

NEC Parallel Debugger User’s Guide

(G2AT02E)

 2／31

Proprietary Notice

The information disclosed in this document is the property of NEC Corporation (NEC) and/or its

licensors. NEC and/or its licensors, as appropriate, reserve all patent, copyright and other

proprietary rights to this document, including all design, manufacturing, reproduction, use and sales

rights thereto, except to the extent said rights are expressly granted to others.

The information in this document is subject to change at any time, without notice.

Eclipse is a registered trademark of Eclipse Foundation.

All other product, brand, or trade names used in this publication are the trademarks or registered

trademarks of their respective trademark owners.

Copyright 2018-2019 NEC Corporation.

 3／31

Introduction

This document explains how to use NEC Parallel Debugger.

How to Read

This document is composed of the following chapters. The rightmost column is target readers of the

corresponding chapter.

Chapter Title Description Target

Readers

1 Overview The overview of NEC Parallel Debugger Programmers

2 Creation of a Project Creation of a project in Eclipse PTP Programmers

3 Building of a Project Building of a project in Eclipse PTP Programmers

4 Creation of a Debug

Configuration

Creation of a Debug Configuration in

Eclipse PTP

Programmers

5 Operations for Debugging Operations for debugging in Eclipse PTP Programmers

6 Notices and Restrictions Notices and restrictions for NEC Parallel

Debugger

Programmers

Related Documents

 C/C++ Compiler User's Guide (G2AF01E)

 Fortran Compiler User's Guide (G2AF02E)

 NEC MPI User’s Guide (G2AM01E)

Remarks

 This manual conforms to Release 1.0.0 and subsequent releases of the NEC Parallel Debugger.

 4／31

Glossary

Term Description

Vector Engine (VE) Vector Operation Engine implemented as a PCI Express Card

attached to an x86 server. This is the core component of the

SX-Aurora TSUBASA system.

Vector Host (VH) An x86 server equipped with VEs.

Node A VE, which has a shared memory.

NQSV The NEC Network Queuing System V, which is a batch

processing system for high-performance cluster system.

NEC MPI MPI (Message Passing Interface) implementation by NEC.

MPI is A specification for a standard library for

communication. It can be used together with OpenMP or

automatic parallelization.

Eclipse Parallel Tools

Platform (PTP)

An integrated software development environment for parallel

applications, which is an open source software.

View A subwindow displayed in Eclipse window.

Perspective The name given to an initial collection and arrangement of

views and an editor area.

Target Process A process targeted for debugging.

 5／31

Contents

 Overview .. 6

1.1 NEC Parallel Debugger ... 6

1.2 Operating Environment ... 6

1.3 Steps for Debugging ... 7

 Creation of a Project .. 8

2.1 Invocation of Eclipse .. 8

2.2 Import of a Make Environment on a Remote Host ... 9

2.3 Import of a Make Environment on the Local Host .. 11

 Building of a Project .. 14

3.1 Setting of the Build Configuration ...14

3.2 Execution of a Build Project ..15

 Creation of a Debug Configuration ... 16

4.1 Creation of a Debug Configuration ...16

4.2 Setting of Resources ..17

4.3 Setting of an Application ...20

4.4 Setting of the Debugger ..21

4.5 Setting of the Environment ..21

4.6 Other Settings ...22

4.7 Starting of a Debug Execution ..22

 Operations for Debugging ... 24

5.1 Available Views ...24

5.2 Debugging of Multiple Processes in a Collective Manner..24

5.3 Debugging of One Process ...25

5.4 Display of the Stack Trace ..26

5.5 Reference of Variable Information ..27

5.6 Setting of Breakpoints ..28

5.7 Termination of a Debug Session ...28

 Notices and Restrictions ... 30

6.1 Notices ...30

6.2 Miscellaneous ..30

Appendix A: Change Log .. 31

 6／31

 Overview

1.1 NEC Parallel Debugger

NEC Parallel Debugger is an Eclipse PTP plugin for debugging of MPI applications. Eclipse PTP is an open

source integrated software development environment for parallel programs. Eclipse PTP into which NEC

Parallel Debugger is integrated enables effective debugging of distributed-memory parallel programs with

MPI in addition to shared-memory parallel programs written in Fortran and C/C++ with OpenMP or

automatic parallelization.

1.2 Operating Environment

Users invoke NEC Parallel Debugger on a front-end machine to which they have logged in via ssh etc,

and can edit, compile, and debug software launched by ssh as shown in the first figure below. It is also

possible to invoke NEC Parallel Debugger on the SX-Aurora TSUBASA to which they have logged in

via ssh or qlogin which is used for interactive request supported by NQSV as shown in the second

figure below. When a debug execution for a MPI application using NEC Parallel Debugger starts,

Scalable Debug Manager (SDM) is invoked on the SX-Aurora TSUBASA system. Then SDM initiates

gdb and an MPI application targeted for debugging.

