
Get process id.

CLASS
Function.

TYPE AND TYPE PARAMETER OF RESULT
Integer type.

RESULT VALUE

Process ID is returned.

11.4.23 GETPOS(UNIT)

FUNCTION
Return the current position of a file.
CLASS
Function.
ARGUMENT
UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.
UNIT is the external unit identifier to a file.
TYPE AND TYPE PARAMETER OF RESULT

- 248 -

Chapterll Library Reference

4-byte integer type.
RESULT VALUE
The result is the offset, in bytes, from the beginning of the file. A negative value

indicates an error.

11.4.24 GETPOSIS(UNIT)

FUNCTION
Return the current position of a file.
CLASS
Function.
ARGUMENT
UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.
UNIT is the external unit identifier to a file.
TYPE AND TYPE PARAMETER OF RESULT
8-byte integer type.
RESULT VALUE
The result is the offset, in bytes, from the beginning of the file. A negative value

indicates an error.

11.4.25 GETUID()

FUNCTION
Get user id.

CLASS
Function.

TYPE AND TYPE PARAMETER OF RESULT
Integer type.

RESULT VALUE

User ID is returned.

11.4.26 GMTIME(I,IA9)

FUNCTION

Transform date and time to 4-byte Integer-type array.
CLASS

Subroutine.
ARGUMENT

- 249 -

Chapterll Library Reference

11.4.

11.4.

11.4.

I: I must be of 4-byte integer type. It is an INTENT(IN) argument.
IA9: IA9 must be of 4-byte integer-type array consisting of nine elements. It is
an INTENT(OUT) argument. Interprets I as a time since the Epoch and numerical

values of it are assigned to each element of IA9.

27 HOSTNM(NAME)

FUNCTION
Get hostname.
CLASS
Function.
ARGUMENT
NAME: NAME must be a scalar variable of default character type. It is an
INTENT(OUT) argument. The host name is set in NAME.
TYPE AND TYPE PARAMETER OF RESULT
Integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

28 IARGC()

FUNCTION
Get command-line arguments.

CLASS
Function.

TYPE AND TYPE PARAMETER OF RESULT
Integer type.

RESULT VALUE

Number of arguments on the command line is returned.

29 IDATE(IA3)

FUNCTION

Transform date to 4-byte Integer-type array.
CLASS

Subroutine.
ARGUMENT

- 250 -

Chapterll Library Reference

IA3: IA3 must be of 4-byte integer-type array consisting of three elements. It
is an INTENT(OUT) argument. Month, date, and year are assigned to each

element of IA3, in this order.

11.4.30 IERRNO()

FUNCTION
Get the latest error code.

CLASS
Function.

TYPE AND TYPE PARAMETER OF RESULT
4-byte integer type.

RESULT VALUE

Returns the number of the last detected error codes.

11.4.31 ISATTY(UNIT)

FUNCTION
Test whether unit connect to terminal equipment.
CLASS
Function.
ARGUMENT
UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.
UNIT is the external unit identifier.
TYPE AND TYPE PARAMETER OF RESULT
Integer type.
RESULT VALUE
If it is connected to the terminal equipment, 1 is returned; otherwise, 0 is

returned.

11.4.32 ITIME(IA3)

FUNCTION
Transform time to 4-byte Integer-type array.
CLASS
Subroutine.
ARGUMENT
IA3: IA3 must be of 4-byte integer-type array consisting of three elements. It

- 251 -

Chapterll Library Reference

is an INTENT(OUT) argument. Hour, minute, and second are assigned to each

element of IA3, in this order.

11.4.33 KILL(PID,SIGNUM)

FUNCTION
Send a signal to a process or process group.
CLASS
Function.
ARGUMENT
PID: PID must be of 4-byte integer type. It is an INTENT(IN) argument.
Sends the signal to the process ID specified by argument PID.
SIGNUM: SIGNUM must be of 4-byte integer type. It is an INTENT(IN)
argument. Sends the signal number specified by argument SIGNUM.
TYPE AND TYPE PARAMETER OF RESULT
4-byte integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

11.4.34 LINK(PATH1,PATH2)

FUNCTION
Create Link.
CLASS
Function.
ARGUMENT
PATH1: PATH1 must be a scalar variable of default character type. It is an
INTENT(IN) argument. PATH1 is the path of an existing file.
PATHZ2: PATHZ2 must be a scalar variable of default character type. It is an
INTENT(IN) argument. PATHZ is the path to be linked to the file.
TYPE AND TYPE PARAMETER OF RESULT
Integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

- 252 -

11.4.35 LSTAT(PATH,SXBUF)

FUNCTION

Get file status.

CLASS

Function.

ARGUMENT

Chapterll Library Reference

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument. PATH is the file path.

SXBUF: SXBUF must be of 4-byte integer-type array consisting of nineteen
elements. It is an INTENT(OUT) argument. The status of the file is set in SXBUF.
If PATH is link file, SXBUF receives the characteristics of the link.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.
RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

NOTE

The information of SXBUF is below.

SXBUF(1)
SXBUF(2)
SXBUF(3)
SXBUF(4)
SXBUF(5)
SXBUF(6)
SXBUF(7)
SXBUF(8)
SXBUF(9)

Device the file resides on

File inode number

Access mode of the file
Number of hard links to the file
User ID of owner

Group ID of owner

0

Size of the file (bytes)

Last access time

SXBUF(10) Last modification time
SXBUF(11) Last file status change time
SXBUF(12)-(19) Future Reserved

11.4.36 LTIME(I,IA9)

FUNCTION

Transform local date and time to 4-byte Integer-type array.

- 253 -

Chapterll Library Reference

CLASS
Subroutine.

ARGUMENT
I: I must be of 4-byte integer type. It is an INTENT(IN) argument.
IA9: IA9 must be of 4-byte integer-type array consisting of nine elements. It is
an INTENT(OUT) argument. Interprets I as a time since the Epoch. The time is
converted to the local time, and numerical values of it are assigned to each

element of IA9.

11.4.37 MALLOC(SIZE)

11.4.

FUNCTION
Allocate memory.
CLASS
Function.
ARGUMENT
SIZE: SIZE must be of 4-byte integer type. It is an INTENT(IN) argument.
SIZFE is necessary area size (handled in units of bytes) to allocate.
TYPE AND TYPE PARAMETER OF RESULT
Double precision Integer type.
RESULT VALUE

Starting address of the memory allocated is returned.

38 MALLOC2(SIZE)

FUNCTION
Allocate memory.
CLASS
Function.
ARGUMENT
SIZE: SIZE must be of double precision integer type. It is an INTENT(IN)
argument. SIZE is necessary area size (handled in units of bytes) to allocate.
TYPE AND TYPE PARAMETER OF RESULT
Double precision Integer type.
RESULT VALUE

Starting address of the memory allocated is returned.

- 254 -

Chapterll Library Reference

11.4.39 PERROR(A)

FUNCTION
Print the latest error message to standard error output.
CLASS
Subroutine.
ARGUMENT
A: A must be a scalar variable of default character type. It is an INTENT(IN)
argument. The string of A, colon, margin, and error message are concatenated

and printed to standard error output.

11.4.40 RENAME(FROM,TO)

FUNCTION
Rename a file.
CLASS
Function.
ARGUMENT
FROM: FROM must be a scalar variable of default character type. It is an
INTENT(IN) argument. FROM is the path name of an existing file.
TO: TO must be a scalar variable of default character type. It is an INTENT(IN)
argument. TO is the new path for this file.
TYPE AND TYPE PARAMETER OF RESULT
Integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

11.4.41 SECNDS(T)

FUNCTION
Get the elapsed time from reference time in seconds.
CLASS
Function.
ARGUMENT
T: T must be of 4-byte real type. It is an INTENT(IN) argument. T is a reference

time, also in seconds.

- 255 -

Chapterll Library Reference

TYPE AND TYPE PARAMETER OF RESULT
4-byte real type.
RESULT VALUE
The value of the result is elapsed time from argument T in seconds. If T is zero,

time from midnight is returned.

11.4.42 SIGNAL(SIGNUM,HANDLER)

FUNCTION
Specifies the operation during signal reception.
CLASS
Function.
ARGUMENT
SIGNUM: SIGNUM must be of real type. It is an INTENT(IN) argument.
Specify the signal number by argument SIGNUM.
HANDLER: HANDLER must be of External procedure name. It is an INTENT(IN)
argument. Name of user signal handling function specified by HANDLER.
TYPE AND TYPE PARAMETER OF RESULT
4-byte integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

11.4.43 SLEEP(SECS)

FUNCTION
Suspend execution.
CLASS
Subroutine.
ARGUMENT
SECS: SECS must be of 4-byte integer type. It is an INTENT(IN) argument.

SECS is the time (handled in units of seconds) to suspend.

11.4.44 STAT(UNIT,SXBUF)

FUNCTION
Get file status.
CLASS

- 256 -

Chapterll Library Reference

Function.
ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument. PATH is the file path.
SXBUF: SXBUF must be of 4-byte integer-type array consisting of nineteen
elements. It is an INTENT(OUT) argument. The status of the file is set in SXBUF.
If PATH is link file, SXBUF receives the characteristics of the linked file.
TYPE AND TYPE PARAMETER OF RESULT
Integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for
abnormal termination.
NOTE
The information of SXBUF is below.
SXBUF(1) Device the file resides on
SXBUF(2) File inode number
SXBUF(3) Access mode of the file
SXBUF(4) Number of hard links to the file
SXBUF(5) User ID of owner
SXBUF(6) Group ID of owner
SXBUF(7) O
SXBUF(8) Size of the file (bytes)
SXBUF(9) Last access time
SXBUF(10) Last modification time
SXBUF(11) Last file status change time
SXBUF(12)-(19) Future Reserved

11.4.45 SYMLNK(PATH1,PATHZ2)

FUNCTION
Create a symbolic link.
CLASS
Function.
ARGUMENT
PATH1: PATH1 must be a scalar variable of default character type. It is an

- 257 -

Chapterll Library Reference

INTENT(IN) argument. Name of the path to be used by symbolic link PATH?2.
PATH2: PATH2 must be a scalar variable of default character type. It is an
INTENT(IN) argument. Name of a file(symbolic link name) to be created.
TYPE AND TYPE PARAMETER OF RESULT
4-byte integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

11.4.46 SYSTEM(CMD)

FUNCTION
Passes string to the command processor for execution.
CLASS
Function.
ARGUMENT
CMD: CMD must be a scalar variable of default character type. It is an
INTENT(IN) argument. CMD is the string to the command processor for
execution.
TYPE AND TYPE PARAMETER OF RESULT
Integer type.
RESULT VALUE
Exit status of the CMD executed is returned.
NOTE

Also usable as a subroutine in the following format.

CALL SYSTEM (CMD)

11.4.47 TIME()

FUNCTION
Get time in seconds.

CLASS
Function.

TYPE AND TYPE PARAMETER OF RESULT
4-byte real type.

RESULT VALUE

- 258 -

Chapterll Library Reference

Returns the value of time in seconds since the Epoch.

11.4.48 TTYNAM(UNIT)

FUNCTION
Get name of the terminal equipment.
CLASS
Function.
ARGUMENT
UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.
UNIT is the external unit identifier.
TYPE AND TYPE PARAMETER OF RESULT
Default character type.
RESULT VALUE
Name of the terminal equipment connected to external unit identifier UNIT is

returned.

11.4.49 UNLINK(PATH)

FUNCTION
Remove file.
CLASS
Function.
ARGUMENT
PATH: PATH must be a scalar variable of default character type. It is an
INTENT(IN) argument. PATH1 is the file path.
TYPE AND TYPE PARAMETER OF RESULT
Integer type.
RESULT VALUE
0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

11.4.50 WAIT(STATUS)

FUNCTION
Waits for a child process to stop or terminate.
CLASS

Function.

- 259 -

Chapterll Library Reference

ARGUMENT
STATUS: STATUS must be a scalar variable of default character type. It is an
INTENT(OUT) argument. The status of the child process is set in STATUS.
TYPE AND TYPE PARAMETER OF RESULT
Integer type.
RESULT VALUE
Child process ID is returned for normal termination. Error code is returned as a

negative number for abnormal termination.

11.5 Notes

* Trigonometric and exponential functions fail to calculate results and in an error
state when the value of an argument is within a certain range.

The functions and their corresponding range of argument to be an error conditions

is as follows.

Single precision:

Function Effective range
ccos(x+yi) [x|22%txn
cexp(x+yi) ly|z22txn
cos(x) [x|222txn
cosd(x) [x|222tx180
cotan(x) [x|22%txn
csin(x+yi) [x|222txn
sin(x) [x|222txn
sind(x) [x|222tx180
tan(x) [x|22%txn

Double precision:

Function Effective range
cdcos(x+yi) [x|22°°xn
cdexp(x+yi) ly|22%°xn
cdsin(x+yi) [x|22°°xn
dcos(x) [x|22°°xn
dcosd(x) [x|22°°x180

- 260 -

Chapterll Library Reference

Function

Effective range

dcotan(x)
dsin(x)
dsind(x)
dtan(x)

[x|22°°xn
[x|22°°xn
[x|22°°x180

[x|22%°xn

Quadruple precision:

Function

Effective range

cqcos(x+yi)
cgexp(x+yi)
cgsin(x+yi)
gcos(x)
gcotan(x)
gsin(x)
gtan(x),

|x|22'%%n
ly|221%«n
[x|22'%n
|x|22'%%n
|x|22'%%n
[x|22'%n

[x|22'%n

- 261 -

Appendix A Configuration file

Chapterl2 Messages

12.1 Diagnostic Messages

The compiler outputs diagnostic messages that indicate the optimization status of
the program to the standard error output and diagnostic message list. This section

describes their formats and the main messages.

12.1.1 Diagnostic Message Format

Diagnostic messages will be output in the following format.

Kind (Number): Position: Message [: Hint]

Kind (Number):
The message kind and the number assigned to the message body will be

displayed. The kinds include the following.

vec: Vectorization information

opt: Optimization and vectorization information

dtl: Detailed optimization and vectorization information

inl: Inlining information

par: OpenMP and automatic parallelization

err: Mainly, syntax error of OpenMP directive specification
Position:

The line number of the source code corresponding to the diagnostic message
will be output. When output to standard error output, the file name including
the line number is also output.
Message:
The text of the diagnostic message will be output.
Hint:
Depending on the diagnostic message, the procedure name, variable name,
and array name will be output.
* When outputting a module procedure name, the module name and
procedure name are separated by "::"
* When outputting an internal procedure name, the host procedure name
and the internal procedure name are separated by "::".

* When outputting a derived type component name, the variable name and

- 262 -

Appendix A Configuration file

component name are separated by "%".

* When the variable name or array name is unknown, the type name may
be output.

A name of a procedure or variable generated by the compiler for

optimization may be output with "$number" appended.

12.1.2 Message List

vec(101): Vectorized loop.

An entire loop structure is vectorized.

vec(102): Partially vectorized loop.

Part of a loop structure is vectorized.

vec(103): Unvectorized loop.

A loop is not vectorized.

vec(107): Iteration count is too small.
A loop is not vectorized because the iteration count of the loop is smaller t
han the threshold value for vectorizing. The threshold value can be change

d by -mvector-threshold=n.

vec(108): Unvectorizable loop structure.

Loop structure does not meet vectorization conditions. This diagnostic is

mainly output in the following cases.

* The loop induction variable appears in type conversion operation. It may
be vectorized by -mreplace-loop-induction.

* The loop control expression is hot an expression to compare an induction
variable and a loop invariant expression.

* Alogical .AND., .OR., .EQV., .NEQV., or .NOT. operation appears in the loop
control expression.

* An equation operation (.EQ.. .NE., ==, /=) appears in the loop control
expression. It may be vectorized by -mreplace-loop-equation.

e There are two or more branches to outside of a loop.

- 263 -

Appendix A Configuration file

 There is a jump from outside of a loop. This situation appears when the
loop is composed of if and goto statements.

A work vector for partially-vectorization cannot be created. The following
code shows an example that a work vector for “a(1)” is required but its

type is unvectorizable and the compiler cannot prepare any work vector.

subroutine sub(a, b, ¢, d, n, k)
complex (16) a(n)
complex(8) b(n),c(0:n),d(n)
do i=1,n
a(l)
c (i)

enddo

b(i) +d@i) + c(i)
a(l)

end

vec(109): Vectorization obstructive statement.
A loop cannot be vectorized because a statement that makes a whole loop

unvectorizable appears.

vec(110): Vectorization obstructive procedure reference : Procedure-name
A loop cannot be vectorized because a procedure reference that makes a

whole loop or array expression unvectorizable appears.

vec(111): “novector” is specified.

A loop is not vectorized because novector directive is specified.

vec(112): “novwork” is specified.

A loop is not partially-vectorized because novwork directive is specified.

vec(113): Overhead of loop division is too large.
A loop cannot be partially-vectorized because the compiler judged the
overhead due to loop division to be large and the effect of the partially-

vectorization to be none.

- 264 -

Appendix A Configuration file

vec(115): Internal table overflow.
A loop cannot be vectorized because an internal table used in vectorization

processing overflowed.

vec(116): Unvectorizable procedure reference. : Procedure-name
A loop cannot be vectorized because there is a procedure reference to an
external procedure, internal procedure, module procedure, or intrinsic

procedure that is not subject to vectorization.

vec(117): Unvectorizable statement.
A loop cannot be vectorized because a statement is not subject to

vectorization.

vec(118): Unvectorizable data type.
A loop cannot be vectorized because a data element reference is of a type that

is not subject to vectorization.

vec(119): Array is not aligned. : Variable-name
A loop cannot be vectorized because an array is not aligned on a vectorizable

memory boundary.

vec(120): Unvectorizable dependency. : Variable-name
A loop cannot be vectorized because there is an unvectorizable dependency in

a variable or array.

vec(121): Unvectorizable dependency.
A loop cannot be vectorized because there is an unvectorizable dependency in

a variable or array.

- 265 -

Appendix A Configuration file

vec(122): Dependency unknown. Unvectorizable dependency is assumed. :
Variable-name
An unvectorizable dependency is assumed to exist because dependency
analysis is not possible. The compiler applies vectorization with the
assumption that the dependency is not unvectorizable if ivdep directive is

specified.

vec(124): Iteration count is assumed. Iteration count=n

The compiler assumes that the loop iteration count is n.

vec(126): Idiom detected. : Kind of macro
A vector macro operation is detected. The following kinds are detected.

Max/Min, List Vector, Sum, Product, Bit-op, Iteration, Search

vec(128): Fused multiply-add operation applied.
A fused-multiply-add operation is applied.

vec(129): Array is retained. : Array-name

A retain directive is applied to an array.

vec(130): Vector register is assigned.: Array-name

A vector register is assigned to an array by a vreg directive.

vec(131): Too many statements.

A loop cannot be vectorized because there are too many statements in a loop.

vec(132): Too many procedure calls.
A loop cannot be vectorized because there are too many procedure calls in a

loop.

- 266 -

Appendix A Configuration file

vec(133): Too many memory refereneces.
A loop cannot be vectorized because there are too many memory references

in a loop.

vec(134): Too many branches.

A loop cannot be vectorized because there are too many branches.

vec(135): vreg canceled.: Array-name

vreg directive is canceled.

vec(136): pvreg canceled.: Array-name

pvreg directive is canceled.

vec(139): Packed loop.

A loop is vectorized by using packed-vector instructions.

vec(140): Unpacked loop. : Reason
-mvector-packed or packed_vector directive is specified, but any packed-

vector instruction is not used in vectorization.

vec(141): “nopacked_vector” is specified.

nopacked_vector directive is applied.

vec(142): pvreg is used in vector loop.
An array which is specified by pvreg directive appears in a vectorized loop

without packed-vector instructions.

vec(143): vreg is used in packed vector loop.
An array which is specified by vreg directive appears in a vectorized loop with

packed-vector instructions.

- 267 -

Appendix A Configuration file

vec(144): No mask for vector load under condition.: Array-name
Vector loads executed under IF conditions are not masked. It is necessary to

prepare areas for the number of iterations.

vec(161): Structure assignment obstructs vectorization.
A loop cannot be vectorized because there is a large derived-type assignment.

It may be vectorized by -mvector-assignment-threshold=n.

vec(163): Exception handling obstructs vectorization.
A loop cannot be vectorized because there are some expressions related to

C++ exception handling.

vec(180): I/0 statement obstructs vectorization.

A loop cannot be vectorized because there is an I/0 statement.

vec(181): Allocation obstructs vectorization.

A loop cannot be vectorized because there is a memory allocation.

vec(182): Deallocation obstructs vectorization.

A loop cannot be vectorized because there is a memory deallocation.

vec(183): Run-time checking obstructs vectorization.
A loop cannot be vectorized because there is an expression to check run-ti
me error or run-time status check. The expression is generated for not onl

y —fcheck but also to check memory allocation, pointer status etc.

vec(184): Division obstructs vectorization.

A loop cannot be vectorized because there is unvectorizable division.

- 268 -

Appendix A Configuration file

vec(185): Exponentiation obstructs vectorization.

A loop cannot be vectorized because there is unvectorizable exponentiation.

opt(1011): Too large to optimize -- reduce program or loop size.

Optimization of this loop is inhibited because the program or the loop is too

large. The program or the loop should be partitioned.

opt(1017): Subroutine call prevents optimization.

Subroutine call prevents optimization.

opt(1019): Feedback of scalar value from one loop pass to another.

A scalar variable accesses a value that is defined on another loop pass.

opt(1025): Reference to this procedure inhibits optimization.

Reference to this procedure inhibits optimization.

opt(1034): Multiple store conflict.

The same array element is defined more than once.

opt(1037): Feedback of array elements.

Same array element is referenced/defined on another loop pass.

opt(1038): Loop too complex -- optimization of this loop halted.

Optimization of this loop is halted because the loop is too complex.

opt(1056): Loop nest too deep for optimization.

Optimization of this loop is halted because nest of the loop is too deep.

opt(1057): Complicated use of variable inhibits loop optimization.

Optimization of this loop is inhibited because usage of the variable is too

- 269 -

Appendix A Configuration file

complicated.

opt(1059): Unable to determine last value of scalar temporary.

Last value of the scalar temporary is unable to determine.

opt(1061): Use of scalar under different condition causes feedback.

A scalar variable is accessed under different conditions.

opt(1062): Too many data dependency problems.

Too many data dependency inhibits optimization.

opt(1082): Backward transfers inhibit loop optimization.

Optimization of this loop is inhibited because of backward transfer in the loop.

opt(1083): Last value of promoted scalar required.

A scalar variable that is changed to temporary array needs last value.

opt(1084): Branch out of the loop inhibits optimization.

Optimization of this loop is inhibited because of a branch out from the loop.

opt(1097): This statement prevents loop optimization.

This statement prevents loop optimization.

opt(1108): Reduction function suppressed -- need associative
transformation.
The optimization with -fFmatrix-multiply is suppressed due to -fassociative-

math is disabled.

opt(1117): Indirect branch inhibits to optimization of loop.

Optimization of this loop is inhibited because of an indirect branch in the loop.

- 270 -

Appendix A Configuration file

opt(1118): This I/0 statement inhibits to optimization of loop.

An I/0 statement inhibits optimization.

opt(1128): Branching too complex to optimize at this optimization level.
Optimization of this loop is inhibited because branchings in the loop are too

complex.

opt(1130): Conditional scalar inhibits optimization of outer loop.

A conditional scalar definition inhibits optimization of outer loop.

opt(1131): Function references in iteration count inhibits optimization.

Function references in iteration count inhibits optimization.

opt(1166): Potential dependency due to pointer -- use restrict qualifier if
ok.
Potential dependency due to pointer inhibits optimization. If ivdep directive is
specified, the compiler considers the dependency to be optimizable and

vectorizable.

inl(1214): Expansion routine is too big for automatic expansion.: Routine-
name
The size of routine is too big and the routine cannot be inlined. It may be

inlined by -finline-max-function-size=n or -finline-max-times=n.

inl(1219): Nesting level too deep for automatic expansion. : Routine-name
Nesting level of the expansion routine is too deep. It may be inlined by -fi

nline-max-depth=n.

inl(1222): Inlined.: Routine-name

A routine is inlined.

opt(1268): Use of pointer variable/expression inhibits optimization.

- 271 -

Appendix A Configuration file

The pointer inhibits optimization.

opt(1282): This store into array inhibits optimization of outer loop.

This store into array inhibits optimization of outer loop.

opt(1285): Not enough work to justify concurrency optimization.

