

SX-Aurora TSUBASA

Fortran Compiler User’s Guide

- i -

Proprietary Notice

The information disclosed in this document is the property of NEC

Corporation (NEC) and/or its licensors. NEC and/or its licensors, as

appropriate, reserve all patent, copyright and other proprietary rights to

this document, including all design, manufacturing, reproduction, use and

sales rights thereto, except to the extent said rights are expressly granted

to others.

The information in this document is subject to change at any time, without

notice.

Remarks:

 This document is the revision 37th issued in Oct 2025.

 NEC Fortran Compiler conforms to the following language standards.

‒ ISO/IEC 1539-1:2010 Programming languages - Fortran

‒ OpenMP Application Program Interface Version 4.5

 NEC Fortran compiler also conforms a part of “ISO/IEC 1539-1:2018

Programming languages – Fortran”

 NEC Fortran compiler also conforms a part of “OpenMP Application

Program Interface Version 5.0”

 In this document, the Vector Engine is abbreviated as VE.

 The reader of this document assumes that you have knowledge of

software development in Fortran/C/C++ language on Linux.

 All product, brand, or trade names in this publication are the trademarks

or registered trademarks of their respective owners.

(C) NEC Corporation 2018,2025

Contents

- ii -

Contents

Chapter1 Fortran Compiler.. 1

1.1 Overview ... 1

1.2 Usage of the Compiler .. 1

1.3 Execution ... 3

1.4 Command Line Syntax ... 4

1.5 Specifying Compiler Options .. 4

1.6 Searching Module Files ... 5

1.7 Searching files included by INCLUDE line or #include directive 6

1.8 Searching Libraries .. 6

1.9 Arithmetic Exceptions ... 6

 Operation Result After Arithmetic Exception Occurrence 6

 Changing Arithmetic Exception Mask... 8

 Using Traceback Information ... 8

 Remarks on Changing Arithmetic Exception Mask 9

1.10 Execution Time Termination Codes .. 9

Chapter2 Environment Variables .. 10

2.1 Environment Variables Referenced During Compilation 10

2.2 Environment Variables Referenced During Execution 12

Chapter3 Compiler Options ... 32

3.1 Overall Options ... 33

3.2 Optimization Options .. 34

3.3 Parallelization Options .. 42

3.4 Inlining Options ... 43

3.5 Code Generation Options .. 45

3.6 Debugging Options .. 46

3.7 Language Options.. 48

3.8 Message Options ... 50

3.9 List Output Options .. 51

3.10 Preprocessor Options .. 52

3.11 Assembler Options .. 53

3.12 Linker Options .. 54

Contents

- iii -

3.13 Directory Options ... 55

3.14 Miscellaneous Options ... 56

3.15 Optimization Level and Options’ Defaults .. 57

Chapter4 Compiler Directives .. 59

4.1 Format of Compiler Directive ... 59

4.2 Compiler Directive Options .. 59

4.3 Compiler options which cannot specify by options directive 67

4.4 Compiler options which can be specified by optimize directive 68

Chapter5 Optimization and Vectorization ... 72

5.1 Code Optimization ... 72

 Optimizations .. 72

 Side Effects of Optimization ... 73

5.2 Vectorization Features .. 73

 Vectorization ... 73

 Partial Vectorization ... 74

 Optimizing Mask Operations .. 74

 Macro Operations ... 75

 Conditional Vectorization ... 79

 Outer Loop Strip-mining ... 79

 Short-loop .. 80

 Packed vector instructions ... 81

 Other ... 81

 Remarks on Using Vectorization .. 81

5.3 Other features for performance ... 83

 Offloading of Lumped Output of Array ... 83

 Improve efficiency in buffering ... 83

Chapter6 Inlining .. 85

6.1 Automatic Inlining ... 85

6.2 Explicit Inlining ... 85

 Description ... 85

 Specifying Inline Directive ... 86

 Remarks ... 86

6.3 Cross-file Inlining .. 87

6.4 Inline Expansion Inhibitors .. 88

Contents

- iv -

6.5 Notes on Inlining ... 88

6.6 Restrictions on Inlining ... 89

Chapter7 Parallelization .. 90

7.1 Automatic Parallelization ... 90

 Description ... 90

 Conditional Parallelization Using Threshold Test 90

 Conditional Parallelization Using Dependency Test 90

 Parallelization of inner Loops ... 90

 Forced Loop Parallelization .. 91

7.2 OpenMP Parallelization ... 92

 Using OpenMP Parallelization ... 92

 OpenMP 5.0 .. 92

 Extensions on OpenMP Parallelization .. 92

 Restrictions on OpenMP Parallelization .. 93

 Using OpenMP Parallelization ... 94

7.3 Threads ... 94

 Set and Get Number of Threads ... 94

 Thread Creation and Destroy ... 95

 Postpone Thread Creation ... 96

7.4 Notes on Using Parallelization .. 96

Chapter8 Compiler Listing ... 97

8.1 Option List .. 97

8.2 Diagnostic List .. 97

 Format of Diagnostic List .. 97

 Notes ... 98

8.3 Format List ... 98

 Format of Format List ... 99

 Loop Structure and Vectorization/Parallelization/Inlining Statuses ... 99

 Notes ... 102

8.4 Optimization List of Each Module ... 102

 Inlining Module .. 102

 Vectorization Module .. 103

 Code Generation Module ... 104

Chapter9 Programming Notes Depending on the Language Specification 106

Contents

- v -

9.1 Non-Standard Extended Features ... 106

 Statements ... 106

 Program ... 115

 Source Form ... 116

 Expressions... 117

 Deleted Features ... 119

9.2 Implementation-Defined Specifications ... 119

 Data Types ... 119

 Internal Representation of Data ... 120

 Specifications .. 129

 Predefined Macro ... 130

 Notes for Intrinsic Procedures .. 131

9.3 Memory Allocation and Deallocation ... 131

 Memory block ... 132

 Change size and threshold size of memory block 132

9.4 Run-Time Input/Output .. 133

 Formatted Records ... 133

 Unformatted Records ... 134

 Preconnection ... 136

 Unnamed File .. 138

 Rounding Mode ... 138

 NAMELIST Input Format ... 139

 NAMELIST Output Format ... 139

9.5 Fortran 2018 Extensions ... 139

 Data declaration .. 140

 Data usage ... 140

 Execution Control... 140

 Intrinsic Procedures and Modules ... 141

 Input/Output .. 142

 Programs and Procedures ... 143

 Language-Mixed Programming ... 143

 Obsolescent features .. 145

9.6 Restrictions .. 145

Chapter10 Language-Mixed Programming ... 146

Contents

- vi -

10.1 Point of Mixed Language Programming .. 146

10.2 Correspondence of C/C++ Function Name and Fortran Procedure Name

 147

 External Symbol Name of Fortran Procedure 147

 External Symbol Name of C++ Function 148

 Rules for Corresponding C/C++ Functions with Fortran Procedures

 149

 Examples of Calling ... 149

10.3 Data Types .. 152

 Integer and Logical Types for Fortran 152

 Floating-point and Complex Types for Fortran 153

 Character Type for Fortran ... 154

 Derived Type for Fortran .. 154

 Pointer .. 155

 Common Block for Fortran ... 157

 Notes .. 158

10.4 Type and Return Value of Function and Procedure 158

10.5 Passing Arguments ... 161

 Fortran Procedure Arguments ... 161

 Notes .. 163

10.6 Linking .. 165

 Linking Fortran Program and C Program 165

 Linking Fortran Program and C++ Program 165

10.7 Notes .. 165

Chapter11 Library Reference .. 166

11.1 Intrinsic Procedures .. 166

 ABS(A) Specific Name ... 166

 ACOS(X) Specific Name ... 167

 ACOSH(X) Specific Name ... 167

 AIMAG(Z) Specific Name .. 168

 AINT(A) Specific Name .. 168

 AMT(X) ... 169

 AND(I,J) .. 170

 ANINT(A) Specific Name .. 170

Contents

- vii -

 ASIN(X) Specific Name .. 170

 ASINH(X) Specific Name .. 171

 ATAN(X) Specific Name .. 171

 ATAN2(Y,X) Specific Name ... 172

 ATANH(X) Specific Name .. 172

 BTEST(I,POS) Specific Name .. 173

 CANG(X) .. 174

 CBRT(X) .. 174

 CLOCK(D) .. 175

 CONJG(Z) Specific Name .. 175

 COS(X) Specific Name ... 175

 COSD(X) .. 176

 COSH(X) Specific Name ... 177

 COTAN(X) .. 177

 DATE(A) .. 178

 DATIM(A,B,C) ... 178

 DBLE(A) Specific Name .. 179

 DCMPLX(X,Y) ... 179

 DFACT(I) ... 180

 DFLOAT(A)... 180

 DIM(X,Y) Specific Name ... 181

 DREAL(A) .. 182

 ERF(X) Specific Name .. 182

 ERFC(X) Specific Name .. 182

 ETIME(D) ... 183

 EXIT(X) ... 183

 EXP(X) Specific Name .. 184

 EXP10(X) ... 184

 EXP2(X) .. 185

 EXPC(X) .. 185

 EXPC10(X) ... 186

 EXPC2(X) ... 186

 FACT(I) ... 187

 FLUSH(UNIT) ... 187

Contents

- viii -

 GAMMA(X) Specific Name ... 188

 IAND(I,J) Specific Name .. 188

 IBCLR(I,POS) Specific Name ... 189

 IBITS(I,POS,LEN) Specific Name ... 190

 IBSET(I,POS) Specific Name ... 190

 IEOR(I,J) Specific Name ... 191

 IMAG(A) .. 192

 INT(A[,KIND]) Specific Name ... 192

 IOR(I,J) Specific Name .. 193

 IRE(X) ... 194

 ISHFT(I,SHIFT) Specific Name .. 195

 ISHFT(I,SHIFT[,SIZE]) Specific Name 195

 ISNAN(X) .. 196

 IXOR(I,J) ... 196

 LGAMMA(X) ... 196

 LOC(X) .. 197

 LOG(X) Specific Name ... 197

 LOG10(X) Specific Name .. 198

 LOG2(X) .. 199

 MAX(A1,A2[,A3,…]) Specific Name .. 199

 MAXVL() .. 200

 MIN(A1,A2[,A3,…]) ... 200

 MOD(A,P) Specific Name .. 201

 MVBITS(FROM,FROMPOS,LEN,TO,TOPOS) Specific Name 202

 NINT(A[,KIND]) Specific Name ... 203

 NOT(I) .. 204

 OR(I,J) .. 204

 QCMPLX(X,Y) ... 204

 QEXT(X) .. 205

 QFACT(I) ... 205

 QFLOAT(A) .. 206

 QREAL(A) .. 206

 REAL(A[,KIND]) .. 206

 RSQRT(X) .. 207

Contents

- ix -

 SIGN(A,B) Specific Name ... 208

 SIN(X) Specific Name .. 208

 SIND(X) .. 209

 SINH(X) Specific Name .. 210

 SQRT(X) Specific Name ... 210

 TAN(X) Specific Name ... 211

 TANH(X) Specific Name ... 212

 TIME(A) .. 212

 XOR(I,J) .. 213

11.2 Matrix Multiply Library ... 213

 MATRIX-VECTOR Multiplication(A, NAR, B, NBR, C) 213

 MATRIX-VECTOR Multiplication(A, NA, IAD, B, NB, C, NC, NAR,

NBR) 215

 MATRIX- MATRIX Multiplication(A, NA, IAD, B, NB, IBD, C, NC, ICD,

NAR, NAC, NBC) ... 216

11.3 UNIX System Function Interface ... 218

 F90_UNIX .. 220

 F90_UNIX_DIR ... 223

 F90_UNIX_ENV .. 225

 F90_UNIX_ERRNO .. 229

 F90_UNIX_FILE .. 229

 F90_UNIX_PROC .. 233

11.4 Other Library ... 239

 ABORT() .. 239

 ACCESS(PATH,MODE) .. 239

 ALARM(SECS,PROC) .. 240

 CHDIR(PATH) ... 240

 CHMOD(NAME,MODE) ... 241

 CTIME(I) ... 241

 DTIME(TARRAY) ... 242

 ETIME(TARRAY) .. 242

 FDATE() .. 242

 FORK() .. 243

 FREE(ADDR) .. 243

Contents

- x -

 FREE2(ADDR) ... 244

 FSEEK(UNIT,OFFSET,WHENCE) ... 244

 FSTAT(UNIT,SXBUF) .. 245

 FTELL(UNIT) .. 245

 FTELLI8(UNIT) ... 246

 GETARG(POS,VAL) .. 246

 GETCWD(PATH) .. 247

 GETENV(NAME,VAL) .. 247

 GETGID() ... 247

 GETLOG(NAME) .. 248

 GETPID() ... 248

 GETPOS(UNIT) ... 248

 GETPOSI8(UNIT) .. 249

 GETUID()... 249

 GMTIME(I,IA9) ... 249

 HOSTNM(NAME) ... 250

 IARGC() .. 250

 IDATE(IA3) .. 250

 IERRNO() .. 251

 ISATTY(UNIT) .. 251

 ITIME(IA3) .. 251

 KILL(PID,SIGNUM) .. 252

 LINK(PATH1,PATH2) .. 252

 LSTAT(PATH,SXBUF) ... 253

 LTIME(I,IA9) .. 253

 MALLOC(SIZE) ... 254

 MALLOC2(SIZE) .. 254

 PERROR(A) .. 255

 RENAME(FROM,TO) ... 255

 SECNDS(T) .. 255

 SIGNAL(SIGNUM,HANDLER) ... 256

 SLEEP(SECS) .. 256

 STAT(UNIT,SXBUF) ... 256

 SYMLNK(PATH1,PATH2) ... 257

Contents

- xi -

 SYSTEM(CMD) .. 258

 TIME() .. 258

 TTYNAM(UNIT) ... 259

 UNLINK(PATH) ... 259

 WAIT(STATUS) ... 259

11.5 Notes .. 260

Chapter12 Messages .. 262

12.1 Diagnostic Messages ... 262

 Diagnostic Message Format .. 262

 Message List .. 263

12.2 Runtime Error Messages .. 275

 Format .. 275

 List of Error Messages.. 275

12.3 Other Runtime Error ... 304

Chapter13 Troubleshooting ... 306

13.1 Troubleshooting for compilation .. 306

13.2 Troubleshooting for execution ... 312

13.3 Troubleshooting for tuning ... 317

13.4 Troubleshooting for installation ... 318

13.5 Troubleshooting for SX-ACE compiler migration 319

Chapter14 VE1/VE3 Compatibility .. 323

14.1 Executables Compatibility .. 323

14.2 Changes of Search Path ... 323

14.3 Changes of Compiler Options .. 324

14.4 Half-Precision Floating-Point Type ... 325

 Format of Half-Precision Floating-Point Type 325

 Mixing binary16 and bfloat16 .. 325

14.5 Notice ... 325

Chapter15 Notice .. 327

 Configuration file ... 329

A.1 Overview ... 329

A.2 Format ... 330

A.3 Example ... 330

 SX Compatibility .. 331

Contents

- xii -

B.1 NEC Fortran 2003 Compiler Options ... 331

B.1.1 Overall Options .. 331

B.1.2 Vector/Scalar Optimization Options... 332

B.1.3 Inlining Options ... 335

B.1.4 Parallelization Options .. 336

B.1.5 Code Generation Options .. 337

B.1.6 Language Options .. 337

B.1.7 Performance Measurement Options .. 338

B.1.8 Debug Options .. 338

B.1.9 Preprocessor Options.. 339

B.1.10 List Output Options ... 339

B.1.11 Message Options ... 340

B.1.12 Assembler Option .. 340

B.1.13 C Compiler Option ... 340

B.1.14 Linker Options .. 341

B.1.15 Directory Options .. 341

B.2 FORTRAN90/SX Compiler ... 341

B.2.1 f90/sxf90 command Options .. 341

B.2.2 f90/sxf90 Detailed Options for optimization 345

B.2.3 f90/sxf90 Detailed Options for vectorization and parallelization 347

B.2.4 f90/sxf90 Other Detailed Options ... 350

B.3 Compiler Directives .. 353

B.4 Environment Variables ... 354

B.5 Other Library .. 354

B.6 Implementation-Defined Specifications ... 356

B.6.1 Data Types ... 356

B.6.2 Specifications .. 357

B.6.3 Intrinsic Procedures ... 358

 Compiler Directive Conversion Tool ... 359

C.1 nfdirconv .. 359

C.2 Examples ... 360

C.3 Compiler Directives .. 362

C.4 Notes .. 365

 File I/O Analysis Information ... 366

Contents

- xiii -

D.1 Output Example .. 366

D.2 Description of items ... 367

 Change Notes.. 372

Index ... 373

Chapter1 Fortran Compiler

- 1 -

Chapter1 Fortran Compiler

1.1 Overview

The NEC Fortran compiler is a compiler that compiles and links Fortran programs and

creates binaries for execution on the CPU of the VE. This compiler implements the

following optimization function so that VE hardware performance can be easily drawn

to the limit.

 Vectorization

 Automatic Parallelization and OpenMP Parallelization

 Automatic Inlining

 Performance Information collection

With various compiler options, you can use these capabilities to the utmost while

selecting these functions. For details of the optimization function and compiler

options, refer to Chapter 2 and later.

1.2 Usage of the Compiler

 Setting Environment Variables

If you want to omit the path specification when starting the NEC Fortran compiler,

set the path to the environment variable PATH. The NEC Fortran compiler is

installed by default under /opt/nec/ve. Add /opt/nec/ve/bin to the environment

variable PATH.

Although the NEC Fortran compiler provides environment variables for setting

paths such as header files and libraries, the NEC Fortran compiler automatically

searches for the default path, so you can use it without setting these environment

variables. Set environment variables when you need to search nonstandard

directories, such as when you always want to add OSS header files and library

paths not included in the compiler.

For the environment variables, see “Chapter2 Environment Variables”.

Chapter1 Fortran Compiler

- 2 -

 Examples

The following shows examples of invoking the Fortran compiler. See “Chapter3

Compiler Options” for details of the compiler options.

 Compiling and linking a Fortran source file (a.f90).

$ nfort a.f90

 Compiling and linking more than one source file.

$ nfort a.f90 b.f90

 Compiling, linking, and naming an executable file.

$ nfort -o prog.out a.f90

 Compiling and linking with the highest vectorization and optimization.

$ nfort -O4 a.f90

 Compiling and linking with safe vectorization and optimization.

$ nfort –O1 a.f90

 Compiling and linking without vectorization and optimization.

$ nfort –O0 a.f90

 Compiling and linking using automatic parallelization.

$ nfort -mparallel a.f90

 Compiling and linking using automatic inlining.

$ nfort -finline-functions a.f90

 Compiling and linking using the half-precision floating-point. (VE3 only)

‒ IEEE binary16 format

$ nfort a.f90

‒ bfloat16 format

$ nfort -mfp16-format=bfloat a.f90

Chapter1 Fortran Compiler

- 3 -

 Compiling and linking using a compiler of specific version.

$ /opt/nec/ve/bin/nfort-X.X.X a.f90 (X.X.X is version number.)

1.3 Execution

The example when executing a program below.

 Executing a compiled program.

$./a.out

 Executing with number of VE

$ env VE_NODE_NUMBER=1 ./a.out (Execute on number 1 of VE)

 Executing with input file and input parameter.

$./a.out data.in 10 (input the file ”data.in” and value ”10”)

 Executing with redirecting an input file.

$./a.out < data.in

 Executing a parallelized program with specifying the number of threads.

$ nfort –mparallel –O3 a.f90 b.f90

$ export OMP_NUM_THREADS=4

$./a.out

 Executing with connecting a file to unit.

$ export VE_FORT9=DATA9 (connect the file ”DATA9” to unit number 9)

$./a.out

 Using the profiler (ngprof).

The performance information file “gmon.out” is output at execution a program

which compiled with -pg at compiling and linking. The contents of “gmon.out” can

be analyzed and output using the command ngprof.

$ nfort –pg a.f90

$./a.out

$ ls gmon.out

gmon.out

$ ngprof

(The performance information is output.)

Chapter1 Fortran Compiler

- 4 -

1.4 Command Line Syntax

The command line syntax of invoking the compiler is as follows.

nfort [compiler-option | file] ...

1.5 Specifying Compiler Options

 The compiler option must begin with a hyphen "-". In addition, there must be a

blank between compiler options.

Example:

$ nfort -v -c a.f90 (Correct)

$ nfort -vc a.f90 (Incorrect)

 The Fortran Compiler recognizes the input file suffixes as follows. The other file

suffixes are treated as an object file.

 The compiler options and input files can be specified using option files.

An option file is used to specify compiler options that are always enabled at the

invoking of the Fortran Compiler. Compiler options and files can be specified in the

same way as when the command line is used. The option file must be placed in

the home directory, to which the environment variable HOME has been set.

Compiler Type Option File Name

nfort $HOME/.nfortinit

Suffix Recognized File

.F .FOR .FTN .FPP .fpp Fortran source file

(Fixed form, With preprocessing)

.F90 .F95 .F03 Fortran source file

(Free form, With preprocessing)

.f .for .ftn .i Fortran source file

(Fixed form, Without preprocessing)

.f90 .f95 .f03 .i90 Fortran source file

(Free form, Without preprocessing)

.c C source file

.S .s Assembler source file

Chapter1 Fortran Compiler

- 5 -

Example:

$ cat ~/.nfortinit

-O3 -finline-functions

$ nfort -v a.f90

/opt/nec/ve/libexec/fcom … -O3 -finline-functions … a.f90

1.6 Searching Module Files

When there are modules in an input source file, in order that other source files refer

to the modules, the Fortran compiler outputs compiled module information files for

each modules. The compiled module information files of the intrinsic modules are

beforehand prepared in the defined place.

 Searching compiled module information files of non-intrinsic module

When there are not modules which are referred to in an input source file, the

Fortran compiler searches the following directories in the following order for

module files:

(a) Directory on which each input source file is

(b) Directories specified by -module

(c) Current directory

(d) Directories specified by -I

(e) Subdirectory named “include” under the directory specified by -B

(f) Directories specified by the environment variable NFORT_INCLUDE_PATH

(g) Directory specified by -isystem

(h) /opt/nec/ve/nfort/<version-number>/include

(i) /opt/nec/ve/include (When -march=ve3 is enabled: /opt/nec/ve3/include)

When -isysroot is enabled, subdirectory named “include” under the directory

specified by -isysroot.

 Searching compiled module information files of intrinsic modules

The intrinsic modules are referred to by USE statement with INTRINSIC

attribute. The Fortran compiler searches the following directory for intrinsic

module files:

(a) Directory specified by -fintrinsic-modules-path if it is specified, otherwise

/opt/nec/ve/nfort/<version-number>/include

Chapter1 Fortran Compiler

- 6 -

1.7 Searching files included by INCLUDE line or #include directive

The Fortran compiler searches the following directories in the following order for files

included by INCLUDE line and #include"file-name".

(a) Directory on which each input source file is

(b) Current directory

(c) Directories specified by -I

(d) Subdirectory named “include” under the directory specified by -B

(e) Directories specified by the environment variable NFORT_INCLUDE_PATH

(f) Directory specified by -isystem

(g) /opt/nec/ve/nfort/<version-number>/include

(h) /opt/nec/ve/include (When -march=ve3 is enabled: /opt/nec/ve3/include)

When -isysroot is enabled, subdirectory named “include” under the directory

specified by -isysroot.

1.8 Searching Libraries

The Fortran compiler searches the following directories in the following order for

libraries.

(a) Directories specified by -L

(b) Directories specified by -B

(c) Directories specified by the environment variable NFORT_LIBRARY_PATH

(d) /opt/nec/ve/nfort/<version-number>/lib

(When -march=ve3 is enabled: /opt/nec/ve3/nfort/<version-number>/lib)

(e) Directories specified by the environment variable VE_LIBRARY_PATH

(f) /opt/nec/ve/lib/gcc (When -march=ve3 is enabled: /opt/nec/ve3/lib/gcc)

(g) /opt/nec/ve/lib (When -march=ve3 is enabled: /opt/nec/ve3/lib)

1.9 Arithmetic Exceptions

 Operation Result After Arithmetic Exception Occurrence

This section describes how an overflow, underflow, division by zero, invalid

operation, and accuracy degradation are handled when they occur during an

arithmetic operation.

Chapter1 Fortran Compiler

- 7 -

 Division by zero

When a division by zero occurs during an integer arithmetic operation, the result

is undefined.

When a division by zero occurs during a non-integer arithmetic operation, the

result of the operation is the maximum expressible value if the dividend is

positive, or the minimum expressible value if the dividend is negative.

When the value of VE_FPE_ENABLE is “DIV”, this exception occurs and error

message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “DIV”, this exception does not occurs.

 Floating-point overflow

When an overflow occurs during an operation of type real and complex, the result

of the operation is the maximum expressible value if the value is positive, or the

minimum expressible value if the value is negative.

When the value of VE_FPE_ENABLE is “FOF”, this exception occurs and error

message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “FOF”, this exception does not occurs.

 Floating-point underflow

When an underflow occurs during an operation of type real and complex, the

result of the operation is zero.

When the value of VE_FPE_ENABLE is “FUF”, this exception occurs and error

message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “FUF”, this exception does not occurs.

 Invalid operation

When an invalid operation occurs during an operation of type real and complex,

the result of the operation is an undefined value or NaN.

When the value of VE_FPE_ENABLE is “INV”, this exception occurs and error

message is issued to the standard error output. When the value of

VE_FPE_ENABLE is not “INV”, this exception does not occurs.

 Accuracy degradation

When accuracy degradation occurs during an operation of type real and complex,

the result of the operation is a rounded value.

When the value of VE_FPE_ENABLE is “INE”, this exception occurs and error

message is issued to the standard error output. When the value of

Chapter1 Fortran Compiler

- 8 -

VE_FPE_ENABLE is not “INE”, this exception does not occurs.

 Exception while executing a vector instruction

When overflow, underflow, or division by zero occurs while executing a vector

instruction, the processing is the same as in the case of a scalar instruction.

However, if multiple operation exceptions occur at the same time while executing

one vector instruction, they appear as one exception.

 Changing Arithmetic Exception Mask

By changing the mask setting, it can be specified whether an arithmetic exception

occurs or not.

The arithmetic exception mask can be changed by using VE_FPE_ENABLE. Which

kind of mask should be changed must be specified by VE_FPE_ENABLE.

Example:

$ export VE_FPE_ENABLE=FOF,DIV

$./a.out

In the above example, changing the mask setting so that Floating-point overflow

(FOF) or Divide-by-zero exception (DIV) can occur.

 Using Traceback Information

Where the arithmetic exception occurred can be ascertained by changing the mask

and using the traceback information.

Example:

$ nfort -traceback=verbose below.f90 out.f90 watch.f90 hey.f90 ovf.f90

...

$ export VE_TRACEBACK=VERBOSE

$ export VE_FPE_ENABLE=DIV

$./a.out

Runtime Error: Divide by zero at 0x600008001088

[0] 0x600008001088 below_ below.f90:3

[1] 0x600018001168 out_ out.f90:3

[2] 0x600020001168 watch_ watch.f90:3

[3] 0x600010001168 hey_ hey.f90:3

[4] 0x60000001cab8 MAIN__ ovf.f90:5

In example, the exception of “Divide by zero” occurred in line 3 of below.f90.

Chapter1 Fortran Compiler

- 9 -

 Remarks on Changing Arithmetic Exception Mask

Changing the arithmetic exception mask affects the system library functions called

from a program. Therefore, the arithmetic exception is raised if precision degradation

or another exception occurs in the system library functions.

1.10 Execution Time Termination Codes

Termination Codes when the program ends are listed below.

Termination

Code

Meaning

0 Normal termination.

1 Execution-time error.

2 If character-type termination code is specified in the ERROR STOP

statement, it is used as the termination code.

137 Execution-time error (Abort).

N If a termination code n is specified in the STOP statement or the

intrinsic subroutine EXIT, it is used as the termination code.

Chapter2 Environment Variables

- 10 -

Chapter2 Environment Variables

2.1 Environment Variables Referenced During Compilation

HOME

This variable is referenced by the compiler in order to search the user’s home

directory for an option file. When HOME is not set, the option file has no effect

even if it is put on the home directory.

NFORT_COMPILER_PATH

Specified a list of directories separated by colon which are searched for the

Fortran compiler (fcom). The directory has high priority in the order of listing. If it

is not found in the specified directories, nfort starts the Fortran compiler in the

standard directory. This environment variable is set when you want to always

search non-standard directories.

Example:

$ export NFORT_COMPILER_PATH=“$HOME/libexec:$HOME/wk/libexec”

NFORT_INCLUDE_PATH

Specifies a list of directories separated by colon which are searched for the files

included by INCLUDE line or #include directive, and module files. The directory

has high priority in the order of listing. This environment variable is set when you

want to always search non-standard directories.

Example:

$ export NFORT_INCLUDE_PATH=“$HOME/include:$HOME/wk/include”

NFORT_LIBRARY_PATH

Specifies a list of directories separated by colon which are searched for the Fortran

libraries. The directory has high priority in the order of listing. This environment

variable is set when you want to always search non-standard directories. For

example, you want to always search the OSS library directory that is not attached

to the NEC Fortran compiler.

Example:

$ export NFORT_LIBRARY_PATH=“$HOME/lib”

Chapter2 Environment Variables

- 11 -

NFORT_PROGRAM_PATH

Specified a list of directories separated by colon which are searched for the

assembler and the linker for VE. The directory has high priority in the order of

listing. If they are not found in the specified directories, the NEC Fortran compiler

automatically starts the assembler and linker in the standard directory. This

environment variable is set when you want to always search non-standard

directories.

Example:

$ export NFORT_PROGRAM_PATH=“$HOME/bin:$HOME/wk/bin”

PATH

Add a list of directories separated by colon which are searched for the nfort. The

directory has high priority in the order of listing. Add the "bin" under the directory

where the NEC Fortran compiler is installed. If you set this environment variable,

you can omit specifying the path when starting the nfort. When installing to the

standard directory, add "/opt/nec/ve/bin". The environment variable PATH also

affects other applications of the NEC Fortran compiler. Add it to the existing

environment variable PATH.

Example:

$ export PATH=“/opt/nec/ve/bin:$PATH”

TMPDIR

Specifies a directory where the compilers and commands temporarily use.

(default: /tmp)

VE_LIBRARY_PATH

Specifies a list of directories separated by colon which are searched for the system

libraries. The directory has high priority in the order of listing. This environment

variable is set when you want to always search non-standard directories.

Example:

$ export VE_LIBRARY_PATH=“$HOME/lib:$HOME/wk/lib”

Chapter2 Environment Variables

- 12 -

2.2 Environment Variables Referenced During Execution

LD_LIBRARY_PATH

Specifies a directory where the Library for offloading of lumped and formatted

output of array, and lumped and list-directed output of array to VH is put.

Example:

$ export LD_LIBRARY_PATH=/opt/nec/ve/nfort/lib64

OMP_NUM_THREADS / VE_OMP_NUM_THREADS

This variable sets the number of threads to use for OpenMP and/or automatic

parallelized programs. The number of threads is the number of cores of the VE

when it is not specified explicitly.

Example:

$ export OMP_NUM_THREADS=4

OMP_STACKSIZE / VE_OMP_STACKSIZE

This variable sets the upper limit of the stack size by the kilobytes used by each

threads for OpenMP and/or automatic parallelized programs. The value can be

specify the suffixes “B”(Bytes), “K”(Kilobytes), “M”(Megabytes), and

“G”(Gigabytes) as unit. The stack size used by each threads is 4 megabytes when

it is not specified explicitly.

Example:

$ export OMP_STACKSIZE=1G

VE_ADVANCEOFF

This variable is used to control the advance-off (lockstep execution) mode. When

“YES” is set, the advance-off mode is enabled.

If any other value is set or this variable is not set, the advance-off mode is

disabled.

If the advance-off mode is enabled, the execution time can be significantly

increased.

Example:

$ export VE_ADVANCEOFF=YES

Chapter2 Environment Variables

- 13 -

VE_ERRCTL_ALLOCATE

This variable is used to control the program execution when a runtime error

related to allocation of an allocatable variable or a pointer occurs.

One of the following values can be specified.

ABORT

The program is aborted with error message. (default)

MSG

Error message is output and the execution is continued if possible.

NOMSG

No error message is output and the execution is continued if possible.

Example:

$ export VE_ERRCTL_ALLOCATE=MSG

VE_ERRCTL_DEALLOCATE

This variable is used to control the program execution when a runtime error

related to deallocation of an allocatable variable or a pointer occurs.

One of the following values can be specified.

ABORT

The program is aborted with error message.

MSG

Error message is output and the execution is continued if possible.

NOMSG

No error message is output and the execution is continued if possible. (default)

Example:

$ export VE_ERRCTL_DEALLOCATE=ABORT

VE_FMTIO_OFFLOAD

This variable controls offloading of lumped and formatted output of array, and

lumped and list-directed output of array. When the value of this variable is “YES”

or “ON”, offloading is enabled. See the “5.3 Other features for performance” for

offloading of lumped and formatted output of array, and lumped and list-directed

output of array.

Chapter2 Environment Variables

- 14 -

Example:

$ export VE_FMTIO_OFFLOAD=YES

VE_FMTIO_OFFLOAD_THRESHOLD

This variable sets the threshold of the number of array element offloading of

lumped and formatted output of array, and lumped and list-directed output of

array. An array which have element smaller than the specified value is not

offloaded to VH. The default value is 10.

Example:

$ export VE_FMTIO_OFFLOAD_THRESHOLD=20

VE_FORTn

This variable sets a file name to be connected to the unit number n.

Default of the file name is fort.n.

If this variable is set, a file name is changed to its value.

Example:

$ export VE_FORT9=DATA9

VE_FORT_ABORT

This variable controls core dump creation if a fatal error occurs. When the value of

this variable is “YES”, core dump is created.

Note This variable does not control core dump creation other than caused by

"Runtime Error" of Fortran.

Example:

$ export VE_FORT_ABORT=YES

VE_FORT_ACCUMULATE_THREAD_CPU_TIME

This variable is used to control value of CPU_TIME subroutine in multithreaded

program. When the value of this variable is "YES", then the value is accumulated

CPU time of all threads.

Example:

$ export VE_FORT_ACCUMULATE_THREAD_CPU_TIME=YES

Chapter2 Environment Variables

- 15 -

VE_FORT_DEFAULTFILE

This variable is used to control the starting position of default directory path for

input/output file from the current directory to the specified directory. When the

FILE specifier of the OPEN statement, or environment variable VE_FORTn are

specified by the absolute pathname, the specified environment variable is ignored.

If a default directory pathname string does not end in a slash (/), a slash is added.

Default value is current directory.

The pathname used for each combination of the specified values is shown below.

FILE specifier in

OPEN statement

VE_FORT_DEFAULTFILE VE_FORTn Pathname

none none none ./fort.n

none none test.dat ./test.dat

none ignored /usr/tmp/t.dat /usr/tmp/t.dat

none /tmp none /tmp/fort.n

none /tmp testdata /tmp/testdata

none /usr lib/testdata /usr/lib/testdata

file.dat /usr/group ignored /usr/group/file.dat

/tmp/file.dat ignored ignored /tmp/file.dat

file.dat none ignored ./file.dat

Example:

$ export VE_FORT_DEFAULTFILE=/foo/

VE_FORT_EXPRCW

This variable sets the unit number of unformatted file to be treated as a file in the

expanded format. Records whose size is over 2GB can be handled in the expanded

format. Its format is as follows.

ALL

 Apply to all unit numbers.

number | number,number | number-number

 Specify the unit number.

 Specify multiple unit number separated by commas.

 Specify a range of consecutive unit number separated by a hyphen.

Chapter2 Environment Variables

- 16 -

YES[:number] | NO[:number]

 Specify enable(YES)/disable(NO) for expanded format.

 Specify units number after the colon.

;

 Specify the enable(YES)/disable(NO) and unit numbers to exclude from the

enable/disable(YES/NO) specified before the semicolon.

Example1: Apply to the unit 10.

$ export VE_FORT_EXPRCW=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_EXPRCW=10,11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_EXPRCW=10-12

Example4: Treats all unit as the expanded format except for 10, 11 and 12.

$ export VE_FORT_EXPRCW=YES;NO:10-12

Example5: Apply to all unit numbers.

$ export VE_FORT_EXPRCW=YES

VE_FORT_FILEINF

When "YES" or "DETAIL" is set, information about I/O statement execution is

output to the standard error output at the file close. The items output here

provide information about whether I/O operations are performed as scheduled,

and whether there are unit numbers whose performance should be improved, and

other information. When display items (such as paths) contain multi-byte

characters, it may not be displayed correctly. See Section Appendix D for details.

Example:

$ export VE_FORT_FILEINF=DETAIL

VE_FORT_FMT_NO_WRAP_MARGIN

This variable is used to control the wrap of list-directed output. When the value of

this variable is "YES", column is not wrapped up to maximum record length.

Chapter2 Environment Variables

- 17 -

Example:

$ export VE_FORT_FMT_NO_WRAP_MARGIN=YES

VE_FORT_FMTBUF[n]

Sets the size, in bytes, of recode buffers allocated for I/O. VE_FORT_FMTBUF

can specify the value used for all unit identifiers or one unit identifiers. The buffer

size must be 135 or larger. If a value less than 135 is specified, the value is set to

135. When VE_FORT_FMTBUF is not set, the buffers size is a value specified in a

RECL specifier in OPEN statement. When VE_FORT_FMTBUF and RECL specifier

is set, the buffers size is a smaller value of either VE_FORT_FMTBUF or value of

RECL specifier. If this variable is specified for the standard input/output file and

the standard error output file, this option is ignored.

When VE_FORT_FMTBUF and VE_FORT_RECORDBUF is set, the priority is as

follows.

Highest VE_FORT_RECORDBUFu Specifies one unit identifier.

| VE_FORT_FMTBUFu Specifies one unit identifier.

| VE_FORT_RECORDBUF Specifies all unit identifiers.

Lowest VE_FORT_FMTBUF Specifies all unit identifiers.

The default recode buffers size for I/O is the following value.

 Standard input/output file and Stream file

65536 Byte

 Sequential file

65536 Byte or Value of RECL specifier

 Direct file

Value of RECL specifier

Example1: for all unit identifiers

$ export VE_FORT_FMTBUF=32768

Example2: for unit identifier 1

$ export VE_FORT_FMTBUF1=60000

VE_FORT_FOR_PRINT

This variable sets an output file name for PRINT statement or WRITE statement

with an asterisk (*) in place of a unit number. When it is not specified explicitly,

Chapter2 Environment Variables

- 18 -

output to standard output.

$ export VE_FORT_FOR_PRINT=FILENAME

Note When you use this environment variable, an unused logical unit

number is automatically assigned. This unit number is represented by

a negative number, such as in error messages.

VE_FORT_FOR_READ

This variable sets an input file name for READ statement when an asterisk (*) is

specified instead of the unit number or the unit number is omitted. When it is not

specified explicitly, input from standard input.

$ export VE_FORT_FOR_READ=FILENAME

Note When you use this environment variable, an unused logical unit

number is automatically assigned. This unit number is represented by

a negative number, such as in error messages.

VE_FORT_FOR_TYPE

This variable sets an output file name for TYPE statement. When it is not specified

explicitly, output to standard output.

$ export VE_FORT_FOR_TYPE=FILENAME

Note When you use this environment variable, an unused logical unit

number is automatically assigned. This unit number is represented by

a negative number, such as in error messages.

VE_FORT_MEM_BLOCKSIZE

This variable is set the block size of a memory block which is allocated to

accelerate memory allocation/deallocation at the beginning of program by the

megabytes. The value can be specified as megabytes by using “M” as unit and

gigabytes by using “G” as unit. The value must be power of 2. The size is set 64

megabytes when it is not specified explicitly. For each process, three memory

blocks is allocated at the beginning of program execution.

Example: Set 16 megabytes

$ export VE_FORT_MEM_BLOCKSIZE=16M

Chapter2 Environment Variables

- 19 -

VE_FORT_NML_DELIM_BLANK

This variable is used to control NAMELIST output of character-type array when

DELIM specifier is omitted. When "YES" is set, output characters are separated by

a blank character. By default ("NO"), output characters are not separated from

each other by value separators and are output continuously.

This variable is ignored when DELIM specifier is specified.

Example:

$./a.out

&NML

 C = abcdefg

 /

$ export VE_FORT_NML_DELIM_BLANK=YES

$./a.out

&NML C = a b c d e f g/

VE_FORT_NML_REPEAT_FORM

This variable is used to control NAMELIST output of two or more consecutive

values in array. By default ("YES"), the same value will be output collectively form

(Repeat * Value). When "NO" is set, the values will be output not collectively.

Note The array values are output not collectively, when versions 3.0.7 and

earlier.

Example:

$./a.out

&NML

 R = 3*1.0000000, 2.0000000, 3.0000000

 /

$ export VE_FORT_NML_REPEAT_FORM=NO

$./a.out

&NML R = 1.0000000 1.0000000 1.0000000 2.0000000 3.0000000/

VE_FORT_NORCW

This variable sets the unit number of unformatted file to be treated as a format to

which no control record is added. This option is handled faster than standard

record format because recode is treated same as stream file.

The restrictions that apply are that the length of an input record must match the

length of the output record or an abnormal result is detected, and the

Chapter2 Environment Variables

- 20 -

BACKSPACE statement cannot be used.

Its format is as follows.

ALL

 Apply to all unit numbers.

number | number,number | number-number

 Specify the unit number.

 Specify multiple unit number separated by commas.

 Specify a range of consecutive unit number separated by a hyphen.

YES[:number] | NO[:number]

 Specify a format to which no control record is added.

 Specify units number after the colon.

;

 Specify the enable(YES)/disable(NO) and unit numbers to exclude from the

enable/disable(YES/NO) specified before the semicolon.

Example1: Apply to the unit 10.

$ export VE_FORT_NORCW=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_NORCW=10,11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_NORCW=10-12

Example4: Treats all unit as a format to which no control record is added except

for 10, 11 and 12.

$ export VE_FORT_NORCW=YES;NO:10-12

Example5: Apply to all unit numbers.

$ export VE_FORT_NORCW=ALL

VE_FORT_PARTRCW

This variable sets the unit number of unformatted file to be treated as a format to

which control record is changed. The length of an input record must match the

Chapter2 Environment Variables

- 21 -

length of the output record or an error is detected.

Its format is as follows.

ALL

 Apply to all unit numbers.

number | number,number | number-number

 Specify the unit number.

 Specify multiple unit number separated by commas.

 Specify a range of consecutive unit number separated by a hyphen.

YES[:number] | NO[:number]

 Specify a format to which control record is changed.

 Specify units number after the colon.

;

 Specify the enable(YES)/disable(NO) and unit numbers to exclude from the

enable/disable(YES/NO) specified before the semicolon.

Example1: Apply to the unit 10.

$ export VE_FORT_PARTRCW=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_PARTRCW=10,11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_PARTRCW=10-12

Example4: Treats all unit as a format to which control record is changed except

for 10, 11 and 12.

$ export VE_FORT_PARTRCW=YES;NO:10-12

Example5: Apply to all unit numbers.

$ export VE_FORT_PARTRCW=ALL

VE_FORT_PAUSE

Determines if a PAUSE statement is executed. When a value "NO" is set, ignore a

PAUSE statement.

Example:

Chapter2 Environment Variables

- 22 -

$ export VE_FORT_PAUSE=NO

VE_FORT_RECLUNIT

This variable sets unit of RECL specifier in an OPEN statement for unformatted

file. For units, you can specify only “BYTE” or “WORD”. Default unit is “BYTE”.

“WORD” is 4-byte cycle.

Example:

$ export VE_FORT_RECLUNIT=WORD

VE_FORT_RECORDBUF[n]

Sets the size, in bytes, of recode buffers allocated for I/O.

VE_FORT_RECORDBUF can specify the value used for all unit identifiers or one

unit identifiers. The buffer size must be 135 or larger. If a value less than 135 is

specified, the value is set to 135. When VE_FORT_RECORDBUF is not set, the

buffers size is a value specified in a RECL specifier in OPEN statement. When

VE_FORT_RECORDBUF and RECL specifier is set, the buffers size is a smaller

value of either VE_FORT_RECORDBUF or value of RECL specifier. If this variable

is specified for the standard input/output file and the standard error output file,

this option is ignored.

When VE_FORT_FMTBUF and VE_FORT_RECORDBUF is set, the priority is as

follows.

Highest VE_FORT_RECORDBUFu Specifies one unit identifier.

| VE_FORT_FMTBUFu Specifies one unit identifier.

| VE_FORT_RECORDBUF Specifies all unit identifiers.

Lowest VE_FORT_FMTBUF Specifies all unit identifiers.

The default recode buffers size for I/O is the following value.

 Standard input/output file and Stream file

65536 Byte

 Sequential file

65536 Byte or Value of RECL specifier

 Direct file

Value of RECL specifier

Example1: for all unit identifiers

Chapter2 Environment Variables

- 23 -

$ export VE_FORT_RECORDBUF=32768

Example2: for unit identifier 1

$ export VE_FORT_RECORDBUF1=60000

VE_FORT_SETBUF[n]

Sets the size, in kilobytes, of an I/O buffers allocated for I/O. VE_FORT_SETBUF

can specify the value used for all unit identifiers or one unit identifiers. If this

variable is specified for the standard input/output file and the standard error

output file, this option is ignored except for specifying 0 to the standard output

and standard error output file. When VE_FORT_SETBUF is not set, the size of an

I/O buffers is the following value.

 Sequential file and Stream file

‒ Record buffer environment variable value is less than or equal to 512KB

512 KB

‒ Record buffer environment variable value is greater than 512KB

Raise fractions of Record buffer environment variable value to unit (KB)

 Direct file

‒ Record length is less than or equal to 4,096 bytes

4 KB

‒ Record length is greater than 2,048,000,000 bytes

2,000,000 KB

‒ Other record length

Raise fractions of record length to unit (KB)

Note The above “Record buffer environment variable value” is the value set

to VE_FORT_FMTBUF or VE_FORT_RECORDBUF.

Example1: for all unit identifiers

$ export VE_FORT_SETBUF=10

Example2: for unit identifier 1

Chapter2 Environment Variables

- 24 -

$ export VE_FORT_SETBUF1=20

VE_FORT_SUBRCW

This variable sets the unit number of unformatted file to be treated as a file in the

format divided into records. Records whose size is over 2GB can be handled in the

expanded format.

When any of VE_FORT_EXPRCW, VE_FORT_NORCW or VE_FORT_PARTRCW

is set, this variable is ignored.

Its format is as follows.

ALL

 Apply to all unit numbers.

number | number,number | number-number

 Specify the unit number.

 Specify multiple unit number separated by commas.

 Specify a range of consecutive unit number separated by a hyphen.

YES[:number] | NO[:number]

 Specify a file in the format divided into records.

 Specify units number after the colon.

;

 Specify the enable(YES)/disable(NO) and unit numbers to exclude from the

enable/disable(YES/NO) specified before the semicolon.

Example1: Apply to the unit 10.

$ export VE_FORT_SUBRCW=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_SUBRCW=10,11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_SUBRCW=10-12

Example4: Treats all unit as a file in the format divided into records except for

10, 11 and 12.

$ export VE_FORT_SUBRCW=YES;NO:10-12

Chapter2 Environment Variables

- 25 -

Example5: Apply to all unit numbers.

$ export VE_FORT_SUBRCW=ALL

VE_FORT_UFMTADJUST[n]

This variable is used to control adjust the length of list item at input/output.

VE_FORT_UFMTADJUST can specify the value used for all unit identifiers or one

unit identifiers. When this variable is set, then the different kind of data than the

kind of input/output list item type can input/output.

The following values can be specified. Two or more values can be specified by

comma delimitation.

ALL

 Same as VE_FORT_UFMTADJUST=INT,LOG,REAL,DBL.

DBL

 If the kind of input/output list item type is REAL(16) or COMPLEX(16), the

kind on the file regard as REAL(8) or COMPLEX(8).

INT

 If the kind of input/output list item type is INTEGER(8), the kind on the file

regard as INTEGER(4).

LOG

 If the kind of input/output list item type is LOGICAL(8), the kind on the file

regard as LOGICAL(4).

NO

 No adjust the length.

REAL

 If the kind of input/output list item type is REAL(8) or COMPLEX(8), the kind

on the file regard as REAL(4) or COMPLEX(4).

Example1: Apply adjust the length of all type to the unit 10.

$ export VE_FORT_UFMTADJUST10=ALL

Example2: Apply adjust the length of all type to all unit except the unit 10.

$ export VE_FORT_UFMTADJUST=ALL

$ export VE_FORT_UFMTADJUST10=NO

Example3: Apply adjust the length of real and complex to the unit 10.

Chapter2 Environment Variables

- 26 -

$ export VE_FORT_UFMTADJUST10=REAL,DBL

VE_FORT_UFMTENDIAN

This variable sets the unit number of unformatted file to be treated as a file in the

big-endian format. Its format is as follows.

ALL

 Apply to all unit numbers.

number | number,number | number-number

 Specify the unit number.

 Specify multiple unit number separated by commas.

 Specify a range of consecutive unit number separated by a hyphen.

big[:number] | little[:number]

 Specify the endian format of the file.

 Specify units number after the colon.

;

 Specify the enable(YES)/disable(NO) and unit numbers to exclude from the

enable/disable(YES/NO) specified before the semicolon.

Example1: Apply to the unit 10.

$ export VE_FORT_UFMTENDIAN=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_UFMTENDIAN=10,11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_UFMTENDIAN=10-12

Example4: Treats all unit as big endian except for 10, 11 and 12.

$ export VE_FORT_UFMTENDIAN=big;little:10-12

Example5: Apply to all unit numbers.

$ export VE_FORT_UFMTENDIAN=ALL

VE_FORT_UFMTENDIAN_NOVEC

This variable sets the unit number of unformatted file to be treated as a file in the

Chapter2 Environment Variables

- 27 -

big-endian format and the conversion should be done by the scalar operation.

Its format is as follows.

ALL

 Apply to all unit numbers.

number | number,number | number-number

 Specify the unit number.

 Specify multiple unit number separated by commas.

 Specify a range of consecutive unit number separated by a hyphen.

YES[:number] | NO[:number]

 Specify a file in the big-endian format to be converted by the scalar operation.

 Specify units number after the colon.

;

 Specify the enable(YES)/disable(NO) and unit numbers to exclude from the

enable/disable(YES/NO) specified before the semicolon.

Example1: Apply to the unit 10.

$ export VE_FORT_UFMTENDIAN_NOVEC=10

Example2: Apply to the unit 10 and 11.

$ export VE_FORT_UFMTENDIAN_NOVEC=10,11

Example3: Apply to the unit 10, 11 and 12.

$ export VE_FORT_UFMTENDIAN_NOVEC=10-12

Example4: Treats all unit except for 10, 11 and 12 as a file in the big-endian

format to be converted by the scalar operation.

$ export VE_FORT_UFMTENDIAN_NOVEC=YES;NO:10-12

Example5: Apply to all unit numbers.

$ export VE_FORT_UFMTENDIAN_NOVEC=ALL

VE_FPE_ENABLE

This variable is used to control over floating-point exception handling at run-time.

When this variable is set, then the specified exception is enabled.

The following values can be specified. Two or more values can be specified by

Chapter2 Environment Variables

- 28 -

comma delimitation.

DIV

Divide-by-zero exception.

FOF

Floating-point overflow exception.

FUF

Floating-point underflow exception.

INV

Invalid operation exception.

INE

Inexact exception.

Example:

$ export VE_FPE_ENABLE=DIV

VE_INIT_HEAP

This variable sets the value to initialize the heap area at the run-time. When the

value is not set, the heap area is not initialized.

The following values can be specified.

ZERO

Initializes with zeros.

NAN

Initializes with quiet NaN in double precision (0x7fffffff7fffffff).

NANF

Initializes with quiet NaN in single precision (0x7fffffff).

SNAN

Initializes with signaling NaN in double precision (0x7ff4000000000000).

SNANF

Initializes with signaling NaN in single precision (0x7fa00000).

0xXXXX

Initializes with the value specified in a hexadecimal format up to 16 digits.

When the specified value has more than 8 hexadecimal digits, the initialization

is done on an 8-byte cycle. Otherwise it is done on a 4-byte cycle.

Example:

$ export VE_INIT_HEAP=ZERO

Chapter2 Environment Variables

- 29 -

VE_INIT_STACK

This variable sets the value to initialize the stack area at the run-time. When the

value is not set, the stack area is initialized with zeros. -minit-stack=runtime is

needed at compilation. The following values can be specified.

ZERO

Initializes with zeros.

NAN

Initializes with quiet NaN in double precision (0x7fffffff7fffffff).

NANF

Initializes with quiet NaN in single precision (0x7fffffff).

SNAN

Initializes with signaling NaN in double precision (0x7ff4000000000000).

SNANF

Initializes with signaling NaN in single precision (0x7fa00000).

0xXXXX

Initializes with the value specified in a hexadecimal format up to 16 digits.

When the specified value has more than 8 hexadecimal digits, the initialization

is done on an 8-byte cycle. Otherwise it is done on a 4-byte cycle.

Example:

$ nfort –minit-stack=runtime a.f90

$ export VE_INIT_STACK=SNAN

$./a.out

VE_LD_LIBRARY_PATH

This variable set a list of directories separated by colon that the dynamic linker

searches for libraries. The dynamic linker automatically searches the standard

directories. This environment variable is set when you want to always search non-

standard directories. For example, you want to always search the OSS library

directory that is not attached to the NEC Fortran compiler.

Example:

$ export VE_LD_LIBRARY_PATH=“${HOME}/lib:$VE_LD_LIBRARY_PATH”

VE_NODE_NUMBER

This variable is set to designate a program to be executed on specified VE node.

Chapter2 Environment Variables

- 30 -

VE_PROGINF

When “YES” or “DETAIL” is set, the program execution information is output to the

standard error output at the termination of execution.

See the manual ”PROGINF/FTRACE User’s Guide” for the detail.

VE_TRACEBACK

This variable is used to control to output traceback information when a fatal error

occurs at runtime. The program must be compiled and linked with -traceback to

output traceback information. When the value of this variable is “FULL” or “ALL”,

then at most depth which is specified by VE_TRACEBACK_DEPTH environment

variable of traceback information is output. If any other value is set, only

traceback information of the function that a fatal error occurs is output. If this

variable is not set, no traceback information is output.

An occurrence line number of fatal error is found by address information in

traceback information.

Example:

$ nfort -traceback a.f90

...

$ export VE_TRACEBACK=FULL

$ export VE_FPE_ENABLE=DIV

Runtime Error: Divide by zero at 0x600000000cc0

[1] Called from 0x7f5ca0062f60

[2] Called from 0x600000000b70

Floating point exception

When running the program which is compiled and linked with –

traceback=verbose and the value of this variable is “VERBOSE”, filename and

line number is output in traceback information.

Example:

$ export VE_TRACEBACK=VERBOSE

$./a.out

Runtime Error: Overflow at 0x600008001088

[0] 0x600008001088 below_ below.f90:3

[1] 0x600018001168 out_ out.f90:3

[2] 0x600020001168 watch_ watch.f90:3

[3] 0x600010001168 hey_ hey.f90:3

[4] 0x60000001cab8 MAIN__ ovf.f90:5

Chapter2 Environment Variables

- 31 -

VE_TRACEBACK_DEPTH

This variable is used to control the maximum depth of traceback information when

it is output. When it is not specified explicitly, then “50” is set. If “0” is specified,

then the maximum depth is unlimited.

Chapter3 Compiler Options

- 32 -

Chapter3 Compiler Options

This chapter describes the operating procedures for compiling, linking, and executing

a Fortran program using the Fortran compiler system.

The compiler options of the Fortran compiler can be divided into the following

categories.

 Overall Options

Compiler options used to control the Fortran compiler.

 Optimization Options

Compiler options used to control optimization and vectorization.

 Parallelization Options

Compiler options used to control parallelization.

 Inlining Options

Compiler options used to control inlining.

 Code Generation Options

Compiler options used to control code generation for performance measurement

and the stack area initialization.

 Debug Options

Compiler options used to control debug code generation.

 Language Options

Compiler options used to enable or disable language features.

 Message Options

Compiler options used to control message output.

 List Output Options

Compiler options used to control compiler listing.

 Preprocessor Options

Compiler options used to control preprocessing.

 Assembler Options

Compiler options used to specify assembler functions.

 Linker Options

Compiler options used to specify linker functions.

Chapter3 Compiler Options

- 33 -

 Directory Options

Compiler options used to specify various directories.

3.1 Overall Options

-S

Suppresses the linking and outputs the assembler source file.

-c

Suppresses the linking and outputs the object file.

-cf=conf

Applies the configuration file specified by conf to compilation and linking.

-clear

Ignores all compiler options and input files specified before -clear.

-fsyntax-only

Performs only grammar analysis.

-o filename

Specifies a filename to which output is written, where the output is preprocessed

text, assembler source file, object file or executable file. This option cannot be

specified when two or more source files are specified with -S, -c, or –E.

-x language

Specifies the language kind for the input files. The effect of this option is prior to

the default setting according to the file suffix and the specification is applied to all

the input files following this option (until the next -x if any) on the command-line.

One of the following can be specified as language.

f77

Compiles as a Fortran source file of fixed form.

f77-cpp-input

Does preprocessing and compiles as a Fortran source file of fixed form.

f95

Compiles as a Fortran source file of free form.

f95-cpp-input

Does preprocessing and compiles as a Fortran source file of free form.

assembler

Assembles as an assembler source file.

assembler-with-cpp

Chapter3 Compiler Options

- 34 -

Does preprocessing and assembles the preprocessed file.

@file-name

Reads options from file-name and inserts them in the place of the original

@file-name option.

3.2 Optimization Options

-O[n]

Specifies optimization level by n. The following are available as n:

4

Enables aggressive optimization which violates language standard.

3

Enables optimization which causes side-effects and nested loop optimization.

2

Enables optimization which causes side-effects. (default)

1

Enables optimization which does not cause any side effects.

0

Disables any optimizations, automatic vectorization, parallelization, and inlining.

-fargument-alias

Allows the compiler to assume that arguments are aliasing each other and non-

local-objects in all optimization.

-fargument-noalias

Disallows the compiler to assume that arguments are aliasing each other and non-

local-objects in all optimization. (default)

-f[no-]associative-math

Allows [Disallows] re-association of operands in series during optimization and

loop transformation. When -fno-associative-math is specified, the optimization

which transforms matrix multiply loops into a vector matrix library function call

with -fmatrix-multiply is not performed. (default: -fassociative-math)

-f[no-]aggressive-associative-math

Allows [Disallows] aggressive re-association of operands in series during

optimization and loop transformation. (default: -fno-aggressive-associative-

math)

-f[no-]assume-contiguous

Chapter3 Compiler Options

- 35 -

Allows [Disallows] the compiler to assume that assumed-shape array is

contiguous.

(default:-fno-assume-contiguous)

-f[no-]copyin-intent-out

[Dose not] Create copy-in operation for an argument which has INTENT(OUT)

attribute. (default: -fcopyin-intent-out)

-f[no-]cse-after-vectorization

[Does not] Re-apply common subexpression elimination after vectorization.

(default: -fcse-after-vectorization)

-f[no-]fast-formatted-io

[Does not] Use fast version formatted I/O.

(default: -ffast-formatted-io)

-f[no-]fast-math

[Does not] Uses fast scalar version math functions outside of vectorized loops.

(default: -ffast-math)

-f[no-]fast-math-check

[Does not] Checks the value ranges of arguments in the mathematical function’s

fast scalar version.

(default: -fno-fast-math-check)

-f[no-]ignore-asynchronous

[Does not] Ignores ASYNCHRONOUS attribute in optimization.

(default: -fno-ignore-asynchronous)

-f[no-]ignore-induction-variable-overflow

[Does not] Ignores induction variable overflow in optimization.

(default: -fno-ignore-induction-variable-overflow)

-f[no-]ignore-volatile

[Does not] Ignores VOLATILE attribute in optimization.

(default: -fno-ignore-volatile)

-fivdep

Inserts ivdep directive before all loops.

-f[no-]ivdep-do-concurrent-loop

[Does not] Inserts ivdep directive before DO CONCURRENT statement.

(default: -fivdep-do-concurrent-loop)

Chapter3 Compiler Options

- 36 -

-fivdep-omp-worksharing-loop

Inserts ivdep directive before an OpenMP parallelized loop that does not have

simd with safelen and/or simdlen clause.

-f[no-]loop-collapse

Allows [Disallows] loop collapsing. -O[n] (n=2,3,4) must be effective.

(default: -fno-loop-collapse)

-floop-count=n

Specifies n which is taken to assume the iteration count of the loop whose

iteration count cannot be decided at compilation to do optimization suitable for

loop count. (default: -floop-count=5000)

-f[no-]loop-fusion

Allows [Disallows] loop fusion. -O[n] (n=2,3,4) must be effective.

(default: -fno-loop-fusion)

-f[no-]loop-interchange

Allows [Disallows] loop interchange. -O[n] (n=2,3,4) must be effective.

(default: -fno-loop-interchange)

-f[no-]loop-normalize

Allows [Disallows] loop normalization. Compiler assumes that loop iteration count

is not changed in loop body. (default: -fno-loop-normalize)

-f[no-]loop-split

Allows [Disallows] splitting out of an external-routine call in a loop from the loop.

-O[n] (n=2,3,4) must be effective. (default: -fno-loop-split)

-f[no-]loop-strip-mine

Allows [Disallows] loop strip mining. -O[n] (n=2,3,4) must be effective.