 7／31

1.3 Steps for Debugging

The following figure shows the debugging steps for the first time. The steps one through three are not

needed for the second time and afterwards. The following chapters explain each step for debugging

applications using NEC MPI launched on VE.

1. Creation of a Project

2. Building of a Project

3. Creation of a Debug Configuration

4. Operations for Debugging

 8／31

 Creation of a Project

Development of applications with Eclipse requires creation of a project, which is an environment under

which users develop and debug an application. This chapter explains the steps for creating a project and

importing an existing make environment for the following two cases:

 Import of a make environment on a remote host

 Import of a make environment on the local host

2.1 Invocation of Eclipse

Execution of the following command invokes Eclipse, and a window opens.

% /<INST-PATH>/eclipse/eclipse

where <INST-PATH> is the path under which Eclipse is installed.

By inputting the Workspace directory, which is the working directory for a project, on the window, the

Welcome view is displayed as shown in the following figure.

Please close the Welcome view by clicking the X sign on the tab, and the C/C++ perspective, which is a

set of views for C/C++, is displayed as shown in the following figure.

 9／31

2.2 Import of a Make Environment on a Remote Host

It is recommended to create a synchronized project so that changes under the project such as modifications

of source files are automatically reflected into the original environment on the remote host.

The following is the steps for creating a synchronized project and import an existing make environment.

1. Right-click on empty space in the Project Explorer view and select “New > Synchronized C/C++ Project”

or “Synchronized Fortran Project” to open the New Synchronized Project window.

 10／31

2. Input a project name in the Project name field on the window, and then click on the New button in the

Connection name line.

3. Input in the entry fields such as Connection name, Host, User, and Passphrase, and click on the Finish

button.

 11／31

4. Input in the Remote directory field, select “Makefile project > Empty Project” in the Project Type field,

and click on the Finish button.

The creation of a synchronized project and import of a make environment are now complete.

Note that changes under the project are not reflected into the original environment at this point.

Please select “Synchronized Project” in the Project Explorer view and click on the button in the menu

to activate the reflection.

2.3 Import of a Make Environment on the Local Host

The following is the steps for creating a project and import an existing make environment on the local host.

The working directory for the project is the same as that of the original make environment.

1. Right-click on empty space in the Project Explorer view and select “Import” to open the Import window.

 12／31

2. Select “C/C++ > Existing Code as Makefile Project” on the window, and click on the Next button to

open another window.

3. Input a project name in the Project Name field and the directory where the make environment exists

in the Existing Code Location field, and select “none” in the Toolchain field on the window that

opened at step 2.

 13／31

4. If your code is written in Fortran, select “Convert to Fortran Project” in the Project Explorer view to

convert from a C/C++ project to a Fortran one.

The creation of a project and import of a make environment are now complete.

 14／31

 Building of a Project

This chapter explains how to configure a project and generate an executable application.

3.1 Setting of the Build Configuration
The following explains the steps for setting the paths to compilers and header files required for generating

an application.

1. Right-click on the project name in the Project Explorer view and select “Properties”.

2. Select “C/C++ Build > Environment > Add” and set the value of the environment variable PATH. Please

select “C/C++ Build” for a Fortran project, too.

 15／31

The value of the environment variable PATH needs to include the paths to all the commands required for

generating the application.

3. Select “C/C++ General > Paths and Symbols > Add” and set the directories under which include files

referenced in the source files are placed. Please select “C/C++ General” for a Fortran project, too.

The following example is the window to input a directory.

3.2 Execution of a Build Project

Right-click on the project name in the Project Explorer view and select “Build Project” to generate the

application.

 16／31

 Creation of a Debug Configuration

This chapter explains how to configure the settings for debug and start a debug execution.

4.1 Creation of a Debug Configuration

The following is the steps for creating a Debug Configuration.

1. Select “Window > Perspective > Open Perspective > Other” in the Project Explorer view.

2. Select the Parallel Debug perspective.

3. Select “Debug (bug icon) > Debug Configurations” to open the Debug Configurations window

 17／31

4. Select “Parallel Application > New” on the window

5. Input a debug configuration name in the Name field.

4.2 Setting of Resources

The following is the steps for configuring the settings required for execution of MPI applications such as

runtime options.

1. Select “Generic NECMPI Interactive” in the Target System Configuration field on the Resources tab.

 18／31

2. Select “Local” or “Remote” to specify where to launch an MPI application in the Connection Type field

on the Resources tab. If user launches the MPI application on a remote VH, specify the VH information,

too.