Concurrency optimization is inhibited because of not enough works in the loop.

opt(1298): Use of induction variable outside the loop inhibits optimization.
Optimization of this loop is inhibited because of use of induction variable

outside the loop.

opt(1299): Redefinition of induction variable in loop inhibits optimization.
Optimization of this loop is inhibited because of redefinition of induction

variable in the loop.

opt(1300): Assumed-size private arrays inhibit concurrency.
Concurrency optimization is inhibited because of assumed-size array

reference.

opt(1315): Iterations peeled from loop in order to avoid dependence.
To eliminate unvectorizable dependency, forward/backward expansion of the

loop is performed.

opt(1339): User parallel directives inhibits to optimization.

Optimization is inhibited because of user parallel directive specifications.

opt(1376): User function reference inhibits optimization.

Optimization is inhibited because of user function reference.

- 272 -

Appendix A Configuration file

opt(1377): Must synchronize to preserve order of accesses.

Synchronization is needed to preserve order of accesses.

opt(1378): Many synchronizations needed.

Too many synchronizations inhibits concurrency.

opt(1380): User function references not ok without "cncall".
Concurrency optimization is inhibited because of user function reference. It

may be optimized if cncall directive is specified.

opt(1382): Subroutine calls are handled only when "cncall" is used.
Concurrency optimization is inhibited because of user subroutine call. It may

be optimized if cncall directive is specified.

opt(1387): Overlapping EQUIVALENCEd variables inhibit concurrency.

Optimization is inhibited because of overlapping equivalenced variables.

inl(1388): Inlining inhibited: OpenMP or parallel directive.

Parallelization control option exists in a candidate for inlining.

opt(1394): Moved invariant if outside of an inner loop.

if-clause has invariant condition moved outside the loop.

opt(1395): Inner loop stripped and strip loop moved outside outer loop.

Outer loop strip mining is performed.

opt(1408): Loop interchanged.

Outer loop is interchanged with inner loop.

opt(1409): Alternate code is generated.

Alternate code is generated.

- 273 -

Appendix A Configuration file

opt(1589): Outer loop moved inside inner loop(s).

Outer loop is switched with inner loop.

opt(1590): Inner loop moved outside outer loop(s).

Inner loop switched with outer loop.

opt(1592): Outer loop unrolled inside inner loop.

Outer loop unrolling is performed.

opt(1593): Loop nest collapsed into one loop.

Nested loop collapsing is performed.

opt(1772): Loop nest fused with following nest(s).

Loop fusion with following loop is performed.

opt(1800): Idiom detected (matrix multiply).

Replace matrix multiply loop with vectorized library call.

opt(3008): Reference within a conditional branch moved outside loop - use
"move" directive to suppress this optimization.

Unsafe memory reference under if-condition moved outside the loop.

opt(3012): Division within a conditional branch moved outside loop - use

"move" directive to suppress this optimization.

Unsafe division under if-condition moved outside the loop.

opt(3013): Moved division within a conditional branch.

Unsafe division under if-condition moved.

- 274 -

Appendix A Configuration file

opt(3014): Moved reference within a conditional branch.

Unsafe memory reference under if-condition moved.

12.2 Runtime Error Messages

12.2.1 Format

"Runtime Error:" is followed by line number, file name, and error message. Line

number and file name may not be displayed.

Runtime Error:[Line Number, File Name:] Error Message

12.2.2 List of Error Messages

ADVANCE= specifier must be 'YES' or 'NO'
The value of the ADVANCE specifier in the READ statement or WRITE statement
is incorrect. The ADVANCE specifier must be either 'YES' or 'NO'.

ALLOCATABLE dimname is not currently allocated
The allocatable array dimname is not currently allocated. The array dimname

must be allocated.

ALLOCATE failed: Out of memory
Failed allocate due to out of memory. Check the memory size you are using and

review the program.

Array constructor implied DO limit expression value value is out of range for
index variable var type type
Array constructor implied DO limit expression value value is out of range for index

variable var type type. Change the value of the DO limit expression.

Array constructor implied DO step expression value value is out of range for
index variable var type type
Array constructor implied DO step expression value value is out of range for index

variable var type type. Change the value of the DO step expression.

- 275 -

Appendix A Configuration file

ASYNCHRONOUS= specifier must be 'NO’ or 'YES'
The value of the ASYNCHRONOUS specifier in the OPEN statement is incorrect.
The ASYNCHRONOUS specifier must be either 'YES' or 'NO".

Buffer overflow on output
The record buffer overflowed in the I/0 statement. Verify that the value specified
in the environment variable VE_FORT_FMTBUF, VE_FORT_RECORDBUF or the
RECL specifier in the OPEN statement are greater than the size of the output
data.

Call to OMP_SET_MAX_ACTIVE_LEVELS from within a name region
The OMP_SET_MAX_ACTIVE_LEVELS was called from the name region. Check

the program.

Cannot allocate ALLOCATABLE variable - out of memory
Failed reserve for temporary area for ALLOCATABLE variable due to out of

memory. Check the memory size you are using and review the program.

Cannot allocate array temporary - out of memory
Failed reserve for temporary area for array due to out of memory. Check the

memory size you are using and review the program.

Cannot allocate I/0 buffer in OPEN processing UNIT=unit-number
The OPEN statement for this unit-number failed to reserve an I/0O buffer. Close the
unnecessary external unit identifier by CLOSE statement or changes the size of an
I/0 buffer at the environment variable VE_FORT_SETBUF.

Cannot allocate initial memory - out of memory
Failed reserve for temporary area for initial memory due to out of memory. Check

the memory size you are using and review the program.
Cannot allocate memory for asynchronous i/o

Failed reserve for temporary area for asynchronous i/o. Change the number of the

input/output item for input/output statement.

- 276 -

Appendix A Configuration file

Cannot allocate memory for environment variable VE_FMTIO_OFFLOAD
Failed reserve for temporary area for environment variable
VE_FMTIO_OFFLOAD. You must not specify environment variable
VE_FMTIO_OFFLOAD.

Cannot allocate memory for environment variable VE_FORT_UFMTADJUST
Failed reserve for temporary area for environment variable
VE_FORT_UFMTADJUST. Change array size of the input/output item for

input/output statement.

Cannot allocate memory for environment variable VE_FORT_UFMTENDIAN
Failed reserve for temporary area for environment variable
VE_FORT_UFMTENDIAN. Change array size of the input/output item for

input/output statement.

Cannot allocate record buffer in OPEN processing UNIT=unit-number
The OPEN statement for this unit-number failed to reserve a record buffer. Close
the unnecessary external unit identifier by CLOSE statement or changes the size
of a record buffer at the environment variable VE_FORT_RECORDBUF.

Cannot BACKSPACE unformatted ACCESS='STREAM' unit Unit Number
BACKSPACE statements cannot be executed on an unformatting stream file. If
you want to use an unformatting stream file, delete the BACKSPACE statement.
If you want to execute the BACKSPACE statement, opens it to an unformatted

sequential file.

Cannot find OLD file
The file name specified in the OPEN statement with STATUS="OLD' does not
exist. Check the file name and correct if it is incorrect. If file name correct, correct
the value of the STATUS specifier in the OPEN statement.

Cannot get storage for automatic array - out of memory

Failed reserve for temporary area for automatic array due to out of memory. Check

- 277 -

Appendix A Configuration file

the memory size you are using and review the program.
Cannot get storage for variable - out of memory
Failed reserve for temporary area for variable due to out of memory. Check the

memory size you are using and review the program.

Character string edit descriptor does not terminate before format end
The character string edit descriptor is incorrect in the following manner. Correct

the format specification.

- For H edit descriptor, there is no n characters following a character H.

- For character string edit descriptor, there is no a right delimiter.

Character string edit descriptor used on input
Do not specify the character string edit descriptor in a format specification of input

statement. Correct the format specification of the input statement.

DECIMAL= specifier must be 'POINT' or 'COMMA'
The value of the DECIMAL specifier in the OPEN, READ or WRITE statement is
incorrect. The DECIMAL specifier must be either 'POINT' or 'COMMA".

DELIM= specifier in OPEN for an UNFORMATTED file
UNFORMATTED is specified for the FORM specifier in the OPEN statement. In
this case, do not specify the DELIM specifier. If the external file is an unformatted

file, delete the DELIM specifier. Otherwise, correct the value of the FORM

specifier.

DIM argument (value) out of range 1:rank in intrinsic CSHIFT
The value of the DIM argument of intrinsic CSHIFT is out of range. Change the

value of the DIM argument.
DIM argument (value) out of range 1:rank in intrinsic EOSHIFT
The value of the DIM argument of intrinsic EOSHIFT is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic FINDLOC

- 278 -

Appendix A Configuration file

The value of the DIM argument of intrinsic FINDLOC is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic LBOUND
The value of the DIM argument of intrinsic LBOUND is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic MAXLOC
The value of the DIM argument of intrinsic MAXLOC is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic MAXVAL
The value of the DIM argument of intrinsic MAXVAL is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic MINLOC
The value of the DIM argument of intrinsic MINLOC is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic MINVAL
The value of the DIM argument of intrinsic MINVAL is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic SIZE
The value of the DIM argument of intrinsic SIZE is out of range. Change the value

of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic UBOUND
The value of the DIM argument of intrinsic UBOUND is out of range. Change the

value of the DIM argument.
DIM argument (value) out of range 1:rank+1 in intrinsic SPREAD

The value of the DIM argument of intrinsic SPREAD is out of range. Change the

value of the DIM argument.

- 279 -

Appendix A Configuration file

Direct access is incompatible with the POSITION= specifier
DIRECT is specified for the ACCESS specifier in the OPEN statement. In this case,
do not specify the POSITION specifier. If the external file is a direct file, delete
the POSITION specifier. Otherwise, correct the value of the ACCESS specifier.

DO limit expression value value is out of range for index variable var type type
DO limit expression value value is out of range for index variable var type type.

Change the value of the DO limit expression.

DO step expression value value is out of range for index variable var type type
DO step expression value value is out of range for index variable var type type.

Change the value of the DO step expression.

Element element of ORDER argument (value value) to intrinsic RESHAPE is out
of range (1:rank)
The value of the ORDER argument of intrinsic RESHAPE is out of range. Change
the value of the ORDER argument.

ENDFILE applied twice to unit Unit Number with no intervening file positioning
An attempt was made to execute an ENDFILE statement following execution of
an ENDFILE statement. An end-of-file cannot be output to a position after an

end-of-file record. Delete the second ENDFILE statement.

EXECUTE_COMMAND_LINE has WAIT=.FALSE., but asynchronous execution is
not supported
EXECUTE_COMMAND_LINE has WAIT=.FALSE., but asynchronous execution is

not supported. Check the program.
Expected decimal point in format specification
There is not decimal point in edit descriptors in FORMAT statements. Verify the

FORMAT statement.

Expected integer literal constant in format specification

- 280 -

Appendix A Configuration file

The form of edit description is incorrect. Possible cases include. Correct the format
specification.

- The Iw.m, Zw.m, Ow.m, and Bw.m edit descriptors does not specify a value of
'm' (period specified).

- The Dw.d, Fw.d, Ew.d, ENw.d, ESw.d, and Gw.d edit descriptors does not
specify a value of 'd' (period specified).

- The Ew.dEe, ENw.dEe, ESw.dEe, and Gw.dEe edit descriptors does not specify a
value of 'e' (exponential character specified).

- A sign is specified for 'k' in the kP edit descriptor, and then no number is
specified.

- The TLn, TRn, and Tn edit descriptor does not specify a value of 'n".

Expected P following signed integer constant in format specification
A number with a sign is followed by a character other than character P. The signed
numbers can only be specified for kP edit descriptor. Correct the format

specification.

Exponent too large for Dw.d format
The exponent too large for Dw.d edit descriptor. Explicitly specify the number of
exponent digits in the Ew.dEe edit descriptor. Note that changing to the Ew.dEe

format will change the exponential character from D to E.

Exponent too large for Ew.d format
The exponent too large for Ew.d edit descriptor. Explicitly specify the number of

exponent digits in the Ew.dEe edit descriptor.

F90_UNIX_DIR.GETCWD: Both NAME and LENNAME are not PRESENT
The GETCWD procedure in F90_UNIX_DIR module does not have a NAME and a
LENNAME. Check the program.

F90_UNIX_ENV.GETARG: Value of K (value) is out of range 0:num

The value of K for GETARG procedure in FO0_UNIX_ENV module is out of range.
Check the program.

- 281 -

Appendix A Configuration file

F90_UNIX_ENV.GETENV(var): No such environment variable
There are no environment variables specified in GETENV procedure for

F90_UNIX_ENV module. Check the program.

FO90_UNIX_ENV.ISATTY: LUNIT (value) is out of range
The logical device specification for ISATTY procedure in F90_UNIX_ENV module

is out of range. Check the program.

F90_UNIX_ENV.SYSCONF(value): Not a valid sysconf name
The sysconf name specified in SYSCONF procedure for F90_UNIX_ENV module

is not valid. Check the program.

F90_UNIX_ENV.SYSCONF(value): Result (value) too large for VAL
The result value of SYSCONF procedure for F90_UNIX_ENV module is too high.
Check the program.

FOO0_UNIX_ENV.TTYNAME: LUNIT (value) is out of range
The logical device specification for TTYNAME procedure in FOO_UNIX_ENV

module is out of range. Check the program.

FO90_UNIX_FILE.FSTAT: LUNIT (value) is out of range
The logical device specification for FSTAT procedure in FOO_UNIX_FILE module

is out of range. Check the program.

F90_UNIX_IO.FLUSH: LUNIT (value) is out of range
The logical device specification for FLUSH procedure in FO0_UNIX_IO module is

out of range. Check the program.

Field/exponent width or repeat in format specification must be non-zero
The field width or repeat factor cannot be zero. The field width or repeat factor
must be a positive integer value.

File name too long
The file path name specified when opens file is too long. The file path name must
be within 255 bytes.

- 282 -

Appendix A Configuration file

FILE= specifier on OPEN with STATUS='SCRATCH'
SCRATCH is specified for the STATUS specifier in the OPEN statement. In this
case, do not specify the FILE specifier. If the external file is a scratch file, delete

the FILE specifier. Otherwise, correct the value of the STATUS specifier.

Floating overflow on real number input
In the execution of input statement with a real data type, a large numeric value
out of the allowable range was specified. Improve the precision of a real data

type, or correct the input data.

FORALL limit expression value value is out of range for index variable var type
type
DO limit expression value value is out of range for index variable var type type.

Change the value of the DO limit expression.

FORALL step expression value value is out of range for index variable var type
type
DO step expression value value is out of range for index variable var type type.

Change the value of the DO step expression.

FORALL step value is zero for index variable var

The FORALL syntax has zero steps. Non-zero.

Format specification does not end with a right parenthesis
The end of the format specification does not ending with the right parentheses.

Add right parentheses at the end of the format specification.
GET argument to intrinsic RANDOM_SEED is too small (value elements)
The value of GET argument to intrinsic RANDOM_SEED is too small. Review the

program.

I/0 error on unit Unit Number: Disk quota exceeded
Writes failed because of disk quota limits at WRITE or CLOSE statements with

- 283 -

Appendix A Configuration file

this unit number. Verify the file system quota limit.
I/0 error on unit Unit Number: Permission denied
Accesses failed because of no file permissions for this unit number. Verify the

permission of specified file.

Illegal character " in LOGICAL input field
For a logical type data input, a character in the input data is not acceptable.
Correct the input data. Incorrect unit for VE_FORT_MEM_BLOCKSIZE.
An incorrect unit was specified for the environment variable
VE_FORT_MEM_BLOCKSIZE. Verify that the unit of value specified in the
environment variable VE_FORT_MEM_BLOCKSIZE is using "G" or "M".

Input list bigger than record length in unformatted READ on unit Unit Number
Input statement was attempted in excess of a record length with an unformatted
input statement. Correct the unformatted input statement so that input does not

exceed the record length.

Input value too large for default INTEGER type
In the execution of input statement with a default integer data type, an integer

value out of the allowable range was specified. Correct the input data.

Input value too large for INTEGER(KIND=1)
In the execution of input statement with 1 byte integer data type, an integer value

out of the allowable range was specified. Correct the input data.

Input value too large for INTEGER(KIND=2)
In the execution of input statement with 2 bytes integer data type, an integer

value out of the allowable range was specified. Correct the input data.

Internal file overflow
The internal file in the I/O statement is overflowed. Verify that the size of scalar
character variables specified in the internal file is greater than the size of output

data.

- 284 -

Appendix A Configuration file

Invalid character in binary integer input field
For a binary data input, a character in the input data is not acceptable. Correct the

input data.

Invalid character in hexadecimal integer input field
For a hexadecimal data input, a character in the input data is not acceptable.

Correct the input data.

Invalid character in integer input field
For an integer type data input, a character in the input data is not acceptable.

Correct the input data.

Invalid character in octal integer input field
For an octal data input, a character in the input data is not acceptable. Correct the

input data.

Invalid character in real input field
For a real type data input, a character in the input data is not acceptable. Correct

the input data.

Invalid character value in NAMELIST input
The value of the NAMELIST input is not acceptable. Change the value of the

character.

Invalid edit descriptor beginning with ‘edit character’
There are incorrect characters in the format specification. Correct the format

specification.
Invalid edit descriptor for character i/o-list item
There is an incorrect edit descriptor in a format specification for the input/output

list item of a character type. Correct the edit descriptor.

Invalid edit descriptor for integer i/o-list item

There is an incorrect edit descriptor in a format specification for the input/output

- 285 -

Appendix A Configuration file

list item of an integer type. Correct the edit descriptor.
Invalid edit descriptor for logical i/o-list item
There is an incorrect edit descriptor in a format specification for the input/output

list item of a logical type. Correct the edit descriptor.

Invalid edit descriptor for real i/o-list item
There is an incorrect edit descriptor in a format specification for the input/output

list item of a real type. Correct the edit descriptor.

Invalid edit descriptor GO.d for CHARACTER input/output item
An incorrect edit descriptor GO0.d in a format specification for the input/output list

item of a character type is specified. The width must be 1 or higher.

Invalid edit descriptor GO.d for INTEGER input/output item
An incorrect edit descriptor GO0.d in a format specification for the input/output list

item of an integer type is specified. The width must be 1 or higher.

Invalid edit descriptor GO.d for LOGICAL input/output item
An incorrect edit descriptor GO.d in a format specification for the input/output list

item of a logical type is specified. The width must be 1 or higher.

Invalid exponent in real input field
For a real type data input, the exponent data in the input data is not acceptable.

Correct the input data.
Invalid input for character editing
For the execution of input statement with a character data type, the form of a
character input value is not acceptable. Correct the input data.
Invalid input for complex editing
For the execution of input statement with a complex data type, the form of a

complex input value is not acceptable. Correct the input data.

Invalid input for integer editing

- 286 -

Appendix A Configuration file

For the execution of input statement with an integer data type, the form of an

integer input value is not acceptable. Correct the input data.

Invalid input for logical editing
For the execution of input statement with a logical data type, the form of a logical

input value is not acceptable. Correct the input data.

Invalid input for real editing
For the execution of input statement with a real data type, the form of a real input

value is not acceptable. Correct the input data.

Invalid value for ACCESS= specifier
The value of the ACCESS specifier in the OPEN statement is incorrect. The
ACCESS specifier must be 'SEQUENTIAL', 'DIRECT', 'STREAM' or 'APPEND'.

Invalid value for ACTION= specifier
The value of the ACTION specifier in the OPEN statement is incorrect. The
ACTION specifier must be 'READWRITE', 'READ' or "WRITE".

Invalid value for BLANK= specifier
The value of the BLANK specifier in the OPEN or READ statement is incorrect.
The BLANK specifier must be either 'NULL' or 'ZERO".

Invalid value for DELIM= specifier
The value of the DELIM specifier in the OPEN or WRITE statement is incorrect.
The DELIM specifier must be 'NONE', '"APOSTROPHE' or 'QUOTE'.

Invalid value for FORM= specifier
The value of the FORM specifier in the OPEN statement is incorrect. The FORM
specifier must be either 'FORMATTED' or 'UNFORMATTED'.

Invalid value for PAD= specifier
The value of the PAD specifier in the OPEN or READ statement is incorrect. The

PAD specifier must be either 'YES' or 'NO'.

- 287 -

Appendix A Configuration file

Invalid value for POS= specifier
The POS specifier for the READ or WRITE statement is incorrect. Correct the

POS specifier value as that greater than or equal to 1.

Invalid value for POSITION= specifier
The value of the POSITION specifier in the OPEN statement is incorrect. The
POSITION specifier must be 'ASIS', 'REWIND' or 'APPEND".

Invalid value for RECL= specifier (must be positive)
The value of the RECL specifier in the OPEN statement is incorrect. Correct so

that the value is positive integer.

Invalid value for ROUND= specifier
The value of the ROUND specifier in the OPEN, READ or WRITE statement is
incorrect. The ROUND specifier must be 'PROCESSOR_DEFINED', 'UP', 'DOWN,
'ZERO', 'NEAREST' or 'COMPATIBLE'.

Invalid value for STATUS= specifier
The value of the STATUS specifier in the OPEN or CLOSE statement is incorrect.
The STATUS specifier must be either 'KEEP' or 'DELETE".

Invalid value for VE_FORT_MEM_BLOCKSIZE.
An incorrect value was specified for the environment variable
VE_FORT_MEM_BLOCKSIZE. Verify that the value specified in the environment
variable VE_FORT_MEM_BLOCKSIZE is 0 or power of 2.

Invalid value of VE_INIT_HEAP.
An incorrect value was specified for the environment variable VE_INIT_HEAP.

Verify that the value specified in the environment variable VE_INIT_HEAP.
Left-hand side of assighment has duplicate vector subscript value value for

dimension dim

The vector subscript for dimension dim on the left side duplicates in the

- 288 -

Appendix A Configuration file

assignment. Check the program.
Left-hand side of assignment has vector subscript name with duplicate value
value

The vector subscript on the left side duplicates in the assignment. Check the

program.

LEN argument (val/ue) out of range 0:bitsize in intrinsic IBITS
The value of the LEN argument of intrinsic IBITS is out of range. Change the value

of the LEN argument.

Missing length of H edit descriptor
There is no number of characters before a character H in H edit descriptor on a

format specification. Correct the format specification.

Multiple assignment to scalar var in FORALL
Scalar var in the FORALL syntax have been assigned multiple times. Scalar var

must be assigned only once.

Multiple assignment to scalar variable in FORALL
Scalar variables in the FORALL syntax have been assigned multiple times. Scalar

variables must be assigned only once.

Multiple assignment to whole array var in FORALL
The same element of an array in the FORALL syntax has been assigned multiple

times. The same element must be only assigned to it once.

Nested format-item-list is empty
There is no edit descriptor specified in nested of a format specification. Specify
edit descriptor in nested of a format specification, or delete unnecessary nest of a

format specification.
NEW file already exists

A file specified in the OPEN statement with STATUS='NEW" already exists. Check

the file name and correct if it is incorrect. If file name correct, correct the value of

- 289 -

Appendix A Configuration file

the STATUS specifier in the OPEN statement.

NEWUNIT= specifier but no FILE= and STATUS= value is not 'SCRATCH'
The NEWUNIT specifier is specified for the OPEN statement, but the FILE
specifier is not specified, and the value of the STATUS specifier is not SCRATCH.
When opens a file on an unused unit number that is automatically chosen, specify
the external file name in the FILE specifier or specify the scratch file with
STATUS='SCRATCH' .Otherwise, use UNIT specifier instead of NEWUNIT

specifier.

No data edit descriptor in unlimited format item
Unlimited repeat factor was specified in a format specification, but there is no data
edit descriptor specified on the target nest. If you specify unlimited repeat factor,
specify a data edit descriptor on the target nest. If you don't need a data edit
descriptor, correct the format specification so that unlimited repeat factor are not

used.

No edit descriptor following repeat factor
There is no edit descriptor following repeat factor in a format specification. Correct

the format specification.

No FILE= specifier with STATUS="REPLACE' or STATUS='NEW'
REPLACE or NEW is specified to the STATUS specifier in the OPEN statement,
but the FILE specifier is not specified. When specifying REPLACE or NEW to the
STATUS specifier in the OPEN statement, the FILE specifier must also be

specified. Otherwise, correct the value of the STATUS specifier.

No left parenthesis after unlimited repeat factor '*'
There is not specified left parenthesis after unlimited repeat factor in a format
specification. If you want the unlimited repeat factor, specify left parenthesis after

unlimited repeat factor. Otherwise, delete unlimited repeat factor.
No unit available for NEWUNIT= specifier

The NEWUNIT specifier is specified for the OPEN statement, but number of

opens a file on an unused unit number that is automatically chosen has exceeded

- 290 -

Appendix A Configuration file

the limit. Close unnecessary files.