(default: -fno-loop-strip-mine)

-f[no-]loop-unroll

Allows [Disallows] loop unrolling. -O[n] (n=2,3,4) must be effective.

(default: -floop-unroll)

-floop-unroll-complete=m

Allows loop expansion (complete loop unrolling) of a loop whose iteration count is

constant, can be calculated, and is less than or equal to m. -O[n] (n=2,3,4) must

be effective. (default: -floop-unroll-complete=4)

Remark:

-floop-unroll-completely=m can be used as an alias option name.

Chapter3 Compiler Options

- 37 -

-floop-unroll-complete-nest=m

Unrolls loops except for the outermost loop by m level nesting when complete

loop unrolling is applied.

Unrolls from 1 to m-dimension of an array expression when complete loop

unrolling is applied. (default: -floop-unroll-complete-nest=3)

Remark:

-floop-unroll-completely-nest=m can be used as an alias option name.

-floop-unroll-max-times=n

Specifies maximum unrolled times by n. When this option is not effective, the

compiler automatically choose the suitable unroll times.

-f[no-]matrix-multiply

Allows [Disallows] to transform matrix multiply loops into a vector matrix library

function call. -O[n] (n=2,3,4) and -fassociative-math must be effective.

(default: -fno-matrix-multiply)

-f[no-]move-loop-invariants

Enables [Disables] the loop invariant motion under if-condition.

(default: -fmove-loop-invariants)

-f[no-]move-loop-invariants-if

Allows [Disallows] the loop invariant if-structure motion. -O[n] (n=2,3,4) must be

effective. (default: -fno-move-loop-invariants-if)

-f[no-]move-loop-invariants-unsafe

Allows [Disallows] motion of unsafe codes which may cause any side effects.

The example of unsafe codes are:

‒ divide

‒ memory reference to 1 byte or 2 byte area

(default: -fno-move-loop-invariants-unsafe)

-f[no-]move-nested-loop-invariants-outer

Allows [Disallows] the compiler to move the loop invariant expressions to outer

loop. When this option is specified, they are moved before the current loop.

(default: -fmove-nested-loop-invariants-outer).

-fnamed-alias

The compiler will assume that the object pointed-to-by a named pointer have an

alias in applying optimization and vectorization.

-fnamed-noalias

Chapter3 Compiler Options

- 38 -

The compiler will assume that the object pointed-to-by a named pointer does not

have an alias in applying optimization and vectorization. (default)

-fnamed-noalias-aggressive

The compiler will assume that the object pointed-to-by a named pointer does not

have an alias in applying optimization and vectorization. This option applies

optimization and vectorization aggressively.

-f[no-]outerloop-unroll

Allows [Disallows] outer-loop unrolling. -O[n] (n=2,3,4) must be effective.

(default: -fno-outerloop-unroll)

-fouterloop-unroll-max-size=n

Specifies maximum size of an innermost loop to be outer-loop-unrolled.

(default: -fouterloop-unroll-max-size=4)

-fouterloop-unroll-max-times=n

Specifies maximum outer-loop unrolled times by n. n must be power of 2. When

this option is not effective, the compiler automatically choose the suitable unroll

times.

-f[no-]precise-math

[Does not] Apply high resolution algorithm in the vector version of power

operation when the exponent is an integer value. The result becomes more exact

but the calculation speed becomes slower. (default: -fno-precise-math)

-f[no-]reciprocal-math

Allows [Disallows] change an expression “x/y” to “x * (1/y)”. (default: -

freciprocal-math)

-f[no-]reorder-logical-expression

Allows [Disallows] evaluate the terms in a logical expression from left to right

order instead of any order. (default: -freorder-logical-expression)

-f[no-]replace-loop-equation

[Does not] Replaces “!=”, “==”, “.NE.” and “.EQ.” operator with “<=” or “>=” at

the loop back-edge. (default: -fno-replace-loop-equation)

-f[no-]replace-matmul-to-matrix-multiply

Allows [Disallows] to replace MATMUL call into a vector matrix library function call.

(default: -freplace-matmul-to-matrix-multiply)

-m[no-]array-io

Allows [Disallows] to optimize array expression and “implied DO” in I/O

Chapter3 Compiler Options

- 39 -

statement. (default: -marray-io)

-m[no-]conditional-index-test

Allows [Disallows] to conditional-index-testing optimization.

(default: -mno-conditional-index-test)

-m[no-]list-vector

Allows [Disallows] the vectorization of the statement in a loop when an array

element with a vector subscript expression appears on both the left and right

sides of an assignment operator.

(default: -mno-list-vector)

-mretain-keyword

Sets higher priority to vector memory access results to retain on LLC (Last-Level

Cache). The following are available as keyword:

all

Sets higher priority to vector load/store/gather/scatter results. (default)

list-vector

Sets higher priority to vector gather/scatter results.

none

Does not set higher priority to vector memory access results.

-msched-keyword

Specifies whether and how the instruction scheduling. The following are available

as keyword:

none

Does not perform the instruction scheduling.

insns

Performs the instruction scheduling in a basic block.

block

Performs the instruction scheduling in a basic block, but to a wider range than

-msched-insns does, in order to schedule instructions aggressively. (default)

interblock

Performs the instruction scheduling beyond basic blocks.

-mstack-arrays

Allocates automatic arrays and temporary arrays on the stack. (default)

-mno-stack-arrays

Allocates automatic arrays and temporary arrays on in heap memory.

Chapter3 Compiler Options

- 40 -

-muse-mmap

Use mmap / munmap functions to allocate / deallocate memory in ALLOCATE /

DEALLOCATE statements.

-m[no-]vector

Enables [Disables] automatic vectorization. (default: -mvector)

-m[no-]vector-advance-gather

Allows [Disallows] motion of vector gather instructions so that they can be started

as advance as possible. (default: -mvector-advance-gather)

-mvector-advance-gather-limit=n

The number of vector gather operations which is moved by -mvector-advance-

gather is up to n. (default: -mvector-advance-gather-limit=56)

-mvector-assignment-threshold=n

Use vector instructions to assign a derived type whose size is equal to or greater

than n byte. (default: -mvector-assignment-threshold=64)

-m[no-]vector-assume-loop-count

Allows [Disallows] the use of an array declaration to assume the shape of the

array expression or the loop iteration count. (default: -mvector-assume-loop-

count)

-m[no-]vector-dependency-test

Allows [Disallows] the conditional vectorization by dependency-test. -O[n]

(n=2,3,4) must be effective. (default: -mvector-dependency-test)

-m[no-]vector-floating-divide-instruction

Allows [Disallows] to use vector-floating-divide instruction. By default,

approximate instruction sequence by using vector-floating-reciprocal instructions

is used.

(default: -mno-vector-floating-divide-instruction)

-m[no-]vector-fma

Allows [Disallows] to use vector fused-multiply-add instruction.

(default:-mvector-fma)

-m[no-]vector-intrinsic-check

[Does not] Checks the value ranges of arguments in the mathematical functions

and intrinsic arithmetic in the vectorized version. (default: -mno-vector-

intrinsic-check)

The target mathematical functions and intrinsic arithmetic of this option are as

Chapter3 Compiler Options

- 41 -

follows. The argument is restricted to double precision real type and specific name

which have the type is also target.

ACOS, ACOSH, ASIN, ATAN, ATAN2, ATANH, COS, COSD, COSH, COTAN, EXP,

EXP10, EXP2, EXPC, FACT, LOG10, LOG2, LOG, SIN, SIND, SINH, TAN, TANH,

Exponentiation

-m[no-]vector-iteration

Allows [Disallows] to use vector iteration instruction in the vectorization.

(default: -mvector-iteration)

-m[no-]vector-iteration-unsafe

Allows [Disallows] to use vector iteration instruction in the vectorization when it

may give incorrect result. (default: -mvector-iteration-unsafe)

-m[no-]vector-loop-count-test

Allows [Disallows] the conditional vectorization by loop-iteration-count-test. -O[n]

(n=2,3,4) must be effective. (default: -mno-vector-loop-count-test)

-m[no-]vector-low-precise-divide-function

Allows [Disallows] to use low precise version for vector floating divide operation. It

is faster than the normal precise version but the result may include at most one

bit numerical error in mantissa. (default: -mno-vector-low-precise-divide-

function)

-m[no-]vector-merge-conditional

Allows [Disallows] to merge vector load and store in THEN block, ELSE IF block,

and ELSE block. (default: -mno-vector-merge-conditional)

-m[no-]vector-neighbors

Allows [Disallows] neighboring access optimization.

(default: -mno-vector-neighbors)

-mvector-neighbors is available when -march=ve3 is enabled.

-m[no-]vector-packed

Allows [Disallows] to use packed vector instruction. (default: -mno-vector-

packed)

-m[no-]vector-power-to-explog

Allows [Disallows] to replace R1**R2 in a vectorized loop with EXP(R2*LOG(R1)).

R1 and R2 type must be single or double precision floating-point type. By the

replacement, the execution time would be shortened, but numerical error occurs

rarely in the calculation.

Chapter3 Compiler Options

- 42 -

(default: -mno-vector-power-to-explog)

-m[no-]vector-power-to-sqrt

Allows [Disallows] to replace R1**R2 in a vectorized loop with the expression

including SQRT or CBRT when R2 is a special value such as 0.5, 1.0/3.0 etc. R1

and R2 type must be single or double precision floating-point type. When it is

replaced, the execution time would become faster, but numerical error occurs

rarely in the calculation.

(default: -mvector-power-to-sqrt)

-m[no-]vector-reduction

Allows [Disallows] to use vector reduction instruction in the vectorization.

(default: -mvector-reduction)

-m[no-]vector-shortloop-reduction

Allows [Disallows] the conditional vectorization by loop-iteration-test for

reduction.

-O[n] (n=2,3,4) must be effective.

(default: -mno-vecvtor-shortloop-reduction)

-m[no-]vector-sqrt-instruction

Allows [Disallows] to use vector-sqrt instruction. By default, approximate

instruction sequence by using vector-floating-reciprocal instructions is used.

(default: -mno-vector-sqrt-instruction)

-mvector-threshold=n

Specifies the minimum iteration count (n) of a loop for vectorization.

(default: -mvecter-threshold=5)

-mwork-vector-kind=none

Disallows the partial vectorization using loop division.

3.3 Parallelization Options

-fopenmp

Enables OpenMP directives. -pthread is implicitly enabled.

-m[no-]create-threads-at-startup

[Does not] Generates threads for OpenMP or automatic parallelization at the first

parallel region execution. The threads are generated at the startup of the

execution at default. -static-nec or -static must be specified when you specified -

mno-create-threads-at-startup.

Chapter3 Compiler Options

- 43 -

(default: -mcreate-threads-at-startup)

-mparallel

Allows automatic parallelization. -pthread is implicitly enabled.

-mparallel-innerloop

Allows to parallelize inner-loop.

-m[no-]parallel-omp-routine

Allows [Disallows] to apply automatic parallelization to a routine including OpenMP

directive.

(default: -mparallel-omp-routine)

-mparallel-outerloop-strip-mine

Allows to parallelize the nested loops that are outer-loop strip-mined.

-mparallel-sections

Allows to generate parallelized sections.

-mparallel-threshold=n

Specifies the threshold value n of the loop parallelization. When the value is larger

than the work of the loop, the loop is parallelized.

(default: -mparallel-threshold=2000)

-mschedule-dynamic

-mschedule-runtime

-mschedule-static

-mschedule-chunk-size=n

Specifies a scheduling kind and chunk size of a thread when they are not specified

by schedule-clause in OpenMP parallelization and automatic parallelization.

-pthread

Enables support for multithreading with the pthread library.

3.4 Inlining Options

-f[no-]inline-abort-at-error

Stops the compilation when generation of routines defined in source files fails.

Does not search them and continues the compilation when this option is not

effective.

(default: -fno-inline-abort-at-error)

-f[no-]inline-copy-arguments

[Does not] Generate a copy of the argument of an inlined routine by automatic

Chapter3 Compiler Options

- 44 -

inlining. When not generating, a copy of routine parameter is replaced with a

corresponding routine argument.

(default: -finline-copy-arguments)

-finline-directory=directory

Searches all source files under directories separated by colon for routines to inline.

-fno-inline-directory=directory

Does not search all source files under directories separated by colon for routines

to inline. This option is specified when you do not want to search the source files

specified by -finline-file or -finline-directory.

-finline-file=string

Searches source files separated by colon for routines to inline. Searches all input

source files specified in command line when all is specified.

-fno-inline-file=string

Does not search source files separated by colon for routines to inline. This option

is specified when you do not want to search the source files specified by -finline-

file or -finline-directory.

-finline-functions

Allows automatic inlining.

-finline-max-depth=n

Specifies the level of routines to be inlined from the bottom of the calling tree by

automatic inlining. (default: -finline-max-depth=2)

-finline-max-function-size=n

Specifies the routine size (= the amount of intermediate representations for a

routine) to be inlined by automatic inlining.

(default: -finline-max-function-size=50)

-finline-max-times=n

Sets the limit of the route size (= the amount of intermediate representations for

a routine) after automatic inlining to “(routine-size-before-inlining) * n”.

(default: -finline-max-times=6)

-f[no-]inline-suppress-diagnostics

[Does not] Output diagnostics when generation of routines defined in source files

to search fails. The option -fno-inline-suppress-diagnostics is specified when

you want to check which source files you specified are searched normally.

(default: -finline-suppress-diagnostics)

Chapter3 Compiler Options

- 45 -

-mgenerate-il-file

Outputs an IL file for cross-file inlining. The file is created in the current directory,

under the name "source-file-name.fil".

-mread-il-file IL file name

Read IL files separated by colon for routines to inline. When -finline-directory,

-finline-file or -mgenerate-il-file are specified, this option is ignored.

3.5 Code Generation Options

-finstrument-functions

Inserts function calls for the instrumentation to entry and exit of functions. The

instrumented functions are;

void __cyg_profile_func_enter(void *this_fn, void *call_site);

void __cyg_profile_func_exit(void *this_fn, void *call_site);

-fpic

-fPIC

Generates position-independent code.

-ftrace

Creates an object file and the executable file for ftrace function.

(default: -no-ftrace)

-march=kind

Specifies the target architecture.

The following are available as kind:

ve1

Produces object files available only on ve1 or later. (default)

ve3

Produces object files available only on ve3 or later.

(Defaults when installed for VE3.)

-mfp16-format=kind

Specifies format of the half-precision floating-point. -mfp16-format=kind can be

specified only when -march=ve3 is enabled.

The following are available as kind:

none

Does not use format of the half-precision floating-point.

Chapter3 Compiler Options

- 46 -

ieee

Uses IEEE binary16 format.

bfloat

Uses bfloat16 format.

-p

-pg

Creates an executable file for output profiler information (ngprof).

-[no-]proginf

[Does not] Create an executable file for PROGINF function. (default: -proginf)

3.6 Debugging Options

-fbounds-check

Same as -fcheck=bounds.

-fcheck=keyword

Enables runtime check according to keyword. Two or more keywords can be

specified by separating them with a colon (:). For example, if you specify this

option as "-fcheck=all:noalias", all checks except alias can be enabled.

The following are available as keyword:

all

Enables checking all keywords below.

[no]alias

Enables [Disables] checking assignments to aliased dummy arguments.

[no]bits

Enables [Disables] checking bit intrinsic arguments.

[no]bounds

Enables [Disables] checking array bounds.

[no]dangling

Enables [Disables] checking for dangling pointers.

[no]do

Enables [Disables] checking DO loops for zero step values.

[no]iovf

Enables [Disables] checking integer overflow.

[no]pointer

Chapter3 Compiler Options

- 47 -

Enables [Disables] checking pointer references.

[no]present

Enables [Disables] checking optional references.

[no]recursion

Enables [Disables] checking for invalid recursion.

-g

Generates debugging information in DWARF. When -O1, -O2, -O3, or -O4 are

specified with -g, some of the debugging information may be inaccurate as a side-

effect of optimization.

-minit-stack=value

Initializes the stack area with the specified value at the run-time. The following

are available as value:

no

Do not initialize.

zero

Initializes with zeros.

nan

Initializes with quiet NaN in double precision (0x7fffffff7fffffff).

nanf

Initializes with quiet NaN in single precision (0x7fffffff).

snan

Initializes with signaling NaN in double precision (0x7ff4000000000000).

snanf

Initializes with signaling NaN in single precision (0x7fa00000).

runtime

Initializes with the value specified by the environment variable

VE_INIT_STACK.

0xXXXX

Initializes with the value specified in a hexadecimal format up to 16 digits.

When the specified value has more than 8 hexadecimal digits, the initialization

is done on an 8-byte cycle. Otherwise it is done on a 4-byte cycle.

-mmemory-trace

Generates code to output memory allocation/deallocation trace.

-mmemory-trace-full

Chapter3 Compiler Options

- 48 -

Generates code to output memory allocation/deallocation trace with source code

information.

-traceback[=verbose]

Specifies to generate extra information in the object file and to link run-time

library due to provide traceback information when a fatal error occurs and the

environment variable VE_TRACEBACK is set at run-time.

When verbose is specified, generates filename and line number information in

addition to the above due to provide these information in traceback output. Set

the environment variable VE_TRACEBACK=VERBOSE to output these

information at run-time.

3.7 Language Options

-bss

Allocates local variables and arrays in .bss section.

-fdefault-integer=n

Specifies the size of default INTEGER and LOGICAL in byte. n must be 4 or 8.

(default: -fdefault-integer=4)

It also affects the intrinsic procedures that the result type or argument type is

default INTEGER or default LOGICAL. The result or argument type must be of

one of the following types:

- default INTEGER

 n=4: default INTEGER or INTEGER(4)

 n=8: default INTEGER or INTEGER(8)

- default LOGICAL

 n=4: default LOGICAL or LOGICAL(4)

 n=8: default LOGICAL or LOGICAL(8)

-fdefault-double=n

Specifies the size of default DOUBLE PRECISION and real/imaginary parts of

DOUBLE COMPLEX in byte. n must be 8 or 16. (default: -fdefault-double=8)

-fdefault-real=n

Specifies the size of default REAL and real/imaginary parts of default COMPLEX in

byte. n must be 4 or 8. (default: -fdefault-real=4)

It also affects the intrinsic procedures that the result type or argument type is

default REAL or default COMPLEX. The result or argument type must be of one of

Chapter3 Compiler Options

- 49 -

the following types:

- default REAL

 n=4: default REAL or REAL(4)

 n=8: default REAL or REAL(8)

- default COMPLEX

 n=4: default COMPLEX or COMPLEX(4)

 n=8: default COMPLEX or COMPLEX(8)

-fextend-source

Extends the limit of 72 characters on a source line in fixed form to 2,048.

-ffree-form

Specifies that the input source program is described in free form. This is the

default when the suffix of input source file is .f90, .f95, .f03, .F90, .F95 or .F03.

-ffixed-form

Specifies that the input source program is described in fixed form. This is the

default when the suffix of input source file is .f or .F.

-ff90-sign

Does not distinguish the second argument of the intrinsic function SIGN between

positive real 0.0 and negative real -0.0. If the second argument is negative real -

0.0, sign of the result value is positive.

-fmax-continuation-lines=n

Specifies the upper limit of the number of lines is designated. n must be 511 or

upper and 4095 or lower. (default: -fmax-continuation-lines=1023)

-fno-realloc-lhs

Enables -fno-realloc-lhs-array and -fno-realloc-lhs-scalar at the same time.

(default: -frealloc-lhs)

-fno-realloc-lhs-array

By Fortran 2003 standard, when the left-hand side of an assignment is an

allocatable array variable and it is unallocated or not allocated with the correct

shape to hold the right-hand side, it should be reallocated to the shape of the

right-hand side.

This option specifies ignoring the rule. When the left-hand side is not allocated

with the correct shape to hold the right-hand side, it causes unexpected result.

(default: -frealloc-lhs-array)

-fno-realloc-lhs-scalar

Chapter3 Compiler Options

- 50 -

By Fortran 2003 standard, when the left-hand side of an assignment is an

allocatable scalar variable and it is unallocated, it should be automatically

reallocated.

This option specifies ignoring the rule. When the left-hand side is not allocated, it

causes unexpected result.

(default: -frealloc-lhs-scalar)

-masync-io

Specifies that the data transfer occur asynchronously when

ASYNCHRONOUS=”YES” in the READ and WRITE statement is specified.

Asynchronous I/O is enabled with the following I/O.

‒ Unformatted I/O.

-save

Treats each program unit (except those marked as RECURSIVE) as if SAVE

statement were specified for every local variable.

-std=standard

Specifies Fortran Language standard. The recognized keywords are f95, f2003,

f2008 or f2018. (default:-std=f2008)

-use module

References all public entities within module accessible. Two or more module can

be specified by comma delimitation.

3.8 Message Options

-Wall

Outputs all syntax warning messages.

-Werror

Treats all syntax warnings as fatal errors.

-Wextension

Outputs a warning message for use of extended Fortran language specification.

-Wobsolescent

Outputs a warning message for use of obsolescent Fortran language specification.

-Woverflow

Outputs a warning message for integer overflow at the compilation.

-Woverflow-errors

Chapter3 Compiler Options

- 51 -

Outputs an error message for integer overflow and stop the compilation.

-Wunmatched-subscript

Outputs a warning message at the compilation, when the number of subscript

expression in subscript list of the array reference is smaller than the rank of array.

-Wunmatched-subscript-errors

Output an error message and stop the compilation, when the number of subscript

expression in subscript list of the array reference is smaller than the rank of array.

-fdiag-inline=n

Specifies automatic inlining diagnostics level by n. (0: No output, 1:Information,

2:Detail) (default: -fdiag-inline=1)

-fdiag-parallel=n

Specifies automatic parallelization diagnostics level by n. (0: No output,

1:Information, 2:Detail) (default: -fdiag-parallel=1)

-fdiag-vector=n

Specifies vector diagnostics level by n. (0: No output, 1:Information, 2:Detail)

(default: -fdiag-vector=1)

-pedantic-errors

Outputs the errors for deviation from language specification.

-w

Suppresses all syntax warning messages.

3.9 List Output Options

-report-file=filename

Outputs the listing result to the specified file instead of the default one.

-report-append-mode

Opens the output file with “appending mode” instead of “overwriting mode”. This

option cannot be used unless the -report-file option is specified.

-report-all

Outputs the code generation list, diagnostic list, format list, inline list, option list

and vector list.

-[no-]report-cg

[Does not] Outputs optimization list of code generation module.

(default: -no-report-cg)

-[no-]report-diagnostics

Chapter3 Compiler Options

- 52 -

[Does not] Outputs diagnostic list. (default: -no-report-diagnostics)

-[no-]report-format

[Does not] Outputs format list. (default: -no-report-format)

-[no-]report-inline

[Does not] Outputs optimization list of inlining module. (default: -no-report-

inline)

-[no-]report-option

[Does not] Outputs option list. (default: -no-report-option)

-report-userinfo=character-string

Outputs additional user information character-string at the top of the listing file.

-[no-]report-vector

[Does not] Outputs optimization list of vectorization module.

(default: -no-report-vector)

3.10 Preprocessor Options

-Dmacro[=defn]

Defines macro as the value defn as if #define directive does. When =defn is

omitted, macro is defined as decimal constant 1.

-E

Performs preprocessing only and outputs the preprocessed text to the standard

output.

-dM

Outputs a list of #define with macro names and their values for all the macros

defined by #define or -D, instead of the normal preprocessed text. When -E is

not specified, this option is ignored.

-fpp

Specifies that the input source program is preprocessed by fpp before the

compilation. This is the default when the suffix of input source file

is .F, .F90, .F95 or .F03.

-nofpp

Specifies that the input source program is not preprocessed by fpp before the

compilation. This is the default when the suffix of input source file is .f, .f90, .f95

or .f03.

-fpp-name=name

Chapter3 Compiler Options

- 53 -

Specifies the name (which can be either with or without a pathname) of Fortran

preprocessor to be used instead of the default one.

-Idirectory

Adds directory to the list of directories searched for files specified by #include

directives.

-isysroot directory

Searches the directory named include under directory for header files specified

with #include directives.

-isystem directory

Searches directory after all the directories specified by -I options but before the

standard system directories.

-M

Outputs a list of the file dependencies instead of the normal preprocessed text.

-nostdinc

Omits searching the standard system directory for header files.

-P

Omits outputting line directives to preprocessed text.

-traditional

Specifies to remove C-style comment (/**/) completely instead of replacing with a

space.

-Umacro

Undefines the definition of macro.

-Wp,option

Specifies option to be passed to preprocessor (fpp). Multiple options or arguments

can be specified to this option at once by separating them by commas.

3.11 Assembler Options

-Wa,option

Specifies option to be passed to assembler (nas). Multiple options or arguments

can be specified to this option at once by separating them by commas.

-Xassembler option

Specifies an option to be passed to assembler (nas). If an option requires an

argument, this option must be specified twice, once for the option and once for

the argument.

Chapter3 Compiler Options

- 54 -

-assembly-list

Outputs assembly list to file. The output filename is a name suffixed by “.O” which

is based on input filename.

3.12 Linker Options

-cxxlib

Link the C++ libraries.

-Bdynamic

Enables the linking of dynamic-link libraries at the run-time. (default)

-Bstatic

Link user's libraries statically.

-Ldirectory

Searches directory for libraries specified subsequently to this option, before the

directories searched by default.

-llibrary

Specifies a library to be linked. Prescribed directories are searched for the library

named liblibrary.a.

-nostartfiles

Does not link the standard system startup files.

-nostdlib

Does not link the standard system startup files or libraries.

-rdynamic

Adds all symbols including any unused symbols to the dynamic symbol table at

the linking.

-shared

Generates a shared object.

-static

Link libraries statically.

-static-nec

Link the NEC SDK libraries statically.

-stdlib=library-name

Specifies the linked C++ library when -cxxlib is specified. The following libraries

can be specified.

compat

Chapter3 Compiler Options

- 55 -

Link NEC Compat C++ Standard Library.

(default when NEC Compat C++ Standard Library is installed.)

libc++

Link libc++.

(default when NEC Compat C++ Standard Library is NOT installed.)

-Wl,option

Specifies option to be passed to linker (nld). Multiple options or arguments can be

specified to this option at once by separating them by commas.

-Xlinker option

Specifies an option to be passed to linker (nld). If an option requires an

argument, this option must be specified twice, once for the option and once for

the argument.

-z keyword

Same as nld’s -z option.

3.13 Directory Options

--sysroot=directory

Specifies a directory name where header files and libraries are searched for. The

directory named include under directory is searched for the header files. The

directory named “lib” under directory is searched for the libraries.

-Bdirectory

Specifies a directory name where commands, header files and libraries are

searched for. The specified directory is searched for the commands and libraries.

The directory named include under directory is searched for the header files.

-fintrinsic-modules-path directory

Specifies a directory name where intrinsic module files are searched for.

-module directory

-J directory

Specifies a directory name where to output module files. The specified directory is

also added to the list of searching path which is used during inputting module

files.

Chapter3 Compiler Options

- 56 -

3.14 Miscellaneous Options

--help

Displays usage of the compiler.

-print-file-name=library

Displays the full pathname of the library file named library which would be linked.

When this option is specified, actual compilation and linking are never done.

If the named library is not found, only the name specified as library is displayed.

-print-prog-name=program

Displays the command name named program in the compiler system which would

be invoked during the compilation through linking. When this option is specified,

actual compilation and linking are never done.

If the named command is not found, only the name specified as program is

displayed.

-noqueue

When the number of licenses exceeds use restriction, the compiler doesn’t stands

by until a license is freed.

-v

Displays the invoked commands at each stage of compilation.

--version

Displays the version number and copyrights of the compiler.

Chapter3 Compiler Options

- 57 -

3.15 Optimization Level and Options’ Defaults

The relation between -On and independently optimization options are as follows.

Note that -On controls the overall level of optimization, and the same instruction

code cannot be created even if an independently optimization option are enabled or

disabled are equal. To effectively apply one optimization, optimizations are

interrelated such as applying another ancillary optimizations, and -On controls them

to work together. For example specifying the optimization option that is set as the

defaults of -O1 with –O0, the instruction code cannot equal to -O1.

Option Name -O4 -O3 -O2 -O1 -O0

-fassociative-math ✓ ✓ ✓ - -

-fcse-after-vectorization ✓ ✓ ✓ - -

-ffast-math ✓ ✓ ✓ ✓ -

-fignore-induction-variable-overflow ✓ - - - -

-fignore-volatile ✓ - - - -

-finline-copy-arguments - ✓ ✓ ✓ ✓

-floop-collapse ✓ ✓ - - -

-floop-fusion ✓ ✓ - - -

-floop-interchange ✓ ✓ - - -

-floop-normalize ✓ ✓ - - -

-floop-strip-mine ✓ ✓ - - -

-floop-unroll ✓ ✓ ✓ - -

-floop-unroll-complete=4 ✓ ✓ ✓ - -

-floop-unroll-complete-nest=3 ✓ ✓ ✓ - -

-fmatrix-multiply ✓ ✓ - - -

-fmove-loop-invariants ✓ ✓ ✓ ✓ -

-fmove-loop-invariants-if ✓ ✓ - - -

-fmove-loop-invariants-unsafe ✓ - - - -

-fmove-nested-loop-invariants-outer ✓ ✓ ✓ ✓ -

-fnamed-alias - - - ✓ ✓

-fnamed-noalias ✓ ✓ ✓ - -

-fouterloop-unroll ✓ ✓ - - -

-freciprocal-math ✓ ✓ ✓ - -

Chapter3 Compiler Options

- 58 -

Option Name -O4 -O3 -O2 -O1 -O0

-freplace-loop-equation ✓ - - - -

-freplace-matmul-to-matrix-multiply ✓ ✓ ✓ ✓ -

-marray-io ✓ ✓ ✓ ✓ -

-mconditional-index-test ✓ ✓ - - -

-msched-none - - - - ✓

-msched-block ✓ ✓ ✓ ✓ -

-mvector ✓ ✓ ✓ ✓ -

-mvector-dependency-test ✓ ✓ ✓ - -

-mvector-fma ✓ ✓ ✓ - -

-mvector-merge-conditional ✓ ✓ - - -

Chapter4 Compiler Directives

- 59 -

Chapter4 Compiler Directives

This chapter describes the compiler directives of Fortran compiler.

4.1 Format of Compiler Directive

Format:

!NEC$ directive-name [clause] ... (Free source form)

*NEC$ directive-name [clause] ... (Fixed source form)

cNEC$ directive-name [clause] ... (Fixed source form)

Note The following formats are also available, but marked obsolescent. The above

formats are recommended.

!$NEC directive-name [clause] ... (Free source form)

*$NEC directive-name [clause] ... (Fixed source form)

c$NEC directive-name [clause] ... (Fixed source form)

4.2 Compiler Directive Options

[no]advance_gather

Allows [Disallows] motion of vector gather instructions in the following loop so

that they can be started as advance as possible.

always_inline

A routine which includes this directive should be always inlined. This directive

must be specified in a called routine. A routine call which noinline is effective is

never inlined even if the called routine includes this directive. -On[n=2,3,4], -

finline-functions, -fopenmp, or -mparallel is needed to enable this directive.

[no]assoc

Allows [Disallows] associative transformation in which the order of operations may

be different from the original.

[no]assume

Allows [Disallows] the use of an array declaration to assume the shape of the

array expression or the loop iteration count.

Chapter4 Compiler Directives

- 60 -

atomic

Specifies that the assignment statement immediately after the compiler directive

to which atomic is specified is reduction operation such as summation or product.

cncall

Allows parallelization of a loop which includes user defined procedure calls.

collapse

Allows loop collapsing.

[no]concurrent

Allows [Disallows] automatic parallelization of the following loop. -mparallel must

be effective. The following schedule-clause whose functionality is the same as

OpenMP can be specified.

schedule(static [,chunk-size])

schedule(dynamic [,chunk-size])

schedule(runtime)

dependency_test

Allows the conditional vectorization by dependency-test.

forced_collapse

Collapses a nested loop forcibly. The user have to guarantee that the loop collapse

does not give unexpected result, incorrect result etc.

gather_reorder

Allows the instruction reordering on the assumption that vector loads and vector

stores with non-linear subscripts appearing in the following loop do not overlap

each other.

ignore_feedback_scalar

Even though the definitions and references of a scalar variable within a loop are

under different IF statement conditions, allows vectorization of the loop under the

assumption that within each iteration of the loop, there is a definition preceding

the reference (that is, there are no definition-reference relationships of a scalar

variable spanning across loop iterations).

Chapter4 Compiler Directives

- 61 -

[no]inline

A routine call in a following statement, a compound statement, an iteration

statement, or a selection statement is [not] chosen as a candidate for inlining.

-On[n=2,3,4], -finline-functions, -fopenmp, or -mparallel is needed to enable

these directive.

inline_complete

Same as inline. But, if the inlined routine includes a routine call, the called routine

is chosen as a candidate for inlining. The inlining applied until there is no routine

calls if possible. -On[n=2,3,4], -finline-functions, -fopenmp, or -mparallel is

needed to enable this directive.

[no]inner

Allows [Disallows] parallelization of the innermost loop. When it is specified to the

innermost loop, it is effective.

[no]interchange

Allows [Disallows] loop interchanging.

ivdep

Regards the unknown dependency as vectorizable dependency during the

automatic vectorization. An execution result can be incorrect by vectorizing the

loop which is impossible to be vectorized.

[no]list_vector

Allows [Disallows] vectorization of the statement in a loop when an array element

with a vector subscript expression appears on both the left and right sides of an

assignment operator.

loop_count(n)

Assumes loop iteration count as n when compiler cannot determine the count by

loop controlling expression.

loop_count_test

Allows the conditional vectorization by loop-iteration-count-test.

Chapter4 Compiler Directives

- 62 -

[no]lstval

Allows [Disallows] loop transformation which does not guarantee the values of the

variables in the loop after the loop has been processed.

move_unsafe / move / nomove

move_unsafe

Allows the loop invariant motion under if-condition, including side-effecting

unsafe code. The message opt(3008) is displayed if unsafe code is moved.

move

Allows the loop invariant motion under if-condition. The unsafe codes which

may cause side effects are not moved.

nomove

Disallows the loop invariant motion under if-condition.

[no]neighbors

Allows [Disallows] neighboring access optimization in the loop.

Neighboring access optimization is effective only when -march=ve3 is enabled.

nofma

Disallows to use vector fused-multiply-add instruction in the array expression or

the loop.

nofuse

Disallows the loop fusion with the previous loop.

nosync

Parallelizes the loop ignoring unknown dependencies when the array elements in

the loop have unknown dependencies.

options “compiler-option [compiler-option]...”

Specify the compiler options by options directive in the same way as on a

command line.

Rules

Chapter4 Compiler Directives

- 63 -

‒ The options directive must be specified at the top of your source program.

‒ Two or more options directives can be specified in succession.

‒ Blank line, comment line and #line can be written before and between options

directive.

‒ The options directive can be specified in the file included by #include at the

top of your source program.

Remarks:

‒ An option directive line cannot be continued.

‒ The directory specified by -I in options directive is not searched for reading

options directive.

‒ The upper limits of nesting level of files included by #include is 1000.

‒ The options directive cannot be specified in file included by INCLUDE line.

‒ The compiler options that control linking or compiler environment cannot be

specified. See “4.3 Compiler options which cannot specify by options directive”.

‒ When -fopenmp, -mparallel and/or –ftrace are specified by options directive,

they must be specified at linking.

optimize “compiler-option [compiler-option]...”

Specify the compiler options by this directive. The specified options are applied to

this routine.

Rules

This directive must be placed immediately after PROGRAM, SUBROUTINE, or

FUNCTION statement. Two or more directives can be specified.

SUBROUTINE SUB

!NEC$ optimize "-O3 -finline-functions"

!NEC$ optimize "-mvector-intrinsic-check"

 USE MM

 ...

END SUBROUTINE SUB

Remarks:

Chapter4 Compiler Directives

- 64 -

‒ This directive line cannot be continued.

‒ The options in this directive cannot be applied to internal procedures.

‒ See “4.4 Compiler options which can be specified by optimize directive”.

outerloop_unroll(n) / noouterloop_unroll

outerloop_unroll(n)

Allows outer loop unrolling. The unroll time becomes a power of 2 that is less

than or equal to n.

noouterloop_unroll

Disallows outer loop unrolling.

[no]packed_vector

Allows [Disallows] to use packed vector instruction in the loop.

parallel do

Applies forced-parallelization of the following loop. The programmer must check

the validity of the operation when the loop is parallelized. -mparallel must be

effective.

The following schedule-clause whose functionality is the same as OpenMP can be

specified.

schedule(static [,chunk-size])

schedule(dynamic [,chunk-size])

schedule(runtime)

The private-clause whose functionality is the same as OpenMP can be specified.

You can specify a scalar variable and/or explicit-shaped array whose type is not

CHARACTER or derived type.

pvreg(array-name)

Assign a vector register forcedly to the array “array-name” in this routine. The

array must satisfy the following conditions.

‒ Local array

‒ The type of array must be one of INTEGER(KIND=4), REAL(KIND=4),

Chapter4 Compiler Directives

- 65 -

LOGICAL(KIND=4), or their alias names.

‒ One-dimensional array

‒ The number of the array elements is less than or equal to the maximum packed

vector length (=512).

‒ They must be referenced in the packed vectorized loops.

‒ Their subscript expressions must be the same in all loops.

‒ The array specified by vreg directive cannot be specified by pvreg directive.

In addition, When -march=ve1 is enabled, the following conditions must also be

satisfied:

‒ The loop length of loops defining/referencing arrays must be constant and

even.

retain(array-name)

Sets higher priority to array “array-name” to retain on LLC (Last-Level Cache) in

the vectorized loop immediately after this directive.

Note Please specify -mretain-list-vector or -mretain-none when you use this

directive.

select_concurrent

Choose the following loop rather than other loops in a nested loop when applying

automatic parallelization.

select_vector

Choose the following loop rather than other loops in a nested loop when applying

automatic vectorization.

shortloop

Vectorizes a loop as a short-loop. Compiler assume the iteration count would be

less than or equal to the maximum vector register length (=256) when the

iteration count is unknown.

[no]shortloop_reduction

Allows [Disallows] the conditional vectorization by iteration count test for a

reduction loop. -fassociative-math must be effective.

Chapter4 Compiler Directives

- 66 -

[no]sparse

sparse

Assumes that the number of mathematical intrinsic function calling under a

conditional expression is only a small number of the total iterations at

vectorization.

nosparse

Assumes that the number of mathematical intrinsic function calling under a

conditional expression is a large number of the total iterations at vectorization.

unroll(n) / nounroll

unroll(n)

Allows loop unrolling. The unroll time is n.

nounroll

Disallows loop unrolling.

unroll_complete

Allows loop expansion (complete loop unrolling) of a loop whose iteration count is

constant and can be calculated at the compilation.

Remark: unroll_completely can be used as an alias directive name.

[no]vector

Allows [Disallows] automatic vectorization of the following loop.

vector_threshold(n)

Specifies the minimum loop iteration count for vectorization of the following an

array expression or DO loop.

[no]vob

Disallows [Allows] a scalar load, a scalar store or a vector load which is executed

after the array expression or the loop immediately after this directive to overtake

the vector store in the array expression or the loop.

[no]vovertake

Allows [Disallows] all vector stores in the array expression or the loop are over-

taken by the subsequent scalar load, scalar store or vector load.

Chapter4 Compiler Directives

- 67 -

‒ An execution result becomes incorrect, if there actually is overlap of areas

between an array assignment statement or vector-storing in the DO loop and

scalar-loading, scalar-storing, vector-loading in the loop or behind the loop.

‒ When it is specified to an outer-loop, it is not effective in the inner loops.

vreg(array-name)

Assign a vector register forcedly to the array “array-name” in this routine. The

array must satisfy the following conditions.

‒ Local array

‒ The type of array must be one of INTEGER(KIND=4), INTEGER(KIND=8),

REAL(KIND=4), REAL(KIND=8), LOGICAL(KIND=4), LOGICAL(KIND=8),

or their alias names.

‒ One-dimensional array

‒ The number of the array elements is less than or equal to the maximum vector

length (=256).

‒ They must be referenced in the vectorized loops.

‒ Their subscript expressions must have the same subscript values in all loops.

‒ The array specified by pvreg directive cannot be specified by vreg directive.

[no]vwork

Allows [Disallows] partial vectorization using loop division. When novwork is

specified, an outer loop or a loop that contains a nonvectorizable part becomes

nonvectorizable as a whole.

4.3 Compiler options which cannot specify by options directive

The following compiler options cannot be specified by options directive.

 Overall Options

-S, -c, -cf=conf, -fsyntax-only, -o file-name, -x language, @file-name

 Optimization Options

-muse-mmap

 Parallelization Options

Chapter4 Compiler Directives

- 68 -

-mno-create-threads-at-startup, -pthread

 Inlining Options

-finline-abort-at-error, -mgenerate-il-file IL file name

 Code Generation Options

-no-proginf

 Debugging Options

-mmemory-trace, -mmemory-trace-full, -traceback

 Language Options

-masync-io, -use module

 Message Options

-Werror

 Preprocessor Options

-Dmacro[=defn], -E, -fpp, -nofpp, -fpp-name=name, -M, -P, -Umacro,

-traditional, -Wp,option

 Assembler Options

-Wa,option, -Xassembler option, -assembly-list

 Linker Options

-Bdynamic, -Bstatic, -Ldirectory, -llibrary, -nostartfiles, -nostdlib,

-rdynamic, -shared, -static, -static-nec, -stdlib, -Wl,option, -Xlinker option,

-z keyword

 Directory Options

--sysroot=directory, -Bdirectory

 Miscellaneous Options

--help, -print-file-name=library, -print-prog-name=program, -noqueue, -v,

--version

4.4 Compiler options which can be specified by optimize directive

The following compiler options can be specified by optimize directive.

-On

-faggressive-associative-math

-fargument-alias

-fargument-noalias

Chapter4 Compiler Directives

- 69 -

-fassociative-math

-fassume-contiguous

-fcse-after-vectorization

-fdiag-inline=n

-fdiag-parallel=n

-fdiag-vector=n

-ffast-math

-ffast-math-check

-fignore-asynchronous

-fignore-induction-variable-overflow

-fignore-volatile

-finline-copy-arguments

-finline-functions

-finline-max-depth=n

-finline-max-function-size=n

-finline-max-times=n

-fivdep

-fivdep-omp-worksharing-loop

-floop-collapse

-floop-count=n

-floop-fusion

-floop-interchange

-floop-normalize

-floop-split

-floop-strip-mine

-floop-unroll

-floop-unroll-complete=n

-floop-unroll-max-times=n

-fmatrix-multiply

-fmove-loop-invariants

-fmove-loop-invariants-if

-fmove-loop-invariants-unsafe

-fmove-nested-loop-invariants-outer

-fnamed-alias

Chapter4 Compiler Directives

- 70 -

-fnamed-noalias

-fouterloop-unroll

-fouterloop-unroll-max-size=n

-fouterloop-unroll-max-times=n

-frealloc-lhs

-frealloc-lhs-array

-frealloc-lhs-scalar

-freciprocal-math

-freplace-loop-equation

-freplace-matmul-to-matrix-multiply

-marray-io

-mconditional-index-test

-minit-stack=value

-mlist-vector

-mparallel-innerloop

-mparallel-omp-routine

-mparallel-sections

-mparallel-threshold=n

-mretain-all

-mretain-list-vector

-mretain-none

-msched-keyword

-mstack-arrays

-mvector

-mvector-assignment-threshold=n

-mvector-dependency-test

-mvector-floating-divide-instruction

-mvector-fma

-mvector-advance-gather

-mvector-advance-gather-limit=n

-mvector-intrinsic-check

-mvector-iteration

-mvector-iteration-unsafe

-mvector-loop-count-test

Chapter4 Compiler Directives

- 71 -

-mvector-low-precise-divide-function

-mvector-merge-conditional

-mvector-neighbors

-mvector-packed

-mvector-power-to-explog

-mvector-poser-to-sqrt

-mvector-reduction

-mvector-shortloop-reduction

-mvector-sqrt-instruction

-mvector-threshold=n

-mwork-vector-kind=none

-report-all

-report-cg

-report-diagnostics

-report-format

-report-inline

-report-option

-report-vector

Chapter5 Optimization and Vectorization

- 72 -

Chapter5 Optimization and Vectorization

This chapter describes optimization and automatic vectorization which are useful in

making user programs execute quickly.

5.1 Code Optimization

The code optimization eliminates unnecessary operations by analyzing program

control and data flow. Where possible, it minimizes the operations involved in a loop

and replaces them with equivalent faster operations.

 Optimizations

The Fortran compiler performs the following code optimizations. The parenthesis

indicates the options to enable the individual optimizations.

‒ Common expression elimination (-O[n] (n=1,2,3,4))

‒ Moving invariant expressions under a conditional expression outside a loop (-O[n]

(n=1,2,3,4), -fmove-loop-invariants, -fmove-loop-invariants-unsafe)

‒ Simple assignment elimination (-O[n] (n=1,2,3,4))

‒ Deletion of unnecessary codes (-O[n] (n=1,2,3,4))

‒ Exponentiation optimization (-O[n] (n=1,2,3,4))

‒ Converting division to equivalent multiplication (-O[n] (n=2,3,4), -freciprocal-

math)

‒ Loop fusion (-O[n] (n=3,4))

‒ Optimization of arithmetic IF statements (-O[n] (n=1,2,3,4))

‒ Compile-time computation of constant expressions and type conversions (-O[n]

(n=1,2,3,4))

‒ Optimization of complex number computations (-O[n] (n=1,2,3,4))

‒ Removal of unary minus (-O[n] (n=1,2,3,4))

‒ Optimization of branching (-O[n] (n=1,2,3,4))

‒ Strength reduction (-O[n] (n=1,2,3,4))

‒ Removal of an unnecessary instruction to guarantee the last value (-O[n]

Chapter5 Optimization and Vectorization

- 73 -

(n=1,2,3,4))

‒ In-line expansion of Intrinsic functions (-O[n] (n=1,2,3,4))

‒ Optimization of implied DO lists in an I/O statement (-O[n] (n=1,2,3,4), -marray-

io)

‒ Optimizing by Instruction scheduling (-msched-keyword)

 Side Effects of Optimization

 Common expression elimination or code motion may change the points where a

calculation is performed. The number of times a calculation is performed also

changes the points where errors occur and the number of error occurrences, as

compared with the not optimized object code.

 By moving invariant expressions under a conditional expression outside the loop,

expressions which should not be executed are always executed. Therefore an

unexpected error and an arithmetic exception may occur.

 When exponentiation optimization is effective, an exception is not detected even if

underflow exceptions occur.

 Converting division to equivalent multiplication normally causes a slight error in

the result. Although this error can usually be ignored in floating point arithmetic, it

may change the result if floating point arithmetic operations are converted to

integer arithmetic operations. This conversion can be stopped and avoided by

compiler option.

 Optimization by instruction scheduling may produce the following side effect. If a

calculation to be executed only when a certain condition is satisfied is moved

beyond basic blocks, and it is always executed, an error which should not occur

may occur. Also remarkably increases compile time and memory used by the

compiler.

5.2 Vectorization Features

 Vectorization

Variables and each element of an array are called scalar data. An orderly arranged

scalar data sequence such as a line, column, or diagonal of a matrix is called vector

data.

Chapter5 Optimization and Vectorization

- 74 -

Vectorization is the replacement of scalar instructions with vector instructions. In

automatic vectorization, the compiler analyzes the source code to detect parts that

can be executed by vector instructions.

Automatic vectorization is performed when -O[n] (n=1,2,3,4) is valid.

The compiler option which controls this vectorization is -mvector.

The compiler directive option which controls this vectorization is [no]vector.

 Partial Vectorization

If a vectorizable part and an unvectorizable part exist together in a loop, the

compiler divides the loop into vectorizable and unvectorizable parts and vectorizes

just the vectorizable part. This vectorization is called partial vectorization.

This vectorization is performed when -O[n] (n=1,2,3,4) is valid.

The compiler option which suppress this vectorization is -mwork-vector-kind=none.

The compiler directive option which controls this vectorization is [no]vwork.

 Optimizing Mask Operations

Using masked operations makes vectorization possible for a DO loop containing an IF

statement. However, if IF statements are nested to make a complex condition,

identical operations may arise between masks, lowering execution efficiency. In order

to avoid this, optimization is performed as follows for mask operations when -O[n]

(n=1,2,3,4) is valid.

 Process identical operations as common expressions

In this example, "A(I).LE.0.0" is processed as a common expression.

Example:

DO I = 1, N

 IF (A(I).LE.0.0)THEN

 X(I) = A(I) * B(I)

 END IF

 Y(I) = A(I) + B(I)

 IF (A(I).LE.0.0.AND.B(I).EQ.0.0) THEN

 Z(I) = A(I)

 END IF

END DO

(Vectorization)

M1i = 0: if Ai > 0.0

 1: if Ai <= 0.0

Chapter5 Optimization and Vectorization

- 75 -

Xi= Ai * Bi (if M1i = 1)

Yi = Ai * Bi

M2i = 0: if Bi ≠ 0.0

1: if Bi = 0.0

M3i = M1i AND M2i

Zi = Ai (if M3i = 1)

 When IF statements are nested to make a complex condition, perform common

expression processing. This vectorization is performed when -O[n] (n=1,2,3,4) is

valid.

In this example, "Y(I).GT.0.0" is processed as a common expression.

Example:

DO I = 1, N

 IF (X(I).GT.0.0) THEN

 IF (Y(I).GT.0.0) THEN

 Z(I) = Y(I) / X(I)

 ELSE

 Z(I) = 0.0

 END IF

 ELSE

 IF (Y(I).GT.0.0) THEN

 Z(I) = X(I) / Y(I)

 END IF

 END IF

END DO

(Vectorization)

M1i = 0: if Xi <= 0.0

 1: if Xi > 0.0

M2i = 0: if Yi <= 0.0

 1: if Yi > 0.0

M3i = M1i AND M2i

Zi = Yi / Xi (if M3i = 1)

M4i = M1i AND M2i
-

Zi = 0.0 (if M4i = 1)

M5i = M1i
-

 AND M2i

Zi = Yi / Xi (if M5i = 1)

 Macro Operations

Although patterns like the following do not satisfy the vectorization conditions for

definitions and references, the compiler recognizes them to be special patterns and

performs vectorization by using proprietary vector instructions.

Chapter5 Optimization and Vectorization

- 76 -

This vectorization is performed when -O[n] (n=1,2,3,4) is valid.

 Sum or inner product

S = S ± exp (exp: An expression)

A sum or inner product that consists of multiple statements is also vectorized.

t1 = S ± exp1

t2 = t1 ± exp2

 ...

S = tn ± expn

The compiler option which controls this vectorization is -mvector-reduction.

 Product

S = S * exp (exp: An expression)

A product that consists of multiple statements is also vectorized.

t1 = S * exp1

t2 = t1 * exp2

 ...

S = tn * expn

The compiler option which controls this vectorization is -mvector-reduction.

 Iteration

A(I) = exp ± A(I-1) (exp: An expression)

A(I) = exp * A(I-1)

A(I) = exp1 ± A(I-1) * exp2

A(I) = (exp1 ± A(I-1)) * exp2

An iteration consists of multiple statements and is also vectorized.

t = exp1 ± A(I-1)

A(I) = t * exp2

The compiler option which controls this vectorization is -mvector-iteration and

-mvector-iteration-unsafe.

 Maximum values and minimum values

‒ Function type

Example:

DO I = 1, N

Chapter5 Optimization and Vectorization

- 77 -

 XMAX = MAX(XMAX, X(I))

END DO

‒ Finding the maximum or minimum value only

Example:

DO I = 1, N

 IF (XMAX .LT. X(I)) THEN

 XMAX = X(I)

 END IF

END DO

‒ Finding the maximum or minimum value and the value of its subscript

expression

Example:

DO I = 1, N

 IF (XMIN .GT. X(I)) THEN

 XMIN = X(I)

 IX = I

 END IF

END DO

‒ Finding the maximum or minimum value, the values of its subscript

expressions, and other values

Example:

DO J = 1, N

 DO I = 1, N

 IF (XMIN .GT. X(I, J)) THEN

 XMIN = X(I, J)

 IX = I

 IY = J

 END IF

 END DO

END DO

‒ Compares absolute values

Example:

DO I = 1, N

 IF (ABS(XMIN) .GT. ABS(X(I))) THEN

 XMIN = X(I)

 END IF

END DO

Chapter5 Optimization and Vectorization

- 78 -

 Search

A loop that searches for an element that satisfies a given condition is vectorized.

Example:

DO I = 1, N

 IF (X(I) .EQ. 0.0) THEN

 EXIT

 END IF

END DO

All of the following conditions must be satisfied.

‒ This is the innermost loop.

‒ There is just one branch out of the loop.

‒ The condition for branching out of the loop depends on repetition of the loop.

‒ There must not be an assignment statement to an array element or an object

pointed to by a pointer expression before the branch out of the loop.

‒ All basic conditions for vectorization are satisfied except for not branching out

of the loop.

 Compression

A loop for compressing elements that satisfy a given condition is vectorized.

Example:

J = 0

DO I = 1, N

 IF (X(I) .GT. 0.0) THEN

 J = J + 1

 Y(J) = Z(I)

 END IF

END DO

 Expansion

A loop for expanding values to elements that satisfy a given condition is

vectorized.

Example:

J = 0

DO I = 1, N

 IF (X(I) .GT. 0.0) THEN

 J = J + 1

 Z(I) = Y(J)

Chapter5 Optimization and Vectorization

- 79 -

 END IF

END DO

 Conditional Vectorization

The compiler generates a variety of codes for a loop, including vectorized codes and

scalar codes, as well as special codes and normal codes. The type of code is selected

by run-time testing at execution when conditional vectorization is performed. Run-

time testing are following.

‒ Data dependency

‒ Loop iteration count

‒ Loop iteration for reduction operation

This vectorization is performed when -O[n] (n=2,3,4) is valid.

The compiler option and the compiler directive option which controls this

vectorization is following.

Condition Compiler Option Compiler Directive Option

Data dependency -mvector-dependency-test dependency_test

Loop iteration -mvector-loop-count-test loop_count_test

Loop iteration for

reduction operation
-mvector-shortloop-reduction [no]shortloop_reduction

 Outer Loop Strip-mining

When the iteration count of a loop is greater than the maximum-vector-register-

length (=256), the compiler puts a loop around the vector loop, which splits the total

vector operation into "strips" so that the vector length will not be exceeded.

When there are references of array elements whose subscript expressions do not

include the induction variables of the outer loop in the inner loop of a tightly nested

loop, the inner loop is split into a strip loop and the strip loop is moved outside of the

outer loop so that invariants can be kept in the vector register.

This optimization is performed when -O[n] (n=3,4) is valid.

The compiler option which controls this vectorization is -floop-strip-mine.

Note A "tightly nested loop" is a nested loop, in which there is no

executable statement between each of DO statements nor between

each of ENDDO statements as shown in Example below.

Chapter5 Optimization and Vectorization

- 80 -

Example: Tightly nested loop

DO I = 1, 10

 DO J = 1, 1000

 A(J) = A(J) + B(J, I) * C(J, I)

 ENDDO

ENDDO

Example: Not tightly nested loop (Statement exists between each of DO

statements)

DO K=1,10

 D(K)=0.0

 DO J=1,20

 DO I=1,30

 A(I,J,K)=B(I,J,K)*C(I,J,K)

 ENDDO

 X(K,J)=Y(K,J)+Z(K,J)

 ENDDO

ENDDO

Example: Not tightly nested loop (Other loop exists between each of ENDDO

statements)

DO K=1,10

 DO J=1,20

 DO I=1,10

 S(I,J,K)=T(I,J,K)*U(I,J,K)

 ENDDO

 DO I=1,30

 A(I,J,K)=B(I,J,K)*C(I,J,K)

 ENDDO

 ENDDO

ENDDO

 Short-loop

A loop code which omits the determination of loop termination is generated for a

loop whose iteration count is less than or equal to the maximum-vector-register-

length (=256). This kind of loop is called a "short-loop".

This optimization is performed when -O[n] (n=1,2,3,4) is valid.

The compiler directive option which controls this optimization is shortloop.

Chapter5 Optimization and Vectorization

- 81 -

 Packed vector instructions

A packed data is packed two 32bit data in each element of a vector register. Packed

vector instructions calculates a packed data. Packed vector instructions can calculate

twice the data of vector instructions by one instruction.

The compiler option which controls using packed vector instructions is -mvector-

packed.

The compiler directive option which controls using packed vector instructions is

[no]packed_vector.

 Other

Deletion of common expression, deletion of simple assignments, deletion of

unnecessary codes, conversion of division to equivalent multiplication and removal of

an unnecessary instruction to guarantee the last value are also performed for

vectorized codes.

Additionally the following optimizations are performed for vectorized codes. The

parenthesis indicates the options to enable the individual optimizations.

‒ Extracting scalar operations (-O[n] (n=1,2,3,4))

‒ Vectorization by statement replacement (-O[n] (n=1,2,3,4))

‒ Loop collapse (-O[n] (n=3,4), -floop-collapse)

‒ Outer loop unrolling (-O[n] (n=3,4), -fouterloop-unroll)

‒ Loop rerolling (-O[n] (n=3,4))

‒ Recognition matrix multiply loop (-O[n] (n=3,4), -fassociative-math, -fmatrix-

multiply)

‒ Loop expansion (-O[n] (n=2,3,4), -floop-unroll-complete=m)

 Remarks on Using Vectorization

 The execution result of the summation, the inner product, the product and the

iteration may differ before and after vectorization because the order of their

operations may differ before and after vectorization.

 The 8 byte integer iteration is vectorized by using a floating-point instruction. So

when the result exceeds 52 bits or when a floating overflow occurs, the result

Chapter5 Optimization and Vectorization

- 82 -

differs from that of scalar execution.

 To increase speed, the vector versions of mathematical functions do not always

use the same algorithms as the scalar versions.

 Optimization techniques, such as conversion of division to multiplication, are

applied differently.

 Optimization techniques, such as reordering of arithmetic operations, are applied

differently.

 The detection of errors and arithmetic exceptions by intrinsic functions may differ

before and after vectorization.

 When the compiler checks whether vectorization would preserve the proper

dependency between array definitions and references, it assumes that all values of

subscript expressions are within the upper and lower limits of the corresponding

size in the array declaration. If a loop violating this condition is vectorized, correct

results are not guaranteed.

 When a loop containing if statement is vectorized, arithmetic operations are

carried out only for the part that conditionally requires them, but arrays are

referenced as many times as the iteration count called for by the loop structure

and array elements that should not be referenced are referenced. Unless the

arrays have enough area reserved to satisfy the iteration count, memory access

exceptions can occur as a result.

 When a loop containing a branch out of the loop is vectorized, arithmetic

operations are carried out unconditionally for the part before the branch point, as

many times as the iteration count called for by the loop structure. Therefore,

arithmetic operations that should not be carried out are carried out, or data that

should not be referenced are referenced. These events can cause errors or

exceptions.

 The alignment size of vectorizable data must be same as size of the data type (4

bytes or 8 bytes). When the loop containing reference and definition of the array

element is vectorized, exception can occur. In such a case, specify -mno-vector

to stop vectorization or !NEC$ NOVECTOR before the loop. The data cannot

satisfy vectorizable alignment is dummy argument. The compiler supposes the

Chapter5 Optimization and Vectorization

- 83 -

dummy data satisfy vectorizable argument and vectorize it.

5.3 Other features for performance

 Offloading of Lumped Output of Array

Lumped and formatted output of arrays, and lumped and list-directed output of

arrays are offloaded to VH to improving the performance of execution. Set the

environment variable VE_FMTIO_OFFLOAD to YES or ON, and set the environment

variable LD_LIBRARY_PATH to /opt/nec/ve/nfort/lib64 to use this feature.

Example: Lumped and Formatted Output of Array

SUBROUTINE FUN

INTEGER I(100)

I=100

WRITE(*,'(I5)') I

END Example: Lumped and List-Directed Output of Array

SUBROUTINE FUN

INTEGER I(100)

I=100

WRITE(*,*) I

END

 Improve efficiency in buffering

Unformatted I/O in a sequential file access may be improving the performance of I/O

by changing record and I/O buffer size.

 Record buffer

Unformatted I/O in a sequential file access uses the record buffer for I/O-list and

data transfer. Therefore, I/O performance can improve by allocating the record buffer

larger than the maximum record. Use the environment variable

VE_FORT_RECORDBUF to change the record buffer size.

 I/O buffer

File I/O transfers data between the file and the I/O buffer. The file system has an

optimal data transfer size. Therefore, I/O performance can improve by allocating the

I/O buffer size to the optimal data transfer size. Also, I/O performance can improve

by allocating the I/O buffer size larger than the file size when the memory size is

acceptable. Use the environment variable VE_FORT_SETBUF to change the I/O

Chapter5 Optimization and Vectorization

- 84 -

buffer size.

Chapter6 Inlining

- 85 -

Chapter6 Inlining

6.1 Automatic Inlining

When automatic inlining is enabled, the compiler chooses the appropriate procedures

by analyzing the source files and inline them automatically.

The compiler option which controls this optimization is -finline-functions.

6.2 Explicit Inlining

 Description

When using the explicit inlining, an inlining directive which controls inlining must be

specified before a statement, a compound statement, an iteration statement, or a

selection statement including inlined routine calling. The compiler option

-finline-functions is not needed, but -On[n=2,3,4], -finline-functions, -fopenmp,

or -mparallel is needed.