3. Specify the fields on the Basic Options tab to configure runtime options for the mpiexec command,

which executes the MPI application.

 19／31

The following table shows the runtime options available on the Basic Options tab.

Option Description

Number of

processes on VE

nodes

The total number of processes that execute an MPI application on VEs,

which is used in the –np option.

VE node range VE numbers on which an MPI application runs.

Specify one VE number or a range of VE numbers, which is used in the

–ve option. Without the specification, VE#0 is used.

Examples of the specification:

 One VE number : 1 (VE#1 is used)

 Range of VE numbers: 0-7 (VE#0 through VE#7 are used)

Host file File name that includes VHs from which an MPI application is

launched. In the host file, VH names are descripted line by line. This is

used in the -hostfile option. Without the specification of Host file and

Host list, the local host is used.

Host list Specify a comma-delimited list of VHs from which an MPI application

is launched, which is used in the –hosts option. Without the

specification of Host file and Host list, the local host is used.

Example:

host1,host2,host3

 20／31

4. Click on “Advanced Options”, select the checkbox “Extra Arguments”, and input other options than

those on the Basic Options tab.

4.3 Setting of an Application

Specify a project name in the Project field and an executable file in the Application program field on the

Application tab.

 21／31

4.4 Setting of the Debugger

1. Select “sxaurora-gdb-mi” in the Debugger backend field on the Debugger tab.

2. Uncheck the checkbox “Use built-in SDM if available for the target platform”.

4.5 Setting of the Environment

If necessary, add Environment variables setting on Environment tab. These environment variables

set on this tab are passed to the host where mpiexec command is launched (set in Connection Type

field in Resources tab). If you want to pass the environment variables to all hosts where MPI

 22／31

application runs, please use NMPI_EXPORT environment variable supported by NEC MPI.

NEC Parallel Debugger supports the following environment variable.

Environment Variable Contents

NPDB_SDM_PORTRANGE Range of the port number used for TCPIP connection among

SDMs. Ports are separated by a colon. Default is

50000:50079.

4.6 Other Settings

If necessary, add other settings on other tabs such as the Arguments tab.

4.7 Starting of a Debug Execution
Click on the Apply button to save the settings, and then the Debug button to start a debug execution.

Please make sure that VHs from which an MPI application is launched have been configured to load the

NEC MPI setup script by means like login shell so that the execution of MPI applications is enabled.

 23／31

 24／31

 Operations for Debugging

This chapter explains major operations for debugging with Eclipse PTP. For details, please refer to the

“Parallel Development User Guide” published on the Eclipse official site.

5.1 Available Views

The following table shows the views available for the applications run on VE that are displayed by default

in the Parallel Debug perspective. The name of view is displayed on the top of tab. In Editor, the name of

the opened file is displayed on the top of tab.

View Description

Parallel Debug Perform a debug execution of multiple processes in a collective manner

Debug Perform a debug execution of a target process and display the stack

trace of the process

Editor Display source code files

Breakpoints Display the list of breakpoints

Variables Display arguments and local variables in the stack selected on the

target process

Arrays Display information about arrays

Expressions Test data by inputting conditional expressions

Signals Display the list of signals the target process receives and the

corresponding actions by the debugger.

Outline Display definitions of variables and interfaces of functions in the file

displayed in the Editor view

Console Display the standard output and standard error from an application

Problems Display error messages at the building of a project

Error Log Display warning and error messages from plugins

5.2 Debugging of Multiple Processes in a Collective Manner

The Parallel Debug view enables debugging of multiple processes in a collective manner.

Firstly, please select a set of processes targeted for debugging in the Parallel Debug view, and then a

command to execute. If you do not select the set of processes, all the processes that are running (the root

set) are selected by default.

The following table shows the available commands.

 25／31

Icon Command Description

Resume

Group

Resume execution of the target processes.

Suspend

Group

Suspend execution of the target processes.

Step Into

Group

Execute the current line of the source code on the

target processes and suspend the execution at

the beginning of the next line. If the current line

includes reference of a procedure, suspend at the

beginning of the first line of the procedure.

Step Over

Group

Execute the current line of the source code on the

target processes and suspend the execution at

the beginning of the next line. If the current line

includes reference of a procedure, suspend at the

beginning of the next line after the execution of

the procedure.

Step Return

Group

Resume execution of the procedure on the target

processes from the line where the execution has

been suspended, and suspend at the beginning

of the next line of the line that invoked the

procedure.

Terminate Group Terminate a debug session of the target processes.

5.3 Debugging of One Process
The Debug view enables debugging of a selected process. Firstly, please select a processes targeted for

debugging in the Debug view, and then a command to execute.