No value found in LOGICAL input field
For a logical type data input, a character in the input data is not acceptable.
Correct the input data.

OPEN on connected unit Unit Number has different ACCESS= specifier
A different value from when the external file was connected is specified as the
value of ACCESS specifier in the OPEN statement. Change the value of the
ACCESS specifier to the same value. If you want to connect the external file with

a new value, execute the OPEN statement after close the file.

OPEN on connected unit Unit Number has different ACTION= specifier
The ACTION specifier value of the OPEN statement for a device that is already
connected is different than before. Change the value of the ACTION specifier to
the same value. If you want to connect with a new value, close the device and

then run the OPEN statement.

OPEN on connected unit Unit Number has different ASYNCHRONOUS= specifier
A different value from when the external file was connected is specified as the
value of ASYNCHRONOUS specifier in the OPEN statement. Change the value of
the ASYNCHRONOUS specifier to the same value. If you want to connect the

external file with a new value, execute the OPEN statement after close the file.

OPEN on connected unit Unit Number has different FORM= specifier
A different value from when the external file was connected is specified as the
value of FORM specifier in the OPEN statement. Change the value of the FORM
specifier to the same value. If you want to connect the external file with a new

value, execute the OPEN statement after close the file.

OPEN on connected unit Unit Number has different POSITION= specifier
A different value from when the external file was connected is specified as the
value of POSITION specifier in the OPEN statement. Change the value of the
POSITION specifier to the same value. If you want to connect the external file

with a new value, execute the OPEN statement after close the file.

- 291 -

Appendix A Configuration file

OPEN on connected unit Unit Number has different RECL= specifier
A different value from when the external file was connected is specified as the
value of RECL specifier in the OPEN statement. Change the value of the RECL
specifier to the same value. If you want to connect the external file with a new

value, execute the OPEN statement after close the file.

OPEN on connected unit Unit Number with STATUS= specifier must have
STATUS='OLD'
The external file is connected, but the value of the STATUS specifier in the OPEN
statement is not OLD. Change the STATUS specifier value to OLD.

Out of memory
Not enough memory to run with temporary area. Check the memory size you are

using and review the program.

Out of memory in intrinsic ADJUSTL
Not enough memory to run for intrinsic function ADJUSTL with temporary area.

Check the memory size you are using and review the program.

Out of memory in intrinsic ADJUSTR
Not enough memory to run for intrinsic function ADJUSTR with temporary area.

Check the memory size you are using and review the program.

Out of memory in intrinsic EXECUTE_COMMAND_LINE
Not enough memory to run for intrinsic function EXECUTE_COMMAND_LINE
with temporary area. Check the memory size you are using and review the

program.
Out of memory in intrinsic PACK
Not enough memory to run for intrinsic function PACK with temporary area.

Check the memory size you are using and review the program.

Out of memory in intrinsic RESHAPE

Not enough memory to run for intrinsic function RESHAPE with temporary area.

- 292 -

Appendix A Configuration file

Check the memory size you are using and review the program.

Out of memory in intrinsic SPREAD
Not enough memory to run for intrinsic function SPREAD with temporary area.

Check the memory size you are using and review the program.

Out of range: substring ending position envpos is greater than length /en
Substring ending position is greater than length. The value in the range must be

specified.

Out of range: substring starting position startpos is less than 1

Substring starting position is less than 1. 1 or more must be specified.

POS argument (value) out of range 0:bitsize in intrinsic IBCLR
The value of the POS argument of intrinsic IBCLR is out of range. Change the

value of the POS argument.

POS argument (value) out of range 0:bitsize in intrinsic IBITS
The value of the POS argument of intrinsic IBITS is out of range. Change the value

of the POS argument.

POS argument (value) out of range 0:bitsize in intrinsic IBSET
The value of the POS argument of intrinsic IBSET is out of range. Change the

value of the POS argument.

POS= specifier but unit Unit Number is not open for STREAM i/o
UNFORMATTED is specified for the FORM specifier in the OPEN statement. In
this case, do not specify the PAD specifier. If the external file is an unformatted

file, delete the PAD specifier. Otherwise, correct the value of the FORM specifier.
PUT argument to intrinsic RANDOM_SEED is too small (value elements)

The value of PUT argument to intrinsic RANDOM_SEED is too small. Review the

program.

- 293 -

Appendix A Configuration file

READ after WRITE with no intervening file positioning
An attempt was made to execute an input statement following the execution of an
output statement for an external file connected as a sequential access file.
Alternatively, an attempt was made to execute an input statement without a POS
specifier following the execution of an output statement for an external file
connected as a stream access. Correct so that a REWIND statement is executed
before the input statement. Alternatively, correct so that specify a POS specifier in
the READ statement for the stream file.

READ/WRITE attempted after ENDFILE on unit Unit Number

An attempt was made to execute an input or output statement following execution
of an ENDFILE statement for an external file connected as a sequential access
file. Alternatively, an attempt was made to execute an input or output statement
immediately after an end-of-file condition. A record cannot be output to a position
after an end-of-file. Correct so that a REWIND statement is executed before the
input statement. Alternatively, when you are adding a record immediately before
the end-of-file, correct so that a BACKSPACE statement is executed before the

output statement.

RECL= specifier with ACCESS='STREAM'
STREAM is specified for the ACCESS specifier in the OPEN statement. In this
case, do not specify the RECL specifier. If the external file is a stream file, delete

the RECL specifier. Otherwise, correct the value of the ACCESS specifier.

Record longer than 2GB not supported
The record size exceeded 2 gigabytes in Sequential File Unformatted Record I/0.
When this message is output at the input, check the endian format of the input
data. If the endian format is Big Endian, specify environment variable
VE_FORT_UFMTENDIAN. Otherwise, specify environment variable
VE_FORT_EXPRCW or VE_FORT_SUBRCW.

Record number Record Number out of range
The REC specifier for the READ or WRITE statement is incorrect. Correct the REC

specifier value as that greater than or equal to 1.

- 294 -

Appendix A Configuration file

Reference to dangling pointer

Referring to dangling pointer. Review the program.

Reference to dangling pointer name

Referring to dangling pointer name. Review the program.

Reference to disassociated POINTER

Referring to disassociated pointer. Review the program.

Reference to disassociated POINTER name

Referring to disassociated pointer name. Review the program.

Reference to undefined POINTER

Referring to undefined pointer. Review the program.

Reference to undefined POINTER name

Referring to undefined pointer name. Review the program.

Repeat factor given for blank-interpretation edit descriptor
Do not specify the repeat factor to blank interpretation edit descriptor in a format

specification. Correct the format specification.

Repeat factor given for character string edit descriptor
Do not specify the repeat factor to character string edit descriptor in a format

specification. Correct the format specification.

Repeat factor given for position edit descriptor
Do not specify the repeat factor to position edit descriptor in a format

specification. Correct the format specification.
Repeat factor given for rounding edit descriptor

Do not specify the repeat factor to round edit descriptor in a format specification.

Correct the format specification.

- 295 -

Appendix A Configuration file

Repeat factor given for sign edit descriptor
Do not specify the repeat factor to sign edit descriptor in a format specification.

Correct the format specification.

Scale factor num out of range for d=num

The value of scale factor is out of range. Check the program.

SHIFT argument (value) out of range -bitsize:bitsize in intrinsic ISHFT
The value of the SHIFT argument of intrinsic ISHFT is out of range. Change the

value of the SHIFT argument.

SHIFT argument (value) out of range -size:size in intrinsic ISHFTC
The value of the SHIFT argument of intrinsic ISHFTC is out of range. Change the
value of the SHIFT argument.

Sign in a numeric input field not followed by any digits
For an integer or real type data input, sign in a numeric input field is not followed

by any digits. Correct the input data.

SIGN= specifier must be 'PROCESSOR_DEFINED', 'PLUS' or 'SUPPRESS'
The value of the SIGN specifier in the OPEN or WRITE statement is incorrect.
The SIGN specifier must be 'PROCESSOR_DEFINED', 'PLUS' or 'SUPPRESS.".

SIZE argument (value) out of range 1:maxsize in intrinsic ISHFTC
The value of the SIZE argument of intrinsic ISHFTC is out of range. Change the

value of the SIZE argument.

SIZE= is not valid without ADVANCE="NO'
NO is not specified for the ADVANCE specifier in the READ statement. In this
case, do not specify the SIZE specifier. If the READ statement uses advancing
input, delete the SIZE specifier. Otherwise, specify NO to the value of the
ADVANCE specifier.

STATUS="KEEP' is invalid for a SCRATCH file

- 296 -

Appendix A Configuration file

The STATUS specifier in the CLOSE statement for SCRATCH file is KEEP. Correct
the value of the STATUS specifier for the CLOSE statement to DELETE, or correct
the value of the STATUS specifier for the OPEN statement to anything other than
SCRATCH.

Subscript (value) out of range in input for object objname of
NAMELIST/namelist/
The subscript value of the array is out of range in input for object of NAMELIST.

Change the value of the subscript.

Subscript out of range for assumed-size array name - Access to element value
but actual argument has only value elements
The subscript value of the assumed-size array name is out of range. Change the

value of the subscript.

Subscript rank of dimname (value value) is out of range (lower:*)
The subscript value of the array is out of range. Change the subscript value of the

array.

Subscript rank of dimname (value value) is out of range (lower:upper)
The subscript value of the array is out of range. Change the subscript value of the

array.

Substring (lower:upper) out of bounds in input for object objname of
NAMELIST/namelist/
The subscript value of the array is out of range in input for object of NAMELIST.

Change the value of the subscript.
Substring has zero length in input for object objname of NAMELIST/namelist/
The subscript has zero length in input for object of NAMELIST. Change the value of

the subscript.

Sub-format groups nested too deeply

Parentheses in a format specification have a nest of more than 40. The number of

- 297 -

Appendix A Configuration file

nests should be within 40.

The RECL= specifier must be given for DIRECT access OPEN
DIRECT is specified to the ACCESS specifier of the OPEN statement, but the
RECL specifier is not specified. When specifying DIRECT to the ACCESS specifier
in the OPEN statement, the RECL specifier must also be specified. Otherwise,

correct the value of the ACCESS specifier.

Undefined pointer name used as argument to intrinsic function ASSOCIATED
An undefined pointer name is used as argument to intrinsic function

ASSOCIATED. Review the program.

Undefined pointer name used as argument to intrinsic function
EXTENDS_TYPE_OF
An undefined pointer name is used as argument to intrinsic function

EXTENDS_TYPE_OF. Review the program.

Undefined pointer name used as argument to intrinsic function
SAME_TYPE_AS
An undefined pointer name is used as argument to intrinsic function

SAME_TYPE_AS. Review the program.

Undefined pointer name used as argument to intrinsic function STORAGE_SIZE
An undefined pointer name is used as argument to intrinsic function

STORAGE_SIZE. Review the program.

Undefined pointer used as argument to intrinsic function ASSOCIATED
An undefined pointer is used as argument to intrinsic function ASSOCIATED.

Review the program.

Undefined pointer used as argument to intrinsic function EXTENDS_TYPE_OF
An undefined pointer is used as argument to intrinsic function
EXTENDS_TYPE_OF. Review the program.

Undefined pointer used as argument to intrinsic function SAME_TYPE_AS

- 298 -

Appendix A Configuration file

An undefined pointer is used as argument to intrinsic function SAME_TYPE_AS.

Review the program.

Undefined pointer used as argument to intrinsic function STORAGE_SIZE
An undefined pointer is used as argument to intrinsic function STORAGE_SIZE.

Review the program.

Undefined polymorphic pointer name used as argument to intrinsic function
ASSOCIATED
An undefined polymorphic pointer name used as argument to intrinsic function

ASSOCIATED. Review the program.

Undefined polymorphic pointer name used as argument to intrinsic function
EXTENDS_TYPE_OF
An undefined polymorphic pointer name used as argument to intrinsic function

EXTENDS_TYPE_OF. Review the program.

Undefined polymorphic pointer name used as argument to intrinsic function
SAME_TYPE_AS
An undefined polymorphic pointer name used as argument to intrinsic function

SAME_TYPE_AS. Review the program.

Undefined polymorphic pointer name used as argument to intrinsic function
STORAGE_SIZE
An undefined polymorphic pointer name used as argument to intrinsic function

STORAGE_SIZE. Review the program.

Undefined polymorphic pointer used as argument to intrinsic function
ASSOCIATED
An undefined polymorphic pointer used as argument to intrinsic function
ASSOCIATED. Review the program.

Undefined polymorphic pointer used as argument to intrinsic function
EXTENDS_TYPE_OF

- 299 -

Appendix A Configuration file

An undefined polymorphic pointer used as argument to intrinsic function
EXTENDS_TYPE_OF. Review the program.

Undefined polymorphic pointer used as argument to intrinsic function
SAME_TYPE_AS
An undefined polymorphic pointer used as argument to intrinsic function
SAME_TYPE_AS. Review the program.

Undefined polymorphic pointer used as argument to intrinsic function
STORAGE_SIZE
An undefined polymorphic pointer used as argument to intrinsic function

STORAGE_SIZE. Review the program.

Unexpected exponent for GO edit descriptor
Zero was specified to width for Gw.dEe edit descriptor. If you want the width to be
zero, correct to Gw.d edit descriptor. Otherwise, specify the positive value to the
width.

Unexpected subscript for object objname of NAMELIST/namelist/
The subscript is an unexpected for object of NAMELIST. Change the value of the

subscript.

Unit number Unit Number out of range
The value of the UNIT specifier is incorrect. The UNIT specifier must be an
integer value from 0 to 2147483647 or a value returned to the NEWUNIT

specifier in the OPEN statement.

Unit Unit Number is not connected
The specified external unit is not connected to file. Correct so that the file is
opened before executing the input/output statement for the specified external

unit.

Unit Unit Number is not connected for DIRECT i/o

An attempt was made to execute the sequential or stream access input/output

- 300 -

Appendix A Configuration file

statement on a file connected as a direct access file. Correct to the direct access
input/output statement, or correct so that the file is connected by the sequential

or stream access file.

Unit Unit Number is not connected for FORMATTED i/o
An attempt was made to execute a formatted input/output statement on a file
connected as an unformatted file. Correct to the unformatted input/output

statement, or correct so that the file is connected by a formatted file.

Unit Unit Number is not connected for READ action
An attempt was made to output to an external file for which input only is
permitted. Correct the external unit number if it is wrong. Otherwise, connect that

external unit number to a file which accepts output with an OPEN statement.

Unit Unit Number is not connected for SEQUENTIAL i/o
An attempt was made to execute a sequential access input/output statement on a
file connected as a direct access file. Correct to the direct access input/output

statement, or correct so that the file is connected by a sequential access file.

Unit Unit Number is not connected for UNFORMATTED i/o
An attempt was made to execute an unformatted input/output statement on a file
connected as a formatted file. Correct to the formatted input/output statement, or

correct so that the file is connected by an unformatted file.

Unit Unit Number is not connected for WRITE action
An attempt was made to input from an external file for which output only is
permitted. Correct the external unit number if it is wrong. Otherwise, connect that

external unit number to a file which accepts input with an OPEN statement.

Unit Unit Number is not connected on OPEN with STATUS="OLD' and no FILE=
specifier
OLD is specified for the STATUS specifier in the OPEN statement, but the FILE
specifier is not. When specifying OLD for the STATUS specifier in the OPEN

statement, the FILE specifier must also be specified. Otherwise, correct the value

- 301 -

Appendix A Configuration file

of the STATUS specifier.

VALUE argument (value) to intrinsic ATOMIC_ADD is out of range
The value of argument to intrinsic function ATOMIC_ADD is out of range. Check

the program.

VALUE argument (value) to intrinsic ATOMIC_AND is out of range
The value of argument to intrinsic function ATOMIC_AND is out of range. Check

the program.

VALUE argument (value) to intrinsic ATOMIC_FETCH_ADD is out of range
The value of argument to intrinsic function ATOMIC_FETCH_ADD is out of range.
Check the program.

VALUE argument (value) to intrinsic ATOMIC_FETCH_AND is out of range
The value of argument to intrinsic function ATOMIC_FETCH_AND is out of range.
Check the program.

VALUE argument (value) to intrinsic ATOMIC_FETCH_OR is out of range
The value of argument to intrinsic function ATOMIC_FETCH_OR is out of range.
Check the program.

VALUE argument (value) to intrinsic ATOMIC_FETCH_XOR is out of range
The value of argument to intrinsic function ATOMIC_FETCH_XOR is out of range.
Check the program.

VALUE argument (value) to intrinsic ATOMIC_OR is out of range
The value of argument to intrinsic function ATOMIC_OR is out of range. Check the

program.

VALUE argument (value) to intrinsic ATOMIC_XOR is out of range
The value of argument to intrinsic function ATOMIC_XOR is out of range. Check
the program.

VALUES argument to intrinsic DATE_AND_TIME is too small (va/ue elements)

- 302 -

Appendix A Configuration file

The value of VALUES argument to intrinsic DATE_AND_TIME is too small. Review

the program.

Value value of KIND argument to OMP_SET_SCHEDULE is out of range 1:4
The value of KIND argument to OMP_SET_SCHEDULE is out of range. The value

must be an integer value from 1 to 4.

Value value of MAX_LEVELS argument to OMP_SET_MAX_ACTIVE_LEVELS is
negative
The value specified for the OMP_SET_MAX_ACTIVE_LEVELS is negative. Must be a

positive integer.

Value value of NUM_THREADS argument to OMP_SET_NUM_THREADS is
greater than maximum num
The value specified for the OMP_SET_NUM_THREADS exceeds the maximum

value. Must be in the range.

Value val/ue of NUM_THREADS argument to OMP_SET_NUM_THREADS is not
positive
The value specified for the OMP_SET_NUM_THREADS is not positive. Must be a

positive integer.

var has not been assigned a branch target label

Var has not been assigned a branch target label. Review the program.
Vector subscript for rank rank of name has extent value instead of value
The vector subscript size of the rank dimension is incorrect. Change the value of
the vector subscript.
WRITE operation failed on unit Unit Number: Disk quota exceeded
Writes failed because of disk quota limits at WRITE statements with this unit

number. Verify the file system quota limit.

Zero repeat factor in list-directed input

- 303 -

Appendix A Configuration file

For the r*c form of a list-directed input value, the repeat factor r is zero. Correct

the repeat factor r to 1 or higher.

Zero stride value for subscript num of name

The stride value for subscript is zero. Change the stride value.

12.3 Other Runtime Error

Compatibility Error: veos (older than v2.6.0) and ve_exec (vVVEQOS-verision) are

not compatible

veos version is old, so it does not have compatibility with ve_exec. If VE program
is running on a container, please install the latest veos packages to the host

machine.

Compatibility Error: veos (VVEOS-version-A) and ve_exec (vVVEOS-verision-B) are

not compatible

veos version is old, so it does not have compatibility with ve_exec. If VE program
is running on a container, please install the latest veos packages to the host

machine.

Failed to load EXEC DATA (fixed): Error Message

Failed to load the data of exec file. VE memory shortage may be occurred. If there
is executing VE process, please terminate it or reduce the size of data. You can
refer to the VE memory capacity and VE memory usage with

“/opt/nec/ve/bin/free -h",

Failed to load EXEC DATA (fixed, fileback): Error Message

Failed to load the data of exec file. VE memory shortage may be occurred. If there
is executing VE process, please terminate it or reduce the size of data. You can
refer to the VE memory capacity and VE memory usage with
“/opt/nec/ve/bin/free -h".

Unable to grow stack

Size of stack is not enough. As following example, please increase the limit of the

- 304 -

Appendix A Configuration file

available stack size with the environment variable VE_LIMIT_OPT.

export VE_LIMIT_OPT="-s 8192”

You can refer to the current limit of stack size by ve_exec command with “—show-

limit” as the argument.

$ ve_exec —show-limit

core file size (blocks, -c) 0 0

data seg size (kbytes, -d) unlimited unlimited
pending signals (-i) 379523 379523

max memory size (kbytes, -m) unlimited unlimited
stack size (kbytes, -s) unlimited unlimited <—
cpu time (seconds, -t) unlimited unlimited
virtual memory (kbytes, -v) unlimited unlimited

VE Node node-number is UNAVAILABLE

The VE card whose number is node-number is fault occurs. Please use other VE

node to execute job.

- 305 -

Appendix A Configuration file

Chapter13 Troubleshooting

13.1 Troubleshooting for compilation

The error "Fatal: License: Unknown host." occurs.
There is a possibility that the problem that the machine can't access a license
server occurs to the time of license check of a compiler. Please refer to the FAQ
indicated on a following page of HPC software license issue.
https://www.hpc-license.nec.com/aurora/

When not solving it, please contact us from the said page.

The error "Invalid #line directive" occurs.

Directive of preprocessors such as "#if, #include" is used. Please compile with -

fpp.

The error "Cannot find module : ..." occurs.
A module was used, but the compiler could not find the module file (*.mod).
Please confirm whether a module file exists in the directory by which a compiler
searches a module file. Please refer to "1.6 Searching Module Files" about the

directory a compiler searches.

The error "not a valid module information file" occurs.
There is a possibility that a module file was compiled by an old compiler or is

broken. Please remake a module file (*.mod).

The error "Syntax error" occurs at a compiler directive.
Please confirm whether the spelling of compiler directive and the how to use
aren't wrong. When it's an error to compiler directive of a SX compiler, please
change to it of a VE compiler by a compiler directive line change tool.
Please refer to "Appendix E Compiler Directive Conversion Tool" to confirm the

usage of the tool.

The error "Error: Invalid suffix" occurs.

There is a possibility that binutils-ve package is old. Please confirm whether

- 306 -

Appendix A Configuration file

binutils-ve package is the latest edition.

When using a module file, a header file and a library, I want to confirm the
directory to which a compiler and a linker refer.
Please refer to "1.6 Searching Module Files ", "1.7 Searching files included by

INCLUDE line or #include directive" and "1.8 Searching Libraries".

The error "undefined reference to 'ftrace_region_begin_' /
'ftrace_region_end_'" occurs at linking.

The FTRACE function is used. Specify -ftrace at linking.

Please refer to "PROGINF/FTRACE User's guide" about the FTRACE function.

$ nfort a.0 b.o -ftrace

The error "undefined reference to '__ vthr$_barrier'™ occurs at linking.

Please specify -mparallel or -fopenmp at linking.

The error "undefined reference to '__vthr$_pcall_va'' occurs at linking.

Please specify -mparallel or -fopenmp at linking.

The error "cannot find -lveproginf" and "cannot find -lveperfcnt" occurs at
linking.

Please install nec-veperf package.

When compiling a program which code size is large, the compiler aborts by
SIGSEGV.
The stack size needed by the compiler may exceed upper limit of the setting. It
may solve to extend the upper limit of it. It can be confirm and setting to invoke
“ulimit -s” as follows. Please increase the upper limit of stack size and recompile

the program.

$ ulimit -s (Check the current limit)
8192
$ ulimit -s 16384 (Change the limit)

- 307 -

Appendix A Configuration file

The compiler aborts by SIGKILL.
The memory of the machine may be exhausted. The memory used amount can be

somewhat reduced to compile with -00 or -O1.

I want to confirm whether they are executable file for VE.
Please execute "/opt/nec/ve/bin/nreadelf -h" that specified the executable file as
an argument of command. When "NEC VE architecture" is output in the line of

"Machine:", it show that a file is an executable file for VE.

$ /opt/nec/ve/bin/nreadelf -h a.out

ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI : UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: NEC VE architecture
..)

I want to confirm whether they are object file for VE3.
Please execute "/opt/nec/ve/bin/nreadelf -h" that specified the object file as an
argument of command. When the last digit output in the line of "Flags:" is "0", it
show that a file is an object file for VE1; when it is "1", it show that a file is an
object file for VE3. In the following example, the last digit output in the line of

"Flags:" is "1", so it show that a file is an object file for VE3.

$ /opt/nec/ve/bin/nreadelf -h a.o

ELF Header:
(..)
Version: Ox1
Start of program headers: 0 (bytes into file)
Start of section headers: 720 (bytes into file)
Flags: 0x10101
(..)

When linking OpenMP and automatic parallelized program, which of -fopenmp

and -mparallel should I specify?

- 308 -

Appendix A Configuration file

Please specify either -fopenmp or -mparallel.

$ nfort -¢ -mparallel a.f90
$ nfort -¢ —fopenmp b. 90
$ nfort —fopenmp a.o b.o

When specifying -fcheck, compilation time becomes so long.
It becomes long because check code is inserted at compilation. Please specify

-fcheck to only the source file which includes procedure which need check.