The compiler has the following directives for explicit inlining.

 always_inline

A routine which includes this directive should be always inlined. This directive

must be specified in a called routine. A routine call has noinline is never inlined

even if the called routine includes this directive.

 inline

A routine call in a following statement, a compound statement, an iteration

statement, or a selection statement is chosen as a candidate for inlining.

 inline_complete

Same as inline. But, if the inlined routine includes a routine call, the called routine

is chosen as a candidate for inlining. The inlining applied until there is no routine

calls if possible.

 noinline

A routine call in a following statement, a compound statement, an iteration

statement, or a selection statement is never inlined. The routine which includes

always_inline is not inlined, too.

Chapter6 Inlining

- 86 -

 Specifying Inline Directive

 Called routine

always_inline must be specified in a called routine.

 SUBROUTINE SUB

!NEC$ ALWAYS_INLINE

 ...

 END SUBROUTINE

 Statement

inline / inline_complete / noinline affect all routine calls in a following

statement.

!NEC$ INLINE

 X = FUNC1(A) + FUNC2(A)

 Y = FUNC3(A)

FUNC1() and FUNC2() are candidates for inlining, but FUNC3() is not.

 BLOCK construct, DO construct, and IF construct

inline / inline_complete / noinline affect all routine calls in a following

construct.

!NEC$ INLINE

 DO I=1,N

 CALL SUB1

 CALL SUB2

 END DO

Subroutine SUB1 and SUB2 are candidates for inlining.

 Remarks

 always_inline, inline, inline_complete, and noinline are effective when -On

[n=2,3,4], -finline-functions, -fopenmp, or -mparallel are enabled.

 The routine definition which includes always_inline is not removed.

 A routine call which noinline is effective is not inlined even if the called routine

includes always_inline.

 A BLOCK construct, DO construct, or IF construct includes a construct and each

construct has opposite directive, the immediately before directive is effective for

Chapter6 Inlining

- 87 -

the inner construct.

!NEC$ INLINE

 BLOCK

 CALL SUB1 ! Candidate for inlining

!NEC$ NOINLINE

 BLOCK

 CALL SUB2 ! Not inlined

 END BLOCK

 END BLOCK

6.3 Cross-file Inlining

The compiler inlines procedures included in source files other than a source file of the

compilation target. This inlining is called cross-file inlining.

Cross-file inlining is enabled when automatic inlining is enabled and source files to

search for procedures to inline are specified.

The following examples show how to specify the source files.

 A source file is specified.

$ nfort -c -finline-functions -finline-file=sub.f90 call.f90

 A source file and all input source files are specified.

$ nfort -c -finline-functions -finline-file=sub2.f90:all call.f90 sub.f90

 All source files under a directory are specified.

$ ls dir

sub.f90 sub2.f90 sub3.f90

$ nfort -c -finline-functions -finline-directory=dir sub.f90

 All source files under a directory except for a specific source file are specified.

$ ls dir

sub.f90 sub2.f90 sub3.f90

$ nfort -c -finline-functions -finline-directory=dir -fno-inline-file=sub2.f90

call.f90

IL files can be also specified as files to search. Compilation time can become shorter

when you specify IL files instead of source files.

 An IL file is generated and specified.

$ nfort -mgenerate-il-file sub.f90

Chapter6 Inlining

- 88 -

$ nfort -c -finline-functions -mread-il-file sub.fil main.f90

6.4 Inline Expansion Inhibitors

Expansion inhibitors are used when one of the following conditions occurs.

‒ The procedure to be inlined cannot be located.

‒ The arguments used in the calling sequence do not match the arguments in the

procedure to be inlined.

‒ There is a conflict between common blocks of the calling procedure and the

procedure to be inlined.

‒ The procedure to be inlined contains a NAMELIST input/output statement.

‒ The procedure to be inlined contains variables having SAVE attribute.

‒ A function name referenced in the procedure to be inlined conflicts with a non-

function name used in the calling procedure.

‒ The procedure to be inlined contains OpenMP directives.

‒ The procedure to be inlined contains a recursive call of it.

6.5 Notes on Inlining

 If inlining is applied to too many procedures in a program, the volume of the

codes may increase, causing the instruction cache to overflow and the

performance of the program to decrease. Choose the procedures to be inlined

carefully.

 A procedure called recursively cannot be inlined.

 In cross-file inlining, if large or many programs are searched, the compilation time

can become long or memory used at the compilation may increase.

 In cross-file inlining, whether routines are inlined or not may change by the

compilation order, because the compiler does not search the source files and

continues the compilation when modules referred in programs of source files

specified by -finline-file or -finline-directory are not found. Specify -finline-

abort-at-error when you want to stop the compilation at the case.

Chapter6 Inlining

- 89 -

6.6 Restrictions on Inlining

 In cross-file inlining, the compiler does not search a source file when it contains

an EQUIVALENCE statement where a thread private common block appears

 In cross-file inlining, module procedures which refer to variables with PRIVATE

attributes cannot be inlined.

Chapter7 Parallelization

- 90 -

Chapter7 Parallelization

7.1 Automatic Parallelization

 Description

The compiler automatically detects the parallelism of loop iterations and statement

groups, transforms a program to enable it to be executed in parallel, and generates

parallelization control structures when automatic parallelization is enabled.

The compiler option which controls this optimization is -mparallel.

 Conditional Parallelization Using Threshold Test

Parallelization can slow down execution if the loop contains insufficient work to

compensate for the added overhead.

If the loop nest iteration count cannot be determined at compilation, the automatic

parallelization function generates codes to execute a threshold test at run time. If it

is calculated at run time that the loop has a lot of work, the loop is executed in

parallel mode. Otherwise the loop is executed serially. This parallelization is called

parallelization using a workload threshold test.

Automatic parallelization adjusts the threshold value based on the iteration count of

the loop and the number/type of operations in each loop. At run time, the iteration

count of the loop and the threshold value are compared. If the iteration count is

larger than the threshold value, the parallelized loop is executed. Otherwise, the

nonparallelized loop is executed.

The compiler option which controls this optimization is -mparallel-threshold=n.

 Conditional Parallelization Using Dependency Test

If a loop is suitable for parallelization except that it is potentially dependent,

automatic parallelization may generate an IF-THEN block in the same way as for

parallelization using a threshold test. When evaluated at run time, this test

determines whether the loop can execute correctly on multiple tasks, or must be run

on a single task. For single loops and double-nested loops, this test is combined with

a threshold test.

 Parallelization of inner Loops

When no outer loop can be parallelized, inner loops are analyzed for parallelization

Chapter7 Parallelization

- 91 -

operations. However, inner loops that clearly exceed the threshold value are

automatically parallelized even if inner loops are not requested.

The compiler option which controls this optimization is -mparallel-innerloop.

 Forced Loop Parallelization

!NEC$ PARALLEL DO parallelizes a DO-loop that is not parallelized by the compiler

but the user knows that it can be parallelized. The user must check the validity of the

operation when the loop is parallelized.

The following SCHEDULE-clause whose functionality is the same as OpenMP can be

specified.

SCHEDULE(STATIC [,chunk-size])

SCHEDULE(DYNAMIC [,chunk-size])

SCHEDULE(RUNTIME)

Additionally, PRIVATE-clause whose functionality is the same as OpenMP can be

specified. variable must be a scalar variable or an explicit-shaped array whose type is

not CHARACTER or derived type.

PRIVATE(variable[,variable]...)

!NEC$ ATOMIC must be specified when a statement immediately after ATOMIC is a

macro operation such as summation or product.

The following code is an example inserting forced-loop parallelization directives.

Example:

 SUBROUTINE SUB(SUM, A, N)

 INTEGER::N

 REAL(KIND=8)::A(N,N), SUM

 ...

!NEC$ PARALLEL DO

 DO J = 1, N

 DO I = 1, N

!NEC$ ATOMIC

 SUM = SUM + A(I, J)

 ENDDO

 ENDDO

 ...

 END

Chapter7 Parallelization

- 92 -

7.2 OpenMP Parallelization

 Using OpenMP Parallelization

Specify -fopenmp to use OpenMP parallelization at compilation and linking. See the

OpenMP specifications for OpenMP directives and remarks.

Example: Inserting an OpenMP directive

FUNCTION FUN(N, A)

INTEGER N, I, J

REAL A(N), B(N)

REAL FUN

FUN = 1.0

...

!$OMP PARALLEL DO REDUCTION(+:FUN) ! OpenMP directive

DO J = 1, N

DO I = 1, N

FUN = A(J) + B(I) + FUN

END DO

END DO

RETURN

END FUNCTION FUN

 OpenMP 5.0

The following features of OpenMP 5.0 are supported.

 LOOP construct

 PARALLEL LOOP construct

 PARALLEL MASTER construct

 Extensions on OpenMP Parallelization

The environment variables of OpenMP Version 4.5 whose name are prefixed with

“VE_” are also supported. If both environment variables with and without “VE_” are

specified, the value which is specified by the environment variable prefixed by “VE_”

is applied.

Example: Specify the environment variables (applied VE_OMP_NUM_THREADS)

$ export OMP_NUM_THREADS=4

$ export VE_OMP_NUM_THREADS=8

Chapter7 Parallelization

- 93 -

 Restrictions on OpenMP Parallelization

The following features of OpenMP Version 4.5 is restricted.

 All directives/clauses described in "Device Constructs"

Compiler does not generate any device code and target regions run on the host

 All syntax described in “Array Sections” except in REDUCTION clause

 All directives/clauses described in “Cancellation Constructs”

 All directives/clauses described in “Controlling OpenMP Thread Affinity”

 DISTRIBUTE, TARGET, TEAMS

DISTRIBUTE, TARGET and TEAMS in directives for combined construct and all

clauses related to them are ignored.

Example : “TARGET PARALLEL FOR” is treated as “PARALLEL FOR”.

 PARALLEL DO SIMD construct and DO SIMD construct

Treated as PARALLEL DO and DO respectively SIMD construct

Treated as ivdep directive

 TASKLOOP constructs

 SIMD construct

If SAFELEN clause or SIMDLEN clause is not specified, treated as ivdep directive.

 DECLARE REDUCTION construct

 ALLOCATE clause

 BIND clause

 IF clause with directive-name-modifier

 IN_REDUCTION,TASK_REDUCTION clause

 ORDERED clause with parameter

 SCHEDULE with modifier

 DEPEND clause with array variable

 DEPEND clause with SOURCE or SINK of dependence-type

 CRITICAL construct with HINT

 ATOMIC construct with SEQ_CST

 LINEAR clause with modifier

Chapter7 Parallelization

- 94 -

 nested parallelism

 Using OpenMP Parallelization

Specify -fopenmp to use OpenMP parallelization at compilation and linking. See the

OpenMP specifications for OpenMP directives and remarks.

Example: Inserting an OpenMP directive

FUNCTION FUN(N, A)

INTEGER N, I, J

REAL A(N), B(N)

REAL FUN

FUN = 1.0

...

!$OMP PARALLEL DO REDUCTION(+:FUN) ! OpenMP directive

DO J = 1, N

DO I = 1, N

FUN = A(J) + B(I) + FUN

END DO

END DO

RETURN

END FUNCTION FUN

7.3 Threads

 Set and Get Number of Threads

In automatic parallelized programs, parallel processing is realized based on OpenMP

parallel functions. Therefore, you can set the number of threads at execution by the

environment variable OMP_NUM_THREADS or VE_OMP_NUM_THREADS in

automatic parallelized and OpenMP parallelized programs.

OpenMP runtime library routines can set and get the number of threads at execution

in automatic parallelized programs.

SUBROUTINE OMP_SET_NUM_THREADS(num_threads) ! Set number of threads

INTEGER num_threads

INTEGER FUNCTION OMP_GET_NUM_THREADS () ! Get number of threads

INTEGER FUNCTION OMP_GET_MAX_THREADS() ! Get upper bounds on number of threads

INTEGER FUNCTION OMP_GET_THREAD_NUM() ! Get thread number

The number of threads at execution is the same as the number of available VE cores

if it is not set by the environment variable OMP_NUM_THREADS or

VE_OMP_NUM_THREADS before the program execution.

Chapter7 Parallelization

- 95 -

 Thread Creation and Destroy

In automatic parallelized and OpenMP parallelized programs, the threads are created

before the routine main program, and they are destroyed at the program

termination.

The following figure shows how threads are created and destroyed. Assume that the

environment variable OMP_NUM_THREADS is set to 4.

(a) Three idle threads are created by master thread (#0) before main program

starts. The idle threads are spin-waiting and wait for the task to be assigned by

the master thread.

(b) Tasks are assigned to the threads by master task at the entry of parallel region,

and it is executed in four threads. At the end of parallel region, three threads are

spin-waiting and wait for the task to be assigned by the master thread again.

(c) At the calling of OMP_SET_NUM_THREADS(2), all idle threads are destroyed and

set ICV to 2.

*ICV stands for "Internal Control Variable" and is an abbreviation used in

OpenMP. It is a variable used for controlling parallel processing.

PROGRAM MAIN

...

!$OMP PARALLEL

 ...

 ...

!$OMP END PARALLEL

 ...

CALL OMP_SET_NUM_THREADS(2)

 ...

!$OMP PARALLEL

 ...

 ...

!$OMP END PARALLEL

 ...

END PROGRAM MAIN

a) Create threads

d) Create a thread. The number of
threads becomes 2.

f) Destroy an idle thread.

b) Execute in 4 threads

e) Execute in 2 threads

#0 #1 #2 #3

Threads

spin-wait

spin-wait

spin-wait

c) Destroy all idle threads.
 Set ICV to 2.

Set OMP_NUM_THREADS=4

Chapter7 Parallelization

- 96 -

(d) A thread is created at the entry of the next parallel region.

(e) The parallel region is executed in two threads.

(f) The idle thread is destroyed at the end of program execution.

 Postpone Thread Creation

By default, idle threads are created before the routine main program. It can be

change at the first parallel region by the following compiler option at linking.

$ nfort –fopenmp -mno-create-threads-at-startup –static-nec a.o

$ nfort –mparallel -mno-create-threads-at-startup –static-nec b.o

7.4 Notes on Using Parallelization

 After parallelization, the total CPU time is increased due to the overhead of

parallelization.

 When parallelizing a procedure that includes procedure calls, the inside of the

called procedure must be checked to see if the definition and/or reference of

shared data is valid.

 Automatic parallelization is applied to the loops outside of a parallel region of

OpenMP when -fopenmp and -mparallel are specified at once. If you don't want

to apply automatic parallelization to a routine containing OpenMP directives,

specify -mno-parallel-omp-routine.

 Threads for parallelization are created for each MPI process when a program is a

MPI program. When a program uses 2 MPI processes and OMP_NUM_THREADS is

set as 4, the program requires 8 cores (= 2 MPI * 4 threads) . When executing

MPI program on VE, be careful not to run out of cores for execution.

 When outputting execution analysis information an auto-parallelized program

using PROGINF and FTRACE, keep the following in check. See the

manual ”PROGINF/FTRACE User’s Guide” for the detail of PROGINF or FTRACE.

‒ The number of operations for the spin-waiting of the thread created before

main program starts is included in PROGINF, but not in FTRACE.

‒ In PROGINF, the “Vector Operation Ratio” may decrease. This is due to

calculating the displayed value in PROGINF from the counter of the whole

process which includes the number of operations for the spin-waiting of the

thread created before main program starts.

Chapter8 Compiler Listing

- 97 -

Chapter8 Compiler Listing

This chapter describes the output lists of the Fortran compiler.

The compilation list is created in the current directory, under the name "source-file-

name.L".

8.1 Option List

An option list is output when -report-option or -report-all is specified.

Format:

NEC Fortran Compiler (3.0.7) for Vector Engine Thu Jun 18 13:25:29 2020 (a)

FILE NAME: fft.f90 (b)

 COMPILER OPTIONS : -report-option (c)

OPTIONS DIRECTIVE: -O4 (d)

PARAMETER :

Optimization Options :

 (e) (f)

-On : 4

-fargument-alias : disable

-fargument-noalias : enable

-fassociative-math : enable

(a) Compiler revision and compilation date

(b) Name of source file

(c) Compiler options which specify by command line

(d) Compiler options which specify by options directive

(e) Compiler option

(f) Value of Compiler option

8.2 Diagnostic List

A diagnostic list is output when -report-diagnostics or -report-all is specified.

 Format of Diagnostic List

The format of the diagnostic list is as follows.

Chapter8 Compiler Listing

- 98 -

Format:

NEC Fortran Compiler (1.0.0) for Vector Engine Wed Jan 17 14:58:49 2018 (a)

FILE NAME: fft.f90 (b)

PROCEDURE NAME: FFT_3D (c)

DIAGNOSTIC LIST

 LINE DIAGNOSTIC MESSAGE

 (d) (e) (f)

 7: inl(1222): Inlined

 9: vec(101): Vectorized loop.

(a) Compiler revision and compilation date

(b) Name of source file

(c) Name of function that includes loops or statements corresponding to diagnostic

(d) Line number

(e) Kind of Diagnostic and message number

Kind of Diagnostic is as follows.

vec : Vectorization diagnostic

opt : Optimization diagnostic

inl : Inlining diagnostic

par : Parallelization diagnostic

(f) Diagnostic message

 Notes

 A diagnostic message for a statement and a loop in an inlined routine is not

output in a diagnostic list for a routine that calls the inlined routine. Refer to the

diagnostic list for the inlined routine when you need to refer to its diagnostic

messages.

8.3 Format List

A format list is output when -report-format or -report-all is specified. The source

lines for each procedure together with the following information are output to the

list.

Chapter8 Compiler Listing

- 99 -

 The vectorized status of loops and array expressions.

 The parallelized status of loops and array expressions.

 The status of inline expansion

 Format of Format List

The format of the format list is as follows.

NEC Fortran Compiler (1.0.0) for Vector Engine Wed Jan 17 15:00:01 2018 (a)

FILE NAME: a.f90 (b)

PROCEDURE NAME: SUB (c)

FORMAT LIST

LINE LOOP STATEMENT

 (d) (e) (f)

 1: SUBROUTINE SUB(A, B, N, M)

 2: INTEGER::N, M

 3: REAL(KIND=8)::A(M, N), B(M, N)

 4: +------> DO J=1,M

 5: |V-----> DO I=1, N

 6: || A(I,J) = A(I,J) + B(I,J)

 7: |V----- ENDDO

 8: +------ ENDDO

 9: END SUBROUTINE

(a) Compiler revision and compilation date

(b) Name of source file

(c) Name of procedure

(d) Line number

(e) Vectorization and parallelization status of each loop and inlining status of function

calls

(f) Corresponding source file line

 Loop Structure and Vectorization/Parallelization/Inlining Statuses

The following examples show how the loop structure and vectorization,

parallelization and inlining statuses are output.

 The whole loop is vectorized.

V------> DO I = 1, N

|

V------ END DO

Chapter8 Compiler Listing

- 100 -

 The loop is partially vectorized.

S------> DO I = 1, N

|

S------ END DO

 The loop is conditionally vectorized.

C------> DO I = 1, N

|

C------ END DO

 The loop is parallelized.

P------> DO I = 1, N

|

P------ END DO

 The loop is parallelized and vectorized.

Y------> DO I = 1, N

|

Y------ END DO

 The loop is not vectorized

+------> DO I = 1, N

|

+------ END DO

 The array expression is vectorized.

V======> A = B + C

The sign "=" indicates that the beginning and the end of the loop exist in the

same line.

 The nested loops are collapsed and vectorized.

W------> DO I = 1, N

|*-----> DO J = 1, M

||

|*----- END DO

W------ END DO

 The nested loops are interchanged and vectorized.

X------> DO I = 1, N

Chapter8 Compiler Listing

- 101 -

|*-----> DO J

||

|*----- END DO

X------ END DO

 The outer loop is unrolled and inner loop is vectorized.

U------> DO I = 1, N

|V-----> DO J

||

|V----- END DO

U------ END DO

 The loops are fused and vectorized.

V------> DO I = 1, N

|

| END DO

| DO I = 1, N

|

V------ END DO

 The loop is expanded.

*------> DO I = 1, 4

|

*------ END DO

 A character in the 17th column indicates how the line is optimized.

‒ “I” indicates that the line includes a function call which is inlined.

‒ “M” indicates that the nested loop which includes this line is replaced with

vector-matrix-multiply routine.

‒ “F” indicates that a fused-multiply-add instruction is generated for an

expression in this line.

‒ “R” indicates that retain directive is applied to an array in this line.

‒ “G” indicates that a vector gather instruction is generated for an expression in

this line.

‒ “C” indicates that a vector scatter instruction is generated for an expression in

this line.

‒ “V” indicates that vreg directive or pvreg directive is applied to an array in this

Chapter8 Compiler Listing

- 102 -

line.

 Notes

 Internal subprogram is output in the program unit which includes the subprogram.

 The loop structure or vectorization / parallelization status may be inexactly

displayed when a part of the loop is included in a file which included by INCLUDE

line or #include.

 The loop structure or vectorization / parallelization status may be inexactly

displayed when two or more loops are written in a line.

 When PROGRAM statement, SUBROUTINE statement, FUNCTION statement

and their corresponding END statements, END PROGRAM statement, END

SUBROUTINE statement, and END FUNCTION statement are not included in the

same source file or the same include file, Format List will not be output. If the

PROGRAM statement is omitted, and the first statement included in the program

unit, besides comment lines and INCLUDE lines, and the END statement or END

PROGRAM statement are not in the same source file or the same include file,

Format List will not be output.

8.4 Optimization List of Each Module

An optimization list of inlining module, vectorization module and code generation

module is output.

 Inlining Module

An optimization list of inlining module is output when -report-inline or -report-all is

specified.

Format:

NEC Fortran Compiler (3.1.0) for Vector Engine Thu Sep 17 07:33:16 2020 (a)

FILE NAME: fft.f90 (b)

FUNCTION NAME: func3 (c)

INLINE LIST

 INLINE REPORT: func3 (fft.f90:17)

 (d)

Chapter8 Compiler Listing

- 103 -

 -> INLINE: func2 (fft.f90:19) (e)

 -> NOINLINE: func0 (fft.f90:12) (e)

 *** Source for routine not found. (f)

 -> INLINE: func1 (fft.f90:13) (e)

(a) Compiler revision and compilation date

(b) Name of source file

(c) Name of procedure

(d) Level of procedures to be inlined from the bottom of the calling tree.

(e) Inlining status of procedure calls

(f) Diagnostic message

 Vectorization Module

An optimization list of vectorization module is output when -report-vector or -

report-all is specified.

Format:

NEC C/C++ Fortran (3.1.0) for Vector Engine Thu Sep 17 08:10:39 2020 (a)

FILE NAME: vec.f90 (b)

FUNCTION NAME: func (c)

VECTORIZATION LIST

 LOOP BEGIN: (vec.f90:3)

 <Unvectorized loop.> (d)

 LOOP BEGIN: (vec.f90:4)

 <Vectorized loop.> (d)

 *** The number of VGT, VSC. : 0, 0. (vec.c:4) (e)

 *** The number of VLOAD, VSTORE. : 1, 1. (vec.c:4) (e)

 LOOP END

 LOOP END

(a) Compiler revision and compilation date

(b) Name of source file

(c) Name of procedure

(d) Vectorization status of each loop

(e) Diagnostic message

Chapter8 Compiler Listing

- 104 -

 Code Generation Module

An optimization list of code generation module is output when -report-cg or -

report-all is specified.

Format:

NEC Fortran Compiler (3.1.0) for Vector Engine Thu Sep 17 08:10:39 2020 (a)

FILE NAME: vec.f90 (b)

FUNCTION NAME: func (c)

CODE GENERATION LIST

 Hardware registers (d)

 Reserved : 10 [sl fp lr sp s12 s13 tp got plt s17]

 Callee-saved : 16 [s18-s33]

 Assigned

 Scalar registers : 32 [s0-s12 s15-s16 s18-s21 s23-s32 s61-s63]

 Vector registers : 35 [v0 v30-v63]

 Vector mask registers : 0

 VREG directive : 2 [v18-v19]

 Routine stack (e)

 Total size : 256 bytes

 Register spill area : 16 bytes

 Parameter area : 40 bytes

 Register save area : 176 bytes

 User data area : 16 bytes

 Others : 8 bytes

 Note: Total size of Routine stack does not include

 the size extended by alloca() and so on.

 LOOP BEGIN: (vec.f90:3)

 LOOP BEGIN: (vec.f90:4)

 *** The number of VECTOR REGISTER SPILL (f)

 Total : 14

 Across calls : 11

 Not enough registers : 1

 Over basic blocks : 1

 Others : 1

 *** The number of VECTOR REGISTER RESTORE

 Total : 14

 Across calls : 11

Chapter8 Compiler Listing

- 105 -

 Not enough registers : 1

 Over basic blocks : 1

 Others : 1

 *** The number of VECTOR REGISTER TRANSFER : 12

 *** The number of SCALAR REGISTER RESTORE

 Total : 14

 Across calls : 11

 Not enough registers : 1

 Over basic blocks : 1

 Others : 1

 *** The number of SCALAR REGISTER RESTORE

 Total : 14

 Across calls : 11

 Not enough registers : 1

 Over basic blocks : 1

 Others : 1

 *** The number of SCALAR REGISTER TRANSFER : 21

 LOOP END

 LOOP END

(a) Compiler revision and compilation date

(b) Name of source file

(c) Name of procedure

(d) Number of registers used for each type of register information

Reserved : System reserved registers

Callee-saved : Registers that save across procedure calls

Assigned : Registers assigned to calculations and user data

(e) Stack information

Register spill area : Stack area for register spill

Parameter area : Stack area for parameter area

Register save area : Stack area for register save area

User data area : Stack area for user data area

Others : Others

(f) Cause of register spill, restore and transfer for each loop

Across calls : Because it across procedure calls

Not enough registers : Because the registers are shortage

Over basic blocks : Because it is used across the basic blocks

Others : Others

Chapter9 Programming Notes Depending on the Language Specification

- 106 -

Chapter9 Programming Notes Depending on the

Language Specification

9.1 Non-Standard Extended Features

 Statements

 COMMON Statement

The Fortran compiler permits the mixing of character and other types of elements

in the same common block. However this should be avoided if possible, because

this may lower execution speed.

 COMPLEX DOUBLE / COMPLEX DOUBLE PRECISION Statement

The COMPLEX DOUBLE / COMPLEX DOUBLE PRECISION statement, a type

declaration statement provided for compatibility, specifies that all data entities

whose names are declared in this statement are of intrinsic double precision

complex type.

The kind parameter is "KIND(0.0D0)".

FORMAT

COMPLEX DOUBLE entity-declaration-list

COMPLEX DOUBLE PRECISION entity-declaration-list

where,

entity-declaration :

object-name [(explicit-shape-spec)][/ initial-value /]

| object-name [(assumed-size-spec)][/ initial-value /]

| function-name

 COMPLEX QUADRUPLE / COMPLEX QUADRUPLE PRECISION

Statement

The COMPLEX QUADRUPLE / COMPLEX QUADRUPLE PRECISION statement

provided for compatibility, a type declaration statement, specifies that all data

entities whose names are declared in this statement are of intrinsic quadruple

precision complex type.

The kind parameter is "KIND(0.0Q0)".

FORMAT

COMPLEX QUADRUPLE entity-declaration-list

Chapter9 Programming Notes Depending on the Language Specification

- 107 -

COMPLEX QUADRUPLE PRECISION entity-declaration-list

where,

entity-declaration :

object-name [(explicit-shape-spec)] [/ initial-value /]

| object-name [(assumed-size-spec)] [/ initial-value /]

| function-name

 DATA Statement

The Fortran compiler permits writing a Hollerith constant, the number of

characters is more than 4, to the initial value of a DATA statement.

 DIMENSION Statement

An initial value can be set in the DIMENSION statement in the same way as in

the DATA statement and a type declaration statement.

FORMAT

DIMENSION array-name(array-shape-spec) [/ init-val-expr-list /]

[,array-name(array-shape-spec)[/ init-val-expr-list /]]

...

where the init-val-expr-list represents the initial value of the immediately

preceding array name.

The rules to set the initial value are the same as those of the DATA statement.

 DOUBLE Statement

The DOUBLE statement, a type declaration statement provided for compatibility,

specifies that all data entities whose names are declared in this statement are of

intrinsic double precision real type.

The kind parameter is "KIND(0.0D0)".

FORMAT

DOUBLE entity-declaration-list

where,

entity-declaration :

object-name [(explicit-shape-spec)] [/ initial-value /]

| object-name [(assumed-size-spec)] [/ initial-value /]

| function-name

 DOUBLE COMPLEX Statement

The DOUBLE COMPLEX statement, a type declaration statement provided for

Chapter9 Programming Notes Depending on the Language Specification

- 108 -

compatibility, specifies that all data entities whose names are declared in this

statement are of intrinsic double precision complex type.

The kind parameter is "KIND(0.0D0)".

FORMAT

DOUBLE COMPLEX entity-declaration-list

where,

entity-declaration :

object-name [(explicit-shape-spec)] [/ initial-value /]

| object-name [(assumed-size-spec)] [/ initial-value /]

| function-name

 DOUBLE PRECISION Statement

Initial values can be specified for the entities whose names are declared in the

DOUBLE PRECISION statement.

FORMAT

DOUBLE PRECISION [[,attribute-spec]... ::] entity-declaration-list

where,

attribute-spec :

ALLOCATABLE

| DIMENSION(array-spec)

| EXTERNAL

| INTENT(intent-spec)

| INTRINSIC

| OPTIONAL

| PARAMETER

| POINTER

| PRIVATE

| PUBLIC

| SAVE

| TARGET

entity-declaration :

object-name [(explicit-shape-spec)] [/ initial-value /]

| object-name [(assumed-size-spec)] [/ initial-value /]

| function-name

Chapter9 Programming Notes Depending on the Language Specification

- 109 -

 EQUIVALENCE Statement

The Fortran compiler permits the association of character-type elements with

other types (without a derived type). However, this should be avoided, to maintain

compatibility with other implementations of Fortran.

 FORMAT Statement

The Fortran compiler permits the comma separator to be omitted immediately

before and after character string edit descriptors in FORMAT statements. Note,

however, that the comma separator between the X edit descriptor and the

character string edit descriptor must not be omitted.

Furthermore, the compiler permits n in nX edit descriptor and k in kP edit

descriptor to be omitted. When it is omitted, the default value is one. The data

edit descriptor (B/D/E/EN/ES/F/G/I/L/O/Z) can be specified only the edit

descriptor.

Example:

 PRINT 10, 3.14, 2.71

 PRINT 20, 3.14, 2.7110

 FORMAT('PI='F4.2' and',X,'E='F4.2)

20 FORMAT('PI='F' and',X,'E='F)

This produces the output:

PI=3.14 and E=2.71

PI= 3.1400001 and E= 2.7100000

 FUNCTION Statement

A string "([dummy-argument-name-list])" following a function-name can be

omitted including "()".

In this case, the format of the FUNCTION statement is as follows:

FORMAT

[type-spec] FUNCTION func-name [([dummy-arg-name-list])]

where,

type-spec :

INTEGER [*byte-count]

| REAL [*byte-count]

| DOUBLE PRECISION

| DOUBLE

Chapter9 Programming Notes Depending on the Language Specification

- 110 -

| QUARUPLE PRECISION

| QUADRUPLE

| COMPLEX [*byte-count]

| COMPLEX DOUBLE PRECISION

| COMPLEX DOUBLE

| DOUBLE COMPLEX

| COMPLEX QUADRUPLE PRECISION

| COMPLEX QUADRUPLE

| LOGICAL [*byte-count]

[type-spec] FUNCTION func-name [([dummy-arg-name-list])]

where,

type-spec :

CHARACTER [*character-length]

 Computed GO TO Statement

The following computed GO TO statement is available.

FORMAT

GO TO (statement-label-list) [,] scalar-integer-expr

SYNTAX RULE

Each statement-label within the statement-label-list must be the statement-

label of a branch target statement within the same scoping unit as the

computed GO TO statement.

GENERAL RULE

 The same statement-label may be written more than once within a single

statement-label-list.

 When a computed GO TO statement is executed, the scalar-integer-expr is

evaluated. Assume this value is i and the number of statement-labels within the

statement-label-list is n. If 1 <= i <= n, a transfer of control occurs, and the

statement having the i-th statement-label within the statement-label-list is

executed next. If i < 1 or i > n, the execution sequence continues as though a

CONTINUE statement were executed.

Example:

GO TO (100, 200, 300, 400, 500), I

Chapter9 Programming Notes Depending on the Language Specification

- 111 -

 Arithmetic IF Statement

The following arithmetic IF statement is available.

FORMAT

IF (scalar-numeric-expr) stmt-label, stmt-label, stmt-label

SYNTAX RULE

 Each stmt-label must be the statement-label of a branch target statement

within the same scoping unit as the arithmetic IF statement.

 The scalar-numeric-expr must not be of complex type.

 A maximum of two stmt-labels may be omitted; however, the comma must not

be omitted. If the stmt-label corresponds to the scalar-numeric-expr, the

execution sequence continues as if the CONTINUE statement were executed.

 An arithmetic IF statement in which at least one of the stmt-labels is omitted

can be used as a terminal statement of a DO loop.

GENERAL RULE

 The same stmt-label can be written more than once within a single arithmetic

IF statement.

 If an arithmetic IF statement is executed, a scalar-numeric-expr is evaluated,

followed by a transfer of control. The branch target expression identified by the

first, second, or third statement-label is executed next according to whether

the value of the scalar-numeric-expression is negative, zero, or positive.

Example:

IF(I + J) 100, 200, 300

 IMPLICIT Statement

The same letter may be specified more than once, either written as an individual

letter or included in a range of letters indicated by a letter-specification,

throughout all IMPLICIT statements in a single scoping unit. If the same letter is

specified more than once, the last letter is effective.

An IMPLICIT statement can implicitly specify the type and type parameters of a

data entity whose name starts with "$".

 PARAMETER Statement

In PARAMETER statement, "()" in the list can be omitted. When omitting, the

Chapter9 Programming Notes Depending on the Language Specification

- 112 -

constant form, not the implicit typing of the name, determines the data type of

the variable.

Example:

PARAMETER PI=3.1415927, DPI=3.141592653589793238D0

PARAMETER PIOV2=PI/2, DPIOV2=DPI/2

PARAMETER FLAG=.TRUE., LONGNAME='A STRING OF 25 CHARACTERS'

PRINT *,'PI=',PI

PRINT *,'DPI=',DPI

PRINT *,'PIOV2=',PIOV2

PRINT *,'DPIOV2=',DPIOV2

PRINT *,'FLAG=',FLAG

PRINT *,'LONGNAME=',LONGNAME

END

This produces the output:

PI= 3.1415927

DPI= 3.1415926535897931

PIOV2= 1.5707964

DPIOV2= 1.5707963267948966

FLAG= T

LONGNAME=A STRING OF 25 CHARACTERS

 FORTRAN77 POINTER Statement

The following POINTER statement provided for compatibility is available.

FEATURE

The POINTER statement has the capability to associate a variable name or

procedure name (pointee) with a pointer variable (pointer). It can be described

in places where type declaration statements can appear.

FORMAT

POINTER (pointer, pointee) [,(pointer, pointee)]...

where,

pointer: INTEGER(KIND=8) type scalar-variable

pointee: scalar-variable-name

| array-name

| array-name (explicit-shape-specification)

| array-name (assumed-shape-specification)

| procedure-name

Chapter9 Programming Notes Depending on the Language Specification

- 113 -

GENERAL RULE

 A FORTRAN77 POINTER statement cannot appear in a module specification

part or a BLOCK DATA program unit.

 pointer must be an INTEGER(KIND=8) type scalar variable.

 pointer must not be an array element, a component of a derived type, or a

function result.

 pointer must not have the following attributes.

- ALLOCATABLE attribute

- PARAMETER attribute

- POINTER attribute

 pointer cannot appear in a PARAMETER statement.

 pointer must not be a pointee which appears in another POINTER

statement.

 pointee must not be a common block object name, a component name of a

derived type name, a function result name, result variable name, or an

automatic data object.

 pointee must not have the following attributes.

- ALLOCATABLE attribute

- INTENT attribute

- INTRINSIC attribute

- OPTIONAL attribute

- POINTER attribute

- SAVE attribute

- TARGET attribute

 pointee must not have the following statements.

- COMMON statement

- EQUIVALENCE statement

- SAVE statement

- Another POINTER statement

Chapter9 Programming Notes Depending on the Language Specification

- 114 -

 pointee must not be given an initial value.

 pointee must not appear in data-sharing-attribute clauses of OpenMP.

 pointee must not appear in a namelist-group-object-list of NAMELIST

statement.

NOTE

 pointer is processed the same way as an ordinary variable of type 8-byte

integer.

 If the explicit declaration of the pointer type is omitted, the type is

determined implicitly as 8-byte integer.

 pointer can be declared for one or more pointees.

 If pointee is an array specification and its upper and lower bounds are not

constant, the size of the array is determined at entry to the procedure.

 A storage unit for a pointee is not allocated. The actual address of it is

dynamically determined by specifying the value of the corresponding pointer

as byte-address.

 If pointee is an array, its shape can be determined by a declaration

statement, a DIMENSION statement or a POINTER statement.

 pointee cannot be accessed by host association.

 QUADRUPLE / QUADRUPLE PRECISION Statement

The QUADRUPLE / QUADRUPLE PRECISION statement provided for

compatibility, a type declaration statement, specifies that all data entities whose

names are declared in this statement are of intrinsic quadruple precision real type.

The kind parameter is "KIND(0.0Q0)".

FORMAT

COMPLEX QUADRUPLE entity-declaration-list

COMPLEX QUADRUPLE PRECISION entity-declaration-list

where,

entry-declaration :

object-name [(explicit-shape-spec)] [/initial-value/]

| object-name [(assumed-size-spec)] [/initial-value/]

| function-name

Chapter9 Programming Notes Depending on the Language Specification

- 115 -

 RETURN Statement

A real type expression can be specified in a scalar integer expression of the

RETURN statement.

The specified real type expression is converted to the integer type prior to control

transfer.

 STOP Statement

A scalar variable name or constant name of character type or default integer type

can be specified as the stop-code.

 Program

 Statement Continuation

The maximum number of continuation lines is 511 lines in any source forms.

 Currency Symbol $

The currency symbol ($) can be used in place of a letter in a name.

The currency symbol ($) can be also used for an edit descriptor in a formatted

record. This specifies the suppression, on output, of vertical spacing control for

the last record of the format control. If a $ edit descriptor is specified on input, it

is ignored.

 Argument Association

A procedure without an explicit interface can be normally compiled even if it has

the following arguments which violate the standard rules governing argument

association.

 The number of the actual arguments is less than the number of the dummy

arguments.

 An argument is of type character, and the length of the dummy argument is

greater than the length of the actual argument.

 Array Complement

When the rank of an array is specified lower than its declaration, the compiler

complements the lower bounds of the omitted ranks.

Example:

Chapter9 Programming Notes Depending on the Language Specification

- 116 -

Declare Reference Reference

after

complement

A(2,3) A(1) A(1,1)

B(2,-4:4) B(1) B(1,-4)

C(2,3,4,5) C(2) C(2,1,1,1)

 Source Form

 Fixed Source Form

 Statement Continuation

For compatibility, if "&" is specified in character position 1, all subsequent

characters of that line beginning with character position 2 constitute the

continuation line of the preceding line that is not a comment.

 Extended Fixed Source Form

Maximum length of one line is 2,048 characters. This form is the same as the

fixed source form except that a line is not fixed on 72 columns, but a line

length is variable up to 2,048 columns.

In the extended fixed source form, a statement can consist of up to 13,200

characters including an initial line.

In the standard Fortran, the maximum number of continuation lines is 255 lines

in any source forms.

When -fextend-source is specified, the extended fixed source form is enabled.

 Tab Code Line

When the first tab code appears in character positions 1 through 6, if the

character following the first tab code is a digit, that character is considered to

have appeared in character position 6; if the character following the first tab

code is not a digit, that character is considered to have appeared in character

position 7. In this case, everything up to the last character of the line becomes

a portion of the statement. Also, if the first tab code appears in character

position 7 or after, it is considered to be blank except in a character constant,

Hollerith constant, or character string edit descriptor.

Chapter9 Programming Notes Depending on the Language Specification

- 117 -

 Free Source Form

In free source form, there is no limit for the maximum length of one line.

 Expressions

 Relational Operator

For compatibility, the following relational-operators can be used:

=>

| =<

| ><

| <>

 Logical Operator

For compatibility, the following logical operator can be used:

.XOR.

 Maximum Array Rank

The maximum rank of an array is 31. The Fortran 2008 standard only requires 15,

and previous Fortran standard only required 7.

 Boz-literal-constant

A boz-literal-constant in the format containing a quotation mark or an apostrophe

may be specified as the following too.

 An initialization value of a PARAMETER statement.

 An initialization value of a type declaration statement.

 An actual argument of a procedure having an implicit interface.

Then the type of a boz-literal-constant is fixed by its usage. When the length of

the boz-literal-constant is less than the length of the type, the leftmost digits have

a value of zero. When the length of the boz-literal-constant is more than the

length of the type, the leftmost digits are truncated.

A hexadecimal-constant can also be written with "X" instead of "Z" in the format

shown below:

X"hexadecimal-digit [hexadecimal-digit] ..."

| X'hexadecimal-digit [hexadecimal-digit] ...'

 Hollerith Type

A Hollerith constant can be written only in a Hollerith relational expression and a

Hollerith assignment statement.

Chapter9 Programming Notes Depending on the Language Specification

- 118 -

 Hollerith Relational Expression

If one operand is a Hollerith constant or character constant in a relational

expression, the other operand may be a scalar variable of integer type or real

type. This makes it possible to compare Hollerith data. The variable must be

defined with Hollerith data at the time of evaluation of the relational expression.

The Hollerith relational expression is interpreted in the same manner as a

character expression having the same character value.

Example:

INTEGER DATA

READ(*, 10) DATA

10 FORMAT(A4)

IF(DATA .EQ. 3HEND) STOP

 Hollerith Assignment Statement

In a Hollerith assignment statement, if the right side is a Hollerith constant or

character constant, the left side may be any non-character type scalar variable.

The execution of this assignment statement defines the variable on the left side

with the Hollerith data on the right side.

Assume n as the number of characters in a Hollerith constant or a character

constant, and assume g as the number of characters that can be contained in the

variable on the left side. If n is not greater than g, g characters are assigned by

extending the right side of the constant with g-n blank characters. If g is not

greater than n, the g characters on the left side of the constant are assigned.

Example:

INTEGER TITLE

TITLE = 4HDATA

WRITE(*, 10) TITLE

10 FORMAT(A4)

 Subscript Expression and Substring Expression

A real type expression can be specified in the subscript expression or substring

expression in an array element.

The specified real type expression is converted into integer type prior to calculating

the subscript value.

Chapter9 Programming Notes Depending on the Language Specification

- 119 -

 Deleted Features

The Fortran compiler supports the deleted features in Fortran95 (PAUSE statement,

ASSIGN statement, assigned GO TO statement, and H edit descriptor). When

-Wobsolescent is valid and these features are found, a warning message with

"Deleted feature:" is output.

9.2 Implementation-Defined Specifications

 Data Types

 Correspondence Between Kind Type Parameters and Data Types

The available kind values and correspondence between kind type parameters and

data types are as follows.

Type Kind Type

Parameter

Data Type

integer 1 1-byte integer

integer 2 2-byte integer

integer 4 4-byte integer (default integer type)

integer 8 8-byte integer

real 2 2-byte real

real 4 4-byte real (default real type)

real 8 8-byte real

real 16 16-byte real

complex 2 (2,2)-byte complex

complex 4 (4,4)-byte complex (default complex type)

complex 8 (8,8)-byte complex

complex 16 (16,16)-byte complex

logical 1 1-byte logical

logical 4 4-byte logical (default logical type)

logical 8 8-byte logical

character 1 character (default character type)

Chapter9 Programming Notes Depending on the Language Specification

- 120 -

 Internal Representation of Data

 Integer Type

An integer data item has 1, 2, 4, or 8 consecutive bytes in a memory sequence. It is

stored in binary form, with the rightmost bit position representing the digit 1. A

negative number is represented by 2's complement notation. The leftmost bit is the

sign; 0 is positive, 1 is negative.

 1-byte Integer

SYNOPSIS

S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

-128 to 127 (-27 to 27-1)

 2-byte Integer

SYNOPSIS

S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

-32768 to 32767 (-215 to 215-1)

 4-byte Integer

SYNOPSIS

S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

-2147483648 to 2147783647 (-231 to 231-1)

 8-byte Integer

SYNOPSIS

S:Sign bit (0:positive 1:negative)

EXPRESSIBLE VALUE

15 0

S

31 0

S

63 0

S

S

7 0

Chapter9 Programming Notes Depending on the Language Specification

- 121 -

-9223372036854775808 to 9223372036854775807 (-263 to 263-1)

 Floating-Point Data

 Half-Precision Type

A real data item occupies 2 consecutive bytes in a memory area. The leftmost bit

is the sign bit of the mantissa. The 10 bits on the right are the mantissa. The

mantissa is stored in binary representation, with its leftmost bit being the 2-1

place. When the sign bit of the mantissa in the leftmost bit position is 0, the

mantissa is a positive value. When it is 1, the mantissa is the absolute value of a

negative number. The 5 bits following the leftmost bit are the exponent. The

exponent is stored in binary representation, with its leftmost bit being the unit's

place. The value 0 is represented by making the value of the exponent 0.

SYNOPSIS

 S: Sign bit of mantissa (0:positive 1:negative)

 E: Exponent (0<=E<=31)

 M: Mantissa (0<=M<1)

EXPRESSIBLE VALUE

(-1)S * 2E-15 * (1.M)

Decimal value of 3 digits, with an absolute value of 0 or in the range of 10-5 to

104.

SPECIAL VALUE

NaN E == 31 and M != 0

 (A head bit of M is 0:signaling NaN, A head bit of M is 1:quiet NaN)

Infinity E == 31 and M == 0

Signed Zero E == 0

 Real Type

A real data item occupies 4 consecutive bytes in a memory area. The leftmost bit

is the sign bit of the mantissa. The 23 bits on the right are the mantissa. The

mantissa is stored in binary representation, with its leftmost bit being the 2-1

place. When the sign bit of the mantissa in the leftmost bit position is 0, the

mantissa is a positive value. When it is 1, the mantissa is the absolute value of a

negative number. The 8 bits following the leftmost bit are the exponent. The

15 0

S M

10 9

E

Chapter9 Programming Notes Depending on the Language Specification

- 122 -

exponent is stored in binary representation, with its leftmost bit being the unit's

place. The value 0 is represented by making the value of the exponent 0.

SYNOPSIS

 S: Sign bit of mantissa (0:positive 1:negative)

 E: Exponent (0<=E<=255)

 M: Mantissa (0<=M<1)

EXPRESSIBLE VALUE

(-1)S * 2E-127 * (1.M)

Decimal value of 7 digits, with an absolute value of 0 or in the range of 10-38 to

1037.

SPECIAL VALUE

NaN E == 255 and M != 0

 (A head bit of M is 0:signaling NaN, A head bit of M is 1:quiet NaN)

Infinity E == 255 and M == 0

Signed Zero E == 0

 Double-Precision Type

A double-precision real data item occupies 8 consecutive bytes in a memory area.

The leftmost bit is the sign bit of the mantissa. The 52 bits on the right are the

mantissa. The mantissa is stored in binary representation, with its leftmost bit

being the 2-1 place. When the sign bit of the mantissa in the leftmost bit position

is 0, the mantissa is a positive value. When it is 1, the mantissa is the absolute

value of a negative number. The 11 bits following the leftmost bit are the

exponent. The exponent is stored in binary representation, with its leftmost bit

being the unit's place. The value 0 is represented by making the value of the

exponent 0.

SYNOPSIS

 S: Sign bit of mantissa (0:positive 1:negative)

 E: Exponent (0<=E<=2047)

 M: Mantissa (0<=M<1)

31 0

S M

23 22

E

63 0

S

52 51

M E

Chapter9 Programming Notes Depending on the Language Specification

- 123 -

EXPRESSIBLE VALUE

(-1)S * 2E-1023 * (1.M)

Decimal value of 16 digits, with an absolute value of 0 or in the range of 10-308

to 10308.

SPECIAL VALUE

NaN E == 2047 and M != 0

 (A head bit of M is 0:signaling NaN, A head bit of M is 1:quiet NaN)

Infinity E == 2047 and M == 0

Signed Zero E == 0

 Quadruple-Precision Type

A quadruple-precision real data item occupies 16 consecutive bytes in a memory

area. The leftmost bit is the sign bit of the mantissa. The 112 bits on the right are

the mantissa. The mantissa is stored in binary representation, with its leftmost bit

being the 2-1 place. When the sign bit of the mantissa in the leftmost bit position

is 0, the mantissa is a positive value. When it is 1, the mantissa is the absolute

value of a negative number. The 15 bits following the leftmost bit are the

exponent. The exponent is stored in binary representation, with its leftmost bit

being the unit's place. The value 0 is represented by making the value of the

exponent 0.

SYNOPSIS

S: Sign bit of mantissa (0:positive 1:negative)

E: Exponent (0<=E<=32767)

M: Mantissa (0<=M<1)

EXPRESSIBLE VALUE

(-1)S * 2E-16383 * (1.M)

Decimal value of 34 digits, with an absolute value of 0 or in the range of 10-4932

to 104932.

SPECIAL VALUE

NaN E == 32767 and M != 0

127 64 112 111

S E M

Continuation of M

63 0

Chapter9 Programming Notes Depending on the Language Specification

- 124 -

Infinity E == 32767 and M == 0

Signed Zero E == 0

 Complex Type

 Complex Half-Precision Type

A half-precision complex data item occupies 4 consecutive bytes in a memory

area. The 2 bytes occupying the low-order addresses store the real part, and the

2 bytes occupying the high-order addresses store the imaginary part. The real and

imaginary parts are in the same format as real data.

SYNOPSIS

 RS, IS: Sign bit of mantissa (0:positive 1:negative)

 RE, IE: Exponent (0<=RE<=31, 0<=IE<=31)

 RM, IM: Mantissa (0<=M<1)

EXPRESSIBLE VALUE

(-1)RS * 2RE-15 * (1.RM)

(-1)IS * 2IE-15 * (1.IM)

Decimal value of 3 digits, with an absolute value of 0 or in the range of 10-5 to

104.

SPECIAL VALUE

NaN RE == 31 and RM != 0 and IE == 31 and IM != 0

Infinity RE == 31 and RM == 0 and IE == 31 and IM == 0

Signed Zero RE == 0 and IE == 0

 Complex Single-Precision Type

A single-precision complex data item occupies 8 consecutive bytes in a memory

area. The 4 bytes occupying the low-order addresses store the real part, and the

4 bytes occupying the high-order addresses store the imaginary part. The real and

imaginary parts are in the same format as real data.

SYNOPSIS

31 16 26 25

RS RE RM

15 0

IS IE IM

10

9

Chapter9 Programming Notes Depending on the Language Specification

- 125 -

 RS, IS: Sign bit of mantissa (0:positive 1:negative)

 RE, IE: Exponent (0<=RE<=255, 0<=IE<=255)

 RM, IM: Mantissa (0<=M<1)

EXPRESSIBLE VALUE

(-1)RS * 2RE-127 * (1.RM)

(-1)IS * 2IE-127 * (1.IM)

Decimal value of 7 digits, with an absolute value of 0 or in the range of 10-38 to

1037.

SPECIAL VALUE

NaN RE == 255 and RM != 0 and IE == 255 and IM != 0

Infinity RE == 255 and RM == 0 and IE == 255 and IM == 0

Signed Zero RE == 0 and IE == 0

 Complex Double-Precision Type

A double-precision complex data item occupies 16 consecutive bytes in a memory

area. The 8 bytes occupying the low-order addresses store the real part, and the

8 bytes occupying the high-order addresses store the imaginary part. The real and

imaginary parts are in the same format as double-precision real data.

SYNOPSIS

RS, IS: Sign bit of mantissa (0:positive 1:negative)

RE, IE: Exponent (0<=RE<=2047, 0<=IE<=2047)

RM, IM: Mantissa

EXPRESSIBLE VALUE

(-1)RS * 2RE-1023 * (1.RM)

(-1)IS * 2IE-1023 * (1.IM)

Decimal value of 16 digits, with an absolute value of 0 or in the range of 10-308

63 32 55

54

RS RE RM

31 0

IS IE IM

23

22

127 64 116 115

RS RE RM

63 0 52 51

IS IE IM

Chapter9 Programming Notes Depending on the Language Specification

- 126 -

to 10308.

SPECIAL VALUE

NaN RE == 2047 and RM != 0 and IE == 2047 and IM != 0

Infinity RE == 2047 and RM == 0 and IE == 2047 and IM == 0

Signed Zero RE == 0 and IE == 0

 Complex Quadruple-Precision Type

A quadruple-precision complex data item occupies 32 consecutive bytes in a

memory area. The 16 bytes occupying the low-order addresses store the real

part, and the 16 bytes occupying the high-order addresses store the imaginary

part. The real and imaginary parts are in the same format as quadruple-precision

real data.

SYNOPSIS

RS, IS: Sign bit of mantissa (0:positive 1:negative)

RE, IE: Exponent (0<=RE<=32767, 0<=IE<=32767)

RM, IM: Mantissa

EXPRESSIBLE VALUE

(-1)RS * 2RE-16383 * (1.RM)

(-1)IS * 2IE-16383 * (1.IM)

Decimal value of 34 digits, with an absolute value of 0 or in the range of 10-4932

to 104932.

SPECIAL VALUE

NaN RE == 32767 and RM != 0 or IE == 32767 and IM != 0

Infinity RE == 32767 and RM == 0 or IE == 32767 and IM == 0

Signed Zero RE == 0 and IE == 0

 Logical Type

A logical data item has 1 byte, 4 consecutive bytes, or 8 consecutive bytes in a

memory sequence.

255 192 240 239

RS RE RM

63 0

IE IM

Continuation of M

Continuation of M

Chapter9 Programming Notes Depending on the Language Specification

- 127 -

 1-byte Logical

SYNOPSIS

L: The lowest bit (0: False, 1: True)

H: Higher bit (H==0)

 4-byte Logical

SYNOPSIS

L: The lowest bit (0: False, 1: True)

H: Higher bit (H==0)

 8-byte Logical

SYNOPSIS

L: The lowest bit (0: False, 1: True)

H: Higher bit (H==0)

 Character Type

A character data item occupies as many contiguous bytes of memory as specified by

a type or IMPLICIT statement. If the item is a character constant, it occupies as

many contiguous bytes as its number of characters.

SYNOPSIS

Ci: i-th character from the left

n: Length of a character-type scalar variable or array element specified by a type

or IMPLICIT statement (up to 32767 characters), or the length of a character

constant (up to 16383 characters)

 Hollerith Type

An item of Hollerith data occupies contiguous 1, 2, 4, 8, 16, or 32 bytes of memory

L

63 0

H

L

7 0

H

31 0

L H H

1 2 3 4 n-1 n

C1 C2 C3 C4 Cn-1 Cn

BYTE

Chapter9 Programming Notes Depending on the Language Specification

- 128 -

and is left-justified when stored. It is stored in a variable or array element of a type

other than character type, followed by the necessary number of blanks.

A Hollerith constant consists of an unsigned nonzero integer n, the following letter H

and the following string of n consecutive characters. This string may consist of any

characters capable of representation in the processor. The string of n characters is

Hollerith data.

The following example shows 5HABCDE stored in a variable of double-precision

floating-point format 1 data.

"[]" indicates blank

A Hollerith constant can be written only in a Hollerith relational expression, a

Hollerith assignment statement, type-statement in FORTRAN77 compatible format, a

DATA statement, a DIMENSION statement, or an actual argument list in a

procedure reference having no explicit interface.

 Hexadecimal Type

An item of hexadecimal data is stored according to an initial value setting in a DATA

or type, or by executing a READ statement using a Z edit descriptor. It occupies as

many bytes of memory as required for the type of data, and is left-justified when

stored. One byte of hexadecimal data contains two hexadecimal digits. Each

hexadecimal digit is represented by 4 bits.

 Octal Type

An item of octal data is stored according to an initial value setting in a DATA or type

statement, or by executing a READ statement using an O edit descriptor. It occupies

as many bytes of memory as required for the type of data, and is left-justified when

stored. Three bits represent one octal digit.

 Binary Type

An item of binary data is stored according to an initial value setting in a DATA or

type statement, or by executing a READ statement using a B edit descriptor. It

occupies as many bytes of memory as required for the type of data, and is left-

justified when stored. One bit represents one digit of binary data.

1 2 3 4

A B C D

BYTE 5 6 7 8

E [] [] []

Chapter9 Programming Notes Depending on the Language Specification

- 129 -

 Special Values

Floating-point data can be used for the following special values:

 Nonnumeral (NaN)

A nonnumeral indicates that numeric representation cannot be used as a result of

an invalid operation. For example, the result of the operation "0.0/0.0" is a

nonnumeral.

Nonnumerals are classified into the following two types.

‒ Signaling NaN

If this type of nonnumeral is used for an operation, an invalid operation

exception is detected.

‒ Quiet NaN

Quiet NaN: This type of nonnumeral is returned as the result of an invalid

operation. However, no invalid operation exception is detected.

 Infinite (inf)

Infinities are classified into the positive infinite and the negative infinite. The

positive infinite (+inf) is the value that is greater than any other numeric values

that can be represented in the same format as the positive infinite. The negative

infinite (-inf) is the value that is less than any other numeric values that can be

represented in the same format as the negative infinite.

 Signed zero (+0 and -0)

In internal representation, +0 and -0 are distinguished from each other by sign.

However, these two values are treated as the same value.

0.0 .EQ. (-0.0) => true

As shown below, a signed 0 is effective in obtaining a positive or negative infinite

value.

B1 = +0.0

B2 = -0.0

A1 = 1.0 / B1

A2 = 1.0 / B2

WRITE(*, *) "A1 = ", A1, " A2 = ", A2

 Specifications

Various upper limits in the Fortran compiler are as described below.

Chapter9 Programming Notes Depending on the Language Specification

- 130 -

Items Upper Limits

Nesting level of files included by INCLUDE line 63

Rank of an array 31

Number of continuation lines 1023

Length of a name 199

 Predefined Macro

All predefined macros are enabled when a source program is preprocessed by fpp

and one of the following conditions is satisfied.

 -E or -M is specified.

 The suffix of input source file is .F, .F90, .F95, or .F03.

Predefined macros are as follows.

unix, __unix, __unix__

Always defined as 1.

linux, __linux, __linux__

Always defined as 1.

__gnu_linux__

Always defined as 1.

__ve, __ve__

Always defined as 1.

__VE_ARCH_1__

Always defined as 1.

__VE_ARCH_3__

Defined as 1 when –march=ve3 is enabled; Otherwise not defined.

__ELF__

Always defined as 1.

__FP16_FORMAT__

Sets the format of half-precision floating-point.

Defined as 1 when –march=ve3 and -mfp16-format=ieee are enabled;

Defined as 2 when –march=ve3 and -mfp16-format=bfloat are enabled;

Otherwise not defined.

__FP16_IEEE

Always defined as 1.

Chapter9 Programming Notes Depending on the Language Specification

- 131 -

__FP16_BFLOAT

Always defined as 2.

__NEC__

Always defined as 1.

__FAST_MATH __

Defined as 1 when -ffast-math is enabled; Otherwise not defined.

_FTRACE

Defined as 1 when –ftrace is enabled; Otherwise not defined.

__NEC_VERSION__

Defined as the value obtained by calculation using the following formula when

compiler version is X.Y.Z.

X*10000 + Y*100 + Z

__OPTIMIZE__

Sets the optimization level n of -On which is effective at the compilation.

__VECTOR__

Defined as 1 when automatic vectorization is enabled; Otherwise not defined.

__VERSION__

Always defined as a string constant which describes the version of the compiler

in use.

 Notes for Intrinsic Procedures

CPU_TIME

Return CPU time for program execution. When parallelization in version 3.0.7

or later, this subroutine returns the CPU time of thread that called CPU_TIME.

In previous versions, this subroutine returned accumulated CPU time of all

threads. If you want to get accumulated CPU time of all threads in this version

or later, specify "YES" in environment variable

VE_FORT_ACCUMULATE_THREAD_CPU_TIME.

9.3 Memory Allocation and Deallocation

Fortran compiler has a memory block management feature to accelerate allocation

and deallocation for memory which is allocated by ALLOCATE statement, deallocated

by DEALLOCATE statement, and work area using in some statements.

By a memory block management feature, three memory blocks are reserved at the

Chapter9 Programming Notes Depending on the Language Specification

- 132 -

start of program execution, and a memory chunk in the blocks are assigned as a

memory area for scalar variable (basic and derived types) and small size arrays.

Therefore, system calls to allocate and deallocate memory chunks can be omitted for

them.

 Memory block

There are three types of memory blocks depending on the type of data to be

allocated, and each has a size of 64 megabytes at the start of program execution. A

data whose size is less than a threshold size is assigned in a memory block. The

threshold size is 16 megabytes by default.

Block Type Allocated Data Type Size Threshold Size

Allocate Scalars and arrays having ALLOCATABLE

attribute

64 16

Pointer Scalars and arrays having POINTER

attribute

64 16

Miscellaneous Automatic arrays, work arrays and work

area needed by compiler

64 16

(Unit: Megabyte)

A data whose size is greater than or equal to the threshold size is allocated or

deallocated by malloc(3C) or free(3C) which is called from Fortran compiler’s runtime

routine.

When a sufficient area for an allocated data cannot be found in a memory block, new

memory block whose size is “Size” is added.