The following is the detailed steps.

1. Double-click on a process in the Parallel Debug view to select the target of debugging. The stack trace

of the selected process is added into the Debug view.

 A rhombus stands for a process. The rank of the process is displayed by placing the cursor over

the rhombus.

 The rhombus corresponding to the process added into the Debug view is surrounded by a black

border.

2. Select a stack in the Debug view.

 26／31

3. Select a command to execute.

The following table shows the available commands.

Icon Command Description

Resume Resume execution of the target process.

Suspend Suspend execution of the target process.

Step Into Execute the current line of the source code on the

target process and suspend the execution at the

beginning of the next line. If the current line

includes reference of a procedure, suspend at the

beginning of the first line of the procedure.

Step Over Execute the current line of the source code on the

target process and suspend the execution at the

beginning of the next line. If the current line

includes reference of a procedure, suspend at the

beginning of the next line after the execution of the

procedure.

Step Return Resume execution of the procedure on the target

process from the line where the execution has been

suspended, and suspend at the beginning of the

next line of the line that invoked the procedure.

Terminate Terminate a debug session of the target process.

Remove

All Terminated

Launches

Delete the terminated debug session from the

Debug view.

5.4 Display of the Stack Trace

 27／31

The Debug view displays the stack trace of the target process.

The displayed information above is as follows:

Session Name

Rank of the MPI process

 Thread [Thread number] (Execution status: The reason for suspension, if suspended)

 Stack number Procedure name File name: Line number Address

Stack number Procedure name File name: Line number Address

 :

5.5 Reference of Variable Information

Select a target process in the Parallel Debug view or Debug view, and then a stack of the process in the

Debug view. The Variables view displays arguments and local variables in the selected stack.

Information about a variable including external one is displayed on the source code in the Edit view by

placing the cursor over the variable.

 28／31

5.6 Setting of Breakpoints
A breakpoint is enabled or disabled by double-clicking on the left of a source line number in the Edit view.

The breakpoint is set for all processes by default.

The Breakpoints view displays the list of enabled breakpoints.

5.7 Termination of a Debug Session

To terminate a debug session, click on the button in the Debug view to terminate the target

processes, and then click on the button to delete the debug session.

Next, click on the button in the Parallel Debug view to terminate the processes not targeted for the

debug, and then right-click on the debugging job to delete the debug session.

 29／31

 30／31

 Notices and Restrictions

6.1 Notices

 Please use the Oxygen v3 version of Eclipse PTP as NEC Parallel Debugger supports only the

version.

 The following message would be displayed in the Console view at the beginning of debugging. Please

ignore it as there is no effect on debugging operations. (This message appears when gdb attaches to

the mpiexec command at the beginning of debugging)

Missing separate debuginfos, use: debuginfo-install glibc-2.17-157.el7.x86_64

 The watch point feature and trace point feature are not supported.

6.2 Miscellaneous

 It is also possible to debug non-MPI applications for VE, using the CDT plugin or Fortran plugin for

Eclipse. Please specify gdb for VE (/opt/nec/ve/bin/gdb) as a debugger on the Debugger tab at the

creation of a Debug Configuration. For details, please refer to the following documents published on

the Eclipse official site.

 C/C++ Development User Guide

 Fortran Development User Guide

 31／31

Appendix A: Change Log

Edition Issue Category Modified Item Chapter/Section

1 May 2018

2 Dec 2018 DELETE Restriction for referring variables. 6.2

3 May 2019 UPDATE Additional description 1.2

	1 Overview
	1.1 NEC Parallel Debugger
	1.2 Operating Environment
	1.3 Steps for Debugging

	2 Creation of a Project
	2.1 Invocation of Eclipse
	2.2 Import of a Make Environment on a Remote Host
	2.3 Import of a Make Environment on the Local Host

	3 Building of a Project
	3.1 Setting of the Build Configuration
	3.2 Execution of a Build Project

	4 Creation of a Debug Configuration
	4.1 Creation of a Debug Configuration
	4.2 Setting of Resources
	4.3 Setting of an Application
	4.4 Setting of the Debugger
	4.5 Setting of the Environment
	4.6 Other Settings
	4.7 Starting of a Debug Execution

	5 Operations for Debugging
	5.1 Available Views
	5.2 Debugging of Multiple Processes in a Collective Manner
	5.3 Debugging of One Process
	5.4 Display of the Stack Trace
	5.5 Reference of Variable Information
	5.6 Setting of Breakpoints
	5.7 Termination of a Debug Session

	6 Notices and Restrictions
	6.1 Notices
	6.2 Miscellaneous

	Appendix A: Change Log