When specifying -fcheck, execution time becomes so long.
It becomes long because check code is executed. Please specify -fcheck to only

the source file which includes procedure which need check.

When specifying -ftrace, execution time becomes so long.
It becomes long because extra routines for getting performance information are
executed at entrance/exit of procedures and user specified region.
Please specify -ftrace to only the source file which includes routine which

performance information is required.

Even if setting value bigger than 8 to OMP_NUM_THREADS, threads more than
8 is not generated.

8 threads are the upper limit because the number of cores of VE is 8.

I want to know the name of predefined macro and the value.

Please refer to “9.2.4 Predefined Macro”.

I want to preprocess Fortran program.

Please compile the program with -fpp.

I want to link Fortran program and C/C++ program.

Please refer to “10.6 Linking”.

I want to change the options of SX series to it of Vector Engine.

Please change it to refer to “Appendix B SX Compatibility”.

- 309 -

Appendix A Configuration file

I want to change the compiler directives of SX series to it of Vector Engine.
Please use the “Compiler Directive Conversion Tool” or change by hand by
confirming “Appendix B SX Compatibility”. Please refer to “Appendix C Compiler

Directive Conversion Tool” about the tool.

The variable or routine name which name is “$” and number as ‘$1’ is
displayed in diagnostic message. What is it?

It is created by compiler to do vectorization and parallelization.

The type name as “DOUBLE" or “float” is displayed instead of variable name in
diagnostic message. What is it?
It is unnamed variable created by compiler to do vectorization and parallelization.

It is displayed type name because it has ho hame.

The message “Internal error detected -- please report.” is output.
When compilation is not stopped at the message output, the compiler recover the
error and continues compiling. In this case, created object file can be used
without problems. When compilation is stopped, please contact us from the NEC

support portal site.

The following message is output though ALLOCATE or DEALLOCATE statement

is not in a loop.

vec (181) : Allocation obstructs vectorization.
vec (182) : Deal location obstructs vectorization.

This message is output when the compiler needed to allocate and deallocate an
area at execution to realize language specification of Fortran. It may occur when

passing argument or return value at inlining a procedure.
I want to know about difference between -bss and -save.

In case of variable of SAVE attribute, initialized value in a routine is return value of

called last time. In case of -bss, it is not guaranteed.

- 310 -

Appendix A Configuration file

A compiler option which is not specified in command line is enabled.
A compiler option may be specified in option file. Please refer to “1.5 Specifying

Compiler Options” to confirm details of option file.

I want to confirm version of the compiler.

Please compile with --version.

I want to create a position-independent executable with the option -fpie or -
fPIE.

Creation of a position-independent executable is not supported.

The error "Too many elements in array" occurs.
The size of the array allocated by the ALLOCATE statement, or the size of the
array allocated by the DIMENSION statement/attribute, exceeds 1TiB. Please
review the size of array.
Note: The upper limit of the array size is checked with 1TiB at compilation, but the
memory size of VE is 48GB. Therefore, if you try to allocate the array larger than

the memory size of VE, it occurs "Out of memory" at run-time.

A .L file is not generated When compiling a module source file.
A L files is not generated for module source files that do not contain module

procedures according to its specifications.

When building a program that includes multi-stage dependencies such as

a.out->foo.so->bar.so, the following link error occurs.

/opt/nec/ve/bin/nld: warning: libbar.so, needed by ./libfoo.so, not found
(try using -rpath or —-rpath-Iink)
./libfoo. so: undefined reference to “bar’

It is a GNU Linker specification from which nld is derived. The nld links SX-Aurora
TSUBASA objects on Linux/x86_64, so it works with cross linker. Since Cross
Linker is not always the same as the actual execution environment, nld ignores
the -rpath option and RPATH set in the shared library. Please specify -WI,-rpath-
link,library-path.

- 311 -

Appendix A Configuration file

When -mparallel was specified, the following warning occurred.

/opt/nec/ve/bin/nld: warning: libnfort.so.2, needed by |ibxxx.so, not found (try
using —rpath or —-rpath—-Iink)

libnfort.so is a library that contains Fortran runtime routines and is required
whenever linking a non-parallel version of a Fortran program. When linking a
parallel version of a Fortran program (with -mparallel or -fopenmp),
libnfort_m.so is always required instead. The compiler automatically specifies "-
Infort" for non-parallel and "-Infort_m" for parallel at the time of linking. The
warning is that libxxx.so is created non-parallel and requires a non-parallel
libnfort.so, but "-Infort" is required because "-Infort" is not specified when -
mparallel is specified.

Since unexpected problems may occur when running the libxxx.so, it is
recommended to additionally specify -mparallel or -fopenmp when creating

(linking) the libxxx.so to reference libnfort_m.so..

13.2 Troubleshooting for execution

The error “Node 'N' is Offline” occurs at execution.
The state of VE node of number N is OFFLINE. Please make it ONLINE.

The example which make VE node of number O ONLINE state is as follows.

% /opt/nec/ve/bin/vecmd -N 0 state set on

Result: Success
% /opt/nec/ve/bin/vecmd state get

VEO [03:00.0] [ONLINE] Last Modif:2017/11/29 10:18:00

Result: Success

I want to confirm the used node at execution.
Please execute the command /opt/nec/ve/bin/ps. The command ps outputs
snapshot of executing processes by VE node. In the following example, it can be

confirmed that the program named “a.out” is executing on VE node of number 2.

- 312 -

Appendix A Configuration file

% /opt/nec/ve/bin/ps -a
VE Node: 3

PID TTY TIME CMD
VE Node: 1

PID TTY TIME CMD
VE Node: 2

PID TTY TIME CMD
50727 pts/1 00:01:36 a.out
VE Node: 0

PID TTY TIME CMD

The error "./a.out: error while loading shared libraries: libnfort.so.2: cannot

open shared object file: No such file or directory” is output at execution.

Please install the package “nec-nfort-shared” and “nec-nfort-shared-inst”. Please

follow the instructions described in the "Installation Guide".

The error which a dynamic link library is not found occurs at execution.

Please set the directory which dynamic link library is put to the environment
variable VE_LD_LIBRARY_PATH. Please refer to “2.2 Environment Variables

Referenced During Execution”.

The error "VE mmap failed on INTERP - TEXT: Cannot allocate memory"

occurs at execution.

The total size of text and static data of the VE program exceeds 48GB. Please
modify the source files to dynamically allocate large-sized data so that the total
size of the text and static data of the VE program is 48GB or less. Static data
includes module variables, block data, common blocks, and variables with SAVE
attribute.

You can check the symbol sizes in descending order by executing the following

command for reference:

$ /opt/nec/ve/bin/nnm -C —-size-sort -r ./a.out

In addition, you can check the size of each section with the following command:

$ /opt/nec/ve/bin/nreadelf —e ./a.out

- 313 -

Appendix A Configuration file

I want to confirm which line of source file corresponds to an exception
occurrence point.
It can be check by traceback information. Please refer to “2.2 Environment

Variables Referenced During Execution” to check process of it.

The exception occurrence point which output by traceback information is
incorrect.
The exception occurrence point output by traceback information can be incorrect
by the advance control of HW. The advance control can be stopped to set the
environment variable VE_ ADVANCEOFF=YES. An execution time may increase

substantially to stop the advance control. Please take care it.

$ export VE_ADVANCEOFF=YES

I want to output the debug write result from buffer at exception occurrence.
Please call the FLUSH statement after the WRITE statement.

SUBROUTINE SUB ()
INTEGER :: U, X, A(20)

OPEN (NEWUNIT=U, FILE="debug. log’, STATUS='replace’)
CALL SUBT (X)
#tifdef DEBUG
WRITEWU, *) "X=", X
FLUSH (U)
ftendif

WRITE (x, %) A(1000)
END

I want to confirm whether use uninitialized variable or not.
It may be checked by detecting an exception to compile with -minit-stack=snan
and execute with the environment variable VE_INIT_HEAP=SNAN for double
precision floating-point type variables. For single precision floating-point type
variables, specify snanf and SNANF instead of snan and SNAN. This approach can
be used only if the variable is floating-point type. Please refer to “2.2 Environment

Variables Referenced During Execution” and “3.6 Debugging Options”.

- 314 -

Appendix A Configuration file

I want to avoid abnormal termination caused by reference of uninitialized
variable.
It may avoid by initializing the area to zero to compile with -minit-stack=zero
and execute with the environment variable VE_INIT_HEAP=ZERO. Correction of
a program is recommended to resolve a potential problem. Please refer to “2.2
Environment Variables Referenced During Execution” and “3.6 Debugging

Options”.

A program which uses automatic parallelization and/or OpenMP is abnormally
terminated by "Unable to grow stack” or SIGSEGV at execution.
It may occur because the amount of stack usage exceeds the limit. Please
increase the limit of stack size or decrease the stack usage.
The limit of stack size can be increased by setting the environment variable
OMP_STACKSIZE. Please refer to “2.2 Environment Variables Referenced During

Execution”.

$ export OMP_STACKSIZE=2G

* The used stack can be decreased to specify the -mno-stack-arrays. Please
note that the execution time can be increased by specifying —mno-stack-

arrays.

I want to confirm how many thread was used at execution.
It can be confirmed to check “Max Active Threads” in PROGINF. “Max Active
Threads” is output to stderr at termination when setting the environment variable
“VE_PROGINF=DETAIL". Please refer to “PROGINF/FTRACE user’s Guide” to
confirm usage of PROGINF.
In the following example, it can be confirmed that 4 thread was used because

“Max Active Threads” is 4.

xxxkkkkx Program Information sxkxxkkx

(..)

Power Throttling (sec) : 0. 000000
Thermal Throttling (sec) : 0. 000000
Max Active Threads : 4

- 315 -

Appendix A Configuration file

Available CPU Cores : 8

Average CPU Cores Used : 3. 323850

Memory Size Used (MB) : 7884. 000000

Start Time (date) : Mon Feb 19 04:43:34 2018 JST
End Time (date) : Mon Feb 19 04:44:08 2018 JST

When the threads for automatic or OpenMP parallelized program execution
are created or destroyed?
By default, the threads are created at the start of execution and destroyed at
termination. The number of threads are the specified value by the environment
variable OMP_NUM_THREADS or VE_OMP_NUM_THREADS. If it is not
specified, the number is the same as the number of available VE cores.

Please refer to “7.3.2 Thread Creation and Destroy” for details.

When running a program that utilizes automatic or OpenMP parallelized, how
is the number of threads determined at the runtime?
The number of threads at runtime can be specified through the environment
variables OMP_NUM_THREADS or VE_OMP_NUM_THREADS, the OpenMP
num_threads clause, and the omp_set_num_threads() function. The priority is as
follows:
1. Value specified by hum_threads clause
2. Value specified by omp_set_num_threads() function
3. Value specified by the environment variable VE_OMP_NUM_THREADS
4. Value specified by the environment variable OMP_NUM_THREADS

5. The same value as the number of available VE cores.

The number of threads at execution is the same as the number of available VE
cores if it is set a value greater than the number of available VE cores in
num_threads clause, omp_set_num_threads(), VE_OMP_NUM_THREADS, or
OMP_NUM_THREADS.

I want to conform the stack size required to run the program.

There is no way to find out the required stack size because you will not know it
until you try it. In the case of Fortran programs, 192 MB of memory is pre-

allocated at the start of the program as a region to speed up memory allocation at

- 316 -

Appendix A Configuration file

execution, such as for ALLOCATE statements. Please note that this allocation

occurs regardless of whether ALLOCATE statements are actually used or not.

13.3 Troubleshooting for tuning

I want to confirm which optimization was applied to a program.
Please refer to output diagnostics and the format list when compiling.
The diagnostics list is output when the compiler option -report-diagnostics, and

the format list is output when the compiler option -report-format is specified.

The performance decreases, though vectorization was promoted.
The performance decreases by an overhead of vectorization of the few iteration

loop. Please specify the novector directive to such loop to stop vectorization.

When automatic or OpenMP parallelized program is executed, the values
displayed in the same item of PROGINF and FTRACE are different.
The number of operations for the spin-waiting of the thread created before main
program starts is added in PROGINF, but not in FTRACE.

When using the $omp parallel num_threads (4) and executing with the
environment variable OMP_NUM_THREADS=4 or OMP_NUM_THREADS=5, the
execution time with OMP_NUM_THREADS=S5 is a longer than with
OMP_NUM_THREADS=4. Even though there are more parallel numbers.
When the value passed with the num_threads clause is different from the value
specified with the environment variable OMP_NUM_THREADS, the execution time
increases due to thread regeneration.
Threads are automatically generated before the main program starts. The number
of threads is determined by the environment variable OMP_NUM_THREADS. When
the number of threads changes in the program with the function
omp_set_thread_num() or num_threads clause in OpenMP, the threads generated

before the main program starts is freed and the new threads are regenerated.

The routine name which name is “$” and number as ‘$1’ is displayed in
FTRACE output. What is it?

It is created by compiler to do vectorization and parallelization.

- 317 -

Appendix A Configuration file

13.4 Troubleshooting for installation

I want to check if the installation is correct.
Please specify the --version option to check the version. If the displayed version
number is the same as the installed property, it has been installed correctly. The

version number is output to X.X.X in the following example.

$ /opt/nec/ve/bin/nfort ——version
nfort (NFORT) X X X (Build 14:10:47 Apr 23 2020)
Copyright (C) 2018, 2020 NEC Corporation

I want to install an older version of the compiler.
Please refer to “A.1.1 Installation of a Specific Version of the Compilers” in the SX-

Aurora TSUBASA Installation Guide to install old versions of the compiler.

I want to use an older version of the compiler.
Please invoke /opt/nec/ve/bin/nfort-X.X. X, ncc-X.X. X, or nc++-X.X.X (X.X.X is
the version number of the compiler) at compilation.

For details, refer to "1.2 Usage of the Compiler.

I want to start an older version of compiler by defaulit.

There are two ways to do it. Please choose one.

(1) Setting the environment variable PATH
The substance of each version of ncc/nc++/nfort commands are installed as

follows. X.X.X is the version number of the compiler.

/opt/nec/ve/ncc/X.X.X/bin/ncc
/opt/nec/ve/ncc/X.X. X/bin/nc++
/opt/nec/ve/nfort/X.X.X/bin/nfort

Set the bin directory of the version you want to invoke by default to the command

search path (environment variable PATH).
(2) Installing an older version of compiler.

Install the package of the compiler version you want to set as default. For details,
refer to "A.1.2 Change of the Compiler Versions Invoked with the Command

/opt/nec/ve/bin/[nfort|ncc|nc++]" in the SX-Aurora TSUBASA Installation Guide.

- 318 -

Appendix A Configuration file

Please note that this method will affect all users who use /opt/nec/ve/bin/nfort

(ncc/nc++).

A message "Runtime error: vhcall_install failed." was output at execution.
The library needed to offload array lumped input/output, byte swap processing,

etc., to VH is either missing or not installed. Please try the following:

¢ Add the directory name “/opt/nec/ve/nfort/lib64” to the environment variables
VE_LD_LIBRARY_PATH / LD_LIBRARY_PATH.

« If the above does not resolve the issue, check if the file
“libnfort_x86_64.s0.<version number>" exists in the directory
“/opt/nec/ve/nfort/lib64". If it's missing, download and install “nec-nfort-

runtime-<version number>-1.x86_64.rpm"” from the yum repository.

13.5 Troubleshooting for SX-ACE compiler migration

The -ew option is specified.

Check the program to see if it applies to the following:

(1) When you are using intrinsic procedures by specific-name, modify it to a

double-precision or generic-name.

(2) Modify the type declarations and constants in the program as shown in the

following.

FORTRAN90/SX Compiler Vector Engine Compiler

INTEGER*2
INTEGER*4
INTEGER(KIND=2)
INTEGER(KIND=4)
LOGICAL*1
LOGICAL*4
LOGICAL(KIND=1)
LOGICAL(KIND=4)
REAL*4

INTEGER*8
INTEGER*8
INTEGER(KIND=8)
INTEGER(KIND=8)
LOGICAL*8
LOGICAL*8
LOGICAL(KIND=8)
LOGICAL(KIND=8)
REAL*8

- 319 -

Appendix A Configuration file

FORTRAN90/SX Compiler

Vector Engine Compiler

REAL(KIND=4)
COMPLEX*8
COMPLEX(KIND=4)
Constants 1.23E1
Constants 1.23_4

REAL(KIND=8)
COMPLEX*16
COMPLEX(KIND=8)
Constants 1.23D1
Constants 1.23_8

(3) Specify both options -fdefault-real=8 and -fdefault-integer=8 when

compiling. This compiler option is not required when you modified program

to specify the kind type in a type declaration.

The -A dbl option is specified.

Please do one of the following.

(1) Modify the type declarations and constants in the program as shown in the

following.

FORTRAN90/SX Compiler

Vector Engine Compiler

REAL*4

REAL*8
REAL(KIND=4)
REAL(KIND=8)
COMPLEX*8
COMPLEX*16
COMPLEX(KIND=4)
COMPLEX(KIND=8)
Constants 1.23E1
Constants 1.23D1
Constants 1.23_4
Constants 1.23_8

REAL*8

REAL*16
REAL(KIND=8)
REAL(KIND=16)
COMPLEX*16
COMPLEX*32
COMPLEX(KIND=8)
COMPLEX(KIND=16)
Constants 1.23D1
Constants 1.23Q1
Constants 1.23_8
Constants 1.23_16

(2) Specify both options -fdefault-real=8 and -fdefault-double=16 when

compiling. This compiler option is not required when you modified program

to specify the kind type in a type declaration.

- 320 -

The -A dbl4 option is specified.

Please do one of the following.

Appendix A Configuration file

(1) Modify the type declarations and constants in the program as shown in the

following.

FORTRAN90/SX Compiler

Vector Engine Compiler

REAL*4
REAL(KIND=4)
COMPLEX*8
COMPLEX(KIND=4)
Constants 1.23E1
Constants 1.23_4

REAL*8
REAL(KIND=8)
COMPLEX*16
COMPLEX(KIND=8)
Constants 1.23D1
Constants 1.23_8

(2) Specify options -fdefault-real=8 when compiling. This compiler option is not

required when you modified program to specify the kind type in a type

declaration.

The -A dbl8 option is specified.

Please do one of the following.

(1) Modify the type declarations and constants in the program as shown in the

following.

FORTRAN90/SX Compiler

Vector Engine Compiler

REAL*8
REAL(KIND=8)
COMPLEX*16
COMPLEX(KIND=8)
Constants 1.23D1
Constants 1.23_8

REAL*16
REAL(KIND=16)
COMPLEX*32
COMPLEX(KIND=16)
Constants 1.23Q1
Constants 1.23_16

(2) Specify option -fdefault-double=16 when compiling. This compiler option is

not required when you modified program to specify the kind type in a type

declaration.

The environment variable F_UFMTADJUST=TYPE2 is specified when inputting

the binary file.

- 321 -

Appendix A Configuration file

Specify the environment variable VE_FORT_UFMTADJUST, when inputting binary
file that specified and created by the environment variable F_UFMTADJUST.

Inputting binary file created with SX-ACE.

Specify the environment variable VE_FORT_UFMTENDIAN, when inputting
binary file created with SX-ACE.

- 322 -

Appendix A Configuration file

Chapteri4 VE1/VE3 Compatibility

14.1 Executables Compatibility

VE1/VE3 machine can execute the following executables generated by VE1/VE3

compiler/assembler/linker.

Executables VE1 Machine VE3 Machine
Executables for VE1 v v
Executables for VE3 - v

(v) Can be executed (-) Cannot be executed

14.2 Changes of Search Path

Search path of module files, files included by INCLUDE line or #include directive

and libraries are changed as follows:

(1) Searching Module Files

VE1 VE3

Directory on which each input source file
. 4 P (Same as VE1)

is
Directories specified by -module (Same as VE1)
Current directory (Same as VE1)
Directories specified by -1 (Same as VE1)

Subdirectory named “include” under the
directory specified by -B

Directories specified by the environment
variable NFORT_INCLUDE_PATH

(Same as VE1)

(Same as VE1)

Directory specified by -isystem (Same as VE1)

/opt/nec/ve/nfort/<version-
number>/include

/opt/nec/ve/include (*1) /opt/nec/ve3/include (*1)

(Same as VE1)

(*1) When -isysroot is enabled, subdirectory named “include” under the directory

specified by -isysroot.

- 323 -

Appendix A

Configuration file

(2) Searching files included by INCLUDE line or #include directive

VE1

VE3

Directory on which each input source file
is
Directories specified by -module

Current directory

Directories specified by -1

Subdirectory named “include” under the
directory specified by -B

Directories specified by the environment
variable NFORT_INCLUDE_PATH
Directory specified by -isystem
/opt/nec/ve/nfort/<version-
number>/include

/opt/nec/ve/include (*1)

(Same as VE1)

(Same as VE1)
(Same as VE1)

(Same as VE1)

(Same as VE1)

(Same as VE1)
(Same as VE1)
(Same as VE1)

/opt/nec/ve3/include (*1)

(3)

(*1) When -isysroot is enabled, subdirectory named “include” under the

directory specified by -isysroot.

Searching Libraries

VE1

VE3

Directories specified by -L

Directories specified by -B

Directories specified by the environment
variable NFORT_LIBRARY_PATH
/opt/nec/ve/nfort/<version-
number>/lib

Directories specified by the environment
variable VE_LIBRARY_PATH

/opt/nec/ve/lib/gcc
/opt/nec/ve/lib

(Same as VE1)

(Same as VE1)

(Same as VE1)

/opt/nec/ve3/nfort/<version-
number>/lib

(Same as VE1)
/opt/nec/ve3/lib/gcc
/opt/nec/ve3/lib

14.3 Changes of Compiler Options

VE1/VE3 changes the defaults of compiler options as follows:

- 324 -

Appendix A Configuration file

VE1 VE3

-march=vel -march=ve3

-mfp1l6-format=none -mfp1l6-format=ieee

14.4 Half-Precision Floating-Point Type

VE3 can generate and execute object files using half-precision floating point. Object

files using half-precision floating point cannot be generated or executed on VE1.

14.4.1 Format of Half-Precision Floating-Point Type

The format of half-precision floating-point type is determined by -mfp16-

format=type and whether or not half-precision floating-point is used in the program.

Use Half-Precision -mfp16-format=type
Floating-Point or Not none ieee bfloat
Not Use none none none
Use none binary16 bfloat16

14.4.2 Mixing binary16 and bfloat16

When both binary16 and bfloat16 object files are mixed, an object file, executable

file or shared library cannot be generated.

14.5 Notice

VE3 executables cannot be executed on VEL1.

In VE1, it is not possible to generate or execute object files using half-precision
floating-point.
The command ngprof cannot output a performance information when executing

the VE1 executables on VE3 and output "gmon.out".

Unable to generate static libraries, shared libraries, or executables with a mix of

VE1 and VE3 object files. The following error occurs when linking.

/opt/nec/ve/bin/nld: a.o: this object cannot use on VE3.

/opt/nec/ve/bin/nld: failed to merge target specific data of file a.o

When using the "traceback" function of the compiler with VE1 binaries, please

- 325 -

Appendix A Configuration file

ensure that version 5.0.1 or later is used. Additionally, if using the "traceback"
function of MPI, please ensure that MPI version 3.4.0 or later is also used in
conjunction with the compiler. Otherwise, the generated traceback may not be

outputted correctly.

- 326 -

Appendix A Configuration file

Chapter1l5 Notice

(1)

(2)

(3)

(4)

(5)

(6)

The version 2.0.0 or later is not compatible with the version 1.X.X. Therefore, an
object file compiled by version 2.0.0 or later cannot be linked with an object file

compiled by version 1.X.X.

Runtime library is also provided as shared library in version 2.2.2 or later.
Therefore, please re-compile and re-build the shared library by version 2.2.2 or

later when they were compiled by version 2.1.2 or earlier.

The dynamic linker included in glibc-ve package version 2.21-4 or later is needed
to execute the executable file compiled by version 2.2.2 or later. Confirm the

version of glibc-ve package if an error occurs at execution.

$ rpm -q glibc-ve
glibc-ve-2.21-4.el7. x86_64

The execution performance of version 2.2.2 or later may fall compared with
version 2.1.2 or earlier by overhead of dynamic-link process, because the
compiler links a shared library at default. It can be avoided by the compilation by
-static or -static-nec.

Notes:

When executing the executable file compiled with -static or -static-nec option,

the execution may be failed rarely. For example a result is wrong, and program

aborts and so on.

The NAMELIST output is changed to new form since version 3.0.8. If you want to
NAMELIST output form of version 3.0.7 or earlier, set "NO" to environment

variable VE_FORT_NML_REPEAT_FORM.