 Change size and threshold size of memory block

The size of memory block can be changed by the environment variable

VE_FORT_MEM_BLOCKSIZE. The value can be specified as megabytes by using

“M” as unit and gigabytes by using “G” as unit. The value must be power of 2. The

size is set 64 megabytes when it is not specified explicitly. The threshold size is set to

“size”/4.

$ export VE_FORT_MEM_BLOCKSIZE=32M

The size is set to 32megabytes and the threshold size is set to 8 megabytes by the

above setting.

Chapter9 Programming Notes Depending on the Language Specification

- 133 -

9.4 Run-Time Input/Output

 Formatted Records

Formatted records are input or output using a formatted, list-directed, or namelist

input/output statement.

Records with a formatted input/output statement are input or output in accordance

with the format specification. In general, this type of record has a variable length,

but cannot be longer than the record buffer provided by the Fortran compiler.

Records with a list-directed input/output statement are input or output in accordance

with the input/output list of that statement. When a list-directed input/output

statement is executed once, one or more records are input or output.

Records with a namelist input/output statement are input or output in accordance

with the specified list of namelist names. When a namelist input/output statement is

executed once, one or more records may be input or output.

 Sequential File Formatted Records

Sequential file formatted records are separated from each other by new line codes

('0A'Z). Each record has a variable length. The format is shown here.

 Direct File Formatted Records

The length of a formatted record in a direct file is specified by the RECL specifier in

an OPEN statement. When a record created by input/output list-item editing is

shorter than the length of the records in a file, the record is padded with spaces to

the right.

 Stream File Format Records

Stream file formatted records are separated from each other by new line codes

n bytes

'0A'Z … '0A'Z

m bytes

Formatted record Formatted record

k bytes

Formatted record Space … Formatted record Space

k bytes

(k: Length specified by an OPEN statement)

m bytes n bytes

Chapter9 Programming Notes Depending on the Language Specification

- 134 -

('0A'Z), same as sequential file formatted records. However, the maximum length of

the records does not apply to this format. The format is shown here.

 Unformatted Records

Unformatted records are input or output only with an unformatted input/output

statement. The length of an unformatted record is the same as total data size of

input/output items. Please refer to Section 7.2 about each data size.

 Sequential File Unformatted Records

Each unformatted record in a sequential file is preceded and followed by 4-byte data

that indicates the byte length of the record as shown in this example.

When the environment variable VE_FORT_EXPRCW is specified, each unformatted

record in a sequential file is preceded and followed by 8-byte data that indicates the

byte length of the record as shown in this example.

This record format is able to handle the records over 2 giga bytes.

When the environment variable VE_FORT_SUBRCW is specified, each unformatted

record in a sequential file is divided into 2,147,483,639 bytes or less. This records

are preceded and followed by 4-byte data that indicates the byte length of the record

as shown in this example. The sign bit in this length field indicates whether the

preceding and following records are continued.

n bytes

'0A'Z … '0A'Z

m bytes

Formatted record Formatted record

4 bytes 4 bytes

m Unformatted record m n Unformatted record n …

(m,n: Byte length of record)

n bytes m bytes

8 bytes

m Unformatted record m …

8 bytes

(m: Byte length of record)

m bytes

Chapter9 Programming Notes Depending on the Language Specification

- 135 -

2,147,483,639

(Sign bit 1)
Unformatted record

2,147,483,639

(Sign bit 0)

 4 bytes 2,147,483,639 bytes 4 bytes

 Record (1/3)

2,147,483,639

(Sign bit 1)
Unformatted record

2,147,483,639

(Sign bit 1)

 4 bytes 2,147,483,639 bytes 4 bytes

 Record (2/3)

n

(Sign bit 0)
Unformatted record

n

(Sign bit 1)

…

 4 bytes n bytes 4 bytes

 Record (3/3)

When the environment variable VE_FORT_PARTRCW is specified, each unformatted

record in a sequential file is followed by 4-byte data that indicates EOR and the byte

length of the record as shown in this example.

When the runtime options VE_FORT_EXPRCW and VE_FORT_PARTRCW are

specified at the same time, each unformatted record in a sequential file is followed

by 8-byte data that indicates EOR and the byte length of the record as shown in this

example.

When the environment variable VE_FORT_NORCW is specified, each unformatted

record in a sequential file is preceded and followed by no control record data as

shown in this example. This is the same as unformatted record of stream file.

Unformatted record

4 bytes

EOR m Unformatted record EOR …

n bytes m bytes

(m,n: Byte length of record)

4 bytes

n

Unformatted record

8 bytes

EOR m Unformatted record EOR …

n bytes m bytes

(m,n: Byte length of record)

8 bytes

n

(2,147,483,639, n: Byte length of record)

Chapter9 Programming Notes Depending on the Language Specification

- 136 -

 Direct File Unformatted Records

The length of an unformatted record in a direct file is specified by the RECL specifier

in an OPEN statement. When a record consisting of input/output list items is shorter

than the length of records in a file, the remainder of the record is undefined, as

follows.

When writing an unformatted record to a file, the undefined data are ignored and the

length of the record will be the same as the total data size of output items.

 Stream File Unformatted Records

An unformatted stream file is a byte stream without records.

 Preconnection

An external unit identifier is defined to identify a specific file before program

execution is started. This is called a preconnection.

 System Standard File Preconnection

System standard files are preconnected to external unit identifiers as follows.

External Unit Identifier System Standard File

0 Standard error output

5 Standard input file

6 Standard output file

Unformatted record Unformatted record …

n bytes m bytes

Unformatted record Unformatted record Undefined

m bytes n bytes

k bytes k bytes

(k: Length specified by an OPEN statement)

Undefined …

Unformatted byte stream ...

Chapter9 Programming Notes Depending on the Language Specification

- 137 -

A preconnection with an external unit identifier is valid until an OPEN statement is

executed for the external unit identifier. Once an OPEN statement is executed, the

external unit identifier is disconnected from the system standard file. Reconnection is

impossible. When an OPEN statement that specifies the external unit identifiers

previously indicated is executed followed by a CLOSE statement, the next

input/output statements for external unit identifiers 0, 5, and 6 detect an error

because the unit is not connected to files.

In the following example, WRITE statement (a) outputs data to the standard output

file; WRITE statement (b) outputs data to the file named DATA6; and WRITE

statement (c) outputs an error.

Example:

WRITE(6, *) A, B, C ------(a) Standard output file

 ...

 ...

OPEN(6, FILE = "DATA6")

WRITE(6, *) I, J, K ------(b) DATA6

 ...

CLOSE(6)

 ...

WRITE(6, *) X, Y, Z ------(c) Unit 6 is not connected

 Other File Preconnection

A file named fort.n is preconnected to each external unit identifier (n) other than 0,

5, and 6. Even if the FILE specifier is used in an OPEN statement, the executions of

a CLOSE statement and an OPEN statement with the FILE specifier fort.n still allow

unit n to be connected to fort.n.

In the following example, WRITE statement (a) outputs data to the file named

fort.8; WRITE statement (b) outputs data to the file named DATA8; and WRITE

statement (c) outputs data again to the file named fort.8. The records output by (a)

are rewritten by (c).

See the description of the environment variable VE_FORTn in “2.2 Environment

Variables Referenced During Execution” to change a preconnection file.

Example:

WRITE(8, *) A, B, C ------(a) fort.8

 ...

 ...

OPEN(8, FILE = "DATA8")

Chapter9 Programming Notes Depending on the Language Specification

- 138 -

WRITE(8, *) I, J, K ------(b) DATA8

 ...

CLOSE(8)

 ...

OPEN(8, FILE = "fort.8")

WRITE(8, *) X, Y, Z ------(c) fort.8

 Unnamed File

An unnamed file can be created by executing the OPEN statement with

STATUS=”SCRATCH”. An unnamed file is created by the directory P_tmpdir in the

header file <stdio.h>. However, if this directory cannot be accessed, the directory

/tmp is used.

By using the environment variable TMPDIR, an unnamed file can be created in a

specified directory.

 Rounding Mode

The rounding mode can be specified by the ROUND specifier and the round edit

specifier in an OPEN statement and a data transfer I/O statement. When these

specifications are not set, the rounding mode is set to PROCESSOR_DEFINED.

The value resulting from conversion in each mode is as follows.

ROUND specifier edit

descriptors

Conversion result

UP RU The smallest representable value that is

greater than or equal to the original value

DOWN RD The largest representable value that is less

than or equal to the original value

ZERO RZ The value closest to the original value and

no greater in magnitude than the original

value

NEAREST RN The closer of the two nearest representable

values if one is closer than the other. When

two values are equally close, it is rounded

to the even one

COMPATIBLE RC The closer of the two nearest representable

values or the value away from zero if

halfway between them

PROCESSOR_DEFINED RP Same as NEAREST

Chapter9 Programming Notes Depending on the Language Specification

- 139 -

 NAMELIST Input Format

The NAMELIST input format supports the addition of "$" and "&" as the front

character of the NAMELIST name. "$end", "&end" and "/" are supported as the end

symbol.

 NAMELIST Output Format

 Output of numeric-type array

When two or more same values in a numeric array are consecutive, NAMELIST is

output collectively form (Repeat* Value). This form can be changed by the

environment variable VE_FORT_NML_REPEAT_FORM. See “2.2 Environment

Variables Referenced During Execution” for details.

 DELIM specifier and character-type array

When "NONE" is specified to DELIM specifier, characters are not separated from

each other by value separators. When "QUOTE" or "APOSTROPHE" is specified to

DELIM specifier, the same consecutive characters or strings are output collectively

form (Repeat * Value). When DELIM specifier is omitted, characters are output

continuously. This form can be changed by the environment variable

VE_FORT_NML_DELIM_BLANK. See “2.2 Environment Variables Referenced

During Execution” for details.

Note NAMELIST output records produced with a DELIM specifier with a

value of "NONE" and which contain a character sequence might not be

acceptable as NAMELIST input records. If you want to use the output

result of this text as input to the program, either specify other than

"NONE" to DELIM specifier or set "YES" for environment variable

VE_FORT_NML_DELIM_BLANK without DELIM specifier.

 Compatibility with compiler version 3.0.7

If you want to NAMELIST output form of version 3.0.7 or earlier, set "NO" to

environment variable VE_FORT_NML_REPEAT_FORM.

9.5 Fortran 2018 Extensions

This appendix describes the Fortran 2018 Extensions supported by NEC Fortran

Compiler.

Chapter9 Programming Notes Depending on the Language Specification

- 140 -

 Data declaration

 Assumed-rank dummy data object can be used. (Support compiler version 5.4.0-)

Example:

SUBROUTINE SUB(A)

REAL :: A(..)

 Data usage

 SELECT RANK construct can be used. (Support compiler version 5.4.0-)

Example:

PROGRAM SELECT_RANK_EXAMPLE

 INTEGER A, B(1), C(2,3), D(4,5,6)

 CALL SUB(A)

 CALL SUB(B)

 CALL SUB(C)

 CALL SUB(D)

CONTAINS

 SUBROUTINE SUB(P)

 INTEGER P(..)

 SELECT RANK(P)

 RANK (0)

 PRINT *,'RANK is 0'

 RANK (1)

 PRINT *,'RANK is 1'

 RANK (2)

 PRINT *,'RANK is 2'

 RANK DEFAULT

 PRINT *,'RANK is out of range from 0 to 2.'

 END SELECT

 END SUBROUTINE

END PROGRAM

 Execution Control

 The expression in an ERROR STOP or STOP statement can be used. (Support

compiler version 1.5.0-)

 The ERROR STOP and STOP statements have an optional QUIET specifier.

(Support compiler version 1.5.0-)

Example:

STOP 13, QUIET = .True.

Chapter9 Programming Notes Depending on the Language Specification

- 141 -

The above program exits normally with status of 13.

 Intrinsic Procedures and Modules

 The intrinsic subroutine MOVE_ALLOC has optional STAT and ERRMSG

arguments. (Support compiler version 1.5.0-)

Example:

INTEGER,ALLOCATABLE :: X(:),Y(:)

INTEGER ISTAT

CHARACTER(80) EMSG

...

CALL MOVE_ALLOC(X,Y,ISTAT,EMSG)

IF (ISTAT/=0) THEN

PRINT *,'UNEXPECTED ERROR IN MOVE_ALLOC: ',TRIM(EMSG)

 The argument DIM to the intrinsic procedures ALL, ANY, FINDLOC, IALL, IANY,

IPARITY, MAXLOC, MAXVAL, MINLOC, MINVAL, NORM2, PARITY, PRODUCT

and SUM can be an optional dummy argument. (Support compiler version 3.5.0-)

Example:

SUBROUTINE SUB(X,N)

 REAL,INTENT(IN) :: X(:,:,:)

 INTEGER,INTENT(IN),OPTIONAL :: N

 IF (PRESENT(N)) THEN

 PRINT *,NORM2(X,N) ! RANK TWO ARRAY RESULT.

 ELSE

 PRINT *,NORM2(X) ! SCALAR RESULT.

 END IF

END SUBROUTINE

 The intrinsic procedure RANK can be used. It returns the dimensionality of its

argument. (Support compiler version 3.5.0-)

Example:

INTEGER I(3,3),RESULT

RESULT=RANK(I)

END

 The intrinsic procedure REDUCE can be used. It performs user-defined array

reductions. (Support compiler version 3.5.0-)

Example:

MODULE TRIPLET_M

Chapter9 Programming Notes Depending on the Language Specification

- 142 -

 TYPE TRIPLET

 INTEGER I,J,K

 END TYPE

CONTAINS

 PURE TYPE(TRIPLET) FUNCTION TADD(A,B)

 TYPE(TRIPLET),INTENT(IN) :: A,B

 TADD%I = A%I + B%I

 TADD%J = A%J + B%J

 TADD%K = A%K + B%K

 END FUNCTION

END MODULE

PROGRAM REDUCE_EXAMPLE

 USE TRIPLET_M

 TYPE(TRIPLET) A(2,3)

 A = RESHAPE([TRIPLET(1,2,3),TRIPLET(1,2,4), &

 TRIPLET(2,2,5),TRIPLET(2,2,6), &

 TRIPLET(3,2,7),TRIPLET(3,2,8)], [2,3])

 PRINT 1, REDUCE(A,TADD)

 PRINT 1, REDUCE(A,TADD,1)

 PRINT 1, REDUCE(A,TADD,A%I/=2)

 PRINT 1, REDUCE(ARRAY=A,DIM=2,OPERATION=TADD)

 PRINT 1, REDUCE(A, MASK=A%I/=2, DIM=1, OPERATION=TADD,

IDENTITY=TRIPLET(0,0,0))

1 FORMAT(1X,6('TRIPLET(',I0,',',I0,',',I0,')',:,'; '))

END PROGRAM

 Input/Output

 The RECL specifier in an INQUIRE statement for an unconnected unit or file

assigns the value -1 to the variable. For a unit or file connected with

ACCESS=”STREAM”, it assigns the value −2 to the variable. Under previous

Fortran standards, the variable became undefined. (Support compiler version

3.0.1-)

 The SIZE= specifier can be used in a READ statement without ADVANCE='NO'.

(Support compiler version 3.5.0-)

Example:

CHARACTER(65536) BUF

INTEGER NC

READ(*,'(A)',SIZE=NC) BUF

 PRINT *,'THE NUMBER OF CHARACTERS ON THAT LINE WAS',NC

Chapter9 Programming Notes Depending on the Language Specification

- 143 -

 Programs and Procedures

 If a dummy argument of a function that is part of an OPERATOR generic has the

VALUE attribute, it is no longer required to have the INTENT(IN) attribute.

(Support compiler version 3.0.1-)

Example:

MODULE MOD

 INTERFACE OPERATOR(+)

 MODULE PROCEDURE PLUS

 END INTERFACE

CONTAINS

 PURE INTEGER FUNCTION PLUS(A,B)

 INTEGER,VALUE :: A

 LOGICAL,VALUE :: B

 PLUS = MERGE(A+1,A,B)

 END FUNCTION

END MODULE

 If the second argument of a subroutine that is part of an ASSIGNMENT generic

has the VALUE attribute, it is no longer required to have the INTENT(IN)

attribute. (Support compiler version 3.0.1-)

Example:

MODULE MOD

 INTERFACE ASSIGNMENT(=)

 MODULE PROCEDURE ASGN

 END INTERFACE

CONTAINS

 PURE SUBROUTINE ASGN(A,B)

 INTEGER,INTENT(OUT) :: A

 LOGICAL,VALUE :: B

 A = MERGE(1,0,B)

 END SUBROUTINE

END MODULE

 Language-Mixed Programming

 A procedure argument of the C_FUNLOC function from the intrinsic module

ISO_C_BINDING is no longer required to have the BIND(C) attribute. (Support

compiler version 1.0.0-)

 The TYPE(*) type specifier can be used. It must not have the ALLOCATABLE,

CODIMENSION, INTENT (OUT), POINTER, or VALUE attribute. (Support compiler

Chapter9 Programming Notes Depending on the Language Specification

- 144 -

version 3.5.0-)

Example:

Fortran program:

PROGRAM TYPE_STAR_EXAMPLE

 INTERFACE

 FUNCTION CHECKSUM(SCALAR,SIZE) BIND(C)

 USE ISO_C_BINDING

 TYPE(*) SCALAR

 INTEGER(C_INT),VALUE :: SIZE

 INTEGER(C_INT) CHECKSUM

 END FUNCTION

 END INTERFACE

 TYPE MYVEC3

 DOUBLE PRECISION V(3)

 END TYPE

 TYPE(MYVEC3) X

 CALL RANDOM_NUMBER(X%V)

 PRINT *,CHECKSUM(X,STORAGE_SIZE(X)/8)

END PROGRAM

C program:

int checksum(void *a,int n)

{

 int i;

 int res = 0;

 unsigned char *p = a;

 for (i=0; i<n; i++) res = 0x3fffffff&((res<<1) + p[i]);

 return res;

}

 A BIND(C) procedure can have optional arguments. The arguments cannot also

have the VALUE attribute. (Support compiler version 2.5.0-)

Example:

Fortran program:

PROGRAM OPTIONAL_EXAMPLE

 USE ISO_C_BINDING

 INTERFACE

 FUNCTION F(A,B) BIND(C)

 IMPORT

 INTEGER(C_INT),INTENT(IN) :: A

Chapter9 Programming Notes Depending on the Language Specification

- 145 -

 INTEGER(C_INT),INTENT(IN),OPTIONAL :: B

 INTEGER(C_INT) F

 END FUNCTION

 END INTERFACE

 INTEGER(C_INT) X,Y

 X = F(3,14)

 Y = F(23)

 PRINT *,X,Y

END PROGRAM

C program:

int f(int *arg1,int *arg2)

{

 int res = *arg1;

 if (arg2) res += *arg2;

 return res;

}

 Obsolescent features

 The EQUIVALENCE, COMMON and BLOCK DATA statement are considered to be

obsolescent in Fortran 2018 standards, and will be reported as such if the –

std=f2018 option is used.

9.6 Restrictions

 If the return value of a function has procedure pointer, the RESULT clause can

not be used.

 Execution of SPMD (Single Program Multiple Data) programming model using

coarray is limited to a single image. There is no parallel execution.

Chapter10 Language-Mixed Programming

- 146 -

Chapter10 Language-Mixed Programming

Making an executable file by linking object files from different languages is called

mixed language programming. This chapter describes mixed language programming

techniques using C/C++ and Fortran programs.

10.1 Point of Mixed Language Programming

The following example shows how mixed language programming is used to make an

executable file by linking a C program and a Fortran program.

In this example, a Fortran program is called from a C program, and a C program is

called from a Fortran program. When these programs are called, the function name

and procedure name coded in the program are converted into an external symbol

name, and the data is shared between C and Fortran by passing arguments or return

values.

The features of mixed language programming are as follows.

C program (file name: a.c) C program (file name: b.c)

#include <stdlib.h>

#define N 1024

#define SIZE sizeof(double)

main()

{

 double *x = (double *)malloc(SIZE*N);

 double *y = (double *)malloc(SIZE*N);

 double *z = (double *)malloc(SIZE*N);

 int n;

 n = read_data(x, y);

 compute_(x, y, z, &n);

 write_data(z, n);

}

#include <stdio.h>

int read_data(double *x, double *y)

{ ... }

SUBROUTINE COMPUTE (X, Y, Z, N)

REAL*8 X(N),Y(N),Z(N)

! calculation

I = CHECK_VALUE(Z(N))

IF (I.EQ.0) RETURN

END SUBROUTINE

Fortran program (file name: c.f90)

int check_value_(double *x)

{ ... }

C program (file name: d.c)

Chapter10 Language-Mixed Programming

- 147 -

 C/C++ function name and Fortran procedure name correspond.

 C/C++ and Fortran data types correspond.

 Return values are passed from C/C++ to Fortran.

 Values are passed from C/C++ to Fortran by arguments.

 Executable files are created by compiling and linking.

10.2 Correspondence of C/C++ Function Name and Fortran

Procedure Name

The C++ function names and Fortran procedure names in the source files are

converted into external symbol names and placed in object files. Therefore, when

these functions and procedures are called, they must be called by their converted

external symbol names.

 External Symbol Name of Fortran Procedure

 When binding labels for procedures are used:

A procedure name in a Fortran source file is converted to an external symbol

name of the string same as a binding label. In other words, when a Fortran

procedure has a NAME specifier, the procedure name is converted to the name

specified to the NAME specifier; otherwise the procedure name is converted to

lowercase.

Example:

SUBROUTINE SUB1(X) BIND(C, NAME="Fortran_Sub1")

...

END SUBROUTINE

SUBROUTINE SUB2(Y) BIND(C)

...

END SUBROUTINE

In this example, the following procedure names are converted to external symbol

names.

Procedure Name External Symbol Name

SUB1 -> Fortran_Sub1

SUB2 -> sub2

Chapter10 Language-Mixed Programming

- 148 -

 When binding labels for procedures are not used:

A procedure name in a Fortran source file is converted to an external symbol

name according to the following rules.

‒ Procedure names are converted to lowercase.

‒ An underscore (_) is appended to a procedure name.

Example:

SUBROUTINE COMPUTE (X, Y, Z, N)

REAL*8 X(N),Y(N),Z(N)

! calculation

I = CHECK_VALUE(Z(N))

IF (I.EQ.0) RETURN

END SUBROUTINE

In this example, the following procedure names are converted to external symbol

names.

Procedure Name External Symbol Name

COMPUTE -> compute_

CHECK_VALUE -> check_value_

 External Symbol Name of C++ Function

The C++ compiler appends a string showing the return value and argument type to

a function name in a C++ source file. This operation is called mangling a function

name. By using this operation, the C++ compiler can declare functions with the

same name but whose argument types differ.

Example:

Function Name in A Source File Mangled Name

void func(double *x) - -> _Z4funcPd

void func(float *x) -> _Z4funcPf

Note Converting a mangled name to a name in a C++ source file is called

demangling.

A C++ function called from a C function or a Fortran procedure should be declared

by C linkage so that the function name is not mangled, and the C++ function can be

called by the function name itself coded in the source file. In the same way, a

prototype declaration of a C function or a Fortran procedure called from a C++

Chapter10 Language-Mixed Programming

- 149 -

function should also be declared by C linkage.

Example:

extern "C" {

 void func(double *x);

 void func(float *x);

};

The linkage specification is available in C++ language only. When using a prototype

declaration in C language, the linkage specification should be coded using conditional

coding.

Example:

#ifdef __cplusplus // __cplusplus is automatically defined

 // by the C++ compiler.

extern "C" {

#endif

 void func(double *x);

 void func1(float *x);

#ifdef __cplusplus

};

#endif

 Rules for Corresponding C/C++ Functions with Fortran Procedures

 When a Fortran procedure is called from a C function, the Fortran procedure

should be called using an external symbol name of the Fortran procedure.

 A name of a C function called from a Fortran procedure should be defined by an

external symbol name of the Fortran procedure.

 A C++ function called from a C function or a Fortran procedure should be declared

using C linkage.

 A prototype declaration of a C function or Fortran procedure called from a C++

function should be declared using C linkage.

 Examples of Calling

Example: Calling Fortran procedure that has the BIND attribute from C function.

Caller (C function)

extern void sub1();

void cfunc() {

 ...

Chapter10 Language-Mixed Programming

- 150 -

 sub1();

 ...

}

Callee (Fortran procedure)

SUBROUTINE SUB1() BIND(C)

...

END SUBROUTINE SUB1

The Fortran procedure is declared as a prototype and called using a name that is

coded in lowercase.

Example: Calling Fortran procedure that does not have the BIND attribute from C

function.

Caller (C function)

extern int sub_();

void cfunc() {

 ...

 sub_();

 ...

}

Callee (Fortran procedure)

SUBROUTINE SUB

...

END SUBROUTINE SUB

The Fortran procedure is declared as a prototype and called using a name that is

appended with an underscore (_) and coded in lowercase.

Example: Calling C function from Fortran procedure that has the BIND attribute.

Caller (Fortran procedure)

SUBROUTINE SUB

 USE, INTRINSIC :: ISO_C_BINDING

 INTERFACE

 SUBROUTINE CFUNC() BIND(C)

 END SUBROUTINE CFUNC

 END INTERFACE

 ...

 CALL CFUNC

 ...

END SUBROUTINE SUB

Chapter10 Language-Mixed Programming

- 151 -

Callee (C function)

void cfunc() {

 ...

}

The C function is declared and defined using a name that is coded in lowercase,

and the Fortran procedure interface is defined and called using a name that is

coded in uppercase.

Example: Calling C function from Fortran procedure that does not have the BIND

attribute.

Caller (Fortran procedure)

SUBROUTINE SUB

...

CALL CFUNC

...

END SUBROUTINE SUB

Callee (C function)

int cfunc_() {

 ...

}

The C function is declared and defined using a name that is appended with an

underscore (_) and coded in lowercase.

Example: Calling Fortran procedure from C++ function.

Caller (C++ function)

extern "C" {

 int sub_(void);

};

void cfunc() {

 ...

 sub_();

 ...

}

Callee (Fortran procedure)

SUBROUTINE SUB

...

END SUBROUTINE SUB

Chapter10 Language-Mixed Programming

- 152 -

The Fortran procedure is declared as a prototype via C linkage and called using a

name that is appended with an underscore (_) and coded in lowercase.

Example: Calling C++ function from Fortran procedure.

Caller (Fortran procedure)

SUBROUTINE SUB

...

CALL CFUNC

...

END SUBROUTINE SUB

Callee (C++ function)

extern "C" {

 int cfunc_(void);

};

int cfunc_(void) {

 ...

}

The C++ function is declared and defined via C linkage using a name that is

appended with an underscore (_) and coded in lowercase.

10.3 Data Types

The correspondence between Fortran data types and C/C++ data types is shown

below.

 Integer and Logical Types for Fortran

Data Type Fortran C/C++

Integer INTEGER int (*1)

INTEGER(KIND=1)

INTEGER*1

signed char

INTEGER(KIND=2)

INTEGER*2

short

INTEGER(KIND=4)

INTEGER*4

int

INTEGER(KIND=8)

INTEGER*8

long, long int, long long or long long int

Chapter10 Language-Mixed Programming

- 153 -

Data Type Fortran C/C++

Logical LOGICAL int (*1)

LOGICAL(KIND=1) signed char

LOGICAL(KIND=2) short

LOGICAL(KIND=4) int

LOGICAL(KIND=8) long, long int, long long or long long int

(*1) When -fdefault-integer=8 is enabled: long long int, long int, long long or

long long int

 Floating-point and Complex Types for Fortran

Data Type Fortran C/C++

Floating-

point

REAL float (*1)

REAL(KIND=4)

REAL*4

float

DOUBLE PRECISION double (*2)

REAL(KIND=8)

REAL*8

double

QUADRUPLE

PRECISION

REAL(KIND=16)

REAL*16

long double

Complex COMPLEX float __complex__ (*3)

COMPLEX(KIND=4)

COMPLEX*8

float __complex__

COMPLEX(KIND=8)

COMPLEX*16

double __complex__

COMPLEX(KIND=16)

COMPLEX*32

long double __complex__

(*1) When -fdefault-real=8 is enabled: double

(*2) When -fdefault-double=16 is enabled: long double

(*3) When -fdefault-real=8 is enabled: double __complex__

Chapter10 Language-Mixed Programming

- 154 -

 Character Type for Fortran

Data Type Fortran C/C++

Character CHARACTER(LEN=n) ch char ch[n];

 Derived Type for Fortran

 Description

A Fortran derived type that defined with the BIND attribute can associate with a C

struct type.

Example:

Fortran program:

USE, INTRINSIC :: ISO_C_BINDING

! Define a derived type with the BIND attribute

TYPE, BIND(C) :: STR_TYPE

 REAL(C_DOUBLE) :: S1, S2

END TYPE STR_TYPE

INTERFACE

 SUBROUTINE FUNC(X) BIND(C)

 USE, INTRINSIC :: ISO_C_BINDING

 TYPE(C_PTR) :: X

 END SUBROUTINE FUNC

END INTERFACE

TYPE(C_PTR) :: P

TYPE(STR_TYPE),TARGET :: F_STR

P=C_LOC(F_STR) ! Get the C address of F_STR

CALL FUNC(P) ! Call C function, and

! pass the C address of F_STR

...

C program:

struct str_type { // Definition of structure

// associated with STR_TYPE

 double s1, s2;

} *c_str;

void func(struct str_type **x) {

 c_str = *x; // c_str points to F_STR

Chapter10 Language-Mixed Programming

- 155 -

 ...

}

 Remarks

‒ The names of the corresponding components of the Fortran derived type and

the C struct type need not be the same.

‒ A C struct type that contains a bit field or that contains a flexible array member

cannot associate.

‒ A C struct type that contains a quadruple-precision real type or that contains a

complex type cannot associate.

 Pointer

A C pointer is associated with a Fortran data by using the derived type C_PTR.

 How to associate C pointer and Fortran data

When a C pointer is referred in a Fortran program, a derived type C_PTR is used.

Example:

Fortran program:

USE, INTRINSIC :: ISO_C_BINDING

 INTERFACE

 SUBROUTINE FUNC(X) BIND(C)

 USE, INTRINSIC :: ISO_C_BINDING

 TYPE(C_PTR) :: X

 END SUBROUTINE FUNC

END INTERFACE

TYPE(C_PTR) :: P

...

CALL FUNC(P) ! Call C function

...

C program:

int *a;

void func(int **p) {

 *p = a; // P points to a

}

 How to get C address

A C address of a Fortran allocated allocatable variable can be got by using the

Chapter10 Language-Mixed Programming

- 156 -

function C_LOC which returns a value of the C_PTR type.

Example:

Fortran program:

USE, INTRINSIC :: ISO_C_BINDING

INTEGER(C_INT),TARGET :: N

TYPE(C_PTR) :: N_ADDR

N_ADDR = C_LOC(N) ! C_LOC(N) returns C address of "N"

 How to compare C addresses

The Fortran intrinsic procedure C_ASSOCIATED can compare C addresses. When

its first argument and its second argument point the same area, C_ASSOCIATED

returns ".TRUE."; otherwise returns ".FALSE.". When its second argument is

omitted, C_ASSOCIATED returns ".FALSE." if its first argument is a C null pointer

and returns ".TRUE." otherwise.

Example:

Fortran program:

MODULE MOD

USE, INTRINSIC :: ISO_C_BINDING

...

INTEGER(C_INT), BIND(C) :: X, Y

TYPE(C_PTR) :: P1, P2

...

END MODULE

PROGRAM MAIN

USE MOD

…

CALL FUNC(P1, P2) ! Call C function

IF (C_ASSOCIATED(P1, P2)) THEN ! Compare the memory areas of

 ... ! P1 and P2

END IF

...

END

C program:

int x, y;

void func_(int **px, int **py) {

 *px = &x; // When func() is called in Fortran program,

 *py = &y; // P1 points x, and P2 points y

}

Chapter10 Language-Mixed Programming

- 157 -

 How to associate C pointer and Fortran data pointer

A C pointer is associated with a Fortran data pointer by using the Fortran intrinsic

procedure C_F_POINTER. C_F_POINTER associates a C_PTR type of its first

argument with a data pointer of its second argument.

Example:

Fortran program:

MODULE MOD

USE, INTRINSIC :: ISO_C_BINDING

...

TYPE(C_PTR), BIND(C) :: CP

INTEGER(C_INT), POINTER :: FP

...

END MODULE

PROGRAM MAIN

USE MOD

...

CALL FUNC(CP) ! Call C function

CALL C_F_POINTER(CP, FP) ! Bind C pointer CP with

... ! data pointer FP

END

C program:

int x;

void func_(int **px) {

 *px = &x; // When func() is called in

} // Fortran program, CP points x

 Common Block for Fortran

 Description

A Fortran common block defined with the BIND attribute can be interoperable

with a C program. When the common block contains a single variable, it can

associate with the C variable. When the common block contains two or more

variables, it can associate with a C struct type. But, the Fortran common block

and the C struct type must have the same number of members, and the members

of the Fortran common block must have corresponding types with the

corresponding members of the C struct type.

Example:

Fortran program:

Chapter10 Language-Mixed Programming

- 158 -

USE, INTRINSIC :: ISO_C_BINDING

COMMON /COM1/ F1, F2

COMMON /COM2/ F3

REAL(C_FLOAT) :: F1, F2, F3

BIND(C) :: /COM1/, /COM2/ ! Specify the BIND attribute

...

C program:

struct { float f1, f2; } com1;

// The common block "COM1" which contains two or more variables can associate

with

// the struct "com1"

...

float com2;

// The common block "COM2" which contains single variable can associate with the

// variable "com2"

...

 Remarks

 The names of the corresponding components of the Fortran common block and

the C struct type need not be the same.

 A C struct type that contains a bit field or that contains a flexible array member

cannot associate.

 A C struct type that contains a quadruple-precision real type or that contains a

complex type cannot associate.

 Notes

Complex, double-precision complex and quadruple-precision complex types for

Fortran cannot correspond to single precision complex, double precision complex and

quadruple precision complex types for C declared by using the keyword _Complex.

10.4 Type and Return Value of Function and Procedure

This section describes how to pass the return values between C functions and

Fortran procedures. C++ functions can be regarded as C functions because C++

functions are called from C functions or Fortran procedures, or they are declared and

defined using C linkage when they are called.

 Integer, logical, real, double-precision and quadruple-precision type Fortran

Chapter10 Language-Mixed Programming

- 159 -

procedures See Section 8.3 for details of the correspondence between Fortran

and C/C++.

Example: Calling double-precision type Fortran procedure.

Caller (C function):

extern double func_();

...

double a;

a = func_(); // Call Fortran procedure

...

Callee (Fortran procedure):

REAL(KIND=8) FUNCTION FUNC()

...

FUNC = 10.0

...

END FUNCTION FUNC

Example: Calling double-precision type C++ function.

Caller (Fortran procedure):

REAL(KIND=8) A

...

A = CFUNC() ! Call C++ function

...

Callee (C++ function):

extern "C" {

 double cfunc_();

}

double cfunc_()

{

 double a;

 ...

 return a;

}

 Complex type functions

C/C++ can neither return nor receive a complex, double-precision complex or

quadruple-precision complex type return value of Fortran.

 Character type functions

Two arguments are appended in order to return a value for a character type

Chapter10 Language-Mixed Programming

- 160 -

function of Fortran. The arguments are for the address and the length (in bytes)

of the return value.

Example: Calling character-type Fortran procedure.

Caller (C++ function):

extern "C" {

 int chfunc_(char *res_p, long res_l);

}

char a[21]; // Allocate 20 bytes + 1 byte for terminating

...

chfunc_(a, 20L); // Call Fortran procedure

...

Callee (Fortran procedure):

CHARACTER*20 FUNCTION CHFUNC

CHFUNC = "THIS IS FORTRAN."

RETURN

END FUNCTION CHFUNC

A string data storage area is allocated in the C/C++ function. When a storage

area is allocated in a C/C++ function, an extra 1 byte must be allocated for a null-

terminator, because a Fortran string value is not null-terminated.

Example: Calling C function as character-type function.

Caller (Fortran procedure):

SUBROUTINE SUB

CHARACTER*20 CHFUNC, CH

INTEGER M

...

CH = CFUNC(M) ! Call C function

...

END SUBROUTINE SUB

Callee (C function):

extern int cfunc_(char *a, long b, int *p);

int cfunc_(char *a, long b, int *p)

{

 strcpy(a, "THIS IS C++.");

}

The first argument of the Fortran procedure corresponds to the third argument of

Chapter10 Language-Mixed Programming

- 161 -

the C/C++ function.

 Fortran subroutine

A Fortran subroutine is the same as a C/C++ int type function.

10.5 Passing Arguments

 Fortran Procedure Arguments

The arguments in a Fortran procedure that does not have the VALUE attribute are

passed by addresses. And, the arguments in a Fortran procedure that have the

VALUE attribute are passed by value. Therefore, when arguments are passed to a

C/C++ function, the arguments are obtained as pointers by the C/C++ function.

And, when the arguments are passed to a Fortran procedure, the arguments are

passed as the addresses of the variables.

 Passing arguments to Fortran procedure that does not have the VALUE attribute

The arguments are passed to a Fortran procedure as the addresses of the

variables. A constant value should be assigned to a variable before passing

because constant values do not have storage areas.

Example:

Caller (C++ function):

extern "C" {

 int func_(int *i, int *j);

}

void c_func()

{

 int a, b, ret;

 ...

 b = 100; // Assign the constant value to a variable to pass

 ret = func_(&a, &b); // Call Fortran procedure

 ...

}

Callee (Fortran function):

INTEGER FUNCTION FUNC(I, J)

INTEGER I, J

...

END FUNCTION FUNC

Chapter10 Language-Mixed Programming

- 162 -

 Passing arguments to Fortran procedure that have the VALUE attribute

The arguments are passed to a Fortran procedure as the values of the variables. A

constant value can be passed by the argument.

Example:

Caller (C++ function):

extern "C" {

 int func_(int i, int j);

}

void c_func()

{

 int a, ret;

 ...

 ret = func(a, 100); // Call Fortran procedure

 ...

}

Callee (Fortran function):

INTEGER FUNCTION FUNC(I, J)

INTEGER,VALUE I, J ! Specify the VALUE attribute

...

END FUNCTION FUNC

 Obtaining arguments from a Fortran procedure that does not have the VALUE

attribute

The addresses of the arguments are received via pointer parameters.

Example:

Caller (Fortran procedure):

SUBROUTINE SUB

INTEGER K, I, J

...

K = C_FUNC(I, J)

...

END SUBROUTINE SUB

Callee (C function):

extern int c_func_(int *a, int *b);

int c_func_(int *a, int *b)

{

 ...

Chapter10 Language-Mixed Programming

- 163 -

}

 Obtaining arguments from a Fortran procedure that have the VALUE attribute

The arguments are received by values.

Example:

Caller (Fortran procedure):

SUBROUTINE SUB

INTERFACE

INTEGER(C_INT) FUNCTION C_FUNC(A,B)

USE, INTRINSIC :: ISO_C_BINDING

INTEGER(C_INT), VALUE :: A, B ! Specify the VALUE attribute

END FUNCTION C_FUNC

END INTERFACE

INTEGER I, J

...

K = C_FUNC(I, J)

...

END SUBROUTINE SUB

Callee (C function):

extern int c_func(int a, int b);

int c_func(int a, int b) // The arguments are received by values

{

 ...

}

 Notes

 Appending Arguments Implicitly

Arguments are implicitly appended to Fortran procedures as follows.

 When a called procedure is a character type Fortran function, the address where

the function value is stored and the length (in bytes) of the function value are

appended.

 When a procedure passes a character type argument, the length (in bytes) of the

argument is appended.

 When a procedure passes a procedure name argument, the size (in bytes) of the

return value from the procedure is appended. If the procedure is not a character

Chapter10 Language-Mixed Programming

- 164 -

type function, the length is 0 (zero).

Arguments are passed to procedures in the following order.

 Address where the return value is stored (when the called procedure is a

character-type)

 Size of the return value (when the called procedure is a character-type)

 For each type of argument

The length (in bytes) of the argument for a character-type arguments or the size

(in bytes) of the return value for a procedure name arguments are added to the

end of the arguments.

Chapter10 Language-Mixed Programming

- 165 -

10.6 Linking

 Linking Fortran Program and C Program

When linking a C program and a Fortran program, use the Fortran compiler (nfort).

Example:

$ nfort -c a.f (Compile Fortran program)

$ ncc -c b.c (Compile C program)

$ nfort a.o b.o (Linking by Fortran compiler)

 Linking Fortran Program and C++ Program

When linking a C++ program and a Fortran program, use the Fortran compiler

(nfort).When linking, the runtime library of the C++ compiler (-cxxib) must be

specified.

Example:

$ nfort -c a.f (Compile Fortran program)

$ nc++ -c b.cpp (Compile C++ program)

$ nfort a.o b.o -cxxlib (Linking by Fortran compiler)

10.7 Notes

When a C/C++ program and a Fortran program are linked, stdin, stdout and stderr

must not be closed in the C/C++ program. If they are closed, execution of the

Fortran program is not guaranteed.

Chapter11 Library Reference

- 166 -

Chapter11 Library Reference

This chapter describes the original intrinsic procedures.

11.1 Intrinsic Procedures

The "Specific Name" at the end of a procedure name indicates that it extends the

specific name of the procedure. If the "Specific Name" is not present, it indicates that

the procedure itself has been extended from the Fortran standards.

 ABS(A) Specific Name

FUNCTION

Returns the absolute value.

CLASS

Elemental function.

ARGUMENT

A: A must be of Integer type, real type or complex type.

TYPE AND TYPE PARAMETER OF RESULT

When A is of complex type, the result is of real type with the same kind type

parameter as A. Otherwise, the result is of the same type as A.

RESULT VALUE

When A is of integer or real type, the value of the result is |A| (absolute value of

A). When A is the complex number (x,y), the value of the result is (x**2 +

y**2)**(1/2).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BABS INTEGER(1) INTEGER(1)

IIABS, HABS INTEGER(2) INTEGER(2)

IABS default integer default integer ✓

JIABS INTEGER(4) INTEGER(4)

KIABS INTEGER(8) INTEGER(8)

ABS default real default real ✓

DABS double precision

real

double precision

real

✓

Chapter11 Library Reference

- 167 -

Specific name Argument Type Result Type Standard

QABS REAL(16) REAL(16)

CABS default complex default real ✓

CDABS double complex double precision

real

ZABS COMPLEX(8) REAL(8)

CQABS COMPLEX(16) REAL(16)

 ACOS(X) Specific Name

FUNCTION

Arccosine function.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type. Its value must satisfy |X| <= 1.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of arccos(X) expressed in radians.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ACOS default real default real ✓

DACOS double precision

real

double precision

real

✓

QACOS, QARCOS REAL(16) REAL(16)

 ACOSH(X) Specific Name

FUNCTION

Hyperbolic arccosine function.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Chapter11 Library Reference

- 168 -

Same as X.

RESULT VALUE

The value of the result is the value of the hyperbolic arccosine, arccosh(X).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ACOSH default real default real

DACOSH double precision

real

double precision

real

QACOSH REAL(16) REAL(16)

 AIMAG(Z) Specific Name

FUNCTION

Returns the imaginary part of a complex number.

CLASS

Elemental function.

ARGUMENT

Z: A must be of complex type.

TYPE AND TYPE PARAMETER OF RESULT

Real type with the same kind type parameter as Z.

RESULT VALUE

When the value of A is (x,y), the value of the result is y.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

AIMAG default complex default real

DIMAG double complex double precision

real

QIMAG COMPLEX(16) REAL(16)

 AINT(A) Specific Name

FUNCTION

Truncates to an integer value.

CLASS

Elemental function.

ARGUMENT

Chapter11 Library Reference

- 169 -

A: A must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as A.

RESULT VALUE

If |A| < 1, AINT (A) has the value 0.

If |A| ≥ 1, AINT (A) has a value equal to the integer whose magnitude is the

largest integer that does not exceed the magnitude of A and whose sign is the

same as the sign of A.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

AINT default real default real ✓

DINT double precision

real

double precision

real

✓

QINT REAL(16) REAL(16)

 AMT(X)

FUNCTION

Fetches the mantissa portion.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the mantissa of X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

AMT default real default real

DMT double precision

real

double precision

real

QMT REAL(16) REAL(16)

Chapter11 Library Reference

- 170 -

 AND(I,J)

This function is alias of IAND. See Section 11.1.44 for details.

 ANINT(A) Specific Name

FUNCTION

Returns the nearest integer value (by rounding).

CLASS

Elemental function.

ARGUMENT

A: A must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as A.

RESULT VALUE

If A > 0, ANINT (A) has the value AINT(A+0.5).

If A <= 0, ANINT (A) has the value AINT(A-0.5).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ANINT default real default real ✓

DNINT double precision

real

double precision

real

✓

QNINT REAL(16) REAL(16)

 ASIN(X) Specific Name

FUNCTION

Arcsine function.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type. Its value must satisfy |X| <= 1.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of arcsin(X) expressed in radians.

SPECIFIC NAME

Chapter11 Library Reference

- 171 -

Specific name Argument Type Result Type Standard

ASIN default real default real ✓

DASIN double precision

real

double precision

real

✓

QASIN REAL(16) REAL(16)

 ASINH(X) Specific Name

FUNCTION

Hyperbolic arcsine function.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the hyperbolic arcsine, arcsinh(X).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ASINH default real default real

DASINH double precision

real

double precision

real

QASINH REAL(16) REAL(16)

 ATAN(X) Specific Name

FUNCTION

Arctangent function.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

Chapter11 Library Reference

- 172 -

The value of the result is the value of arctan(X) expressed in radians.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ATAN default real default real ✓

DATAN double precision

real

double precision

real

✓

QATAN REAL(16) REAL(16)

 ATAN2(Y,X) Specific Name

FUNCTION

Arctangent function.

CLASS

Elemental function.

ARGUMENT

Y: Y must be of real type.

X: X must be of the same type and kind type parameter as Y. If Y has the value

zero, X shall not have the value zero.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The result has a value equal to the argument of the complex number (Y, X)

expressed in radians.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ATAN2 REAL(4) REAL(4) ✓

DATAN2 REAL(8) REAL(8) ✓

QATAN2 REAL(16) REAL(16)

 ATANH(X) Specific Name

FUNCTION

Hyperbolic arctangent function.

CLASS

Elemental function.

Chapter11 Library Reference

- 173 -

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the hyperbolic arctangent, arctanh(X).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ATANH default real default real

DATANH double precision

real

double precision

real

QATANH REAL(16) REAL(16)

 BTEST(I,POS) Specific Name

FUNCTION

Tests a bit of an integer value.

CLASS

Elemental function.

ARGUMENT

I: I must be of integer type.

POS: POS must be of integer type. Its value must be greater than or equal to

zero and less than BIT_SIZE(I).

TYPE AND TYPE PARAMETER OF RESULT

Default logical type.

RESULT VALUE

If the POS bit of I is 1, the value of the result is true. If the POS bit of I is 0, the

value of the result is false.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BBTEST INTEGER(1) INTEGER(1)

BITEST, HTEST INTEGER(2) INTEGER(2)

BTEST, BJTEST INTEGER(4) INTEGER(4)

BKTEST INTEGER(8) INTEGER(8)

Chapter11 Library Reference

- 174 -

 CANG(X)

FUNCTION

Argument of a complex number.

CLASS

Elemental function.

ARGUMENT

X: X must be of complex type.

TYPE AND TYPE PARAMETER OF RESULT

Real type with the same kind type parameter as X.

RESULT VALUE

The value of the result is the value of the argument of the complex number X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

CANG default complex default real

CDANG, ZANG double complex double precision

real

 CBRT(X)

FUNCTION

Cube root.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the cube root of X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

CBRT default real default real

DCBRT double precision

real

double precision

real

Chapter11 Library Reference

- 175 -

Specific name Argument Type Result Type Standard

QCBRT REAL(16) REAL(16)

 CLOCK(D)

FUNCTION

Obtains the CPU time.

CLASS

Subroutine.

ARGUMENT

D: D must be a scalar variable of double precision real or quadruple precision

real type. It is an INTENT(OUT) argument. The accumulated CPU execution time

(units in seconds, precision up to microseconds) from the time program execution

begins until the subroutine referenced is set.

 CONJG(Z) Specific Name

FUNCTION

Conjugates a complex number.

CLASS

Elemental function.

ARGUMENT

Z: Z must be of complex type.

TYPE AND TYPE PARAMETER OF RESULT

Same as Z.

RESULT VALUE

If Z has the value (x, y), the result has the value (x,−y).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

CONJG default complex default complex

DCONJG double complex double complex

QCONJG COMPLEX(16) COMPLEX(16)

 COS(X) Specific Name

FUNCTION

Cosine function.

Chapter11 Library Reference

- 176 -

CLASS

Elemental function.

ARGUMENT

X: X must be of real type or complex type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of cos(X). When X is of real type, the value is

considered to be a value in radians. Note that when type parameter is single

precision and absolute value of X is greater than 221×π, the value of the result is

NaN. When X is of complex type, its real part is considered to be a value in

radians. Note that when type parameter is single precision and absolute value of

the argument is greater than 221×π, the value of the result is NaN.

See Section 11.5 for notes on other type parameters.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

COS default real default real ✓

DCOS double precision

real

double precision

real

✓

QCOS REAL(16) REAL(16)

CCOS default complex default complex ✓

CDCOS COMPLEX(8) COMPLEX(8)

ZCOS double complex double complex

CQCOS COMPLEX(16) COMPLEX(16)

 COSD(X)

FUNCTION

Cosine.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

Chapter11 Library Reference

- 177 -

RESULT VALUE

The value of the result is the value of the cosine, cos(X), when X is a value in

degrees. Note that when type parameter is single precision and absolute value of

X is greater than 221×180, the value of the result is NaN.

See Section 11.5 for notes on other type parameters.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

COSD default real default real

DCOSD double precision

real

double precision

real

QCOSD REAL(16) REAL(16)

 COSH(X) Specific Name

FUNCTION

Hyperbolic cosine function.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of cosh(X), when X is a value in radians.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

COSH default real default real ✓

DCOSH double precision

real

double precision

real

✓

QCOSH REAL(16) REAL(16)

 COTAN(X)

FUNCTION

Cotangent.

CLASS

Chapter11 Library Reference

- 178 -

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the cotangent, cotan(X). Note that when

type parameter is single precision and absolute value of the argument is greater

than 221×π, the value of the result is NaN.

See Section 11.5 for notes on other type parameters.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

COTAN default real default real

DCOTAN double precision

real

double precision

real

QCOTAN REAL(16) REAL(16)

 DATE(A)

FUNCTION

Obtains the date.

CLASS

Subroutine.

ARGUMENT

A: A must be a scalar variable of default character type having a length of eight

characters. It is an INTENT(OUT) argument. The value of the date is set in "yy-

mm-dd" format.

 DATIM(A,B,C)

FUNCTION

Obtains the date and time.

CLASS

Subroutine.

ARGUMENT

A: A must be a scalar variable of default character type having a length of eight

Chapter11 Library Reference

- 179 -

characters. It is an INTENT(OUT) argument. The value of the date is set in the

format specified by argument C.

B: B must be a scalar variable of default real type or of default character type

having a length of eight characters. It is an INTENT(OUT) argument. If it is of

default real type, the current time is set in hours. If it is of default character type,

the current time is set in the format "hh:mm:ss".

C(optional): C (optional) must be a scalar of default integer type. It is an

INTENT(IN) argument. It specifies the format of the date to be returned in

argument A.

1 yy-mm-dd (default)

3 mm/dd/yy

4 dd/mm/yy

 DBLE(A) Specific Name

FUNCTION

Converts to double precision real type.

CLASS

Elemental function.

ARGUMENT

A: A must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Double precision real type.

RESULT VALUE

The result has the value REAL(A,KIND(0.0D0)).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

DBLE default real double precision

real

✓

DBLEQ REAL(16) double precision

real

 DCMPLX(X,Y)

FUNCTION

Converts to double precision complex type.

Chapter11 Library Reference

- 180 -

CLASS

Elemental function.

ARGUMENT

X: X must be of integer type, real type, or complex type.

Y (optional): Y (optional) must be of integer type or real type. If X is of complex

type, Y must not be specified.

TYPE AND TYPE PARAMETER OF RESULT

Double precision complex type.

RESULT VALUE

The value of the result is the value of CMPLX(X,Y,KIND=KIND(0.0D0)).

 DFACT(I)

FUNCTION

Factorial.

CLASS

Elemental function.

ARGUMENT

I: I must be of default integer type.

TYPE AND TYPE PARAMETER OF RESULT

Double precision real type.

RESULT VALUE

The value of the result is the value of I factorial converted to double precision real

type.

 DFLOAT(A)

FUNCTION

Converts to double precision real type.

CLASS

Elemental function.

ARGUMENT

A: A must be of integer type.

TYPE AND TYPE PARAMETER OF RESULT

Double precision real type.

RESULT VALUE

The value of the result is the value of REAL(A,KIND=KIND(0.0D0)).

Chapter11 Library Reference

- 181 -

SPECIFIC NAME

Specific name Argument Type Result Type Standard

DFLOTI INTEGER(2) double precision

real

DFLOTJ default integer double precision

real

DFLOTK INTEGER(8) double precision

real

 DIM(X,Y) Specific Name

FUNCTION

Returns the value X-Y if the difference of X-Y is positive, and otherwise returns

zero.

CLASS

Elemental function.

ARGUMENT

X: X must be of Integer type or real type.

Y: Y must be of the same type as X with the same kind type parameter as X.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is X-Y if X > Y and is zero if X <= Y.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BDIM INTEGER(1) INTEGER(1)

IIDIM, HDIM INTEGER(2) INTEGER(2)

IDIM default integer default integer ✓

JIDIM INTEGER(4) INTEGER(4)

KIDIM INTEGER(8) INTEGER(8)

DIM default real default real ✓

DDIM double precision

real

double precision

real

✓

QDIM REAL(16) REAL(16)

Chapter11 Library Reference

- 182 -

 DREAL(A)

FUNCTION

Converts to double precision real type.

CLASS

Elemental function.

ARGUMENT

A: A must be of complex type.

TYPE AND TYPE PARAMETER OF RESULT

Double precision real type.

RESULT VALUE

When the value of the A is (x,y), the value of the result is x.

 ERF(X) Specific Name

FUNCTION

Error function.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the error function of X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ERF default real default real

DERF double precision

real

double precision

real

QERF REAL(16) REAL(16)

 ERFC(X) Specific Name

FUNCTION

Complementary error function.

CLASS

Chapter11 Library Reference

- 183 -

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value obtained when the value of the error function

of X is subtracted from 1.0.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ERFC default real default real

DERFC double precision

real

double precision

real

QERFC REAL(16) REAL(16)

 ETIME(D)

FUNCTION

Execution time.

CLASS

Subroutine.

ARGUMENT

D: D must be of double precision real-type. It is an INTENT(OUT) argument.

The elapsed time (units in seconds) since System start.

NOTE

See Section 11.4.811.4.47 for details when used by function.

 EXIT(X)

FUNCTION

Terminates execution of an executable program.

CLASS

Subroutine.

ARGUMENT

X: X must be a scalar of integer-type. It is an INTENT(IN) argument. The value

X is returned as a program termination code.

Chapter11 Library Reference

- 184 -

 EXP(X) Specific Name

FUNCTION

Exponential.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type or complex type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of e**X. If X is of complex type, the value of

the imaginary part is in radians. Note that when type parameter is single precision

and absolute value of the argument is greater than 221×π, the value of the result

is NaN.

See Section 11.5 for notes on other type parameters.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

EXP default real default real ✓

DEXP double precision real double precision

real

✓

QEXP REAL(16) REAL(16)

CEXP default complex default complex ✓

CDEXP double complex double complex

ZEXP COMPLEX(8) COMPLEX(8)

CQEXP COMPLEX(16) COMPLEX(16)

 EXP10(X)

FUNCTION

Exponential.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

Chapter11 Library Reference

- 185 -

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of 10.0**X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

EXP10 default real default real

DEXP10 double precision

real

double precision

real

QEXP10 REAL(16) REAL(16)

 EXP2(X)

FUNCTION

Exponential.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of 2.0**X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

EXP2 default real default real

DEXP2 double precision

real

double precision

real

QEXP2 REAL(16) REAL(16)

 EXPC(X)

FUNCTION

Exponential.

CLASS

Elemental function.

Chapter11 Library Reference

- 186 -

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of e**X-1.0.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

EXPC default real default real

DEXPC double precision

real

double precision

real

 EXPC10(X)

FUNCTION

Exponential.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of 10.0**X-1.0.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

EXPC10 default real default real

DXPC10 double precision

real

double precision

real

QXPC10 REAL(16) REAL(16)

 EXPC2(X)

FUNCTION

Exponential.

CLASS

Chapter11 Library Reference

- 187 -

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of 2.0**X-1.0.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

EXPC2 default real default real

DEXPC2 double precision

real

double precision

real

QEXPC2 REAL(16) REAL(16)

 FACT(I)

FUNCTION

Factorial.

CLASS

Elemental function.

ARGUMENT

I: I must be of default integer type.

TYPE AND TYPE PARAMETER OF RESULT

Default real type.

RESULT VALUE

The value of the result is the value of I factorial converted to default real type.

 FLUSH(UNIT)

FUNCTION

Outputs the contents of the buffer.

CLASS

Subroutine.

ARGUMENT

UNIT: UNIT must be of integer type. It is an INTENT(IN) argument. UNIT is

the external unit identifier to a file.

Chapter11 Library Reference

- 188 -

 GAMMA(X) Specific Name

FUNCTION

Gamma function.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the Gamma function of X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

GAMMA default real default real ✓

DGAMMA double precision

real

double precision

real

 IAND(I,J) Specific Name

FUNCTION

Bitwise logical AND.

CLASS

Elemental function.

ARGUMENT

I: I must be of Integer type.

J: J must be of integer type with the same kind type parameter as I.

TYPE AND TYPE PARAMETER OF RESULT

Same as I.

RESULT VALUE

The value of the result is obtained by combining I and J bit-by-bit according to the

following truth table:

I J IAND(I,J)

1 1 1

1 0 0

Chapter11 Library Reference

- 189 -

I J IAND(I,J)

0 1 0

0 0 0

NOTE

There may even be three or more arguments. In this case, the third and

subsequent arguments must be of integer type with the same kind type

parameter as I. Also, no keyword can be specified for the arguments.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BIAND INTEGER(1) INTEGER(1)

IIAND, HIAND INTEGER(2) INTEGER(2)

JIAND INTEGER(4) INTEGER(4)

KIAND INTEGER(8) INTEGER(8)

 IBCLR(I,POS) Specific Name

FUNCTION

Sets one bit to zero.

CLASS

Elemental function.

ARGUMENT

I: I must be of integer type.

POS: POS must be of integer type. Its value must be greater than or equal to

zero and less than BIT_SIZE(I).

TYPE AND TYPE PARAMETER OF RESULT

Same as I.

RESULT VALUE

The value of the result has the POS bit of I set to zero.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BBCLR INTEGER(1) INTEGER(1)

IIBCLR, HBCLR INTEGER(2) INTEGER(2)

JIBCLR INTEGER(4) INTEGER(4)

KIBCLR INTEGER(8) INTEGER(8)

Chapter11 Library Reference

- 190 -

 IBITS(I,POS,LEN) Specific Name

FUNCTION

Extracts a sequence of bits.

CLASS

Elemental function.

ARGUMENT

I: I must be of integer type.

POS: POS must be of integer type. Its value must be nonnegative and

POS+LEN must be less than or equal to BIT_SIZE(I).

LEN: LEN must be of integer type. Its value must be nonnegative.

TYPE AND TYPE PARAMETER OF RESULT

Same as I.

RESULT VALUE

The value of the result has LEN bits starting with the POS bit of I left justified with

the remaining bits set to zero.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BBITS INTEGER(1) INTEGER(1)

IIBITS, HBITS INTEGER(2) INTEGER(2)

JIBITS INTEGER(4) INTEGER(4)

KIBITS INTEGER(8) INTEGER(8)

 IBSET(I,POS) Specific Name

FUNCTION

Sets one bit to 1.

CLASS

Elemental function.

ARGUMENT

I: I must be of integer type.

POS: POS must be of integer type. Its value must be nonnegative and less than

BIT_SIZE(I).

TYPE AND TYPE PARAMETER OF RESULT

Same as I.

Chapter11 Library Reference

- 191 -

RESULT VALUE

The value of the result has the POS bit of I set to 1.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BBSET INTEGER(1) INTEGER(1)

IIBSET, HBSET INTEGER(2) INTEGER(2)

JIBSET INTEGER(4) INTEGER(4)

KIBSET INTEGER(8) INTEGER(8)

 IEOR(I,J) Specific Name

FUNCTION

Bitwise logical OR.

CLASS

Elemental function.

ARGUMENT

I: I must be of Integer type.

J: J must be of integer type with the same kind type parameter as I.

TYPE AND TYPE PARAMETER OF RESULT

Same as I.

RESULT VALUE

The value of the result is obtained by combining I and J bit-by-bit according to the

following truth table:

I J IEOR(I,J)

1 1 1

1 0 1

0 1 1

0 0 0

NOTE

There may even be three or more arguments. In this case, the third and

subsequent arguments must be of integer type with the same kind type

parameter as I. Also, no keyword can be specified for the arguments.

SPECIFIC NAME

Chapter11 Library Reference

- 192 -

Specific name Argument Type Result Type Standard

BIEOR, BIXOR INTEGER(1) INTEGER(1)

IIEOR, HIEOR,

HIXOR, IIXOR

INTEGER(2) INTEGER(2)

JIEOR, JIXOR INTEGER(4) INTEGER(4)

KIEOR INTEGER(8) INTEGER(8)

 IMAG(A)

This function is alias of AIMAG. See Section 11.1.4 for details.