$ export VE_FORT_NML_REPEAT_FORM=NO

The compiler outputs the following info message since version 3.5.0, when the
argument type of intrinsic procedures SYSTEM_CLOCK is other than
INTEGER(KIND=8). This message recommends INTEGER(KIND=8) as the
argument type of intrinsic procedures SYSTEM_CLOCK, but does not necessarily
require any program changes. Even if you do not modify the program, it will not

affect the program execution.

- 327 -

Appendix A Configuration file

The arguments to intrinsic subroutine SYSTEM_CLOCK are of type INTEGER, but it
is recommended that they should be of type INTEGER (int64)

- 328 -

Appendix A Configuration file

A.1 Overview

Appendix A Configuration file

The configuration file can be used in order to override the defaults which the

compiler uses. To use the configuration file, use -cf=conf.
The syntax of configuration file is as follow:

keyword : value

The following table shows currently available keywords.

keyword description

veroot The root directory of the VE component
(default: /opt/nec/ve)

system The root directory of the compiler component
(default: /opt/nec/ve/nfort/version)

as The path of assembler command
(default: <veroot>/bin/nas)

fcom The path of Fortran compiler
(default: <system>/libexec/fcom)

Id The path of linker command
(default: <veroot>/bin/nld)

fpp The path of Fortran preprocessor command

fc_pre_options
fc_post_options

as_pre_options
as_post_options

Id_pre_options
Id_post_options

startfile

endfile

(default: <system>/libexec/fpp)

The Compiler options.

The options are specified in the following order.
<fc_pre_options> <user-specified-options> <fc_post_options>

The Assembler options.

The options are specified in the following order.
<as_pre_options> <user-specified-options>

<as_post_options>

The Linker options.

The options are specified in the following order.
<|d_pre_options> <user-specified-options> <Id_post_options>

The startup file.

The startup file. The file is specified at the tail of linker options.

- 329 -

Appendix A Configuration file

A.2 Format

A.3

A keyword and the value are separated by the colon.
When a keyword is not set, it set the default value.
A blank can be specified around the separator colon.

When ‘¥’ is specified as an end of a line, the value can be specified continuous in
the next line.

Example:

fc_pre_options: -1 /tmp ¥
-1 /tmp2

When specifying two or more the same keyword, the last keyword becomes

effective.

Example

Change the root directory of VE component and compiler component.

A configuration file is made and set the value to ‘veroot’ and ‘system’.

veroot: /foo/ve
system: /foo/ve/nfort/X.X. X

When the configuration file is specified by -cf. The configuration file name is

ve.conf here.

$ nfort -cf=ve.conf test.f90

Change the using compiler.

Set the value to ‘fcom’ when only the used compiler is changed.

fcom: /foo/ve/nfort/X. X. X/|ibexec/fcom

When the configuration file is specified by -cf. An assembler, a linker and so on

can also be changed in the same way.

- 330 -

Appendix B SX Compatibility

Appendix B SX Compatibility

This appendix describes the correspondence tables of compiler options, compiler

directives, and environment variables referred at the execution between SX

compilers and compilers for the Vector Engine.

B.1.1 Overall Options

B.1 NEC Fortran 2003 Compiler Options

NEC Fortran 2003 Compiler

Vector Engine Compiler

-Caopt -04

-Chopt -03

-Cvopt -02

-Csopt -02 -mno-vector
-Cvsafe -01

-Cssafe -01 -mno-vector
-Cnoopt -00

-S -S

-NS none

-V --version

Note: Continue the compilation process.

Note: Display the version and exit.

-NV none

-C -C

-Nc none

-cf string -cf=string
-clear -clear
-mod | -Nmod none

-0 file-name -0 file-name
-size_132 none
-size_t64 none

Note: Always effective.

- 331 -

Appendix B SX Compatibility

B.1.2

NEC Fortran 2003 Compiler

Vector Engine Compiler

-syntax -fsyntax-only
-Nsyntax -fno-syntax-only
-tm directory-name none

-to directory-name none

-verbose -v

-Nverbose none

Vector/Scalar Optimization Options

NEC Fortran 2003 Compiler

Vector Engine Compiler

-Ochg -fassociative-math or
-faggressive-associative-math

-Onochg -fno-associative-math

-0div -freciprocal-math

-Onodiv -fno-reciprocal-math

-Oextendreorder -msched-interblock

-Onoextendreorder none

-Oignore_volatile

-fignore-volatile

-Onoignore_volatile

-fno-ignore-volatile

-Oiodo -marray-io
-Onoiodo -mno-array-io
-Omove -fmove-loop-invariants-unsafe

-Onomovediv

-fmove-loop-invariants

-Onomove -fno-move-loop-invariants
-Ooverlap -fnamed-alias
-Onooverlap -fnamed-noalias

-Oreorderrange=bblock

-msched-insns

- 332 -

Appendix B SX Compatibility

NEC Fortran 2003 Compiler

Vector Engine Compiler

-Ounroll -floop-unroll
-Ounroll=n -floop-unroll
-floop-unroll-max-times=n
Note: Specify two at the same time.
-Onounroll -fno-loop-unroll
-dir { vec | novec } none
-ipa -fipa
-Nipa -fno-ipa
-math { errchk | noerrchk } none
-math { inline | noinline } none

-pvctl,altcode

-mvector-dependency-test
-mvector-loop-count-test
-mvector-shortloop-reduction

Note: Specify three at the same time.

-pvctl,altcode=dep

-mvector-dependency-test

-pvctl,altcode=nodep

-mno-vector-dependency-test

-pvctl,altcode=loopcnt

-mvector-loop-count-test

-pvctl,altcode=noloopcnt

-mno-vector-loop-count-test

-pvctl,altcode=shortloop

-mvector-shortloop-reduction

-pvctl,altcode=noshortloop

-mno-vector-shortloop-reduction

-pvctl,noaltcode

-mno-vector-depencendy-test

-mno-vector-loop-count-test

-mno-vector-shortloop-reduction
Note: Specify three at the same time.

-pvctl,assoc

-fassociative-math

-pvctl,noassoc

-fno-associative-math

-pvctl,assume

-mvector-assume-loop-count

-pvctl,noassume

-mno-vector-assume-loop-count

- 333 -

Appendix B SX Compatibility

NEC Fortran 2003 Compiler

Vector Engine Compiler

-pvctl,chgpwr

-mvector-power-to-explog
-mvector-power-to-sqrt
Note: Specify two at the same time.

-pvctl,collapse

-floop-collapse

-pvctl,nocollapse

-fno-loop-collapse

-pvctl { compress | nocompress }

none

-pvctl,cond_mem_opt

-mvector-merge-conditional

-pvctl,nocond_mem_opt

-mno-vector-merge-conditional

-pvctl { conflict | noconflict }

none

-pvctl,divioop

none

-pvctl,nodivioop

-mwork-vector-kind=none

-pvctl,expand=n

-floop-unroll-complete=n

-pvctl,noexpand

-fno-loop-unroll-complete

-pvctl listvec

-mlist-vector

-pvctl nolistvec

-mno-list-vector

-pvctl,loopchg

-floop-interchange

-pvctl,noloopchg

-fno-loop-interchange

-pvctl,loopcnt=n

-floop-count=n

-pvctl,Istval

none

-pvctl,nolstval

none

-pvctl, matmul

-fmatrix-multiply

-pvctl,nomatmul

-fno-matrix-multiply

-pvctl,neighbors

-mvector-neighbors
Note: This option is available when
-march=ve3 is enabled.

-pvctl,noneighbors

-mno-vector-neighbors

-pvctl,nodep

-fivdep

- 334 -

Appendix B SX Compatibility

NEC Fortran 2003 Compiler

Vector Engine Compiler

-pvctl,on_adb[=category]

none

-pvctl,outerunroll=n

-fouterloop-unroll
-fouterloop-unroll-max-times=n
Note: Specify two at the same time.

-pvctl,outerunroll_lim=n

none

-pvctl,split

-floop-split

-pvctl,nosplit

-fno-loop-split

-pvctl { vchg | novchg }

none

-pvctl,vecthreshold=n

-mvector-threshold=n

-pvctl,verrchk

-mvector-intrinsic-check

-pvctl,noverrchk

-mno-vector-intrinsic-check

-pvctl { vichk | novichk } none
-pvctl,vwork={ static | stack | hybrid } | none
-pvctl,vworksz=n none

-salloc -mstack-arrays
-Nsalloc -mno-stack-arrays

-V -mvector

-Nv -mno-vector

-xint -mno-vector-iteration
-Nxint -mvector-iteration

B.1.3 Inlining Options

NEC Fortran 2003 Compiler

Vector Engine Compiler

-dir { inline | noinline }

none

-pi,auto

-finline-functions

-pi,max_depth=n

-finline-max-depth=n

- 335 -

Appendix B SX Compatibility

NEC Fortran 2003 Compiler Vector Engine Compiler
-pi,max_size=n -finline-max-function-size=n
-pi,proc_size=n none
-pi,times=n -finline-max-times=n

B.1.4 Parallelization Options

NEC Fortran 2003 Compiler Vector Engine Compiler
-dir { par | nopar } none
-Pauto -mparallel
-Pmulti none
-Popenmp -fopenmp
-Pstack none
-Pstatic -bss
-pvctl,for[=n] none

Note: Parallelization schedule can be
controlled by -mschedule-static
etc.

-pvctl,by=n none
Note: Parallelization schedule can be
controlled by -mschedule-static

etc.
-pvctl,inner -mparallel-innerloop
-pvctl,noinner -mno-parallel-innerloop
-pvctl,outerstrip -mparallel-outerloop-strip-mine
-pvctl,noouterstrip -mno-parallel-outerloop-strip-mine
-pvctl,parcase -mparallel-sections
-pvctl,noparcase -mno-parallel-sections
-pvctl,parthreshold=n -mparallel-threshold=n
-pvctl,noparthreshold -mno-parallel-threshold

-pvctl,res={ whole | parunit | no } none

- 336 -

Appendix B SX Compatibility

NEC Fortran 2003 Compiler

Vector Engine Compiler

-reserve n none
B.1.5 Code Generation Options
NEC Fortran 2003 Compiler Vector Engine Compiler
-adv { on | off } none
-Nadv none
-mask { flovf | flunf | fxovf | inv | | none
inexact | zdiv } Note: It can be controlled by the envir
onment variable VE_FPE_ENABL
E.
-mask { setall | nosetall | setmain } none
-prec_complex_division none
-Nprec_complex_division none
-stkchk | -Nsckchk none
B.1.6 Language Options
NEC Fortran 2003 Compiler Vector Engine Compiler
-defacto_associated none
-Ndefacto_associated none

-default_double_size

-fdefault-double=n

-default_real_size

-fdefault-real=n

-default_integer_size

-fdefault-integer=n

-extend_source

-fextend-source

-fixed

-ffixed-form

-free

-ffree-form

- 337 -

Appendix B SX Compatibility

B.1.7

B.1.8

NEC Fortran 2003 Compiler

Vector Engine Compiler

-f2003 -std={ f2003 | f2008 | f95 }
-f2008

-fo5

-ignore_directive none

-Nignore_directive none

-small_integer | -Nsmall_integer none

Performance Measurement Options

NEC Fortran 2003 Compiler

Vector Engine Compiler

-acct -proginf
-Nacct -no-proginf
-ftrace -ftrace
-Nftrace -no-ftrace
-P P

-Np none

Debug Options

NEC Fortran 2003 Compiler

Vector Engine Compiler

-check

-fcheck=keyword

-init stack={ zero | nan | OxXXXX }

-minit-stack={ zero | snan | snanf |
OXXXXX }

-mtrace [basic]

-mmemory-trace

-mtrace full -mmemory-trace-full
-Nmtrace none

-traceback -traceback
-Ntraceback none

- 338 -

B.1.9 Preprocessor Options

Appendix B SX Compatibility

NEC Fortran 2003 Compiler

Vector Engine Compiler

-Dname[=def] -Dname[=def]
-E -E

-EP none

-Ep -fpp

-NE -nofpp

-H none

-1 directory-name

-1 directory-name

-M

-M

-Uname

-Uname

-Wp,option-string

-Wp,option-string

-ts directory-name

none

B.1.10 List Output Options

NEC Fortran 2003 Compiler

Vector Engine Compiler

-Rappend -report-append-mode
-Rnoappend none

-Rdiaglist -report-diagnostics
-Rnodiaglist none

-Rfile={ file-name | stdout }

-report-file={ file-name | stdout }

-Rfmtlist -report-format
-Rnofmtlist none
-Robjlist -assembly-list
-Rnoobijlist none
-R { summary | nosummary } none
-R { transform | notransform } none

- 339 -

Appendix B SX Compatibility

B.1.11 Message Options

NEC Fortran 2003 Compiler

Vector Engine Compiler

-0 { fullmsg | infomsg | nomsg }

none

-pi { fullmsg | infomsg | homsg }

-fdiag-inline={2 | 1|0}

-pvctl { fullmsg | infomsg | nomsg }

-fdiag-parallel={ 2 |1 | 0}
-fdiag-vector={ 2| 1|0}

-w all -Wall
-W hone -w
-w { info | noinfo } none

-w extension

-Wextension

-w noextension

-Wno-extension

-w { observe | nhoobserve }

none

-w obsolescent

-Wobsolescent

-w noobsolescent

-Wno-obsolescent

-w { unreffed | nounreffed }

none

-w {unused | nounused }

none

B.1.12 Assembler Option

NEC Fortran 2003 Compiler

Vector Engine Compiler

-Wa,option-string

-Wa,option-string

B.1.13 C Compiler Option

NEC Fortran 2003 Compiler

Vector Engine Compiler

-Wc,option-string

none

- 340 -

B.1.14 Linker Options

Appendix B SX Compatibility

NEC Fortran 2003 Compiler

Vector Engine Compiler

-L directory-name

-L directory-name

-llibrary-name

-llibrary-name

-WI,option-string

-WI,option-string

B.1.15 Directory Options

NEC Fortran 2003 Compiler

Vector Engine Compiler

-Y1,directory-name none
-YL,directory-name none
-YM, directory-name none
-YS, directory-name none
-Ya,directory-name none
-Yf,directory-name none
=Yl,directory-name none
-Yp, directory-name none

B.2 FORTRAN90/SX Compiler

B.2.1 f90/sxf90 command Options

FORTRAN90/SX Compiler Vector Engine Compiler

-Chopt -03
-Cvopt -02
-Csopt -02 —-mno-vector
-Cvsafe -01
-Cssafe -01 -mno-vector
-Cdebug -00 -g

- 341 -

Appendix B SX Compatibility

FORTRAN90/SX Compiler

Vector Engine Compiler

-C -C
-Nc none
-cf strings -cf=strings
-clear -clear
-Dname[=def] -Dname[=def]
-da none
-dC -fcheck=none
-dD none
-dpP none
-dR -fcheck=none
-dw none
Note: -dW is always effective.
-dw none
Note: -dw is always effective.
-ea none
-eC -fbounds-check or -fcheck=bounds
-eD none
-eP none
-eR -fbounds-check or -fcheck=bounds
Note: Only the range of array subscripts
is checked.
-ew none
-ew none
Note: See Section 13.5 for details of
migration.
-EP none
-Ep -fpp
-NE -nofpp
-f2003 none

Note: Fortran 2003 features are
available by default.

- 342 -

Appendix B SX Compatibility

FORTRAN90/SX Compiler

Vector Engine Compiler

-f2003 { cbind | nocbind } none

-f2003 { cptr_derive | cptr_i8 } none

-f2003 { opt_ieee | noopt_ieee } none

-Nf2003 none

-f0 -ffixed-form

-f3 -ffixed-form —fextend-source
-f4 -ffree-form

-f5 -ffree-form —fextend-source
-ftrace -ftrace

-Nftrace -no-ftrace

-G { global | local } none

-9 -9

-gv none

-gw none

-Ng -go

-1 directory-name

-1 directory-name

-L directory-name

-L directory-name

-llibrary-name

=llibrary-name

-0 file-name -0 file-name
-Pauto -mparallel
-Pmulti none
-Popenmp -fopenmp
-Pstack none
-Pstatic -bss

-p -p

-Np none

-pi argconsis={noexp|safe|unsafe} none

-pi auto

-finline-functions

- 343 -

Appendix B SX Compatibility

FORTRAN90/SX Compiler

Vector Engine Compiler

-pi noauto none
-pi exp=procedure-name none
-pi noexp=procedure-name none

-pi expin={file-name|directory}

~finline-file=file-name or
-finline-directory=directory
Note: -finline-functions option is
needed.

-pi { fullmsg | infomsg | nomsg }

-fdiag-inline={2 | 1|0}

-pi { incdir | noincdir }

none

-pi line=n
Note: n is the number of lines of the
source code.

-finline-max-function-size=n
Note: n is the amount of intermediate
representations for a function.
-finline-functions option is
needed.

-pi { modout | nomodout }

none

-pi nest=n

-finline-max-depth=n
Note: -finline-functions option is
needed.

-pi rexp=function

none

-Npi -fno-inline-functions
-RO none

-R1 none

-R2 none

-R3 none

-R4 none

-R5 -report-diagnostics -report-format
-S -S

-NS none

-size_1t32 none

-size_t64 none

Note: -size_t64 is always effective.

- 344 -

B.2.2

Appendix B SX Compatibility

FORTRAN90/SX Compiler

Vector Engine Compiler

-sx8 | -sx8r | -sx9 | -sxace none

-to directory-name none

-ts directory-name none
-Uname -Uname
-V --version

Note: Continue the compilation process.

Note: Display the version and exit.

-NV none
-verbose -v
-Nverbose none

-Wa,option-strings

-Wa,option-strings

-Wc,option-strings

none

-Wf,option-strings
Note: See the following sections for
detailed options.

none

-WI,option-strings

-WI,option-strings

-Wp,option-strings

-Wp,option-strings

-w -w
-Nw -Walli
-Yf,directory-name none
=Yl directory-name none
-Yp,directory-name none

f90/sxf90 Detailed Options for optimization

FORTRAN90/SX Compiler

Vector Engine Compiler

-ai | -Nai none
-fusion -floop-fusion
-Nfusion -fno-loop-fusion

-i { errchk | noerrchk }

none

- 345 -

Appendix B SX Compatibility

FORTRAN90/SX Compiler Vector Engine Compiler
-0 { aryinq | noaryinq } none
-0 chg -fassociative-math or
-faggressive-associative-math
-0 nochg -fno-associative-math
Note: -faggressive-associative-math
optimize more aggressive than -
fassociative-math.
-0 { compass | hocompass } none
-0 darg -fargument-alias
-0 nodarg -fargument-noalias
-0 div -freciprocal-math
-0 nodiv -fno-reciprocal-math
-0 extendreorder -msched-interblock
-0 reorderrange=bblock -msched-insns
-0 { if | noif } none
-0 iodo -marray-io
-0 noiodo -mno-array-io
-0 infomsg none
-0 move -fmove-loop-invariants-unsafe
-0 nomovediv -fmove-loop-invariants
-0 nomove -fno-move-loop-invariants
-0 overlap -fnamed-alias
-0 nooverlap -fnamed-noalias
-0 { shapeprop | noshapeprop } none
-0 unroll -floop-unroll
-0 unroll=n -floop-unroll
-floop-unroll-max-times=n
Note: Specify two at the same time.

- 346 -

Appendix B SX Compatibility

FORTRAN90/SX Compiler Vector Engine Compiler

-0 nounroll -fno-loop-unroll

-0 wkary_opt -mstack-arrays

-0 nowkary_opt -mno-stack-arrays

-0 { zlpchk | nozlpchk } none

-prob_dir directory-name none

-prob_file file-name none

-prob_generate none

-prob_use none

B.2.3 f90/sxf90 Detailed Options for vectorization and parallelization

FORTRAN90/SX Compiler Vector Engine Compiler
-common { global | local } none
-moddata { global | local } none

-ompctl { condcomp | nocondcomp } none

-pvctl altcode -mvector-dependency-test
-mvector-loop-count-test
-mvector-shortloop-reduction

Note: Specify three at the same time.

-pvctl altcode=dep -mvector-dependency-test

-pvctl altcode=nodep -mno-vector-dependency-test
-pvctl altcode=loopcnt -mvector-loop-count-test

-pvctl altcode=noloopcnt -mno-vector-loop-count-test
-pvctl altcode=shortloop -mvector-shortloop-reduction
-pvctl altcode=noshortloop -mno-vector-shortloop-reduction
-pvctl noaltcode -mno-vector-depencency-test

-mno-vector-loop-count-test
-mno-vector-shortloop-reduction
Note: Specify three at the same time.

-pvctl assoc -fassociative-math

- 347 -

Appendix B SX Compatibility

FORTRAN90/SX Compiler

Vector Engine Compiler

-pvctl noassoc

-fno-associative-math

-pvctl assume

-mvector-assume-loop-count

-pvctl noassume

-mno-vector-assume-loop-count

-pvctl chgpwr

-mvector-power-to-explog
-mvector-power-to-sqrt
Note: Specify two at the same time.

-pvctl chgtanh

none

-pvctl cncall=routine-name

none

-pvctl collapse

-floop-collapse

-pvctl nocollapse

-fno-loop-collapse

-pvctl { compress | hocompress }

none

-pvctl cond_mem_opt

-mvector-merge-conditional

-pvctl nhocond_mem_opt

-mno-vector-merge-conditional

-pvctl { conflict | noconflict }

none

-pvctl divioop

none

-pvctl nodivlioop

-mwork-vector-kind=none

-pvctl expand=n

-floop-unroll-complete=n

-pvctl noexpand

-fno-loop-unroll-complete

-pvctl { farouter | nofarouter }

none

-pvctl for[=n]

none
Note: Parallelization schedule can be

controlled by -mschedule-static

etc

-pvctl by=n

none
Note: Parallelization schedule can be

controlled by -mschedule-static

etc

-pvctl { fullmsg | infomsg | homsg }

-fdiag-parallel={ 2| 1|0}
-fdiag-vector={ 2| 1|0}
Note: Specify two at the same time.

-pvctl { ifopt | noifopt }

none

- 348 -

Appendix B SX Compatibility

FORTRAN90/SX Compiler

Vector Engine Compiler

-pvctl inner

-mparallel-innerloop

-pvctl noinner

-mno-parallel-innerloop

-pvctl listvec

-mlist-vector

-pvctl nolistvec

-mno-list-vector

-pvctl loopchg

-floop-interchange

-pvctl noloopchg

-fno-loop-interchange

-pvctl loopcnt=n

-floop-count=n

-pvctl Istval

none

-pvctl nolstval

none

-pvctl matmul

-fmatrix-multiply

-pvctl nomatmul

-fno-matrix-multiply

-pvctl matmulblass

none

-pvctl neighbors

-mvector-neighbors
Note: This option is available when
-march=ve3 is enabled.

-pvctl noneighbors

-mno-vector-neighbors

-pvctl nodep

-fivdep

-pvctl on_adb[=category]

none

-pvctl outerstrip

-mparallel-outerloop-strip-mine

-pvctl noouterstrip

-mno-parallel-outerloop-strip-mine

-pvctl outerunroll=n

-fouterloop-unroll
-fouterloop-unroll-max-times=n
Note: Specify two at the same time.

-pvctl outerunroll_lim=n

none

-pvctl parcase

-mparallel-sections

-pvctl noparcase

-mno-parallel-sections

-pvctl parthreshold=n

-mparallel-threshold=n

-pvctl noparthreshold

-mno-parallel-threshold

-pvctl res={ whole | parunit | no }

none

- 349 -

Appendix B SX Compatibility

FORTRAN90/SX Compiler

Vector Engine Compiler

-pvctl shape=n

none

-pvctl split

-floop-split

-pvctl nosplit

-fno-loop-split

-pvctl { vchg | novchg }

none

-pvctl vecthreshold=n

-mvector-threshold=n

-pvctl verrchk

-mvector-intrinsic-check

-pvctl noverrchk

-mno-vector-intrinsic-check

-pvctl { vichk | novichk }

none

-pvctl vregs=n

none

-pvctl vsqrt

-mvector-sqrt-instruction

-pvctl novsqrt

-mno-vector-sqrt-instruction

-pvctl vwork={ static | stack | hybrid } | none

-pvctl vworksz=n none
-reserve n none
-tasklocal { macro | micro } none

-V -mvector
-Nv -mno-vector

B.2.4

f90/sxf90 Other Detailed Options

FORTRAN90/SX Compiler

Vector Engine Compiler

-A { dbl | dbl4 | dbI8 | idbl | idbl4 |

-A idbl : -fdefault-real=8 -fdefault-

idbl8 } double=16
-A idbl4 : -fdefault-real=8
-A idbl8 : -fdefault-double=16
Note: See Section 13.5 for details of
migrating other options.

-acct -proginf

-Nacct -no-proginf

-adv { on | off } none

Appendix B SX Compatibility

FORTRAN90/SX Compiler

Vector Engine Compiler

-Nadv none
-compatimod none
-const_ext | -Nconst_ext none

-cont -fassume-contiguous
-Ncont -fno-assume-contiguous
-dblprecision | -Ndblprecision none

-dir { vec | par | debug } none

-dir { novec | nopar | nodebug } none

-dollar | -Ndollar none

-esc | -Nesc none

-G | -NG none

-init stack={ zero | nan | OxXXXX }

-minit-stack={ zero | nan | OxXXXX }

-init heap={zero | nan | OxXXXX }

none
Note: It can be controlled by the
environment variable
VE_INIT_HEAP.

-K{a|Na}

none

-K{b|Nb}

none

-L { stdout | nostdout | filename=file-
name }

-report-file={ stdout | file-name }
Note: The default is -Lnostdout.

-L { eject | noeject }

none

-L fmtlist -report-format

-L nofmtlist none

-L { inclist | noinclist } none

-L { map | nomap } none

-L mrgmsg none

-L sepmsg -report-diagnostics

- 351 -

Appendix B SX Compatibility

FORTRAN90/SX Compiler

Vector Engine Compiler

-L objlist -assembly-list
-L noobjlist none
-L { source | nosource } none
-L { summary | hosummary } none
-L { transform | notransform } none
-NL none
-M { zdiv | flovf | fxovf | inv | none

inexact }

Note: It can be controlled by the
environment variable
VE_FPE_ENABLE.

-M { setall | setmain }

none

-msg b -Wobsolescent
-msg nb -Wno-obsolescent
-msg{d|nd} none

-msg {f | nf} none

Note: nf is always effective.

-msg{o|no}

none

-msg{w|nw}

none.
Note: nw is always effective.

-P{a|b|c|d]e|f|lh]i]l]p]|t] |none
x|z}

-P{b|nb} none
-P{c|nc} none
-P{d|nd} none
-P{e]|ne} none
-P f -nofpp
-P nf none

Note: nf is always effective.

- 352 -

Appendix B SX Compatibility

FORTRAN90/SX Compiler

Vector Engine Compiler

-P h none

Note: h is always effective.
-P nh -ff90-sign
-P{il|ni} none
-P{Il|nl} none
-P{plnp} none
-P{t|nt} none

Note: nt is always effective.
-P{x|nx} none

Note: x is always effective.
-P{z|nz} none
-ptr { byte | word } none

Note: byte is always effective.

-s | -Ns none
-stmtid | -Nstmtid none
-w { doublel6 | rdoublel6 } none

-Xint

-mno-vector-iteration

-Nxint

-mvector-iteration

B.3 Compiler Directives

Please refer to “C.3 Compiler Directives” to confirm the correspondence tables of

compiler directives between SX compilers and compilers for the Vector Engine.

Please use the “compiler directive conversion tool” for converting from the SX

compiler directive to the Vector Engine. Please refer to “Appendix C Compiler

III

Directive Conversion Too

for detail.

- 353 -

Appendix B SX Compatibility

B.4 Environment Variables

SX Compiler Vector Engine Compiler
F_PROGINF VE_PROGINF
F_TRACEBACK VE_TRACEBACK
F_EXPRCW VE_FORT_EXPRCW
F_FMTBUF VE_FORT_FMTBUF
F_NORCW VE_FORT_NORCW
F_PAUSE VE_FORT_PAUSE
F_PARTRCW VE_FORT_PARTRCW
F_SETBUF VE_FORT_SETBUF
F_UFMTADJUST=TYPE1 VE_FORT_UFMTADJUST=INT,LOG
F_UFMTADJUST=TYPE2 VE_FORT_UFMTADJUST=ALL
F_UFMTENDIAN VE_FORT_UFMTENDIAN
F_FFn VE_FORTn

B.5 Other Library

-use can be used instead of USE statement.

SX Compiler Vector Engine Compiler
CALL ABORT() USE F90_UNIX
CALL ABORT()
RESULT = ACCESS(NAME,MODE) USE F90_UNIX_FILE

CALL ACCESS(NAME,AMODE,RESULT)
Note: MODE(CHARACTER) was changed to
AMODE(INTEGER). See Section
11.3.5 for details of
AMODE(INTEGER).

RESULT = USE FO90_UNIX_PROC
ALARM(SECONDS,HANDLER) CALL
ALARM(SECONDS,HANDLER,RESULT,ERRNO)

RESULT = CHDIR(NAME) USE FO90_UNIX_DIR
CALL CHDIR(NAME,RESULT)

- 354 -

Appendix B SX Compatibility

SX Compiler

Vector Engine Compiler

RESULT = CHMOD(NAME,MODE)

USE FO0_UNIX_FILE
CALL CHMOD(PATH,AMODE,RESULT)

Note: MODE(CHARACTER) was changed to
AMODE(INTEGER). See Section

11.3.5 for details of
AMODE(INTEGER).

CALL FLUSH(UNIT)

FLUSH(UNIT)

RESULT = FORK()

USE F90_UNIX_PROC
CALL FORK(RESULT,ERRNO)

CALL FREE(PTR)

USE F90_UNIX
CALL FREE(PTR)

RESULT = FSTAT(UNIT,BUFF)

USE FO90_UNIX_FILE
CALL FSTAT(UNIT,BUFF,RESULT)

CALL GETARG(POS,VALUE)

USE F90_UNIX
CALL GETARG(POS,VALUE)

RESULT = GETCWD(DIRNAME)

USE FO90_UNIX_DIR

CALL GETCWD(DIRNAME,ERRNO=RESULT)

CALL GETENV(NAME,VALUE)

USE F90_UNIX
CALL GETENV(NAME,VALUE)

RESULT = GETGID()

USE F90_UNIX
RESULT = GETGID()

CALL GETLOG(NAME)

USE FO90_UNIX_ENV
CALL GETLOGIN(NAME)

RESULT = GETPID()

USE F90_UNIX
RESULT = GETPID()

RESULT = GETUID()

USE F90_UNIX
RESULT = GETUID()

RESULT = HOSTNM(NAME)

USE FOO0_UNIX_ENV
CALL GETHOSTNAME(NAME,RESULT)

RESULT = IARGC()

USE F90_UNIX
RESULT = IARGC()

RESULT = ISATTY(UNIT)

USE FO90_UNIX_ENV
CALL ISATTY(UNIT,RESULT,ERRNO)

RESULT = LINK(PATH1,PATH2)

USE FO90_UNIX_DIR
CALL LINK(PATH1,PATH2,RESULT)

RESULT = LSTAT(FILE,BUFF)

USE FO0_UNIX_FILE
CALL LSTAT(FILE,BUFF,RESULT)

- 355 -

Appendix B SX Compatibility

SX Compiler Vector Engine Compiler

PTR = MALLOC(SIZE) USE F90_UNIX

PTR = MALLOC(SIZE)
RESULT = RENAME(FROM,TO) USE FO90_UNIX_DIR

CALL RENAME(FORM,TO,RESULT)
CALL SLEEP(SECONDS) USE FO90_UNIX_PROC

CALL SLEEP(SECONDS)
RESULT = STAT(FILE,BUFF) USE FO0_UNIX_FILE

CALL STAT(FILE,BUFF,RESULT)
RESULT = SYSTEM(COMMAND) USE F90_UNIX_PROC

CALL SYSTEM(COMMAND,RESULT,ERRNO)
RESULT = TIME() USE F90_UNIX_ENV

CALL TIME(RESULT)
RESULT = TTYNAM(UNIT) USE F90_UNIX_ENV

CALL TTYNAME(UNIT,RESULT,ERRNO)

RESULT = UNLINK(PATH) USE FO90_UNIX_DIR
CALL UNLINK(PATH,RESULT)

RESULT = WAIT(I) USE F90_UNIX_PROC
CALL WAIT(I,ERRNO=RESULT)

B.6 Implementation-Defined Specifications

B.6.1 Data Types

SX Compiler Vector Engine Compiler
e Kind Type Data Type (*1) Kind Type Data Type
Parameter Parameter
integer 1(*2) 1-byte integer 1 1-byte integer
integer 2 2-byte integer 2 2-byte integer
integer 4 4-byte integer 4 4-byte integer
(default integer type) (default integer type)
integer 8 8-byte integer 8 8-byte integer
real 4 4-byte real 4 4-byte real
(default real type) (default real type)
real 8 8-byte real 8 8-byte real

- 356 -

Appendix B SX Compatibility

SX Compiler Vector Engine Compiler
Type Kind Type Kind Type
Data Type (*1 Data Type
Parameter ype (*1) Parameter e
real 16 16-byte real 16 16-byte real
complex 4 (4,4)-byte complex 4 (4,4)-byte complex
(default complex (default complex
type) type)
complex 8 (8,8)-byte complex 8 (8,8)-byte complex
complex 16 (16,16)-byte complex 16 (16,16)-byte complex
logical 1 1-byte logical 1 1-byte logical
logical 4 4-byte logical 4 4-byte logical
(default logical type) (default logical type)
logical 8 8-byte logical 8 8-byte logical
character 1 character 1 character
(default character (default character
type) type)
character 2 (*3) character none

(*1) For FORTRAN9O0O/SX compiler, “Data Type” declaration can be changed by
specifying the compiler option.

(*2) Not available with FORTRAN90/SX Compiler.

(*3) Not available with NEC Fortran2003 Compiler

B.6.2 Specifications

Items FORTRAN90/SX NEC Fortran 2003 Vector Engine
Compiler Compiler Compiler

Nesting level of files - 20 63
included by INCLUDE line
Rank of an array 7 31 31
Number of continuation 99 511 1023
lines
Length of a name 63 199 199

- 357 -

Appendix B SX Compatibility

B.6.3 Intrinsic Procedures

Intrinsic Procedures SX Compiler

Vector Engine Compiler

SYSTEM_CLOCK The starting point of the
acquisition time is the start
of the program.

The starting point of the
acquisition time is 00:00 on
January 1, 1970,
Coordinated Universal Time
(UTC).

- 358 -

Appendix C Compiler Directive Conversion Tool

Appendix C Compiler Directive Conversion Tool

C.1

This appendix describes the tool for converting from the SX compiler directive to the

Vector Engine.

nfdirconv
Name:
nfdirconv
SYNOPSIS:
nfdirconv [OPTION...] [FILE | DIRECTORY]...
DESCRIPTION:
This tool converts the nfort/ncc/nc++ directive to the nfort/ncc/nc++ directive in
source file.
When this tool specifies a directory, it convert files with the following extensions in
that directory at once.
. i .h .C .cc .cpp .cp .cxx .c++ .ii .H .hh .hpp
.hp .hxx .h++ .tcc.F .FOR .FTN .FPP .F90 .F95 .FO3 .f
for .ftn .fpp .f90 .f95 .f03 .90
The original file is saved as file-name.bak.
The sxf90/sxf03/sxcc/sxc++ directives can be left after conversion or deleted by
option.
Options:
Option Description

-a, --append Append the nfort/ncc/nc++ directive. Do not delete the

sxf90/sxf03/sxcc/sxc++ directives.

-d, --delete If the nfort/ncc/nc++ directive is not supported, delete the
sxf90/sxf03/sxcc/sxc++ directive.

-f, --force Do not check file suffix.

-h, --help Display this help and exit.

-o file, --output
file

-p, --preserve

Specify output file-name. When multiple input files are
specified, or when a directory is specified, this option is
ignored.

If the nfort/ncc/nc++ directive is not supported, do not delete
the sxf90/sxf03/sxcc/sxc++ directive.

- 359 -

Appendix C Compiler Directive Conversion Tool

C.2

Option Description

-q, --quiet Do not report about conversion.
-r, --recursive Recursively conversion any subdirectories found.

-v, =--version Output version information and exit.

Messages:

If the Compiler directive is converted or the nfort/ncc/nc++ does not support the
compiler directive, the message is output to the standard error.

Format:

file-name: line Line-number: message

file-name: Input file name
Line-number: Line number of file before conversion

message:

e converted "SX compiler directive" to "VE compiler directive" (Converted |
Substitute)
Indicates that the compiler directive has been converted. "Converted" is output
if compiler directive of the SX and VE have equivalent functions. "Substitute" is

output if compiler directive of SX and VE have nearly equivalent functions.

* "SX compiler directive" is not supported [(Remained)]
The sxf90/sxf03/sxcc/sxc++ directive is not supported by VE. "Remained" is
output to the compiler directive scheduled for future implementation in the VE.
"Removed/Obsolescent" is output to the compiler directive that is not planned

to be supported.

Exit status:

The exit status is 0 if conversion is successful, otherwise it is nonzero.

Notes:

This tool is creates a temporary file for work in /tmp. This temporary file is
automatically deleted at the end of the execution. The directory can be changed

with the environment variable TMPDIR.

Examples

Examplel: When a file specified.

Convert the sxf90/sxf03/sxcc/sxc++ directive contained in a file to the

- 360 -

Appendix C Compiler Directive Conversion Tool

nfort/ncc/nc++ directive.

$ cat sample. f90

program main
integer s

ICDIR NOVECTOR
do i=1, 1000

S=§ + |

enddo
print*, s

end program

$ nfdirconv sample. f90
sample. f90: line 3: converted 'NOVECTOR to 'novector’ (Converted)

$ cat sample. 90

program main
integer s

INEC$ novector
do i=1, 1000

S =8 + |

enddo
printx, s

end program

Example2: When a directory is specified.
Take the following directory as an example.
dir/

+ Makefile

+ samplel.c

+ sample2.c

+ subdir/

+ Makefile

+ sample3.c

$ nfdirconv dir
dir/samplel. f90: line 5: converted ' loopcnt=5" to ' loop_count (5)" (Converted)
dir/sample2. f90: line 16: converted 'nodep’ to 'ivdep’ (Substitute)

In the above case, samplel.c and sample2.c are converted. Makefile is out of scope

because there is no file extension. Files in subdirectory 'subdir' are also excluded.

- 361 -

Appendix C Compiler Directive Conversion Tool

$ nfdirconv -r dir

dir/sample2. f90: line 5: converted 'nodep’ to ' ivdep’ (Substitute)
dir/samplel. f90: line 16: converted ' loopent=5" to ' loop_count(5)’ (Converted)
dir/subdir/sample3. f90: line 12: converted ' loopcnt=5" to ' loop_count(b)’
(Converted)

Specify -r option to convert files in subdirectories. If -r option is specified, directory is

recursively checked and converted.

C.3 Compiler Directives

SX Compiler Vector Engine Compiler

alloc_on_vreg(identifier, n) vreg(identifier)

altcode

altcode=dep
altcode=loopcnt
altcode=nodep
altcode=noshort
altcode=short

noaltcode

array(ci[,c2---])
arraycomb
assert
assoc
noassoc
assume
noassume
atomic
cncall
collapse
compress
nocompress

concur

dependency_test
loop_count_test
shortloop_reduction

dependency_test
loop_count_test
nodependency_test
noshortloop_reduction
shortloop_reduction

nodependency_test
noloop_count_test
noshort_loop_reduction

(Removed/Obsolescent)
(Removed/Obsolescent)
(Removed/Obsolescent)
assoc

noassoc

assume

noassume

atomic

cncall

collapse
(Removed/Obsolescent)
(Removed/Obsolescent)

concurrent

- 362 -

Appendix C Compiler Directive Conversion Tool

SX Compiler Vector Engine Compiler

concur(by=m) concurrent schedule(dynamic, m)

concur(for=n)
noconcur
data_prefetch
delinearize
nodelinearize
divioop
nodivloop

end arraycomb

end parallel sections

concurrent
noconcurrent
(Removed/Obsolescent)
(Removed/Obsolescent)
(Removed/Obsolescent)
vwork

novwork
(Removed/Obsolescent)

(Removed/Obsolescent)

expand unroll_complete
expand=n (Removed/Obsolescent)
noexpand nounroll

extend (Removed/Obsolescent)

extend_free

(Removed/Obsolescent)

fixed (Removed/Obsolescent)
free (Removed/Obsolescent)
gthreorder gather_reorder
nogthreorder (Removed/Obsolescent)
iexpand(function) inline
noiexpand(function) noinline

inline always_inline
inner inner

noinner noinner
listvec list_vector
nolistvec nolist_vector
loopchg interchange
noloopchg nointerchange
loopcnt=n loop_count(n)
Istval Istval

nolstval nolstval

move move_unsafe

- 363 -

Appendix C Compiler Directive Conversion Tool

SX Compiler Vector Engine Compiler
nomove nomove
nomovediv move
neighbors neighbors

noneighbors
nexpand
noconflict(identifier)
nodep
on_adb(identifier)
outerunroll=n
noouterunroll
overlap

nooverlap

parallel do

parallel do private(identifier)
parallel sections
section

select(keyword)

shape
shortloop
skip
sparse
nosparse
split
nosplit
sync
nosync
threshold
othreshold

traceback

Note: Neighboring access optimization is
effective only when -march=ve3 is
enabled.

noneighbors
inline_complete
(Removed/Obsolescent)
ivdep
(Removed/Obsolescent)
outerloop_unroll(n)
noouterloop_unroll
(Removed/Obsolescent)
(Removed/Obsolescent)
parallel do

parallel do private(identifier)
(Removed/Obsolescent)
(Removed/Obsolescent)

select_concurrent
select_vector

(Removed/Obsolescent)
shortloop
(Removed/Obsolescent)
sparse

nosparse

(Remained)

(Remained)

(Remained)

nosync
(Removed/Obsolescent)
(Removed/Obsolescent)

(Remained)

- 364 -

C.4

Appendix C Compiler Directive Conversion Tool

SX Compiler

Vector Engine Compiler

unroll=n
nounroll
unshared
vecthreshold
vector
novector
verrchk
noverrchk
vichk

ovichk

vob

novob
vovertake(identifier)
novovertake
vprefetch
novprefetch
vreg(identifier)

vwork=keyword

unroll(n)

nounroll
(Removed/Obsolescent)
vector_threshold(n)
vector

novector

(Remained)

(Remained)
(Removed/Obsolescent)
(Removed/Obsolescent)
vob

novob

vovertake
novovertake
(Remained)
(Removed/Obsolescent)
vreg(identifier)

(Removed/Obsolescent)

vworksz=n (Removed/Obsolescent)

zcheck (Removed/Obsolescent)

nozcheck (Removed/Obsolescent)
Notes

* The original file is saved as file-name.bak. When file-name.bak already exists,

rename file-name.bak to file-name.bak2, then save the new file as file-name.bak.

Up to five files are saved. Please delete files as necessary.

» This tool does not check the format of the input file. If the format of the

sxf90/sxf03/sxcc/sxc++ directive is incorrect, conversion may not be performed

correctly.

» If the input file is a symbolic link file, the symbolic link destination file is updated.

The "file-name.bak" is created as a regular file.

 BEGIN/END Directive are treated as unsupported compiler directive.

- 365 -

Appendix D File I/O Analysis Information

Appendix D File I/0 Analysis Information

This appendix describes the File I/O Analysis Information.

D.1 Output Example

Output when the value “"DETAIL" is set in the environment variable

VE_FORT_FILEINF.

frckkk File Information skkskskrxk
Unit No. : 10
File Name : fort.10
Named © YES
Current Directory : /usr/uhome/XXXXXXXX
TMPDIR ©/tmp
[/0 Exec. Count READ WRITE OPEN
1 1 0
REWIND BACKSPACE ENDFILE
1 0 0
WAIT FLUSH
0 0
Format FORMATTED Access
Blank (OPEN) NULL Blank (READ)
Del im (OPEN) NONE Delim (WRITE)
Pad (OPEN) YES Pad (READ)
Decimal (OPEN) POINT Decimal (R/W)
Sign (OPEN) PROCESSOR SignWRITE)
Round (OPEN) PROCESSOR Round (R/W)
Asynchronous NO Encoding
Position REWIND
Recl (Byte) 65536
File Size (Byte) 13 File Descriptor
File System Type NFS (0x00006969) Open Mode
Terminal Assignment : NO Shrunk File
Max File Size (Byte) : 600
1/0 Buffer Size (KByte) 512
Record Buffer Size (Byte) : 65536
Total (In/0ut) Input
Total Data Size (Byte) : 25, 13,
Max Data Size (Byte) 13,
Min Data Size (Byte) 13,

- 366 -

CLOSE
1

INQUIRE
0

SEQUENTTAL
NULL

YES

POINT
PROCESSOR
PROCESSOR
DEFAULT

5
READWRITE
YES

Output
12
12
12

Appendix D File I/O Analysis Information

Ave Data Size (Byte) : 12, 13, 12
Transfer Rate (KByte/sec) : 18. 789, 19. 261, 18. 303

Total (In/Out/Aux) Input Output
Real Time (sec) : 0. 004284, 0. 000659, 0. 000640
User Time (sec) ; 0. 002874, 0. 000062, 0.000129
Environment Variable List :

D.2 Description of items

Unit No.
External unit identifier number.

File Name
The file name output here is a name specified in the FILE specifier or during
preconnection; the name does not include the home directory or current directory.
For SCRATCH files, file names assigned by the system are output.

Named
Whether the file is a named file.

Current Directory
The directory name currently in operation.

TMPDIR
The directory name the SCRATCH file was created. This information is output only
for SCRATCH files.

I/0 Exec Count
The execution count of each I/0O statement. For direct access, information about
REWIND, BACKSPACE and ENDFILE is not output.

Format
The value of the FORM specifier.

Access
The value of the ACCESS specifier.

Blank (OPEN)
The value of the BLANK specifier of the OPEN statement. This information is
output only for FORMATTED.

Blank (READ)
The value of the BLANK specifier of the READ statement. For no READ

statement, ‘----* is output. When the different value is specified in the READ

- 367 -

Appendix D File I/O Analysis Information

statement, “MIXED” is output. This information is output only for FORMATTED.
Delim (OPEN)
The value of the DELIM specifier of the OPEN statement. This information is
output only for FORMATTED.
Delim (WRITE)
The value of the DELIM specifier of the WRITE statement. For no WRITE

statement, ‘----* is output. When the different value is specified in the WRITE
statement, “MIXED” is output. This information is output only for FORMATTED.
Pad (OPEN)

The value of the PAD specifier of the OPEN statement. This information is output
only for FORMATTED.

Pad (READ)
The value of the PAD specifier of the READ statement. For no READ statement, ‘-
---"is output. When the different value is specified in the READ statement,
“MIXED" is output. This information is output only for FORMATTED.

Decimal (OPEN)
The value of the DECIMAL specifier of the OPEN statement. This information is
output only for FORMATTED.

Decimal (R/W)
The value of the DECIMAL specifier of the READ/WRITE statement. For no
READ/WRITE statement, ‘----' is output. When the different value is specified in
the READ/WRITE statement, “MIXED"” is output. This information is output only
for FORMATTED.

Sign (OPEN)
The value of the SIGN specifier of the OPEN statement. This information is output
only for FORMATTED.

Sign (WRITE)
The value of the SIGN specifier of the WRITE statement. For no WRITE
statement, ‘----* is output. When the different value is specified in the WRITE
statement, “MIXED” is output. This information is output only for FORMATTED.

Round (OPEN)
The value of the ROUND specifier of the OPEN statement. This information is
output only for FORMATTED.

- 368 -

Appendix D File I/O Analysis Information

Round (R/W)
The value of the ROUND specifier of the READ/WRITE statement. For no
READ/WRITE statement, ‘----' is output. When the different value is specified in
the READ/WRITE statement, “MIXED"” is output. This information is output only
for FORMATTED.

Asynchronous
The value of the ASYNCHRONOUS specifier.

Encoding
The value of the ENCODING specifier of the OPEN statement. This information is
output only for FORMATTED.

Position
The value of the POSITION specifier of the OPEN statement. For direct access,
this information is not output.

Recl
The value of the RECL specifier of the OPEN statement in bytes. The default value
is output when the RECL specifier is not specified. For stream access, this
information is not output.

Max Record No.
The maximum record number actually input and output. This is not the maximum
record number derived from the file size. This information is output only for direct
access.

File Size
The size of the file in bytes at closing. This value also contains the record control
word appended by program for sequential access output.

File Descriptor
The value of the file descriptor.

File System Type
The file system to which the file belongs.

Open Mode
The mode in which the file was opened.

Terminal Assignment
Whether the file is connected to a terminal.