 INT(A[,KIND]) Specific Name

FUNCTION

Converts to integer type (by truncating).

CLASS

Elemental function.

ARGUMENT

A: A must be of integer type, real type, or complex type.

KIND(optional): KIND must be a scalar integer initialization expression.

TYPE AND TYPE PARAMETER OF RESULT

Integer type. When KIND is specified, the kind type parameter is determined

according to the KIND specification. When KIND is omitted, the kind type

parameter is that of default integer type.

RESULT VALUE

If A is of integer type, the value of INT(A) is A.

If A is of real type and |A|<1, INT(A) is zero. If A is of real type and |A| >= 1, the

value of INT(A) is the greatest integer less than or equal to the absolute value of

A with the same sign of A.

If A is of complex type, the value of INT(A) is obtained by applying the rule

described in Case 2 to the real part of A.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

INT1 INTEGER(*),

REAL(*),

COMPLEX(*)

INTEGER(1)

Chapter11 Library Reference

- 193 -

Specific name Argument Type Result Type Standard

IJINT INTEGER(4) INTEGER(2)

INT2 INTEGER(*),

REAL(*),

COMPLEX(*)

INTEGER(2)

IIFIX, IINT, IINT,

HFIX

REAL(4) INTEGER(2)

IIDINT REAL(8) INTEGER(2)

IIQINT REAL(16) INTEGER(2)

INT4, JFIX INTEGER(*),

REAL(*),

COMPLEX(*)

default integer

JIFIX REAL(*) default integer

INT, JINT default real default integer ✓(INT only)

IDINT, JIDINT double precision

real

default integer ✓(IDINT only)

IQINT, JIQINT REAL(16) default integer

INT8 INTEGER(*),

REAL(*),

COMPLEX(*)

INTEGER(8)

KIFIX, KINT REAL(4) INTEGER(8)

KIDINT REAL(8) INTEGER(8)

KIQINT REAL(16) INTEGER(8)

 IOR(I,J) Specific Name

FUNCTION

Bitwise logical OR.

CLASS

Elemental function.

ARGUMENT

I: I must be of Integer type.

J: J must be of integer type with the same kind type parameter as I.

TYPE AND TYPE PARAMETER OF RESULT

Same as I.

RESULT VALUE

The value of the result is obtained by combining I and J bit-by-bit according to the

Chapter11 Library Reference

- 194 -

following truth table:

I J IOR(I,J)

1 1 1

1 0 1

0 1 1

0 0 0

NOTE

There may even be three or more arguments. In this case, the third and

subsequent arguments must be of integer type with the same kind type

parameter as I. Also, no keyword can be specified for the arguments.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BIOR INTEGER(1) INTEGER(1)

IIOR, HIOR INTEGER(2) INTEGER(2)

JIOR INTEGER(4) INTEGER(4)

KIOR INTEGER(8) INTEGER(8)

 IRE(X)

FUNCTION

Extracts the exponent part.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Default integer type.

RESULT VALUE

The value of the result is the exponent part of X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

IRE defauilt real default integer

IDE double precision

real

default integer

Chapter11 Library Reference

- 195 -

Specific name Argument Type Result Type Standard

IQE REAL(16) default integer

 ISHFT(I,SHIFT) Specific Name

FUNCTION

Logical shift.

CLASS

Elemental function.

ARGUMENT

I: I must be of integer type.

SHIFT: SHIFT must be of integer type. Its absolute value must be less than or

equal to BIT_SIZE(I).

TYPE AND TYPE PARAMETER OF RESULT

Same as I.

RESULT VALUE

The value of the result is obtained by shifting the bits of I by SHIFT positions.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BSHFT INTEGER(1) INTEGER(1)

IISHFT, HSHFT INTEGER(2) INTEGER(2)

JISHFT INTEGER(4) INTEGER(4)

KISHFT INTEGER(8) INTEGER(8)

 ISHFT(I,SHIFT[,SIZE]) Specific Name

FUNCTION

Performs a circular shift of the rightmost sequence of bits.

CLASS

Elemental function.

ARGUMENT

I: I must be of integer type.

SHIFT: SHIFT must be of integer type. Its absolute value must be less than or

equal to SIZE.

SIZE(optional): SIZE must be of integer type. The value of SIZE must be positive

and must be less than or equal to BIT_SIZE(I). If SIZE is omitted, the value of

Chapter11 Library Reference

- 196 -

BIT_SIZE(I) is assumed to have been specified.

TYPE AND TYPE PARAMETER OF RESULT

Same as I.

RESULT VALUE

The value of the result is obtained by circularly shifting the SIZE rightmost bits of

I by SHIFT positions.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BSHFTC INTEGER(1) INTEGER(1)

IISHFTC,

HSHFTC

INTEGER(2) INTEGER(2)

JISHFTC INTEGER(4) INTEGER(4)

KISHFTC INTEGER(8) INTEGER(8)

 ISNAN(X)

FUNCTION

Tests whether real numbers are NaN values.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Default logical type.

RESULT VALUE

If x is NaN, the result is .TRUE.; otherwise, the result is .FALSE..

 IXOR(I,J)

This function is alias of IEOR. See Section 11.1.48 for details.

 LGAMMA(X)

FUNCTION

Logarithmic Gamma function.

CLASS

Elemental function.

Chapter11 Library Reference

- 197 -

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the logarithmic Gamma function of X.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ALGAMA default real default real

DLGAMA double precision

real

double precision

real

 LOC(X)

FUNCTION

Gets an address.

CLASS

Transformational function.

ARGUMENT

X: X must be a variable or function name of any type.

TYPE AND TYPE PARAMETER OF RESULT

8byte integer type.

RESULT VALUE

The value of the result is the value of the address of X.

 LOG(X) Specific Name

FUNCTION

Natural logarithm.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type or complex type. If X is of real type, its value must be

positive. If X is of complex type, its value must not be (0.0,0.0).

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

Chapter11 Library Reference

- 198 -

RESULT VALUE

The value of the result is the value of loge(X). The value of a result of complex

type is the principal value having an imaginary part w in the range -pi < w <= pi.

The imaginary part of the result is pi only when the real part of the argument is

negative and the imaginary part is 0.0.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ALOG default real default real ✓

DLOG double precision

real

double precision

real

✓

QLOG REAL(16) REAL(16)

CLOG default complex default complex ✓

CDLOG double complex double complex

ZLOG COMPLEX(8) COMPLEX(8)

CQLOG COMPLEX(16) COMPLEX(16)

 LOG10(X) Specific Name

FUNCTION

Common logarithm.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the logarithm log10(X).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ALOG10 default real default real ✓

DLOG10 double precision

real

double precision

real

✓

QLOG10 REAL(16) REAL(16)

Chapter11 Library Reference

- 199 -

 LOG2(X)

FUNCTION

Logarithm.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the logarithm log2(X).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ALOG2 default real default real

DLOG2 double precision

real

double precision

real

 MAX(A1,A2[,A3,…]) Specific Name

FUNCTION

Selects the maximum value.

CLASS

Elemental function.

ARGUMENT

An: An must all be of the same integer type or real type and must all have the

same kind type parameter.

TYPE AND TYPE PARAMETER OF RESULT

Same as An.

RESULT VALUE

The value of the result is the maximum argument value.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

IMAX0 INTEGER(2) INTEGER(2)

AIMAX0 INTEGER(2) default real

Chapter11 Library Reference

- 200 -

Specific name Argument Type Result Type Standard

MAX0, JMAX0 default integer default integer ✓(MAX0 only)

AMAX0, AJMAX0 default integer default real ✓(AMAX0 only)

DMAX0 default integer double precision

real

KMAX0 INTEGER(8) INTEGER(8)

AKMAX0 INTEGER(8) default real

IMAX1 default real INTEGER(2)

MAX1, JMAX1 default real default integer ✓(MAX1 only)

KMAX1 default real INTEGER(8)

AMAX1 default real default real ✓

DMAX1 double precision

real

double precision

real

✓

 MAXVL()

FUNCTION

Obtains the maximum vector register length.

CLASS

Inquiry function.

TYPE AND TYPE PARAMETER OF RESULT

Default integer type.

RESULT VALUE

The value of the result is the maximum vector register length of the system.

 MIN(A1,A2[,A3,…])

FUNCTION

Selects the minimum value.

CLASS

Elemental function.

ARGUMENT

An: An must all be of the same integer type or real type and must all have the

same kind type parameter.

TYPE AND TYPE PARAMETER OF RESULT

Same as An.

RESULT VALUE

Chapter11 Library Reference

- 201 -

The value of the result is the minimum argument value.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

IMIN0 INTEGER(2) INTEGER(2)

AIMIN0 INTEGER(2) default real

MIN0, JMIN0 default integer default integer ✓(MAX0 only)

AMIN0, AJMIN0 default integer default real ✓(AMAX0 only)

DMIN0 default integer double precision

real

KMIN0 INTEGER(8) INTEGER(8)

AKMIN0 INTEGER(8) default real

IMIN1 default real INTEGER(2)

MIN1, JMIN1 default real default integer ✓(MAX1 only)

KMIN1 default real INTEGER(8)

AMIN1 default real default real ✓

DMIN1 REAL(8) double precision

real

✓

 MOD(A,P) Specific Name

FUNCTION

Remainder function.

CLASS

Elemental function.

ARGUMENT

A: A must be of integer type or real type.

P: P must be of the same type and kind type parameter as A.

TYPE AND TYPE PARAMETER OF RESULT

Same as A.

RESULT VALUE

If P /= 0, the value of the result is A-INT(A/P)*P. If P = 0, the result is undefined.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BMOD INTEGER(1) INTEGER(1)

Chapter11 Library Reference

- 202 -

Specific name Argument Type Result Type Standard

IMOD, HMOD INTEGER(2) INTEGER(2)

MOD default integer default integer ✓

JMOD INTEGER(4) INTEGER(4)

KMOD INTEGER(8) INTEGER(8)

AMOD default real default real ✓

DMOD double precision

real

double precision

real

✓

QMOD REAL(16) REAL(16)

 MVBITS(FROM,FROMPOS,LEN,TO,TOPOS) Specific Name

FUNCTION

Copies a bit sequence from one data object to another data object.

CLASS

Elemental subroutine.

ARGUMENT

FROM: FROM must be of integer type. It is an INTENT(IN) argument.

FROMPOS: FROMPOS must be of integer type and must be nonnegative. It is an

INTENT(IN) argument. FROMPOS+LEN must be less than or equal to

BIT_SIZE(FROM).

LEN: LEN must be of integer type and must be nonnegative. It is an

INTENT(IN) argument.

TO: TO must be of integer type with the same kind type parameter as FROM and

may be the same variable as FROM. It is an INTENT(INOUT) argument. The bit

string of length LEN starting at the position FROMPOS of FROM is copied to the

position TOPOS of TO. No other bits of TO are changed. When control returns

from the subroutine, the LEN bits of TO starting at TOPOS are equal to the value

that the LEN bits of FROM starting at FROMPOS had when the subroutine was

invoked.

TOPOS: TOPOS must be of integer type and must be nonnegative. It is an

INTENT(IN) argument. TOPOS+LEN must be less than or equal to

BIT_SIZE(TO).

SPECIFIC NAME

Chapter11 Library Reference

- 203 -

Specific name Argument Type Result Type Standard

BMVBITS INTEGER(1) -

IMVBITS,

HMVBITS

INTEGER(2) -

JMVBITS INTEGER(4) -

KMVBITS INTEGER(8) -

 NINT(A[,KIND]) Specific Name

FUNCTION

Returns the nearest integer (by rounding).

CLASS

Elemental function.

ARGUMENT

A: A must be of real type.

KIND(optional): KIND must be a scalar integer initialization expression.

TYPE AND TYPE PARAMETER OF RESULT

Integer type. When KIND is specified, the kind type parameter is determined

according to the KIND specification. When KIND is omitted, the kind type

parameter is that of default integer type.

RESULT VALUE

When A > 0, the value of NINT(A) is INT(A+0.5). When A <= 0, the value of

NINT(A) is INT(A-0.5).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

ININT REAL(4) INTEGER(2)

NINT default real default integer ✓

JNINT REAL(4) INTEGER(4)

KNINT REAL(4) INTEGER(8)

IIDNNT REAL(8) INTEGER(2)

IDNINT double precision

real

default integer ✓

JIDNNT REAL(8) INTEGER(4)

KIDNNT REAL(8) INTEGER(8)

IIQNNT REAL(16) INTEGER(2)

Chapter11 Library Reference

- 204 -

Specific name Argument Type Result Type Standard

IQNINT REAL(16) default integer

JIQNNT REAL(16) INTEGER(4)

KIQNNT REAL(16) INTEGER(8)

 NOT(I)

FUNCTION

Calculates the logical complement.

CLASS

Elemental function.

ARGUMENT

I: I must be of Integer type.

TYPE AND TYPE PARAMETER OF RESULT

Same as I.

RESULT VALUE

The value of the result is obtained by taking the logical complement of I bit-by-bit

according to the following truth table:

I NOT(I)

1 0

0 1

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BNOT INTEGER(1) INTEGER(1)

INOT, HNOT INTEGER(2) INTEGER(2)

JNOT INTEGER(4) INTEGER(4)

KNOT INTEGER(8) INTEGER(8)

 OR(I,J)

This function is alias of IOR. See Section 11.1.51 for details.

 QCMPLX(X,Y)

FUNCTION

Converts to quadruple precision complex type.

Chapter11 Library Reference

- 205 -

CLASS

Elemental function.

ARGUMENT

X: X must be of integer type, real type, or complex type.

Y (optional): Y (optional) must be of integer type or real type. If X is of complex

type, Y must not be specified.

TYPE AND TYPE PARAMETER OF RESULT

Quadruple precision complex type.

RESULT VALUE

The value of the result is the value of CMPLX(X,Y,KIND=KIND(0.0Q0)).

 QEXT(X)

FUNCTION

Converts to quadruple precision real type.

CLASS

Elemental function.

ARGUMENT

X: X must be of integer type, real type, or complex type.

TYPE AND TYPE PARAMETER OF RESULT

Quadruple precision complex type.

RESULT VALUE

The value of the result is the value of REAL(X,KIND=KIND(0.0Q0)).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

QEXT default real REAL(16)

QEXTD REAL(8) REAL(16)

 QFACT(I)

FUNCTION

Factorial.

CLASS

Elemental function.

ARGUMENT

I: I must be of default integer type.

Chapter11 Library Reference

- 206 -

TYPE AND TYPE PARAMETER OF RESULT

Quadruple precision real type.

RESULT VALUE

The value of the result is the value of I factorial converted to quadruple precision

real type.

 QFLOAT(A)

FUNCTION

Converts to quadruple precision real type.

CLASS

Elemental function.

ARGUMENT

A: A must be of integer type.

TYPE AND TYPE PARAMETER OF RESULT

Quadruple precision real type.

RESULT VALUE

The value of the result is the value of REAL(A,KIND=KIND(0.0Q0)).

 QREAL(A)

FUNCTION

Converts to quadruple precision real type.

CLASS

Elemental function.

ARGUMENT

A: A must be of quadruple complex type.

TYPE AND TYPE PARAMETER OF RESULT

Real type with the same kind type parameter as A.

RESULT VALUE

When the value of the A is (x,y), the value of the result is x.

 REAL(A[,KIND])

FUNCTION

Converts to real type.

CLASS

Elemental function.

Chapter11 Library Reference

- 207 -

ARGUMENT

A: A must be of integer type, real type, or complex type.

KIND(optional): KIND must be a scalar integer initialization expression.

TYPE AND TYPE PARAMETER OF RESULT

Real type. When A is of integer type or real type and KIND is specified, the kind

type parameter is determined according to the KIND specification. When KIND is

omitted, the kind type parameter is the kind type parameter for default real type.

When A is of complex type and KIND is specified, the kind type parameter is

determined according to the KIND specification. When KIND is omitted, the kind

type parameter is the kind type parameter of A.

RESULT VALUE

When A is of integer type or real type, the value of the result is the value of A.

When A is of complex type, the value of the result is the value of the real part of

A.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

FLOATI INTEGER(2) default real

REAL, FLOAT default integer default real ✓

FLOATJ INTEGER(4) REAL(4)

FLOATK INTEGER(8) default real

SNGL double precision default real ✓

SNGLQ REAL(16) default real

 RSQRT(X)

FUNCTION

Reciprocal square root.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the approximate value of "1.0/sqrt(X)".

Chapter11 Library Reference

- 208 -

SPECIFIC NAME

Specific name Argument Type Result Type Standard

RSQRT default real default real

DRSQRT double precision

real

double precision

real

QRSQRT REAL(16) REAL(16)

 SIGN(A,B) Specific Name

FUNCTION

The product of the absolute value of A and the sign of B.

CLASS

Elemental function.

ARGUMENT

A: A must be of integer type or real type.

B: B must be of the same type and kind type parameter as A.

TYPE AND TYPE PARAMETER OF RESULT

Same as A.

RESULT VALUE

The value of the result is ABS(A) when B >= 0, and it is -ABS(A) when B < 0.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

BSIGN INTEGER(1) INTEGER(1)

IISIGN, HSIGN INTEGER(2) INTEGER(2)

SIGN, ISIGN default integer default integer ✓

JISIGN INTEGER(4) INTEGER(4)

KISIGN INTEGER(8) INTEGER(8)

SIGN default real default real ✓

DSIGN double precision

real

double precision

real

✓

QSIGN REAL(16) REAL(16)

 SIN(X) Specific Name

FUNCTION

Sine function.

Chapter11 Library Reference

- 209 -

CLASS

Elemental function.

ARGUMENT

X: X must be of real type or complex type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of sin(X). When X is of real type, the value is

considered to be a value in radians. Note that when type parameter is single

precision and absolute value of X is greater than 221×π, the value of the result is

NaN. When X is of complex type, its real part is considered to be a value in

radians. Note that when type parameter is single precision and absolute value of

the argument is greater than 221×π, the value of the result is NaN.

See Section 11.5 for notes on other type parameters.

RESULT VALUE

Specific name Argument Type Result Type Standard

SIN default real default real ✓

DSIN double precision

real

double precision

real

✓

QSIN REAL(16) REAL(16)

CSIN default complex default complex ✓

CDSIN double complex double complex

ZSIN COMPLEX(8) COMPLEX(8)

CQSIN COMPLEX(16) COMPLEX(16)

 SIND(X)

FUNCTION

Sine.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

Chapter11 Library Reference

- 210 -

RESULT VALUE

The value of the result is the value of sin(X), when X is a value in degrees. Note

that when type parameter is single precision and absolute value of X is greater

than 221×180, the value of the result is NaN.

See Section 11.5 for notes on other type parameters.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

SIND default real default real

DSIND REAL(8) REAL(8)

QSIND REAL(16) REAL(16)

 SINH(X) Specific Name

FUNCTION

Hyperbolic sine function.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the hyperbolic sine, sinh(X).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

SINH default real default real ✓

DSINH double precision

real

double precision

real

✓

QSINH REAL(16) REAL(16)

 SQRT(X) Specific Name

FUNCTION

Square root.

CLASS

Chapter11 Library Reference

- 211 -

Elemental function.

ARGUMENT

X: X must be of real type or complex type. When X is of real type and not of

complex type, the value must be greater than or equal to 0.0.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of sqrt(X). A result of complex type is the

principal value with the real part greater than or equal to 0.0. If the real part of

the result is 0.0, the imaginary part is greater than or equal to zero.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

SQRT default real default real ✓

DSQRT double precision

real

double precision

real

✓

QSQRT REAL(16) REAL(16)

CSQRT default complex default complex ✓

CDSQRT double complex double complex

ZSQRT COMPLEX(8) COMPLEX(8)

CQSQRT COMPLEX(16) COMPLEX(16)

 TAN(X) Specific Name

FUNCTION

Tangent function.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type or complex type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of tan(X) expressed in radians. Note that when

type parameter is single precision and absolute value of the argument is greater

than 221×π, the value of the result is NaN.

Chapter11 Library Reference

- 212 -

See Section 11.5 for notes on other type parameters.

SPECIFIC NAME

Specific name Argument Type Result Type Standard

TAN default real default real ✓

DTAN double precision

real

double precision

real

✓

QTAN REAL(16) REAL(16)

CTAN COMPLEX(4) COMPLEX(4)

CDTAN, ZTAN COMPLEX(8) COMPLEX(8)

CQTAN COMPLEX(16) COMPLEX(16)

 TANH(X) Specific Name

FUNCTION

Hyperbolic tangent function.

CLASS

Elemental function.

ARGUMENT

X: X must be of real type.

TYPE AND TYPE PARAMETER OF RESULT

Same as X.

RESULT VALUE

The value of the result is the value of the hyperbolic tangent, tanh(X).

SPECIFIC NAME

Specific name Argument Type Result Type Standard

TANH default real default real ✓

DTANH double precision

real

double precision

real

✓

QTANH REAL(16) REAL(16)

 TIME(A)

FUNCTION

Obtains the time.

CLASS

Subroutine.

Chapter11 Library Reference

- 213 -

ARGUMENT

A: A must be a scalar variable of default character type with a length of eight

characters. It is an INTENT(OUT) argument. It is set to the value of the time in

the format "hh:mm:ss".

 XOR(I,J)

This function is alias of IEOR. See Section 11.1.48 for details.

11.2 Matrix Multiply Library

Matrix multiply library is prepared for matrix-matrix or matrix-vector multiplication

loops.

 MATRIX-VECTOR Multiplication(A, NAR, B, NBR, C)

FUNCTION

MATRIX-VECTOR multiplication loops.

CLASS

Subroutine.

ARGUMENT

A: A must be of integer type or real type two-dimensional array consisting.

NAR: NAR must be of integer type.

B: B must be of integer type or real type array consisting. This is same kind

type parameter as A.

NBR: NBR must be of integer type.

C: C must be of integer type or real type array consisting. This is same kind

type parameter as A. C is the result of MATRIX-VECTOR multiplication loops of A

and B. Some functions are initialized with 0.

DETAIL

The combination of procedure name, initialize and each KIND is as follows.

Procedure

(sum)

Procedure

(difference)

KIND

(A,B,C)

KIND

(NAR,NBR)

Initialize

(C)

VHMXV VHSXV REAL(KIND= 2) INTEGER(KIND=4) YES

VAMXV VASXV REAL(KIND= 4) INTEGER(KIND=4) YES

VDMXV VDSXV REAL(KIND= 8) INTEGER(KIND=4) YES

VQMXV VQSXV REAL(KIND=16) INTEGER(KIND=4) YES

Chapter11 Library Reference

- 214 -

Procedure

(sum)

Procedure

(difference)

KIND

(A,B,C)

KIND

(NAR,NBR)

Initialize

(C)

VIMXV VISXV INTEGER(KIND=4) INTEGER(KIND=4) YES

VDMXVL VDSXVL REAL(KIND= 8) INTEGER(KIND=8) YES

VQMXVL VQSXVL REAL(KIND=16) INTEGER(KIND=8) YES

VLMXVL VLSXVL INTEGER(KIND=8) INTEGER(KIND=8) YES

VHMXP VHSXP REAL(KIND= 2) INTEGER(KIND=4) NO

VAMXP VASXP REAL(KIND= 4) INTEGER(KIND=4) NO

VDMXP VDSXP REAL(KIND= 8) INTEGER(KIND=4) NO

VQMXP VQSXP REAL(KIND=16) INTEGER(KIND=4) NO

VIMXP VISXP INTEGER(KIND=4) INTEGER(KIND=4) NO

VDMXPL VDSXPL REAL(KIND= 8) INTEGER(KIND=8) NO

VQMXPL VQSXPL REAL(KIND=16) INTEGER(KIND=8) NO

VLMXPL VLSXPL INTEGER(KIND=8) INTEGER(KIND=8) NO

The procedure with initialization "YES" is processed for sum and difference after

the following processing.

DO I=1,NAR

 C(I)=0

ENDDO

The sum processing is as follows.

DO J=1,NBR

 DO I=1,NAR

 C(I) = C(I) + B(J) * A(I, J)

 ENDDO

ENDDO

The difference processing is as follows.

DO J=1,NBR

 DO I=1,NAR

 C(I) = C(I) - B(J) * A(I, J)

 ENDDO

ENDDO

Chapter11 Library Reference

- 215 -

 MATRIX-VECTOR Multiplication(A, NA, IAD, B, NB, C, NC, NAR,

NBR)

FUNCTION

MATRIX-VECTOR multiplication loops.

CLASS

Subroutine.

ARGUMENT

A: A must be of integer type or real type two-dimensional array consisting.

NA: NBR must be of integer type. First stride.

IAD: NBR must be of integer type. Second stride.

B: B must be of integer type or real type array consisting. This is same kind

type parameter as A.

NB: NBR must be of integer type. First stride.

C: C must be of integer type or real type array consisting. This is same kind

type parameter as A. C is the result of MATRIX-VECTOR multiplication loops of A

and B. Some functions are initialized with 0.

NC: NBR must be of integer type. First stride.

NAR: NAR must be of integer type.

NBR: NBR must be of integer type.

DETAIL

The combination of procedure name, initialize and each KIND is as follows.

Procedure

(sum)

Procedure

(difference)

KIND

(A,B,C)

KIND

(NA,NB,NC,NAR,NBR,IAD)

Initialize

(C)

VHMXVA VHSXVA REAL(KIND= 2) INTEGER(KIND=4) YES

VAMXVA VASXVA REAL(KIND= 4) INTEGER(KIND=4) YES

VDMXVA VDSXVA REAL(KIND= 8) INTEGER(KIND=4) YES

VQMXVA VQSXVA REAL(KIND=16) INTEGER(KIND=4) YES

VIMXVA VISXVA INTEGER(KIND=4) INTEGER(KIND=4) YES

VDMVAL VDSVAL REAL(KIND= 8) INTEGER(KIND=8) YES

VQMVAL VQSVAL REAL(KIND=16) INTEGER(KIND=8) YES

VLMVAL VLSVAL INTEGER(KIND=8) INTEGER(KIND=8) YES

VHMXPA VHSXPA REAL(KIND= 2) INTEGER(KIND=4) NO

VAMXPA VASXPA REAL(KIND= 4) INTEGER(KIND=4) NO

Chapter11 Library Reference

- 216 -

Procedure

(sum)

Procedure

(difference)

KIND

(A,B,C)

KIND

(NA,NB,NC,NAR,NBR,IAD)

Initialize

(C)

VDMXPA VDSXPA REAL(KIND= 8) INTEGER(KIND=4) NO

VQMXPA VQSXPA REAL(KIND=16) INTEGER(KIND=4) NO

VIMXPA VISXPA INTEGER(KIND=4) INTEGER(KIND=4) NO

VDMPAL VDSPAL REAL(KIND= 8) INTEGER(KIND=8) NO

VQMPAL VQSPAL REAL(KIND=16) INTEGER(KIND=8) NO

VLMPAL VLSPAL INTEGER(KIND=8) INTEGER(KIND=8) NO

The procedure with initialization "YES" is processed for sum and difference after

the following processing.

DO I=1,NAR

 C(NC*I)=0

ENDDO

The sum processing is as follows.

DO J=1,NBR

 DO I=1,NAR

 C(NC*I) = C(NC*I) + B(NB*J) * A(NA*I, J)

 ENDDO

ENDDO

The difference processing is as follows.

DO J=1,NBR

 DO I=1,NAR

 C(NC*I) = C(NC*I) - B(NB*J) * A(NA*I, J)

 ENDDO

ENDDO

 MATRIX- MATRIX Multiplication(A, NA, IAD, B, NB, IBD, C, NC,

ICD, NAR, NAC, NBC)

FUNCTION

MATRIX- MATRIX multiplication loops.

CLASS

Subroutine.

ARGUMENT

Chapter11 Library Reference

- 217 -

A: A must be of integer type or real type two-dimensional array consisting.

NA: NBR must be of integer type. First stride.

IAD: NBR must be of integer type. Second stride.

B: B must be of integer type or real type array consisting. This is same kind

type parameter as A.

NB: NBR must be of integer type. First stride.

IBD: NBR must be of integer type. Second stride.

C: C must be of integer type or real type array consisting. This is same kind

type parameter as A. C is the result of MATRIX-VECTOR multiplication loops of A

and B. Some functions are initialized with 0.

NC: NBR must be of integer type. First stride.

ICD: NBR must be of integer type. Second stride.

NAR: NAR must be of integer type.

NAC: NBR must be of integer type.

NBC: NBR must be of integer type.

DETAIL

The combination of procedure name, initialize and each KIND is as follows.

Procedure

(sum)

Procedure

(difference)

KIND

(A,B,C)

KIND

(NA,NB,NC,IAD,IBD,ICD,

NAR,NAC,NBC)

Initialize

(C)

VHMXMA VHSXMA REAL(KIND= 2) INTEGER(KIND=4) YES

VAMXMA VASXMA REAL(KIND= 4) INTEGER(KIND=4) YES

VDMXMA VDSXMA REAL(KIND= 8) INTEGER(KIND=4) YES

VQMXMA VQSXMA REAL(KIND=16) INTEGER(KIND=4) YES

VIMXMA VISXMA INTEGER(KIND=4) INTEGER(KIND=4) YES

VDMMAL VDSMAL REAL(KIND= 8) INTEGER(KIND=8) YES

VQMMAL VQSMAL REAL(KIND=16) INTEGER(KIND=8) YES

VLMMAL VLSMAL INTEGER(KIND=8) INTEGER(KIND=8) YES

VHMXQA VHSXQA REAL(KIND= 2) INTEGER(KIND=4) NO

VAMXQA VASXQA REAL(KIND= 4) INTEGER(KIND=4) NO

VDMXQA VDSXQA REAL(KIND= 8) INTEGER(KIND=4) NO

VQMXQA VQSXQA REAL(KIND=16) INTEGER(KIND=4) NO

VIMXQA VISXQA INTEGER(KIND=4) INTEGER(KIND=4) NO

Chapter11 Library Reference

- 218 -

Procedure

(sum)

Procedure

(difference)

KIND

(A,B,C)

KIND

(NA,NB,NC,IAD,IBD,ICD,

NAR,NAC,NBC)

Initialize

(C)

VDMQAL VDSQAL REAL(KIND= 8) INTEGER(KIND=8) NO

VQMQAL VQSQAL REAL(KIND=16) INTEGER(KIND=8) NO

VLMQAL VLSQAL INTEGER(KIND=8) INTEGER(KIND=8) NO

The procedure with initialization "YES" is processed for sum and difference after

the following processing.

DO I=1,NAR

 C(NC*I)=0

ENDDO

The sum processing is as follows.

DO J=1,NBR

 DO I=1,NAR

 C(NC*I) = C(NC*I) + B(NB*J) * A(NA*I, J)

 ENDDO

ENDDO

The difference processing is as follows.

DO J=1,NBR

 DO I=1,NAR

 C(NC*I) = C(NC*I) - B(NB*J) * A(NA*I, J)

 ENDDO

ENDDO

11.3 UNIX System Function Interface

The UNIX-specific function can be used directly from Fortran program on UNIX

system function interface. To use the UNIX system function interface, specify the

modules described in following sections using USE statement or -use option.

Example:

USE statements:

PROGRAM MAIN

USE F90_UNIX

...

END PROGRAM MAIN

Chapter11 Library Reference

- 219 -

Compiler options:

$ nfort -use F90_UNIX,F90_UNIX_DIR a.f90

In the descriptions of the procedures, where it says KIND is (*), it means any kind of

value.

When using each module with the USE statement or the -use compiler option, some

variable names cannot be used. The variable names that cannot be used are as

follows.

module variable names

F90_UNIX CLOCK_TICK_KIND, TMS

F90_UNIX_DIR MODE_KIND

F90_UNIX_ENV CLOCK_TICK_KIND, ID_KIND, LONG_KIND,

SC_ARG_MAX, SC_CHILD_MAX, SC_CLK_TCK,

SC_JOB_CONTROL, SC_NGROUPS_MAX, SC_OPEN_MAX,

SC_SAVED_IDS, SC_STDERR_UNIT, SC_STDIN_UNIT,

SC_STDOUT_UNIT, SC_STREAM_MAX,

SC_TZNAME_MAX, SC_VERSION, TIME_KIND, TMS,

UTSNAME

F90_UNIX_FILE F_OK, ID_KIND, MODE_KIND, R_OK, STAT_T, S_IRGRP,

S_IROTH, S_IRUSR, S_IRWXG, S_IRWXO, S_IRWXU,

S_ISGID, S_ISUID, S_IWGRP, S_IWOTH, S_IWUSR,

S_IXGRP, S_IXOTH, S_IXUSR, UTIMBUF, W_OK, X_OK

F90_UNIX_PROC ATOMIC_INT, ATOMIC_LOG, PID_KIND, TIME_KIND,

WNOHANG, WUNTRACED

When using each module with the USE statement or the -use compiler option, it

uses other module of UNIX System Function Interface whole or necessary

procedures. The modules and procedures used by each modules are as follows.

module variable names

F90_UNIX F90_UNIX_PROC :

ABORT()

F90_UNIX_ENV:

GETPID(), GETUID(), GETGID(), IARGC(),

HIDDEN_GETARG()=>GETARG(),

CLOCK_TICK_KIND(), TIMES(),

HIDDEN_GETENV()=>GETENV(),

CLOCK_TICKS_PER_SECOND()=>CLK_TCK()

F90_UNIX_ENV F90_UNIX_ERRNO (all procedures)

Chapter11 Library Reference

- 220 -

module variable names

F90_UNIX_FILE F90_UNIX_ENV (all procedures)

F90_UNIX_ERRNO (all procedures)

F90_UNIX_PROC F90_UNIX_ERRNO (all procedures)

“=>” indicate use a module procedure as another name.

 F90_UNIX

The procedures provided by the F90_UNIX module are as follows.

 ABORT([MESSAGE])

FUNCTION

ABORT cleans up the I/O buffers and then terminates execution on UNIX systems.

CLASS

Subroutine.

ARGUMENT

MESSAGE(optional): Message must be a scalar variable of default character type.

It is an INTENT(IN) argument. If MESSAGE is given it is written to logical unit 0

(zero) preceded by ‘abort:’.

 EXIT([STATUS])

FUNCTION

Terminate execution as if executing the END statement of the main program (or

an unadorned STOP statement).

CLASS

Subroutine.

ARGUMENT

STATUS(optional): STATUS must be of 4-byte integer type or 8-byte integer

type. It is an INTENT(IN) argument. If STATUS is given it is returned to the

operating system (where applicable) as the execution status code.

 FLUSH(LUNIT)

FUNCTION

Flushes the output buffer of logical unit LUNIT.

CLASS

Subroutine.

ARGUMENT

Chapter11 Library Reference

- 221 -

LUNIT: LUNIT must be of 4-byte integer type. It is an INTENT(IN) argument. If

LUNIT is not a valid unit number or is not connected to a file, error is raised.

 FREE(IPTR)

FUNCTION

Frees the area specified with IPTR.

CLASS

Subroutine.

ARGUMENT

IPTR: IPTR must be of 8-byte integer type. It is an INTENT(IN) argument.

IPTR must be the address of the area allocated with MALLOC.

 GETARG(K,ARG)

FUNCTION

See Section 11.3.3 for details of GETARG. When GETARG is used with this module,

the option arguments LENARG and ERRNO cannot be used.

 GETENV(NAME,VALUE)

FUNCTION

See Section 11.3.3 for details of GETENV. When GETENV is used with this module,

the option arguments LENVALUE and ERRNO cannot be used.

 GETGID()

FUNCTION

Returns the group number of the calling process.

CLASS

PURE Function.

TYPE AND TYPE PARAMETER OF RESULT

4-byte integer type.

RESULT VALUE

The result is the group number of the calling process.

 GETPID()

FUNCTION

Returns the process number of the calling process.

CLASS

PURE Function.

TYPE AND TYPE PARAMETER OF RESULT

Chapter11 Library Reference

- 222 -

4-byte integer type.

RESULT VALUE

The result is the process number of the calling process.

 GETUID()

FUNCTION

Returns the user number of the calling process.

CLASS

PURE Function.

TYPE AND TYPE PARAMETER OF RESULT

4-byte integer type.

RESULT VALUE

The result is the user number of the calling process.

 IARGC()

FUNCTION

Returns the number of command-line arguments.

CLASS

PURE Function.

TYPE AND TYPE PARAMETER OF RESULT

4-byte integer type.

RESULT VALUE

The result is the number of command-line arguments; this is the same value as

the intrinsic function COMMAND_ARGUMENT_COUNT, except that it returns -1 if

even the program name is unavailable (the intrinsic function erroneously returns

the same value, 0, whether the program name is available or not).

 MALLOC(ISIZE)

FUNCTION

Allocates necessary area size ISIZE.

CLASS

Function.

ARGUMENT

ISIZE: ISIZE must be of 4-byte integer type or 8-byte integer type. It is an

INTENT(IN) argument. ISIZE is necessary area size (handled in units of bytes) to

allocate

TYPE AND TYPE PARAMETER OF RESULT

Chapter11 Library Reference

- 223 -

8-byte integer type.

RESULT VALUE

The result is the starting address of allocate area.

 F90_UNIX_DIR

The procedures provided by the F90_UNIX_DIR module are as follows.

 CHDIR(PATH[,ERRNO])

FUNCTION

Changes the working directory.

CLASS

Subroutine.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument. PATH is the directory path to change. Note that any

trailing blanks in PATH may be significant.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 GETCWD([PATH,LENPATH,ERRNO])

FUNCTION

Accesses the current working directory information.

CLASS

Subroutine.

ARGUMENT

PATH(optional): PATH must be a scalar variable of default character type. It is an

INTENT(OUT) argument. If PATH is present, it receives the name of the current

working directory, blank-padded or truncated as appropriate if the length of the

current working directory name differs from that of PATH.

LENPATH(optional): LENPATH must be of 4-byte integer type. It is an

INTENT(OUT) argument. If LENPATH is present, it receives the length of the

current working directory name.

Chapter11 Library Reference

- 224 -

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 LINK(EXISTING,NEW[,ERRNO])

FUNCTION

Creates a new link.

CLASS

Subroutine.

ARGUMENT

EXISTING: EXISTING must be a scalar variable of default character type. It is an

INTENT(IN) argument. EXISTING is an existing file.

NEW: NEW must be a scalar variable of default character type. It is an

INTENT(IN) argument. NEW is a newly created linked file.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 RENAME(OLD,NEW[,ERRNO])

FUNCTION

Rename a file.

CLASS

Subroutine.

ARGUMENT

OLD: OLD must be a scalar variable of default character type. It is an

INTENT(IN) argument. OLD is an existing file. Note that any trailing blanks in

OLD may be significant.

NEW: NEW must be a scalar variable of default character type. It is an

INTENT(IN) argument. Any existing file NEW is first removed. Note that any

trailing blanks in NEW may be significant.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

Chapter11 Library Reference

- 225 -

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 UNLINK(PATH[,ERRNO])

FUNCTION

Remove a file.

CLASS

Subroutine.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument. PATH is the file path. Note that any trailing blanks in

PATH may be significant.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 F90_UNIX_ENV

The procedures provided by the F90_UNIX_ENV module are as follows.

 GETARG(K[,ARG,LENARG,ERRNO])

FUNCTION

Accesses command-line argument number K.

CLASS

Subroutine.

ARGUMENT

K: K must be of integer type. It is an INTENT(IN) argument. The argument zero

is the program name.

ARG(optional): ARG must be a scalar variable of default character type. It is an

INTENT(OUT) argument. If ARG is present, it receives the argument text (blank-

padded or truncated as appropriate if the length of the argument differs from that

of ARG).

LENARG(optional): LENARG must be of 4-byte integer type. It is an

INTENT(OUT) argument. If LENARG is present, it receives the length of the

Chapter11 Library Reference

- 226 -

argument.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 GETENV(NAME[,VALUE,LENVALUE,ERRNO])

FUNCTION

Accesses the environment variable named by NAME.

CLASS

Subroutine.

ARGUMENT

NAME: NAME must be a scalar variable of default character type. It is an

INTENT(IN) argument.

VALUE(optional): VALUE must be a scalar variable of default character type. It is

an INTENT(OUT) argument. If VALUE is present, it receives the text value of the

variable (blank-padded or truncated as appropriate if the length of the value

differs from that of VALUE).

LENVALUE(optional): LENVALUE must be of 4-byte integer type. It is an

INTENT(OUT) argument. If LENVALUE is present, it receives the length of the

value.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 GETHOSTNAME([NAME,LENNAME])

FUNCTION

Get the hostname.

CLASS

PURE Subroutine.

ARGUMENT

NAME(optional): NAME must be a scalar variable of default character type. It is an

INTENT(OUT) argument. If NAME is present it receives the text of the standard

Chapter11 Library Reference

- 227 -

host name for the current processor, blank-padded or truncated if appropriate.

LENNAME(optional): LENNAME must be of 4-byte integer type. It is an

INTENT(OUT) argument. If LENNAME is present it receives the length of the host

name. If no host name is available LENNAME will be zero.

 GETLOGIN([S,LENS])

FUNCTION

Accesses the user name (login name) associated with the calling process.

CLASS

PURE Subroutine.

ARGUMENT

S(optional): S must be a scalar variable of default character type. It is an

INTENT(OUT) argument. If S is present, it receives the text of the name (blank-

padded or truncated as appropriate if the length of the login name differs from

that of S).

LENS(optional): LENS must be of 4-byte integer type. It is an INTENT(OUT)

argument. If LENS is present, it receives the length of the login name.

 ISATTY(LUNIT,ANSWER[,ERRNO])

FUNCTION

Get the connection status of LUNIT.

CLASS

Subroutine.

ARGUMENT

LUNIT: LUNIT must be of integer type. It is an INTENT(IN) argument. If LUNIT

is not a valid unit number or is not connected to any file, error is raised.

ANSWER: ANSWER must be of logical type. It is an INTENT(OUT) argument.

ANSWER receives the value .TRUE. if and only if the logical unit identified by

LUNIT is connected to a terminal.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 TIME(ITIME[,ERRNO])

FUNCTION

Chapter11 Library Reference

- 228 -

Get the operating system date/time in seconds since the Epoch.

CLASS

Subroutine.

ARGUMENT

ITIME: ITIME must be of 4-byte integer type. It is an INTENT(OUT) argument.

ITIME receives the operating system date/time in seconds since the Epoch.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 TTYNAME(LUNIT[,S,LENS,,ERRNO])

FUNCTION

Accesses the name of the terminal connected to the logical unit identified by

LUNIT.

CLASS

Subroutine.

ARGUMENT

LUNIT: LUNIT must be of integer type. It is an INTENT(IN) argument. If LUNIT

is not a valid logical unit number, or is not connected, error is raised.

S(optional): S must be a scalar variable of default character type. It is an

INTENT(OUT) argument. If S is present, it receives the text of the terminal name

(blank-padded or truncated as appropriate, if the length of the terminal name

differs from that of S).

LENS(optional): LENS must be of 4-byte integer type. It is an INTENT(OUT)

argument. If LENS is present, it receives the length of the terminal name.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

Chapter11 Library Reference

- 229 -

 F90_UNIX_ERRNO

The parameters provided by the F90_UNIX_ERRNO module are as follows.

INTEGER(4),OPTIONAL,INTENT(OUT) :: ERRNO

Many procedures provided by the UNIX system function interface have an optional

ERRNO argument. If this argument is provided it receives the error status from

the procedure; zero indicates successful completion, otherwise it will be a non-

zero error code. If the ERRNO argument is omitted and an error condition is

raised, the program will be terminated with an informative error message. If a

procedure has no ERRNO argument it indicates that procedure always succeeds.

 F90_UNIX_FILE

The parameters provided by the F90_UNIX_FILE module are as follows.

INTEGER(4),PARAMETER :: F_OK

Flag for requesting file existence check.

INTEGER(4),PARAMETER :: R_OK

Flag for requesting file readability check.

INTEGER(4),PARAMETER :: S_IRGRP

File mode bit indicating group read permission.

INTEGER(4),PARAMETER :: S_IROTH

File mode bit indicating other read permission.

INTEGER(4),PARAMETER :: S_IRUSR

File mode bit indicating user read permission.

INTEGER(4),PARAMETER :: S_IRWXG

Mask to select the group accessibility bits from a file mode.

INTEGER(4),PARAMETER :: S_IRWXO

Mask to select the other accessibility bits from a file mode.

INTEGER(4),PARAMETER :: S_IRWXU

Mask to select the user accessibility bits from a file mode.

INTEGER(4),PARAMETER :: S_ISGID

File mode bit indicating that the file is set-group-ID.

INTEGER(4),PARAMETER :: S_ISUID

Chapter11 Library Reference

- 230 -

File mode bit indicating that the file is set-user-ID.

INTEGER(4),PARAMETER :: S_IWGRP

File mode bit indicating group write permission.

INTEGER(4),PARAMETER :: S_IWOTH

File mode bit indicating other write permission.

INTEGER(4),PARAMETER :: S_IWUSR

File mode bit indicating user write permission.

INTEGER(4),PARAMETER :: S_IXGRP

File mode bit indicating group execute permission.

INTEGER(4),PARAMETER :: S_IXOTH

File mode bit indicating other execute permission.

INTEGER(4),PARAMETER :: S_IXUSR

File mode bit indicating user execute permission.

INTEGER(4),PARAMETER :: W_OK

Flag for requesting file writability check.

INTEGER(4),PARAMETER :: X_OK

Flag for requesting file executability check.

The types provided by the F90_UNIX_FILE module are as follows.

STAT_T

TYPE STAT_T

 INTEGER(4) ST_MODE

 INTEGER(4) ST_INO

 INTEGER(4) ST_DEV

 INTEGER(4) ST_NLINK

 INTEGER(4) ST_UID

 INTEGER(4) ST_GID

 INTEGER(4) ST_SIZE

 INTEGER(4) ST_ATIME, ST_MTIME, ST_CTIME

END TYPE

Derived type holding file characteristics.

ST_MODE

File mode (read/write/execute permission for user/group/other, plus set-group-ID

and set-user-ID bits).

ST_INO

Chapter11 Library Reference

- 231 -

File serial number.

ST_DEV

ID for the device on which the file resides.

ST_NLINK

The number of links to the file.

ST_UID

User number of the file's owner.

ST_GID

Group number of the file.

ST_SIZE

File size in bytes (regular files only).

ST_ATIME

Time of last access.

ST_MTIME

Time of last modification.

ST_CTIME

Time of last file status change.

The procedures provided by the F90_UNIX_FILE module are as follows.

 ACCESS(PATH,AMODE,ERRNO)

FUNCTION

Checks file accessibility according to the value of AMODE.

CLASS

PURE Subroutine.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument.

AMODE: AMODE must be of integer type. It is an INTENT(IN) argument. AMODE

should be F_OK or a combination of R_OK, W_OK and X_OK. In the latter case the

values may be combined by addition or the intrinsic function IOR.

ERRNO: ERRNO must be of 4-byte integer type. It is an INTENT(OUT) argument.

The result of the accessibility check is returned in ERRNO, which receives zero for

success or an error code indicating the reason for access rejection.

Chapter11 Library Reference

- 232 -

 CHMOD(PATH,MODE[,ERRNO])

FUNCTION

Sets the file mode (ST_MODE) to MODE.

CLASS

Subroutine.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument.

MODE: MODE must be of integer type. It is an INTENT(IN) argument.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 FSTAT(LUNIT,BUF[,ERRNO])

FUNCTION

Get file information connected to LUNIT.

CLASS

Subroutine.

ARGUMENT

LUNIT: LUNIT must be of integer type. It is an INTENT(IN) argument. If LUNIT

is not a valid logical unit number or is not connected to a file, error is raised.

BUF: BUF must be of STAT_T derived type. It is an INTENT(OUT) argument. BUF

receives the characteristics of the file connected to logical unit LUNIT.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 LSTAT(PATH,BUF[,ERRNO])

FUNCTION

Get file information connected to PATH.

CLASS

Chapter11 Library Reference

- 233 -

Subroutine.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument.

BUF: BUF must be of STAT_T derived type. It is an INTENT(OUT) argument. BUF

receives the characteristics of the file PATH. If Path is link file, BUF receives the

characteristics of the link.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 STAT(PATH,BUF[,ERRNO])

FUNCTION

Get file information connected to PATH.

CLASS

Subroutine.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument.

BUF: BUF must be of STAT_T derived type. It is an INTENT(OUT) argument. BUF

receives the characteristics of the file PATH. If Path is link file, BUF receives the

characteristics of the linked file.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 F90_UNIX_PROC

The procedures provided by the F90_UNIX_PROC module are as follows.

 ALARM(SECONDS,SUBROUTINE[,SECLEFT,ERRNO])

FUNCTION

Chapter11 Library Reference

- 234 -

Establishes an “alarm” call to the procedure SUBROUTINE to occur after SECONDS

seconds have passed.

CLASS

Subroutine.

ARGUMENT

SECONDS: SECONDS must be of integer type. It is an INTENT(IN) argument. If

SECONDS is 0, cancels an existing alarm.

SUBROUTINE: SUBROUTINE is the procedure. SUBROUTINE is not present, any

previous association of a subroutine with the alarm signal is left unchanged.

SECLEFT: SECLEFT must be of 4-byte integer type. It is an INTENT(OUT)

argument. If SECLEFT is present, it receives the number of seconds that were left

on the preceding alarm or zero if there were no existing alarm.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 EXECL(PATH,ARG0…[,ERRNO])

FUNCTION

Executes a program (PATH) instead of the current image.

CLASS

Subroutine.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument.

ARG0…: ARG0… must be a scalar variable of default character type. It is an

INTENT(IN) argument. The arguments to the new program are specified by the

dummy arguments which are named ARG0, ARG1, etc. up to ARG20. Note that

these are not optional arguments, any actual argument that is itself an optional

dummy argument must be present. This function is the same as EXECV except

that the arguments are provided individually instead of via an array; and because

they are provided individually, there is no need to provide the lengths (the lengths

being taken from each argument itself).

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

Chapter11 Library Reference

- 235 -

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 EXECLP(FILE,ARG0…[,ERRNO])

FUNCTION

Executes a program (FILE) instead of the current image.

CLASS

Subroutine.

ARGUMENT

FILE: FILE must be a scalar variable of default character type. It is an

INTENT(IN) argument.

ARG0…: ARG0… must be a scalar variable of default character type. It is an

INTENT(IN) argument. The arguments to the new program are specified by the

dummy arguments which are named ARG0, ARG1, etc. up to ARG20. Note that

these are not optional arguments, any actual argument that is itself an optional

dummy argument must be present. This function is the same as EXECL except

that determination of the program to be executed follows the same rules as

EXECVP.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 EXECV(PATH,ARGV,LENARGV[,ERRNO])

FUNCTION

Executes a program (PATH) instead of the current image.

CLASS

Subroutine.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument.

ARGV: ARGV must be a scalar variable of default character type array. It is an

INTENT(IN) argument. ARGV is the array of argument strings. If ARGV is not

Chapter11 Library Reference

- 236 -

zero-sized, ARGV(1)(:LENARGV(1)) is passed as argument zero (i.e. the program

name)

LENARGV: LENARGV must be of integer type array. It is an INTENT(IN)

argument. LENARGV contains the desired length of each argument.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 EXECVE(PATH,ARGV,LENARGV,ENV,LENENV[,ERRNO])

FUNCTION

Executes a program (PATH) instead of the current image.

CLASS

Subroutine.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument.

ARGV: ARGV must be a scalar variable of default character type array. It is an

INTENT(IN) argument. ARGV is the array of argument strings.

LENARGV: LENARGV must be of integer type array. It is an INTENT(IN)

argument. LENARGV contains the desired length of each argument.

ENV: ENV must be a scalar variable of default character type array. It is an

INTENT(IN) argument. ARGV is the array of argument strings.

LENENV: LENENV must be of integer type array. It is an INTENT(IN) argument.

LENENV contains the desired length of each argument.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

NOTE

Similar to EXECV, with the environment strings specified by ENV and LENENV

being passed to the new program.

Chapter11 Library Reference

- 237 -

 EXECVP(FILE,ARGV,LENARGV[,ERRNO])

FUNCTION

Executes a program (FILE) instead of the current image.

CLASS

Subroutine.

ARGUMENT

FILE: FILE must be a scalar variable of default character type. It is an

INTENT(IN) argument.

ARGV: ARGV must be a scalar variable of default character type array. It is an

INTENT(IN) argument. ARGV is the array of argument strings.

LENARGV: LENARGV must be of integer type array. It is an INTENT(IN)

argument. LENARGV contains the desired length of each argument.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

NOTE

The same as EXECV except that the program to be executed, FILE is searched for

using the PATH environment variable (unless it contains a slash character, in

which case EXECVP is identical in effect to EXECV).

 FORK(PID[,ERRNO])

FUNCTION

Creates a new process which is an exact copy of the calling process.

CLASS

Subroutine.

ARGUMENT

PID: PID must be of 4-byte integer type. It is an INTENT(OUT) argument. In

the new process, the value returned in PID is zero; in the calling process the value

returned in PID is the process ID of the new (child) process.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

Chapter11 Library Reference

- 238 -

informative error message.

 SLEEP(SECOND[,SECLEFT])

FUNCTION

Suspends process execution for SECONDS seconds, or until a signal has been

delivered.

CLASS

PURE Subroutine.

ARGUMENT

SECONDS: SECONDS must be of 4-byte integer type. It is an INTENT(IN)

argument.

SECLEFT(optional): SECLEFT must be of 4-byte integer type. It is an

INTENT(OUT) argument. If SECLEFT is present, it receives the number of

seconds remaining in the sleep time (zero unless the sleep was interrupted by a

signal).

 SYSTEM(STRING[,STATUS,ERRNO])

FUNCTION

Passes STRING to the command processor for execution.

CLASS

Subroutine.

ARGUMENT

STRING: STRING must be a scalar variable of default character type. It is an

INTENT(IN) argument.

STATUS(optional): STATUS must be of 4-byte integer type. It is an

INTENT(OUT) argument. If STATUS is present it receives the completion status.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

 WAIT([STATUS,RETPID,ERRNO])

FUNCTION

Wait for any child process to terminate (returns immediately if one has already

terminated).

CLASS

Chapter11 Library Reference

- 239 -

Subroutine.

ARGUMENT

STATUS(optional): STATUS must be of 4-byte integer type. It is an INTENT(OUT)

argument. If STATUS is present it receives the termination status of the child

process.

RETPID(optional): RETPID must be of 4-byte integer type. It is an INTENT(OUT)

argument. If RETPID is present it receives the process number of the child

process.

ERRNO(optional): ERRNO must be of 4-byte integer type. It is an INTENT(OUT)

argument. If ERRNO argument is provided, 0 is returned for normal termination. A

non-zero error code is returned for abnormal termination. If the ERRNO argument

is omitted and an error condition is raised, the program will be terminated with an

informative error message.

11.4 Other Library

System functions that can be used in a C library can also be called from Fortran in

these routines.

Fortran libraries are not intrinsic functions. Therefore, the compiler treats these

libraries according to the IMPLICIT statement specification or the implicit type

declarations (initial letters i, j, k, l, m, and n indicate integer type; other letters

indicate real type). If the implicit type and the library's function type do not match,

the type declaration for the function (e.g., CTIME) must be specified.

 ABORT()

FUNCTION

Terminates a program abnormally.

CLASS

Subroutine.

 ACCESS(PATH,MODE)

FUNCTION

Check user's permissions for a file.

CLASS

Chapter11 Library Reference

- 240 -

Function.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument. PATH is the file path to check.

MODE: MODE must be a scalar variable of default character type. It is an

INTENT(IN) argument. MODE is the accessibility check pattern.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

 ALARM(SECS,PROC)

FUNCTION

Sets an alarm clock of the process.

CLASS

Function.

ARGUMENT

SECS: SECS must be of 4-byte integer type. It is an INTENT(IN) argument.

SECS is the alarm clock time (handled in units of seconds) of the process.

PROC: PROC must be of External procedure name.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

The remaining seconds are returned when the function is called.

 CHDIR(PATH)

FUNCTION

Changes the work directory.

CLASS

Function.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument. PATH is the directory path to change.

TYPE AND TYPE PARAMETER OF RESULT

Chapter11 Library Reference

- 241 -

Integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

 CHMOD(NAME,MODE)

FUNCTION

Changes the access mode.

CLASS

Function.

ARGUMENT

NAME: NAME must be a scalar variable of default character type. It is an

INTENT(IN) argument. NAME is the path to change access mode.

MODE: MODE must be a scalar variable of default character type. It is an

INTENT(IN) argument. Mode is the access mode to change.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

 CTIME(I)

FUNCTION

Transform date and time to string.

CLASS

Function.

ARGUMENT

I: I must be of 4-byte integer type. It is an INTENT(IN) argument.

TYPE AND TYPE PARAMETER OF RESULT

Default Character type of length 24.

RESULT VALUE

Interprets I as a time since the Epoch, converts it to local time, and returns it in

the following format:

Sun Jan. 19 01:03:52 1992

Chapter11 Library Reference

- 242 -

 DTIME(TARRAY)

FUNCTION

Execution time.

CLASS

Function.

ARGUMENT

TARRAY: TARRAY must be of 4-byte real-type array consisting of two

elements. It is an INTENT(OUT) argument. User time from the previous

reference of this function is assigned to the first element of TARRAY. Sys time is

assigned to the second element.

TYPE AND TYPE PARAMETER OF RESULT

4-byte real type.

RESULT VALUE

The value of the result is the sum of User time and Sys time.

 ETIME(TARRAY)

FUNCTION

Execution time.

CLASS

Function.

ARGUMENT

TARRAY: TARRAY must be of 4-byte real-type array consisting of two

elements. It is an INTENT(OUT) argument. User time from the beginning of the

program is assigned to the first element of TARRAY. Sys time is assigned to the

second element.

TYPE AND TYPE PARAMETER OF RESULT

4-byte real type.

RESULT VALUE

The value of the result is the sum of User time and Sys time (units in seconds).

NOTE

See Section 11.1.3311.4.47 for details when used by subroutine.

 FDATE()

FUNCTION

Chapter11 Library Reference

- 243 -

Get the current time as a string.

CLASS

Function.

TYPE AND TYPE PARAMETER OF RESULT

Default Character type of length 24.

RESULT VALUE

Returns current time in following format:

Sun Jan. 19 01:03:52 1992

NOTE

Also usable as a subroutine in the following format:

call FDATE (A)

A is Default Character type of length 24 and an INTENT(OUT) argument.

A is set current time in following format:

Sun Jan. 19 01:03:52 1992

 FORK()

FUNCTION

Creates a new process.

CLASS

Function.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

Process ID is returned for normal termination. Error code is returned for abnormal

termination.

 FREE(ADDR)

FUNCTION

Deallocate memory.

CLASS

Subroutine.

ARGUMENT

ADDR: ADDR must be of double precision integer type. It is an INTENT(IN)

argument. ADDR is the address of the area allocated with MALLOC.

Chapter11 Library Reference

- 244 -

 FREE2(ADDR)

FUNCTION

Deallocate memory.

CLASS

Subroutine.

ARGUMENT

ADDR: ADDR must be of double precision integer type. It is an INTENT(IN)

argument. ADDR is the address of the area allocated with MALLOC2.

 FSEEK(UNIT,OFFSET,WHENCE)

FUNCTION

Repositions a file.

CLASS

Function.

ARGUMENT

UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.

UNIT is the external unit identifier to a file.

OFFSET: OFFSET must be of 4-byte integer-type. It is an INTENT(IN)

argument. Offset in bytes, relative to WHENCE, that is to be the new location of

the file marker.

WHENCE: WHENCE must be of 4-byte integer-type. It is an INTENT(IN)

argument. A position in the file. It must be one of the following:

Value Position

0 Positions the file relative to the beginning of the file.

1 Positions the file relative to the current position.

2 Positions the file relative to the end of the file.

TYPE AND TYPE PARAMETER OF RESULT

4-byte integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

NOTE

Also usable as a subroutine in the following format:

call FSEEK (UNIT,OFFSET,WHENCE)

Chapter11 Library Reference

- 245 -

 FSTAT(UNIT,SXBUF)

FUNCTION

Get file status.

CLASS

Function.

ARGUMENT

UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.

UNIT is the external unit identifier to a file.

SXBUF: SXBUF must be of 4-byte integer-type array consisting of nineteen

elements. It is an INTENT(OUT) argument. The status of the file is set in SXBUF.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

NOTE

The information of SXBUF is below.

SXBUF(1) Device the file resides on

SXBUF(2) File inode number

SXBUF(3) Access mode of the file

SXBUF(4) Number of hard links to the file

SXBUF(5) User ID of owner

SXBUF(6) Group ID of owner

SXBUF(7) 0

SXBUF(8) Size of the file (bytes)

SXBUF(9) Last access time

SXBUF(10) Last modification time

SXBUF(11) Last file status change time

SXBUF(12)-(19) Future Reserved

 FTELL(UNIT)

FUNCTION

Return the current position of a file.

CLASS

Chapter11 Library Reference

- 246 -

Function.

ARGUMENT

UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.

UNIT is the external unit identifier to a file.

TYPE AND TYPE PARAMETER OF RESULT

4-byte integer type.

RESULT VALUE

The result is the offset, in bytes, from the beginning of the file. A negative value

indicates an error.

 FTELLI8(UNIT)

FUNCTION

Return the current position of a file.

CLASS

Function.

ARGUMENT

UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.

UNIT is the external unit identifier to a file.

TYPE AND TYPE PARAMETER OF RESULT

8-byte integer type.

RESULT VALUE

The result is the offset, in bytes, from the beginning of the file. A negative value

indicates an error.

 GETARG(POS,VAL)

FUNCTION

Get command line argument.

CLASS

Subroutine.