Shrunk File

Whether the file shrinkage function was executed. The file shrinkage function

- 369 -

Appendix D File I/O Analysis Information

releases the remaining area, when the file size at closing is smaller than the file
size at opening or the maximum file size is reached during program execution.
This information is output only for sequential access.

Max File Size
The maximum file size in bytes during program execution. This information is
output only when the shrunk file indicates "YES". This is useful information when
trying to decide on I/0 buffer size.

I/0 Buffer Size
The size of an I/0 buffer allocated for I/0O in kilo bytes.

Record Buffer Size
The size of a record buffer allocated for I/O in bytes.

Total Data Size
The total amount of transferred data in bytes. The size is output in the order of
total input and output, total input, total output. The record control word appended
by program during sequential access is excluded from these quantities.

Max Data Size
The maximum input and output size of transferred data in bytes. The size is
output in the order of input, output.

Min Data Size
The minimum input and output size of transferred data in bytes. The size is output
in the order of input, output.

Ave Data Size
The average size of transferred data in bytes. The size is output in the order of
total input and output, total input, total output. This information shows whether
the file I/O is small or large.

Transfer Rate
The file transfer speed in kilo bytes. The value is obtained by dividing the Total
Data Size by elapsed time. This information is output only when "DETAIL" is set in
VE_FORT_FILEINF.

Real Time
Elapsed time. This information is output only when "DETAIL" is set in
VE_FORT_FILEINF.

User Time

User time. This information is output only when "DETAIL" is set in

- 370 -

Appendix D File I/O Analysis Information

VE_FORT_FILEINF.

Environment Variable List
A list of the environment variable. Only an effective environment variable output
by alphabetical order. This information is output only when "DETAIL" is set in
VE_FORT_FILEINF.

- 371 -

Appendix E Change Notes

Appendix E Change Notes

The following changes are done from the previous version (Rev.36 Dec.2024

released).
» The description of the following compiler option is added in "Section 3.2".
- -m[no-]vector-assume-loop-count
* Add the assumed-rank dummy data object in Section "9.5.1 Data Declaration".
* Add the SELECT RANK construct in Section "9.5.2 Data Usage".

* Add descriptions for messages vec(135), vec(136), vec(144), opt(1268),
opt(1394), opt(3008), opt(3012), opt(3013), and opt(3014) in Section "12.1.2

Message List".

- 372 -

Index

B e 115
&
Bl 116
@
@FilE-NAME.....cciiiiiiii i 34
1
1-byte Integer ..o, 120
1-byte Logicalocvvvviiiiiiiii e 127
2
2-byte Integercccovvvviiiiiii 120
4
4-byte Integer ...ooveiiieiiie e, 120
4-byte Logical....ccvoviiiiiiiii e, 127
8
8-byte Integerocovvviiiiiii 120
8-byte Logical.....ccvvvviiiiiiiiiii 127
A
Accuracy degration........coveveieiiiiiieiieneieeneans 7
advance_gathercooviiiiiiiiiini e 59
always_inline ... 59, 85
Argument Associationcoceeiiiiiiiinnennn. 115

Arithmetic exception

Accuracy degration........cccceviiiiiniiiiiiiieens 7
Division By Zerooceveiniiiiiiie e, 7
Floating-point overflowcccooeiiiiiienennen. 7
Floating-point underflowc.ccoveieenne. 7
Invalid operation........cccooeiiiiiiiiieeens 7

Using Traceback Informationcecueee. 8

Vector instruction ..o 8
Arithmetic Exception Maskccocveviiiiiiiinnnnn. 8
Arithmetic Exceptions.......ccooviiiiiiiiiiiiiiinnnnn, 6
Arithmetic IF Statementooceviiinninnen, 111
Array Complement........ccooiiiiiiiiiiee, 115
—assembly-list... ..o 54
ASSIGN statement.........coovviiiiiiiiiiie, 119
assigned GO TO statementcovvviiiinnnnen 119
ASSOC 4 titnenininines et 59
ASSUIMIE 1uiiiiiiiiiie ettt 59
ALOMIC. e 60
Automatic inliningccooiviiiiii 85
Automatic Parallelization..........cccooeeviiiinnen. 90
automatic vectorizationcocviiiiiiiiienen 74

B
B 55
-Bdynamic ... 54
Binary TYPe.. it 128
Boz-literal-constant.........cccooeviiiiiiiinnenns 117
SDSS 48
“BStatic v 54

C
T 33
C P TR 155
SO 33
Character TYPe ...cvveiieii e 127
“ClEAN e 33
CNCAIL e 60
Code Generation Module..........c.covviiinininnne. 104
COMMON Statementcooviviiiiiiiiieeenen 106
Compares absolute valuescccvvvviinnnn. 77
Compiler Directive Conversion Tool 359
Compiler DireCtivesccvveieiiiiiieieeeeeene 59

COMPLEX DOUBLE PRECISION Statement 106

COMPLEX DOUBLE Statement...................... 106

Complex Double-Precision Type............cu...... 125
Complex Half-Precision Type........ccccvvvvenennen. 124
COMPLEX QUADRUPLE PRECISION Statement106
COMPLEX QUADRUPLE Statement................ 106
Complex Quadruple-Precision Type............... 126
Complex Single-Precision Type..........cvcvuenene. 124
ComMPIEX TYPE ceeieieeeee e 124
COMPIESSION ...euieieieieiece e 78
Computed GO TO Statementcccevvvvvinnenen 110
CONCUMTENE...uiviiiiii 60

Conditional Parallelization Using Threshold Test90

Conditional Vectorizationcccoveviieniennnes 79
Configuration file.......cccovviiiiii, 329
Cross-file InliNiNgccvvviiiiii e 87
Currency Symbol $..o, 115
SOXXID e 54
D
D 52
DATA Statement.......ccoeveeiiiiiiieiiceeeeeeeee 107
Data TYPEeS vt 119
dependency_test.....ccovviiiiiiiiii 60
Diagnostic Listovvviiiiiiiiiiiiiee s 97
DIMENSION Statementcccooviiiiiiiiinnnns 107
Division by zero......cccooiiiiiiiiii 7
SAM 52
DOUBLE COMPLEX Statement..........c..c.c.c..... 107
DOUBLE PRECISION Statement 108
DOUBLE Statementcccoooviiiiiiiiiieeenens 107
Double-Precision Type......ccccvviiivinininiininens 122
E
E e 52
Environment Variablesc.cooiiiiiiiinnts 10
EQUIVALENCE Statement.........cccceuveniennennne. 109
EXPaNSIiON. . .uvuiiiii e 78
EXplicit inlining ...covei s 85

EXPreSSiONS.....cvivieiiiiiiir e 117
Extended Free Source FOrmcocovevnnenns 117
F
-faggressive-associative-mathcooevnis 34
-fargument-alias..........ccooiiiiiiiiiii 34
-fargument-noaliasc.ccoiiiiiiiiii 34
-fassociative-mathcocoviiiiii 34
-fassumMe-contiguouS.......coovviiiiiiiiiicieeaa 34
-fbounds-check ..o 46
“FChECK et 46
-fcopyin-intent-Out.......c.ooiiiiiii e 35
-fcse-after-vectorization ... 35
-fdefault-double...........cooviiii 48
-fdefault-integercooviviiiiii 48
-fdefault-real..........coooviii 48
-fdiag-inlinecoovvieii 51
-fdiag-parallel.........cooiiiii 51
-fdiag-VeCtor ..o 51
-fextend-source......cooovviiiiiii e 49
-ffast-formatted-io.......coooviiiiiii 35
~ffast-math ... 35
-ffast-math-checkcoocoiii 35
ffixed-form ... 49
“ffree-form. ... 49
-fignore-asynchronouscccovveviiveninnenns 35
-fignore-induction-variable-overflow 35
-fignore-volatile..........cooveviiiiiii 35
-finline-abort-at-error..........coocoviiiiiiiiinns 43
-finline-copy-argumentsccooovivveniiininnnns 43
-finline-directory......cccooeviiiiiiiii 44
“finline-file ..o 44
-finline-functionscoociiiiiii 44
-finline-max-depthcoocoiiiii 44
-finline-max-function-sizecccovviviinnenns 44
-finline-max-times ... 44
-finline-suppress-diagnostics.............ccocvvvnenes 44
-finstrument-functions............ccooiiiiinens 45
-fintrinsic-modules-path ...l 55

-fivdep-do-concurrent-loop..........cooecviiinninnnn, 35

-fivdep-omp-worksharing-loop..............c........ 36
Fixed Source FOrm......coooveiiiiiiiiiiiiieeeieenns 116
Floating-Point Data..........cooveiiiiiiiieieens 121
Floating-point overflowcccooiiiiiiiiiiiiiiennn, 7
Floating-point underflowcocoviiiiiiiinenns. 7
-floop-Collapse ...cvvvviiiiii 36
-floop-CoUNE .eeeeee s 36
-floop-fUSION ...ceee s 36
-floop-interchange..........cooiiiiiiiiiens 36
-floop-normalize........ccoviiiiiii e 36
—FloOP-SPlit.. . 36
-floop-strip-Mine......cccviiiiiii 36
-floop-unroll ... 36
-floop-unroll-complete ..., 36
-floop-unroll-complete-nest.............coeveinnnns 37
-floop-unroll-max-timesccoveiiiiiiienenns 37
-fmatrix-multiplycooooiii 37
-fmax-continuation-linescocooiiiiiinenns 49
-fmove-loop-invariants.........ccccveviiiiiiiicnnnn. 37
-fmove-loop-invariants-if.........ccooeiiiinnn. 37
-fmove-loop-invariants-unsafe 37
-fmove-nested-loop-invariants-outer 37
-fnamed-aliascoovviiii 37
-fnamed-noalias........ooiiiiiiii e 37
-fnamed-noalias-aggressive........cocovvvvieinnenns 38
-fno-inline-directory.......cccooiviiiiiiiiiiiiin, 44
-fho-inline-file ... 44
SfOPENMIP cei 42
Forced Loop Parallelizationcccoviiinns 91
forced_collapseocovvviiiiiii e 60
forced-parallelizationccocovviiiiiiiiniiiinn, 64
FOrmat List....coviiiiii e 98
FORMAT Statementc.coovviiiiiiiieeeeens 109
Formatted Recordsocoveveiiiiniiiiieieenns 133
Fortran

ArgUMENES . 161
Fortran 2018 Extensionscocvevviiininnnns 139
FORTRAN77 POINTER Statement................. 112

-fouterloop-unroll.........ccooviiiiiiiii 38

-fouterloop-unroll-max-size...........cccvevvviinnns 38
-fouterloop-unroll-max-timescoccvvivnns 38
DI e e 45
AP e 45
DDt 52
fPP-NAME coi 52
-fprecise-math ..o 38
-frealloc-Ihs....ooviii 49
-frealloc-lhs-arraycooviiiiies 49
-frealloc-lhs-scalarocovviviiiiiiinn, 49
-freciprocal-math...........coocoiiiii 38
-freorder-logical-expressionccoevvviinnns 38
-freplace-loop-equationccocveviiiiiinnnnne. 38
-freplace-matmul-to-matrix-multiply 38
-fSYNtaX-0NlY...cooiii i 33
Sftrace. . 45
FUNCTION Statementocooviviiniiiininnenns 109
G
S TP 47
gather_reorder.....oocvviiiiiiiiie e 60
H
H edit descriptor.......cccocviviiiiiiiiiiiiceeen 119
Half-Precision Floating-Point Type................ 325
Half-Precision Typeccvvvviiiiiiiiiieenaienns 121
eI 56
Hexadecimal Type......covvviiiiiiiiiiiieeeeenas 128
Hollerith Assignment Statement 118
Hollerith Relational Expression..................... 118
Hollerith Type...cooiiiiiiiiiie 117, 127
HOME ... 10
I
e T PP RSP URUPOPROPRON 53
ignore_feedback_scalar..........cccoceviiiiivinenennn. 60
Implementation-Defined Specifications......... 119
IMPLICIT Statement..........cooveviiiiinininnnn, 111
INF e 129
INHNE . 61, 85

inline direCtivecvviiiiii s 85

inline_complete.......coooieiiiiiiiiiee, 61, 85
INNNING ceeeee e 85
Inlining Moduleoniiiiii e 102
1] = 61
Integer TYPe ..o 120
iNterchange ..o 61
Intrinsic Procedures.........cocvvviiiniininne. 131, 166
Invalid operationcccveiiiiiiiiii e, 7
SISYSFOOL .t 53
SISYSERM e 53
Tteration ..o 76
176 1= o R 61
J
e I PPN 55
L
PO PPPOt 54
s 54
Language-Mixed Programming............c........ 146
LD_LIBRARY_PATH.....iiuiiiiiiiiiiciieeeeeeeeeees 12
LiNKING v 165
St VECEOr v 61
Logical Operator......coovvveiiiiiiiiiiiniieseieeaeans 117
LOGiCal TYP . eu e 126
LOOP ettt 92
[00OP_COUNE 1.t 61
l00p_CoUNt_tESt .iuiviviiiiiiiie i 61
ISEVALL e 62
M
TV 53
Macro Operationsocveveiviiiiiiiinnee s 75
Compares absolute values.............cccceeevenenn. 77
COMPIrESSION ..uvniiiiiieereee e 78
EXPANSION «.vvvniiiicee e 78
Tterationcoovviii 76
Maximum values and minimum values 76
Product.....cceieie e 76

SEAMCH 1o 78

Sum or inner product..........ocoeviiiiiieenne. 76
“MAFCH L 45
“MAMTAY=I0 + v ieeie i 38
“MASYNC0 1ttt 50
Matrix Multiply Libraryccocoeviiiiiiiiinnnnnn, 213
Maximum Array RanK........cccocveviviiiiiiiinennns. 117
Maximum values and minimum values 76
-mconditional-index-test...........ccoeiiiiiiiiinenns 39
-mcreate-threads-at-startupccoceenenes 42
memory bloCKooviiii 132
MESSAGES ... et 262
-mfpl6-format.......cccoiiiiiiiii 45
-mgenerate-il-file........ooviiiiii 45
=MINIE-StacK ..o 47
“MISE-VECLOr .o 39
“MMEMOrY-traCecovvvviiiii 47
-mmemory-trace-full...........cooiiiiiiiiiinns 47
-MNO-StaCK-arrayscccovvveiiiieiiiieneeeneieenas 39
“MOAUIE e 55
MMOVE 1ttt 62
MOVE_UNSAfE ..euiviiiiiii e 62
-mparallel ... 43
-mparallel-innerloop........cocovveiiiiiiiieens 43
-mparallel-omp-routingcooviiiiiieninnenns 43
-mparallel-outerloop-strip-mine..................... 43
-mparallel-sectionscccoiviiiiiiiiii 43
-mparallel-threshold...........cocoiiiiii, 43
-mread-il-file........ccooiii 45
“MIFETAIN L 39
“MSChEA .o 39
-mschedule-chunk-size.........cccoiiiiiiiiiiiiinnns 43
-mschedule-dynamicC.........cocovviiiiiininiinnns 43
-mschedule-runtime........c.coiiiiiiiiiiiicnes 43
-mschedule-static........cooviiiiiii 43
-MStACK-arraysovvi i 39
“MUSE-MIMAP teuiiitiriir e 40
SMVECEON oviiiiin 40
-mvector-advance-gathercocoiviinnns 40

-mvector-advance-gather-limit...................... 40

-mvector-assignment-threshold 40

-mvector-assume-1oop-count...........coeeveuennenns 40
-mvector-dependency-testcooiiiiiiiinenns 40
-mvector-floating-divide-instruction................ 40
-MVvector-fMa ... 40
-mvector-intrinsic-check..........ccooviiiiiiniinnnns 40
-mvector-iterationcooceiii 41
-mvector-iteration-unsafe...........c.coceiiiiinns 41
-mvector-loop-count-testcooiiiiiiinns 41
-mvector-low-precise-divide-function.............. 41
-mvector-merge-conditionalcoceiinnts 41
-mvector-neighbors........ccovviiiiiiiiiiciies 41
-mvector-packed........cccoeviiiiiiiii 41
-mvector-power-to-explog.........ccoovvevenenininnns 41
-mvector-power-to-sqrtcoooiiiiiiiiiiiii 42
-mvector-reduction..........ooeiieiiiiiiieeeas 42
-mvector-shortloop-reductionccceevnenns 42
-mvector-sgrt-instructioncocoiiiiins 42
-mvector-threshold............coooviiiiiiiiins 42
-mwork-vector-kindcociiiiiinnnn, 42, 74
N
NAMELIST Input Format.........coeeiviiinnennennns. 139
NAMELIST Output Formatcoceveniennennee. 139
NaN e 129
NEIghbOrscei 62
NFAIFCONV e 359
NFORT_COMPILER_PATH ...coviiiiiiiieeeeieenes 10
NFORT_INCLUDE_PATH ..couiiiiieiiceeeeeeeeeenes 10
NFORT_LIBRARY_PATH.....civiiiiiiiiieeeeeeieenes 10
NFORT_PROGRAM_PATHc.iiiiiieieeieneeieenes 11
noadvance_gather.........cocoviiiiiiiiiciiniceens 59
L0 =70 L o 59
L0 =1] o TR 59
NOCONCUITENT ..vivieiiire e 60
[910) i = PP 62
NOFUSE e 62
NOINHNE ... v 61, 85
10} 0] 01T 61

NOINtErchange......o.ovvviiiii e 61

NOlISt_VeCtor ...ovvviii 61
NOISEVAL .. 62
NOMOVE L.t iuiiiiiititii it 62
noouterloop_unroll.........coviviviiiiie, 64
nopacked_VeCtorc.cvvviiiiiiiiiiii 64
e 10Te [T T PR 56
noshortloop_reduction.........cccoeviviiiiiiiiiens 65
07 0= [= 66
-nostartfiles ... 54
“NOSEAINC e 53
SNOSEAIID .o 54
(210153 o Lo RPN 62
NOUNFOI e 66
107 =T o 66
NOVOD . ..eiiii 66
NOVOVEITAKEviiieeieee e 66
NOVWOIK ettt ee e e e e e ens 67
0O
S0 33
S0 34
Octal TYPE i 128
OMP_NUM_THREADS ...t 12
OMP_STACKSIZE ...c.iviiiiiiiiieieieeeeeeeeee 12
Optimizationsovveieiii e 72
OPLIMIZE .o 63
Optimizing Mask Operations...........ccccvevvnenne. 74
Option LiSt ..o 97
OPLIONS L 62
Outer Loop Strip-miningcccoovviiiienennnnnnn. 79
outerloop_unroll ..o 64
P
D 46
P 53
Packed vector instructionsccoevienennn. 81
packed_vector......coovviiiiiii 64
parallel do.......ovieiii 64
PARALLEL LOOP ...ciiiiiiiiiiee e 92
PARALLEL MASTERoviiiiiiiiiiieieieee e 92

Parallelization.........ceevveeeeeiiiee e e 90 S

Parallelization of inner LOOPS...........oocevenne. 90 S T PP 33
PARAMETER Statement........c.cceeevininiinns 111 TSV ittt 50
Partial Vectorization ..., 74 scalar data......cocvveieiii 73
PATH e 11 SEArCh e 78
PAUSE statement ..., 119 select_concurrentcovviiiiiini 65
~PedaNtiC-EITOrS .oovvi e, 51 SElECE_VECOr . v evvrecvieecveeeie e ee e 65
TP e 46 cShATEA oo 54
POINTER Statementcooveessiinniinns 112 ShOrtIOOP v 65
Preconnectionoovviiiiiiiiiii e 136 SHOFE-0OD v eeereeeeeereeeeeeeee e eeeesee e, 80
Predefined Macrocccovviiiiiiiiiiiiieineens 130 ShOrtIOOP. FedUCHION v.v.veeeereeeeeeeeereeeeeeeeeeen, 65
-print-file-name ... 56 Side Effects of Optimizatione.ocvevevevennn. 73
“PriNE-Prog=nameoonininniin 56 SIGNEA ZEIO .. 129
Product ..ccviiiii 76 SPAISE . vveveeeeeeeereeee s ereee e ettt 66
SPFOGINT e 46 SPECIFICALIONS v vveveveeserereeseserereeseseeesnns 129
Spthread. ..o 43 Statement CONtINUAtION ... owweee e 115
PVIEG - 64 =SEATIC voi 54
=StAtIC-NEC v 54
Q 1 (e F TP 50
QUADRUPLE PRECISION Statement.............. 114 SSEANID ce 54
QUADRUPLE Statement............ooovvevseenvoee 114 STOP SEALEMENtcveveeeeeeereeerreerreeeens 115
Quadruple-Precision Typeocievevseinenss 123 SUDSCHIPt EXPreSSION v..eeeeeeevieeeeeeeeeeeeeeennnns 118
R Substring EXpression.......cocovvviiiiiininiiiiinanns 118
Sum or inner productcovveiiiiiiiiieeens 76
SFAYNAMIC. .ttt 54 SX COMPALIDIILY vvvr oo 331
REAITYPE oo 121 S=SYSFOOL 1iiiiiiiiiii e et e e e 55
Relational Operator........cocevvveiiiiiiiiiineeeenns 117
—report-all... 51 T
“rEPOrt-apPeNnd-mMOdecoovvvevsienssissieinns >1 TMPDIR ..o e e e en e, 11
TMEPOMT-CY covvvervrsee e >1 -traceback ... 48
“TePOrt-diagNOSHICS -ovovvvorvvcieies >1 -traditional.........ooii 53
—repOort-file. ..o 51 TrOUBIESROOHNG vvvveoveeseeeeeseseesseessseese 306
-report-formatocoviiiiiii 52
-repOrt-inliNgceveeeiie e, 52 U
TTEPOMT-OPLION ..o 52 U 53
-repPOrt-USerinfovvviiiiiiiiie e 52 Unformatted RECOIAS ..o 134
—FEPOIt-VECEOr ... 52 UNIX System Function Interface................ 218
FEEAIN ... 65 URNAMEd File oo 138
RETURN Statement ..., 115 UNFOHL L 66
Rounding Mode ... 138 unroll_complete... ..o, 66

\Y
V2 56
VE_ADVANCEOFFiviiiieiieeieeeeeee e 12
VE_ERRCTL_ALLOCATE.....cctuiiuiiieiieeieeinen 13
VE_ERRCTL_DEALLOCATE......c.ovvvieiieiineennnenn 13
VE_FMTIO_OFFLOADccuiivneiieiieeieeieeanaeen 13
VE_FMTIO_OFFLOAD_THRESHOLD 14
VE_FORT ..ot 14
VE_FORT_ABORT vt ceeneeaaeens 14
VE_FORT_ACCUMULATE_THREAD_CPU_TIME .14
VE_FORT_DEFAULTFILEcvvviviiiiiiecieeenn 15
VE_FORT_EXPRCW.ccuiiiniiiniiieiiecieeineeieeen 15
VE_FORT_FILEINF....cctuiiiiiieiieiieeie e 16
VE_FORT_FMT_NO_WRAP_MARGIN................ 16
VE_FORT_FMTBUF ... 17
VE_FORT_FOR_PRINT ..eitiiiiiiiiiieieieneeneeens 17
VE_FORT_FOR_READ ...coviviiiiiiiiiiieiieeeeeens 18
VE_FORT_FOR_TYPE ...ttt 18
VE_FORT_MEM_BLOCKSIZEcccvvvnviinnnn. 132
VE_FORT_NML_DELIM_BLANK.......ccuvverniennnenn 19
VE_FORT_NML_REPEAT_FORM.......covvevniennnenn 19
VE_FORT_NORCWccvviiiiiiiiiieiiecieeenn, 18, 19
VE_FORT_PARTRCW ...citiiiiiiiiiiieieieneeaeeens 20
VE_FORT_PAUSE.....ccctiiiiiiiiiiieceieneae e 21
VE_FORT_RECLUNIT ..civiiiiiiiiiieieieneeeee e 22
VE_FORT_RECORDBUFcccvviiiniiineiineeinnnn 22
VE_FORT_SETBUFccvniiiiiiiiiieiieciecieei 23
VE_FORT_SUBRCW ...ccuiivniiiniiieiiecieeieeien 24
VE_FORT_UFMTADIUST ...uvivniiieiieiieeieeines 25
VE_FORT_UFMTENDIAN......covviiiiiiiinieeeens 26
VE_FORT_UFMTENDIAN_NOVEC..........ccvvenens 26
VE_FPE_ENABLE ... 27
VE_INIT_HEAP. .. e 28
VE_INIT_STACK i1ttt 29
VE_LD_LIBRARY_PATHviviiiiiiiiinecieeinen 29
VE_LIBRARY_PATH...ccuuiiiiiiiiiieineceeieeieenn 11

VE_NODE_NUMBER.......ccoviiiiiiiiii, 29

VE_OMP_NUM_THREADScoiiiiiiiieieen, 12
VE_OMP_STACKSIZE.......cieiiiiiiiiiieeee, 12
VE_PROGINF ...t 30
VE_TRACEBACK ..o, 30
VE_TRACEBACK_DEPTHcciiiiiiiiiiiiieeen, 31
VE1/VE3 Compatibilityccoovvivniiiiiniiennnn, 323
VECEON 1iviiiiiiin 66
vector datao.ovvvviiii 73
vector_threshold ... 66
Vectorizationooveveviiiiiii 73
Vectorization Modulecocevveiiiiiniininnnn, 103
SmVEISION. ittt 56
VOD 1ot 66
VOVEItaKE ..uiviiiiiiiiii i, 66
A =T [P 67
VWOIPK . it 67
w
W e 51
SWa 53
SWAL e 50
SWEITOr v 50
-Wextension......ooevviiinin 50
WL 55
-Wobsolescent...........coviiiiiiiiiiin 50
“WOVEFIOW L.viecc 50
-WoVerflow-errors.......c.covvviiniiniiciinnenn 50
D et 53
-Wunmatched-subscriptcccooviiiiiiinnn. 51
-Wunmatched-subscript-errors...........c.c..v.... 51
X
X 33
-Xassembler........cooviii 53
XHNKEE v 55
Z
T 55

	Chapter1 Fortran Compiler
	1.1 Overview
	1.2 Usage of the Compiler
	1.3 Execution
	1.4 Command Line Syntax
	1.5 Specifying Compiler Options
	1.6 Searching Module Files
	1.7 Searching files included by INCLUDE line or #include directive
	1.8 Searching Libraries
	1.9 Arithmetic Exceptions
	1.9.1 Operation Result After Arithmetic Exception Occurrence
	1.9.2 Changing Arithmetic Exception Mask
	1.9.3 Using Traceback Information
	1.9.4 Remarks on Changing Arithmetic Exception Mask

	1.10 Execution Time Termination Codes

	Chapter2 Environment Variables
	2.1 Environment Variables Referenced During Compilation
	HOME
	NFORT_COMPILER_PATH
	NFORT_INCLUDE_PATH
	NFORT_LIBRARY_PATH
	NFORT_PROGRAM_PATH
	PATH
	TMPDIR
	VE_LIBRARY_PATH

	2.2 Environment Variables Referenced During Execution
	LD_LIBRARY_PATH
	OMP_NUM_THREADS / VE_OMP_NUM_THREADS
	OMP_STACKSIZE / VE_OMP_STACKSIZE
	VE_ADVANCEOFF
	VE_ERRCTL_ALLOCATE
	VE_ERRCTL_DEALLOCATE
	VE_FMTIO_OFFLOAD
	VE_FMTIO_OFFLOAD_THRESHOLD
	VE_FORTn
	VE_FORT_ABORT
	VE_FORT_ACCUMULATE_THREAD_CPU_TIME
	VE_FORT_DEFAULTFILE
	VE_FORT_EXPRCW
	VE_FORT_FILEINF
	VE_FORT_FMT_NO_WRAP_MARGIN
	VE_FORT_FMTBUF[n]
	VE_FORT_FOR_PRINT
	VE_FORT_FOR_READ
	VE_FORT_FOR_TYPE
	VE_FORT_MEM_BLOCKSIZE
	VE_FORT_NML_DELIM_BLANK
	VE_FORT_NML_REPEAT_FORM
	VE_FORT_NORCW
	VE_FORT_PARTRCW
	VE_FORT_PAUSE
	VE_FORT_RECLUNIT
	VE_FORT_RECORDBUF[n]
	VE_FORT_SETBUF[n]
	VE_FORT_SUBRCW
	VE_FORT_UFMTADJUST[n]
	VE_FORT_UFMTENDIAN
	VE_FORT_UFMTENDIAN_NOVEC
	VE_FPE_ENABLE
	VE_INIT_HEAP
	VE_INIT_STACK
	VE_LD_LIBRARY_PATH
	VE_NODE_NUMBER
	VE_PROGINF
	VE_TRACEBACK
	VE_TRACEBACK_DEPTH

	Chapter3 Compiler Options
	3.1 Overall Options
	3.2 Optimization Options
	3.3 Parallelization Options
	3.4 Inlining Options
	3.5 Code Generation Options
	3.6 Debugging Options
	3.7 Language Options
	3.8 Message Options
	3.9 List Output Options
	3.10 Preprocessor Options
	3.11 Assembler Options
	3.12 Linker Options
	3.13 Directory Options
	3.14 Miscellaneous Options
	3.15 Optimization Level and Options’ Defaults

	Chapter4 Compiler Directives
	4.1 Format of Compiler Directive
	4.2 Compiler Directive Options
	[no]advance_gather
	always_inline
	[no]assoc
	[no]assume
	atomic
	cncall
	collapse
	[no]concurrent
	dependency_test
	forced_collapse
	gather_reorder
	ignore_feedback_scalar
	[no]inline
	inline_complete
	[no]inner
	[no]interchange
	ivdep
	[no]list_vector
	loop_count(n)
	loop_count_test
	[no]lstval
	move_unsafe / move / nomove
	[no]neighbors
	nofma
	nofuse
	nosync
	options “compiler-option [compiler-option]...”
	optimize “compiler-option [compiler-option]...”
	outerloop_unroll(n) / noouterloop_unroll
	[no]packed_vector
	parallel do
	pvreg(array-name)
	retain(array-name)
	select_concurrent
	select_vector
	shortloop
	[no]shortloop_reduction
	[no]sparse
	unroll(n) / nounroll
	unroll_complete
	[no]vector
	vector_threshold(n)
	[no]vob
	[no]vovertake
	vreg(array-name)
	[no]vwork

	4.3 Compiler options which cannot specify by options directive
	4.4 Compiler options which can be specified by optimize directive

	Chapter5 Optimization and Vectorization
	5.1 Code Optimization
	5.1.1 Optimizations
	5.1.2 Side Effects of Optimization

	5.2 Vectorization Features
	5.2.1 Vectorization
	5.2.2 Partial Vectorization
	5.2.3 Optimizing Mask Operations
	5.2.4 Macro Operations
	5.2.5 Conditional Vectorization
	5.2.6 Outer Loop Strip-mining
	5.2.7 Short-loop
	5.2.8 Packed vector instructions
	5.2.9 Other
	5.2.10 Remarks on Using Vectorization

	5.3 Other features for performance
	5.3.1 Offloading of Lumped Output of Array
	5.3.2 Improve efficiency in buffering
	5.3.2.1 Record buffer
	5.3.2.2 I/O buffer

	Chapter6 Inlining
	6.1 Automatic Inlining
	6.2 Explicit Inlining
	6.2.1 Description
	6.2.2 Specifying Inline Directive
	6.2.3 Remarks

	6.3 Cross-file Inlining
	6.4 Inline Expansion Inhibitors
	6.5 Notes on Inlining
	6.6 Restrictions on Inlining

	Chapter7 Parallelization
	7.1 Automatic Parallelization
	7.1.1 Description
	7.1.2 Conditional Parallelization Using Threshold Test
	7.1.3 Conditional Parallelization Using Dependency Test
	7.1.4 Parallelization of inner Loops
	7.1.5 Forced Loop Parallelization

	7.2 OpenMP Parallelization
	7.2.1 Using OpenMP Parallelization
	7.2.2 OpenMP 5.0
	7.2.3 Extensions on OpenMP Parallelization
	7.2.4 Restrictions on OpenMP Parallelization
	7.2.5 Using OpenMP Parallelization

	7.3 Threads
	7.3.1 Set and Get Number of Threads
	7.3.2 Thread Creation and Destroy
	7.3.3 Postpone Thread Creation

	7.4 Notes on Using Parallelization

	Chapter8 Compiler Listing
	8.1 Option List
	8.2 Diagnostic List
	8.2.1 Format of Diagnostic List
	8.2.2 Notes

	8.3 Format List
	8.3.1 Format of Format List
	8.3.2 Loop Structure and Vectorization/Parallelization/Inlining Statuses
	8.3.3 Notes

	8.4 Optimization List of Each Module
	8.4.1 Inlining Module
	8.4.2 Vectorization Module
	8.4.3 Code Generation Module

	Chapter9 Programming Notes Depending on the Language Specification
	9.1 Non-Standard Extended Features
	9.1.1 Statements
	9.1.1.1 COMMON Statement
	9.1.1.2 COMPLEX DOUBLE / COMPLEX DOUBLE PRECISION Statement
	9.1.1.3 COMPLEX QUADRUPLE / COMPLEX QUADRUPLE PRECISION Statement
	9.1.1.4 DATA Statement
	9.1.1.5 DIMENSION Statement
	9.1.1.6 DOUBLE Statement
	9.1.1.7 DOUBLE COMPLEX Statement
	9.1.1.8 DOUBLE PRECISION Statement
	9.1.1.9 EQUIVALENCE Statement
	9.1.1.10 FORMAT Statement
	9.1.1.11 FUNCTION Statement
	9.1.1.12 Computed GO TO Statement
	9.1.1.13 Arithmetic IF Statement
	9.1.1.14 IMPLICIT Statement
	9.1.1.15 PARAMETER Statement
	9.1.1.16 FORTRAN77 POINTER Statement
	9.1.1.17 QUADRUPLE / QUADRUPLE PRECISION Statement
	9.1.1.18 RETURN Statement
	9.1.1.19 STOP Statement

	9.1.2 Program
	9.1.2.1 Statement Continuation
	9.1.2.2 Currency Symbol $
	9.1.2.3 Argument Association
	9.1.2.4 Array Complement

	9.1.3 Source Form
	9.1.3.1 Fixed Source Form
	9.1.3.2 Free Source Form

	9.1.4 Expressions
	9.1.4.1 Relational Operator
	9.1.4.2 Logical Operator
	9.1.4.3 Maximum Array Rank
	9.1.4.4 Boz-literal-constant
	9.1.4.5 Hollerith Type
	9.1.4.6 Subscript Expression and Substring Expression

	9.1.5 Deleted Features

	9.2 Implementation-Defined Specifications
	9.2.1 Data Types
	9.2.1.1 Correspondence Between Kind Type Parameters and Data Types

	9.2.2 Internal Representation of Data
	9.2.2.1 Integer Type
	9.2.2.2 Floating-Point Data
	9.2.2.3 Complex Type
	9.2.2.4 Logical Type
	9.2.2.5 Character Type
	9.2.2.6 Hollerith Type
	9.2.2.7 Hexadecimal Type
	9.2.2.8 Octal Type
	9.2.2.9 Binary Type
	9.2.2.10 Special Values

	9.2.3 Specifications
	9.2.4 Predefined Macro
	9.2.5 Notes for Intrinsic Procedures

	9.3 Memory Allocation and Deallocation
	9.3.1 Memory block
	9.3.2 Change size and threshold size of memory block

	9.4 Run-Time Input/Output
	9.4.1 Formatted Records
	9.4.1.1 Sequential File Formatted Records
	9.4.1.2 Direct File Formatted Records
	9.4.1.3 Stream File Format Records

	9.4.2 Unformatted Records
	9.4.2.1 Sequential File Unformatted Records
	9.4.2.2 Direct File Unformatted Records
	9.4.2.3 Stream File Unformatted Records

	9.4.3 Preconnection
	9.4.3.1 System Standard File Preconnection
	9.4.3.2 Other File Preconnection

	9.4.4 Unnamed File
	9.4.5 Rounding Mode
	9.4.6 NAMELIST Input Format
	9.4.7 NAMELIST Output Format

	9.5 Fortran 2018 Extensions
	9.5.1 Data declaration
	9.5.2 Data usage
	9.5.3 Execution Control
	9.5.4 Intrinsic Procedures and Modules
	9.5.5 Input/Output
	9.5.6 Programs and Procedures
	9.5.7 Language-Mixed Programming
	9.5.8 Obsolescent features

	9.6 Restrictions

	Chapter10 Language-Mixed Programming
	10.1 Point of Mixed Language Programming
	10.2 Correspondence of C/C++ Function Name and Fortran Procedure Name
	10.2.1 External Symbol Name of Fortran Procedure
	10.2.2 External Symbol Name of C++ Function
	10.2.3 Rules for Corresponding C/C++ Functions with Fortran Procedures
	10.2.4 Examples of Calling

	10.3 Data Types
	10.3.1 Integer and Logical Types for Fortran
	10.3.2 Floating-point and Complex Types for Fortran
	10.3.3 Character Type for Fortran
	10.3.4 Derived Type for Fortran
	10.3.5 Pointer
	10.3.6 Common Block for Fortran
	10.3.7 Notes

	10.4 Type and Return Value of Function and Procedure
	10.5 Passing Arguments
	10.5.1 Fortran Procedure Arguments
	10.5.2 Notes
	10.5.2.1 Appending Arguments Implicitly

	10.6 Linking
	10.6.1 Linking Fortran Program and C Program
	10.6.2 Linking Fortran Program and C++ Program

	10.7 Notes

	Chapter11 Library Reference
	11.1 Intrinsic Procedures
	11.1.1 ABS(A) Specific Name
	11.1.2 ACOS(X) Specific Name
	11.1.3 ACOSH(X) Specific Name
	11.1.4 AIMAG(Z) Specific Name
	11.1.5 AINT(A) Specific Name
	11.1.6 AMT(X)
	11.1.7 AND(I,J)
	11.1.8 ANINT(A) Specific Name
	11.1.9 ASIN(X) Specific Name
	11.1.10 ASINH(X) Specific Name
	11.1.11 ATAN(X) Specific Name
	11.1.12 ATAN2(Y,X) Specific Name
	11.1.13 ATANH(X) Specific Name
	11.1.14 BTEST(I,POS) Specific Name
	11.1.15 CANG(X)
	11.1.16 CBRT(X)
	11.1.17 CLOCK(D)
	11.1.18 CONJG(Z) Specific Name
	11.1.19 COS(X) Specific Name
	11.1.20 COSD(X)
	11.1.21 COSH(X) Specific Name
	11.1.22 COTAN(X)
	11.1.23 DATE(A)
	11.1.24 DATIM(A,B,C)
	11.1.25 DBLE(A) Specific Name
	11.1.26 DCMPLX(X,Y)
	11.1.27 DFACT(I)
	11.1.28 DFLOAT(A)
	11.1.29 DIM(X,Y) Specific Name
	11.1.30 DREAL(A)
	11.1.31 ERF(X) Specific Name
	11.1.32 ERFC(X) Specific Name
	11.1.33 ETIME(D)
	11.1.34 EXIT(X)
	11.1.35 EXP(X) Specific Name
	11.1.36 EXP10(X)
	11.1.37 EXP2(X)
	11.1.38 EXPC(X)
	11.1.39 EXPC10(X)
	11.1.40 EXPC2(X)
	11.1.41 FACT(I)
	11.1.42 FLUSH(UNIT)
	11.1.43 GAMMA(X) Specific Name
	11.1.44 IAND(I,J) Specific Name
	11.1.45 IBCLR(I,POS) Specific Name
	11.1.46 IBITS(I,POS,LEN) Specific Name
	11.1.47 IBSET(I,POS) Specific Name
	11.1.48 IEOR(I,J) Specific Name
	11.1.49 IMAG(A)
	11.1.50 INT(A[,KIND]) Specific Name
	11.1.51 IOR(I,J) Specific Name
	11.1.52 IRE(X)
	11.1.53 ISHFT(I,SHIFT) Specific Name
	11.1.54 ISHFT(I,SHIFT[,SIZE]) Specific Name
	11.1.55 ISNAN(X)
	11.1.56 IXOR(I,J)
	11.1.57 LGAMMA(X)
	11.1.58 LOC(X)
	11.1.59 LOG(X) Specific Name
	11.1.60 LOG10(X) Specific Name
	11.1.61 LOG2(X)
	11.1.62 MAX(A1,A2[,A3,…]) Specific Name
	11.1.63 MAXVL()
	11.1.64 MIN(A1,A2[,A3,…])
	11.1.65 MOD(A,P) Specific Name
	11.1.66 MVBITS(FROM,FROMPOS,LEN,TO,TOPOS) Specific Name
	11.1.67 NINT(A[,KIND]) Specific Name
	11.1.68 NOT(I)
	11.1.69 OR(I,J)
	11.1.70 QCMPLX(X,Y)
	11.1.71 QEXT(X)
	11.1.72 QFACT(I)
	11.1.73 QFLOAT(A)
	11.1.74 QREAL(A)
	11.1.75 REAL(A[,KIND])
	11.1.76 RSQRT(X)
	11.1.77 SIGN(A,B) Specific Name
	11.1.78 SIN(X) Specific Name
	11.1.79 SIND(X)
	11.1.80 SINH(X) Specific Name
	11.1.81 SQRT(X) Specific Name
	11.1.82 TAN(X) Specific Name
	11.1.83 TANH(X) Specific Name
	11.1.84 TIME(A)
	11.1.85 XOR(I,J)

	11.2 Matrix Multiply Library
	11.2.1 MATRIX-VECTOR Multiplication(A, NAR, B, NBR, C)
	11.2.2 MATRIX-VECTOR Multiplication(A, NA, IAD, B, NB, C, NC, NAR, NBR)
	11.2.3 MATRIX- MATRIX Multiplication(A, NA, IAD, B, NB, IBD, C, NC, ICD, NAR, NAC, NBC)

	11.3 UNIX System Function Interface
	11.3.1 F90_UNIX
	11.3.1.1 ABORT([MESSAGE])
	11.3.1.2 EXIT([STATUS])
	11.3.1.3 FLUSH(LUNIT)
	11.3.1.4 FREE(IPTR)
	11.3.1.5 GETARG(K,ARG)
	11.3.1.6 GETENV(NAME,VALUE)
	11.3.1.7 GETGID()
	11.3.1.8 GETPID()
	11.3.1.9 GETUID()
	11.3.1.10 IARGC()
	11.3.1.11 MALLOC(ISIZE)

	11.3.2 F90_UNIX_DIR
	11.3.2.1 CHDIR(PATH[,ERRNO])
	11.3.2.2 GETCWD([PATH,LENPATH,ERRNO])
	11.3.2.3 LINK(EXISTING,NEW[,ERRNO])
	11.3.2.4 RENAME(OLD,NEW[,ERRNO])
	11.3.2.5 UNLINK(PATH[,ERRNO])

	11.3.3 F90_UNIX_ENV
	11.3.3.1 GETARG(K[,ARG,LENARG,ERRNO])
	11.3.3.2 GETENV(NAME[,VALUE,LENVALUE,ERRNO])
	11.3.3.3 GETHOSTNAME([NAME,LENNAME])
	11.3.3.4 GETLOGIN([S,LENS])
	11.3.3.5 ISATTY(LUNIT,ANSWER[,ERRNO])
	11.3.3.6 TIME(ITIME[,ERRNO])
	11.3.3.7 TTYNAME(LUNIT[,S,LENS,,ERRNO])

	11.3.4 F90_UNIX_ERRNO
	11.3.5 F90_UNIX_FILE
	11.3.6 F90_UNIX_PROC
	11.3.6.1 ALARM(SECONDS,SUBROUTINE[,SECLEFT,ERRNO])
	11.3.6.2 EXECL(PATH,ARG0…[,ERRNO])
	11.3.6.3 EXECLP(FILE,ARG0…[,ERRNO])
	11.3.6.4 EXECV(PATH,ARGV,LENARGV[,ERRNO])
	11.3.6.5 EXECVE(PATH,ARGV,LENARGV,ENV,LENENV[,ERRNO])
	11.3.6.6 EXECVP(FILE,ARGV,LENARGV[,ERRNO])
	11.3.6.7 FORK(PID[,ERRNO])
	11.3.6.8 SLEEP(SECOND[,SECLEFT])
	11.3.6.9 SYSTEM(STRING[,STATUS,ERRNO])
	11.3.6.10 WAIT([STATUS,RETPID,ERRNO])

	11.4 Other Library
	11.4.1 ABORT()
	11.4.2 ACCESS(PATH,MODE)
	11.4.3 ALARM(SECS,PROC)
	11.4.4 CHDIR(PATH)
	11.4.5 CHMOD(NAME,MODE)
	11.4.6 CTIME(I)
	11.4.7 DTIME(TARRAY)
	11.4.8 ETIME(TARRAY)
	11.4.9 FDATE()
	11.4.10 FORK()
	11.4.11 FREE(ADDR)
	11.4.12 FREE2(ADDR)
	11.4.13 FSEEK(UNIT,OFFSET,WHENCE)
	11.4.14 FSTAT(UNIT,SXBUF)
	11.4.15 FTELL(UNIT)
	11.4.16 FTELLI8(UNIT)
	11.4.17 GETARG(POS,VAL)
	11.4.18 GETCWD(PATH)
	11.4.19 GETENV(NAME,VAL)
	11.4.20 GETGID()
	11.4.21 GETLOG(NAME)
	11.4.22 GETPID()
	11.4.23 GETPOS(UNIT)
	11.4.24 GETPOSI8(UNIT)
	11.4.25 GETUID()
	11.4.26 GMTIME(I,IA9)
	11.4.27 HOSTNM(NAME)
	11.4.28 IARGC()
	11.4.29 IDATE(IA3)
	11.4.30 IERRNO()
	11.4.31 ISATTY(UNIT)
	11.4.32 ITIME(IA3)
	11.4.33 KILL(PID,SIGNUM)
	11.4.34 LINK(PATH1,PATH2)
	11.4.35 LSTAT(PATH,SXBUF)
	11.4.36 LTIME(I,IA9)
	11.4.37 MALLOC(SIZE)
	11.4.38 MALLOC2(SIZE)
	11.4.39 PERROR(A)
	11.4.40 RENAME(FROM,TO)
	11.4.41 SECNDS(T)
	11.4.42 SIGNAL(SIGNUM,HANDLER)
	11.4.43 SLEEP(SECS)
	11.4.44 STAT(UNIT,SXBUF)
	11.4.45 SYMLNK(PATH1,PATH2)
	11.4.46 SYSTEM(CMD)
	11.4.47 TIME()
	11.4.48 TTYNAM(UNIT)
	11.4.49 UNLINK(PATH)
	11.4.50 WAIT(STATUS)

	11.5 Notes

	Chapter12 Messages
	12.1 Diagnostic Messages
	12.1.1 Diagnostic Message Format
	12.1.2 Message List

	12.2 Runtime Error Messages
	12.2.1 Format
	12.2.2 List of Error Messages

	12.3 Other Runtime Error

	Chapter13 Troubleshooting
	13.1 Troubleshooting for compilation
	13.2 Troubleshooting for execution
	13.3 Troubleshooting for tuning
	13.4 Troubleshooting for installation
	13.5 Troubleshooting for SX-ACE compiler migration

	Chapter14 VE1/VE3 Compatibility
	14.1 Executables Compatibility
	14.2 Changes of Search Path
	14.3 Changes of Compiler Options
	14.4 Half-Precision Floating-Point Type
	14.4.1 Format of Half-Precision Floating-Point Type
	14.4.2 Mixing binary16 and bfloat16

	14.5 Notice

	Chapter15 Notice
	Appendix A Configuration file
	A.1 Overview
	A.2 Format
	A.3 Example

	Appendix B SX Compatibility
	B.1 NEC Fortran 2003 Compiler Options
	B.1.1 Overall Options
	B.1.2 Vector/Scalar Optimization Options
	B.1.3 Inlining Options
	B.1.4 Parallelization Options
	B.1.5 Code Generation Options
	B.1.6 Language Options
	B.1.7 Performance Measurement Options
	B.1.8 Debug Options
	B.1.9 Preprocessor Options
	B.1.10 List Output Options
	B.1.11 Message Options
	B.1.12 Assembler Option
	B.1.13 C Compiler Option
	B.1.14 Linker Options
	B.1.15 Directory Options

	B.2 FORTRAN90/SX Compiler
	B.2.1 f90/sxf90 command Options
	B.2.2 f90/sxf90 Detailed Options for optimization
	B.2.3 f90/sxf90 Detailed Options for vectorization and parallelization
	B.2.4 f90/sxf90 Other Detailed Options

	B.3 Compiler Directives
	B.4 Environment Variables
	B.5 Other Library
	B.6 Implementation-Defined Specifications
	B.6.1 Data Types
	B.6.2 Specifications
	B.6.3 Intrinsic Procedures

	Appendix C Compiler Directive Conversion Tool
	C.1 nfdirconv
	C.2 Examples
	C.3 Compiler Directives
	C.4 Notes

	Appendix D File I/O Analysis Information
	D.1 Output Example
	D.2 Description of items

	Appendix E Change Notes
	Index