ARGUMENT

POS: POS must be of 4-byte integer-type. It is an INTENT(IN) argument. POS

is the argument position.

VAL: VAL must be a scalar variable of default character type. It is an

INTENT(OUT) argument. The string in the command line passed to the program

is set in VAL.

Chapter11 Library Reference

- 247 -

 GETCWD(PATH)

FUNCTION

Get current working directory.

CLASS

Function.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(OUT) argument. The path of current working directory is set in PATH.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

 GETENV(NAME,VAL)

FUNCTION

Get an environment variable.

CLASS

Subroutine.

ARGUMENT

NAME: NAME must be a scalar variable of default character type. It is an

INTENT(IN) argument. NAME is the string of environment variable name.

VAL: VAL must be a scalar variable of default character type. It is an

INTENT(OUT) argument. The value of environment variable is set in VAL.

NOTE

Also usable as a function in the following format.

Result type is integer type. The function returns a 1 if a match is found, and 0

otherwise.

INTEGER RESULT,GETENV

RESULT = GETENV(NAME,VAL)

 GETGID()

FUNCTION

Get group id.

Chapter11 Library Reference

- 248 -

CLASS

Function.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

Group ID is returned.

 GETLOG(NAME)

FUNCTION

Get command line argument.

CLASS

Subroutine.

ARGUMENT

NAME: NAME must be a scalar variable of default character type. It is an

INTENT(OUT) argument. The string of login user name is set in NAME.

 GETPID()

FUNCTION

Get process id.

CLASS

Function.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

Process ID is returned.

 GETPOS(UNIT)

FUNCTION

Return the current position of a file.

CLASS

Function.

ARGUMENT

UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.

UNIT is the external unit identifier to a file.

TYPE AND TYPE PARAMETER OF RESULT

Chapter11 Library Reference

- 249 -

4-byte integer type.

RESULT VALUE

The result is the offset, in bytes, from the beginning of the file. A negative value

indicates an error.

 GETPOSI8(UNIT)

FUNCTION

Return the current position of a file.

CLASS

Function.

ARGUMENT

UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.

UNIT is the external unit identifier to a file.

TYPE AND TYPE PARAMETER OF RESULT

8-byte integer type.

RESULT VALUE

The result is the offset, in bytes, from the beginning of the file. A negative value

indicates an error.

 GETUID()

FUNCTION

Get user id.

CLASS

Function.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

User ID is returned.

 GMTIME(I,IA9)

FUNCTION

Transform date and time to 4-byte Integer-type array.

CLASS

Subroutine.

ARGUMENT

Chapter11 Library Reference

- 250 -

I: I must be of 4-byte integer type. It is an INTENT(IN) argument.

IA9: IA9 must be of 4-byte integer-type array consisting of nine elements. It is

an INTENT(OUT) argument. Interprets I as a time since the Epoch and numerical

values of it are assigned to each element of IA9.

 HOSTNM(NAME)

FUNCTION

Get hostname.

CLASS

Function.

ARGUMENT

NAME: NAME must be a scalar variable of default character type. It is an

INTENT(OUT) argument. The host name is set in NAME.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

 IARGC()

FUNCTION

Get command-line arguments.

CLASS

Function.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

Number of arguments on the command line is returned.

 IDATE(IA3)

FUNCTION

Transform date to 4-byte Integer-type array.

CLASS

Subroutine.

ARGUMENT

Chapter11 Library Reference

- 251 -

IA3: IA3 must be of 4-byte integer-type array consisting of three elements. It

is an INTENT(OUT) argument. Month, date, and year are assigned to each

element of IA3, in this order.

 IERRNO()

FUNCTION

Get the latest error code.

CLASS

Function.

TYPE AND TYPE PARAMETER OF RESULT

4-byte integer type.

RESULT VALUE

Returns the number of the last detected error codes.

 ISATTY(UNIT)

FUNCTION

Test whether unit connect to terminal equipment.

CLASS

Function.

ARGUMENT

UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.

UNIT is the external unit identifier.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

If it is connected to the terminal equipment, 1 is returned; otherwise, 0 is

returned.

 ITIME(IA3)

FUNCTION

Transform time to 4-byte Integer-type array.

CLASS

Subroutine.

ARGUMENT

IA3: IA3 must be of 4-byte integer-type array consisting of three elements. It

Chapter11 Library Reference

- 252 -

is an INTENT(OUT) argument. Hour, minute, and second are assigned to each

element of IA3, in this order.

 KILL(PID,SIGNUM)

FUNCTION

Send a signal to a process or process group.

CLASS

Function.

ARGUMENT

PID: PID must be of 4-byte integer type. It is an INTENT(IN) argument.

Sends the signal to the process ID specified by argument PID.

SIGNUM: SIGNUM must be of 4-byte integer type. It is an INTENT(IN)

argument. Sends the signal number specified by argument SIGNUM.

TYPE AND TYPE PARAMETER OF RESULT

4-byte integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

 LINK(PATH1,PATH2)

FUNCTION

Create Link.

CLASS

Function.

ARGUMENT

PATH1: PATH1 must be a scalar variable of default character type. It is an

INTENT(IN) argument. PATH1 is the path of an existing file.

PATH2: PATH2 must be a scalar variable of default character type. It is an

INTENT(IN) argument. PATH2 is the path to be linked to the file.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

Chapter11 Library Reference

- 253 -

 LSTAT(PATH,SXBUF)

FUNCTION

Get file status.

CLASS

Function.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument. PATH is the file path.

SXBUF: SXBUF must be of 4-byte integer-type array consisting of nineteen

elements. It is an INTENT(OUT) argument. The status of the file is set in SXBUF.

If PATH is link file, SXBUF receives the characteristics of the link.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

NOTE

The information of SXBUF is below.

SXBUF(1) Device the file resides on

SXBUF(2) File inode number

SXBUF(3) Access mode of the file

SXBUF(4) Number of hard links to the file

SXBUF(5) User ID of owner

SXBUF(6) Group ID of owner

SXBUF(7) 0

SXBUF(8) Size of the file (bytes)

SXBUF(9) Last access time

SXBUF(10) Last modification time

SXBUF(11) Last file status change time

SXBUF(12)-(19) Future Reserved

 LTIME(I,IA9)

FUNCTION

Transform local date and time to 4-byte Integer-type array.

Chapter11 Library Reference

- 254 -

CLASS

Subroutine.

ARGUMENT

I: I must be of 4-byte integer type. It is an INTENT(IN) argument.

IA9: IA9 must be of 4-byte integer-type array consisting of nine elements. It is

an INTENT(OUT) argument. Interprets I as a time since the Epoch. The time is

converted to the local time, and numerical values of it are assigned to each

element of IA9.

 MALLOC(SIZE)

FUNCTION

Allocate memory.

CLASS

Function.

ARGUMENT

SIZE: SIZE must be of 4-byte integer type. It is an INTENT(IN) argument.

SIZE is necessary area size (handled in units of bytes) to allocate.

TYPE AND TYPE PARAMETER OF RESULT

Double precision Integer type.

RESULT VALUE

Starting address of the memory allocated is returned.

 MALLOC2(SIZE)

FUNCTION

Allocate memory.

CLASS

Function.

ARGUMENT

SIZE: SIZE must be of double precision integer type. It is an INTENT(IN)

argument. SIZE is necessary area size (handled in units of bytes) to allocate.

TYPE AND TYPE PARAMETER OF RESULT

Double precision Integer type.

RESULT VALUE

Starting address of the memory allocated is returned.

Chapter11 Library Reference

- 255 -

 PERROR(A)

FUNCTION

Print the latest error message to standard error output.

CLASS

Subroutine.

ARGUMENT

A: A must be a scalar variable of default character type. It is an INTENT(IN)

argument. The string of A, colon, margin, and error message are concatenated

and printed to standard error output.

 RENAME(FROM,TO)

FUNCTION

Rename a file.

CLASS

Function.

ARGUMENT

FROM: FROM must be a scalar variable of default character type. It is an

INTENT(IN) argument. FROM is the path name of an existing file.

TO: TO must be a scalar variable of default character type. It is an INTENT(IN)

argument. TO is the new path for this file.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

 SECNDS(T)

FUNCTION

Get the elapsed time from reference time in seconds.

CLASS

Function.

ARGUMENT

T: T must be of 4-byte real type. It is an INTENT(IN) argument. T is a reference

time, also in seconds.

Chapter11 Library Reference

- 256 -

TYPE AND TYPE PARAMETER OF RESULT

4-byte real type.

RESULT VALUE

The value of the result is elapsed time from argument T in seconds. If T is zero,

time from midnight is returned.

 SIGNAL(SIGNUM,HANDLER)

FUNCTION

Specifies the operation during signal reception.

CLASS

Function.

ARGUMENT

SIGNUM: SIGNUM must be of real type. It is an INTENT(IN) argument.

Specify the signal number by argument SIGNUM.

HANDLER: HANDLER must be of External procedure name. It is an INTENT(IN)

argument. Name of user signal handling function specified by HANDLER.

TYPE AND TYPE PARAMETER OF RESULT

4-byte integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

 SLEEP(SECS)

FUNCTION

Suspend execution.

CLASS

Subroutine.

ARGUMENT

SECS: SECS must be of 4-byte integer type. It is an INTENT(IN) argument.

SECS is the time (handled in units of seconds) to suspend.

 STAT(UNIT,SXBUF)

FUNCTION

Get file status.

CLASS

Chapter11 Library Reference

- 257 -

Function.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument. PATH is the file path.

SXBUF: SXBUF must be of 4-byte integer-type array consisting of nineteen

elements. It is an INTENT(OUT) argument. The status of the file is set in SXBUF.

If PATH is link file, SXBUF receives the characteristics of the linked file.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

NOTE

The information of SXBUF is below.

SXBUF(1) Device the file resides on

SXBUF(2) File inode number

SXBUF(3) Access mode of the file

SXBUF(4) Number of hard links to the file

SXBUF(5) User ID of owner

SXBUF(6) Group ID of owner

SXBUF(7) 0

SXBUF(8) Size of the file (bytes)

SXBUF(9) Last access time

SXBUF(10) Last modification time

SXBUF(11) Last file status change time

SXBUF(12)-(19) Future Reserved

 SYMLNK(PATH1,PATH2)

FUNCTION

Create a symbolic link.

CLASS

Function.

ARGUMENT

PATH1: PATH1 must be a scalar variable of default character type. It is an

Chapter11 Library Reference

- 258 -

INTENT(IN) argument. Name of the path to be used by symbolic link PATH2.

PATH2: PATH2 must be a scalar variable of default character type. It is an

INTENT(IN) argument. Name of a file(symbolic link name) to be created.

TYPE AND TYPE PARAMETER OF RESULT

4-byte integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

 SYSTEM(CMD)

FUNCTION

Passes string to the command processor for execution.

CLASS

Function.

ARGUMENT

CMD: CMD must be a scalar variable of default character type. It is an

INTENT(IN) argument. CMD is the string to the command processor for

execution.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

Exit status of the CMD executed is returned.

NOTE

Also usable as a subroutine in the following format.

CALL SYSTEM(CMD)

 TIME()

FUNCTION

Get time in seconds.

CLASS

Function.

TYPE AND TYPE PARAMETER OF RESULT

4-byte real type.

RESULT VALUE

Chapter11 Library Reference

- 259 -

Returns the value of time in seconds since the Epoch.

 TTYNAM(UNIT)

FUNCTION

Get name of the terminal equipment.

CLASS

Function.

ARGUMENT

UNIT: UNIT must be of 4-byte integer-type. It is an INTENT(IN) argument.

UNIT is the external unit identifier.

TYPE AND TYPE PARAMETER OF RESULT

Default character type.

RESULT VALUE

Name of the terminal equipment connected to external unit identifier UNIT is

returned.

 UNLINK(PATH)

FUNCTION

Remove file.

CLASS

Function.

ARGUMENT

PATH: PATH must be a scalar variable of default character type. It is an

INTENT(IN) argument. PATH1 is the file path.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

0 is returned for normal termination. A non-zero error code is returned for

abnormal termination.

 WAIT(STATUS)

FUNCTION

Waits for a child process to stop or terminate.

CLASS

Function.

Chapter11 Library Reference

- 260 -

ARGUMENT

STATUS: STATUS must be a scalar variable of default character type. It is an

INTENT(OUT) argument. The status of the child process is set in STATUS.

TYPE AND TYPE PARAMETER OF RESULT

Integer type.

RESULT VALUE

Child process ID is returned for normal termination. Error code is returned as a

negative number for abnormal termination.

11.5 Notes

 Trigonometric and exponential functions fail to calculate results and in an error

state when the value of an argument is within a certain range.

The functions and their corresponding range of argument to be an error conditions

is as follows.

Single precision:

Function Effective range

ccos(x+yi) |x|≧221×π

cexp(x+yi) |y|≧221×π

cos(x) |x|≧221×π

cosd(x) |x|≧221×180

cotan(x) |x|≧221×π

csin(x+yi) |x|≧221×π

sin(x) |x|≧221×π

sind(x) |x|≧221×180

tan(x) |x|≧221×π

Double precision:

Function Effective range

cdcos(x+yi) |x|≧250×π

cdexp(x+yi) |y|≧250×π

cdsin(x+yi) |x|≧250×π

dcos(x) |x|≧250×π

dcosd(x) |x|≧250×180

Chapter11 Library Reference

- 261 -

Function Effective range

dcotan(x) |x|≧250×π

dsin(x) |x|≧250×π

dsind(x) |x|≧250×180

dtan(x) |x|≧250×π

Quadruple precision:

Function Effective range

cqcos(x+yi) |x|≧2110×π

cqexp(x+yi) |y|≧2110×π

cqsin(x+yi) |x|≧2110×π

qcos(x) |x|≧2110×π

qcotan(x) |x|≧2110×π

qsin(x) |x|≧2110×π

qtan(x), |x|≧2110×π

Appendix A Configuration file

- 262 -

Chapter12 Messages

12.1 Diagnostic Messages

The compiler outputs diagnostic messages that indicate the optimization status of

the program to the standard error output and diagnostic message list. This section

describes their formats and the main messages.

 Diagnostic Message Format

Diagnostic messages will be output in the following format.

Kind (Number): Position: Message [: Hint]

Kind (Number):

The message kind and the number assigned to the message body will be

displayed. The kinds include the following.

vec: Vectorization information

opt: Optimization and vectorization information

dtl: Detailed optimization and vectorization information

inl: Inlining information

par: OpenMP and automatic parallelization

err: Mainly, syntax error of OpenMP directive specification

Position:

The line number of the source code corresponding to the diagnostic message

will be output. When output to standard error output, the file name including

the line number is also output.

Message:

The text of the diagnostic message will be output.

Hint:

Depending on the diagnostic message, the procedure name, variable name,

and array name will be output.

 When outputting a module procedure name, the module name and

procedure name are separated by "::".

 When outputting an internal procedure name, the host procedure name

and the internal procedure name are separated by "::".

 When outputting a derived type component name, the variable name and

Appendix A Configuration file

- 263 -

component name are separated by "%".

 When the variable name or array name is unknown, the type name may

be output.

 A name of a procedure or variable generated by the compiler for

optimization may be output with "$number" appended.

 Message List

vec(101): Vectorized loop.

An entire loop structure is vectorized.

vec(102): Partially vectorized loop.

Part of a loop structure is vectorized.

vec(103): Unvectorized loop.

A loop is not vectorized.

vec(107): Iteration count is too small.

A loop is not vectorized because the iteration count of the loop is smaller t

han the threshold value for vectorizing. The threshold value can be change

d by -mvector-threshold=n.

vec(108): Unvectorizable loop structure.

Loop structure does not meet vectorization conditions. This diagnostic is

mainly output in the following cases.

 The loop induction variable appears in type conversion operation. It may

be vectorized by -mreplace-loop-induction.

 The loop control expression is not an expression to compare an induction

variable and a loop invariant expression.

 A logical .AND., .OR., .EQV., .NEQV., or .NOT. operation appears in the loop

control expression.

 An equation operation (.EQ.. .NE., ==, /=) appears in the loop control

expression. It may be vectorized by -mreplace-loop-equation.

 There are two or more branches to outside of a loop.

Appendix A Configuration file

- 264 -

 There is a jump from outside of a loop. This situation appears when the

loop is composed of if and goto statements.

 A work vector for partially-vectorization cannot be created. The following

code shows an example that a work vector for “a(1)” is required but its

type is unvectorizable and the compiler cannot prepare any work vector.

 subroutine sub(a,b,c,d,n,k)

 complex(16) a(n)

 complex(8) b(n),c(0:n),d(n)

 do i=1,n

 a(1) = b(i) + d(i) + c(i)

 c(i) = a(1)

 enddo

 end

vec(109): Vectorization obstructive statement.

A loop cannot be vectorized because a statement that makes a whole loop

unvectorizable appears.

vec(110): Vectorization obstructive procedure reference : Procedure-name

A loop cannot be vectorized because a procedure reference that makes a

whole loop or array expression unvectorizable appears.

vec(111): “novector” is specified.

A loop is not vectorized because novector directive is specified.

vec(112): “novwork” is specified.

A loop is not partially-vectorized because novwork directive is specified.

vec(113): Overhead of loop division is too large.

A loop cannot be partially-vectorized because the compiler judged the

overhead due to loop division to be large and the effect of the partially-

vectorization to be none.

Appendix A Configuration file

- 265 -

vec(115): Internal table overflow.

A loop cannot be vectorized because an internal table used in vectorization

processing overflowed.

vec(116): Unvectorizable procedure reference. : Procedure-name

A loop cannot be vectorized because there is a procedure reference to an

external procedure, internal procedure, module procedure, or intrinsic

procedure that is not subject to vectorization.

vec(117): Unvectorizable statement.

A loop cannot be vectorized because a statement is not subject to

vectorization.

vec(118): Unvectorizable data type.

A loop cannot be vectorized because a data element reference is of a type that

is not subject to vectorization.

vec(119): Array is not aligned. : Variable-name

A loop cannot be vectorized because an array is not aligned on a vectorizable

memory boundary.

vec(120): Unvectorizable dependency. : Variable-name

A loop cannot be vectorized because there is an unvectorizable dependency in

a variable or array.

vec(121): Unvectorizable dependency.

A loop cannot be vectorized because there is an unvectorizable dependency in

a variable or array.

Appendix A Configuration file

- 266 -

vec(122): Dependency unknown. Unvectorizable dependency is assumed. :

Variable-name

An unvectorizable dependency is assumed to exist because dependency

analysis is not possible. The compiler applies vectorization with the

assumption that the dependency is not unvectorizable if ivdep directive is

specified.

vec(124): Iteration count is assumed. Iteration count=n

The compiler assumes that the loop iteration count is n.

vec(126): Idiom detected. : Kind of macro

A vector macro operation is detected. The following kinds are detected.

Max/Min, List Vector, Sum, Product, Bit-op, Iteration, Search

vec(128): Fused multiply-add operation applied.

A fused-multiply-add operation is applied.

vec(129): Array is retained. : Array-name

A retain directive is applied to an array.

vec(130): Vector register is assigned.: Array-name

A vector register is assigned to an array by a vreg directive.

vec(131): Too many statements.

A loop cannot be vectorized because there are too many statements in a loop.

vec(132): Too many procedure calls.

A loop cannot be vectorized because there are too many procedure calls in a

loop.

Appendix A Configuration file

- 267 -

vec(133): Too many memory refereneces.

A loop cannot be vectorized because there are too many memory references

in a loop.

vec(134): Too many branches.

A loop cannot be vectorized because there are too many branches.

vec(135): vreg canceled.: Array-name

vreg directive is canceled.

vec(136): pvreg canceled.: Array-name

pvreg directive is canceled.

vec(139): Packed loop.

A loop is vectorized by using packed-vector instructions.

vec(140): Unpacked loop. : Reason

-mvector-packed or packed_vector directive is specified, but any packed-

vector instruction is not used in vectorization.

vec(141): “nopacked_vector” is specified.

nopacked_vector directive is applied.

vec(142): pvreg is used in vector loop.

An array which is specified by pvreg directive appears in a vectorized loop

without packed-vector instructions.

vec(143): vreg is used in packed vector loop.

An array which is specified by vreg directive appears in a vectorized loop with

packed-vector instructions.

Appendix A Configuration file

- 268 -

vec(144): No mask for vector load under condition.: Array-name

Vector loads executed under IF conditions are not masked. It is necessary to

prepare areas for the number of iterations.

vec(161): Structure assignment obstructs vectorization.

A loop cannot be vectorized because there is a large derived-type assignment.

It may be vectorized by -mvector-assignment-threshold=n.

vec(163): Exception handling obstructs vectorization.

A loop cannot be vectorized because there are some expressions related to

C++ exception handling.

vec(180): I/O statement obstructs vectorization.

A loop cannot be vectorized because there is an I/O statement.

vec(181): Allocation obstructs vectorization.

A loop cannot be vectorized because there is a memory allocation.

vec(182): Deallocation obstructs vectorization.

A loop cannot be vectorized because there is a memory deallocation.

vec(183): Run-time checking obstructs vectorization.

A loop cannot be vectorized because there is an expression to check run-ti

me error or run-time status check. The expression is generated for not onl

y –fcheck but also to check memory allocation, pointer status etc.

vec(184): Division obstructs vectorization.

A loop cannot be vectorized because there is unvectorizable division.

Appendix A Configuration file

- 269 -

vec(185): Exponentiation obstructs vectorization.

A loop cannot be vectorized because there is unvectorizable exponentiation.

opt(1011): Too large to optimize -- reduce program or loop size.

Optimization of this loop is inhibited because the program or the loop is too

large. The program or the loop should be partitioned.

opt(1017): Subroutine call prevents optimization.

Subroutine call prevents optimization.

opt(1019): Feedback of scalar value from one loop pass to another.

A scalar variable accesses a value that is defined on another loop pass.

opt(1025): Reference to this procedure inhibits optimization.

Reference to this procedure inhibits optimization.

opt(1034): Multiple store conflict.

The same array element is defined more than once.

opt(1037): Feedback of array elements.

Same array element is referenced/defined on another loop pass.

opt(1038): Loop too complex -- optimization of this loop halted.

Optimization of this loop is halted because the loop is too complex.

opt(1056): Loop nest too deep for optimization.

Optimization of this loop is halted because nest of the loop is too deep.

opt(1057): Complicated use of variable inhibits loop optimization.

Optimization of this loop is inhibited because usage of the variable is too

Appendix A Configuration file

- 270 -

complicated.

opt(1059): Unable to determine last value of scalar temporary.

Last value of the scalar temporary is unable to determine.

opt(1061): Use of scalar under different condition causes feedback.

A scalar variable is accessed under different conditions.

opt(1062): Too many data dependency problems.

Too many data dependency inhibits optimization.

opt(1082): Backward transfers inhibit loop optimization.

Optimization of this loop is inhibited because of backward transfer in the loop.

opt(1083): Last value of promoted scalar required.

A scalar variable that is changed to temporary array needs last value.

opt(1084): Branch out of the loop inhibits optimization.

Optimization of this loop is inhibited because of a branch out from the loop.

opt(1097): This statement prevents loop optimization.

This statement prevents loop optimization.

opt(1108): Reduction function suppressed -- need associative

transformation.

The optimization with -fmatrix-multiply is suppressed due to -fassociative-

math is disabled.

opt(1117): Indirect branch inhibits to optimization of loop.

Optimization of this loop is inhibited because of an indirect branch in the loop.

Appendix A Configuration file

- 271 -

opt(1118): This I/O statement inhibits to optimization of loop.

An I/O statement inhibits optimization.

opt(1128): Branching too complex to optimize at this optimization level.

Optimization of this loop is inhibited because branchings in the loop are too

complex.

opt(1130): Conditional scalar inhibits optimization of outer loop.

A conditional scalar definition inhibits optimization of outer loop.

opt(1131): Function references in iteration count inhibits optimization.

Function references in iteration count inhibits optimization.

opt(1166): Potential dependency due to pointer -- use restrict qualifier if

ok.

Potential dependency due to pointer inhibits optimization. If ivdep directive is

specified, the compiler considers the dependency to be optimizable and

vectorizable.

inl(1214): Expansion routine is too big for automatic expansion.: Routine-

name

The size of routine is too big and the routine cannot be inlined. It may be

inlined by -finline-max-function-size=n or -finline-max-times=n.

inl(1219): Nesting level too deep for automatic expansion. : Routine-name

Nesting level of the expansion routine is too deep. It may be inlined by -fi

nline-max-depth=n.

inl(1222): Inlined.: Routine-name

A routine is inlined.

opt(1268): Use of pointer variable/expression inhibits optimization.

Appendix A Configuration file

- 272 -

The pointer inhibits optimization.

opt(1282): This store into array inhibits optimization of outer loop.

This store into array inhibits optimization of outer loop.

opt(1285): Not enough work to justify concurrency optimization.

Concurrency optimization is inhibited because of not enough works in the loop.

opt(1298): Use of induction variable outside the loop inhibits optimization.

Optimization of this loop is inhibited because of use of induction variable

outside the loop.

opt(1299): Redefinition of induction variable in loop inhibits optimization.

Optimization of this loop is inhibited because of redefinition of induction

variable in the loop.

opt(1300): Assumed-size private arrays inhibit concurrency.

Concurrency optimization is inhibited because of assumed-size array

reference.

opt(1315): Iterations peeled from loop in order to avoid dependence.

To eliminate unvectorizable dependency, forward/backward expansion of the

loop is performed.

opt(1339): User parallel directives inhibits to optimization.

Optimization is inhibited because of user parallel directive specifications.

opt(1376): User function reference inhibits optimization.

Optimization is inhibited because of user function reference.

Appendix A Configuration file

- 273 -

opt(1377): Must synchronize to preserve order of accesses.

Synchronization is needed to preserve order of accesses.

opt(1378): Many synchronizations needed.

Too many synchronizations inhibits concurrency.

opt(1380): User function references not ok without "cncall".

Concurrency optimization is inhibited because of user function reference. It

may be optimized if cncall directive is specified.

opt(1382): Subroutine calls are handled only when "cncall" is used.

Concurrency optimization is inhibited because of user subroutine call. It may

be optimized if cncall directive is specified.

opt(1387): Overlapping EQUIVALENCEd variables inhibit concurrency.

Optimization is inhibited because of overlapping equivalenced variables.

inl(1388): Inlining inhibited: OpenMP or parallel directive.

Parallelization control option exists in a candidate for inlining.

opt(1394): Moved invariant if outside of an inner loop.

if-clause has invariant condition moved outside the loop.

opt(1395): Inner loop stripped and strip loop moved outside outer loop.

Outer loop strip mining is performed.

opt(1408): Loop interchanged.

Outer loop is interchanged with inner loop.

opt(1409): Alternate code is generated.

Alternate code is generated.

Appendix A Configuration file

- 274 -

opt(1589): Outer loop moved inside inner loop(s).

Outer loop is switched with inner loop.

opt(1590): Inner loop moved outside outer loop(s).

Inner loop switched with outer loop.

opt(1592): Outer loop unrolled inside inner loop.

Outer loop unrolling is performed.

opt(1593): Loop nest collapsed into one loop.

Nested loop collapsing is performed.

opt(1772): Loop nest fused with following nest(s).

Loop fusion with following loop is performed.

opt(1800): Idiom detected (matrix multiply).

Replace matrix multiply loop with vectorized library call.

opt(3008): Reference within a conditional branch moved outside loop - use

"move" directive to suppress this optimization.

Unsafe memory reference under if-condition moved outside the loop.

opt(3012): Division within a conditional branch moved outside loop - use

"move" directive to suppress this optimization.

 Unsafe division under if-condition moved outside the loop.

opt(3013): Moved division within a conditional branch.

 Unsafe division under if-condition moved.

Appendix A Configuration file

- 275 -

opt(3014): Moved reference within a conditional branch.

 Unsafe memory reference under if-condition moved.

12.2 Runtime Error Messages

 Format

"Runtime Error:" is followed by line number, file name, and error message. Line

number and file name may not be displayed.

Runtime Error:[Line Number, File Name:] Error Message

 List of Error Messages

ADVANCE= specifier must be 'YES' or 'NO'

The value of the ADVANCE specifier in the READ statement or WRITE statement

is incorrect. The ADVANCE specifier must be either 'YES' or 'NO'.

ALLOCATABLE dimname is not currently allocated

The allocatable array dimname is not currently allocated. The array dimname

must be allocated.

ALLOCATE failed: Out of memory

Failed allocate due to out of memory. Check the memory size you are using and

review the program.

Array constructor implied DO limit expression value value is out of range for

index variable var type type

 Array constructor implied DO limit expression value value is out of range for index

 variable var type type. Change the value of the DO limit expression.

Array constructor implied DO step expression value value is out of range for

index variable var type type

 Array constructor implied DO step expression value value is out of range for index

 variable var type type. Change the value of the DO step expression.

Appendix A Configuration file

- 276 -

ASYNCHRONOUS= specifier must be 'NO' or 'YES'

The value of the ASYNCHRONOUS specifier in the OPEN statement is incorrect.

The ASYNCHRONOUS specifier must be either 'YES' or 'NO'.

Buffer overflow on output

The record buffer overflowed in the I/O statement. Verify that the value specified

in the environment variable VE_FORT_FMTBUF, VE_FORT_RECORDBUF or the

RECL specifier in the OPEN statement are greater than the size of the output

data.

Call to OMP_SET_MAX_ACTIVE_LEVELS from within a name region

The OMP_SET_MAX_ACTIVE_LEVELS was called from the name region. Check

the program.

Cannot allocate ALLOCATABLE variable - out of memory

Failed reserve for temporary area for ALLOCATABLE variable due to out of

memory. Check the memory size you are using and review the program.

Cannot allocate array temporary - out of memory

 Failed reserve for temporary area for array due to out of memory. Check the

 memory size you are using and review the program.

Cannot allocate I/O buffer in OPEN processing UNIT=unit-number

The OPEN statement for this unit-number failed to reserve an I/O buffer. Close the

unnecessary external unit identifier by CLOSE statement or changes the size of an

I/O buffer at the environment variable VE_FORT_SETBUF.

Cannot allocate initial memory - out of memory

Failed reserve for temporary area for initial memory due to out of memory. Check

the memory size you are using and review the program.

Cannot allocate memory for asynchronous i/o

Failed reserve for temporary area for asynchronous i/o. Change the number of the

input/output item for input/output statement.

Appendix A Configuration file

- 277 -

Cannot allocate memory for environment variable VE_FMTIO_OFFLOAD

Failed reserve for temporary area for environment variable

VE_FMTIO_OFFLOAD. You must not specify environment variable

VE_FMTIO_OFFLOAD.

Cannot allocate memory for environment variable VE_FORT_UFMTADJUST

Failed reserve for temporary area for environment variable

VE_FORT_UFMTADJUST. Change array size of the input/output item for

input/output statement.

Cannot allocate memory for environment variable VE_FORT_UFMTENDIAN

Failed reserve for temporary area for environment variable

VE_FORT_UFMTENDIAN. Change array size of the input/output item for

input/output statement.

Cannot allocate record buffer in OPEN processing UNIT=unit-number

The OPEN statement for this unit-number failed to reserve a record buffer. Close

the unnecessary external unit identifier by CLOSE statement or changes the size

of a record buffer at the environment variable VE_FORT_RECORDBUF.

Cannot BACKSPACE unformatted ACCESS='STREAM' unit Unit Number

BACKSPACE statements cannot be executed on an unformatting stream file. If

you want to use an unformatting stream file, delete the BACKSPACE statement.

If you want to execute the BACKSPACE statement, opens it to an unformatted

sequential file.

Cannot find OLD file

The file name specified in the OPEN statement with STATUS='OLD' does not

exist. Check the file name and correct if it is incorrect. If file name correct, correct

the value of the STATUS specifier in the OPEN statement.

Cannot get storage for automatic array - out of memory

 Failed reserve for temporary area for automatic array due to out of memory. Check

Appendix A Configuration file

- 278 -

 the memory size you are using and review the program.

Cannot get storage for variable - out of memory

 Failed reserve for temporary area for variable due to out of memory. Check the

 memory size you are using and review the program.

Character string edit descriptor does not terminate before format end

The character string edit descriptor is incorrect in the following manner. Correct

the format specification.

 - For H edit descriptor, there is no n characters following a character H.

 - For character string edit descriptor, there is no a right delimiter.

Character string edit descriptor used on input

Do not specify the character string edit descriptor in a format specification of input

statement. Correct the format specification of the input statement.

DECIMAL= specifier must be 'POINT' or 'COMMA'

The value of the DECIMAL specifier in the OPEN, READ or WRITE statement is

incorrect. The DECIMAL specifier must be either 'POINT' or 'COMMA'.

DELIM= specifier in OPEN for an UNFORMATTED file

UNFORMATTED is specified for the FORM specifier in the OPEN statement. In

this case, do not specify the DELIM specifier. If the external file is an unformatted

file, delete the DELIM specifier. Otherwise, correct the value of the FORM

specifier.

DIM argument (value) out of range 1:rank in intrinsic CSHIFT

The value of the DIM argument of intrinsic CSHIFT is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic EOSHIFT

The value of the DIM argument of intrinsic EOSHIFT is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic FINDLOC

Appendix A Configuration file

- 279 -

The value of the DIM argument of intrinsic FINDLOC is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic LBOUND

The value of the DIM argument of intrinsic LBOUND is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic MAXLOC

The value of the DIM argument of intrinsic MAXLOC is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic MAXVAL

The value of the DIM argument of intrinsic MAXVAL is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic MINLOC

The value of the DIM argument of intrinsic MINLOC is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic MINVAL

The value of the DIM argument of intrinsic MINVAL is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic SIZE

The value of the DIM argument of intrinsic SIZE is out of range. Change the value

of the DIM argument.

DIM argument (value) out of range 1:rank in intrinsic UBOUND

The value of the DIM argument of intrinsic UBOUND is out of range. Change the

value of the DIM argument.

DIM argument (value) out of range 1:rank+1 in intrinsic SPREAD

The value of the DIM argument of intrinsic SPREAD is out of range. Change the

value of the DIM argument.

Appendix A Configuration file

- 280 -

Direct access is incompatible with the POSITION= specifier

DIRECT is specified for the ACCESS specifier in the OPEN statement. In this case,

do not specify the POSITION specifier. If the external file is a direct file, delete

the POSITION specifier. Otherwise, correct the value of the ACCESS specifier.

DO limit expression value value is out of range for index variable var type type

 DO limit expression value value is out of range for index variable var type type.

 Change the value of the DO limit expression.

DO step expression value value is out of range for index variable var type type

 DO step expression value value is out of range for index variable var type type.

 Change the value of the DO step expression.

Element element of ORDER argument (value value) to intrinsic RESHAPE is out

of range (1:rank)

 The value of the ORDER argument of intrinsic RESHAPE is out of range. Change

 the value of the ORDER argument.

ENDFILE applied twice to unit Unit Number with no intervening file positioning

An attempt was made to execute an ENDFILE statement following execution of

an ENDFILE statement. An end-of-file cannot be output to a position after an

end-of-file record. Delete the second ENDFILE statement.

EXECUTE_COMMAND_LINE has WAIT=.FALSE., but asynchronous execution is

not supported

EXECUTE_COMMAND_LINE has WAIT=.FALSE., but asynchronous execution is

not supported. Check the program.

Expected decimal point in format specification

There is not decimal point in edit descriptors in FORMAT statements. Verify the

FORMAT statement.

Expected integer literal constant in format specification

Appendix A Configuration file

- 281 -

The form of edit description is incorrect. Possible cases include. Correct the format

specification.

 - The Iw.m, Zw.m, Ow.m, and Bw.m edit descriptors does not specify a value of

'm' (period specified).

 - The Dw.d, Fw.d, Ew.d, ENw.d, ESw.d, and Gw.d edit descriptors does not

specify a value of 'd' (period specified).

 - The Ew.dEe, ENw.dEe, ESw.dEe, and Gw.dEe edit descriptors does not specify a

value of 'e' (exponential character specified).

 - A sign is specified for 'k' in the kP edit descriptor, and then no number is

specified.

 - The TLn, TRn, and Tn edit descriptor does not specify a value of 'n'.

Expected P following signed integer constant in format specification

A number with a sign is followed by a character other than character P. The signed

numbers can only be specified for kP edit descriptor. Correct the format

specification.

Exponent too large for Dw.d format

The exponent too large for Dw.d edit descriptor. Explicitly specify the number of

exponent digits in the Ew.dEe edit descriptor. Note that changing to the Ew.dEe

format will change the exponential character from D to E.

Exponent too large for Ew.d format

The exponent too large for Ew.d edit descriptor. Explicitly specify the number of

exponent digits in the Ew.dEe edit descriptor.

F90_UNIX_DIR.GETCWD: Both NAME and LENNAME are not PRESENT

The GETCWD procedure in F90_UNIX_DIR module does not have a NAME and a

LENNAME. Check the program.

F90_UNIX_ENV.GETARG: Value of K (value) is out of range 0:num

The value of K for GETARG procedure in F90_UNIX_ENV module is out of range.

Check the program.

Appendix A Configuration file

- 282 -

F90_UNIX_ENV.GETENV(var): No such environment variable

There are no environment variables specified in GETENV procedure for

F90_UNIX_ENV module. Check the program.

F90_UNIX_ENV.ISATTY: LUNIT (value) is out of range

The logical device specification for ISATTY procedure in F90_UNIX_ENV module

is out of range. Check the program.

F90_UNIX_ENV.SYSCONF(value): Not a valid sysconf name

The sysconf name specified in SYSCONF procedure for F90_UNIX_ENV module

is not valid. Check the program.

F90_UNIX_ENV.SYSCONF(value): Result (value) too large for VAL

The result value of SYSCONF procedure for F90_UNIX_ENV module is too high.

Check the program.

F90_UNIX_ENV.TTYNAME: LUNIT (value) is out of range

The logical device specification for TTYNAME procedure in F90_UNIX_ENV

module is out of range. Check the program.

F90_UNIX_FILE.FSTAT: LUNIT (value) is out of range

The logical device specification for FSTAT procedure in F90_UNIX_FILE module

is out of range. Check the program.

F90_UNIX_IO.FLUSH: LUNIT (value) is out of range

The logical device specification for FLUSH procedure in F90_UNIX_IO module is

out of range. Check the program.

Field/exponent width or repeat in format specification must be non-zero

The field width or repeat factor cannot be zero. The field width or repeat factor

must be a positive integer value.

File name too long

The file path name specified when opens file is too long. The file path name must

be within 255 bytes.

Appendix A Configuration file

- 283 -

FILE= specifier on OPEN with STATUS='SCRATCH'

SCRATCH is specified for the STATUS specifier in the OPEN statement. In this

case, do not specify the FILE specifier. If the external file is a scratch file, delete

the FILE specifier. Otherwise, correct the value of the STATUS specifier.

Floating overflow on real number input

In the execution of input statement with a real data type, a large numeric value

out of the allowable range was specified. Improve the precision of a real data

type, or correct the input data.

FORALL limit expression value value is out of range for index variable var type

type

 DO limit expression value value is out of range for index variable var type type.

 Change the value of the DO limit expression.

FORALL step expression value value is out of range for index variable var type

type

 DO step expression value value is out of range for index variable var type type.

 Change the value of the DO step expression.

FORALL step value is zero for index variable var

 The FORALL syntax has zero steps. Non-zero.

Format specification does not end with a right parenthesis

The end of the format specification does not ending with the right parentheses.

Add right parentheses at the end of the format specification.

GET argument to intrinsic RANDOM_SEED is too small (value elements)

The value of GET argument to intrinsic RANDOM_SEED is too small. Review the

program.

I/O error on unit Unit Number: Disk quota exceeded

Writes failed because of disk quota limits at WRITE or CLOSE statements with

Appendix A Configuration file

- 284 -

this unit number. Verify the file system quota limit.

I/O error on unit Unit Number: Permission denied

Accesses failed because of no file permissions for this unit number. Verify the

permission of specified file.

Illegal character '' in LOGICAL input field

For a logical type data input, a character in the input data is not acceptable.

Correct the input data. Incorrect unit for VE_FORT_MEM_BLOCKSIZE.

An incorrect unit was specified for the environment variable

VE_FORT_MEM_BLOCKSIZE. Verify that the unit of value specified in the

environment variable VE_FORT_MEM_BLOCKSIZE is using "G" or "M".

Input list bigger than record length in unformatted READ on unit Unit Number

Input statement was attempted in excess of a record length with an unformatted

input statement. Correct the unformatted input statement so that input does not

exceed the record length.

Input value too large for default INTEGER type

In the execution of input statement with a default integer data type, an integer

value out of the allowable range was specified. Correct the input data.

Input value too large for INTEGER(KIND=1)

In the execution of input statement with 1 byte integer data type, an integer value

out of the allowable range was specified. Correct the input data.

Input value too large for INTEGER(KIND=2)

In the execution of input statement with 2 bytes integer data type, an integer

value out of the allowable range was specified. Correct the input data.

Internal file overflow

The internal file in the I/O statement is overflowed. Verify that the size of scalar

character variables specified in the internal file is greater than the size of output

data.

Appendix A Configuration file

- 285 -

Invalid character in binary integer input field

For a binary data input, a character in the input data is not acceptable. Correct the

input data.

Invalid character in hexadecimal integer input field

For a hexadecimal data input, a character in the input data is not acceptable.

Correct the input data.

Invalid character in integer input field

For an integer type data input, a character in the input data is not acceptable.

Correct the input data.

Invalid character in octal integer input field

For an octal data input, a character in the input data is not acceptable. Correct the

input data.

Invalid character in real input field

For a real type data input, a character in the input data is not acceptable. Correct

the input data.

Invalid character value in NAMELIST input

The value of the NAMELIST input is not acceptable. Change the value of the

character.

Invalid edit descriptor beginning with 'edit character'

There are incorrect characters in the format specification. Correct the format

specification.

Invalid edit descriptor for character i/o-list item

There is an incorrect edit descriptor in a format specification for the input/output

list item of a character type. Correct the edit descriptor.

Invalid edit descriptor for integer i/o-list item

There is an incorrect edit descriptor in a format specification for the input/output

Appendix A Configuration file

- 286 -

list item of an integer type. Correct the edit descriptor.

Invalid edit descriptor for logical i/o-list item

There is an incorrect edit descriptor in a format specification for the input/output

list item of a logical type. Correct the edit descriptor.

Invalid edit descriptor for real i/o-list item

There is an incorrect edit descriptor in a format specification for the input/output

list item of a real type. Correct the edit descriptor.

Invalid edit descriptor G0.d for CHARACTER input/output item

An incorrect edit descriptor G0.d in a format specification for the input/output list

item of a character type is specified. The width must be 1 or higher.

Invalid edit descriptor G0.d for INTEGER input/output item

An incorrect edit descriptor G0.d in a format specification for the input/output list

item of an integer type is specified. The width must be 1 or higher.

Invalid edit descriptor G0.d for LOGICAL input/output item

An incorrect edit descriptor G0.d in a format specification for the input/output list

item of a logical type is specified. The width must be 1 or higher.

Invalid exponent in real input field

For a real type data input, the exponent data in the input data is not acceptable.

Correct the input data.

Invalid input for character editing

For the execution of input statement with a character data type, the form of a

character input value is not acceptable. Correct the input data.

Invalid input for complex editing

For the execution of input statement with a complex data type, the form of a

complex input value is not acceptable. Correct the input data.

Invalid input for integer editing

Appendix A Configuration file

- 287 -

For the execution of input statement with an integer data type, the form of an

integer input value is not acceptable. Correct the input data.

Invalid input for logical editing

For the execution of input statement with a logical data type, the form of a logical

input value is not acceptable. Correct the input data.

Invalid input for real editing

For the execution of input statement with a real data type, the form of a real input

value is not acceptable. Correct the input data.

Invalid value for ACCESS= specifier

The value of the ACCESS specifier in the OPEN statement is incorrect. The

ACCESS specifier must be 'SEQUENTIAL', 'DIRECT', 'STREAM' or 'APPEND'.

Invalid value for ACTION= specifier

The value of the ACTION specifier in the OPEN statement is incorrect. The

ACTION specifier must be 'READWRITE', 'READ' or 'WRITE'.

Invalid value for BLANK= specifier

The value of the BLANK specifier in the OPEN or READ statement is incorrect.

The BLANK specifier must be either 'NULL' or 'ZERO'.

Invalid value for DELIM= specifier

The value of the DELIM specifier in the OPEN or WRITE statement is incorrect.

The DELIM specifier must be 'NONE', 'APOSTROPHE' or 'QUOTE'.

Invalid value for FORM= specifier

The value of the FORM specifier in the OPEN statement is incorrect. The FORM

specifier must be either 'FORMATTED' or 'UNFORMATTED'.

Invalid value for PAD= specifier

The value of the PAD specifier in the OPEN or READ statement is incorrect. The

PAD specifier must be either 'YES' or 'NO'.

Appendix A Configuration file

- 288 -

Invalid value for POS= specifier

The POS specifier for the READ or WRITE statement is incorrect. Correct the

POS specifier value as that greater than or equal to 1.

Invalid value for POSITION= specifier

The value of the POSITION specifier in the OPEN statement is incorrect. The

POSITION specifier must be 'ASIS', 'REWIND' or 'APPEND'.

Invalid value for RECL= specifier (must be positive)

The value of the RECL specifier in the OPEN statement is incorrect. Correct so

that the value is positive integer.

Invalid value for ROUND= specifier

The value of the ROUND specifier in the OPEN, READ or WRITE statement is

incorrect. The ROUND specifier must be 'PROCESSOR_DEFINED', 'UP', 'DOWN',

'ZERO', 'NEAREST' or 'COMPATIBLE'.

Invalid value for STATUS= specifier

The value of the STATUS specifier in the OPEN or CLOSE statement is incorrect.

The STATUS specifier must be either 'KEEP' or 'DELETE'.

Invalid value for VE_FORT_MEM_BLOCKSIZE.

An incorrect value was specified for the environment variable

VE_FORT_MEM_BLOCKSIZE. Verify that the value specified in the environment

variable VE_FORT_MEM_BLOCKSIZE is 0 or power of 2.

Invalid value of VE_INIT_HEAP.

An incorrect value was specified for the environment variable VE_INIT_HEAP.

Verify that the value specified in the environment variable VE_INIT_HEAP.

Left-hand side of assignment has duplicate vector subscript value value for

dimension dim

The vector subscript for dimension dim on the left side duplicates in the

Appendix A Configuration file

- 289 -

assignment. Check the program.

Left-hand side of assignment has vector subscript name with duplicate value

value

The vector subscript on the left side duplicates in the assignment. Check the

program.

LEN argument (value) out of range 0:bitsize in intrinsic IBITS

The value of the LEN argument of intrinsic IBITS is out of range. Change the value

of the LEN argument.

Missing length of H edit descriptor

There is no number of characters before a character H in H edit descriptor on a

format specification. Correct the format specification.

Multiple assignment to scalar var in FORALL

Scalar var in the FORALL syntax have been assigned multiple times. Scalar var

must be assigned only once.

Multiple assignment to scalar variable in FORALL

Scalar variables in the FORALL syntax have been assigned multiple times. Scalar

variables must be assigned only once.

Multiple assignment to whole array var in FORALL

The same element of an array in the FORALL syntax has been assigned multiple

times. The same element must be only assigned to it once.

Nested format-item-list is empty

There is no edit descriptor specified in nested of a format specification. Specify

edit descriptor in nested of a format specification, or delete unnecessary nest of a

format specification.

NEW file already exists

A file specified in the OPEN statement with STATUS='NEW' already exists. Check

the file name and correct if it is incorrect. If file name correct, correct the value of

Appendix A Configuration file

- 290 -

the STATUS specifier in the OPEN statement.

NEWUNIT= specifier but no FILE= and STATUS= value is not 'SCRATCH'

The NEWUNIT specifier is specified for the OPEN statement, but the FILE

specifier is not specified, and the value of the STATUS specifier is not SCRATCH.

When opens a file on an unused unit number that is automatically chosen, specify

the external file name in the FILE specifier or specify the scratch file with

STATUS='SCRATCH' .Otherwise, use UNIT specifier instead of NEWUNIT

specifier.

No data edit descriptor in unlimited format item

Unlimited repeat factor was specified in a format specification, but there is no data

edit descriptor specified on the target nest. If you specify unlimited repeat factor,

specify a data edit descriptor on the target nest. If you don't need a data edit

descriptor, correct the format specification so that unlimited repeat factor are not

used.

No edit descriptor following repeat factor

There is no edit descriptor following repeat factor in a format specification. Correct

the format specification.

No FILE= specifier with STATUS='REPLACE' or STATUS='NEW'

REPLACE or NEW is specified to the STATUS specifier in the OPEN statement,

but the FILE specifier is not specified. When specifying REPLACE or NEW to the

STATUS specifier in the OPEN statement, the FILE specifier must also be

specified. Otherwise, correct the value of the STATUS specifier.

No left parenthesis after unlimited repeat factor '*'

There is not specified left parenthesis after unlimited repeat factor in a format

specification. If you want the unlimited repeat factor, specify left parenthesis after

unlimited repeat factor. Otherwise, delete unlimited repeat factor.

No unit available for NEWUNIT= specifier

The NEWUNIT specifier is specified for the OPEN statement, but number of

opens a file on an unused unit number that is automatically chosen has exceeded

Appendix A Configuration file

- 291 -

the limit. Close unnecessary files.

No value found in LOGICAL input field

For a logical type data input, a character in the input data is not acceptable.

Correct the input data.

OPEN on connected unit Unit Number has different ACCESS= specifier

A different value from when the external file was connected is specified as the

value of ACCESS specifier in the OPEN statement. Change the value of the

ACCESS specifier to the same value. If you want to connect the external file with

a new value, execute the OPEN statement after close the file.

OPEN on connected unit Unit Number has different ACTION= specifier

The ACTION specifier value of the OPEN statement for a device that is already

connected is different than before. Change the value of the ACTION specifier to

the same value. If you want to connect with a new value, close the device and

then run the OPEN statement.

OPEN on connected unit Unit Number has different ASYNCHRONOUS= specifier

A different value from when the external file was connected is specified as the

value of ASYNCHRONOUS specifier in the OPEN statement. Change the value of

the ASYNCHRONOUS specifier to the same value. If you want to connect the

external file with a new value, execute the OPEN statement after close the file.

OPEN on connected unit Unit Number has different FORM= specifier

A different value from when the external file was connected is specified as the

value of FORM specifier in the OPEN statement. Change the value of the FORM

specifier to the same value. If you want to connect the external file with a new

value, execute the OPEN statement after close the file.

OPEN on connected unit Unit Number has different POSITION= specifier

A different value from when the external file was connected is specified as the

value of POSITION specifier in the OPEN statement. Change the value of the

POSITION specifier to the same value. If you want to connect the external file

with a new value, execute the OPEN statement after close the file.

Appendix A Configuration file

- 292 -

OPEN on connected unit Unit Number has different RECL= specifier

A different value from when the external file was connected is specified as the

value of RECL specifier in the OPEN statement. Change the value of the RECL

specifier to the same value. If you want to connect the external file with a new

value, execute the OPEN statement after close the file.

OPEN on connected unit Unit Number with STATUS= specifier must have

STATUS='OLD'

The external file is connected, but the value of the STATUS specifier in the OPEN

statement is not OLD. Change the STATUS specifier value to OLD.

Out of memory

Not enough memory to run with temporary area. Check the memory size you are

using and review the program.

Out of memory in intrinsic ADJUSTL

Not enough memory to run for intrinsic function ADJUSTL with temporary area.

Check the memory size you are using and review the program.

Out of memory in intrinsic ADJUSTR

Not enough memory to run for intrinsic function ADJUSTR with temporary area.

Check the memory size you are using and review the program.

Out of memory in intrinsic EXECUTE_COMMAND_LINE

Not enough memory to run for intrinsic function EXECUTE_COMMAND_LINE

with temporary area. Check the memory size you are using and review the

program.

Out of memory in intrinsic PACK

Not enough memory to run for intrinsic function PACK with temporary area.

Check the memory size you are using and review the program.

Out of memory in intrinsic RESHAPE

Not enough memory to run for intrinsic function RESHAPE with temporary area.

Appendix A Configuration file

- 293 -

Check the memory size you are using and review the program.

Out of memory in intrinsic SPREAD

Not enough memory to run for intrinsic function SPREAD with temporary area.

Check the memory size you are using and review the program.

Out of range: substring ending position envpos is greater than length len

Substring ending position is greater than length. The value in the range must be

specified.

Out of range: substring starting position startpos is less than 1

Substring starting position is less than 1. 1 or more must be specified.

POS argument (value) out of range 0:bitsize in intrinsic IBCLR

The value of the POS argument of intrinsic IBCLR is out of range. Change the

value of the POS argument.

POS argument (value) out of range 0:bitsize in intrinsic IBITS

The value of the POS argument of intrinsic IBITS is out of range. Change the value

of the POS argument.

POS argument (value) out of range 0:bitsize in intrinsic IBSET

The value of the POS argument of intrinsic IBSET is out of range. Change the

value of the POS argument.

POS= specifier but unit Unit Number is not open for STREAM i/o

UNFORMATTED is specified for the FORM specifier in the OPEN statement. In

this case, do not specify the PAD specifier. If the external file is an unformatted

file, delete the PAD specifier. Otherwise, correct the value of the FORM specifier.

PUT argument to intrinsic RANDOM_SEED is too small (value elements)

The value of PUT argument to intrinsic RANDOM_SEED is too small. Review the

program.

Appendix A Configuration file

- 294 -

READ after WRITE with no intervening file positioning

An attempt was made to execute an input statement following the execution of an

output statement for an external file connected as a sequential access file.

Alternatively, an attempt was made to execute an input statement without a POS

specifier following the execution of an output statement for an external file

connected as a stream access. Correct so that a REWIND statement is executed

before the input statement. Alternatively, correct so that specify a POS specifier in

the READ statement for the stream file.

READ/WRITE attempted after ENDFILE on unit Unit Number

An attempt was made to execute an input or output statement following execution

of an ENDFILE statement for an external file connected as a sequential access

file. Alternatively, an attempt was made to execute an input or output statement

immediately after an end-of-file condition. A record cannot be output to a position

after an end-of-file. Correct so that a REWIND statement is executed before the

input statement. Alternatively, when you are adding a record immediately before

the end-of-file, correct so that a BACKSPACE statement is executed before the

output statement.

RECL= specifier with ACCESS='STREAM'

STREAM is specified for the ACCESS specifier in the OPEN statement. In this

case, do not specify the RECL specifier. If the external file is a stream file, delete

the RECL specifier. Otherwise, correct the value of the ACCESS specifier.

Record longer than 2GB not supported

The record size exceeded 2 gigabytes in Sequential File Unformatted Record I/O.

When this message is output at the input, check the endian format of the input

data. If the endian format is Big Endian, specify environment variable

VE_FORT_UFMTENDIAN. Otherwise, specify environment variable

VE_FORT_EXPRCW or VE_FORT_SUBRCW.

Record number Record Number out of range

The REC specifier for the READ or WRITE statement is incorrect. Correct the REC

specifier value as that greater than or equal to 1.

Appendix A Configuration file

- 295 -

Reference to dangling pointer

Referring to dangling pointer. Review the program.

Reference to dangling pointer name

Referring to dangling pointer name. Review the program.

Reference to disassociated POINTER

Referring to disassociated pointer. Review the program.

Reference to disassociated POINTER name

Referring to disassociated pointer name. Review the program.

Reference to undefined POINTER

Referring to undefined pointer. Review the program.

Reference to undefined POINTER name

Referring to undefined pointer name. Review the program.

Repeat factor given for blank-interpretation edit descriptor

Do not specify the repeat factor to blank interpretation edit descriptor in a format

specification. Correct the format specification.

Repeat factor given for character string edit descriptor

Do not specify the repeat factor to character string edit descriptor in a format

specification. Correct the format specification.

Repeat factor given for position edit descriptor

Do not specify the repeat factor to position edit descriptor in a format

specification. Correct the format specification.

Repeat factor given for rounding edit descriptor

Do not specify the repeat factor to round edit descriptor in a format specification.

Correct the format specification.

Appendix A Configuration file

- 296 -

Repeat factor given for sign edit descriptor

Do not specify the repeat factor to sign edit descriptor in a format specification.

Correct the format specification.

Scale factor num out of range for d=num

The value of scale factor is out of range. Check the program.

SHIFT argument (value) out of range -bitsize:bitsize in intrinsic ISHFT

The value of the SHIFT argument of intrinsic ISHFT is out of range. Change the

value of the SHIFT argument.

SHIFT argument (value) out of range -size:size in intrinsic ISHFTC

The value of the SHIFT argument of intrinsic ISHFTC is out of range. Change the

value of the SHIFT argument.

Sign in a numeric input field not followed by any digits

For an integer or real type data input, sign in a numeric input field is not followed

by any digits. Correct the input data.

SIGN= specifier must be 'PROCESSOR_DEFINED', 'PLUS' or 'SUPPRESS'

The value of the SIGN specifier in the OPEN or WRITE statement is incorrect.

The SIGN specifier must be 'PROCESSOR_DEFINED', 'PLUS' or 'SUPPRESS'.

SIZE argument (value) out of range 1:maxsize in intrinsic ISHFTC

The value of the SIZE argument of intrinsic ISHFTC is out of range. Change the

value of the SIZE argument.

SIZE= is not valid without ADVANCE='NO'

NO is not specified for the ADVANCE specifier in the READ statement. In this

case, do not specify the SIZE specifier. If the READ statement uses advancing

input, delete the SIZE specifier. Otherwise, specify NO to the value of the

ADVANCE specifier.

STATUS='KEEP' is invalid for a SCRATCH file

Appendix A Configuration file

- 297 -

The STATUS specifier in the CLOSE statement for SCRATCH file is KEEP. Correct

the value of the STATUS specifier for the CLOSE statement to DELETE, or correct

the value of the STATUS specifier for the OPEN statement to anything other than

SCRATCH.

Subscript (value) out of range in input for object objname of

NAMELIST/namelist/

The subscript value of the array is out of range in input for object of NAMELIST.

Change the value of the subscript.

Subscript out of range for assumed-size array name - Access to element value

but actual argument has only value elements

The subscript value of the assumed-size array name is out of range. Change the

value of the subscript.

Subscript rank of dimname (value value) is out of range (lower:*)

The subscript value of the array is out of range. Change the subscript value of the

array.

Subscript rank of dimname (value value) is out of range (lower:upper)

The subscript value of the array is out of range. Change the subscript value of the

array.

Substring (lower:upper) out of bounds in input for object objname of

NAMELIST/namelist/

The subscript value of the array is out of range in input for object of NAMELIST.

Change the value of the subscript.

Substring has zero length in input for object objname of NAMELIST/namelist/

The subscript has zero length in input for object of NAMELIST. Change the value of

the subscript.

Sub-format groups nested too deeply

Parentheses in a format specification have a nest of more than 40. The number of

Appendix A Configuration file

- 298 -

nests should be within 40.

The RECL= specifier must be given for DIRECT access OPEN

DIRECT is specified to the ACCESS specifier of the OPEN statement, but the

RECL specifier is not specified. When specifying DIRECT to the ACCESS specifier

in the OPEN statement, the RECL specifier must also be specified. Otherwise,

correct the value of the ACCESS specifier.

Undefined pointer name used as argument to intrinsic function ASSOCIATED

An undefined pointer name is used as argument to intrinsic function

ASSOCIATED. Review the program.

Undefined pointer name used as argument to intrinsic function

EXTENDS_TYPE_OF

An undefined pointer name is used as argument to intrinsic function

EXTENDS_TYPE_OF. Review the program.

Undefined pointer name used as argument to intrinsic function

SAME_TYPE_AS

An undefined pointer name is used as argument to intrinsic function

SAME_TYPE_AS. Review the program.

Undefined pointer name used as argument to intrinsic function STORAGE_SIZE

An undefined pointer name is used as argument to intrinsic function

STORAGE_SIZE. Review the program.

Undefined pointer used as argument to intrinsic function ASSOCIATED

An undefined pointer is used as argument to intrinsic function ASSOCIATED.

Review the program.

Undefined pointer used as argument to intrinsic function EXTENDS_TYPE_OF

An undefined pointer is used as argument to intrinsic function

EXTENDS_TYPE_OF. Review the program.

Undefined pointer used as argument to intrinsic function SAME_TYPE_AS

Appendix A Configuration file

- 299 -

An undefined pointer is used as argument to intrinsic function SAME_TYPE_AS.

Review the program.

Undefined pointer used as argument to intrinsic function STORAGE_SIZE

An undefined pointer is used as argument to intrinsic function STORAGE_SIZE.

Review the program.

Undefined polymorphic pointer name used as argument to intrinsic function

ASSOCIATED

An undefined polymorphic pointer name used as argument to intrinsic function

ASSOCIATED. Review the program.

Undefined polymorphic pointer name used as argument to intrinsic function

EXTENDS_TYPE_OF

An undefined polymorphic pointer name used as argument to intrinsic function

EXTENDS_TYPE_OF. Review the program.

Undefined polymorphic pointer name used as argument to intrinsic function

SAME_TYPE_AS

An undefined polymorphic pointer name used as argument to intrinsic function

SAME_TYPE_AS. Review the program.

Undefined polymorphic pointer name used as argument to intrinsic function

STORAGE_SIZE

An undefined polymorphic pointer name used as argument to intrinsic function

STORAGE_SIZE. Review the program.

Undefined polymorphic pointer used as argument to intrinsic function

ASSOCIATED

An undefined polymorphic pointer used as argument to intrinsic function

ASSOCIATED. Review the program.

Undefined polymorphic pointer used as argument to intrinsic function

EXTENDS_TYPE_OF

Appendix A Configuration file

- 300 -

An undefined polymorphic pointer used as argument to intrinsic function

EXTENDS_TYPE_OF. Review the program.

Undefined polymorphic pointer used as argument to intrinsic function

SAME_TYPE_AS

An undefined polymorphic pointer used as argument to intrinsic function

SAME_TYPE_AS. Review the program.

Undefined polymorphic pointer used as argument to intrinsic function

STORAGE_SIZE

An undefined polymorphic pointer used as argument to intrinsic function

STORAGE_SIZE. Review the program.

Unexpected exponent for G0 edit descriptor

Zero was specified to width for Gw.dEe edit descriptor. If you want the width to be

zero, correct to Gw.d edit descriptor. Otherwise, specify the positive value to the

width.

Unexpected subscript for object objname of NAMELIST/namelist/

The subscript is an unexpected for object of NAMELIST. Change the value of the

subscript.

Unit number Unit Number out of range

The value of the UNIT specifier is incorrect. The UNIT specifier must be an

integer value from 0 to 2147483647 or a value returned to the NEWUNIT

specifier in the OPEN statement.

Unit Unit Number is not connected

The specified external unit is not connected to file. Correct so that the file is

opened before executing the input/output statement for the specified external

unit.

Unit Unit Number is not connected for DIRECT i/o

An attempt was made to execute the sequential or stream access input/output

Appendix A Configuration file

- 301 -

statement on a file connected as a direct access file. Correct to the direct access

input/output statement, or correct so that the file is connected by the sequential

or stream access file.

Unit Unit Number is not connected for FORMATTED i/o

An attempt was made to execute a formatted input/output statement on a file

connected as an unformatted file. Correct to the unformatted input/output

statement, or correct so that the file is connected by a formatted file.

Unit Unit Number is not connected for READ action

An attempt was made to output to an external file for which input only is

permitted. Correct the external unit number if it is wrong. Otherwise, connect that

external unit number to a file which accepts output with an OPEN statement.

Unit Unit Number is not connected for SEQUENTIAL i/o

An attempt was made to execute a sequential access input/output statement on a

file connected as a direct access file. Correct to the direct access input/output

statement, or correct so that the file is connected by a sequential access file.

Unit Unit Number is not connected for UNFORMATTED i/o

An attempt was made to execute an unformatted input/output statement on a file

connected as a formatted file. Correct to the formatted input/output statement, or

correct so that the file is connected by an unformatted file.

Unit Unit Number is not connected for WRITE action

An attempt was made to input from an external file for which output only is

permitted. Correct the external unit number if it is wrong. Otherwise, connect that

external unit number to a file which accepts input with an OPEN statement.

Unit Unit Number is not connected on OPEN with STATUS='OLD' and no FILE=

specifier

OLD is specified for the STATUS specifier in the OPEN statement, but the FILE

specifier is not. When specifying OLD for the STATUS specifier in the OPEN

statement, the FILE specifier must also be specified. Otherwise, correct the value

Appendix A Configuration file

- 302 -

of the STATUS specifier.

VALUE argument (value) to intrinsic ATOMIC_ADD is out of range

The value of argument to intrinsic function ATOMIC_ADD is out of range. Check

the program.

VALUE argument (value) to intrinsic ATOMIC_AND is out of range

The value of argument to intrinsic function ATOMIC_AND is out of range. Check

the program.

VALUE argument (value) to intrinsic ATOMIC_FETCH_ADD is out of range

The value of argument to intrinsic function ATOMIC_FETCH_ADD is out of range.

Check the program.

VALUE argument (value) to intrinsic ATOMIC_FETCH_AND is out of range

The value of argument to intrinsic function ATOMIC_FETCH_AND is out of range.

Check the program.

VALUE argument (value) to intrinsic ATOMIC_FETCH_OR is out of range

The value of argument to intrinsic function ATOMIC_FETCH_OR is out of range.

Check the program.

VALUE argument (value) to intrinsic ATOMIC_FETCH_XOR is out of range

The value of argument to intrinsic function ATOMIC_FETCH_XOR is out of range.

Check the program.

VALUE argument (value) to intrinsic ATOMIC_OR is out of range

The value of argument to intrinsic function ATOMIC_OR is out of range. Check the

program.

VALUE argument (value) to intrinsic ATOMIC_XOR is out of range

The value of argument to intrinsic function ATOMIC_XOR is out of range. Check

the program.

VALUES argument to intrinsic DATE_AND_TIME is too small (value elements)

Appendix A Configuration file

- 303 -

The value of VALUES argument to intrinsic DATE_AND_TIME is too small. Review

the program.

Value value of KIND argument to OMP_SET_SCHEDULE is out of range 1:4

The value of KIND argument to OMP_SET_SCHEDULE is out of range. The value

must be an integer value from 1 to 4.

Value value of MAX_LEVELS argument to OMP_SET_MAX_ACTIVE_LEVELS is

negative

The value specified for the OMP_SET_MAX_ACTIVE_LEVELS is negative. Must be a

positive integer.

Value value of NUM_THREADS argument to OMP_SET_NUM_THREADS is

greater than maximum num

The value specified for the OMP_SET_NUM_THREADS exceeds the maximum

value. Must be in the range.

Value value of NUM_THREADS argument to OMP_SET_NUM_THREADS is not

positive

The value specified for the OMP_SET_NUM_THREADS is not positive. Must be a

positive integer.

var has not been assigned a branch target label

Var has not been assigned a branch target label. Review the program.

Vector subscript for rank rank of name has extent value instead of value

The vector subscript size of the rank dimension is incorrect. Change the value of

the vector subscript.

WRITE operation failed on unit Unit Number: Disk quota exceeded

Writes failed because of disk quota limits at WRITE statements with this unit

number. Verify the file system quota limit.

Zero repeat factor in list-directed input

Appendix A Configuration file

- 304 -

For the r*c form of a list-directed input value, the repeat factor r is zero. Correct

the repeat factor r to 1 or higher.

Zero stride value for subscript num of name

The stride value for subscript is zero. Change the stride value.

12.3 Other Runtime Error

Compatibility Error: veos (older than v2.6.0) and ve_exec (vVEOS-verision) are

not compatible

veos version is old, so it does not have compatibility with ve_exec. If VE program

is running on a container, please install the latest veos packages to the host

machine.

Compatibility Error: veos (vVEOS-version-A) and ve_exec (vVEOS-verision-B) are

not compatible

veos version is old, so it does not have compatibility with ve_exec. If VE program

is running on a container, please install the latest veos packages to the host

machine.

Failed to load EXEC DATA (fixed): Error Message

Failed to load the data of exec file. VE memory shortage may be occurred. If there

is executing VE process, please terminate it or reduce the size of data. You can

refer to the VE memory capacity and VE memory usage with

“/opt/nec/ve/bin/free -h”.

Failed to load EXEC DATA (fixed, fileback): Error Message

Failed to load the data of exec file. VE memory shortage may be occurred. If there

is executing VE process, please terminate it or reduce the size of data. You can

refer to the VE memory capacity and VE memory usage with

“/opt/nec/ve/bin/free -h”.

Unable to grow stack

Size of stack is not enough. As following example, please increase the limit of the

Appendix A Configuration file

- 305 -

available stack size with the environment variable VE_LIMIT_OPT.

export VE_LIMIT_OPT="-s 8192"

You can refer to the current limit of stack size by ve_exec command with “—show-

limit” as the argument.

$ ve_exec --show-limit

core file size (blocks, -c) 0 0

data seg size (kbytes, -d) unlimited unlimited

pending signals (-i) 379523 379523

max memory size (kbytes, -m) unlimited unlimited

stack size (kbytes, -s) unlimited unlimited <--

cpu time (seconds, -t) unlimited unlimited

virtual memory (kbytes, -v) unlimited unlimited

VE Node node-number is UNAVAILABLE

The VE card whose number is node-number is fault occurs. Please use other VE

node to execute job.

Appendix A Configuration file

- 306 -

Chapter13 Troubleshooting

13.1 Troubleshooting for compilation

The error "Fatal: License: Unknown host." occurs.

There is a possibility that the problem that the machine can't access a license

server occurs to the time of license check of a compiler. Please refer to the FAQ

indicated on a following page of HPC software license issue.

https://www.hpc-license.nec.com/aurora/

When not solving it, please contact us from the said page.

The error "Invalid #line directive" occurs.

Directive of preprocessors such as "#if, #include" is used. Please compile with -

fpp.

The error "Cannot find module：..." occurs.

A module was used, but the compiler could not find the module file (*.mod).

Please confirm whether a module file exists in the directory by which a compiler

searches a module file. Please refer to "1.6 Searching Module Files" about the

directory a compiler searches.

The error "not a valid module information file" occurs.

There is a possibility that a module file was compiled by an old compiler or is

broken. Please remake a module file (*.mod).

The error "Syntax error" occurs at a compiler directive.

Please confirm whether the spelling of compiler directive and the how to use

aren't wrong. When it's an error to compiler directive of a SX compiler, please

change to it of a VE compiler by a compiler directive line change tool.

Please refer to "Appendix E Compiler Directive Conversion Tool" to confirm the

usage of the tool.

The error "Error: Invalid suffix" occurs.

There is a possibility that binutils-ve package is old. Please confirm whether

Appendix A Configuration file

- 307 -

binutils-ve package is the latest edition.

When using a module file, a header file and a library, I want to confirm the

directory to which a compiler and a linker refer.

Please refer to "1.6 Searching Module Files ", "1.7 Searching files included by

INCLUDE line or #include directive" and "1.8 Searching Libraries".

The error "undefined reference to 'ftrace_region_begin_' /

'ftrace_region_end_'" occurs at linking.

The FTRACE function is used. Specify -ftrace at linking.

Please refer to "PROGINF/FTRACE User's guide" about the FTRACE function.

$ nfort a.o b.o -ftrace

The error "undefined reference to '__vthr$_barrier'" occurs at linking.

Please specify -mparallel or -fopenmp at linking.

The error "undefined reference to '__vthr$_pcall_va'" occurs at linking.

Please specify -mparallel or -fopenmp at linking.

The error "cannot find -lveproginf" and "cannot find -lveperfcnt" occurs at

linking.

Please install nec-veperf package.

When compiling a program which code size is large, the compiler aborts by

SIGSEGV.

The stack size needed by the compiler may exceed upper limit of the setting. It

may solve to extend the upper limit of it. It can be confirm and setting to invoke

“ulimit -s” as follows. Please increase the upper limit of stack size and recompile

the program.

$ ulimit –s (Check the current limit)

8192

$ ulimit –s 16384 (Change the limit)

Appendix A Configuration file

- 308 -

The compiler aborts by SIGKILL.

The memory of the machine may be exhausted. The memory used amount can be

somewhat reduced to compile with -O0 or -O1.

I want to confirm whether they are executable file for VE.

Please execute "/opt/nec/ve/bin/nreadelf -h" that specified the executable file as

an argument of command. When "NEC VE architecture" is output in the line of

"Machine:", it show that a file is an executable file for VE.

$ /opt/nec/ve/bin/nreadelf -h a.out

ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC (Executable file)

 Machine: NEC VE architecture

 (...)

I want to confirm whether they are object file for VE3.

Please execute "/opt/nec/ve/bin/nreadelf -h" that specified the object file as an

argument of command. When the last digit output in the line of "Flags:" is "0", it

show that a file is an object file for VE1; when it is "1", it show that a file is an

object file for VE3. In the following example, the last digit output in the line of

"Flags:" is "1", so it show that a file is an object file for VE3.

$ /opt/nec/ve/bin/nreadelf -h a.o

ELF Header:

 (...)

 Version: 0x1

 Start of program headers: 0 (bytes into file)

 Start of section headers: 720 (bytes into file)

 Flags: 0x10101

 (...)

When linking OpenMP and automatic parallelized program, which of -fopenmp

and -mparallel should I specify?

Appendix A Configuration file

- 309 -

Please specify either -fopenmp or -mparallel.

$ nfort -c -mparallel a.f90

$ nfort -c -fopenmp b.f90

$ nfort -fopenmp a.o b.o

When specifying -fcheck, compilation time becomes so long.

It becomes long because check code is inserted at compilation. Please specify

-fcheck to only the source file which includes procedure which need check.

When specifying -fcheck, execution time becomes so long.

It becomes long because check code is executed. Please specify -fcheck to only

the source file which includes procedure which need check.

When specifying -ftrace, execution time becomes so long.

It becomes long because extra routines for getting performance information are

executed at entrance/exit of procedures and user specified region.

Please specify -ftrace to only the source file which includes routine which

performance information is required.

Even if setting value bigger than 8 to OMP_NUM_THREADS, threads more than

8 is not generated.

8 threads are the upper limit because the number of cores of VE is 8.

I want to know the name of predefined macro and the value.

Please refer to “9.2.4 Predefined Macro”.

I want to preprocess Fortran program.

Please compile the program with -fpp.

I want to link Fortran program and C/C++ program.

Please refer to “10.6 Linking”.

I want to change the options of SX series to it of Vector Engine.

Please change it to refer to “Appendix B SX Compatibility”.

Appendix A Configuration file

- 310 -

I want to change the compiler directives of SX series to it of Vector Engine.

Please use the “Compiler Directive Conversion Tool” or change by hand by

confirming “Appendix B SX Compatibility”. Please refer to “Appendix C Compiler

Directive Conversion Tool” about the tool.

The variable or routine name which name is “$” and number as ‘$1’ is

displayed in diagnostic message. What is it?

It is created by compiler to do vectorization and parallelization.

The type name as “DOUBLE” or “float” is displayed instead of variable name in

diagnostic message. What is it?

It is unnamed variable created by compiler to do vectorization and parallelization.

It is displayed type name because it has no name.

The message “Internal error detected -- please report.” is output.

When compilation is not stopped at the message output, the compiler recover the

error and continues compiling. In this case, created object file can be used

without problems. When compilation is stopped, please contact us from the NEC

support portal site.

The following message is output though ALLOCATE or DEALLOCATE statement

is not in a loop.

vec(181): Allocation obstructs vectorization.

vec(182): Deallocation obstructs vectorization.

This message is output when the compiler needed to allocate and deallocate an

area at execution to realize language specification of Fortran. It may occur when

passing argument or return value at inlining a procedure.

I want to know about difference between -bss and -save.

In case of variable of SAVE attribute, initialized value in a routine is return value of

called last time. In case of -bss, it is not guaranteed.

Appendix A Configuration file

- 311 -

A compiler option which is not specified in command line is enabled.

A compiler option may be specified in option file. Please refer to “1.5 Specifying

Compiler Options” to confirm details of option file.

I want to confirm version of the compiler.

Please compile with --version.

I want to create a position-independent executable with the option -fpie or -

fPIE.

Creation of a position-independent executable is not supported.

The error "Too many elements in array" occurs.

The size of the array allocated by the ALLOCATE statement, or the size of the

array allocated by the DIMENSION statement/attribute, exceeds 1TiB. Please

review the size of array.

Note: The upper limit of the array size is checked with 1TiB at compilation, but the

memory size of VE is 48GB. Therefore, if you try to allocate the array larger than

the memory size of VE, it occurs "Out of memory" at run-time.

A .L file is not generated When compiling a module source file.

A L files is not generated for module source files that do not contain module

procedures according to its specifications.

When building a program that includes multi-stage dependencies such as

a.out->foo.so->bar.so, the following link error occurs.

/opt/nec/ve/bin/nld: warning: libbar.so, needed by ./libfoo.so, not found

 (try using -rpath or -rpath-link)

./libfoo.so: undefined reference to `bar'

It is a GNU Linker specification from which nld is derived. The nld links SX-Aurora

TSUBASA objects on Linux/x86_64, so it works with cross linker. Since Cross

Linker is not always the same as the actual execution environment, nld ignores

the -rpath option and RPATH set in the shared library. Please specify -Wl,-rpath-

link,library-path.

Appendix A Configuration file

- 312 -

When -mparallel was specified, the following warning occurred.

/opt/nec/ve/bin/nld: warning: libnfort.so.2, needed by libxxx.so, not found (try

using -rpath or -rpath-link)

libnfort.so is a library that contains Fortran runtime routines and is required

whenever linking a non-parallel version of a Fortran program. When linking a

parallel version of a Fortran program (with -mparallel or -fopenmp),

libnfort_m.so is always required instead. The compiler automatically specifies "-

lnfort" for non-parallel and "-lnfort_m" for parallel at the time of linking. The

warning is that libxxx.so is created non-parallel and requires a non-parallel

libnfort.so, but "-lnfort" is required because "-lnfort" is not specified when -

mparallel is specified.

Since unexpected problems may occur when running the libxxx.so, it is

recommended to additionally specify -mparallel or -fopenmp when creating

(linking) the libxxx.so to reference libnfort_m.so..

13.2 Troubleshooting for execution

The error “Node 'N' is Offline” occurs at execution.

The state of VE node of number N is OFFLINE. Please make it ONLINE.

The example which make VE node of number 0 ONLINE state is as follows.

% /opt/nec/ve/bin/vecmd -N 0 state set on

...

Result: Success

% /opt/nec/ve/bin/vecmd state get

...

VE0 [03:00.0] [ONLINE] Last Modif:2017/11/29 10:18:00

Result: Success

I want to confirm the used node at execution.

Please execute the command /opt/nec/ve/bin/ps. The command ps outputs

snapshot of executing processes by VE node. In the following example, it can be

confirmed that the program named “a.out” is executing on VE node of number 2.

Appendix A Configuration file

- 313 -

% /opt/nec/ve/bin/ps -a

VE Node: 3

 PID TTY TIME CMD

VE Node: 1

 PID TTY TIME CMD

VE Node: 2

 PID TTY TIME CMD

50727 pts/1 00:01:36 a.out

VE Node: 0

 PID TTY TIME CMD

The error ”./a.out: error while loading shared libraries: libnfort.so.2: cannot

open shared object file: No such file or directory” is output at execution.

Please install the package “nec-nfort-shared” and “nec-nfort-shared-inst”. Please

follow the instructions described in the "Installation Guide".

The error which a dynamic link library is not found occurs at execution.

Please set the directory which dynamic link library is put to the environment

variable VE_LD_LIBRARY_PATH. Please refer to “2.2 Environment Variables

Referenced During Execution”.

The error "VE mmap failed on INTERP - TEXT: Cannot allocate memory"

occurs at execution.

The total size of text and static data of the VE program exceeds 48GB. Please

modify the source files to dynamically allocate large-sized data so that the total

size of the text and static data of the VE program is 48GB or less. Static data

includes module variables, block data, common blocks, and variables with SAVE

attribute.

You can check the symbol sizes in descending order by executing the following

command for reference:

$ /opt/nec/ve/bin/nnm -C --size-sort -r ./a.out

In addition, you can check the size of each section with the following command:

$ /opt/nec/ve/bin/nreadelf -e ./a.out

Appendix A Configuration file

- 314 -

I want to confirm which line of source file corresponds to an exception

occurrence point.

It can be check by traceback information. Please refer to “2.2 Environment

Variables Referenced During Execution” to check process of it.

The exception occurrence point which output by traceback information is

incorrect.

The exception occurrence point output by traceback information can be incorrect

by the advance control of HW. The advance control can be stopped to set the

environment variable VE_ADVANCEOFF=YES. An execution time may increase

substantially to stop the advance control. Please take care it.

$ export VE_ADVANCEOFF=YES

I want to output the debug write result from buffer at exception occurrence.

Please call the FLUSH statement after the WRITE statement.

SUBROUTINE SUB()

 INTEGER :: U, X, A(20)

 OPEN(NEWUNIT=U, FILE='debug.log', STATUS='replace')

 CALL SUB1(X)

#ifdef DEBUG

 WRITE(U, *) 'X=', X

 FLUSH(U)

#endif

 WRITE(*,*) A(1000)

END

I want to confirm whether use uninitialized variable or not.

It may be checked by detecting an exception to compile with -minit-stack=snan

and execute with the environment variable VE_INIT_HEAP=SNAN for double

precision floating-point type variables. For single precision floating-point type

variables, specify snanf and SNANF instead of snan and SNAN. This approach can

be used only if the variable is floating-point type. Please refer to “2.2 Environment

Variables Referenced During Execution” and “3.6 Debugging Options”.

Appendix A Configuration file

- 315 -

I want to avoid abnormal termination caused by reference of uninitialized

variable.

It may avoid by initializing the area to zero to compile with -minit-stack=zero

and execute with the environment variable VE_INIT_HEAP=ZERO. Correction of

a program is recommended to resolve a potential problem. Please refer to “2.2

Environment Variables Referenced During Execution” and “3.6 Debugging

Options”.

A program which uses automatic parallelization and/or OpenMP is abnormally

terminated by "Unable to grow stack" or SIGSEGV at execution.

It may occur because the amount of stack usage exceeds the limit. Please

increase the limit of stack size or decrease the stack usage.

The limit of stack size can be increased by setting the environment variable

OMP_STACKSIZE. Please refer to “2.2 Environment Variables Referenced During

Execution”.

$ export OMP_STACKSIZE=2G

 The used stack can be decreased to specify the -mno-stack-arrays. Please

note that the execution time can be increased by specifying –mno-stack-

arrays.

I want to confirm how many thread was used at execution.

It can be confirmed to check “Max Active Threads” in PROGINF. “Max Active

Threads” is output to stderr at termination when setting the environment variable

“VE_PROGINF=DETAIL”. Please refer to “PROGINF/FTRACE user’s Guide” to

confirm usage of PROGINF.

In the following example, it can be confirmed that 4 thread was used because

“Max Active Threads” is 4.

******** Program Information ********

(...)

Power Throttling (sec) : 0.000000

Thermal Throttling (sec) : 0.000000

Max Active Threads : 4

Appendix A Configuration file

- 316 -

Available CPU Cores : 8

Average CPU Cores Used : 3.323850

Memory Size Used (MB) : 7884.000000

Start Time (date) : Mon Feb 19 04:43:34 2018 JST

End Time (date) : Mon Feb 19 04:44:08 2018 JST

When the threads for automatic or OpenMP parallelized program execution

are created or destroyed?

By default, the threads are created at the start of execution and destroyed at

termination. The number of threads are the specified value by the environment

variable OMP_NUM_THREADS or VE_OMP_NUM_THREADS. If it is not

specified, the number is the same as the number of available VE cores.

Please refer to “7.3.2 Thread Creation and Destroy” for details.

When running a program that utilizes automatic or OpenMP parallelized, how

is the number of threads determined at the runtime?

The number of threads at runtime can be specified through the environment

variables OMP_NUM_THREADS or VE_OMP_NUM_THREADS, the OpenMP

num_threads clause, and the omp_set_num_threads() function. The priority is as

follows:

1. Value specified by num_threads clause

2. Value specified by omp_set_num_threads() function

3. Value specified by the environment variable VE_OMP_NUM_THREADS

4. Value specified by the environment variable OMP_NUM_THREADS

5. The same value as the number of available VE cores.

The number of threads at execution is the same as the number of available VE

cores if it is set a value greater than the number of available VE cores in

num_threads clause, omp_set_num_threads(), VE_OMP_NUM_THREADS, or

OMP_NUM_THREADS.

I want to conform the stack size required to run the program.

There is no way to find out the required stack size because you will not know it

until you try it. In the case of Fortran programs, 192 MB of memory is pre-

allocated at the start of the program as a region to speed up memory allocation at

Appendix A Configuration file

- 317 -

execution, such as for ALLOCATE statements. Please note that this allocation

occurs regardless of whether ALLOCATE statements are actually used or not.

13.3 Troubleshooting for tuning

I want to confirm which optimization was applied to a program.

Please refer to output diagnostics and the format list when compiling.

The diagnostics list is output when the compiler option -report-diagnostics, and

the format list is output when the compiler option -report-format is specified.

The performance decreases, though vectorization was promoted.

The performance decreases by an overhead of vectorization of the few iteration

loop. Please specify the novector directive to such loop to stop vectorization.

When automatic or OpenMP parallelized program is executed, the values

displayed in the same item of PROGINF and FTRACE are different.

The number of operations for the spin-waiting of the thread created before main

program starts is added in PROGINF, but not in FTRACE.

When using the $omp parallel num_threads (4) and executing with the

environment variable OMP_NUM_THREADS=4 or OMP_NUM_THREADS=5, the

execution time with OMP_NUM_THREADS=5 is a longer than with

OMP_NUM_THREADS=4. Even though there are more parallel numbers.

When the value passed with the num_threads clause is different from the value

specified with the environment variable OMP_NUM_THREADS, the execution time

increases due to thread regeneration.

Threads are automatically generated before the main program starts. The number

of threads is determined by the environment variable OMP_NUM_THREADS. When

the number of threads changes in the program with the function

omp_set_thread_num() or num_threads clause in OpenMP, the threads generated

before the main program starts is freed and the new threads are regenerated.

The routine name which name is “$” and number as ‘$1’ is displayed in

FTRACE output. What is it?

It is created by compiler to do vectorization and parallelization.

Appendix A Configuration file

- 318 -

13.4 Troubleshooting for installation

I want to check if the installation is correct.

Please specify the --version option to check the version. If the displayed version

number is the same as the installed property, it has been installed correctly. The

version number is output to X.X.X in the following example.

$ /opt/nec/ve/bin/nfort --version

nfort (NFORT) X.X.X (Build 14:10:47 Apr 23 2020)

Copyright (C) 2018,2020 NEC Corporation.

I want to install an older version of the compiler.

Please refer to “A.1.1 Installation of a Specific Version of the Compilers” in the SX-

Aurora TSUBASA Installation Guide to install old versions of the compiler.

I want to use an older version of the compiler.

Please invoke /opt/nec/ve/bin/nfort-X.X.X, ncc-X.X.X, or nc++-X.X.X (X.X.X is

the version number of the compiler) at compilation.

For details, refer to "1.2 Usage of the Compiler.

I want to start an older version of compiler by default.

There are two ways to do it. Please choose one.

(1) Setting the environment variable PATH

The substance of each version of ncc/nc++/nfort commands are installed as

follows. X.X.X is the version number of the compiler.

/opt/nec/ve/ncc/X.X.X/bin/ncc

/opt/nec/ve/ncc/X.X.X/bin/nc++

/opt/nec/ve/nfort/X.X.X/bin/nfort

Set the bin directory of the version you want to invoke by default to the command

search path (environment variable PATH).

(2) Installing an older version of compiler.

Install the package of the compiler version you want to set as default. For details,

refer to "A.1.2 Change of the Compiler Versions Invoked with the Command

/opt/nec/ve/bin/[nfort|ncc|nc++]" in the SX-Aurora TSUBASA Installation Guide.

Appendix A Configuration file

- 319 -

Please note that this method will affect all users who use /opt/nec/ve/bin/nfort

(ncc/nc++).

A message "Runtime error: vhcall_install failed." was output at execution.

The library needed to offload array lumped input/output, byte swap processing,

etc., to VH is either missing or not installed. Please try the following:

 Add the directory name “/opt/nec/ve/nfort/lib64” to the environment variables

VE_LD_LIBRARY_PATH / LD_LIBRARY_PATH.

 If the above does not resolve the issue, check if the file

“libnfort_x86_64.so.<version number>” exists in the directory

“/opt/nec/ve/nfort/lib64”. If it's missing, download and install “nec-nfort-

runtime-<version number>-1.x86_64.rpm” from the yum repository.

13.5 Troubleshooting for SX-ACE compiler migration

The -ew option is specified.

Check the program to see if it applies to the following:

(1) When you are using intrinsic procedures by specific-name, modify it to a

double-precision or generic-name.

(2) Modify the type declarations and constants in the program as shown in the

following.

FORTRAN90/SX Compiler Vector Engine Compiler

INTEGER*2 INTEGER*8

INTEGER*4 INTEGER*8

INTEGER(KIND=2) INTEGER(KIND=8)

INTEGER(KIND=4) INTEGER(KIND=8)

LOGICAL*1 LOGICAL*8

LOGICAL*4 LOGICAL*8

LOGICAL(KIND=1) LOGICAL(KIND=8)

LOGICAL(KIND=4) LOGICAL(KIND=8)

REAL*4 REAL*8

Appendix A Configuration file

- 320 -

FORTRAN90/SX Compiler Vector Engine Compiler

REAL(KIND=4) REAL(KIND=8)

COMPLEX*8 COMPLEX*16

COMPLEX(KIND=4) COMPLEX(KIND=8)

Constants 1.23E1 Constants 1.23D1

Constants 1.23_4 Constants 1.23_8

(3) Specify both options -fdefault-real=8 and -fdefault-integer=8 when

compiling. This compiler option is not required when you modified program

to specify the kind type in a type declaration.

The -A dbl option is specified.

Please do one of the following.

(1) Modify the type declarations and constants in the program as shown in the

following.

FORTRAN90/SX Compiler Vector Engine Compiler

REAL*4 REAL*8

REAL*8 REAL*16

REAL(KIND=4) REAL(KIND=8)

REAL(KIND=8) REAL(KIND=16)

COMPLEX*8 COMPLEX*16

COMPLEX*16 COMPLEX*32

COMPLEX(KIND=4) COMPLEX(KIND=8)

COMPLEX(KIND=8) COMPLEX(KIND=16)

Constants 1.23E1 Constants 1.23D1

Constants 1.23D1 Constants 1.23Q1

Constants 1.23_4 Constants 1.23_8

Constants 1.23_8 Constants 1.23_16

(2) Specify both options -fdefault-real=8 and -fdefault-double=16 when

compiling. This compiler option is not required when you modified program

to specify the kind type in a type declaration.

Appendix A Configuration file

- 321 -

The -A dbl4 option is specified.

Please do one of the following.

(1) Modify the type declarations and constants in the program as shown in the

following.

FORTRAN90/SX Compiler Vector Engine Compiler

REAL*4 REAL*8

REAL(KIND=4) REAL(KIND=8)

COMPLEX*8 COMPLEX*16

COMPLEX(KIND=4) COMPLEX(KIND=8)

Constants 1.23E1 Constants 1.23D1

Constants 1.23_4 Constants 1.23_8

(2) Specify options -fdefault-real=8 when compiling. This compiler option is not

required when you modified program to specify the kind type in a type

declaration.

The -A dbl8 option is specified.

Please do one of the following.

(1) Modify the type declarations and constants in the program as shown in the

following.

FORTRAN90/SX Compiler Vector Engine Compiler

REAL*8 REAL*16

REAL(KIND=8) REAL(KIND=16)

COMPLEX*16 COMPLEX*32

COMPLEX(KIND=8) COMPLEX(KIND=16)

Constants 1.23D1 Constants 1.23Q1

Constants 1.23_8 Constants 1.23_16

(2) Specify option -fdefault-double=16 when compiling. This compiler option is

not required when you modified program to specify the kind type in a type

declaration.

The environment variable F_UFMTADJUST=TYPE2 is specified when inputting

the binary file.

Appendix A Configuration file

- 322 -

Specify the environment variable VE_FORT_UFMTADJUST, when inputting binary

file that specified and created by the environment variable F_UFMTADJUST.

Inputting binary file created with SX-ACE.

Specify the environment variable VE_FORT_UFMTENDIAN, when inputting

binary file created with SX-ACE.

Appendix A Configuration file

- 323 -

Chapter14 VE1/VE3 Compatibility

14.1 Executables Compatibility

VE1/VE3 machine can execute the following executables generated by VE1/VE3

compiler/assembler/linker.

Executables VE1 Machine VE3 Machine

Executables for VE1 ✓ ✓

Executables for VE3 - ✓

(✓) Can be executed (-) Cannot be executed

14.2 Changes of Search Path

Search path of module files, files included by INCLUDE line or #include directive

and libraries are changed as follows:

 Searching Module Files

VE1 VE3

Directory on which each input source file

is
(Same as VE1)

Directories specified by -module (Same as VE1)

Current directory (Same as VE1)

Directories specified by -I (Same as VE1)

Subdirectory named “include” under the

directory specified by -B
(Same as VE1)

Directories specified by the environment

variable NFORT_INCLUDE_PATH
(Same as VE1)

Directory specified by -isystem (Same as VE1)

/opt/nec/ve/nfort/<version-

number>/include
(Same as VE1)

/opt/nec/ve/include (*1) /opt/nec/ve3/include (*1)

(*1) When -isysroot is enabled, subdirectory named “include” under the directory

specified by -isysroot.

Appendix A Configuration file

- 324 -

 Searching files included by INCLUDE line or #include directive

VE1 VE3

Directory on which each input source file

is
(Same as VE1)

Directories specified by -module (Same as VE1)

Current directory (Same as VE1)

Directories specified by -I (Same as VE1)

Subdirectory named “include” under the

directory specified by -B
(Same as VE1)

Directories specified by the environment

variable NFORT_INCLUDE_PATH
(Same as VE1)

Directory specified by -isystem (Same as VE1)

/opt/nec/ve/nfort/<version-

number>/include
(Same as VE1)

/opt/nec/ve/include (*1) /opt/nec/ve3/include (*1)

 (*1) When -isysroot is enabled, subdirectory named “include” under the

directory specified by -isysroot.

 Searching Libraries

VE1 VE3

Directories specified by -L (Same as VE1)

Directories specified by -B (Same as VE1)

Directories specified by the environment

variable NFORT_LIBRARY_PATH
(Same as VE1)

/opt/nec/ve/nfort/<version-

number>/lib

/opt/nec/ve3/nfort/<version-

number>/lib

Directories specified by the environment

variable VE_LIBRARY_PATH
(Same as VE1)

/opt/nec/ve/lib/gcc /opt/nec/ve3/lib/gcc

/opt/nec/ve/lib /opt/nec/ve3/lib

14.3 Changes of Compiler Options

VE1/VE3 changes the defaults of compiler options as follows:

Appendix A Configuration file

- 325 -

VE1 VE3

-march=ve1 -march=ve3

-mfp16-format=none -mfp16-format=ieee

14.4 Half-Precision Floating-Point Type

VE3 can generate and execute object files using half-precision floating point. Object

files using half-precision floating point cannot be generated or executed on VE1.

 Format of Half-Precision Floating-Point Type

The format of half-precision floating-point type is determined by -mfp16-

format=type and whether or not half-precision floating-point is used in the program.

Use Half-Precision

Floating-Point or Not

-mfp16-format=type

none ieee bfloat

Not Use none none none

Use none binary16 bfloat16

 Mixing binary16 and bfloat16

When both binary16 and bfloat16 object files are mixed, an object file, executable

file or shared library cannot be generated.

14.5 Notice

 VE3 executables cannot be executed on VE1.

 In VE1, it is not possible to generate or execute object files using half-precision

floating-point.

 The command ngprof cannot output a performance information when executing

the VE1 executables on VE3 and output "gmon.out".

 Unable to generate static libraries, shared libraries, or executables with a mix of

VE1 and VE3 object files. The following error occurs when linking.

/opt/nec/ve/bin/nld: a.o: this object cannot use on VE3.

/opt/nec/ve/bin/nld: failed to merge target specific data of file a.o

 When using the "traceback" function of the compiler with VE1 binaries, please

Appendix A Configuration file

- 326 -

ensure that version 5.0.1 or later is used. Additionally, if using the "traceback"

function of MPI, please ensure that MPI version 3.4.0 or later is also used in

conjunction with the compiler. Otherwise, the generated traceback may not be

outputted correctly.

Appendix A Configuration file

- 327 -

Chapter15 Notice

 The version 2.0.0 or later is not compatible with the version 1.X.X. Therefore, an

object file compiled by version 2.0.0 or later cannot be linked with an object file

compiled by version 1.X.X.

 Runtime library is also provided as shared library in version 2.2.2 or later.

Therefore, please re-compile and re-build the shared library by version 2.2.2 or

later when they were compiled by version 2.1.2 or earlier.

 The dynamic linker included in glibc-ve package version 2.21-4 or later is needed

to execute the executable file compiled by version 2.2.2 or later. Confirm the

version of glibc-ve package if an error occurs at execution.

$ rpm -q glibc-ve

glibc-ve-2.21-4.el7.x86_64

 The execution performance of version 2.2.2 or later may fall compared with

version 2.1.2 or earlier by overhead of dynamic-link process, because the

compiler links a shared library at default. It can be avoided by the compilation by

-static or -static-nec.

Notes:

When executing the executable file compiled with -static or -static-nec option,

the execution may be failed rarely. For example a result is wrong, and program

aborts and so on.

 The NAMELIST output is changed to new form since version 3.0.8. If you want to

NAMELIST output form of version 3.0.7 or earlier, set "NO" to environment

variable VE_FORT_NML_REPEAT_FORM.

$ export VE_FORT_NML_REPEAT_FORM=NO

 The compiler outputs the following info message since version 3.5.0, when the

argument type of intrinsic procedures SYSTEM_CLOCK is other than

INTEGER(KIND=8). This message recommends INTEGER(KIND=8) as the

argument type of intrinsic procedures SYSTEM_CLOCK, but does not necessarily

require any program changes. Even if you do not modify the program, it will not

affect the program execution.

Appendix A Configuration file

- 328 -

The arguments to intrinsic subroutine SYSTEM_CLOCK are of type INTEGER, but it

is recommended that they should be of type INTEGER(int64)

Appendix A Configuration file

- 329 -

 Configuration file

A.1 Overview

The configuration file can be used in order to override the defaults which the

compiler uses. To use the configuration file, use -cf=conf.

The syntax of configuration file is as follow:

keyword : value

The following table shows currently available keywords.

keyword description

veroot The root directory of the VE component

(default: /opt/nec/ve)

system The root directory of the compiler component

(default: /opt/nec/ve/nfort/version)

as The path of assembler command

(default: <veroot>/bin/nas)

fcom The path of Fortran compiler

(default: <system>/libexec/fcom)

ld The path of linker command

(default: <veroot>/bin/nld)

fpp The path of Fortran preprocessor command

(default: <system>/libexec/fpp)

fc_pre_options

fc_post_options

The Compiler options.

The options are specified in the following order.

<fc_pre_options> <user-specified-options> <fc_post_options>

as_pre_options

as_post_options

The Assembler options.

The options are specified in the following order.

<as_pre_options> <user-specified-options>

<as_post_options>

ld_pre_options

ld_post_options

The Linker options.

The options are specified in the following order.

<ld_pre_options> <user-specified-options> <ld_post_options>

startfile The startup file.

endfile The startup file. The file is specified at the tail of linker options.

Appendix A Configuration file

- 330 -

A.2 Format

 A keyword and the value are separated by the colon.

 When a keyword is not set, it set the default value.

 A blank can be specified around the separator colon.

 When ‘\’ is specified as an end of a line, the value can be specified continuous in

the next line.

Example:

fc_pre_options: -I /tmp \

-I /tmp2

 When specifying two or more the same keyword, the last keyword becomes

effective.

A.3 Example

 Change the root directory of VE component and compiler component.

A configuration file is made and set the value to ‘veroot’ and ‘system’.

veroot: /foo/ve

system: /foo/ve/nfort/X.X.X

When the configuration file is specified by -cf. The configuration file name is

ve.conf here.

$ nfort –cf=ve.conf test.f90

 Change the using compiler.

Set the value to ‘fcom’ when only the used compiler is changed.

fcom: /foo/ve/nfort/X.X.X/libexec/fcom

When the configuration file is specified by -cf. An assembler, a linker and so on

can also be changed in the same way.

Appendix B SX Compatibility

- 331 -

 SX Compatibility

This appendix describes the correspondence tables of compiler options, compiler

directives, and environment variables referred at the execution between SX

compilers and compilers for the Vector Engine.

B.1 NEC Fortran 2003 Compiler Options

B.1.1 Overall Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-Caopt -O4

-Chopt -O3

-Cvopt -O2

-Csopt -O2 -mno-vector

-Cvsafe -O1

-Cssafe -O1 -mno-vector

-Cnoopt -O0

-S -S

-NS none

-V

Note: Continue the compilation process.

--version

Note: Display the version and exit.

-NV none

-c -c

-Nc none

-cf string -cf=string

-clear -clear

-mod | -Nmod none

-o file-name -o file-name

-size_t32 none

-size_t64 none

Note: Always effective.

Appendix B SX Compatibility

- 332 -

NEC Fortran 2003 Compiler Vector Engine Compiler

-syntax -fsyntax-only

-Nsyntax -fno-syntax-only

-tm directory-name none

-to directory-name none

-verbose -v

-Nverbose none

B.1.2 Vector/Scalar Optimization Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-Ochg -fassociative-math or

-faggressive-associative-math

-Onochg -fno-associative-math

-Odiv -freciprocal-math

-Onodiv -fno-reciprocal-math

-Oextendreorder -msched-interblock

-Onoextendreorder none

-Oignore_volatile -fignore-volatile

-Onoignore_volatile -fno-ignore-volatile

-Oiodo -marray-io

-Onoiodo -mno-array-io

-Omove -fmove-loop-invariants-unsafe

-Onomovediv -fmove-loop-invariants

-Onomove -fno-move-loop-invariants

-Ooverlap -fnamed-alias

-Onooverlap -fnamed-noalias

-Oreorderrange=bblock -msched-insns

Appendix B SX Compatibility

- 333 -

NEC Fortran 2003 Compiler Vector Engine Compiler

-Ounroll -floop-unroll

-Ounroll=n -floop-unroll

-floop-unroll-max-times=n

Note: Specify two at the same time.

-Onounroll -fno-loop-unroll

-dir { vec | novec } none

-ipa -fipa

-Nipa -fno-ipa

-math { errchk | noerrchk } none

-math { inline | noinline } none

-pvctl,altcode -mvector-dependency-test

-mvector-loop-count-test

-mvector-shortloop-reduction

Note: Specify three at the same time.

-pvctl,altcode=dep -mvector-dependency-test

-pvctl,altcode=nodep -mno-vector-dependency-test

-pvctl,altcode=loopcnt -mvector-loop-count-test

-pvctl,altcode=noloopcnt -mno-vector-loop-count-test

-pvctl,altcode=shortloop -mvector-shortloop-reduction

-pvctl,altcode=noshortloop -mno-vector-shortloop-reduction

-pvctl,noaltcode -mno-vector-depencendy-test

-mno-vector-loop-count-test

-mno-vector-shortloop-reduction

Note: Specify three at the same time.

-pvctl,assoc -fassociative-math

-pvctl,noassoc -fno-associative-math

-pvctl,assume -mvector-assume-loop-count

-pvctl,noassume -mno-vector-assume-loop-count

Appendix B SX Compatibility

- 334 -

NEC Fortran 2003 Compiler Vector Engine Compiler

-pvctl,chgpwr -mvector-power-to-explog

-mvector-power-to-sqrt

 Note: Specify two at the same time.

-pvctl,collapse -floop-collapse

-pvctl,nocollapse -fno-loop-collapse

-pvctl { compress | nocompress } none

-pvctl,cond_mem_opt -mvector-merge-conditional

-pvctl,nocond_mem_opt -mno-vector-merge-conditional

-pvctl { conflict | noconflict } none

-pvctl,divloop none

-pvctl,nodivloop -mwork-vector-kind=none

-pvctl,expand=n -floop-unroll-complete=n

-pvctl,noexpand -fno-loop-unroll-complete

-pvctl listvec -mlist-vector

-pvctl nolistvec -mno-list-vector

-pvctl,loopchg -floop-interchange

-pvctl,noloopchg -fno-loop-interchange

-pvctl,loopcnt=n -floop-count=n

-pvctl,lstval none

-pvctl,nolstval none

-pvctl,matmul -fmatrix-multiply

-pvctl,nomatmul -fno-matrix-multiply

-pvctl,neighbors -mvector-neighbors

Note: This option is available when

-march=ve3 is enabled.

-pvctl,noneighbors -mno-vector-neighbors

-pvctl,nodep -fivdep

Appendix B SX Compatibility

- 335 -

NEC Fortran 2003 Compiler Vector Engine Compiler

-pvctl,on_adb[=category] none

-pvctl,outerunroll=n -fouterloop-unroll

-fouterloop-unroll-max-times=n

Note: Specify two at the same time.

-pvctl,outerunroll_lim=n none

-pvctl,split -floop-split

-pvctl,nosplit -fno-loop-split

-pvctl { vchg | novchg } none

-pvctl,vecthreshold=n -mvector-threshold=n

-pvctl,verrchk -mvector-intrinsic-check

-pvctl,noverrchk -mno-vector-intrinsic-check

-pvctl { vlchk | novlchk } none

-pvctl,vwork={ static | stack | hybrid } none

-pvctl,vworksz=n none

-salloc -mstack-arrays

-Nsalloc -mno-stack-arrays

-v -mvector

-Nv -mno-vector

-xint -mno-vector-iteration

-Nxint -mvector-iteration

B.1.3 Inlining Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-dir { inline | noinline } none

-pi,auto -finline-functions

-pi,max_depth=n -finline-max-depth=n

Appendix B SX Compatibility

- 336 -

NEC Fortran 2003 Compiler Vector Engine Compiler

-pi,max_size=n -finline-max-function-size=n

-pi,proc_size=n none

-pi,times=n -finline-max-times=n

B.1.4 Parallelization Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-dir { par | nopar } none

-Pauto -mparallel

-Pmulti none

-Popenmp -fopenmp

-Pstack none

-Pstatic -bss

-pvctl,for[=n] none

 Note: Parallelization schedule can be

controlled by -mschedule-static

etc.

-pvctl,by=n none

 Note: Parallelization schedule can be

controlled by -mschedule-static

etc.

-pvctl,inner -mparallel-innerloop

-pvctl,noinner -mno-parallel-innerloop

-pvctl,outerstrip -mparallel-outerloop-strip-mine

-pvctl,noouterstrip -mno-parallel-outerloop-strip-mine

-pvctl,parcase -mparallel-sections

-pvctl,noparcase -mno-parallel-sections

-pvctl,parthreshold=n -mparallel-threshold=n

-pvctl,noparthreshold -mno-parallel-threshold

-pvctl,res={ whole | parunit | no } none

Appendix B SX Compatibility

- 337 -

NEC Fortran 2003 Compiler Vector Engine Compiler

-reserve n none

B.1.5 Code Generation Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-adv { on | off } none

-Nadv none

-mask { flovf | flunf | fxovf | inv |

inexact | zdiv }

none

 Note: It can be controlled by the envir

onment variable VE_FPE_ENABL

E.

-mask { setall | nosetall | setmain } none

-prec_complex_division none

-Nprec_complex_division none

-stkchk | -Nsckchk none

B.1.6 Language Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-defacto_associated none

-Ndefacto_associated none

-default_double_size -fdefault-double=n

-default_real_size -fdefault-real=n

-default_integer_size -fdefault-integer=n

-extend_source -fextend-source

-fixed -ffixed-form

-free -ffree-form

Appendix B SX Compatibility

- 338 -

NEC Fortran 2003 Compiler Vector Engine Compiler

-f2003

-f2008

-f95

-std={ f2003 | f2008 | f95 }

-ignore_directive none

-Nignore_directive none

-small_integer | -Nsmall_integer none

B.1.7 Performance Measurement Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-acct -proginf

-Nacct -no-proginf

-ftrace -ftrace

-Nftrace -no-ftrace

-p -p

-Np none

B.1.8 Debug Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-check -fcheck=keyword

-init stack={ zero | nan | 0xXXXX } -minit-stack={ zero | snan | snanf |

0xXXXX }

-mtrace [basic] -mmemory-trace

-mtrace full -mmemory-trace-full

-Nmtrace none

-traceback -traceback

-Ntraceback none

Appendix B SX Compatibility

- 339 -

B.1.9 Preprocessor Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-Dname[=def] -Dname[=def]

-E -E

-EP none

-Ep -fpp

-NE -nofpp

-H none

-I directory-name -I directory-name

-M -M

-Uname -Uname

-Wp,option-string -Wp,option-string

-ts directory-name none

B.1.10 List Output Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-Rappend -report-append-mode

-Rnoappend none

-Rdiaglist -report-diagnostics

-Rnodiaglist none

-Rfile={ file-name | stdout } -report-file={ file-name | stdout }

-Rfmtlist -report-format

-Rnofmtlist none

-Robjlist -assembly-list

-Rnoobjlist none

-R { summary | nosummary } none

-R { transform | notransform } none

Appendix B SX Compatibility

- 340 -

B.1.11 Message Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-O { fullmsg | infomsg | nomsg } none

-pi { fullmsg | infomsg | nomsg } -fdiag-inline={ 2 | 1 | 0 }

-pvctl { fullmsg | infomsg | nomsg } -fdiag-parallel={ 2 | 1 | 0 }

-fdiag-vector={ 2 | 1 | 0 }

-w all -Wall

-w none -w

-w { info | noinfo } none

-w extension -Wextension

-w noextension -Wno-extension

-w { observe | noobserve } none

-w obsolescent -Wobsolescent

-w noobsolescent -Wno-obsolescent

-w { unreffed | nounreffed } none

-w {unused | nounused } none

B.1.12 Assembler Option

NEC Fortran 2003 Compiler Vector Engine Compiler

-Wa,option-string -Wa,option-string

B.1.13 C Compiler Option

NEC Fortran 2003 Compiler Vector Engine Compiler

-Wc,option-string none

Appendix B SX Compatibility

- 341 -

B.1.14 Linker Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-L directory-name -L directory-name

-llibrary-name -llibrary-name

-Wl,option-string -Wl,option-string

B.1.15 Directory Options

NEC Fortran 2003 Compiler Vector Engine Compiler

-YI,directory-name none

-YL,directory-name none

-YM,directory-name none

-YS,directory-name none

-Ya,directory-name none

-Yf,directory-name none

-Yl,directory-name none

-Yp,directory-name none

B.2 FORTRAN90/SX Compiler

B.2.1 f90/sxf90 command Options

FORTRAN90/SX Compiler Vector Engine Compiler

-Chopt -O3

-Cvopt -O2

-Csopt -O2 –mno-vector

-Cvsafe -O1

-Cssafe -O1 –mno-vector

-Cdebug -O0 -g

Appendix B SX Compatibility

- 342 -

FORTRAN90/SX Compiler Vector Engine Compiler

-c -c

-Nc none

-cf strings -cf=strings

-clear -clear

-Dname[=def] -Dname[=def]

-da none

-dC -fcheck=none

-dD none

-dP none

-dR -fcheck=none

-dW none

 Note: -dW is always effective.

-dw none

Note: -dw is always effective.

-ea none

-eC -fbounds-check or -fcheck=bounds

-eD none

-eP none

-eR -fbounds-check or -fcheck=bounds

Note: Only the range of array subscripts

is checked.

-eW none

-ew none

Note: See Section 13.5 for details of

migration.

-EP none

-Ep -fpp

-NE -nofpp

-f2003 none

Note: Fortran 2003 features are

available by default.

Appendix B SX Compatibility

- 343 -

FORTRAN90/SX Compiler Vector Engine Compiler

-f2003 { cbind | nocbind } none

-f2003 { cptr_derive | cptr_i8 } none

-f2003 { opt_ieee | noopt_ieee } none

-Nf2003 none

-f0 -ffixed-form

-f3 -ffixed-form –fextend-source

-f4 -ffree-form

-f5 -ffree-form –fextend-source

-ftrace -ftrace

-Nftrace -no-ftrace

-G { global | local } none

-g -g

-gv none

-gw none

-Ng -g0

-I directory-name -I directory-name

-L directory-name -L directory-name

-llibrary-name -llibrary-name

-o file-name -o file-name

-Pauto -mparallel

-Pmulti none

-Popenmp -fopenmp

-Pstack none

-Pstatic -bss

-p -p

-Np none

-pi argconsis={noexp|safe|unsafe} none

-pi auto -finline-functions

Appendix B SX Compatibility

- 344 -

FORTRAN90/SX Compiler Vector Engine Compiler

-pi noauto none

-pi exp=procedure-name none

-pi noexp=procedure-name none

-pi expin={file-name|directory} -finline-file=file-name or

-finline-directory=directory

Note: -finline-functions option is

needed.

-pi { fullmsg | infomsg | nomsg } -fdiag-inline={ 2 | 1 | 0 }

-pi { incdir | noincdir } none

-pi line=n

 Note: n is the number of lines of the

source code.

-finline-max-function-size=n

Note: n is the amount of intermediate

representations for a function.

-finline-functions option is

needed.

-pi { modout | nomodout } none

-pi nest=n -finline-max-depth=n

Note: -finline-functions option is

needed.

-pi rexp=function none

-Npi -fno-inline-functions

-R0 none

-R1 none

-R2 none

-R3 none

-R4 none

-R5 -report-diagnostics -report-format

-S -S

-NS none

-size_t32 none

-size_t64 none

 Note: -size_t64 is always effective.

Appendix B SX Compatibility

- 345 -

FORTRAN90/SX Compiler Vector Engine Compiler

-sx8 | -sx8r | -sx9 | -sxace none

-to directory-name none

-ts directory-name none

-Uname -Uname

-V

Note: Continue the compilation process.

--version

Note: Display the version and exit.

-NV none

-verbose -v

-Nverbose none

-Wa,option-strings -Wa,option-strings

-Wc,option-strings none

-Wf,option-strings

Note: See the following sections for

detailed options.

none

-Wl,option-strings -Wl,option-strings

-Wp,option-strings -Wp,option-strings

-w -w

-Nw -Wall

-Yf,directory-name none

-Yl,directory-name none

-Yp,directory-name none

B.2.2 f90/sxf90 Detailed Options for optimization

FORTRAN90/SX Compiler Vector Engine Compiler

-ai | -Nai none

-fusion -floop-fusion

-Nfusion -fno-loop-fusion

-i { errchk | noerrchk } none

Appendix B SX Compatibility

- 346 -

FORTRAN90/SX Compiler Vector Engine Compiler

-O { aryinq | noaryinq } none

-O chg -fassociative-math or

-faggressive-associative-math

-O nochg -fno-associative-math

Note: -faggressive-associative-math

optimize more aggressive than -

fassociative-math.

-O { compass | nocompass } none

-O darg -fargument-alias

-O nodarg -fargument-noalias

-O div -freciprocal-math

-O nodiv -fno-reciprocal-math

-O extendreorder -msched-interblock

-O reorderrange=bblock -msched-insns

-O { if | noif } none

-O iodo -marray-io

-O noiodo -mno-array-io

-O infomsg none

-O move -fmove-loop-invariants-unsafe

-O nomovediv -fmove-loop-invariants

-O nomove -fno-move-loop-invariants

-O overlap -fnamed-alias

-O nooverlap -fnamed-noalias

-O { shapeprop | noshapeprop } none

-O unroll -floop-unroll

-O unroll=n -floop-unroll

-floop-unroll-max-times=n

Note: Specify two at the same time.

Appendix B SX Compatibility

- 347 -

FORTRAN90/SX Compiler Vector Engine Compiler

-O nounroll -fno-loop-unroll

-O wkary_opt -mstack-arrays

-O nowkary_opt -mno-stack-arrays

-O { zlpchk | nozlpchk } none

-prob_dir directory-name none

-prob_file file-name none

-prob_generate none

-prob_use none

B.2.3 f90/sxf90 Detailed Options for vectorization and parallelization

FORTRAN90/SX Compiler Vector Engine Compiler

-common { global | local } none

-moddata { global | local } none

-ompctl { condcomp | nocondcomp } none

-pvctl altcode -mvector-dependency-test

-mvector-loop-count-test

-mvector-shortloop-reduction

Note: Specify three at the same time.

-pvctl altcode=dep -mvector-dependency-test

-pvctl altcode=nodep -mno-vector-dependency-test

-pvctl altcode=loopcnt -mvector-loop-count-test

-pvctl altcode=noloopcnt -mno-vector-loop-count-test

-pvctl altcode=shortloop -mvector-shortloop-reduction

-pvctl altcode=noshortloop -mno-vector-shortloop-reduction

-pvctl noaltcode -mno-vector-depencency-test

-mno-vector-loop-count-test

-mno-vector-shortloop-reduction

Note: Specify three at the same time.

-pvctl assoc -fassociative-math

Appendix B SX Compatibility

- 348 -

FORTRAN90/SX Compiler Vector Engine Compiler

-pvctl noassoc -fno-associative-math

-pvctl assume -mvector-assume-loop-count

-pvctl noassume -mno-vector-assume-loop-count

-pvctl chgpwr -mvector-power-to-explog

-mvector-power-to-sqrt

 Note: Specify two at the same time.

-pvctl chgtanh none

-pvctl cncall=routine-name none

-pvctl collapse -floop-collapse

-pvctl nocollapse -fno-loop-collapse

-pvctl { compress | nocompress } none

-pvctl cond_mem_opt -mvector-merge-conditional

-pvctl nocond_mem_opt -mno-vector-merge-conditional

-pvctl { conflict | noconflict } none

-pvctl divloop none

-pvctl nodivloop -mwork-vector-kind=none

-pvctl expand=n -floop-unroll-complete=n

-pvctl noexpand -fno-loop-unroll-complete

-pvctl { farouter | nofarouter } none

-pvctl for[=n] none

 Note: Parallelization schedule can be

controlled by -mschedule-static

etc.

-pvctl by=n none

 Note: Parallelization schedule can be

controlled by -mschedule-static

etc.

-pvctl { fullmsg | infomsg | nomsg } -fdiag-parallel={ 2 | 1 | 0 }

-fdiag-vector={ 2 | 1 | 0 }

Note: Specify two at the same time.

-pvctl { ifopt | noifopt } none

Appendix B SX Compatibility

- 349 -

FORTRAN90/SX Compiler Vector Engine Compiler

-pvctl inner -mparallel-innerloop

-pvctl noinner -mno-parallel-innerloop

-pvctl listvec -mlist-vector

-pvctl nolistvec -mno-list-vector

-pvctl loopchg -floop-interchange

-pvctl noloopchg -fno-loop-interchange

-pvctl loopcnt=n -floop-count=n

-pvctl lstval none

-pvctl nolstval none

-pvctl matmul -fmatrix-multiply

-pvctl nomatmul -fno-matrix-multiply

-pvctl matmulblass none

-pvctl neighbors -mvector-neighbors

Note: This option is available when

-march=ve3 is enabled.

-pvctl noneighbors -mno-vector-neighbors

-pvctl nodep -fivdep

-pvctl on_adb[=category] none

-pvctl outerstrip -mparallel-outerloop-strip-mine

-pvctl noouterstrip -mno-parallel-outerloop-strip-mine

-pvctl outerunroll=n -fouterloop-unroll

-fouterloop-unroll-max-times=n

Note: Specify two at the same time.

-pvctl outerunroll_lim=n none

-pvctl parcase -mparallel-sections

-pvctl noparcase -mno-parallel-sections

-pvctl parthreshold=n -mparallel-threshold=n

-pvctl noparthreshold -mno-parallel-threshold

-pvctl res={ whole | parunit | no } none

Appendix B SX Compatibility

- 350 -

FORTRAN90/SX Compiler Vector Engine Compiler

-pvctl shape=n none

-pvctl split -floop-split

-pvctl nosplit -fno-loop-split

-pvctl { vchg | novchg } none

-pvctl vecthreshold=n -mvector-threshold=n

-pvctl verrchk -mvector-intrinsic-check

-pvctl noverrchk -mno-vector-intrinsic-check

-pvctl { vlchk | novlchk } none

-pvctl vregs=n none

-pvctl vsqrt -mvector-sqrt-instruction

-pvctl novsqrt -mno-vector-sqrt-instruction

-pvctl vwork={ static | stack | hybrid } none

-pvctl vworksz=n none

-reserve n none

-tasklocal { macro | micro } none

-v -mvector

-Nv -mno-vector

B.2.4 f90/sxf90 Other Detailed Options

FORTRAN90/SX Compiler Vector Engine Compiler

-A { dbl | dbl4 | dbl8 | idbl | idbl4 |

idbl8 }

-A idbl : -fdefault-real=8 -fdefault-

double=16

-A idbl4 : -fdefault-real=8

-A idbl8 : -fdefault-double=16

Note: See Section 13.5 for details of

migrating other options.

-acct -proginf

-Nacct -no-proginf

-adv { on | off } none

Appendix B SX Compatibility

- 351 -

FORTRAN90/SX Compiler Vector Engine Compiler

-Nadv none

-compatimod none

-const_ext | -Nconst_ext none

-cont -fassume-contiguous

-Ncont -fno-assume-contiguous

-dblprecision | -Ndblprecision none

-dir { vec | par | debug } none

-dir { novec | nopar | nodebug } none

-dollar | -Ndollar none

-esc | -Nesc none

-G | -NG none

-init stack={ zero | nan | 0xXXXX } -minit-stack={ zero | nan | 0xXXXX }

-init heap={zero | nan | 0xXXXX } none

Note: It can be controlled by the

environment variable

VE_INIT_HEAP.

-K { a | Na } none

-K { b | Nb } none

-L { stdout | nostdout | filename=file-

name }

-report-file={ stdout | file-name }

Note: The default is -Lnostdout.

-L { eject | noeject } none

-L fmtlist -report-format

-L nofmtlist none

-L { inclist | noinclist } none

-L { map | nomap } none

-L mrgmsg none

-L sepmsg -report-diagnostics

Appendix B SX Compatibility

- 352 -

FORTRAN90/SX Compiler Vector Engine Compiler

-L objlist -assembly-list

-L noobjlist none

-L { source | nosource } none

-L { summary | nosummary } none

-L { transform | notransform } none

-NL none

-M { zdiv | flovf | fxovf | inv |

inexact }

none

Note: It can be controlled by the

environment variable

VE_FPE_ENABLE.

-M { setall | setmain } none

-msg b -Wobsolescent

-msg nb -Wno-obsolescent

-msg { d | nd } none

-msg { f | nf } none

Note: nf is always effective.

-msg { o | no } none

-msg { w | nw } none.

Note: nw is always effective.

-P { a | b | c | d | e | f | h | i | l | p | t |

x | z }

none

-P { b | nb } none

-P { c | nc } none

-P { d | nd } none

-P { e | ne } none

-P f -nofpp

-P nf none

Note: nf is always effective.

Appendix B SX Compatibility

- 353 -

FORTRAN90/SX Compiler Vector Engine Compiler

-P h none

Note: h is always effective.

-P nh -ff90-sign

-P { i | ni } none

-P { l | nl } none

-P { p | np } none

-P { t | nt } none

Note: nt is always effective.

-P { x | nx } none

Note: x is always effective.

-P { z | nz } none

-ptr { byte | word } none

 Note: byte is always effective.

-s | -Ns none

-stmtid | -Nstmtid none

-w { double16 | rdouble16 } none

-xint -mno-vector-iteration

-Nxint -mvector-iteration

B.3 Compiler Directives

Please refer to “C.3 Compiler Directives” to confirm the correspondence tables of

compiler directives between SX compilers and compilers for the Vector Engine.

Please use the “compiler directive conversion tool” for converting from the SX

compiler directive to the Vector Engine. Please refer to “Appendix C Compiler

Directive Conversion Tool” for detail.

Appendix B SX Compatibility

- 354 -

B.4 Environment Variables

SX Compiler Vector Engine Compiler

F_PROGINF VE_PROGINF

F_TRACEBACK VE_TRACEBACK

F_EXPRCW VE_FORT_EXPRCW

F_FMTBUF VE_FORT_FMTBUF

F_NORCW VE_FORT_NORCW

F_PAUSE VE_FORT_PAUSE

F_PARTRCW VE_FORT_PARTRCW

F_SETBUF VE_FORT_SETBUF

F_UFMTADJUST=TYPE1 VE_FORT_UFMTADJUST=INT,LOG

F_UFMTADJUST=TYPE2 VE_FORT_UFMTADJUST=ALL

F_UFMTENDIAN VE_FORT_UFMTENDIAN

F_FFn VE_FORTn

B.5 Other Library

-use can be used instead of USE statement.

SX Compiler Vector Engine Compiler

CALL ABORT() USE F90_UNIX

CALL ABORT()

RESULT = ACCESS(NAME,MODE) USE F90_UNIX_FILE

CALL ACCESS(NAME,AMODE,RESULT)

Note: MODE(CHARACTER) was changed to

AMODE(INTEGER). See Section

11.3.5 for details of

AMODE(INTEGER).

RESULT =

ALARM(SECONDS,HANDLER)

USE F90_UNIX_PROC

CALL

ALARM(SECONDS,HANDLER,RESULT,ERRNO)

RESULT = CHDIR(NAME) USE F90_UNIX_DIR

CALL CHDIR(NAME,RESULT)

Appendix B SX Compatibility

- 355 -

SX Compiler Vector Engine Compiler

RESULT = CHMOD(NAME,MODE) USE F90_UNIX_FILE

CALL CHMOD(PATH,AMODE,RESULT)

Note: MODE(CHARACTER) was changed to

AMODE(INTEGER). See Section

11.3.5 for details of

AMODE(INTEGER).

CALL FLUSH(UNIT) FLUSH(UNIT)

RESULT = FORK() USE F90_UNIX_PROC

CALL FORK(RESULT,ERRNO)

CALL FREE(PTR) USE F90_UNIX

CALL FREE(PTR)

RESULT = FSTAT(UNIT,BUFF) USE F90_UNIX_FILE

CALL FSTAT(UNIT,BUFF,RESULT)

CALL GETARG(POS,VALUE) USE F90_UNIX

CALL GETARG(POS,VALUE)

RESULT = GETCWD(DIRNAME) USE F90_UNIX_DIR

CALL GETCWD(DIRNAME,ERRNO=RESULT)

CALL GETENV(NAME,VALUE) USE F90_UNIX

CALL GETENV(NAME,VALUE)

RESULT = GETGID() USE F90_UNIX

RESULT = GETGID()

CALL GETLOG(NAME) USE F90_UNIX_ENV

CALL GETLOGIN(NAME)

RESULT = GETPID() USE F90_UNIX

RESULT = GETPID()

RESULT = GETUID() USE F90_UNIX

RESULT = GETUID()

RESULT = HOSTNM(NAME) USE F90_UNIX_ENV

CALL GETHOSTNAME(NAME,RESULT)

RESULT = IARGC() USE F90_UNIX

RESULT = IARGC()

RESULT = ISATTY(UNIT) USE F90_UNIX_ENV

CALL ISATTY(UNIT,RESULT,ERRNO)

RESULT = LINK(PATH1,PATH2) USE F90_UNIX_DIR

CALL LINK(PATH1,PATH2,RESULT)

RESULT = LSTAT(FILE,BUFF) USE F90_UNIX_FILE

CALL LSTAT(FILE,BUFF,RESULT)

Appendix B SX Compatibility

- 356 -

SX Compiler Vector Engine Compiler

PTR = MALLOC(SIZE) USE F90_UNIX

PTR = MALLOC(SIZE)

RESULT = RENAME(FROM,TO) USE F90_UNIX_DIR

CALL RENAME(FORM,TO,RESULT)

CALL SLEEP(SECONDS) USE F90_UNIX_PROC

CALL SLEEP(SECONDS)

RESULT = STAT(FILE,BUFF) USE F90_UNIX_FILE

CALL STAT(FILE,BUFF,RESULT)

RESULT = SYSTEM(COMMAND) USE F90_UNIX_PROC

CALL SYSTEM(COMMAND,RESULT,ERRNO)

RESULT = TIME() USE F90_UNIX_ENV

CALL TIME(RESULT)

RESULT = TTYNAM(UNIT) USE F90_UNIX_ENV

CALL TTYNAME(UNIT,RESULT,ERRNO)

RESULT = UNLINK(PATH) USE F90_UNIX_DIR

CALL UNLINK(PATH,RESULT)

RESULT = WAIT(I) USE F90_UNIX_PROC

CALL WAIT(I,ERRNO=RESULT)

B.6 Implementation-Defined Specifications

B.6.1 Data Types

Type

SX Compiler Vector Engine Compiler

Kind Type

Parameter
Data Type (*1)

Kind Type

Parameter
Data Type

integer 1 (*2) 1-byte integer 1 1-byte integer

integer 2 2-byte integer 2 2-byte integer

integer 4 4-byte integer

(default integer type)

4 4-byte integer

(default integer type)

integer 8 8-byte integer 8 8-byte integer

real 4 4-byte real

(default real type)

4 4-byte real

(default real type)

real 8 8-byte real 8 8-byte real

Appendix B SX Compatibility

- 357 -

Type

SX Compiler Vector Engine Compiler

Kind Type

Parameter
Data Type (*1)

Kind Type

Parameter
Data Type

real 16 16-byte real 16 16-byte real

complex 4 (4,4)-byte complex

(default complex

type)

4 (4,4)-byte complex

(default complex

type)

complex 8 (8,8)-byte complex 8 (8,8)-byte complex

complex 16 (16,16)-byte complex 16 (16,16)-byte complex

logical 1 1-byte logical 1 1-byte logical

logical 4 4-byte logical

(default logical type)

4 4-byte logical

(default logical type)

logical 8 8-byte logical 8 8-byte logical

character 1 character

 (default character

type)

1 character

(default character

type)

character 2 (*3) character none

(*1) For FORTRAN90/SX compiler, “Data Type” declaration can be changed by

specifying the compiler option.

(*2) Not available with FORTRAN90/SX Compiler.

(*3) Not available with NEC Fortran2003 Compiler

B.6.2 Specifications

Items
FORTRAN90/SX

Compiler

NEC Fortran 2003

Compiler

Vector Engine

Compiler

Nesting level of files

included by INCLUDE line

- 20 63

Rank of an array 7 31 31

Number of continuation

lines

99 511 1023

Length of a name 63 199 199

Appendix B SX Compatibility

- 358 -

B.6.3 Intrinsic Procedures

Intrinsic Procedures SX Compiler Vector Engine Compiler

SYSTEM_CLOCK The starting point of the

acquisition time is the start

of the program.

The starting point of the

acquisition time is 00:00 on

January 1, 1970,

Coordinated Universal Time

(UTC).

Appendix C Compiler Directive Conversion Tool

- 359 -

 Compiler Directive Conversion Tool

This appendix describes the tool for converting from the SX compiler directive to the

Vector Engine.

C.1 nfdirconv

Name:

nfdirconv

SYNOPSIS:

nfdirconv [OPTION...] [FILE | DIRECTORY]...

DESCRIPTION:

This tool converts the nfort/ncc/nc++ directive to the nfort/ncc/nc++ directive in

source file.

When this tool specifies a directory, it convert files with the following extensions in

that directory at once.

.c .i .h .C .cc .cpp .cp .cxx .c++ .ii .H .hh .hpp

.hp .hxx .h++ .tcc .F .FOR .FTN .FPP .F90 .F95 .F03 .f

.for .ftn .fpp .f90 .f95 .f03 .i90

The original file is saved as file-name.bak.

The sxf90/sxf03/sxcc/sxc++ directives can be left after conversion or deleted by

option.

Options:

Option Description

-a, --append Append the nfort/ncc/nc++ directive. Do not delete the

sxf90/sxf03/sxcc/sxc++ directives.

-d, --delete If the nfort/ncc/nc++ directive is not supported, delete the

sxf90/sxf03/sxcc/sxc++ directive.

-f, --force Do not check file suffix.

-h, --help Display this help and exit.

-o file, --output

file

Specify output file-name. When multiple input files are

specified, or when a directory is specified, this option is

ignored.

-p, --preserve If the nfort/ncc/nc++ directive is not supported, do not delete

the sxf90/sxf03/sxcc/sxc++ directive.

Appendix C Compiler Directive Conversion Tool

- 360 -

Option Description

-q, --quiet Do not report about conversion.

-r, --recursive Recursively conversion any subdirectories found.

-v, --version Output version information and exit.

Messages:

If the Compiler directive is converted or the nfort/ncc/nc++ does not support the

compiler directive, the message is output to the standard error.

Format:

file-name: line Line-number: message

file-name: Input file name

Line-number: Line number of file before conversion

message:

 converted "SX compiler directive" to "VE compiler directive" (Converted |

Substitute)

Indicates that the compiler directive has been converted. "Converted" is output

if compiler directive of the SX and VE have equivalent functions. "Substitute" is

output if compiler directive of SX and VE have nearly equivalent functions.

 "SX compiler directive" is not supported [(Remained)]

The sxf90/sxf03/sxcc/sxc++ directive is not supported by VE. "Remained" is

output to the compiler directive scheduled for future implementation in the VE.

"Removed/Obsolescent" is output to the compiler directive that is not planned

to be supported.

Exit status:

The exit status is 0 if conversion is successful, otherwise it is nonzero.

Notes:

This tool is creates a temporary file for work in /tmp. This temporary file is

automatically deleted at the end of the execution. The directory can be changed

with the environment variable TMPDIR.

C.2 Examples

Example1: When a file specified.

Convert the sxf90/sxf03/sxcc/sxc++ directive contained in a file to the

Appendix C Compiler Directive Conversion Tool

- 361 -

nfort/ncc/nc++ directive.

$ cat sample.f90

program main

 integer s

!CDIR NOVECTOR

 do i=1, 1000

 s = s + i

 enddo

 print*,s

end program

$ nfdirconv sample.f90

sample.f90: line 3: converted 'NOVECTOR' to 'novector' (Converted)

$ cat sample.f90

program main

 integer s

!NEC$ novector

 do i=1, 1000

 s = s + i

 enddo

 print*,s

end program

Example2: When a directory is specified.

Take the following directory as an example.

dir/

 + Makefile

 + sample1.c

 + sample2.c

 + subdir/

 + Makefile

 + sample3.c

$ nfdirconv dir

dir/sample1.f90: line 5: converted 'loopcnt=5' to 'loop_count(5)' (Converted)

dir/sample2.f90: line 16: converted 'nodep' to 'ivdep' (Substitute)

In the above case, sample1.c and sample2.c are converted. Makefile is out of scope

because there is no file extension. Files in subdirectory 'subdir' are also excluded.

Appendix C Compiler Directive Conversion Tool

- 362 -

$ nfdirconv -r dir

dir/sample2.f90: line 5: converted 'nodep' to 'ivdep' (Substitute)

dir/sample1.f90: line 16: converted 'loopcnt=5' to 'loop_count(5)' (Converted)

dir/subdir/sample3.f90: line 12: converted 'loopcnt=5' to 'loop_count(5)'

(Converted)

Specify -r option to convert files in subdirectories. If -r option is specified, directory is

recursively checked and converted.

C.3 Compiler Directives

SX Compiler Vector Engine Compiler

alloc_on_vreg(identifier, n) vreg(identifier)

altcode dependency_test

loop_count_test

shortloop_reduction

altcode=dep dependency_test

altcode=loopcnt loop_count_test

altcode=nodep nodependency_test

altcode=noshort noshortloop_reduction

altcode=short shortloop_reduction

noaltcode nodependency_test

noloop_count_test

noshort_loop_reduction

array(c1[,c2…]) (Removed/Obsolescent)

arraycomb (Removed/Obsolescent)

assert (Removed/Obsolescent)

assoc assoc

noassoc noassoc

assume assume

noassume noassume

atomic atomic

cncall cncall

collapse collapse

compress (Removed/Obsolescent)

nocompress (Removed/Obsolescent)

concur concurrent

Appendix C Compiler Directive Conversion Tool

- 363 -

SX Compiler Vector Engine Compiler

concur(by=m) concurrent schedule(dynamic, m)

concur(for=n) concurrent

noconcur noconcurrent

data_prefetch (Removed/Obsolescent)

delinearize (Removed/Obsolescent)

nodelinearize (Removed/Obsolescent)

divloop vwork

nodivloop novwork

end arraycomb (Removed/Obsolescent)

end parallel sections (Removed/Obsolescent)

expand unroll_complete

expand=n (Removed/Obsolescent)

noexpand nounroll

extend (Removed/Obsolescent)

extend_free (Removed/Obsolescent)

fixed (Removed/Obsolescent)

free (Removed/Obsolescent)

gthreorder gather_reorder

nogthreorder (Removed/Obsolescent)

iexpand(function) inline

noiexpand(function) noinline

inline always_inline

inner inner

noinner noinner

listvec list_vector

nolistvec nolist_vector

loopchg interchange

noloopchg nointerchange

loopcnt=n loop_count(n)

lstval lstval

nolstval nolstval

move move_unsafe

Appendix C Compiler Directive Conversion Tool

- 364 -

SX Compiler Vector Engine Compiler

nomove nomove

nomovediv move

neighbors neighbors

Note: Neighboring access optimization is

effective only when -march=ve3 is

enabled.

noneighbors noneighbors

nexpand inline_complete

noconflict(identifier) (Removed/Obsolescent)

nodep ivdep

on_adb(identifier) (Removed/Obsolescent)

outerunroll=n outerloop_unroll(n)

noouterunroll noouterloop_unroll

overlap (Removed/Obsolescent)

nooverlap (Removed/Obsolescent)

parallel do parallel do

parallel do private(identifier) parallel do private(identifier)

parallel sections (Removed/Obsolescent)

section (Removed/Obsolescent)

select(keyword) select_concurrent

select_vector

shape (Removed/Obsolescent)

shortloop shortloop

skip (Removed/Obsolescent)

sparse sparse

nosparse nosparse

split (Remained)

nosplit (Remained)

sync (Remained)

nosync nosync

threshold (Removed/Obsolescent)

othreshold (Removed/Obsolescent)

traceback (Remained)

Appendix C Compiler Directive Conversion Tool

- 365 -

SX Compiler Vector Engine Compiler

unroll=n unroll(n)

nounroll nounroll

unshared (Removed/Obsolescent)

vecthreshold vector_threshold(n)

vector vector

novector novector

verrchk (Remained)

noverrchk (Remained)

vlchk (Removed/Obsolescent)

ovlchk (Removed/Obsolescent)

vob vob

novob novob

vovertake(identifier) vovertake

novovertake novovertake

vprefetch (Remained)

novprefetch (Removed/Obsolescent)

vreg(identifier) vreg(identifier)

vwork=keyword (Removed/Obsolescent)

vworksz=n (Removed/Obsolescent)

zcheck (Removed/Obsolescent)

nozcheck (Removed/Obsolescent)

C.4 Notes

 The original file is saved as file-name.bak. When file-name.bak already exists,

rename file-name.bak to file-name.bak2, then save the new file as file-name.bak.

Up to five files are saved. Please delete files as necessary.

 This tool does not check the format of the input file. If the format of the

sxf90/sxf03/sxcc/sxc++ directive is incorrect, conversion may not be performed

correctly.

 If the input file is a symbolic link file, the symbolic link destination file is updated.

The "file-name.bak" is created as a regular file.

 BEGIN/END Directive are treated as unsupported compiler directive.

Appendix D File I/O Analysis Information

- 366 -

 File I/O Analysis Information

This appendix describes the File I/O Analysis Information.

D.1 Output Example

Output when the value “DETAIL” is set in the environment variable

VE_FORT_FILEINF.

 ****** File Information ******

 Unit No. : 10

 File Name : fort.10

 Named : YES

 Current Directory : /usr/uhome/xxxxxxxx

 TMPDIR : /tmp

 I/O Exec. Count : READ WRITE OPEN CLOSE INQUIRE

 1 1 0 1 0

 REWIND BACKSPACE ENDFILE

 1 0 0

 WAIT FLUSH

 0 0

 Format : FORMATTED Access : SEQUENTIAL

 Blank(OPEN) : NULL Blank(READ) : NULL

 Delim(OPEN) : NONE Delim(WRITE) : ----

 Pad(OPEN) : YES Pad(READ) : YES

 Decimal(OPEN) : POINT Decimal(R/W) : POINT

 Sign(OPEN) : PROCESSOR Sign(WRITE) : PROCESSOR

 Round(OPEN) : PROCESSOR Round(R/W) : PROCESSOR

 Asynchronous : NO Encoding : DEFAULT

 Position : REWIND

 Recl (Byte) : 65536

 File Size (Byte) : 13 File Descriptor : 5

 File System Type : NFS(0x00006969) Open Mode : READWRITE

 Terminal Assignment : NO Shrunk File : YES

 Max File Size(Byte) : 600

 I/O Buffer Size (KByte) : 512

 Record Buffer Size (Byte) : 65536

 Total(In/Out) Input Output

 Total Data Size (Byte) : 25, 13, 12

 Max Data Size (Byte) : 13, 12

 Min Data Size (Byte) : 13, 12

Appendix D File I/O Analysis Information

- 367 -

 Ave Data Size (Byte) : 12, 13, 12

 Transfer Rate (KByte/sec) : 18.789, 19.261, 18.303

 Total(In/Out/Aux) Input Output

 Real Time (sec) : 0.004284, 0.000659, 0.000640

 User Time (sec) : 0.002874, 0.000062, 0.000129

 Environment Variable List :

D.2 Description of items

Unit No.

External unit identifier number.

File Name

The file name output here is a name specified in the FILE specifier or during

preconnection; the name does not include the home directory or current directory.

For SCRATCH files, file names assigned by the system are output.

Named

Whether the file is a named file.

Current Directory

The directory name currently in operation.

TMPDIR

The directory name the SCRATCH file was created. This information is output only

for SCRATCH files.

I/O Exec Count

The execution count of each I/O statement. For direct access, information about

REWIND, BACKSPACE and ENDFILE is not output.

Format

The value of the FORM specifier.

Access

The value of the ACCESS specifier.

Blank (OPEN)

The value of the BLANK specifier of the OPEN statement. This information is

output only for FORMATTED.

Blank (READ)

The value of the BLANK specifier of the READ statement. For no READ

statement, ‘----‘ is output. When the different value is specified in the READ

Appendix D File I/O Analysis Information

- 368 -

statement, “MIXED” is output. This information is output only for FORMATTED.

Delim (OPEN)

The value of the DELIM specifier of the OPEN statement. This information is

output only for FORMATTED.

Delim (WRITE)

The value of the DELIM specifier of the WRITE statement. For no WRITE

statement, ‘----‘ is output. When the different value is specified in the WRITE

statement, “MIXED” is output. This information is output only for FORMATTED.

Pad (OPEN)

The value of the PAD specifier of the OPEN statement. This information is output

only for FORMATTED.

Pad (READ)

The value of the PAD specifier of the READ statement. For no READ statement, ‘-

---‘ is output. When the different value is specified in the READ statement,

“MIXED” is output. This information is output only for FORMATTED.

Decimal (OPEN)

The value of the DECIMAL specifier of the OPEN statement. This information is

output only for FORMATTED.

Decimal (R/W)

The value of the DECIMAL specifier of the READ/WRITE statement. For no

READ/WRITE statement, ‘----‘ is output. When the different value is specified in

the READ/WRITE statement, “MIXED” is output. This information is output only

for FORMATTED.

Sign (OPEN)

The value of the SIGN specifier of the OPEN statement. This information is output

only for FORMATTED.

Sign (WRITE)

The value of the SIGN specifier of the WRITE statement. For no WRITE

statement, ‘----‘ is output. When the different value is specified in the WRITE

statement, “MIXED” is output. This information is output only for FORMATTED.

Round (OPEN)

The value of the ROUND specifier of the OPEN statement. This information is

output only for FORMATTED.

Appendix D File I/O Analysis Information

- 369 -

Round (R/W)

The value of the ROUND specifier of the READ/WRITE statement. For no

READ/WRITE statement, ‘----‘ is output. When the different value is specified in

the READ/WRITE statement, “MIXED” is output. This information is output only

for FORMATTED.

Asynchronous

The value of the ASYNCHRONOUS specifier.

Encoding

The value of the ENCODING specifier of the OPEN statement. This information is

output only for FORMATTED.

Position

The value of the POSITION specifier of the OPEN statement. For direct access,

this information is not output.

Recl

The value of the RECL specifier of the OPEN statement in bytes. The default value

is output when the RECL specifier is not specified. For stream access, this

information is not output.

Max Record No.

The maximum record number actually input and output. This is not the maximum

record number derived from the file size. This information is output only for direct

access.

File Size

The size of the file in bytes at closing. This value also contains the record control

word appended by program for sequential access output.

File Descriptor

The value of the file descriptor.

File System Type

The file system to which the file belongs.

Open Mode

The mode in which the file was opened.

Terminal Assignment

Whether the file is connected to a terminal.

Shrunk File

Whether the file shrinkage function was executed. The file shrinkage function

Appendix D File I/O Analysis Information

- 370 -

releases the remaining area, when the file size at closing is smaller than the file

size at opening or the maximum file size is reached during program execution.

This information is output only for sequential access.

Max File Size

The maximum file size in bytes during program execution. This information is

output only when the shrunk file indicates "YES". This is useful information when

trying to decide on I/O buffer size.

I/O Buffer Size

The size of an I/O buffer allocated for I/O in kilo bytes.

Record Buffer Size

The size of a record buffer allocated for I/O in bytes.

Total Data Size

The total amount of transferred data in bytes. The size is output in the order of

total input and output, total input, total output. The record control word appended

by program during sequential access is excluded from these quantities.

Max Data Size

The maximum input and output size of transferred data in bytes. The size is

output in the order of input, output.

Min Data Size

The minimum input and output size of transferred data in bytes. The size is output

in the order of input, output.

Ave Data Size

The average size of transferred data in bytes. The size is output in the order of

total input and output, total input, total output. This information shows whether

the file I/O is small or large.

Transfer Rate

The file transfer speed in kilo bytes. The value is obtained by dividing the Total

Data Size by elapsed time. This information is output only when "DETAIL" is set in

VE_FORT_FILEINF.

Real Time

Elapsed time. This information is output only when "DETAIL" is set in

VE_FORT_FILEINF.

User Time

User time. This information is output only when "DETAIL" is set in

Appendix D File I/O Analysis Information

- 371 -

VE_FORT_FILEINF.

Environment Variable List

A list of the environment variable. Only an effective environment variable output

by alphabetical order. This information is output only when "DETAIL" is set in

VE_FORT_FILEINF.

Appendix E Change Notes

- 372 -

 Change Notes

The following changes are done from the previous version (Rev.36 Dec.2024

released).

 The description of the following compiler option is added in "Section 3.2".

‒ -m[no-]vector-assume-loop-count

 Add the assumed-rank dummy data object in Section "9.5.1 Data Declaration".

 Add the SELECT RANK construct in Section "9.5.2 Data Usage".

 Add descriptions for messages vec(135), vec(136), vec(144), opt(1268),

opt(1394), opt(3008), opt(3012), opt(3013), and opt(3014) in Section "12.1.2

Message List".

Index

$

$.. 115

&

& .. 116

@

@file-name .. 34

1

1-byte Integer ... 120

1-byte Logical .. 127

2

2-byte Integer ... 120

4

4-byte Integer ... 120

4-byte Logical .. 127

8

8-byte Integer ... 120

8-byte Logical .. 127

A

Accuracy degration .. 7

advance_gather ... 59

always_inline ... 59, 85

Argument Association 115

Arithmetic exception

Accuracy degration..................................... 7

Division by zero ... 7

Floating-point overflow 7

Floating-point underflow 7

Invalid operation .. 7

Using Traceback Information 8

Vector instruction 8

Arithmetic Exception Mask 8

Arithmetic Exceptions 6

Arithmetic IF Statement 111

Array Complement 115

-assembly-list .. 54

ASSIGN statement 119

assigned GO TO statement 119

assoc ... 59

assume .. 59

atomic .. 60

Automatic inlining .. 85

Automatic Parallelization 90

automatic vectorization 74

B

-B .. 55

-Bdynamic .. 54

Binary Type ... 128

Boz-literal-constant 117

-bss ... 48

-Bstatic .. 54

C

-c .. 33

C_PTR .. 155

-cf ... 33

Character Type .. 127

-clear ... 33

cncall ... 60

Code Generation Module 104

COMMON Statement 106

Compares absolute values 77

Compiler Directive Conversion Tool 359

Compiler Directives 59

COMPLEX DOUBLE PRECISION Statement 106

COMPLEX DOUBLE Statement 106

Complex Double-Precision Type.................... 125

Complex Half-Precision Type 124

COMPLEX QUADRUPLE PRECISION Statement106

COMPLEX QUADRUPLE Statement 106

Complex Quadruple-Precision Type 126

Complex Single-Precision Type 124

Complex Type .. 124

Compression .. 78

Computed GO TO Statement 110

concurrent ... 60

Conditional Parallelization Using Dependency Test

 .. 90

Conditional Parallelization Using Threshold Test 90

Conditional Vectorization 79

Configuration file .. 329

Cross-file Inlining ... 87

Currency Symbol $ 115

-cxxlib ... 54

D

-D .. 52

DATA Statement ... 107

Data Types .. 119

dependency_test .. 60

Diagnostic List ... 97

DIMENSION Statement 107

Division by zero... 7

-dM .. 52

DOUBLE COMPLEX Statement 107

DOUBLE PRECISION Statement 108

DOUBLE Statement 107

Double-Precision Type 122

E

-E ... 52

Environment Variables 10

EQUIVALENCE Statement 109

Expansion.. 78

Explicit inlining ... 85

Expressions ... 117

Extended Free Source Form 117

F

-faggressive-associative-math 34

-fargument-alias .. 34

-fargument-noalias 34

-fassociative-math 34

-fassume-contiguous 34

-fbounds-check ... 46

-fcheck ... 46

-fcopyin-intent-out 35

-fcse-after-vectorization 35

-fdefault-double ... 48

-fdefault-integer .. 48

-fdefault-real ... 48

-fdiag-inline .. 51

-fdiag-parallel .. 51

-fdiag-vector ... 51

-fextend-source ... 49

-ffast-formatted-io 35

-ffast-math ... 35

-ffast-math-check .. 35

-ffixed-form .. 49

-ffree-form.. 49

-fignore-asynchronous 35

-fignore-induction-variable-overflow 35

-fignore-volatile ... 35

-finline-abort-at-error 43

-finline-copy-arguments 43

-finline-directory .. 44

-finline-file .. 44

-finline-functions ... 44

-finline-max-depth 44

-finline-max-function-size 44

-finline-max-times 44

-finline-suppress-diagnostics 44

-finstrument-functions 45

-fintrinsic-modules-path 55

-fivdep ... 35

-fivdep-do-concurrent-loop 35

-fivdep-omp-worksharing-loop 36

Fixed Source Form 116

Floating-Point Data 121

Floating-point overflow 7

Floating-point underflow 7

-floop-collapse ... 36

-floop-count .. 36

-floop-fusion .. 36

-floop-interchange .. 36

-floop-normalize ... 36

-floop-split ... 36

-floop-strip-mine .. 36

-floop-unroll .. 36

-floop-unroll-complete 36

-floop-unroll-complete-nest 37

-floop-unroll-max-times 37

-fmatrix-multiply .. 37

-fmax-continuation-lines 49

-fmove-loop-invariants 37

-fmove-loop-invariants-if 37

-fmove-loop-invariants-unsafe 37

-fmove-nested-loop-invariants-outer 37

-fnamed-alias .. 37

-fnamed-noalias ... 37

-fnamed-noalias-aggressive 38

-fno-inline-directory 44

-fno-inline-file .. 44

-fopenmp .. 42

Forced Loop Parallelization 91

forced_collapse .. 60

forced-parallelization 64

Format List .. 98

FORMAT Statement 109

Formatted Records 133

Fortran

arguments ... 161

Fortran 2018 Extensions 139

FORTRAN77 POINTER Statement 112

-fouterloop-unroll ... 38

-fouterloop-unroll-max-size 38

-fouterloop-unroll-max-times 38

-fpic ... 45

-fPIC .. 45

-fpp ... 52

-fpp-name .. 52

-fprecise-math .. 38

-frealloc-lhs ... 49

-frealloc-lhs-array .. 49

-frealloc-lhs-scalar 49

-freciprocal-math ... 38

-freorder-logical-expression 38

-freplace-loop-equation 38

-freplace-matmul-to-matrix-multiply 38

-fsyntax-only ... 33

-ftrace .. 45

FUNCTION Statement 109

G

-g .. 47

gather_reorder .. 60

H

H edit descriptor .. 119

Half-Precision Floating-Point Type 325

Half-Precision Type 121

--help ... 56

Hexadecimal Type 128

Hollerith Assignment Statement 118

Hollerith Relational Expression 118

Hollerith Type 117, 127

HOME ... 10

I

-I ... 53

ignore_feedback_scalar 60

Implementation-Defined Specifications 119

IMPLICIT Statement 111

inf .. 129

inline ... 61, 85

inline directive ... 85

inline_complete 61, 85

Inlining ... 85

Inlining Module .. 102

inner ... 61

Integer Type .. 120

interchange ... 61

Intrinsic Procedures 131, 166

Invalid operation ... 7

-isysroot .. 53

-isystem .. 53

Iteration .. 76

ivdep .. 61

J

-J ... 55

L

-l .. 54

-L ... 54

Language-Mixed Programming 146

LD_LIBRARY_PATH 12

Linking .. 165

list_vector ... 61

Logical Operator ... 117

Logical Type... 126

LOOP .. 92

loop_count .. 61

loop_count_test ... 61

lstval ... 62

M

-M .. 53

Macro Operations ... 75

Compares absolute values 77

Compression .. 78

Expansion .. 78

Iteration .. 76

Maximum values and minimum values 76

Product .. 76

Search .. 78

Sum or inner product 76

-march ... 45

-marray-io .. 38

-masync-io ... 50

Matrix Multiply Library 213

Maximum Array Rank 117

Maximum values and minimum values 76

-mconditional-index-test 39

-mcreate-threads-at-startup 42

memory block ... 132

Messages .. 262

-mfp16-format .. 45

-mgenerate-il-file ... 45

-minit-stack .. 47

-mlist-vector ... 39

-mmemory-trace ... 47

-mmemory-trace-full 47

-mno-stack-arrays 39

-module ... 55

move ... 62

move_unsafe .. 62

-mparallel ... 43

-mparallel-innerloop 43

-mparallel-omp-routine 43

-mparallel-outerloop-strip-mine 43

-mparallel-sections 43

-mparallel-threshold 43

-mread-il-file ... 45

-mretain ... 39

-msched ... 39

-mschedule-chunk-size 43

-mschedule-dynamic 43

-mschedule-runtime 43

-mschedule-static .. 43

-mstack-arrays .. 39

-muse-mmap .. 40

-mvector .. 40

-mvector-advance-gather 40

-mvector-advance-gather-limit 40

-mvector-assignment-threshold 40

-mvector-assume-loop-count 40

-mvector-dependency-test 40

-mvector-floating-divide-instruction 40

-mvector-fma .. 40

-mvector-intrinsic-check 40

-mvector-iteration .. 41

-mvector-iteration-unsafe 41

-mvector-loop-count-test 41

-mvector-low-precise-divide-function 41

-mvector-merge-conditional 41

-mvector-neighbors 41

-mvector-packed .. 41

-mvector-power-to-explog............................. 41

-mvector-power-to-sqrt 42

-mvector-reduction 42

-mvector-shortloop-reduction 42

-mvector-sqrt-instruction 42

-mvector-threshold 42

-mwork-vector-kind 42, 74

N

NAMELIST Input Format.............................. 139

NAMELIST Output Format 139

NaN .. 129

neighbors .. 62

nfdirconv ... 359

NFORT_COMPILER_PATH 10

NFORT_INCLUDE_PATH 10

NFORT_LIBRARY_PATH 10

NFORT_PROGRAM_PATH 11

noadvance_gather .. 59

noassoc ... 59

noassume.. 59

noconcurrent ... 60

nofma ... 62

nofuse .. 62

noinline ... 61, 85

noinner ... 61

nointerchange .. 61

nolist_vector ... 61

nolstval .. 62

nomove .. 62

noouterloop_unroll 64

nopacked_vector ... 64

-noqueue .. 56

noshortloop_reduction.................................. 65

nosparse... 66

-nostartfiles .. 54

-nostdinc .. 53

-nostdlib ... 54

nosync ... 62

nounroll .. 66

novector ... 66

novob ... 66

novovertake .. 66

novwork ... 67

O

-o .. 33

-O .. 34

Octal Type .. 128

OMP_NUM_THREADS 12

OMP_STACKSIZE ... 12

Optimizations .. 72

optimize ... 63

Optimizing Mask Operations 74

Option List .. 97

options ... 62

Outer Loop Strip-mining 79

outerloop_unroll .. 64

P

-p .. 46

-P .. 53

Packed vector instructions 81

packed_vector ... 64

parallel do ... 64

PARALLEL LOOP .. 92

PARALLEL MASTER 92

Parallelization ... 90

Parallelization of inner Loops 90

PARAMETER Statement 111

Partial Vectorization 74

PATH .. 11

PAUSE statement 119

-pedantic-errors ... 51

-pg ... 46

POINTER Statement 112

Preconnection .. 136

Predefined Macro 130

-print-file-name ... 56

-print-prog-name ... 56

Product ... 76

-proginf ... 46

-pthread .. 43

pvreg .. 64

Q

QUADRUPLE PRECISION Statement 114

QUADRUPLE Statement 114

Quadruple-Precision Type 123

R

-rdynamic.. 54

Real Type .. 121

Relational Operator 117

-report-all .. 51

-report-append-mode 51

-report-cg ... 51

-report-diagnostics 51

-report-file... 51

-report-format ... 52

-report-inline ... 52

-report-option .. 52

-report-userinfo ... 52

-report-vector .. 52

retain .. 65

RETURN Statement 115

Rounding Mode .. 138

S

-S .. 33

-save .. 50

scalar data .. 73

Search .. 78

select_concurrent .. 65

select_vector ... 65

-shared .. 54

shortloop .. 65

Short-loop .. 80

shortloop_reduction 65

Side Effects of Optimization 73

signed zero ... 129

sparse .. 66

Specifications .. 129

Statement Continuation 115

-static .. 54

-static-nec .. 54

-std .. 50

-stdlib .. 54

STOP Statement .. 115

Subscript Expression 118

Substring Expression 118

Sum or inner product 76

SX Compatibility .. 331

--sysroot .. 55

T

TMPDIR .. 11

-traceback .. 48

-traditional .. 53

Troubleshooting ... 306

U

-U .. 53

Unformatted Records 134

UNIX System Function Interface 218

Unnamed File .. 138

unroll ... 66

unroll_complete ... 66

-use .. 50

V

-v ... 56

VE_ADVANCEOFF ... 12

VE_ERRCTL_ALLOCATE 13

VE_ERRCTL_DEALLOCATE 13

VE_FMTIO_OFFLOAD 13

VE_FMTIO_OFFLOAD_THRESHOLD 14

VE_FORT ... 14

VE_FORT_ABORT ... 14

VE_FORT_ACCUMULATE_THREAD_CPU_TIME . 14

VE_FORT_DEFAULTFILE 15

VE_FORT_EXPRCW 15

VE_FORT_FILEINF .. 16

VE_FORT_FMT_NO_WRAP_MARGIN 16

VE_FORT_FMTBUF 17

VE_FORT_FOR_PRINT 17

VE_FORT_FOR_READ 18

VE_FORT_FOR_TYPE 18

VE_FORT_MEM_BLOCKSIZE 132

VE_FORT_NML_DELIM_BLANK....................... 19

VE_FORT_NML_REPEAT_FORM 19

VE_FORT_NORCW 18, 19

VE_FORT_PARTRCW 20

VE_FORT_PAUSE .. 21

VE_FORT_RECLUNIT 22

VE_FORT_RECORDBUF 22

VE_FORT_SETBUF .. 23

VE_FORT_SUBRCW 24

VE_FORT_UFMTADJUST 25

VE_FORT_UFMTENDIAN 26

VE_FORT_UFMTENDIAN_NOVEC 26

VE_FPE_ENABLE .. 27

VE_INIT_HEAP ... 28

VE_INIT_STACK ... 29

VE_LD_LIBRARY_PATH 29

VE_LIBRARY_PATH 11

VE_NODE_NUMBER 29

VE_OMP_NUM_THREADS 12

VE_OMP_STACKSIZE 12

VE_PROGINF ... 30

VE_TRACEBACK .. 30

VE_TRACEBACK_DEPTH 31

VE1/VE3 Compatibility 323

vector .. 66

vector data ... 73

vector_threshold ... 66

Vectorization ... 73

Vectorization Module 103

--version ... 56

vob .. 66

vovertake ... 66

vreg ... 67

vwork ... 67

W

-w.. 51

-Wa .. 53

-Wall .. 50

-Werror .. 50

-Wextension .. 50

-Wl .. 55

-Wobsolescent ... 50

-Woverflow ... 50

-Woverflow-errors.. 50

-Wp ... 53

-Wunmatched-subscript 51

-Wunmatched-subscript-errors 51

X

-x .. 33

-Xassembler .. 53

-Xlinker .. 55

Z

-z... 55

	Chapter1 Fortran Compiler
	1.1 Overview
	1.2 Usage of the Compiler
	1.3 Execution
	1.4 Command Line Syntax
	1.5 Specifying Compiler Options
	1.6 Searching Module Files
	1.7 Searching files included by INCLUDE line or #include directive
	1.8 Searching Libraries
	1.9 Arithmetic Exceptions
	1.9.1 Operation Result After Arithmetic Exception Occurrence
	1.9.2 Changing Arithmetic Exception Mask
	1.9.3 Using Traceback Information
	1.9.4 Remarks on Changing Arithmetic Exception Mask

	1.10 Execution Time Termination Codes

	Chapter2 Environment Variables
	2.1 Environment Variables Referenced During Compilation
	HOME
	NFORT_COMPILER_PATH
	NFORT_INCLUDE_PATH
	NFORT_LIBRARY_PATH
	NFORT_PROGRAM_PATH
	PATH
	TMPDIR
	VE_LIBRARY_PATH

	2.2 Environment Variables Referenced During Execution
	LD_LIBRARY_PATH
	OMP_NUM_THREADS / VE_OMP_NUM_THREADS
	OMP_STACKSIZE / VE_OMP_STACKSIZE
	VE_ADVANCEOFF
	VE_ERRCTL_ALLOCATE
	VE_ERRCTL_DEALLOCATE
	VE_FMTIO_OFFLOAD
	VE_FMTIO_OFFLOAD_THRESHOLD
	VE_FORTn
	VE_FORT_ABORT
	VE_FORT_ACCUMULATE_THREAD_CPU_TIME
	VE_FORT_DEFAULTFILE
	VE_FORT_EXPRCW
	VE_FORT_FILEINF
	VE_FORT_FMT_NO_WRAP_MARGIN
	VE_FORT_FMTBUF[n]
	VE_FORT_FOR_PRINT
	VE_FORT_FOR_READ
	VE_FORT_FOR_TYPE
	VE_FORT_MEM_BLOCKSIZE
	VE_FORT_NML_DELIM_BLANK
	VE_FORT_NML_REPEAT_FORM
	VE_FORT_NORCW
	VE_FORT_PARTRCW
	VE_FORT_PAUSE
	VE_FORT_RECLUNIT
	VE_FORT_RECORDBUF[n]
	VE_FORT_SETBUF[n]
	VE_FORT_SUBRCW
	VE_FORT_UFMTADJUST[n]
	VE_FORT_UFMTENDIAN
	VE_FORT_UFMTENDIAN_NOVEC
	VE_FPE_ENABLE
	VE_INIT_HEAP
	VE_INIT_STACK
	VE_LD_LIBRARY_PATH
	VE_NODE_NUMBER
	VE_PROGINF
	VE_TRACEBACK
	VE_TRACEBACK_DEPTH

	Chapter3 Compiler Options
	3.1 Overall Options
	3.2 Optimization Options
	3.3 Parallelization Options
	3.4 Inlining Options
	3.5 Code Generation Options
	3.6 Debugging Options
	3.7 Language Options
	3.8 Message Options
	3.9 List Output Options
	3.10 Preprocessor Options
	3.11 Assembler Options
	3.12 Linker Options
	3.13 Directory Options
	3.14 Miscellaneous Options
	3.15 Optimization Level and Options’ Defaults

	Chapter4 Compiler Directives
	4.1 Format of Compiler Directive
	4.2 Compiler Directive Options
	[no]advance_gather
	always_inline
	[no]assoc
	[no]assume
	atomic
	cncall
	collapse
	[no]concurrent
	dependency_test
	forced_collapse
	gather_reorder
	ignore_feedback_scalar
	[no]inline
	inline_complete
	[no]inner
	[no]interchange
	ivdep
	[no]list_vector
	loop_count(n)
	loop_count_test
	[no]lstval
	move_unsafe / move / nomove
	[no]neighbors
	nofma
	nofuse
	nosync
	options “compiler-option [compiler-option]...”
	optimize “compiler-option [compiler-option]...”
	outerloop_unroll(n) / noouterloop_unroll
	[no]packed_vector
	parallel do
	pvreg(array-name)
	retain(array-name)
	select_concurrent
	select_vector
	shortloop
	[no]shortloop_reduction
	[no]sparse
	unroll(n) / nounroll
	unroll_complete
	[no]vector
	vector_threshold(n)
	[no]vob
	[no]vovertake
	vreg(array-name)
	[no]vwork

	4.3 Compiler options which cannot specify by options directive
	4.4 Compiler options which can be specified by optimize directive

	Chapter5 Optimization and Vectorization
	5.1 Code Optimization
	5.1.1 Optimizations
	5.1.2 Side Effects of Optimization

	5.2 Vectorization Features
	5.2.1 Vectorization
	5.2.2 Partial Vectorization
	5.2.3 Optimizing Mask Operations
	5.2.4 Macro Operations
	5.2.5 Conditional Vectorization
	5.2.6 Outer Loop Strip-mining
	5.2.7 Short-loop
	5.2.8 Packed vector instructions
	5.2.9 Other
	5.2.10 Remarks on Using Vectorization

	5.3 Other features for performance
	5.3.1 Offloading of Lumped Output of Array
	5.3.2 Improve efficiency in buffering
	5.3.2.1 Record buffer
	5.3.2.2 I/O buffer

	Chapter6 Inlining
	6.1 Automatic Inlining
	6.2 Explicit Inlining
	6.2.1 Description
	6.2.2 Specifying Inline Directive
	6.2.3 Remarks

	6.3 Cross-file Inlining
	6.4 Inline Expansion Inhibitors
	6.5 Notes on Inlining
	6.6 Restrictions on Inlining

	Chapter7 Parallelization
	7.1 Automatic Parallelization
	7.1.1 Description
	7.1.2 Conditional Parallelization Using Threshold Test
	7.1.3 Conditional Parallelization Using Dependency Test
	7.1.4 Parallelization of inner Loops
	7.1.5 Forced Loop Parallelization

	7.2 OpenMP Parallelization
	7.2.1 Using OpenMP Parallelization
	7.2.2 OpenMP 5.0
	7.2.3 Extensions on OpenMP Parallelization
	7.2.4 Restrictions on OpenMP Parallelization
	7.2.5 Using OpenMP Parallelization

	7.3 Threads
	7.3.1 Set and Get Number of Threads
	7.3.2 Thread Creation and Destroy
	7.3.3 Postpone Thread Creation

	7.4 Notes on Using Parallelization

	Chapter8 Compiler Listing
	8.1 Option List
	8.2 Diagnostic List
	8.2.1 Format of Diagnostic List
	8.2.2 Notes

	8.3 Format List
	8.3.1 Format of Format List
	8.3.2 Loop Structure and Vectorization/Parallelization/Inlining Statuses
	8.3.3 Notes

	8.4 Optimization List of Each Module
	8.4.1 Inlining Module
	8.4.2 Vectorization Module
	8.4.3 Code Generation Module

	Chapter9 Programming Notes Depending on the Language Specification
	9.1 Non-Standard Extended Features
	9.1.1 Statements
	9.1.1.1 COMMON Statement
	9.1.1.2 COMPLEX DOUBLE / COMPLEX DOUBLE PRECISION Statement
	9.1.1.3 COMPLEX QUADRUPLE / COMPLEX QUADRUPLE PRECISION Statement
	9.1.1.4 DATA Statement
	9.1.1.5 DIMENSION Statement
	9.1.1.6 DOUBLE Statement
	9.1.1.7 DOUBLE COMPLEX Statement
	9.1.1.8 DOUBLE PRECISION Statement
	9.1.1.9 EQUIVALENCE Statement
	9.1.1.10 FORMAT Statement
	9.1.1.11 FUNCTION Statement
	9.1.1.12 Computed GO TO Statement
	9.1.1.13 Arithmetic IF Statement
	9.1.1.14 IMPLICIT Statement
	9.1.1.15 PARAMETER Statement
	9.1.1.16 FORTRAN77 POINTER Statement
	9.1.1.17 QUADRUPLE / QUADRUPLE PRECISION Statement
	9.1.1.18 RETURN Statement
	9.1.1.19 STOP Statement

	9.1.2 Program
	9.1.2.1 Statement Continuation
	9.1.2.2 Currency Symbol $
	9.1.2.3 Argument Association
	9.1.2.4 Array Complement

	9.1.3 Source Form
	9.1.3.1 Fixed Source Form
	9.1.3.2 Free Source Form

	9.1.4 Expressions
	9.1.4.1 Relational Operator
	9.1.4.2 Logical Operator
	9.1.4.3 Maximum Array Rank
	9.1.4.4 Boz-literal-constant
	9.1.4.5 Hollerith Type
	9.1.4.6 Subscript Expression and Substring Expression

	9.1.5 Deleted Features

	9.2 Implementation-Defined Specifications
	9.2.1 Data Types
	9.2.1.1 Correspondence Between Kind Type Parameters and Data Types

	9.2.2 Internal Representation of Data
	9.2.2.1 Integer Type
	9.2.2.2 Floating-Point Data
	9.2.2.3 Complex Type
	9.2.2.4 Logical Type
	9.2.2.5 Character Type
	9.2.2.6 Hollerith Type
	9.2.2.7 Hexadecimal Type
	9.2.2.8 Octal Type
	9.2.2.9 Binary Type
	9.2.2.10 Special Values

	9.2.3 Specifications
	9.2.4 Predefined Macro
	9.2.5 Notes for Intrinsic Procedures

	9.3 Memory Allocation and Deallocation
	9.3.1 Memory block
	9.3.2 Change size and threshold size of memory block

	9.4 Run-Time Input/Output
	9.4.1 Formatted Records
	9.4.1.1 Sequential File Formatted Records
	9.4.1.2 Direct File Formatted Records
	9.4.1.3 Stream File Format Records

	9.4.2 Unformatted Records
	9.4.2.1 Sequential File Unformatted Records
	9.4.2.2 Direct File Unformatted Records
	9.4.2.3 Stream File Unformatted Records

	9.4.3 Preconnection
	9.4.3.1 System Standard File Preconnection
	9.4.3.2 Other File Preconnection

	9.4.4 Unnamed File
	9.4.5 Rounding Mode
	9.4.6 NAMELIST Input Format
	9.4.7 NAMELIST Output Format

	9.5 Fortran 2018 Extensions
	9.5.1 Data declaration
	9.5.2 Data usage
	9.5.3 Execution Control
	9.5.4 Intrinsic Procedures and Modules
	9.5.5 Input/Output
	9.5.6 Programs and Procedures
	9.5.7 Language-Mixed Programming
	9.5.8 Obsolescent features

	9.6 Restrictions

	Chapter10 Language-Mixed Programming
	10.1 Point of Mixed Language Programming
	10.2 Correspondence of C/C++ Function Name and Fortran Procedure Name
	10.2.1 External Symbol Name of Fortran Procedure
	10.2.2 External Symbol Name of C++ Function
	10.2.3 Rules for Corresponding C/C++ Functions with Fortran Procedures
	10.2.4 Examples of Calling

	10.3 Data Types
	10.3.1 Integer and Logical Types for Fortran
	10.3.2 Floating-point and Complex Types for Fortran
	10.3.3 Character Type for Fortran
	10.3.4 Derived Type for Fortran
	10.3.5 Pointer
	10.3.6 Common Block for Fortran
	10.3.7 Notes

	10.4 Type and Return Value of Function and Procedure
	10.5 Passing Arguments
	10.5.1 Fortran Procedure Arguments
	10.5.2 Notes
	10.5.2.1 Appending Arguments Implicitly

	10.6 Linking
	10.6.1 Linking Fortran Program and C Program
	10.6.2 Linking Fortran Program and C++ Program

	10.7 Notes

	Chapter11 Library Reference
	11.1 Intrinsic Procedures
	11.1.1 ABS(A) Specific Name
	11.1.2 ACOS(X) Specific Name
	11.1.3 ACOSH(X) Specific Name
	11.1.4 AIMAG(Z) Specific Name
	11.1.5 AINT(A) Specific Name
	11.1.6 AMT(X)
	11.1.7 AND(I,J)
	11.1.8 ANINT(A) Specific Name
	11.1.9 ASIN(X) Specific Name
	11.1.10 ASINH(X) Specific Name
	11.1.11 ATAN(X) Specific Name
	11.1.12 ATAN2(Y,X) Specific Name
	11.1.13 ATANH(X) Specific Name
	11.1.14 BTEST(I,POS) Specific Name
	11.1.15 CANG(X)
	11.1.16 CBRT(X)
	11.1.17 CLOCK(D)
	11.1.18 CONJG(Z) Specific Name
	11.1.19 COS(X) Specific Name
	11.1.20 COSD(X)
	11.1.21 COSH(X) Specific Name
	11.1.22 COTAN(X)
	11.1.23 DATE(A)
	11.1.24 DATIM(A,B,C)
	11.1.25 DBLE(A) Specific Name
	11.1.26 DCMPLX(X,Y)
	11.1.27 DFACT(I)
	11.1.28 DFLOAT(A)
	11.1.29 DIM(X,Y) Specific Name
	11.1.30 DREAL(A)
	11.1.31 ERF(X) Specific Name
	11.1.32 ERFC(X) Specific Name
	11.1.33 ETIME(D)
	11.1.34 EXIT(X)
	11.1.35 EXP(X) Specific Name
	11.1.36 EXP10(X)
	11.1.37 EXP2(X)
	11.1.38 EXPC(X)
	11.1.39 EXPC10(X)
	11.1.40 EXPC2(X)
	11.1.41 FACT(I)
	11.1.42 FLUSH(UNIT)
	11.1.43 GAMMA(X) Specific Name
	11.1.44 IAND(I,J) Specific Name
	11.1.45 IBCLR(I,POS) Specific Name
	11.1.46 IBITS(I,POS,LEN) Specific Name
	11.1.47 IBSET(I,POS) Specific Name
	11.1.48 IEOR(I,J) Specific Name
	11.1.49 IMAG(A)
	11.1.50 INT(A[,KIND]) Specific Name
	11.1.51 IOR(I,J) Specific Name
	11.1.52 IRE(X)
	11.1.53 ISHFT(I,SHIFT) Specific Name
	11.1.54 ISHFT(I,SHIFT[,SIZE]) Specific Name
	11.1.55 ISNAN(X)
	11.1.56 IXOR(I,J)
	11.1.57 LGAMMA(X)
	11.1.58 LOC(X)
	11.1.59 LOG(X) Specific Name
	11.1.60 LOG10(X) Specific Name
	11.1.61 LOG2(X)
	11.1.62 MAX(A1,A2[,A3,…]) Specific Name
	11.1.63 MAXVL()
	11.1.64 MIN(A1,A2[,A3,…])
	11.1.65 MOD(A,P) Specific Name
	11.1.66 MVBITS(FROM,FROMPOS,LEN,TO,TOPOS) Specific Name
	11.1.67 NINT(A[,KIND]) Specific Name
	11.1.68 NOT(I)
	11.1.69 OR(I,J)
	11.1.70 QCMPLX(X,Y)
	11.1.71 QEXT(X)
	11.1.72 QFACT(I)
	11.1.73 QFLOAT(A)
	11.1.74 QREAL(A)
	11.1.75 REAL(A[,KIND])
	11.1.76 RSQRT(X)
	11.1.77 SIGN(A,B) Specific Name
	11.1.78 SIN(X) Specific Name
	11.1.79 SIND(X)
	11.1.80 SINH(X) Specific Name
	11.1.81 SQRT(X) Specific Name
	11.1.82 TAN(X) Specific Name
	11.1.83 TANH(X) Specific Name
	11.1.84 TIME(A)
	11.1.85 XOR(I,J)

	11.2 Matrix Multiply Library
	11.2.1 MATRIX-VECTOR Multiplication(A, NAR, B, NBR, C)
	11.2.2 MATRIX-VECTOR Multiplication(A, NA, IAD, B, NB, C, NC, NAR, NBR)
	11.2.3 MATRIX- MATRIX Multiplication(A, NA, IAD, B, NB, IBD, C, NC, ICD, NAR, NAC, NBC)

	11.3 UNIX System Function Interface
	11.3.1 F90_UNIX
	11.3.1.1 ABORT([MESSAGE])
	11.3.1.2 EXIT([STATUS])
	11.3.1.3 FLUSH(LUNIT)
	11.3.1.4 FREE(IPTR)
	11.3.1.5 GETARG(K,ARG)
	11.3.1.6 GETENV(NAME,VALUE)
	11.3.1.7 GETGID()
	11.3.1.8 GETPID()
	11.3.1.9 GETUID()
	11.3.1.10 IARGC()
	11.3.1.11 MALLOC(ISIZE)

	11.3.2 F90_UNIX_DIR
	11.3.2.1 CHDIR(PATH[,ERRNO])
	11.3.2.2 GETCWD([PATH,LENPATH,ERRNO])
	11.3.2.3 LINK(EXISTING,NEW[,ERRNO])
	11.3.2.4 RENAME(OLD,NEW[,ERRNO])
	11.3.2.5 UNLINK(PATH[,ERRNO])

	11.3.3 F90_UNIX_ENV
	11.3.3.1 GETARG(K[,ARG,LENARG,ERRNO])
	11.3.3.2 GETENV(NAME[,VALUE,LENVALUE,ERRNO])
	11.3.3.3 GETHOSTNAME([NAME,LENNAME])
	11.3.3.4 GETLOGIN([S,LENS])
	11.3.3.5 ISATTY(LUNIT,ANSWER[,ERRNO])
	11.3.3.6 TIME(ITIME[,ERRNO])
	11.3.3.7 TTYNAME(LUNIT[,S,LENS,,ERRNO])

	11.3.4 F90_UNIX_ERRNO
	11.3.5 F90_UNIX_FILE
	11.3.6 F90_UNIX_PROC
	11.3.6.1 ALARM(SECONDS,SUBROUTINE[,SECLEFT,ERRNO])
	11.3.6.2 EXECL(PATH,ARG0…[,ERRNO])
	11.3.6.3 EXECLP(FILE,ARG0…[,ERRNO])
	11.3.6.4 EXECV(PATH,ARGV,LENARGV[,ERRNO])
	11.3.6.5 EXECVE(PATH,ARGV,LENARGV,ENV,LENENV[,ERRNO])
	11.3.6.6 EXECVP(FILE,ARGV,LENARGV[,ERRNO])
	11.3.6.7 FORK(PID[,ERRNO])
	11.3.6.8 SLEEP(SECOND[,SECLEFT])
	11.3.6.9 SYSTEM(STRING[,STATUS,ERRNO])
	11.3.6.10 WAIT([STATUS,RETPID,ERRNO])

	11.4 Other Library
	11.4.1 ABORT()
	11.4.2 ACCESS(PATH,MODE)
	11.4.3 ALARM(SECS,PROC)
	11.4.4 CHDIR(PATH)
	11.4.5 CHMOD(NAME,MODE)
	11.4.6 CTIME(I)
	11.4.7 DTIME(TARRAY)
	11.4.8 ETIME(TARRAY)
	11.4.9 FDATE()
	11.4.10 FORK()
	11.4.11 FREE(ADDR)
	11.4.12 FREE2(ADDR)
	11.4.13 FSEEK(UNIT,OFFSET,WHENCE)
	11.4.14 FSTAT(UNIT,SXBUF)
	11.4.15 FTELL(UNIT)
	11.4.16 FTELLI8(UNIT)
	11.4.17 GETARG(POS,VAL)
	11.4.18 GETCWD(PATH)
	11.4.19 GETENV(NAME,VAL)
	11.4.20 GETGID()
	11.4.21 GETLOG(NAME)
	11.4.22 GETPID()
	11.4.23 GETPOS(UNIT)
	11.4.24 GETPOSI8(UNIT)
	11.4.25 GETUID()
	11.4.26 GMTIME(I,IA9)
	11.4.27 HOSTNM(NAME)
	11.4.28 IARGC()
	11.4.29 IDATE(IA3)
	11.4.30 IERRNO()
	11.4.31 ISATTY(UNIT)
	11.4.32 ITIME(IA3)
	11.4.33 KILL(PID,SIGNUM)
	11.4.34 LINK(PATH1,PATH2)
	11.4.35 LSTAT(PATH,SXBUF)
	11.4.36 LTIME(I,IA9)
	11.4.37 MALLOC(SIZE)
	11.4.38 MALLOC2(SIZE)
	11.4.39 PERROR(A)
	11.4.40 RENAME(FROM,TO)
	11.4.41 SECNDS(T)
	11.4.42 SIGNAL(SIGNUM,HANDLER)
	11.4.43 SLEEP(SECS)
	11.4.44 STAT(UNIT,SXBUF)
	11.4.45 SYMLNK(PATH1,PATH2)
	11.4.46 SYSTEM(CMD)
	11.4.47 TIME()
	11.4.48 TTYNAM(UNIT)
	11.4.49 UNLINK(PATH)
	11.4.50 WAIT(STATUS)

	11.5 Notes

	Chapter12 Messages
	12.1 Diagnostic Messages
	12.1.1 Diagnostic Message Format
	12.1.2 Message List

	12.2 Runtime Error Messages
	12.2.1 Format
	12.2.2 List of Error Messages

	12.3 Other Runtime Error

	Chapter13 Troubleshooting
	13.1 Troubleshooting for compilation
	13.2 Troubleshooting for execution
	13.3 Troubleshooting for tuning
	13.4 Troubleshooting for installation
	13.5 Troubleshooting for SX-ACE compiler migration

	Chapter14 VE1/VE3 Compatibility
	14.1 Executables Compatibility
	14.2 Changes of Search Path
	14.3 Changes of Compiler Options
	14.4 Half-Precision Floating-Point Type
	14.4.1 Format of Half-Precision Floating-Point Type
	14.4.2 Mixing binary16 and bfloat16

	14.5 Notice

	Chapter15 Notice
	Appendix A Configuration file
	A.1 Overview
	A.2 Format
	A.3 Example

	Appendix B SX Compatibility
	B.1 NEC Fortran 2003 Compiler Options
	B.1.1 Overall Options
	B.1.2 Vector/Scalar Optimization Options
	B.1.3 Inlining Options
	B.1.4 Parallelization Options
	B.1.5 Code Generation Options
	B.1.6 Language Options
	B.1.7 Performance Measurement Options
	B.1.8 Debug Options
	B.1.9 Preprocessor Options
	B.1.10 List Output Options
	B.1.11 Message Options
	B.1.12 Assembler Option
	B.1.13 C Compiler Option
	B.1.14 Linker Options
	B.1.15 Directory Options

	B.2 FORTRAN90/SX Compiler
	B.2.1 f90/sxf90 command Options
	B.2.2 f90/sxf90 Detailed Options for optimization
	B.2.3 f90/sxf90 Detailed Options for vectorization and parallelization
	B.2.4 f90/sxf90 Other Detailed Options

	B.3 Compiler Directives
	B.4 Environment Variables
	B.5 Other Library
	B.6 Implementation-Defined Specifications
	B.6.1 Data Types
	B.6.2 Specifications
	B.6.3 Intrinsic Procedures

	Appendix C Compiler Directive Conversion Tool
	C.1 nfdirconv
	C.2 Examples
	C.3 Compiler Directives
	C.4 Notes

	Appendix D File I/O Analysis Information
	D.1 Output Example
	D.2 Description of items

	Appendix E Change Notes
	Index

